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Abstract: Location of wind power plants and demand centres are not always close by; hence, the transmission of energy 
puts a burden on existing grid infrastructure. This unwanted burden necessitates transmission lines to operate more and 
more frequently close to their operating limits. To alleviate such situations, this research addresses the advantages of 
modelling spatio-temporal dependence of load and wind power using vine copula. Probabilistic AC optimal power flow is 
performed on a modified IEEE 39-bus system with significant wind penetration. Real load and wind power data from a U.S. 
utility is mapped onto the test-case to achieve realistic results. Load flow calculation can help in performing steady-state 
voltage and overload evaluations for post-disturbance system conditions. Because the security level of a power system is 
determined by the likelihood and severity of security violation. In this research, the probability of line overload is 
calculated from load flow and the severity function describes the risk of line overloading. Two case studies depicting future 
operating conditions of massive wind power penetration with reduced fossil fuel and nuclear power generation are 
considered. Simulation results prove the advantage of addressing spatio-temporal dependency to quantify the overload 
risk index, which is treated as a security indicator. 
 

1. Introduction 

The electric power system infrastructure is subjected 

to increasing stress due to fundamental changes in both 

generation and demand side. A larger picture of such stress is 

encountered in the form of transmission loading pattern.  

• On the generation side, integration of stochastic 

generation sources in the form of Renewable Energy 

Sources (RES) is a challenging task for Transmission 

System Operators (TSOs). Among the existing RES, 

wind power has gained significant attention among TSOs 

because of three reasons, namely, (i) large Wind Power 

Plants (WPPs) can be connected to bulk power system at 

the transmission level, (ii) large size WPPs are being 

built/planned in regions with high potential for wind 

energy and TSOs have to facilitate their integration, and, 

(iii) TSOs are more and more limited by local constraints 

to build new transmission infrastructure in time. This 

comes at a time when the electric power industry is 

undergoing an energy transition, especially the increased 

penetration of RES and decentralized generation while 

discarding fossil fuels to achieve a greener future in the 

form of a low-carbon power system. Wind power is 

characterized by variability and uncertain nature, and its 

generation capacity is dependent on geographic location. 

Over the last decade, electricity production from WPPs 

has reached significant levels in several regions of 

Europe and the U.S. [1]-[3]. The European Wind Energy 

Association expects 50%  of the electrical energy 

demand to be met by wind energy by 2050  [4]. In 

addition to wind on land, a substantial proportion of wind 

capacity from the North Sea is anticipated: 150 GW by 

2030 and 350 GW by 2050. In [5], it was learned that 

expansion of WPPs in terms of farm-size and unit 

capacity is significant at transmission level and its 

integration possesses challenge for TSOs in terms of 

infrastructure management, operation, and security. The 

participation of WPPs into existing grid is different from 

conventional generators in terms of location and output 

generation which is uncertain and variable. It adversely 

affects day-ahead operational planning decisions which 

introduce a level of risk for TSOs. Variation in wind 

power hamper power system operation in real-time when 

WPPs are unable to deliver the required reserve 

capacities in real-time. Embedding of WPPs raise 

concerns in terms of planning and upgrading of existing 

infrastructure in terms of size, location and distribution 

of WPPs [6]. 

• On the demand side, the advent of new technologies and 

a growing number of variable generation sources at the 

distribution level is challenging itself. The traditional 

power system network was designed for the passive load 

without any plans for communication and digitalization. 

It is supplemented with the spatial distribution of demand 

centres which are not always located close to generating 

sites. 

As the location of demand centres and WPPs are not 

always close-by, the non-dispatchable sources cannot be 

easily managed or curtailed. This spatial dispersion imposes 

a burden on the TSOs who have to operate the existing 

infrastructure with uncertainty from both ends, i.e., demand 

and generation. An example is the country of Germany, 

where the wind power generation is concentrated in the 

northern part, solar power generation is concentrated in the 

southern part and load centres are mostly in the mid-western 

and southern parts of the country [7]. The stochastic power 

with spatial diversity is causing destabilization of the electric 

grids (e.g., potential blackouts, weakening voltage). It can be 

deduced that though RES reserves are significant, their 

location is non-uniformly distributed and often far from load 

centres. As the location of WPPs and load centres are not 

always close by, transmission of energy puts a burden on 
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transmission links in the existing grid infrastructure. 

Complexity in terms of inter-spatial dependence and temporal 

correlation of load and wind power, therefore, impose a 

challenging operational threat to TSOs. In such cases, the 

system is being asked to perform in ways it was not designed 

for, eventually resulting in performance under increasing 

stress. As the system becomes heavily loaded and vulnerable 

to disturbances, security of supply is at risk. It calls for an 

overload analysis. Literature study reveals some commonly 

used indices like overload, cascading overload, low voltage 

and voltage instability [8]. To account for the mentioned 

developments in reliability management, TSOs need to re-

evaluate the system security [9]. 

Though achievements have been made in terms of an 

efficient forecast of future load and wind power generation, 

there are other vital concerns corresponding to wind power 

such as spatio-temporal dependence, variability, non-

normality, non-stationarity, non-dispatchable (unless there is 

adequate storage) and seasonal patterns to name a few. Wind 

speed is temporally correlated at one location and for 

different locations wind speed is both spatially as well as 

temporally correlated [10]. A statistical space-time model 

considering terrain, wind speed and direction was proposed 

in [11]. Spatial dependence of wind for transmission line 

overloading is found in [12]. It is to be noted that spatial 

dependency within multiple wind-farms as studied in [13] is 

out of the scope of this research. Addressing temporal 

correlation for both load and wind power can be found in [14-

16]. To the best of our knowledge, no study has reported the 

importance of addressing spatio-temporal dependence of load 

and wind power till date. It is important to address the spatio-

temporal dependence from transmission system point of view 

when TSOs are facing stagnant expansion planning because 

(i) weak transmission capacity causes reduced integration 

capacity of WPPs and (ii) redundant transmission capacity 

results in resource waste. 

In such cases, the risk of transmission line overloading 

and voltage instability cannot be avoided in future. And to 

overcome the burden of transmission line overloading, this 

research will facilitate TSOs to operate the grid within 

security limits considering spatio-temporal dependency. The 

key contributions of this research are twofold: 

i. A novel attempt to assess transmission line overloading 

risk while addressing spatio-temporal dependency using 

vine copula is made in this research. The sampling 

algorithm uses real data from nineteen spatially 

distributed load and two wind power zones spanning 

three years horizon from a U.S. utility to model the joint 

probability distribution. 

ii. The sampled output is mapped onto a modified IEEE 

39-bus system to achieve realistic results based on two 

case studies representing future scenarios of high wind 

power penetration with reduced fossil fuel and nuclear 

power generation. RBSA is performed on transmission 

line overloading by performing probabilistic AC 

optimal power flow (OPF) and considering spatio-

temporal dependence of load and wind power. Risk 

quantification of overloading is achieved as a product of 

probability and severity of overload. 

The rest of the paper is organized as follows: Section 

2 presents a background on risk-based security assessment 

(RBSA) studies. Section 3 introduces vine copula for spatio-

temporal modelling and describes the sampling algorithm. 

Section 4 focuses on database generation and preparation for 

RBSA studies. Section 5 discusses the two case studies along 

with result analysis. Finally, section 6 concludes the research 

work. 

2. Background on risk-based security 
assessment (RBSA) studies 

Bulk interconnected power systems with distributed 

and geographically isolated generators and demand centers 

constitute a majority of the power network. With increasing 

RES and other DERs, the present day power systems are 

dynamic in nature with network topology changing more and 

more frequently with the change in demand. As nuclear 

power plants and fossil fuel plants are phased out to include 

more RES in form of massive wind power penetration, 

uncertainty in load demand actuates the power network to 

operate at loading limits; thus, making it susceptible to 

blackout under minor/major disturbances. In order to operate 

the power system economically, the state of the system has to 

be identified as secure/insecure. Security assessment studies 

aim to balance the system security as well as the economy for 

power system operation. Power system security can be 

divided into two, namely, static and dynamic security. Static 

security analysis targets steady-state post-disturbance 

conditions, namely it is assumed that the system reaches 

operating equilibrium after a disturbance and it is checked 

whether system limits are violated. Dynamic security analysis 

targets system stability after a disturbance, and therefore it is 

investigated whether the system can reach a new state of 

equilibrium after a disturbance. Sometimes static security 

reliability assessment can be referred by literature as 

adequacy assessment, and dynamic security reliability 

assessment can be met simply as security reliability 

assessment. A classification hierarchy is shown in Fig. 1. 

Another way of classification is based on assessment 

techniques. The three schemes of security assessment are, 

namely, (i) deterministic security assessment that is more 

traditional and considers a set of most credible contingencies 

resulting in high operating costs, (ii) probabilistic security 

assessment that considers probabilistic indices LOLP (Loss 

of load probability for likelihood of events) and EENS 

(Expected energy not supplied for both likelihood as well as 

severity of events), and (iii) risk-based security assessment 

(RBSA) that considers both likelihood and severity of events 

allowing the power system to operate closer to or beyond its 

limits. Further, RBSA is categorized as; (i) static RBSA that 

considers the risk of overload and voltage violations and (ii) 

dynamic RBSA that considers the risk of instability in terms 

of voltage and swing transient. The deterministic security 

assessment methods get usually many conservative results in 

overload analysis. With recent advancement and more 

adoption of risk theory in power system, the risk assessment 

method is gradually evolving and acknowledged. 
Security

Overload security Voltage security Dynamic security

Transient 
instability 

(early-swing)

Oscillatory 
instability 
(damping)

Low voltage
Unstable 
voltage

Line overload
Transformer 

overload

Static security

 
Fig. 1. Classification of power system security [18] 
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Risk assessment by computing risk indices based on 

over-limit probability and severity to recognize system 

weakness more realistically is entailed in this research. In 

regard to transmission line overload, literature study reveals 

the study of static RBSA with ‘N-1’ contingency [17], risk 

visualization using Poisson distribution [8, 18], online static 

RBSA with forecasted operating condition [19], possibility 

and severity of risk occurrence [20]. Risk assessment is 

performed in four steps [8]: (i) describe an index that 

represents system risk, (ii) select a system state and calculate 

its probability, (iii) evaluate the outcome of the system state, 

and (iv) calculate the risk index. For any operating condition, 

the risk associated with 𝑖th state 𝑆𝑖 at time 𝑡 is calculated for 

all possible values of probability and severity associated with 

it and can be written as [18], 

 

𝑅𝑖𝑠𝑘𝑡 = ∑ 𝑃𝑟𝑜𝑏𝑡(𝑆𝑖)𝑆𝑒𝑣𝑡(𝑆𝑖)

𝑛

𝑖=1

 (1) 

 

where 𝑃𝑟𝑜𝑏𝑡(𝑆𝑖)  is the state probability, 𝑆𝑒𝑣𝑡(𝑆𝑖)  is the 

associated severity of state 𝑖  and 𝑛  is the total number of 

system states. The line overload possibility can be measured 

by the probability mass function of line flows. Ref. [18] 

categorized severity function into three types, namely, 

discrete, continuous and percentage of rating violation 

severity function. The concept of severity functions has been 

used in recent studies [11] to investigate transmission line 

overloading in power systems with wind and load-power 

generation correlation. 

PR

S
ev

90% 100%0

1

NV

 
Fig. 2. Linear severity function of line overload (PR: 

Percentage of Rating, NV: Near Violation) 

 

Fig. 2 shows the severity function as a continuous 

function of line power flow as the percentage of rating (PR) 

and severity ( 𝑆𝑒𝑣 ), written as a function of 𝑗 -th branch 

apparent power flow 𝐹𝑗 and rated apparent power flow 𝐹𝑗
𝑚𝑎𝑥 , 

 

𝑃𝑅 =
|𝐹𝑗|

𝐹𝑗
𝑚𝑎𝑥 × 100% 

𝑆𝑒𝑣𝑗 = {
0,                         (𝑃𝑅 100⁄ ) < 0.9

10(𝑃𝑅 100⁄ ) − 9, (𝑃𝑅 100⁄ ) ≥ 0.9
 

(2) 

 

When the line power flow exceeds 90% of its rating, near 

violation for overload takes place which increases linearly as 

power flow exceeds the limit. Such a linear relationship is 

related to the fact that saturation effect on machines and 

transformers are neglected, line impedances are 

predominantly inductive (for high voltage transmission 

network, which is the focus of this paper), voltage magnitudes 

are around nominal value, and there is minor angle difference 

in bus voltages, which lead to a linear dependency between 

active power transfer through a transmission line and the 

difference between bus voltages. Severity function signifies 

the extent of security violation and helps in quantifying the 

severity. In case of the transmission line, severity function is 

defined for each line and the power flow in the line 

determines the associated risk. For each line, the severity 

function defined in eq. (2) evaluates to 1 at the deterministic 

limits, i.e., 100% of line apparent power flow rating. It is to 

be noted that higher risk values do not necessarily indicate a 

larger interruption of security of supply and vice-versa. For 

example, a 130% overload of a transmission line might have 

higher risk value than a 130% overload of another 

transmission line but it does not necessarily lead to increasing 

the penalty incurred due to unavailability of security of 

supply.  

In this research, calculation of risk indices is 

accomplished with probabilistic AC load flow. As such, the 

accuracy of computed risk indices depends on the accuracy 

of load flow results. Load flow analysis provides an effective 

tool to analyse the relationship between the bus injection 

fluctuation in terms of near violation and overload in system 

operation state. Presence of WPPs introduces uncertainty in 

the normal operating state. In addition to wind power, 

uncertainty in load contributes equally towards the problem. 

Hence, the line flows are eventually influenced by the bus 

injections. We adopt a multivariate analysis of addressing the 

uncertainty as explained in the next section. 

3. Vine copula for spatio-temporal modelling and 
joint normal transformation  

It was learned that both load and wind power vary 

across the year and depend on the geographical area. To 

capture the inter-spatial dependence and temporal correlation 

between the variables, a joint probability distribution is 

defined using vine copula. Copula functions are the most 

general method for dealing with dependency between 

variables. Learning dependencies over correlation is 

important to study spatio-temporal dependence. Use of vine 

copula is not new in the field of electric power systems, but 

to our knowledge, it has not yet been applied for spatio-

temporal modelling of load and wind power to assess 

transmission line overloading risk. Literature study reveals 

the use of vine copulas to tackle power system uncertainty 

[21-22]. Use of copula theory in RBSA is reported in [23]. 

Vine copula follows a nested tree structure where 

every node in the tree is a bivariate (two dimensional) copula. 

Conditional on the lower tree, the vine structure is then built 

up based on conditional, bivariate copulas. Thus, vine copulas 

allow to flexibly combine bivariate copulas to multivariate 

copulas leading to distributions of higher dimensions that are 

aware of separating distances across space and time. By 

definition [24], a vine copula on 𝑛 variables is a nested set of 

trees 𝑇𝑗 where the edges of the 𝑗𝑡ℎ tree become the nodes of 

the (𝑗 + 1)𝑠𝑡  tree for 𝑗 = 1, … , 𝑛 . A regular vine on 𝑛 

variables is defined as a vine in which two edges in tree 𝑗 are 

joined by an edge in tree 𝑗 + 1 only if these edges share a 

common node. Each edge in the regular vine may be 

associated with a conditional rank correlation and a copula, 

and each node with a marginal distribution. A regular vine 

can be either 𝐷 – vine where each node in 𝑇𝑗 has a degree of 

at most 2 or 𝐶 (canonical) – vine in which each tree 𝑇𝑗 has a 

unique node of degree 𝑛 − 𝑖. Fig. 3 shows the 𝐶-vine of five 

trees. A 𝐶-vine selects a root node in each tree, and all pair-
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wise copulas connecting with this node are modeled and 

conditioned on all of the previous root nodes. Such a 

modeling scheme is appropriate for spatio-temporal modeling 

of complex multivariate dependence structures with mixed 

types of dependencies, such as asymmetries and tail 

dependencies, since each pair-copula can belong to a different 

parametric copula function. 

Vine copulas approximate multivariate copulas 

through bivariate building blocks (Fig. 3). The advantage of 

the spatio-temporal vine copula is its flexibility in the 

selection of copula families through bivariate spatio-temporal 

copulas. Bivariate spatio-temporal copulas are a convex 

combination of different copula families that are 

parameterized by spatial and temporal distance (Fig. 4 and 

equation 3). This changing dependence structure allows for 

instance to preserve spatial symmetry within each time step 

while allowing for a directional effect across time. Such an 

aspect is deemed important for improvement of risk 

calculation (e.g. less possibility of overestimation). 

 

U1

U2

U3

U4

U5

U6

C1,2
C1,3

C1,4

C1,5

C1,6

U1,2

U1,3

U1,4

U1,5

U1,6

C2,3|1

C2,5|1

C2,4|1

C2,6|1

U2,3|1

C4,5|123

U2,4|1

U2,5|1

U2,6|1

C3,5|12

C3,6|12

U3,4|12

U3,5|12

U3,6|12

C4,6|123

C3,4|12

U4,5|123 U4,6|123

C5,6|1234

Tree 1

Tree 4Tree 3

Tree 2

Tree 5  
Fig. 3: 𝐶-vine of CDF (𝑢 𝜖 [0,1]) with five trees 

 

The building blocks of the vine copula are composed 

out of convex combinations of bivariate copulas. The weight 

of the convex combination, as well as the copulas’ parameters, 

are defined by the distance over space and time, thus 

modelling spatial and temporal correlation. The key benefit 

of copula functions resides in the separation between the 

dependence structure and the univariate distributions of the 

variables. This property allows copula functions to model 

dependencies for any type of distribution functions. Copula 

functions separate the dependency structure from the 

standalone distribution functions followed by each variable.  

To understand the spatio-temporal modeling using vine 

copula model, a spatio-temporal random field 𝛨  is 

considered such that 

 

𝛨: 𝑆 x 𝛵 x Φ ⟶ ℝ (3) 

where 𝑆 corresponds to the spatial domain, 𝑇 corresponds to 

temporal domain and both with an underlying probability 

space Φ. For a section of the spatio-temporal random field 

defined as 𝛨 = (ℎ(𝑠0, 𝑡0), ℎ(𝑠1, 𝑡1) … ℎ(𝑠𝑛 , 𝑡𝑛)) of size 𝑛 +
1 , the section consists of one pivotal location and its 𝑛 -

neighbors in distinct spatio-temporal locations 
(𝑠0, 𝑡0), (𝑠1, 𝑡1) … (𝑠𝑛 , 𝑡𝑛) ∈  𝑆 x 𝛵 . Normally some spatial 

locations would be sampled at multiple time instances. And 

as the dependence structure changes over space and time, the 

first tree of the vine is realized by spatio-temporal bivariate 

copulas. The rest of the vine, i.e. the vine of the variables 

conditioned under the value of the central location, is 

modeled as some 𝑛-dimensional 𝐶-vine. To understand the 

functional capability of 𝐶 -vine, Fig. 4 shows the spatio-

temporal 𝑛-dimensional 𝐶-vine. The temporal extension of 

the spatial copula at different time lags for 3 spatial locations 

with Euclidean distance defined as ℎ𝐸 ≔ ‖𝑠𝑖 − 𝑠𝑗‖ , 

𝑠𝑖  ∀ 𝑖, 𝑗 ∈ {0,1,2,3} & 𝑡𝐶 = 1 … 𝑛. Every curved connection 

is modeled by the same spatio-temporal copula 𝐶ℎ𝐸,𝑡𝐶
 but 

with different spatial and temporal distances, ℎ𝐸  and 𝑡𝐶 

deduced from the indicated spatio-temporal locations. It is 

already assumed that marginals are stationary and combining 

them with multivariate copula results in a multivariate 

distribution of the spatio-temporal random field. And this 

multivariate distribution is later used for application studies 

like simulation or prediction. 

 

hE(1,0) hE(3,0)

hE(0,0)

hE(2,0)

hE(1,1) hE(3,1)

hE(2,1)

hE(1,2) hE(3,2)

hE(2,2)

hE(1,n) hE(3,n)

hE(2,n)

tC = 0

tC = 1

tC = 2

tC = n

 
 

Fig. 4: Spatio-temporal 𝑛-dimensional 𝐶-vine 

 

The sampling algorithm employed in this research is 

inspired by ref. [25] and is described in Algorithm 1. 

Considering a high-dimensional dataset of size ( 𝑀  x 𝑁 ) 

representing 𝑀  temporal data points and 𝑁  spatially 

distributed variables (load and wind power sites). The first 

step is transforming the high-dimensional data to low-

dimension to ease the computational bottleneck. This is 

achieved by clustering and followed by feature extraction. 

Selection of clustering technique is based on the goodness of 

clustering test and feature extraction is performed using 

singular value decomposition (SVD) [26]. SVD is preferred 

over widely used principal component analysis because of its 
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efficient and robust numerical methodology. Feature 

extraction is followed by dependence modelling using vine 

copula. In order to evaluate the performance of vine copula 

on the basis of two-sample tests, a resampling method is 

employed to randomly generate comparison samples from the 

historical and simulated datasets. Sets of historical and 

simulation datasets based on cluster size and weight were 

drawn randomly, and the process was repeated for each of the 

variables. Performing inverse ECDF transformations on the 

sampled output to retrieve high dimensional data is achieved 

at the end of this algorithm. For a chosen sample size 𝑆, the 

output sample is a joint normal distribution of dimension 𝑆 

x  𝑁 . Implementation of the algorithm with real data for 

RBSA is explained in the next section. 

 

 

 
Algorithm 1:  Modelling high-dimensional spatio-temporal dataset 

using vine copula 

 Inputs: High dimensional dataset of size (𝑀 x 𝑁), representing 

𝑀 data points and 𝑁 features.  

 Outputs: 𝑆 x 𝑁 dimensional sampled dataset 

1 Perform clustering to partition the high dimensional data. 𝑘 

number of clusters are selected after performing goodness of 

clustering (GoC) test on sample size 𝑆  

2 Feature extraction of 𝑘  clusters using singular value 

decomposition (SVD) 

3 Calculate copula function and construct vine copula models for 

𝑘 clusters. Choice is different copula functions can be tested 

and goodness of fit (GoF) test is performed to select the best 

copula function 

4 Simulate the copula function for 𝑘 clusters using cluster weight 

obtained in Step 1  

5 Reconstruct dataset from low to high dimension with all 

features using eigenvectors from Step 2 

6 Output as 𝑆 x 𝑁 dimensional sampled dataset 

7 End 

4. Database generation and preparation 

For this research, publicly available load and wind 

power data are taken from U.S. regional transmission 

operator [27]. Aggregated zonal load data (nineteen numbers) 

and wind power data (two numbers) spanning three years 

with an hourly resolution from the three market zones 

(MIDATL, WEST and SOUTH) are used. To study the spatial 

correlation, geographical coordinates of zones are needed. 

Since the exact coordinates are treated confidential, an 

approximated weighted centroid is defined to locate the 

‘centre’ of load and wind power generated zones. More 

details on data collection can be found in the supplementary 

material [28]. 

To visualize the complexity, scatter plot with marginal 

histograms of four load (AP, CE, DAY, DUQ) and one wind 

power (WEST) zone under the WEST zone is shown in Fig. 5. 

The marginal histograms (in the diagonal) reveal non-

Gaussian nature while the scattered plots reveal non-linear 

dependencies and suggest a weak correlation as well. Use of 

copula functions allow modelling dependency between 

variables that do not follow the same distributions, inclusive 

of non-normal distributions, which was evident from scatter 

plot of load and wind power in Fig. 5. 

 
Fig. 5: Scatter plot with marginal histograms of original data 

of four load zones (AP, CE, DAY, DUQ) and one wind power 

zone (WEST) 

 

The proposed risk assessment is validated using the 

modified IEEE 39-bus system with a base value of 100 MVA. 

A modified version of the IEEE 39-bus system with WPPs 

and updated conventional generation capacities is considered 

in this research. The original test case consists of 39 buses, 10 

conventional generators and two WPPs at bus 34 and 37, and 

46 transmission lines with net demand in the network of 

6254.23𝑀𝑊 and net generation capacity of 7367𝑀𝑊. The 

modified topology with wind farms and divided zones 

according to real data is shown in Fig. 6. Next step is to map 

the real-life data onto the IEEE 39-bus system by scaling the 

real-life data to match test-case parameters. A scaling ratio is 

defined as, 

 
𝑆𝑐𝑎𝑙𝑒 𝑅𝑎𝑡𝑖𝑜

=  
maximum coincident peak demand of real data

sum of active power demand across all buses in test − case
 

(4) 

 

 Considering large-scale wind power penetration in 

future as part of energy transition, generation capacity of 

conventional generation sources (such as nuclear and fossil 

fuels) is lowered [29-30] and is met by wind power generation. 

Generation cost data is obtained from [31]. In addition, there 

is no topological change in terms of addition of transmission 

lines which gives us the option to assess the overloading risk 

on existing grid network. The two cases studied in this 

research are: 

Case A: The first case considers a 7.5% increase in 

system load to 6725.05𝑀𝑊 . The total generation is 

8167.87𝑀𝑊 including 2640𝑀𝑊 of wind at bus 34 and 37 

respectively. For MIDATL, the net load is 2355.13𝑀𝑊 and 

net generation is 4877.871𝑀𝑊 including 1760𝑀𝑊 of wind 

power. For WEST, the net load is 3752.1𝑀𝑊  and net 

generation is 3500𝑀𝑊  including 880𝑀𝑊  of wind power. 

For DOM, there is only an increase in demand to 617.82𝑀𝑊. 

Case B: The second case considers a 9% increase in 

system load to 6817.11𝑀𝑊 . The total generation is 

7712.86𝑀𝑊 including 2760𝑀𝑊 of wind. For MIDATL, the 

net load is 2447.19𝑀𝑊 and net generation is 3792.861𝑀𝑊 

including 1760𝑀𝑊 of wind power. For WEST, the net load 

is same as Case A and net generation is 3360𝑀𝑊 including 

1000𝑀𝑊  of wind power. For DOM, the net load and 

generation is same as in Case A. 
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Fig. 6: Modified IEEE-39 bus system divided into three 

market zones (MIDATL, WEST, DOM) 

 

For the two cases, a comparative analysis of non-

correlated and correlated load and wind power samples is 

performed. In the case of non-correlated samples, synthetic 

wind power data using Weibull distribution and random 

samples of load taking the load at each bus as mean values is 

considered. This also serves as benchmark data to assess the 

correlated samples. The formula for the probability 

distribution function (PDF) of wind power is expressed 

mathematically as: 

 

𝑓(𝑣; 𝛾, 𝛼) =
𝛾

𝛼
(

𝑣

𝛼
)

𝛾−1

𝑒𝑥𝑝 {− (
𝑣

𝛼
)

𝛾

} 

 

𝑣 > 0, 𝛾 > 0, 𝛼 > 1 

(5) 

 

where, 𝑣 is the wind speed, 𝛾 is the shape parameter and 𝛼 is 

the scale parameter. Though 𝛼 significantly depends on wind 

farm location, we consider a single value as the sole intention 

of this research work is to generate aggregated zonal wind 

power and thereby not considering different wind farm sizes. 

For the non-correlated cases, 𝛾 = 2 and 𝛼 = 11 is used to 

generate non-correlated wind power for the probabilistic AC 

OPF [32]. Similarly, random load samples are generated from 

the mean values of load at each bus [31]. Technically, 

generated samples of load and wind power are non-correlated 

and a correlation plot for Case A is shown in Fig. 7(a). 

 

 
(a) 

 
(b) 

Fig. 7: Correlation plot for Case A with (a) non-correlated 

load (L1…L23) and wind power (W1,W2); (b) correlated load 

(L1…L23) and wind power (W1,W2) 

 

For generating correlated samples, real data is 

modeled using Algorithm I to generate a joint normal 

distribution with correlated samples. The correlation plot for 

Case A is shown in Fig. 7(b). Inferencing the plot suggests 

both positive and negative correlation. The correlation 

coefficients -0.2675, 0 and 1.0 represent slightly negative 

correlation, perfectly uncorrelated and perfectly correlated. It 

is important to understand the significance of correlation 

coefficients. If load and wind power generation were 

positively correlated, they would tend to increase and 

decrease at the same time, and adding wind would help the 

load following task of the power system. On contrary, if the 

correlation were negative, the wind would tend to decrease 

when load increases (and vice versa) and this would require 

more from the load following units in the system. The 

presence of a negative correlation between load and wind 

power is of physical significance. It explains the need to 

balance out the wind power fluctuations in different zones 

with corresponding load fluctuations to maintain a steady 

supply. 

5. Results and discussions 

For result analysis, it is important to note that the 

samples from vine copula does not replace the need of 

considering ramping constraints and start-up/shut-down time 

of generators across time. In addition, the “temporal” in the 

context of vine copula does not mean including/neglecting 

inter-temporal implications of ramping constraints. The 

representation of load and wind power samples as multiple 

scenarios is applied to perform an offline (or post-mortem) 

study of transmission line overloading. For the inter-spatial 

dependencies and temporal correlations between load and 

wind power, two extremes of non-correlated and completely 

correlated samples are considered. Such extreme scenario 

evaluations will enable us to gain insight into the importance 

of considering correlation for assessing transmission line 

overloading risk. Thus, for each Case A and B, there are two 

cases of non-correlated and correlated samples. All modeling 

work is performed in MATLAB (version 2017b) environment 

using the Matpower package [33] on an Intel Core i7 with 8 

cores and 8GB RAM. Matpower’s deterministic power flow 

is used to implement the probabilistic OPF. Probabilistic OPF 

is built based on a deterministic one because the OPF that 

Matpower uses is a deterministic OPF. In general, the 

function of deterministic power flow study can be stated as, 
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 𝑧 = 𝑔(𝑥) (6) 

 

where 𝑥 is the vector of input variables which includes active 

power injection 𝑃𝑖  at each bus, reactive power injection 𝑄𝑖  at 

each 𝑃𝑄 bus and voltage magnitude 𝑉𝑖  at each 𝑃𝑉 bus and 

slack bus; 𝑧 is the vector of output variables which include 

bus voltage 𝑉𝑖  at each 𝑃𝑄  bus, bus angle 𝜃𝑖  (except slack 

bus), branch active power flow 𝑃𝑖𝑗 , reactive power flow 𝑄𝑖𝑗 , 

and apparent power flow 𝑆𝑖𝑗 . For the probabilistic power flow 

problem, the input random variables 𝑥1, … , 𝑥𝐾  are 

probabilistic distributions of 𝑃𝑖  and 𝑄𝑖 . When wind power is 

included in probabilistic power flow, an additional random 

input variable is introduced as the wind power of the WPPs. 

The output information is probabilistic distributions of 𝑉𝑖 , 𝜃𝑖 , 

𝑃𝑖𝑗 , 𝑄𝑖𝑗 , and 𝑆𝑖𝑗 . 

The problem of OPF is the allocation of given load 

amongst the generating units in operation so that the overall 

cost of generation is minimum. In OPF, the entire set of 

equality and inequality constraints, all the necessary and 

sufficient conditions of control parameters etc. must be 

satisfied thoroughly. The objective function can take various 

forms such as fuel cost, transmission losses, and reactive 

sources allocation. The objective function of interest in this 

research is the minimization of the total production cost of 

scheduled generating units. Or in other words, it is a simple 

economic dispatch study where the OPF calls PF calculation 

function in each iteration. Various techniques have been 

proposed to solve the OPF problem, for example, non-linear 

programming, quadratic programming, linear programming, 

and interior point methods. In this research, the interior point 

method is used to solve the OPF problem by using Matpower 

Interior Point Solver (MIPS). For a thorough understanding 

of MIPS, readers are referred to [34]. A flowchart showing 

data collection, dataset preparation, generating correlated 

samples using Algorithm 1 and running OPF with the 

calculation of risk indices is shown in Fig. 8. 

In this study, temporal dependency is accounted in the 

samples obtained from the vine copula sampling. Thus, when 

we use the samples for AC OPF using Matpower, we are 

running scenarios which are spatio-temporally modeled. All 

lines are monitored for overload risk though special attention 

is given to line connecting WPPs and the next nearest bus to 

rest of the grid, i.e., line 20-34 and line 25-37 for the modified 

IEEE 39-bus system. Both the lines have a rated capacity of 

900MVA. The impacts of load and generation correlation on 

line overload risk are studied. It can be understood that 

fluctuation of high wind power can be easily compensated by 

the grid, provided it is distributed among the strong lines 

connecting to immediate load sites or the presence of a 

conventional generator bus that can regulate its generation 

depending on the needs of high or low wind power generation. 
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Fig. 8: Flowchart showing the computation of severity 

function starting from data collection to running power flow. 

The map shows the control areas of PJM with load (L1…Lm) 

and wind power (W1…Wn) zones for t time frames and 

approximated load centroid (⚫) and wind power centroid (X) 

 

5.1. Case A 
 

In Case A, we consider WPPs at bus 34 (1760MW) 

and bus 37 (880MW) to compensate the reduced 

conventional generation as well as load growth. Running 

probabilistic AC OPF, Fig. 9(a) and Fig. 9(b) show the 

loading of all the lines for non-correlated and correlated load 

and wind power samples. Branch indices correspond to 

Matpower branch indices. The figures give an overview of 

most loaded lines and we focus on lines 20-34 and 25-37 

(indices 34 and 41) as shown in Fig. 10(a) and Fig. 10(b). 

Because the number of convergence changes for each power 

flow case, the probability of occurrence vs. apparent power 

flow of line was mapped. A closer look at the figures reveals 

the advantage of considering spatio-temporal dependence in 

terms of line overloading occurrences. 

Fig. 10(a) shows a considerable decrease in line 

overloading risk where the probability of overload during 

both near violations as well as overload is less than halved. 

On the other hand, Fig. 10(b) reveals not much success in 

considering spatio-temporal dependency. Loading of line 25-

37 at 100% is marginal. This could be understood as the net 

load being higher than generation capacity. To understand the 

risk index of the overall system, Table 1 shows the risk 

indices for Case A. Recalling from equation 1, risk indices 

correspond to values when the lines are overloaded by 90% 

or more of their rated capacity. The overload risk index is 

measured by the probability of line overload and 

corresponding severity. Line 20-34 which connects 1600MW 
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of wind power to rest of the grid shows a remarkable decrease 

of line overload by more than 50% when the correlation is 

considered. Similarly, overload risk of line 25-37 decreases 

by 12.3%. Since the two lines are considered vital when 

connecting the massive WPPs into rest of the grid, such a 

decrease in overload risk can be considered beneficial in 

comparison to the construction of a new line in the same 

corridor. For the entire system, there is a decrease in the 

overload risk index from 4.6010 to 3.7840. 

 
 (a) 

 
(b) 

Fig. 10: Empirical probability distribution of power flow of 

(a) line 20-34 for non-correlated and correlated load wind 

power for Case A (b)line 25-37 for non-correlated and 

correlated load wind power for Case A. Line rating of both 

lines is 900MVA 

 

If we consider the generation facility in WEST, 

influx of 880MW of wind at bus 37 is accompanied with other 

generation sources at bus 37, 30 and 39 which is responsible 

for the heavy loading of lines 2-3, 2-25 and 25-37. The risk 

index of line 25-37 fairly decreases with spatio-temporal 

modeling. Moreover, variation in wind production is 

compensated by already available generation at bus 37 that 

accounts for a slightly low-risk index. Net risk indices of the 

three lines decrease by 10.38% with consideration of 

correlation. The other two lines that are heavily loaded are 6-

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Fig. 9: Line apparent power flow (MVA) vs. branch indices after running OPF for (a) non-correlated load and wind 

power in Case A, (b) correlated load and wind power in Case A, (c) non-correlated load and wind power in Case B, (d) 

correlated load and wind power in Case B. Red marks represent the maximum line capacity. Blue arrows represent the 

line index under consideration. 
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11 and 16-19. The risk index of 6-11 remains more or less 

constant with or without considering correlation. It is to be 

noted that a new load site at bus 6 and an increase of load at 

buses 7 and 31 without any changes in the generation can be 

considered as responsible for such overloading. One 

proposed solution for such case is building an interconnection 

between bus 34 and 11 or other nearby buses. Overloading of 

line 16-19 is explained by the addition of WPPs at bus 34 

accompanied by generation at bus 33. Consideration of 

correlation leverages overloading which decreases by 25% 

and it can be considered advantageous for TSOs. 

An extensive suite of 30000 Monte Carlo simulation 

(MCS) was performed. Such a large sample size is chosen to 

guarantee a good accuracy of the estimated value. MCS is one 

way to solve probabilistic OPF which often serves as 

accuracy reference. MCS firstly samples the random 

variables and then for each sample a load flow case is solved 

to obtain all states. Based on the load flow results of all 

samples, scenarios are generated randomly from PDF. Table 

5.2 compares the number of samples converging in the 

probabilistic OPF problem. The number of correlated cases 

converging is on a higher side as compared to non-correlated 

samples. This is certainly helpful as the empirical probability 

distribution of power flow of lines contains a higher number 

of feasible states. 

 

Table 1 Comparison of Line Overload Risk Indices for Case 

A 

Index Line Non-

correlated 

Correlated 

3 2-3 0.7688 0.7075 

4 2-25 0.6024 0.5331 

13 6-11 0.9841 0.9815 

27 16-19 0.9571 0.7127 

34 20-34 0.6746 0.3118 

41 25-37 0.6128 0.5374 

 Total 4.6010 3.7840 

 

Table 2 Comparison of Non-correlated and Correlated 

Samples Converging in Case A 

Total samples Non-correlated Correlated 

30000 15914 28493 

 

 

5.2. Case B 
 

Compared to Case A, Case B considers a slight 

increase in net wind power penetration while a slight decrease 

in net system load. WPPs of 1760MW at bus 34 and 1000MW 

at bus 37 are used to compensate for lowering of conventional 

(nuclear and fossil fuel) generation units and load growth. 

Numerically, a 1.5% equivalent increase of wind power 

penetration and 5.5% decrease in overall generation 

compared to Case A is considered for probabilistic AC OPF. 

Fig. 9(c) and Fig. 9(d) shows the loading of all the lines after 

running the power flow. A comparative figure showing the 

loading of lines 20-34 and 25-37 is shown in Fig. 11(a) and 

Fig. 11(b). From Fig. 11(a), it is evident that the loading of 

line 20-34 at 100% significantly decreases when spatio-

temporal dependency is considered. A remarkable decrease 

in loading proves the advantage of addressing correlation. 

However, Fig. 11(b) shows the heavy loading condition of 

line 25-37 at slightly higher than 100%. Though there is a 

decrease in line loading at nearly 100%, an increase in wind 

power generation in WEST still does not compensate for the 

high zonal net load. 

 

 
(a) 

 
(b) 

Fig. 11: Empirical probability distribution of power flow of 

(a) line 20-34 for non-correlated and correlated load wind 

power for Case B (b) line 25-37 for non-correlated and 

correlated load wind power for Case B. Line rating of both 

lines is 900MVA. 

 

Table 3 shows the overload risk indices for the total 

system and some heavily loaded lines. The net system risk 

index is lowered by 15.23% when the correlation is 

considered. In both Case A as well as Case B, it is noticed that 

the same set of lines are often overloaded. In the WEST, risk 

indices for lines 2-3, 2-25 and 25-37 decreases considerably 

after accounting for correlation although there is an increase 

in wind power generation at bus 37. In the MIDATL, lines 6-

11 and 16-19 show an increase in risk index when the 

correlation is considered. It can be understood that risk 

indices are seriously affected with consideration of spatio-

temporal dependency. The proposed solution of adding an 

interconnection between bus 34 and 11 or other nearby buses 

is still considered to be a proposed solution to combat the 

increase in risk index. Adding an interconnection can 

alleviate the overloading on existing lines though finding the 

exact location is out of the scope of this paper. An increase of 

load at bus 16 accounts for a marginal increase in risk index 

for line 16-19. The positive aspect is seen in the form of low 

overall risk index of the total system with consideration of 

spatio-temporal dependency. 

 

Table 3 Comparison of Line Overload Risk Indices for Case 

B 
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Index Line Non-

correlated 

Correlated 

3 2-3 0.8553 0.7009 

4 2-25 0.5582 0.4025 

13 6-11 0.9660 0.9846 

27 16-19 0.8467 0.8564 

34 20-34 0.3670 0.1616 

41 25-37 0.5617 0.4158 

 Total 4.1548 3.5217 

 

Similar to Case A, the number of correlated samples 

converging is higher than the non-correlated samples. The 

performance of correlated samples is nearly the same with the 

similar number of converging states (~28𝑥𝑥𝑥 states). This 

indicates the advantage of considering correlated samples as 

a higher number of feasible states correspond to better insight 

on system operating condition. 

 

Table 4 Comparison of Non-correlated and Correlated 

Samples Converging in Case B 

Total samples Non-correlated Correlated 

30000 11943 28562 

 

6. Conclusion 

To answer the urgent need of relevant tool and risk 

quantification measures for transmission line overloading, a 

novel attempt of using vine copula for spatio-temporal 

modeling to perform a risk-based security assessment of 

transmission line overloading is presented. Real load and 

wind power data are mapped onto a modified IEEE 39-bus 

system representing different market zones of U.S. utility. 

Use of real data with probabilistic AC OPF analysis gives a 

more realistic behavior of grid performance in terms of 

realistic risk indices. The main outcomes of this research can 

be listed as: 

• Use of vine copula to model joint normal distribution 

addresses spatio-temporal dependency. In order to 

quantify the risk, this is seen important in future because 

of the massive integration of wind power into existing 

grid infrastructure. Joint normal distribution is important 

as it points out to two key properties: the non-Gaussianity 

of marginal distributions and the complex dependence 

structures. The reproducible sampling algorithm 

generates correlated samples that are then mapped onto 

the test case for risk assessment. It was also observed that 

the number of converging states for correlated samples is 

nearly the same for both the cases.  A high number of 

converging states corresponds to exploring the high 

number of operating states. 

• Probabilistic AC OPF allows measuring the probability 

of line overload. Overload probabilities contribute 

significantly to the risk index of both lines and also the 

whole system. Risk quantification is achieved by 

combining the probability with the severity of line 

overload. For studying the overload risk indices for 90% 

loading or more, the probability of overload is 

considered and the corresponding probabilistic risk 

indices are calculated. The proposed risk quantification 

technique is able to qualitatively interpret the numerical 

values corresponding to risk indices. 

• Ideally, the OPF should consider ramping constraints and 

generation unit start-up/shut-down constraints, 

especially in case of high penetration level of wind power 

generation and short-term operational planning (e.g. day-

ahead). However, this research work did not involve a 

wind penetration level as high as 50% or more of the total 

generation share, and the goal is to perform OPF from a 

yearly operational planning perspective. Moreover, if 

load variability is defined by exclusively considering 

load data, then it neglects all kind of correlation with 

wind power generation which is pursued in this research. 

Such consideration of load and wind power correlation 

helps in better analyzing the risk metrics. 

• The two cases studied in this research can be regarded as 

future scenarios aiming at low-carbon electricity 

generation in the form of massive integration of WPPs. 

Risk indices for the overall system vary significantly for 

the two cases and a high number is seen for Case A. The 

reason can be understood as an increase in both load and 

wind power as compared to Case B. For both the cases, 

overloading of lines 6-11 and 16-19 indicate the need for 

future expansion planning to address the issue. 
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