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Abstract

Semi-autonomous driving innovations aim to bridge the gap to fully autonom-
ous driving by co-operating with human drivers to lead to optimal choices on
who should drive in different scenarios by offering different automation levels.
However, in the present day, known semi-autonomous driving solutions do not
generalise to every complex case of driver and Al interaction. This limitation
prompted research in attempting to solve the problem using artificial intel-
ligence and machine learning techniques. This paper focuses on providing a
reinforcement learning approach to solve one specific decision-making scenario
of the driver initiating a shift of control to a different automation level. The de-
cision problem was formulated as a Markov Decision Process, and the problem
was solved both by a baseline handcrafted decision tree and a learned rein-
forcement learning policy using the DQN algorithm. The two policies were
compared based on safety, comfort and efficiency metrics in a simulated driving
environment. The results were indicative that a reinforcement learning policy
generally ensured safety & comfort and has shown increased efficiency over the
baseline policy, however, it faced efficiency & comfort issues in outlier cases.

Keywords: Reinforcement learning, deep learning, machine learning, Al-based
decision making, Markov Decision Process, semi-autonomous driving

1 Introduction

With the emergence of self-driving cars, the safety and trust of the novel invention
have been of great debate. At present, no consensus has been reached on whether
autonomous driving is considered safer than manual driving and how such a com-
parison could be made reliably [1]. Due to the novelty, recency and lack of certainty
in autonomous driving, mutual trust remains a central issue in the field [2], with
driver trust varying in different driving scenarios, human and environmental factors
[3], [4]. The issues have prompted the emergence of the MEDIATOR! project, which
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aims to bridge the gap between manual and autonomous driving. Rather than hav-
ing cars operate without a driver entirely, semi-automated driving uses multiple
automation modes representing different degrees of artificial intelligence autonomy,
with lower degrees of automation delegating more tasks to the human driver. Semi-
autonomous driving involves a variety of complex decision tasks, such as deciding
when to intervene in driving or which automation level to choose to maximise se-
curity and comfort for the driver [5]. While general formulations for switching the
control between the human and artificial intelligence have been proposed [6], [7], the
utilization of artificial intelligence for specific complex scenarios remains an area to
be explored.

The research is scoped to reinforcement learning techniques to address novel
decision-making problems relevant to the MEDIATOR system. Reinforcement learn-
ing (RL) is a widely researched technique, commonly used to find optimal policies
for action planning and optimal control [8], with problems generally characterized
as Markov Decision Processes (MDP) [9, p. 1-16]. Research has shown that MDPs
are applicable in simulating a variety of driving-related decision problems: high-
way traffic [10], behaviour planning for cars [11] and driver-automation switching
in semi-autonomous driving [7]. Recently, RL approaches have been combined with
deep learning methods, leading to more effective deep reinforcement learning (DRL)
[12] algorithms capable of learning efficient policies in state spaces that would oth-
erwise be computationally infeasible to enumerate. DRL has since been utilised to
provide proof of concept solutions to various complex decision-making problems,
such as enabling robots and humans to achieve a common goal together efficiently
[13], finding optimal policies for motion planning and complex navigation tasks in
autonomous driving [14] and autonomous driving within traffic [15]. These previous
works suggest that reinforcement learning is suitable for solving semi-autonomous
driving decision problems modelled as MDPs. Since the area of semi-autonomous
driving is novel and the algorithms are generally applicable to any MDP, the main
challenge of the research lies in the formulation & modelling of decision problems.

The paper raises the following hypothesis as the research question: A reinforce-
ment learning policy learned from a Markov Decision Process is an efficient and
feasible decision-making solution for the specific scenario of the driver initiating a
shift to the desired automation level. Validation of this hypothesis guides future work
in decision-making problems in semi-autonomous driving by giving further insight
into the applicability of machine learning methods for specific driver-Al interaction
decision tasks. The results of the research provide a baseline that can be used for
comparison, allowing novel solutions to build on top of the research covered in this
paper by employing simpler or more accurate solutions and extensions. The out-
put of the research includes a Markov Decision Process formulation of the decision
problem and an RL algorithm solving the MDP. Validation of the hypothesis is
performed by comparing driving safety & comfort, as well as operational efficiency
metrics collected on both the learned policy and a handcrafted decision tree policy.



2 Methodology

The research followed a three-step process. First, the problem was formulated as
a Markov Decision Process. Then, policies were defined and implemented to solve
the MDP. Finally, the experiment was designed and executed to yield results for
comparison. The section will focus on the first two steps, while the details of the
last step will be described in the follow-up section.

2.1 Problem formulation

The study focused on the use case of the driver shifting control to a new automation
level in a vehicle. Hence, the decision-making problem can be formulated as: Which
action s the optimal choice when the vehicle is presented with a driver request?
To formulate this decision making problem precisely, the MDP model was chosen,
which allows describing stochastic environments, how they change based on actions
taken and what rewards are received when the actions are taken. The goal of solving
an MDP is to maximise the reward in such a stochastic environment [9, p. 53-59].
MDPs are formally represented as a 4-tuple of elements:

<S7A7P7R>

S - state space, an instance of s € S is characterised as a sequence of variables
xi,..., Tn, where each x; takes a value from a fixed domain Xj;.

e A - action space, defined as a discrete set of variables A = {ay,ag, ..., am}.

e P(s'|s,a) - transition function, representing the conditional probability of
reaching state s’ in time ¢ + 1 when an action a is performed in state s at
time ¢.

e R(s,a,s) - reward function returning a numeric value for state s, action a and
newly reached state s’.

State space

The state space was largely defined by the MEDIATOR system’s components, which
capture sensor observations of the human driver, the vehicle and the environment
[5]. The state was designed to be the product of observations coming from different
contexts. This modular composition allows to more easily reason about different
sources of data, as well as to make the extension of the model easier. The state
space is presented in Figure 1. Policies interacting with the MDP can gain sufficient
visibility of the environment to make decisions, as they are able to observe the safe
& comfortable levels of automation based on the driver & automation’s capabilities,
as well as the driver’s current interactions with the system.



Driver State

Fatigue c {0, 1}
Distraction < {0, 1}

Time Metrics State

TTDF € [0, 9999]

TTDU € [0, 9999]

Automation State TTA2F € [0, 9999]
Auto Level € [0, 3] TTA3F < [0, 9999]
Level Max € [0, 3] MDP State TTA4AF € [0, 9999]
Suggested Level € [0, 4] TTA2U < [0, 9999]
Optimal Level € [0, 3] TTA3U € [0, 9999]

TTA4U € [0, 9999]

Context State Feedback State

Driver Request € [0, 4]

Leaving ODD? 0,3 .
eaving € 0.3 Driver Response € {0, 1, 2}

Is NDRT? c {01}

Figure 1: MDP state space, composed of 5 state components

Five main components were included in the state:

Driver: binary variables are captured to track the human driver’s condition
to drive. A value of 1 indicates that the condition is active (e.g. fatigued)

Automation: captures the vehicle’s automation state. Active, maximum and
optimal levels are between 0 (LO - manual driving) and 3 (L4 - maximum auto-
mation). The value of 1 represents L2 (partial automation), with L1 skipped
due to similarity to L0, as L1 additionally only provides driving assistance
such as cruise control [16]. Suggested level values use the same level range,
except they are offset by 1 to have 0 represent "no suggestion”. The optimal
level variable will be explained in the transition function section.

Context: tracks road and environment observations. Leaving ODD indicates
that the vehicle will be leaving its operational design domain within 5 minutes
for a specific automation level. Leaving ODD for a lower level implies leaving
ODD for a higher level (e.g. leaving ODD for L2 means that ODD is also left
for L3 and L4). Values are between 0 and 3: 0 indicating the vehicle is not
leaving ODD, 1 meaning the vehicle is leaving ODD for the highest automation
level (L4) and 3 for the lowest (L2). The NDRT binary variable indicates that
a non-driving related task occurred at the specific time step.



Feedback: holds data of driver interactions with the system. Driver request
represents a request to shift to a specific level. 0 meaning ”"no request”, 1
indicating L0, and 4 meaning L4 requests. Driver response represents a driver’s
response to suggestions: 0 as no response, 1 as accepted and 2 as rejected.

Time Metrics: stores time metric estimates of state changes to enable the
automation system to make decisions based on near-future forecasts. Each
time metric has two components: fitness ("F”) and unfitness ("U”). TTDF
and TTDU represent time to driver fitness and unfitness respectively, with
TTDF indicating the number of seconds remaining until the driver becomes
fit to drive (caused by fatigue/distraction changes), whereas unfitness indicates
the estimate of seconds until the driver becomes no longer fit to drive in manual
mode. TTA metrics represent fitness for each automation level respectively.
The values are set in a large enough range for simplicity, capping at 9999
seconds to represent arbitrarily large values.

Action space

First, a requirements specification was crafted prior to defining the actions. The
requirements focused on providing the capability for the automation system to op-
erate at its full capacity, including both controlling the vehicle and interacting with
the user. The defined criteria were as follows:

1.

2.

The system should be able to shift the automation level

The system should be able to send signals to the driver when shifting is not
possible (i.e. suggestions, rejections and alarms)

The system should be able to have an action that would perform no change
to the state

The system should take driver preference into account when shifting and sug-
gesting

The requirements were formalised to 5 MDP actions:

Do Nothing (DN): the system makes no change to the vehicle’s state
Reject (RA): the system rejects a level shift initiated by the driver
Shift Level (SL): the system performs a shift to the optimal level
Suggest Shift (SSL): the system suggests a shift to the optimal level

Prepare Driver (PD): the system alarms the driver to get ready for the
takeover of the vehicle



Transition function

Since the use case focuses on human-AT interaction, the MDP was defined to operate
on timesteps of 1 second each to account for human & automation reaction times.
Moreover, a simplification was made regarding determining the optimal level to shift
to: instead of providing an action per automation level, the shift (SL) and suggest
shift (SSL) actions choose optimal level L, defined as follows:

e If no driver request: L, = Auto Level

e Define Ly, as 2if TTDF > 0 || TTDU < 60, and 0 otherwise. The minimum
level is L3 if the driver is unfit, since LO and L2 require the driver to monitor
the driving environment [16].

o Define Leomfort maz = min(3 — LeaveODD, Ly,q;) to enforce comfortable
shifts to a level that will not leave ODD soon

o Let L,.q = DriverRequest — 1, which is the level requested by the driver,
rebased to be consistent with the level variables in the state.

o Let Lopt = max(Lmin7 min(Lcomfort,maza Lreq))
o (if Lynin > Leom fort_maz, then set Loy = Auto Level)

The formulation simplified the decision logic by only shifting to levels that are
considered safe and comfortable (in range of minimum and maximum) while optim-
izing for the level to be as close to the request as possible. The optimal level is
additionally stored to the ”Optimal Level” variable in the state to inform policies
interacting with the MDP. The transitions were formulated per action as follows:

e Define shorthand function RESET(s), which resets the following variables of
state s: Driver Request = 0, Driver Response = 0 and Suggested Level = 0.
Intuitively, this resets the driver request state.

e Do Nothing: makes no change to the state: P(s|s, DN) =1
e Reject: P(spals,RA) =1

— SRA is constructed by sgpa = RESET(s), resetting the driver request.
e Shift Level: P(sgp|s,SL) =1

— sgr, is defined with the same variables of s, except it is reset using the
RESFET function and Auto Level = Ly Intuitively, this resets the driver
request state and shifts the automation level to the optimal choice.

e Suggest Shift: makes no change to the state on no driver request, if the
optimal level is equal the suggested level, or if the optimal level is equal to the
current level. Otherwise:



— Define three states: s(, s}, s5. Each represents a different driver response,
e.g. 0 for DriverResponse = 0

— Set suggested level changes in next timestep: V ¢ SuggestedLevely = Loy

— Driver request changes in the accepted state, imitating the driver accept-
ing the suggestion: Driver Request(s]) = Lopt

— Define ¢y and ¢; constants. ¢y is the no response probability, and ¢ is
the base acceptance probability. The two state probabilities should not
exceed 1: >, ¢; < 1. In the paper, ¢ = 0.1 and ¢; = 0.8.

— P(s{ls,SSL) = ¢p. The transition represents the uncommon outcome
when the driver does not respond within 1 second, or the case when
the automation system delays the signal. The two outcomes are treated
equally to learn policies that would factor in both delay scenarios.

— Define d = |Lgpt — (Driver Request — 1)|. Let t; = min(0,c¢; — 0.25 x d)
and t9 = 1 —t1 — ¢y. The values represent the decrease in acceptance
probability for larger level differences, while constraining co+t1 +1ts = 1.

— Define transition probabilities: P(s}|s, SSL) = t1, P(sh|s, SSL) = to
e Prepare Driver: P(spp|s,PD) =1

— s is transformed to spp, with TTDF(t + 1) = maz(0,TTDF(t) — 1).
Intuitively, the driver is prepared by increasing fitness.

The transition function is additionally extended to define terminal states: if
DriverRequest(t) # 0 && Driver Request(t+ 1) = 0, then the episode ends, as the
driver request is satisfied.

Reward function

The reward function was represented as a decision tree, with leaf nodes denoting
return values, and internal nodes representing conditional branches. This allowed
to flexibly compose the effects of actions on the reward. The designed reward tree
is summarised in Figure 2. The reward was designed to not be overly complex nor
too simple. Simpler reward design in the use case can lead the agent to perform
unwanted actions (e.g. if ”"Prepare Driver” was not penalized in incorrect scenarios,
the agent might start using it as a ”Waiting” action). On the other hand, reward
over-engineering might lead to less efficient learning [17] as the agent overfits to
specific correlations, motivating to design the reward based on outcomes rather than
specific actions (in this case, tracking driver request satisfaction instead of individual
actions). More insights into different reward designs can be found in Appendix A.
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Figure 2: MDP reward decision tree

Route simulation

In addition to state changes caused by actions, the MDP was extended to have a
fixed generated route per episode. The route was set to be of a fixed length of 3
KM, assuming a constant speed of 100km/h. The simplification was made since
the sensor data variables are assumed to capture all the necessary data to make
an optimal decision on the automation-human interaction level. The 3KM route is
furthermore divided into 108 timesteps, with 1 timestep equaling 27.78 meters or 1
second travelled, and a driver request is set to arrive in the first 5 seconds of the
route.

For each timestep ¢, a state s;.oute Was generated, which was then used in the MDP
transition function to determine state values of s at timestep t. The S,oute Sequence
was generated by fixing various events to occur throughout the route. Simulated
events included driver fatigue & distraction events and maximum automation level
changes. Time metrics were computed based on the entire simulated route. The
route simulation model is visualised in Figure 3. Details of the simulation can be
found in Appendix B. The purpose of the fixed-route simulation was to simulate as
many different driving conditions and different states as possible, in order to have
diverse simulation data to train and test the policies on.



Driver starts texting
(NDRT) Max Level Change Fatigue Change

t=0 Driver Request Leave ODD Change t=108
; i L 1
Driver Request interval: [1,4] ) Max Level Change interval: [18, 89] )
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Initial Level € {LO, L2, L3, L4} - {Driver Request} P Driver events
Initial Max Level € [Initial Level, L4] ## Endof route

Figure 3: Route simulation model: events are placed around the driver request, and
variables are preset for the simulated fixed length route.

2.2 Policies

After formulating the problem as an MDP, the next step was to create policies that
would solve the MDP. A policy can be thought of as a function that maps a state to
an action, allowing to calculate the next action to take in a given state. First, a de-
cision tree policy was made, which defined a fixed set of rules to decide which action
to take next. The decision tree provided a baseline comparison for reinforcement
learning algorithms and allowed assessing how effective a learned policy is compared
to a carefully designed policy. The crafted decision tree is shown in Figure 4. The
policy was designed based on intuition: if no request is pending — nothing should
be done. Otherwise, the automation should attempt to either prepare the driver if
they are close to being fit, suggest an alternative level or reject if it’s impossible to
satisfy the request or shift directly if the preferred level is available. It should be
noted that ”soon” conditions were left intentionally vague. This generally depends
on the chosen length of the route. In the case of the study, ” Automation fit soon”
means that the automation is fit within 2 seconds, and ”driver close to being fit”
means that the driver will be fit within the next 30 seconds.

Multiple reinforcement learning algorithms were considered to solve the task.
Since the formulated MDP had a continuous state space (due to time metrics being
continuous) and a discrete action space, multiple algorithms fit well for the task,
such as Deep Q Network (DQN [12]), Proximal Policy Optimization (PPO [18]) and
Actor-Critic with Experience Replay (ACER [19]). The main characteristic of the
mentioned algorithms is that they all use function approximators to determine how
good an action is based on the current state, therefore enabling to solve problems
with very large state spaces in feasible amounts of time and memory. The discretized
state space size of the defined MDP is very large (roughly 1.536 x 1037), therefore
motivating to use an algorithm using approximators.
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Figure 4: Decision tree policy: fixed set of rules to pick an action based on state

After running a few initial experiments, as seen in Appendix C, the DQN al-
gorithm was chosen based on the algorithm being more sample efficient and effective
in solving the decision problem over the limited amount of trials. Additionally, ex-
tensions were added to the DQN, which increased the performance considerably:
double network [20], dueling network [21] and prioritized experience replay [22].
The DQN algorithm was then run more times with different hyperparameters to
find a more performant configuration (the process is detailed in Appendix C). The
hyperparameter details of the most efficient observed policy are shown in Appendix
D.2. The Stable Baselines® implementation of the algorithm was used (trained for
1 million timesteps), together with the VecNormalize® environment wrapper to nor-
malize state observations. Normalization was needed in order to make the policy
less sensitive to outlier values during training (e.g. TTA metric values might reach
9999, while other values were usually small, mostly in the range [0, 3]).

2Stable Baselines framework - https://stable-baselines.readthedocs.io/
3VecNormalize wrapper -
https://stable-baselines.readthedocs.io/en/master/guide/vec_envs.html#vecnormalize
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3 Results

In order to compare the reinforcement learning policy to the baseline decision tree,
metrics were defined based on the problem domain. The metrics covered 3 main
aspects of semi-autonomous vehicle capabilities: safety, driver comfort and efficiency.
The policies were run on the route simulation environment defined in the previous
section over 1 million episodes and then the metrics were calculated for each policy
separately. Experiment parameters, configuration details and seeds can be found in
Appendix D. The section will proceed to cover each metric results in more detail.

Safety

The safety of an automated agent was measured in terms of unsafe shifts throughout
the simulated episodes. An unsafe shift is defined as a shift in the automation level
to a level outside the safe level range. The safe level range at time ¢ was defined as
[Limin, Lmaz], where Ly, is the maximum level as defined in the state, and Ly,
is L3 if the driver is unfit, and L0 otherwise. As the range was defined by the time
metrics, driver and automation state, it gave a complete indication of safety in the
defined decision problem. The metric tracked is the ratio of unsafe shifts over all
the simulated episodes. The results are presented in Table 1.

Comfort

Similarly to safety, comfort was measured by the ratio of uncomfortable shifts
throughout all episodes. An uncomfortable shift was defined as a change in the level
which is outside the range of comfortable levels. A comfortable level was defined to
be a level in which the fitness lasts for at least 1 minute. The small measure of time
(1 minute) was chosen since the simulated environment is short, only 108 seconds,
thus giving a fair indication of comfort. Additionally, if at any point in the request a
redundant prepare action was taken (a Prepare Driver action when the driver is not
shifting to a manual driving level, or TTDF is 0), the request was also considered
to be uncomfortable. The comfort metrics are summarised in Table 1.

Algorithm Satisfied | Unsafe | Uncomfortable
Decision Tree 100% 0% 0%
(1 000 000) (0) (0)
99.9998% 0% 0.0014%
DQN (999 998) | (0) (14)

Table 1: Driver request distribution metrics over 1 million episodes
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Efficiency

The efficiency of the algorithms was assessed against two aspects - domain-specific
performance and algorithmic performance. The latter was measured both by train-
ing performance (mean reward and loss over training timesteps) and test perform-
ance (mean and standard deviation of reward after training). Reward metrics were
collected both during and after training to assess how well the policy performs out-
side of a training setting, and the reward metric was chosen as it is the optimization
goal of RL algorithms. The training performance is shown in Figure 5, while the
test performance is given in Table 2. Note that the decision tree has no training
performance, as the policy is pre-defined and requires no training.

Reward vs timesteps Loss vs timesteps

150
125

0 100

reward
loss

075

20 050
025
-40
0.00

00 02 04 056 08 10 00 02 04 06 08 10
timestep le6 timestep le6

(a) (b)

Figure 5: Training performance graphs: (a) - mean episode reward over timesteps,
(b) - mean loss over timesteps. The lighter color draws the 99% confidence interval.

Algorithm Reward Reward | Reward | Episode Length
Mean + SD | Median Range Mean + SD
Decision Tree | 18.46 + 4.18 20 [8, 23.9] 7.5 £ 6.3
DQN 18.67 £ 3.84 20 [-104, 23.9] 7.02 £ 5.99

Table 2: Policy testing performance metrics over 1 million episodes

The domain-specific efficiency of the policy was measured by how long it takes
to satisfy the driver’s request. The metric indicates how fast the agent can perform
its tasks to reach the desired goal. The time metrics are summarized in Table 3.
Furthermore, the expectation is that the agents can satisfy all incoming driver re-
quests. Thus, another metric was captured in Table 1 to track how many requests
were satisfied. More specific action distribution metrics were captured in Table 4,
tracking problematic actions: idle (request pending, but the agent does nothing),
shifts missed (optimal level equals requested level, but the agent performs another
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action), redundant prepares and false rejects (rejections without suggestion, or re-
jections when a shift is feasible).

Algorithm | Mean + SD | Median | Range
Decision Tree | 5s £ 6.19s 1s [1s, 40s]
DQN 4.52s + 5.88s 1s [1s, 63s]

Table 3: Driver request satisfaction time metrics (seconds) over 1 million episodes

Algorithm Idle Shifts Missed | Redundant Prepares | False Rejects
Decision Tree 0.003% 0% 0% 0%
(236) (0) (0) (0)
DQN 1.33% 0.00036% 0.00057% 0.087%
(93104) (25) (40) (6119)

Table 4: Policy problematic action distribution metrics

Finally, additional insights into outliers are summarised by the graphs shown in
Appendix E. Further, Appendix F provides an additional comparison of the action
distributions of the two policies.

4 Discussion

The section will evaluate the results seen in the previous section and afterwards
reflect on the responsible research aspects of the study. The section concludes by
suggesting future work.

4.1 Evaluation

The goal of the study was to provide a model and a policy that would ensure safe,
comfortable and efficient actions in guiding the driver to their initiated automation
level. With regards to safety, it is evident from Table 1 that the property was
guaranteed by both policies, since there were no unsafe shifts. This is due to the
problem being modelled to enforce the constraint.

With regards to efficiency, generally, the DQN learned policy was more efficient
since it managed to satisfy requests quicker, as seen in Table 3. However, Table 4
indicates that the DQN fails in outlier cases since it has more problematic actions
than the Decision Tree policy. The redundant prepares metric also caused issues in
the comfort of the DQN policy, as seen by the uncomfortable shifts metric in Table 1,
rendering the DQN generally less comfortable than the Decision Tree policy. Adding
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the percentages of problematic actions (all in Table 4 except idle time), the DQN
falls short in efficiency in roughly 0.09% of cases. The negative outlier effect is
also evident in Table 2 and Figure E.2, since the DQN sometimes collects negative
rewards even after training. However, it still managed to achieve a higher mean
reward than that of the decision tree, indicating that the method is generally more
efficient. Lastly, Table 1 exemplifies the negative outlier effect as the DQN policy
did not manage to satisfy 2 out of 1 million driver requests, while the decision tree
managed to satisfy all of the requests.

Overall, the DQN policy appears to be a more optimal policy than the decision
tree. However, the policy fails to outperform the decision tree in outlier cases,
indicating a limitation in the reinforcement learning approach for the use case. When
placing the two policies in a more uncertain environment (e.g. time metrics with
estimation errors), it is expected that the DQN would perform even better than the
decision tree policy, since it is much harder for human-crafted logic to deal with
unseen cases of uncertainty.

4.2 Responsible Research

While the conducted study shows interesting results for the future of automated
driving, reproducibility is another important component of the study. Through-
out the study, the experiment was designed carefully to allow for reproducibility
and repeatability of the experiments. The model of the problem (see Section 2)
was provided as a non-ambiguous mathematical and algorithmic formulation, with
each assumption documented. The reinforcement learning algorithms were utilized
from the publicly available Stable Baselines* framework, with the hyperparameters,
hardware, software and seeds thoroughly documented and explained in Appendix
D. Moreover, the results were run over a large sample size to minimize variance and
bias in the data. By the Law of Large Numbers [23], the results would be close to
the actual mean, meaning that even with randomness, repeat observations would be
similar with large sample sizes. Although the listed measures help reproduction im-
mensely, the results should not be looked at with too much optimism and the study
should be conducted over larger numbers of test samples by multiple researchers
in order to be fully confident about the result. Lastly, it should be noted that the
source code is proprietary, which could cause issues in reproducibility, however, it
can be provided upon request.

Even though the algorithmic techniques presented in the study show promising
results for performing decisions on behalf of human drivers, the novelty of driving
automation poses some ethical concerns. A notable example is the social dilemma
of an autonomous vehicle having to choose between 2 choices that would both result
in human casualties in the case of driving accidents [24]. Ethical issues are also
prevalent in the use case discussed in the study. The strong constraints of safety

“Stable Baselines framework - https://stable-baselines.readthedocs.io/
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and comfort might not be applicable in all scenarios. For instance, the driver might
feel much safer in less comfortable scenarios and would be willing to make the trade-
off of sacrificing comfort for safety, while the automation system would reject the
driver from doing so as it optimizes for both factors. To mitigate this, the system
would have to be made more flexible, and cooperate more with the driver, either
through learning from experience or through configured preferences. Furthermore,
there might be a scenario in the larger MEDIATOR system where the vehicle would
have multiple options. For example, it may either choose to force a shift to a safe
level, or it may accept the driver’s request to a potentially unsafe level. Depending on
how the decision is resolved, it may pose ethical issues for human safety. Essentially,
there is a trade-off between catering to the user’s request and providing safety. The
right balance should be struck between the two when integrating the use case into
a larger system.

4.3 Future Work

Due to the agent failing on outliers, future work could focus on exploring solutions to
the problem. A solution could potentially be achieved by crafting a hybrid approach
utilizing both the RL agent and the human-designed decision tree, or by utilizing
shielding [25]. Furthermore, the presented model assumes that the sensor data under
simulation is fully accurate and correct. This assumption would not hold in the real
world, thus models capable of dealing with uncertainty could be explored, such as
POMDPs [26]. Additionally, stronger RL formulations could be explored to bring
the model closer to reality, for example, safety-constrained RL [27] or multi-objective
optimization [28]. Additionally, future research could build on top of the problem
formulation by attempting to make trade-offs, for example by allowing the driver
to take over to increase their personal feeling of safety while decreasing comfort.
Finally, it should be noted that the use case presented in the paper is very specific,
thus future research is needed on how to effectively integrate the proposed model
into the larger MEDIATOR system.

5 Conclusion

The paper raised the hypothesis that a reinforcement learning (RL) approach is an
efficient and safe solution to the specific scenario of the driver initiating a shift of
control in semi-autonomous vehicles. The paper presented a problem formulation
as a Markov Decision Process (MDP), an RL application to solve the MDP and a
baseline decision tree policy to compare the RL policy against. The hypothesis was
confirmed, as the resulting policy was fully safe and comfortable, and was more effi-
cient than a baseline handcrafted decision tree. However, the reinforcement learning
approach was limited in a few outlier cases (roughly 0.09%), where it failed to per-
form efficiently. Future studies should focus on exploring more realistic models and
techniques to enforce desired efficiency constraints to prevent outlier cases.
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A Alternate Reward Designs

The appendix describes additional observed results with alternative reward designs.
The observations further motivate the final reward design chosen in Section 2.

A.1 Engineered reward

DriverRequest = 0

False . : True

RequestedLevel ==
AutomationMode

Else False 'True

RequestedLevel >DEE
NsAutomationRea :Iy

False True Else

Lmax

sL SSLx. Else

II H ol -
RequestedLevel ==
AutomationMode

Else False True

True True El se

IsDnverReady"‘ “ H

False

) i Else_
== ﬂ -\ TroF <30 \ﬂ

False T'UE False True

Figure A.1: Alternative reward design: highly branched, engineered reward. rggy,
in the figure penalizes redundant suggestions and rewards correct suggestions by -2
and +2 respectively.

Reque sted Level ==

The reward design proved to be hard to track and debug due to its complexity.
However, apart from that, the reward design is flawed because it has the potential
to force the agent to interact in a predetermined way, effectively disabling the agent
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from learning and exploring to achieve the reward on its own. The reward design
was simplified in favour of the original reward design shown in Section 2.

A.2 Time-based reward

if is_initiating:

request_satisfied = current_state.fb_state.Driver_Request != 0 \
and next_state.fb_state.Driver_Request = 0
shifted_to_requested = requested_level =\

next_state.automation_state.Automation_-Mode

if request_satisfied:
rewards 4= 5

if shifted_to_requested:
rewards += 15

else:
costs —= 0.1
else:
if action != 0: # Not DN
costs —= 2

Figure A.2: Time-based reward in code

The shown reward is a simplification of the final reward design. The idea is
that the main goal of satisfying the driver request is rewarded, and other actions
are penalized, encouraging the agent to reach the goal faster. However, Figure A.3
shows that the agent did not successfully learn with the defined reward, as the agent
collects a large number of negative rewards after training for 1 million timesteps.
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Figure A.3: Time-based reward: collected test rewards after training DQN for 1
million timesteps

A.3 No penalty for DN

The final reward design in Section 2 was taken, but the DN action was not penalized
when a request was pending. Interestingly, the change led to more shifts being
missed, as the agent learned to abuse the ”Do Nothing” more often. More precisely,
after only 50 000 test episodes, 3742 out of 365018 actions (1.03%) were missed
shifts, which is far inferior to the data seen in Table 4.

A.4 Balanced DN and PD penalty

In the reward design presented in Section 2, the penalties for DN and PD are uneven.
DN is penalized by a factor of -0.5 when a driver request is pending, while PD is
penalized by -1 if used incorrectly. Previously, the reward design was balanced: both
penalties were -1. This led to a higher percentage of redundant prepares (see Section
3 for details on redundant prepares) in outlier scenarios (roughly 0.42%), effectively
leading to a less comfortable policy. The reward was changed to give less penalty to
DN, indicating to the agent that this is a better action in case waiting is necessary,
which decreased ”"redundant prepares” significantly. Furthermore, the reward did
not incorporate the -10 penalty when the request is not satisfied when the optimal
level equals the requested level. Adding this penalty improved the learned policy of
the agent by reducing missed shifts and false rejects.
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B Route Simulation

Routes used in the MDP were generated procedurally, attempting to simulate various
scenarios that could occur in driving. The algorithm is as follows:

1. Generate driver fatigue in the route
(a) With probability 0.75: set driver’s state to not fatigued (value of 0), and
with probability 0.25 set to fatigued (value of 1)

(b) If the driver is not fatigued, with probability 0.1: make driver fatigued
from randomly chosen time step ?f4¢igueq until the end of the route.

(¢) (3 distinct scenarios are covered: driver is not tired, driver becomes tired
and driver is tired from the beginning)

2. Determine driver request scenario. Randomly pick either Prefer Automation
or Prefer Manual scenarios.
(a) In the Prefer Manual scenario, the driver request is set to 1 (LO0)

(b) In the Prefer Automation scenario, the driver request is set to a value in
[2, 4], representing L2, L3 and L4 requests.

(c) A random timestep t,¢q is picked in the interval [1,4]. At this time step,
the driver request value is set to the generated value.
3. Generate automation levels for the route
(a) Pick an automation level auto_level to be one level from the set
{LO, L27 L37 L4} - Lrequested‘

(b) Determine the maximum level of the route as a value from the interval
[auto_level, L4]

(c) The level determination is done for the entire route. If at time ¢ the
fatigue is 1, then the only valid levels are L3 and L4. A random level in
{L3, L4} — Lycquested is picked for the segment where the driver is fatigued.

(d) (Driver requested level is excluded from the active level set because then
the scenario would end because the driver request would become satisfied
automatically, regardless of what decision is made)

4. Generate automation level change events

(a) With probability 0.4: no event generated

(b) With probability 0.4: generate a persistent level change event. A random
time step to is picked from the interval [18, 89] of the fixed-length route of
108 timesteps. Then, an auto_level and max level are picked according to
the same rules as determining the automation level of the route (except
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now the automation level prior to the event is also excluded from the
valid choices to enforce a level change). The automation level and the
new selected max level are changed for the entire route from point ¢y until
the last timestep.

With probability 0.2: generate a ”tunnel” level change event. A random
time step t¢ is picked from the interval [18,64]. Then, a maximum level
y lower than the current maximum level is picked (according to the same
rules as the initial level generation). Then, a random time step ¢ is
chosen within [tg 4 18, ¢ + 27]. The strip from ¢y to ¢; is changed to have
the maximum level y, and a newly generated automation level.

(Three main scenarios are covered: no maximum level changes, long max-
imum level changes to represent significant driving condition changes, and
temporary maximum level changes to represent temporary hindrances
such as unclear lane markings)

5. Simulate distraction events, sweeping over the entire route from timestep 0
until the last timestep of the route:

(a)
(b)

()

If the level at time ¢ is L3 or L4, proceed to the next timestep

Else: trigger a distraction with probability 0.2. If no distraction is
triggered, proceed to the next timestep. Otherwise:

i. Pick random [ € [1, 5]

ii. Set Distraction to 1 in ¢ to ¢t 4, unless the automation level changes
to L3 or L4, then pick the nearest time step where the automation
level is still LO/L2.

iii. Advance the timestep by 18 from ¢ + [ to simulate delays in distrac-
tion.

(Distractions are simulated to occur for random intervals of time, at any
time during driving. The problem is simplified by not tracking distrac-
tions when the automation is in control of the vehicle)

6. Simulate non-driving related tasks (NDRTSs)

(a)
(b)
()

Pick random number of NDRTs that will occur in the route: 0 (probab-
ility 0.3), 1 (probability 0.6), 2 (probability 0.1)

With probability 0.01 (if 1 or 2 NDRTSs are triggered): trigger single
NDRT after the driver request

Depending on the previous branch outcome, trigger the remaining NDRT's
to occur in a random timestep up until the driver request. If 2 NDRTs
are picked, they are constrained to occur at least 5 time steps between
each other
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(d) (NDRT occurring after driver request is considered rare, because the
driver is initiating a takeover, so it is triggered with a very small prob-
ability)

7. Calculate time metrics: TTAU, TTAF, TTDU, TTDF (see Figure B.1 for
TTA metrics, and Figure B.2 for TTD metrics)

8. Simulate Leave ODD

(a) If TTAzU < 300 at time ¢, then set the leave ODD variable to true for
level . Do this for all levels.

(b) (Interval of 300 is chosen to simulate that the automation is able to
forecast ODD changes in the upcoming next 5 minutes)
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def find_timestep_where_lmax_decreases (
from_timestep ,
target_level

99999

Returns the first timestep greater than the
passed in ’from_timestep’ in which the max level
is lower than the ’target_level ’.

Returns —1 if no such timestep exists.
79N

#

# Set TTAF to 0 for all levels up until the active level ,
# except level 0 since the metric is not tracked for

# manual mode. 0 indicates that the automation is

# currently fit to drive in the active level.

for 1 in range(1l, auto_level + 1):

TTAF[1] = 0
Lmax = 4
for 1 in range(1l, Lmax):
decrease_timestep = find_timestep_where_lmax_decreases (

current_timestep , 1

)

if decrease_timestep != —1:
# Automation will become unfit after reaching
# the timestep in which the level decreases.
TTAU[1] = (decrease_timestep — current_timestep)
else:
# Indicate that the level is not close to being unfit
TTAU[1] = 9999

return TTAF, TTAU

Figure B.1: TTA metric calculations for a single timestep
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if auto_level — ”L0” or auto_level — 7L27:
if driver_distracted:
TIDU = 360
else:
TIDU = 0

if driver_fatigued:
TIDU = 0
else:
TIDU = min (TTDU, 1800)

# TIDF 0: driver is already fit to drive,
# since they are in control of the vehicle.
return 0, TIDU
else: # L3/L4
if is_ndrt:
# Different NDRT types:
# Messaging: 5 seconds
# Obstruction: 10 seconds
# Immersion: 10 seconds
# Obstruction 4+ Immersion: 20 seconds
TTIDF = random. choice ([5, 10, 10, 20])
else:
TIDF = 0

# TIDU 9999: driver unfitness is irrelevant ,

# since the automation is in control of the wvehicle
return TTDF, 9999

Figure B.2: TTD metric calculations for a single timestep
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C Choosing Algorithms & Hyperparameters

The section describes how and why specific algorithms and hyperparameters were
chosen.

C.1 Algorithms

In the initial stages of the experiments, multiple reinforcement learning algorithms
were considered and evaluated when training over 5 million timesteps. The only
requirement was that the algorithms supported continuous state spaces and discrete
action spaces. The algorithms were evaluated based on their overall trends on the
rewards acquired over small sample sizes of 50 thousand episodes after training. It
should be noted that the experiment is not fully sound because it was run on an
MDP with a more complex reward design (see Figure A.1), however, it was close
enough to make a decision as the final state space was the same, excluding new state
variables introduced for NDRTs and the optimal level. The simplified experiment
provided guidance due to distinct trends observed in the figures below.
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Figure C.3: PPO Figure C.4: DQN
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Figure C.8: Double DQN + Duelling Net-
Figure C.7: Double DQN + PER 1 + PER

The two best-performing algorithms were PPO and DQN with 3 extensions:
Double Q-Learning, Prioritized Experience Replay (PER) and duelling network.
Due to the DQN’s ability to reach even higher rewards than PPO, it was ultimately
chosen as the algorithm to solve the decision making problem.

After the reward was finalized, two additional alternative algorithms were run to
gather further evidence whether the DQN was the most suitable found choice during
the study. The algorithms under test were ACER and PPO. Both algorithms were
trained with 25 million timesteps, more than the DQN algorithm was trained on in
the final study. The algorithms posed some interesting issues. The ACER algorithm
would not utilize the PD or SSL actions at all, as seen by the action distribution in
Figure C.9, whereas the PPO algorithm’s observed reward after training was noisier,
as shown in Figure C.10. The extra experiment yielded additional evidence that the
DQN was more sample efficient and suitable for the use case.

27



Action frequencies

72.43% (131355

120000

100000

80000
£
=
g

60000

40000

14 68% (26625, 12 89% (23375
20000
0 0.0% (0) 00%(0)
PD RA SSLopt SLopt

action

Figure C.9: ACER action distribution after training for 25 million timesteps and
testing over 50 000 episodes
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Figure C.10: PPO reward distribution after training for 25 million timesteps and
testing over 50 000 episodes

C.2 Hyperparameters

The hyperparameters were mostly determined by trial and error. Firstly, ranges
were defined for the hyperparameters, as seen in Appendix D.2. The ranges were
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defined to limit the scope of the experiment to intuitive values. For instance, a batch
size range of 8 to 128 was picked since values below 8 were deemed too small for
mini-batch learning, whereas values above 128 could turn out to be too large. After
defining the ranges, multiple experiments were run with different sets of hyperpara-
meters, utilizing the WANDB? framework’s Bayesian hyperparameter optimization.
Experiments involved training the DQN models for 250 thousand timesteps each and
measuring reward metrics after training over 5000 episodes. A total of 50 hyper-
parameter runs were performed, and the correlation coefficients between metrics and
hyperparameters were reported by the framework. The correlations are summarized
in Table C.1.

Mean Reward | Minimum Reward | STDev Reward
« -0.750 -0.178 0.651
Learning starts -0.185 -0.109 0.215
Target network update 0.013 -0.011 -0.07
Buffer size -0.047 0.159 -0.016
Batch size 0.022 0.201 -0.035

Table C.1: Hyperparameter vs metric correlation coefficients over 50 runs

The results provided a good guideline for picking the hyperparameters. The
main conclusions were:

e The learning rate should be small, around 2e—4 or smaller, as lower learning
rates yield higher rewards and smaller variance

e The batch size should be higher due to a high positive correlation with min-
imum rewards

The remaining metrics did not yield much insight, as the correlation coefficients
were too small to lead to any sound conclusions. Over the runs, two configurations
with the highest minimum reward had the following parameters:

1. Buffer size: 100 thousand, 70 thousand
Learning rate: 0.00022, 0.003

Learning starts: both 5000

Target network update: 6780, 3040

o

Batch size: 128, 120

The observation led to the final rounded values shown in Table D.2, which were
acquired through additional trial and error to lead to the results seen in the final
experiment in Section 3.

Shttps://wandb.ai/site
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D Experiment Parameters

D.1 Hardware & Software

Hardware/Software Model/Version
CPU Intel i7-7700HQ @ 2.80GHz
GPU Nvidia GTX 1060 Max Q 6GB VRAM
Memory 16GB 2400 MHz
Operating System Windows 10
Python v3.7.6
Stable-Baselines v2.10.2
PyTorch v1.8.1
Tensorflow v1.15.5

Table D.1: Experiment hardware information and software versions

D.2 Model Hyperparameters

The DQN network architecture was chosen to have 2 hidden layers, both with 64
hidden neurons. The input dimension equals the state dimension, and the output
dimension equals the number of actions. The remaining hyperparameters are shown

in the table below.

Hyperparameter Range considered | Chosen value

v (exploration rate) [0.99, 0.99] 0.99

a (learning rate) [0.00001, 0.1] 0.00005

gt (Initial exploration rate) 1, 1] 1

Emin (minimum exploration rate) [0, 0.05] 0.02
€ frac (fraction of training with exploration) [0.1, 0.2] 0.1
Batch size (8, 128] 120
Learning starts [5000, 10000] 5000

Bulffer size [25000, 200000] 100000
Target network update frequency [10, 10000] 4000

Table D.2: DQN Hyperparameters

D.3 Seeds

Seeds were used in two parts of the experiment. One part was for training the stable-
baselines model to ensure deterministic training, accomplished by setting the model’s
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seed via the seed® parameter in the framework’s model. The other part was for test-
ing a policy by setting a seed before generating test environments, done by setting
the seed both to Python’s random module, as well as the numpy.random mod-
ule. Additionally, the deterministic variable was set to True in the stable baselines
model’s predict” function. The seeds chosen are summarized in Table D.3 below.

Phase Seed
Training | 492883819
Testing | 1361753209

Table D.3: Seed values for training and testing phase

Sstable-baselines model seeding function -
https://stable-baselines.readthedocs.io/en/master /modules/dqn.html#stable_baselines.deepq. DQN.set_random_seed
"stable-baselines predict function -
https://stable-baselines.readthedocs.io/en/master/modules/dgn.html#stable_baselines.deepq. DQN.predict
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E Outlier Summary

The appendix section further illustrates the outlier cases where the DQN algorithm
shows anomalous behavior compared to the decision tree and the mean. The box-
plots below are indicative that the DQN agnet achieves better metrics overall: re-
quest satisfaction time is generally much lower, and the reward mean is slightly
higher. However, a small number of outliers can be observerd where the perform-
ance is decreased compared to the worst-case scenarios in the decision tree.
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Figure E.1: DQN Agent vs Decision Tree request satisfaction time boxplot
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Figure E.3: DQN Agent vs Decision Tree episode lengths boxplot

Figure F.1 provides additional insights into each outlier action. Two apparent
trends are that of shifts missed and false rejects. The automation overestimated the
value of inappropriate actions too highly. In shift missed, the SLOpt action has no
probability of occurring, indicating that the agent did not generalize perfectly.
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Another apparent problematic trend is that of redundant prepares — the auto-
mation is very close to choosing the SSLopt action, which is much more suitable in
cases where the automation cannot shift directly. Changes in reward incorporating
additional guidance for the agent in this scenario would likely alleviate the issue.

It should be noted that idle time is generally not an outlier case on its own, as
there are scenarios where the action is appropriate (e.g. when no driver request is
pending, or when waiting for a few steps would result in a better outcome). The
action distribution of idle time, however, indicates that there are cases where the

agent is also likely to perform the Prepare Driver action but chooses not to in favour
of Do Nothing.
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Figure E.4: DQN Agent action distributions per outlier state
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F Policy Action Distribution
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Figure F.1: Policy action distribution comparison. The similarity in the distribu-
tions likely indicate that the two policies are close to optimal
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