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Abstract A new mesh size field is presented that is
specifically designed for efficient meshing of highly
irregular oceanic domains: archipelagos. The new ap-
proach is based on the standard mesh size field that
uses the proximity to the nearest coastline. Here, the
proximities to the two nearest coastlines are used to
calculate the distance between two islands or the width
of a strait through an archipelago. The local value of
the mesh size field is taken as the width (or distance
between two islands) divided by the number of required
elements across the strait (or between the islands). This
new mesh size fields are illustrated for three examples:
(1) the Aegean Sea, (2) the Indonesian Archipelago,
and (3) the Canadian Arctic Archipelago.
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1 Introduction

The world’s oceans are bounded by continents and
island coastlines, resulting in complex and irregular
geometry on many spatial scales. There are large ocean
basins bordered by the continents which have islands
in their interior. There are archipelagos, separating the
ocean basin and lesser bodies of water, which allow
for interbasin transports of water masses. For exam-
ple, the Indonesian throughflow transports water from
the Pacific to the Indian Ocean through the Indone-
sian Archipelago and is an important component of
the global overturning circulation (Godfrey 1996; Lee
et al. 2002) and global climate system (Schneider 1998).
Another example is the Canadian Arctic Archipelago
(CAA). Freshwater is transported from the Arctic
Ocean through the CAA to the Labrador Sea and thus
to the Atlantic Ocean.

For many applications, well-represented coastlines
are an essential component of ocean modeling. Tradi-
tionally, ocean models are based on finite difference
schemes on structured grids (Griffies et al. 2000).
The disadvantage of this approach is that representing
coastlines and geometric features like narrow straits
and small island is not straightforward. A sufficient
resolution in these narrow straits, or near these small is-
lands, can only be achieved by increasing the resolution
of the structured grid, greatly increasing the computa-
tional overhead. The alternative, sufficient resolution
for most of the domain and not representing small
islands or narrow straits, is computationally cheaper but
does not represent the small-scale dynamics that might
be important.

An unstructured mesh approach circumvents this
issue, since it has the advantage of accurately repre-
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senting complex and irregular coastlines. In addition,
it allows for a spatially varying mesh resolution (e.g.,
Adcroft and Marshall 1998; Legrand et al. 2006). One
approach to unstructured meshes is the finite element
method, which has been used for several decades in
engineering. In the past two decades, geometrical do-
mains that are used for design and finite elements
are built using computer-aided design (CAD). Most
complex features like machine parts or assemblies can
be easily and efficiently be dealt with by CAD. Finite
elements and unstructured meshes have been used in
ocean modeling (e.g., Danilov et al. 2005; Piggott et al.
2007; White et al. 2008).

In generating the unstructured mesh for ocean mod-
eling, first a suitable boundary has to be defined, i.e.,
the boundary representation (BRep): shorelines in the
horizontal direction and bathymetry in the vertical
direction. Inadequate representation of the shoreline
may lead to problems (Pain et al. 2005; Adcroft and
Marshall 1998), such as spurious stresses in case of stair-
case shorelines present in structured meshes. Gorman
et al. (2007) proposed a method to approximate the
shorelines with polygons and polylines. Gorman et al.
(2006) described an automatic procedure that builds a
BRep of the geometry of the world ocean within pre-
scribed accuracy. Both use the high resolution shoreline
data bases and bathymetry data.

Using mesh generation algorithms, a mesh is pro-
duced from the BRep. At first, these algorithms were
adapted from classical engineering tools. The mesh
generation software of Henry and Waters (1993) was
used by Le Provost et al. (1994) to generate a mesh
of the world ocean used for tidal modeling. The same
kind of meshes at a higher resolution was used by Lyard
et al. (1994). On regional scales, Legrand et al. (2006)
produced high-resolution meshes of the Great Barrier
Reef. For generation of meshes in coastal regions,
Hagen et al. (2001) developed two algorithms, which
were used for tidal modeling in the Gulf of Mexico.
Specific algorithms were designed for the world ocean
by Legrand et al. (2000), Gorman et al. (2007).

These algorithms use definitions of a local mesh
size field to control the size and shape of the ele-
ments. Definitions that can be used are proximity to the
nearest shore, bathymetry, or various error estimates.
Depending on the geometry, several fields can be used
simultaneously. Usually, the minimum over all these
fields is taken. For example, for each coast (or group
of coastlines), a mesh size field can be defined based
on the proximity to this coastline (or group of coast-
lines). For most applications, defining a small number
of these fields is sufficient. However, when dealing with
archipelagos, this becomes more difficult. Archipelagos

generally consist of a large number of islands with
irregular coastlines and with a wide range of sizes. The
islands are separated by straits of different lengths and
varying widths. To obtain a mesh of sufficient resolu-
tion using mesh size fields based on the proximity to
the nearest shoreline is difficult since one would need
a lot of different mesh size fields in order to obtain a
sufficient resolution in each strait. This is computation-
ally expensive and fine-tuning all these fields is labor
intensive, even when only the most important straits are
refined.

Here, we propose an algorithm that automates
the meshing generation of irregular geometries of
archipelagos. The algorithm is designed such that it
generates a mesh in selected areas in the archipelago
with a desired resolution. It only needs a collection
of coastlines, and no additional fine-tuning for each
shoreline in this collection is necessary, since the mesh
size fields based on the proximity to the shorelines
in this collection has been replaced by a new single
mesh size field. This field only depends on the desired
resolution and the proximity to the nearest shoreline in
this collection. In addition, this field converges asymp-
totically to any given background mesh field.

The paper is divided into three section. First, we
outline the procedure for constructing a boundary rep-
resentation and generating a mesh. In the second sec-
tion, we describe the new algorithm. In the last section,
we show some examples of meshes produced by this
algorithm.

2 Mesh generation on a sphere

In this section, we will give an overview of the proce-
dures for building geometrical models of the ocean and
mesh generation. A more thorough discussion is pre-
sented in Lambrechts et al. (2008). The discussion here
is limited only to those topics needed for discussion in
later sections.

2.1 Geometric model

Before a mesh can be generated, a geometric model of
the ocean must be defined. This geometric model of the
ocean, 2D or 3D, can be represented by its boundary
representation. A curve is bounded by two points, a
surface by curves and a volume by surfaces. Therefore,
the model consists of model entities: 2D model surfaces,
1D model edges, and 0D model vertices. Usually, a
parametrization of these shapes is available and often
is mappings.
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In this geometric model, a coastline is usually defined
as a periodic curve. Though several approaches are
available, like using a piecewise linear interpolation,
here we use cubic B-splines. This allows for more
flexibility. The control points for the B-splines are
taken from the Global Self-consistent Hierarchical
High-resolution Shorelines database (GSHHS, Wessel
and Smith 1996). This is the most accurate shoreline
database, and is guaranteed to be self-consistent, i.e.,
in this database, coastlines do not intersect. A size field
γ (x) can be defined that gives the desired accuracy of
the geometrical model at any point x. The GSHHS data
are coarsened by collapsing every successive point at x
that is closer than γ (x).

The are several choices for parameterizing a sphere.
In oceanography, most of the time geographic or spher-
ical coordinates are used. The mapping of the coor-
dinate system might have some particular problems:
(1) a singular point might exist, (2) one of the coordi-
nates might be periodic, (3) shorelines might cross a
periodic edge, and (4) the mapping does not con-
serve angles, i.e., the mapping is not conformal. As
a result, this leads to complexity in the definition of
the geometric model. Though a conformal mapping
is preferred since it conserves angles, there might be
applications where a parametrization is not conformal
and anisotropic mesh has to be constructed in the para-
metric plane to obtain an isotropic mesh in real space.

2.2 Local mesh size

After the boundaries have been represented by B-
splines, finite element meshes can be generated on the
surfaces. Usually, the mesh generator builds elements,
by adapting the mesh size field to control their size and
shape. This mesh size field is a scalar function δ(x) that
defines the optimal size of an edge at position x. For the
world oceans, some choices for the δ exist (Lambrechts
et al. 2008).

The bathymetry H(x) can be taken into account by
forcing the mesh to capture its variations. Since the
bathymetry is usually interpolated piecewise linearly at
the mesh vertices, the first term in its error is depen-
dent on the absolute maximum eigenvalue λmax of the
Hessian

H(x) = ∇2
(

H(x)

Href

)
, (1)

where Href is a reference bathymetry. This leads to a
criterion field f1(x) = 1/

√
λmax.

In addition, the mesh can be forced to capture for
a reference depth the wavelength of the gravity waves,
which travel at speed

√
gH, with g being acceleration

due to gravity. The length scale of a gravity waves λ is
proportional to O(1/

√
H). If one wave with a minimum

wavelength λmin is to be captured by N mesh sizes for
a given reference bathymetry Href, a criterion function
f2(x) can be designed as

f2(x) = λmin

N

√
Href

H(x)
. (2)

Coastlines need to be resolved well, in order to
capture small-scale phenomena. The mesh size should
decrease towards the coastline. As such, the function
f3(x) can be defined that measures the proximity to the
nearest coastline:

f3(x) = d(x), (3)

where d(x) is the distance to the nearest shoreline.
It is possible to add other size fields, such as error

estimates dependent on the finite element solution.
Also, to produce a mesh in parametric space with right
sizing in real space, suitable mesh size fields should be
defined in parametric space.

The mesh size field δi(x) is now computed from the
criterion field fi(x) by assuming δi(x) to be a linear
function of fi(x) within a refinement zone. Define the
desired small and large mesh sizes δ small

i and δ
large
i and

the zone of refinement defined by the criterion field
values f min

i and f max
i . The linear function αi(x) in the

zone of refinement is given by

αi(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if fi(x) ≤ f min
i

fi(x) − f min
i

f max
i − f min

i

if f min
i < fi(x) < f max

i

1 if fi(x) ≥ f max
i

(4)

The mesh size field δi(x) follows from

δi(x) = δ small
i + αi(x)

(
δ

large
i − δ small

i

)
. (5)

The final mesh size field is taken to be the minimum
of all size fields: δ(x) = min(δ1(x), δ2(x), · · · ). In this
paper, we will focus on defining a criterion function
f and mesh size function δ that refines the mesh in
narrow straits. As such, we will not take into account
bathymetry, though it can be taken into account by in-
cluding a mesh size field based on the bathymetry to the
minimum operator. Before discussing this refinement,
a few words are needed on generating a meshing using
the definition of the local mesh size.

2.3 1D and 2D mesh generation

For the meshes produced in this paper, we used Gmsh
(Geuzaine and Remacle 2009), which includes the
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definitions of criterion and mesh size functions above,
as well as built-in pre- and postprocessing capabilities.
Since the code is an open source, its source is available
and can be extended and adapted.

For meshing a curve u = [u1, u2], it is parametrized
by a parameter t : u(t) : [0, 1] → R2. Define the num-
ber of subdivisions N in the 1D mesh as

N =
∫ 1

0

√
(∂tu1)2 + (∂tu2)2

δ(u(t))
dt. (6)

The coordinates of the N + 1 mesh points are t0, t1, · · · ,
where ti is given by

i =
∫ ti

t0

√
(∂tu1)2 + (∂tu2)2

δ(u(t))
dt. (7)

Since the coastlines are represented by piecewise B-
splines, an adaptive trapeze rule must be applied to
evaluate these integrals. Even when the geometrical
representation of the coastlines is nonintersecting, this
algorithm does not guarantee that the 1D mesh is like-
wise nonintersecting. For example, two islands close
together might result in a 1D mesh intersecting with
itself. Given a large number of islands, resolving this
issue by hand is not an option. A procedure to recover
intersecting 1D meshes is available (see Lambrechts
et al. 2008), which uses a divide-and-conquer algorithm
to construct a Delaunay mesh. Missing edges are recov-
ered using edge swaps and intersecting edges are split in
two, after which a new Delaunay mesh is constructed.
If necessary, this is repeated.

For 2D mesh generation, Gmsh provides several
alternatives: (1) the del2d algorithm (George and Frey
2000), (2) the frontal algorithm (Rebay 1993), and
(3) the meshadapt algorithm (Li et al. 2005). These
methods start by forming an initial 1D Delaunay mesh,
and vertices are iteratively inserted inside the domain.
Though the del2d algorithm is the fastest, the frontal
algorithm results in a high-quality mesh. Here, we have
chosen to use the latter.

3 Refinement in narrow straits

3.1 Sketch of the problem

Archipelagos are groups of islands of different sizes,
and usually, their coastlines are highly irregular. As
a result, they have many straits of varying length,
and most straits have varying width. In such areas,
meshing is not a straightforward exercise. If small-scale
processes are to be studied, the mesh should be of
sufficient resolution to resolve these processes. When
the archipelago is embedded in a large region, at a

minimum, the straits that provided a large part of the
through flow should have a resolution that captures any
flux accurately.

How to obtain a mesh with sufficient resolution that
takes in account these criteria? A straightforward ap-
proach is using the shore proximity function to refine
the mesh where necessary. This has one limitation:
one has to manually adjust the values δ small, δ large,
f min, and f max for each coastline (island) in the strait.
Given the possible large numbers of straits and their
different widths, this might prove to be an inefficient
and labor-intensive approach. Adding to the difficulty
is that refinement in a strait might lead to refinement
for the entire coastline, not just the relevant coast-
lines, of the islands in this strait if the coastline is
represented by B-splines. This can be circumvented by
splitting the B-spline in segments, each with different
refinement. In addition, if an island is separating two
straits and different resolutions are required, likewise,
the B-spline needs to be split.

Rather, one would like a more systematic and
efficient approach, where no manual editing of the
coastline representation is needed. Here, we have cho-
sen to use as our definition for the mesh size field
the minimum of two functions: (1) f0, based on the
proximity of the coastline and (2) f1, based on the width
of the a strait. The former is a “background” mesh that
is defined over the domain, with the latter refining the
former where needed.

3.2 Proximity to coastline

Let � = {ui|i = 1, · · · , L} be the collection of L coast-
lines, where ui(t) is the ith parameterized coastline. In
this context, �, or any subset, is a collection of points
belonging to the member coastlines. In the remainder,
coastlines are assumed to be discretized coastlines, with
a finite number of points. The function f0 is defined as
the shortest distance to any shoreline:

f0(x) = d(x) = min
u∈�

‖x − u‖. (8)

The mesh size field δ(x)is evaluated using Eqs. 4 and 5.
Figure 1 shows a simple example of a strait. In this
figure, three points are shown that are closest to x.
Using this criterion, u would have the shortest distance
to x.

3.3 Refinement in straits

To refine the above criterion in selected narrow straits,
we need to define what a strait is in geometrical terms.
The definition used here is based on the fact that
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Fig. 1 A sketch of a simple strait geometry. A strait runs from
south to north through the middle of the figure. The islands
shaded in light gray belong to �P, while the islands shaded in
dark grey belong to �S. Point u is the closest point to x on any
of these shorelines. Point v is the next nearest point to x, not in
the same shoreline collection. Note that point y is located closer
to x than v but is not used for determining the width of a channel
since it belongs to the same set of shorelines as u. The width of
the coastline is defined as the sum of the length of the two arrows.
An alternative definition is indicated by the dashed line

most straits have clearly defined sides, i.e., when sailing
through a strait one can distinguish between coastlines
located to port and to starboard. Define

�P =
⋃
i∈P

�i (9)

as a subset of � of those coastlines P located on the
port side. Likewise, define

�S =
⋃
i∈S

�i (10)

as a subset of � of those coastlines S located on the
starboard side. Naturally, one must have

�P
⋂

�S = ∅. (11)

An example is given in Fig. 1, where both subsets are
shaded in light and dark gray. The width of the channel
w(x) at a location x is now found by adding the closest
distance to �P and the closest distance to �S or

w(x) = min
u∈�P

‖x − u‖ + min
v∈�S

‖x − v‖. (12)

If the strait has to be captured by at least N mesh sizes,
then the criterion function becomes

f1(x) = w(x)

N
. (13)

The mesh size function δ1(x) is evaluated using Eqs. 4
and 5. Of the three point shown in Fig. 1, the point
closest to x not belonging to the same subset as u is
v. Note that the third point, y, is closer than v. The
resulting width of the strait is the sum of the two black
arrows. In the remainder, this criterion will be referred
to as “strait” criterion.

Note that an alternative formulation for w(x) is in-
dicated by the dashed line in Fig. 1, i.e., the strait line
from u to v. That is, w(x) is the distance between the
two points located on the nearest shorelines that are
closest to x. More formally,

w(x) = ‖ṽ − ũ|, (14)

where

ũ : min
u∈�P

‖x − u‖, (15)

ṽ : min
v∈�P

‖x − v‖. (16)

Though the alternative is closer to the width of the strait
when x is near the narrow sections of the straits, as
is the case in Fig. 1, the former is used here since it
was found during testing to be more numerically stable
and δ1 converges more smoothly towards δ0 for large
distances away from �P and �S. In the remainder, this
will be called the “strait criterion.”

3.4 Refinement in local island groups

In addition to clearly defined straits, archipelagos can
have local groups of islands that do not neatly define
straits but might be important. The above approach can
be adapted for these cases. In this case, a distinction
between starboard and port is not longer possible. In-
stead, define

�L =
⋃
i∈L

�i (17)

as a subset of � of those coastlines in L in this local
island group. The definition of the width of the strait is
now (see Fig. 1)

w(x) = min
u∈�L

‖x − u‖ + min
v∈�L

‖x − v‖ subject to u 
= v.

(18)

The width is based on the proximity to the two nearest,
but distinct, coastlines. For the example, in Fig. 1, the
distances to points v and y would be used. The criterion
function f1 is again defined by Eq. 13, and the mesh size
field δ1 is given by Eqs. 4 and 5. In the remainder, this
criterion will be referred to as “local group criterion.”
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Fig. 2 The domains of the
three examples: a Aegean
Sea, b the Indonesian
Archipelago, and c the
Canadian Arctic
Archipelago. In each figure,
the mesh shown is that of the
background mesh, without
refinement in selected straits.
Boxes indicate which regions
are to be refined. Red and
blue boxes indicate the
regions for which the results
will be shown in detail

(a) (b)

(c)

3.5 Implementation

For finding the point v in a set � of coastlines with
the closest distance to x, Gmsh uses the approximated
nearest neighbor algorithm (ANN, Aray et al. 1998).
When using this algorithm for finding the distances
to calculate the width of the strait, using ANN is less
straightforward. This is mainly due to the fact that
the two nearest points on dif ferent coastlines (local
group criterion) or in dif ferent sets of coastlines (strait
criterion) have to be found, which is more compli-
cated. Some care has to be taken to assure this is done
efficiently.

First, define a maximum width wmax as

wmax = Nδ
large
1 = N f max

1 . (19)

In other words, wmax is defined as the number of mesh
sizes to be captured N times the upper limit of the mesh
size δ

large
1 .

Before evaluating f1(x) using the strait criterion, for
each shoreline k in �P, all the shorelines in �S with
at least one point located within a distance wmax are
located and stored. This to minimize to space to be
searched. Note that �P and �S can be swapped with
each other. When using the local group criterion, the
same is done, with the exception that the search is
limited to �L excluding the shoreline where the nearest
point is found. In both cases, denote the subset to be
searched as �k. Depending on the size of wmax, the size

of � is much smaller than �P or �L leading to a far
more efficient and faster algorithm.

When evaluating f1(x) using the strait criterion, the
procedure now is as follows (see also Fig. 1):

1. Find the nearest point u to x.
2. If u 
∈ �P ⋃

�S or d(x) > wmax than f1(x) = f max
1 .

This holds that if (1) the nearest point is not part
of the strait or (2) farther away than wmax, f1(x)

assumes the maximum value.
3. Find the nearest point v ∈ �k to x.
4. Evaluate f 1(x).
5. Evaluate δ1(x) according to Eqs. 4 and 5.

Using the local group criterion, the procedure is nearly
the same, apart from the rule that u ∈ �L.

4 Examples

In this section, the new mesh size field described in
the previous section is illustrated in three archipelagos:
(1) the Aegean Sea,1 (2) the Indonesian Archipelago,
and (3) the Canadian Arctic Archipelago.

1The Aegean Sea was traditionally known as Archipelago
(Aρχιπελαγ oς in Greek). The general sense of which has since
changed to refer to the Aegean Islands and, generally, to any
island group because the Aegean Sea is remarkable for its large
number of islands.
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Table 1 Parameters used for producing the example meshes

Parameter Aegean Indonesian Canadian Arctic
Sea Archipelago Archipelago

f small
0 0.025 0.025 5.0

f large
0 25.000 25.000 250.0

δmin
0 0.025 0.025 5.0

δmax
0 5.000 5.000 50.0

f small
1 0.000 0.000 0.0

f large
1 25.000 25.000 250.0

δmin
1 0.000 0.000 0.0

δmax
1 5.000 5.000 50.0

Subscript 0 refers to the criterion function based on the prox-
imity to the coastline (see Eq. 8) and subscript 1 refers to the
refinement in narrow straits and island groups (see Eq. 13).
The parameters refer to those used in Eq. 4 to evaluate the
corresponding mesh size functions

Figure 2 shows the spatial extent of each domain.
In addition, the background mesh, without refinement,
is shown. This mesh is produced based only on the
proximity to the coastline (Eq. 8), using the top four
(those with subscript 0) in Table 1. Since this is the
unrefined mesh, in the remainder of the text, N = 0
for this mesh. Note that depending on the width of
the strait, the background mesh might have at some
locations only one element across.

The background mesh is further refined by using the
mesh size field (Eq. 13) above for several values of the
desired resolution N. The parameters used for meshing
the domains are shown in Table 1.

These examples, as well as the areas of refinement,
have been chosen to illustrate the mesh size field de-
scribed above. We do not intend to make statements
about whether those resolutions are necessary to re-
solve the physical processes that might be important in
those areas.

4.1 Aegean Sea

The domain that covers theAegean Sea and surround-
ing areas is shown Fig. 2a. It includes the Bosporus and
Sea of Marmara, which connects the Aegean Sea with
the Black Sea to the northeast (not shown). Parts of the
eastern Mediterranean are also included.

Regions that will be refined are indicated by the box-
es in Fig. 2a. The results of the meshing refinement are
only shown for the red and blue boxes: (1) the Euboic
Gulf between the Greek mainland and the Island of
Euboea (located within the red box) and (2) the Icarian
Sea (located within the blue box). The results are shown
in Figs. 3 and 4, respectively. In these figures, as well as
the next few, each triangular element is colored with
respect to the log10 of the radius of the circumcircle of

Fig. 3 The Euboic Gulf and
the Euripus Strait. This
region is can be found within
the red rectangle in Fig. 2a.
a Background mesh,
b refinement with N = 5,
c refinement with N = 10,
and d refinement with
N = 20. The elements are
colored with respect to the
log10 of the radius of the
circumcircle of the element
(in log10 km)
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Fig. 4 The Icarian Sea. This
region can be found within
the blue rectangle in Fig. 2a.
a background mesh,
b refinement with N = 5,
c refinement with N = 10,
and d refinement with
N = 20. The elements are
colored with respect to the
log10 of the radius of the
circumcircle of the element
(in log10 km)

the element (in log10 km). As such, higher resolution
shows up as reddish and lower resolution as blue.

Figure 3 shows the refinement of the Euboic Gulf.
Here, the strait criterion was used, since one can clearly
discriminate between both sides of the gulf: the Greek
mainland and the Island of Euboea. Starting from the
background mesh (Fig. 3a) that was generated using
only the proximity to the coast line, the number of
elements enforced across the width of this gulf is dou-
bled from Fig. 3b–d. For the first refinement shown in
Fig. 3b, five elements along the width of the gulf and
straits were used (N = 5). As can be clearly seen from
this figure, a higher resolution mesh is generated in the
narrow Euripus Strait (slightly off-center in this figure).
Doubling the value of N results in higher resolution
mesh while smoothly going to the coarser resolution of
the background mesh away from this area.

The refinement for the Icarian Sea is shown in
Fig. 4. Here, the local group criterion was used, since
no clear strait can be distinguished. Starting from the
background mesh, the mesh is refined by doubling N.
In Fig. 4b, where N = 5, already most of the narrows
between the islands are refined, without a significant
increase in resolution for the sea. There, the resolution
is significantly refined if N = 20.

4.2 Indonesian Archipelago

The Indonesian Archipelago separates the Pacific
Ocean to the north from the Indian Ocean from the

south. The flow is predominantly from the Pacific
Ocean to the Indian Ocean and is known as the In-
donesian throughflow, which is an important part of the
global thermohaline circulation (Godfrey 1996). Three
regions are refined (see Fig. 2b), and the two will be
discussed here: (1) Sunda Strait (located within the red
box) and (2) the area around Komodo Island (located
within the blue box).

The results of the mesh generation for the Sunda
Strait are shown in Fig. 5. The Sunda Strait separates
Java (to the east) from Sumatra (to the west). It con-
nects the Java Sea to the Indian Ocean. Within this
strait are located a number of volcanic islands including
Krakatoa. For the refinement, here we use the local
group criterion. Though it is clearly a strait, we found
that using the strait criterion resulted in some sharp
changes in resolution of the mesh, due to the presence
of the islands. The main reason is that it is not possible
to smoothly coarsen the resolution to the background
mesh near the islands.

The background mesh is shown in Fig. 5a. For N = 5,
some refinement takes place, especially near the islands
(see Fig. 5b). Significant refinement happens only when
N = 10, on the Java Sea end of the Sunda Strait, and
when N = 20 (see Fig. 5c ,d).

Figure 6 shows the generated meshes around
Komodo Island (located in the center of these figures).
This area is located between the larger islands of
Flores (to the west) and Sumbawa (to the east). Be-
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Fig. 5 The Sunda Strait,
between Java to the east and
Sumatra to the west,
connecting the Java Sea with
the Indian Ocean. This region
can be found within the red
rectangle in Fig. 2b.
a Background mesh,
b refinement with N = 5,
c refinement with N = 10,
and d refinement with
N = 20. The elements are
colored with respect to the
log10 of the radius of the
circumcircle of the element
(in log10 km)

Fig. 6 The region around
Komodo. To the west is
Flores and to the east is
Sumbawa. Here, the Flores
Sea to the north connects
with Sumba Strait. This
region can be found within
the blue rectangle in Fig. 2b.
a background mesh,
b refinement with N = 5,
c refinement with N = 10,
and d refinement with
N = 20. The elements are
colored with respect to the
log10 of the radius of the
circumcircle of the element
(in log10 km)
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Fig. 7 Nares Strait,
connecting the Arctic Ocean
to the north with Baffin Bay
to the south. This region can
be found within the red
rectangle in Fig. 2d.
a Background mesh,
b refinement with N = 5,
c refinement with N = 10,
and d refinement with
N = 20. The elements are
colored with respect to the
log10 of the radius of the
circumcircle of the element
(in log10 km)

tween these two islands are a couple of smaller ones,
of which Komodo is located half way between them.
Rather than a clear strait, this area resembles more a
collection of smaller straits. Instead of defining every
strait separately, here we opt to use the local group
criterion.

When comparing the background mesh with the
first refinement (N = 5), it can be seen that the
refinement has a direct impact on the smaller straits
between the smaller islands and the bigger ones. For
example, the areas close to Sumbawa (to the east).
Further refinement to N = 10 and N = 20 yields a
high-resolution mesh in this area while the coarser
resolution is retained in the far field.

4.3 Canadian Arctic Archipelago

The Canadian Archipelago is a complex area of islands
and straits in the Arctic, located between the Canadian
mainland and Greenland. It is an important pathway
of sea ice and water mass transport between the Arctic
Ocean and Atlantic Ocean (Kwok 2006; Serreze et al.
2006). Here, the narrow straits have a large impact
on ice circulation, due to the formation of ice bridges
which can block the flow for several months.

The domain of the Canadian Arctic Archipelago is
shown in Fig. 2c. Three areas are refined as indicated
by the boxes in this area. The two we will discuss here
are (1) Nares Strait (in the red box) and (2) Jones

Sound. For both, the strait criterion was used for the
refinement.

Nares Strait is located between Greenland (to the
east) and Victoria Islands (to the west). It is an impor-
tant gateway of freshwater flux from the Arctic Ocean
to the Atlantic Ocean (Melling 2002; Kwok 2005), via
Baffin Bay (located to the south) and the Labrador
Sea. In this strait, the sea ice shows a complex be-
havior (Samelson et al. 2006); hence, a high-resolution
mesh would be preferable (Lietaer et al. 2008;
Terwisscha van Scheltinga et al. 2010). The results of
the refinement are shown in Fig. 7. One thing can be
easily seen: refinement in Nares Strait does not lead
to any refinement in the Arctic Ocean or Baffin Bay.
Through increasing the resolution by quadrupling the
number of elements across the width of Nares Straits
for N = 5 in Fig. 7b to N = 20 in Fig. 7d, you can clearly
see in the figures that along Nares Strait the resolution
is dependent on the width.

The same can be seen for Jones Sound (Fig. 8).
Also here, the refinement is limited to the area, and
the refinement decreases away from it. Likewise, the
resolution is higher near the narrower ends of Jones
Sound.

4.4 Performance

In this section, we will discuss the computational per-
formance of the mesh size field. In Table 2, for each
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Fig. 8 Jones Sound. This
region can be found within
the red rectangle in Fig. 2d.
a Background mesh,
b refinement with N = 5,
c refinement with N = 10,
and d refinement with
N = 20. The elements are
colored with respect to the
log10 of the radius of the
circumcircle of the element
(in log10 km)

of the three domains and the background mesh and
refinements, the time taken for the generation and the
number of elements of each mesh are shown.

The first observation to be made is that, as expected,
increasing the resolution (i.e., N) results in more
elements and longer generation times. Not shown in the
table is that meshing the 1D geometrical entities only
showed a small increase for the three domains, while
most of the increase resulted from the 2D meshing.

For the background mesh (N = 0), the time it took
to produce a mesh varied for each domain, as did the

Table 2 For each domain and value of N, the total cpu time (tcpu)
used for producing the mesh, on a early 2008 MacBook with a
2.4-GHz Intel Processor, and the total number of elements

Domain Number tcpu Elements

Aegean Sea 0 27.68 58,437
5 67.85 62,165

10 88.52 79,345
20 175.89 154,989

Indonesian Archipelago 0 80.68 202,724
5 197.61 204,678

10 212.08 216,765
20 276.94 276,987

Canadian Arctic 0 60.0805 94,218
Archipelago 5 107.6585 94,845

10 135.3688 99,729
20 203.8518 125,575

N = 0 indicates the background mesh without mesh refinement

number of elements. This is because the domains are
different in size, and each domain has a different num-
ber of geometric entities. These differences between
the domains also result in slightly different increased
computational overhead when comparing the addi-
tional number of elements. For example, for N = 4,
it takes 143 s more to produce the mesh with an
additional ±41,000 elements for the Canadian Arctic
Archipelago. For the Indonesian Archipelago, these
numbers are 74 s and ±74,000 elements. This is due to
the differences in geometry.

Overall, these meshes are produced quite efficiently
in a reasonable amount of generation time. Using this
refinement algorithm does require more time than
just the background mesh. This is easily offset against
the amount of time it would have taken defining and
tuning the proximity mesh size fields for each island
separately.

5 Summary

Archipelagos consist of many islands, straits, and lesser
bodies of water at a variety of spatial scales. Ideally,
one would like to use unstructured meshes, since they
have the advantage of accurately representing complex
and irregular coastlines and allow for a spatially varying
mesh resolution. Generation of meshes with a sufficient
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resolution in archipelagos is not a straightforward task.
To produce a mesh, see Lambrechts et al. (2008) for a
procedure on how one would need to define a mesh size
field that defines the resolution at every spatial point. A
popular choice of such a field is based on the proximity
to the nearest coastline. For archipelagos, one would
have to define and tune for every coastline such a mesh
size field in order to get the required resolution in the
relevant straits of the archipelago. This is an inefficient
and labor-intensive approach.

Here, we have introduced an extension of the mesh
size field that is based on the proximity. We use the
proximity to the two nearest coastlines to determine the
width of a strait or separation between two islands. This
is then used to determine the mesh size field by dividing
this length by the number of required elements. This
new mesh size field is illustrated for three examples of
archipelagos: (1) the Aegean Sea, (2) the Indonesion
Archipelago, and (3) the Canadian Arctic Archipelago.
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