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Abstract: We enhance machine learning algorithms for learning model parameters in complex
systems represented by differential equations with domain decomposition methods. The study
evaluates the performance of two approaches, namely (vanilla) Physics-Informed Neural Net-
works (PINNs) and Finite Basis Physics-Informed Neural Networks (FBPINNSs), in learning the
dynamics of test models with a quasi-stationary longtime behavior. We test the approaches
for data sets in different dynamical regions and with varying noise level. As results, the
FBPINN approach better captures the overall dynamical behavior compared to the vanilla PINN
approach, even in cases with data only from a time domain with quasi-stationary dynamics.
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1. INTRODUCTION

Mathematical modeling of biological processes is inher-
ently complex due to the intricate and often only partially
understood mechanisms involved. Additionally, biological
processes exhibit different behaviors on different temporal
and spatial scales. Some processes may take a long time,
and often data are available only from certain stages,
while data for other stages are unavailable. The inverse
problem of determining important mechanisms and their
parameters based on data is therefore complicated. This
study addresses these challenges by leveraging data-driven
machine learning approaches to identify abstract mecha-
nisms and determine parameter values that represent the
known biological mechanisms from observed data.

We focus on two toy models: the saturated growth model,
which captures population growth dynamics, and the com-
petition model, which examines interactions between two
species, including scenarios of coexistence and survival
(Murray (2007)). These models were tested on synthetic
data from different time intervals, such as a dynamical
and stationary phase, and the total time domain, with
varying noise levels. We employ two different approaches:
physics-informed neural networks (PINNs, Raissi et al.
(2019)) using the SciANN library (Haghighat and Juanes
(2021)), and domain decomposition-based PINNs using
finite basis PINNs (FBPINNs, Moseley et al. (2023));
for the application of FBPINNs to (systems) of ordi-
nary differential equations (ODEs) and partial differential
equations (PDEs), we also refer to Heinlein et al. (2024),
resp. Penwarden et al. (2023). The aim is to compare
the ability of the methods in learning the parameters of

the dynamical system in cases where the data is limited
to certain time intervals. Problems like this occur when
dealing with (biological) problems where only stationary
data is available that can be interpreted as the result of a
dynamical process in advance of the measurement.

In this paper, we decompose the domain into dynamic and
quasi-stationary domain, to better capture the dynamical
behavior of the system. Up to our knowledge, the applica-
tion of the domain decomposition approach is new in the
field of parameter estimation, in particular for differential
equations with data from quasi-stationary dynamics.

2. COMPUTATIONAL METHODS

We start with introducing vanilla PINNs and the more
sophisticated FBPINNs with domain decomposition.

2.1 Physics Informed Neural Networks(PINNs)

In contrast to purely data-driven approaches, PINNs are
trained by using a combination of labeled training data
and available prior knowledge about the problem (Raissi
et al. (2019), Lagaris et al. (1998), Dissanayake and Phan-
Thien (1994)). In the forward problem setup, the physical
law(s) are known and encoded in a PDE, but the solution
of the PDE is unknown. Let us consider a differential
equation of the general form:

Dlu(x)] = f(z),
By[u(z)] = gi(x),

where D[u(x)] is some differential operator with u(x) as
the solution, and By[] is a boundary operator including as
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well the initial conditions, which ensure uniqueness of the
solution. The input z could be spatial and/or temporal,
where d is the dimension of the domain. Equation (1) can
represent many differential equation problems, including
linear and nonlinear problems, ODEs and PDEs, time-
dependent and stationary problems, and problems with an
initial value, Dirichlet and Neumann boundary problems.

To solve the differential equation (1), PINNs use a neural
network (NN) to directly approximate the solution, i.e.,

uP NN (23 0) ~ u(x), (2)
where x is the input to the network and € are the trainable
parameters of the NN model. The proposed general loss

function from Raissi et al. (2019) to train the PINNs model
combines two influences,

L(0) = Lppr(0) + Lc(0). (3)
The PDE based loss function is
Ny
Aph
Lopp(0) = T > (D™ (@is0)] = fl@a)® (@)
i=1

with {z;}Y, being a set of collocation points sampled
within © and Appy being a weight. The boundary condition
loss function is

ZZ

le

Lpc(0 u" N (2 0)] = gr (7)),

()
k

where {xf}jvfl is a set of points sampled along each
boundary condition (BC) and A% is a weight. The weights
Aphy and A% are chosen so that the individual terms in the
loss function (3) contribute in a balanced manner. Finding
an appropriate choice of A,py and A% leading to the best
result is usually challenging and problem-dependent.

An alternative to using separate boundary condition loss
terms Lpc(f) is to hard constrain the solution to sat-
isfy the boundary condition exactly, which we do in this
work. This approach involves directly incorporating the
boundary conditions into the neural network architecture
to inherently satisfy the boundary condition, thereby re-
moving the need for the boundary condition residual term
in the loss function. The hard constraining modifies the
NN ansatz in (2) as follows:

a"™N (25 0) = Clu"™N (2 0)] & u(x), (6)
where C is the constraining operator applied to the output
of the NN model. Consequently, the loss function of the
NN becomes:

Aphy -
h -
KT‘V Z(D[UPINN(J%; 0)] — f(x:))*.
i=1
(7)

In many real-world scenarios, the objective is not only to
solve a forward problem but also to address an inverse
problem. An inverse problem involves estimating unknown
parameters or initial conditions based on observed data,
with the governing equations explicitly defined or partially
known. In this case, the differential and/or boundary
operators D, respectively By, may depend on a set of
additional parameters P = (p1,...,pn,). Hence, solving
the inverse problem does not only involve finding the
network parameters 6 but also the parameters P. Given

L(0) = Lppr(0) =

available synthetic or real data and other prior knowledge,
the inverse problem reads

Iglglﬁ(a, P) = EPDE(Gyp) + ﬁdata(aa P) + Epar(ga P),
| (8)

where the loss function in (7) of the PINNs approach is
complemented by the data loss

Np
Adate ~
Lawa(0, P) = 22 370" (@50) = wania(2:)) - (9)
i=1
and an optional parameter-induced loss function
Np
Lpar(oa P) = )\param Z(max{oapi,min — DiyPi — pi,max})2~

i=1

(10)
Here, Agata represents the weight for the data residual
in the loss function, and Np is the number of data
points used for the training. In general, the data points
Udata(2;) could consist of measurements, observations,
or synthetic data derived from simulations. Additionally,
Aparam 1S the weight for the parameter constraints term in
the loss function, and Np is the number of parameters.
(Pi,min, Pi, max) are the min and max the values of the i-th
parameter. The range for the values of p; min and p; max
depends on known values, and in the specific cases of this
work, all parameters are considered non-negative, so the
lower threshold is known.

Often, if more terms are included in the loss function,
the complexity of the training increases due to the higher
number of interactions between terms and the additional
constraints imposed on the optimization process.

2.2 Domain Decomposition-Based PINNs(FBPINNs)

Vanilla PINN approaches show a spectral bias, meaning
that they can learn the low frequency components more
easily than the high-frequency components of the solution.
To address this issue, Moseley et al. (2023) observed that
domain decomposition-based PINN architectures can learn
multiscale components of the solution.

The domain decomposition-based PINN approach defines
an approximate solution similar to those given in (2)
and (6), as it works well with both soft and hard
boundary constraints setups. However, it differs in terms
of the network architecture, as it employs as many neural
networks as the number of subdomains chosen. The global
network produces the output

ZWJ

FBPINN (IL‘; 9)

FBPINN unnormou

"B (25 0,)onorm; (z),

(11)
where the term u represents the collective sum
of the output of all subdomains. The normalization term
norm; adjusts the input variable z to the range of [—1,1] in
each dimension over the subdomain before it is input to the
individual neural network uj—“b(x;Hj) at j-th subdomain
;. Then comes the output unnormalisation unnorm term,
which ensures that the output stays within the range
[-1,1] in each neural network. Finally, the outputs are
multiplied by the window function w;(z), which is smooth,
differentiable, and zero outside the subdomain, confines
the network’s solution locally. Moreover, the choice of the
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subdomains enhances the learning of specific frequencies
fitting to the subdomain size.

For a hyperrectangular subdomain the window functions
are defined from a partition of unity as

J
ij =1 onQ, supp(w;) C Q;, (12)
j=1
with
wj(2) = (H(x = 2jmin) - H(Zjmax — 2))-
(13)

1 €T — [ 2
- (1 + cos (ﬂ'ﬂj>) ,
4 O'j

where w; is the window function in the j-th subdomain
after domain decomposition, and H is the Heaviside step
function that ensures the solution is zero outside of each
subdomain. The interval (z; min, T;max) represents the left
and right overlapping region for the subdomain j. p; and
o; represent the center and half-width of each subdomain,
respectively. The cosine function ensures the solution is
smooth within the interval and has a continuous first
derivative. See Fig. 1 for a one-dimensional example with
two subdomains and corresponding window functions.

1.0
0.8
—m
B 0.6 subdomain 1
S04 w2 _
subdomain 2
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

domain

Fig. 1. One-dimensional example of window functions (13)
for two overlapping subdomains. The light blue and
light orange regions represent the respective subdo-
main intervals, while the combined light brown region
highlights the overlap between the two subdomains.

The loss function for the FBPINN method is calculated for
the given ansatz defined in (6), with the network output
provided in (11), similar to the PINN loss function in (8)
giving

5(9) = LPDE(Q) =+ Ldata(e) + Epar(o)a (14)

with the loss functions in (7), (9) and (10), where the PINN
solution @"™N ig replaced by the FBPINN solution (11).

These two computational approaches will be used in the
following for determining in an inverse problem setting the
parameters of ordinary differential equations with avail-
able data in certain time domains. The domain decom-
position approach therefore applies to the time domain,
giving more weight to time domains with more data or, in
perspective, time domains with higher quality data.

3. MATHEMATICAL MODELS

We introduce two differential equation models with a non-
trivial solution behavior. Those models will be investigated
with the methods of Sec. 2.

3.1 Saturated growth model

In the saturated growth model (e.g. Murray (2007)), we
consider a population of one species u with the carrying
capacity C. The saturated growth model is

du

dt
where u represents the population size, and C > 0 is the
carrying capacity. This model captures the dynamics of
a population undergoing saturated growth, such as the
growth of a virus population in liver tissue. The solution
tends towards C' for initial values ug > 0, representing
the saturation of growth as the population reaches its
maximum capacity. The growth rate is moderated by the
term (C — w), which implies that the population growth
rate decreases as it approaches the carrying capacity C.
Fig. 2(a) shows the solution of the saturated growth model
for an initial value u(0) = ug > 0 and C = 1.

u(C —u) with u(0) = ug, (15)

(a) saturated growth (b) competition

1- -7

0.5 -

population
— )
| |
\
1
m/
S
»

10 20
time t

Fig. 2. Solutions of (a) the saturated growth model (15)
and (b) the competition model (16) for parameters
with coexistence (u.,v.) or single-survival (us,vs).
The dynamic time frame is shaded in blue, the quasi-
stationary in gray.

3.2 Competition Model

The second model is a Lotka-Volterra competition model
(e.g., Murray (2007)), which served as a test model in
Reisch and Burmester (2023) concerning the possibility of
model discovery. The dynamics of two species with inter-
and inner-species competition is given by

% = u(l —aiu — CLQU) - fl(uvv)a
% =rv(l = bru — bav) = fa(u,v), (19

with  u(0) =ug > 0; v(0) =wvy >0,

where ai, as, by, by and r are all positive coefficients,
and the species u and v compete for shared resources.
There are two non-trivial long-time behaviors depending
on the parameter values. Either, the system tends toward
a coexistence steady state (u’,v’) # (0,0) or one species
vanishes, i.e., either (u} # 0,v} =0) or (u} = 0,v¥ # 0).

Fig. 2(b) illustrates the competition models featuring
coexistence and single-survival scenarios. As depicted, in
coexistence scenarios, two species survive together within
shared environments. Conversely, in survival scenarios, one
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Table 1. Parameter values of the competition
model (16) in the two settings.

Table 2. Learned values C for the saturated
growth model (15), the true value is C' = 1.

parameter r a1 a2 b1 ba [0, 24] [0, 10] [10,24]
coexistence 0.5 0.7 0.3 0.3 0.6 PINN 1.0042 0.9916 1.0097
single-survival 0.5 0.3 0.6 0.7 0.3 FBPINN 0.9917 0.9915 0.9995

species gradually dominates the other over time. Tab. 1
gives the parameter values used in the simulations.

3.8 Model discovery and parameter estimation

The three models, saturated growth for one species and
competition between two species with two parameter set-
tings, serve as test models for a model discovery or, by
restricting the mechanisms beforehand, for a parameter es-
timation in varying data scenarios. The introduced PINN
approaches solve the inverse problem of finding parameter
values by including the parameter to learn in the underly-
ing differential equation that contributes in Lppg. In this
study, we provide the terms in the ODE that are included
in the model used for data generation. In future works,
we plan to implement a sparse choice of some mechanism
terms, like in Brunton et al. (2016).

The parameters we want to learn are C' for the saturated
growth model and for the competition model the param-
eters in Tab. 1. We want to compare the ability of deter-
mining the model parameters by using data either from the
dynamical time interval [0, 10], the quasi-stationary time
interval [10,24], or in the whole time interval [0, 24]; the
dynamical and quasi-stationary time intervals are shown
in Fig. 2. We will investigate both approaches, vanilla
PINN and FBPINN, in all data settings.

Our expectations for the computational results are based
on analytical properties of the stationary points: In the
saturated growth model (15), the nontrivial stationary
point u* = C gives directly the parameter that we want
to estimate. Our first hypothesis therefore is that both
computational approaches should be able to reproduce a
good estimation of the parameter, independent of the time
frame employed for data collection. Besides, the solution
of the neural network should be more precise when giving
data from the dynamical time domain rather than from
the quasi-stationary because the dynamics lead to the
stationary states, but there are multiple dynamics tending
towards the same stationary state.

The identification of the parameters in the competition
model is much more challenging, firstly because there are
more parameters to identify, and secondly because the
stationary states do not depend on all parameters. More
precisely, the coexistence stationary state is given by

(u*, v*) az — by a; — b
u =
ere a2b1 — albg, agbl — a1b2 ’

so it is independent of r and in numerical simulations
we have two stationary state values for determining four
dependent parameters. The stationary state in the single-
survival parameter setting is (u},v}) = (1/a1,0), and
hence, independent of ag, b1, b2, 7. By knowing only the
longtime behavior of the solution, it is therefore hard to

determine the parameter values except for a.

Our hypotheses for the competition model take this into
account: We expect that learning a; in the single-survival

setting is feasible, even when only data in the quasi-
stationary domain is available. On the other hand, deter-
mining any parameter in the coexistence case is hard for
taking only data in the quasi-stationary domain.

So far, these hypotheses on learning the parameters in the
different models and settings are valid for both methods
of Sec. 2. We investigate now how the domain decompo-
sition with overlapping domains affect (i) the parameter
estimation and (ii) the quality of the learned NN solution,
both compared to vanilla PINNs.

4. RESULTS

We start with testing our hypotheses on the general
parameter estimation problem and then compare more
detailed the outcomes of vanilla PINNs and FBPINNS.
In both methods, we employ hard enforcement boundary
constraints. For the FBPINN approach, we choose the
domain decomposition based on the dynamic and quasi-
stationary time domains in Fig. 2.

4.1 Model accuracy and parameter learning

Our first hypothesis is that the parameter C in the
saturated growth model is easy to learn for any of the
algorithms and independent of the data region used. This
hypothesis is confirmed by test cases that we run with
the hyperparameters in Tab. 3. The learned parameters C'
for the three temporal domains and the two approaches,
vanilla PINN and FBPINN, are given in Tab. 2.

Next, we check our hypotheses on the competition model.
Firstly, we anticipated that, in the coexistence case, de-
termining the parameters from the quasi-stationary time
domain is difficult due to an underdetermined algebraic
system for the parameters depending on the steady states.
Fig. 3 shows these problems with false estimates in the
quasi-stationary setting but acceptable estimates in the
dynamical or full time domain. Both approaches perform
qualitatively the same in this case.

The second hypothesis for the competition model states
that in the single-survival parameter setting the estimation
of a; is possible even in the quasi-stationary time domain,
while it is not possible to determine the other param-
eters in this time domain exactly. Fig. 3 supports this
hypothesis, and again, both methods perform qualitatively
similarly. Consequently, the parameter estimation is a task
that does not improve by FBPINNs, which was expected
from the nature of the problem.

However, the effect of learned parameters from different
approaches can be observed in Fig. 4 by the energy plots
using the Lyapunov function

¢ = — arbar(bru + agv) + ajasbiberuv
1
+ gme(albluz + azbg’uz). ( 7)
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(a) coexistence (b) single-survival
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AFBPINN [0,10] ¢ FBPINN [10,24] Ml FBPINN [0,24] — true
A PINN [0,10] ¢ PINN [10,24] O PINN [0,24]

Fig. 3. Learned parameters in the competition model. The
values [a, b] give the time domain of data used.

Even though the differences of the learned parameters in
the time interval [0,24] are relatively small, the energy
plots given by the Lyapunov function based on the learned
parameters differ rather crucial. While the learned pa-
rameters with FBPINN give an energy functional that
strongly resembles the energy functional of the ground
truth parameters, the vanilla PINN energy functional is
qualitatively different. This has an effect on variations of
the initial conditions: While the solutions will still tend
towards a point close to the true stationary state in the
FBPINN case, the dynamics with the learned parameters
from vanilla PINN may be totally different.

(a) True (b) PINN

3.0 3.0 3.0 g 0.103
0.061
> 1.5 > 1.5 >15 0.018
I . -0.024
0.0 0.0 0.0 -0.067
-0.5 1.0 25 -0.5 1.0 25 -0.5 1.0 2.5
u u u

Fig. 4. Energy plots for the competition model (16) in the
coexistence setting with data in [0, 24].

(c) FBPINN

Next, we want to compare the second outcome of the PINN
approaches, a learned solution of the NN. Fig. 5 shows the
mean squared error of the NN output and the numerical
solution of (15), resp. (16), as ground truth. The results
of the comparison in Fig. 5 show a higher accuracy of the
FBPINN compared to vanilla PINN. This difference is very
prominent as well for the quasi-stationary time domains,
where the parameter estimation failed in both parameter
settings of the competition model.

Based on this impression, we dive deeper into the dif-
ferences of the solutions for one case. The difference of
the MSE is largest for the competition models. Therefore,
we compare the time-resolved solutions of the competition
model in the coexistence case, see Fig. 6. The differences in
the models depend, of course, on the data time domains.
The solution of the vanilla PINN in the dynamical time
domain [0,10] has a larger error for larger time, while
the error for the solution with quasi-stationary data from
[10,24] has a larger error for small time. The FBPINN
solution in the whole time domain shows a surprising oscil-
latory behavior for larger time. A reason for this behavior

(a) saturated growth (b) coexistence (c) single-survival

101

3 IpiNN E E
4 ZFBPINN E E
H10-2 5 E E %
3 3 3 Z
w0 3 3 3 2
3 E E 2
b b oo | 3 2
25 2
] ] A 2
Z 2
) Z 2
10—5 - — 7z | 77
E E ZE 2
3 El 2 27 | 3 2
3 El 7 Z 2
3 EN BE %
2 Z 2
. -~ | 1 W 22 1 4 2
] 2z |1 W A 2
2 22 Z 2
77 Z ) Z 2
—4 | 77 77 | | 777 v z7: | | o 77
= - 2 AEl A A ZEEl ™1 72 2
3 2o I ZEEEN 7 ZEEN 7 7 7

[0,10][0,24][10,24]  [0,10] [0,24][10,24]

time domain

[0,10] [0,24][10,24]

Fig. 5. MSE of the vanilla PINN solution and the FBPINN
solution based on data from three time intervals.

might be overfitting of the included noise. Therefore, the
oscillations only occur when data in the quasi-stationary
time domain is available. A more sophisticated hyperpa-
rameter tuning may reduce this effect.

(a) [0, 10] (b) [10, 24] (c) [0, 24]
2 — —
= ‘! E
b= \ 1 !
_L; 15 ] '.- 1% |‘
2 4 e k. X
VT T e &
2 1 ».-"s__..,z___ _____ _ ,«-“-‘.5,‘_‘ — .,‘.\Q:__ -

I I I I I I I
0 10 20 0 10 20 0 10 20

time ¢ time t time ¢
utrue = = = u PINN sauau: u FBPINN
vtrue = = = v PINN =«a=: v FBPINN

Fig. 6. Comparison of time-dependent PINN and FBPINN
solutions for the competition model with coexistence

To our surprise, the overlap size of the subdomains had
only a small influence on the solution quality with one
exception: In the single survival test case, we found a
large MSE for a window overlap into the data region of
wo = 1.001 and smaller. For the other test cases, a window
overlap variation between 1.001 and 2.3 does not affect
the solution quality. In all regarded cases, there were still
collocation points of the PDE loss in the overlap.

4.2 Loss landscapes with and without domain decomposition

Fig. 7 shows the loss landscapes (Li et al. (2018)) of
FBPINNs and PINNs with individual colorbars. The loss
landscape of FBPINNs shows less sensitivity to small
variations in the trained weights compared to those of
vanilla PINNs. The PINN loss landscapes are more convex
than the FBPINN loss landscapes for data in [0, 10] and
[0, 24]. Following Li et al. (2018), this may indicate that the
network initialization is more crucial for FBPINNs, where
some chaotic regions exist next to well-formed convex
regions. Further interpretation of the loss landscapes is
challenging because the landscape shows only two random
directions of the large parameter space of the NNs.
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0.033

0.006

0.083
0.064
0.045
0.025
0.006

3
-0.8 -0.4 0.0 0.4 0.8 -0.8 -0.4 0.0 0.4 0.8

(c) PINN [10,24]

3.810
2.859
1.908
0.958

0.007 _

4.421 0.358

3.335 0.270
2.249 0.182
1.163 0.095

0.077 _ 0.007

-0.8 -0.4 0.0 04 08

Fig. 7. PINN and FBPINN loss landscapes for the competi-
tion model with coexistence in the three data settings.

4.8 Noise Effect

The time-dependent dynamics of the learned solutions in
Fig. 6 shows some oscillatory behavior due to noise. Fig. 8
compares the MSE for different noise levels in the data for
the competition model with coexistence.

10—2 ]
1072 " 1
A A
A
—4 | A "]
g1 L
= 1075 -]
A APINN [0,10] 4 FBPINN [0,10]
10764 & OPINN [0,24] ®FBPINN [0,24]
107 4 ; PINN [10,24] + FBPINN [10,24]
T T T T T T
000 001 002 003 004 005

Noise

Fig. 8. MSE of solutions for the competition model in the
coexistence case with varying noise.

For any non-zero noise level, the FBPINN solution has
a smaller MSE than the vanilla PINN solution. In some
cases, the difference is in the order of one magnitude. This
supports the better performance of FBPINNs.A reason for
this observation may be the ability of FBPINN to learn
different parts of the solution in a more stable way due to
the different subdomains.

5. TRAINING PARAMETERS

The used hyperparameters are given in Tab. 3. The results
are robust against changes of nC, wo, wi and the number
of layers. The FBPINNs approach uses all the training
points in a single training step. Consequently, we set the
batch size to be equal to the sum of the number of data
points (nD) and the number of collocation points (nC),
for the PINNs approach as well. The code is available at
github.com/tirtho109/VanillaPINNsVsFBPINNs.

Table 3. Hyperparameters

Parameter PINN FBPINN
Hidden Layers (layers) [5,5,5] [5,5,5]
Epochs 50000 50000
Activation Function tanh tanh
Physics loss weight (Appy) 1.0 1.0
Data loss weights (Agata) 1.0 1.0
Optimizer Adam Adam
Learning rate 0.001 0.001
Number of collocation points (nC) 200 200
Collocation Sampling Grid Grid
Number of data points (nD) 100 100
Noise (u, o) 0, 0.05 0, 0.05
Batch Size 300 300
Number of subdomains (nsub) N/A 2
Window overlap data-region (wo) N/A 1.9
Window overlap no-data-region (wz) N/A 1.0005
Parameter loss weight (Aparam) N/A 1 x 108
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