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A B S T R A C T

The past years have seen a surge in quantum algorithms for computational fluid dynamics (CFD). These
algorithms have in common that whilst promising a speed-up in the performance of the algorithm, no specific
method of measurement has been suggested. This means that while the algorithms presented in the literature
may be promising methods for creating the quantum state that represents the final flow field, an efficient
measurement strategy is not available. This paper marks the first quantum method proposed to efficiently
calculate quantities of interest (QoIs) from a state vector representing the flow field. In particular, we propose
a method to calculate the force acting on an object immersed in the fluid using a quantum version of the
momentum exchange method (MEM) that is commonly used in lattice Boltzmann methods to determine the
drag and lift coefficients. In order to achieve this we furthermore give a scheme that implements bounce back
boundary conditions on a quantum computer, as those are the boundary conditions the momentum exchange
method is designed for.
1. Introduction

Computational fluid dynamics is one of the most frequently applied
scientific endeavours, accounting for a large amount of the compu-
tational power used every day. As the power of classical computers
grows, the demand in precision and scale for computational fluid
dynamics increases similarly.

Future fault tolerant quantum computers promise a novel compute
technology with an exponential computational power in the amount of
qubits, leading to the natural questions of whether and how this novel
method of computation can be used to simulate interesting problems of
computational fluid dynamics (CFD). The question of a potential use for
quantum computers in CFD was first researched by Yepez and his co-
workers in the early 1990s, during quantum computing’s first boom [1–
5]. These papers describe a quantum distributed computing approach in
which each grid point is described by six qubits, and the collision step
at each grid point can be calculated on a separate machine. This has as a
benefit that only small stable quantum computers are required and the
collision step can be implemented on a quantum computer, making use
of its inherently probabilistic nature. The downside of this approach is
that streaming then needs to be done classically implying that complete
measurement of the system and reinitialization are required in each
time step. On top of that 6𝑁 qubits, where 𝑁 is the number of grid
points, are required. As the number of qubits grows linearly with the
size of the grid, since the grid is typically very large for CFD problems
and the number of qubits currently available is very low, this poses a
significant problem.

∗ Corresponding author.
E-mail address: m.a.schalkers@tudelft.nl (M.A. Schalkers).

After the initial QCFD research by Yepez et al. the field of Quantum
Boltzmann methods became stagnant for over a decade. Whilst other
QCFD approaches came to the forefront, quantum Boltzmann methods
were largely forgotten until the more recent boom in 2019 starting
with the paper by Todorova and Steijl [6]. Most recent are the methods
presented in [6–13], that all have their strengths and weaknesses. Due
to the heavy computational demands of CFD and precision required, all
these methods require future fault tolerant quantum computers. The
methods described in [6,10] include detailed quantum primitives for
streaming and specular reflection but do not yet include a collision step.
The methods described in [7,8,13] include a quantum primitive for col-
lision using the linear combination of unitaries approach [14], as such
measurement and reinitialization are required in each time step. Due to
the high computational cost of such a ‘stop-and-go’ strategy caused by
the difficulty of initialization and measurement errors, such techniques
loose their practical advantage. The methods presented in [12,12,13]
make use of Carleman linearization of the lattice Boltzmann equation
as presented in [15]. The methods of [12] stand out as they are geared
towards quantum simulation rather than the more general quantum
computation paradigm.

What all these methods have in common is that after completing
the final time step, a quantum state has been created that represents
the entire flow field as a probability density distribution, e.g., encoded
in the quantum state’s amplitudes. So far, however, no efficient mea-
surement strategies for this quantum state representing the flow field
https://doi.org/10.1016/j.compfluid.2024.106453
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have been suggested. This implies that the current methods require
he exponentially expensive reading out of the full quantum state to
xtract the entire flow field and post-process it on a classical computer
fterwards. Consequently, any and all quantum advantages that were
ained during the computation are lost. This paper marks the first that
ffers a quantum observable for the efficient reading out of the force
ector acting on an object for the quantum Boltzmann method.

We first introduce the Lattice Boltzmann method in Section 2. In
Section 3 we introduce the so-called Momentum Exchange Method
MEM) that can be used in combination with the Lattice Boltzmann
ethod and bounce back boundary conditions to calculate the force

cting on an object immersed in the fluid. Subsequently, in Section 4
we provide the reader with the basic ideas of the Quantum Lattice
Boltzmann method (QLBM) and its encoding. Using this we introduce
bounce back boundary conditions for QLBM in Section 5 and ultimately
in Section 6 we introduce the Quantum Momentum Exchange Method.
Finally Section 7 is dedicated to explaining how the QMEM can be
fficiently implemented in practice and Section 6.1.0.1 gives insight

into the computational costs.

2. The lattice Boltzmann method

The lattice Boltzmann method (LBM) is one of multiple widely-used
omputational approaches to model the behaviour of fluid flow with
he aid of computers. It is based on the Boltzmann equation which can
e written
𝜕 𝑓
𝜕 𝑡 + 𝐮 ⋅ ∇𝑓 = 𝛺 (𝑓 ) , (1)

where 𝑓 (𝐱,𝐮, 𝑡) is the distribution function of the particle density 𝜌, over
pace 𝐱, with velocity 𝐮, at time 𝑡. Here, 𝛺 represents the collision term.
e furthermore assume that no external force is present.
Since the actual collision term is relatively expensive to implement,

in practice typically the BGK collision term is used [16]

𝛺 (𝑓 ) = − 1
−𝜏

(𝑓 − 𝑓 𝑒𝑞) , (2)

where 𝜏 is the relaxation time and 𝑓 𝑒𝑞 is the equilibrium function.
The Boltzmann equation can be discretized in both time, physical

and velocity space leading to the lattice Boltzmann method. In the
lattice Boltzmann method a time step can be denoted as

𝑓𝑖
(

𝐱 + 𝐜𝑖𝛿 𝑡, 𝑡 + 𝛿 𝑡
)

= 𝑓𝑖 (𝐱, 𝑡) − 𝛿 𝑡
𝜏
(

𝑓𝑖 (𝐱, 𝑡) − 𝑓 𝑒𝑞𝑖 (𝐱, 𝑡)) , (3)

where subscript 𝑖 denotes the velocity direction.
What sets the Boltzmann method apart from other CFD approaches

is that a single time step can be split into two consecutive parts, the
so-called streaming and collision steps.

Writing the state of the system after collision as 𝑓⋆𝑖 (𝐱, 𝑡) we can get

𝑓⋆𝑖 (𝐱, 𝑡) = 𝑓𝑖 (𝐱, 𝑡) − 𝛿 𝑡
𝜏
(

𝑓𝑖 (𝐱, 𝑡) − 𝑓 𝑒𝑞𝑖 (𝐱, 𝑡)) , (4)

for the collision step. Subsequently the streaming step is written as

𝑓𝑖
(

𝐱 + 𝐜𝑖𝛿 𝑡, 𝑡 + 𝛿 𝑡
)

= 𝑓⋆𝑖 (𝐱, 𝑡) . (5)

This ability to split the equation into two separate physically mo-
ivated steps leads to the Boltzmann method being implemented by
erforming collision and streaming separately and consecutively.

A popular way of classifying different combinations of dimensions
nd number of possible velocities is the so-called D𝑑Q𝑞 scheme. Here, 𝑑

denotes the number of space dimensions considered and 𝑞 the number
of distinct velocities. In Fig. 1 we give four examples of different
combinations of D𝑑Q𝑞 possible.

In this paper we are only considering the D1Q3, D2Q9 and D3Q27
cases.
 b

2 
We furthermore write 𝐞𝑖 to represent the vector in the direction
𝑖 ∈ 𝑄 = {0, 1,… , 𝑞 − 1} of the D𝑑Q𝑞 scheme. For example, in the D2Q9
system we have

𝐞𝑖 =
⎧

⎪

⎨

⎪

⎩

(0, 0) for 𝑖 = 0
(1, 0), (0, 1), (−1, 0), (0,−1) for 𝑖 = 1, 2, 3, 4
(1, 1), (−1, 1), (−1,−1), (1,−1) for 𝑖 = 5, 6, 7, 8.

(6)

Therefore 2 qubits are necessary to represent the speed in each dimen-
sion, as the three options ‘positive’, ‘negative’ and ‘standing still’ need
to be encoded.

3. Momentum exchange method

The momentum exchange method was proposed by Ladd [17] to
determine the force acting on an object in order to calculate the drag
and lift coefficients of an obstacle equipped with bounce back boundary
conditions when the flow field is modelled by the Boltzmann method.

ounce back boundary conditions differ from the more intuitive specu-
lar reflection boundary conditions in that, upon contact with an object,
the particle’s velocity is reversed entirely instead of just the velocity
normal to the object; see Fig. 2. Bounce back boundary conditions are
ften used in combination with the Lattice Boltzmann method [18]. In

Section 5 we give an in-depth explanation of bounce back boundary
conditions as well as how to implement them in our QLBM scheme.
In this paper we adopt the momentum exchange method as described
in [18]. Then the force exerted on the object by the particles can be
xpressed as

𝐅 =
∑

𝑖∈𝑄

(

𝐞𝑖𝑓𝑖(𝐱𝑓 , 𝑡) − 𝐞𝑖𝑓𝑖(𝐱𝑓 , 𝑡)
)

. (7)

In the above expression 𝐱𝑓 refers to a point in the fluid space adjacent
to the obstacle and 𝑖 represents the velocity of the particles after
particles with velocity 𝑖 have impinged on the object. This expression
assumes that there is no fluid inside the object and as such only takes
the momentum exchange outside of the object into account. Since we
are using bounce back boundary conditions we have 𝐞𝑖 ∶= −𝐞𝑖 and
𝑓𝑖(𝐱𝑓 , 𝑡) = 𝑓𝑖(𝐱𝑓 , 𝑡) by definition, therefore we can rewrite Eq. (7) to

𝐅 =
∑

𝑖∈𝑄
2𝐞𝑖𝑓𝑖(𝐱𝑓 , 𝑡). (8)

As force is composed of magnitude and direction it is expressed by
a 𝑑 dimensional vector with subscript 𝑗 denoting its 𝑗th dimensional
component, i.e.

𝐹𝑗 =

(

∑

𝑖∈𝑄
2𝐞𝑖𝑓𝑖(𝐱𝑓 , 𝑡)

)

𝑗

. (9)

4. Quantum lattice Boltzmann method

The quantum lattice Boltzmann method (QLBM) is, as the name
uggests, the quantum analog of the lattice Boltzmann method. Similar
o the classical lattice Boltzmann method the QLBM consists of the
nitialization of the problem, methods for streaming and collision, an

approach to impose boundary conditions and, finally, a measurement
procedure to extract application-specific QoIs. This paper introduces
n efficient measurement procedure that can be used in combination
ith existing QLBMs. As such we abstain from presenting concrete
ethods for collision, streaming or state preparation. Instead we focus

n explaining a set-up for the measurement procedure, which can be
sed with any QLBM method that uses a similar encoding scheme.

As the measurement procedure in practice should be fitted to the
uantum state that it is used on we will present how the density

function is encoded in the quantum state for this method. The density
function encoding presented below is similar to the ones presented
in [6–8,10], as such the measurement procedure presented here can
e used with those papers.
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Fig. 1. Four examples of different types of D𝑑Q𝑞 possible. Fig. 1(a) portrays the D1Q2 setting and Fig. 1(b) portrays the D1Q3 setting (where a stationary particle can be included).
Fig. 1(c) portrays the D2Q5 setting and Fig. 1(d) shows the D2Q9 setting.
o

Flow field encoding. Building on our previous work [10], the quantum
ncoding of the discretized density function reads

|𝑎𝑛𝑎 … 𝑎1
⏟⏞⏟⏞⏟
ancillae

posit ion
⏞⏞⏞⏞⏞
𝑔𝑛𝑔 … 𝑔1 𝑣𝑛𝑣 … 𝑣1

⏟⏞⏟⏞⏟
velocit y

⟩, (10)

whereby the positional and velocity qubits are split into 𝑑 groups, one
for each dimension. More specifically, zooming in on the positional
qubits, we get

|𝑔𝑛𝑔 … 𝑔1⟩ = |𝑔𝑑𝑛𝑔𝑑
… 𝑔𝑑1 𝑔

𝑑−1
𝑛𝑔𝑑−1

… 𝑔𝑑−11 … 𝑔1𝑛𝑔1
… 𝑔11⟩, (11)

where 𝑔𝑗𝑛𝑔𝑗 … 𝑔𝑗1 encodes the 𝑗th dimension of the location of grid points
by representing the binary value of the location.

Similarly if we write out the velocity qubits for the encoding explic-
tly we get

|𝑣𝑛𝑣 … 𝑣1⟩ = |𝑣𝑑𝑣𝑑dir … … 𝑣1𝑣1dir⟩, (12)

where 𝑣𝑗dir expresses the direction (positive or negative) of the particle
n dimension 𝑗 and the 𝑣𝑗 qubits express whether a particle has a
onzero velocity in dimension 𝑗. Notice that this order is different from
he one presented in [10] where the 𝑣dir qubits are grouped together,

this is done simply to make the observable in Section 6.1 easier to
visualize as a matrix. Another difference from the setup presented
in [10] is that here we are only considering the D1Q3, D2Q9 and

3Q27 cases leading to exactly two velocity qubits per dimension.
The ancilla qubits are used for several different purposes throughout

he QLBM method. In this paper we will only highlight the labels
nd purposes of the ancillae that are used in the quantum bounce
ack boundary conditions implementation and the quantum momen-

tum exchange method presented in Sections 5 and 6, respectively. We
dentify the 𝑎𝑣,𝑖 ancilla qubits that indicate whether in this time step
he associated particles are streamed in dimension 𝑖. Furthermore we
ake use of the 𝑎𝑜 which is the ancilla qubit that indicates whether or
ot a particle is in an object and the bounce back boundary conditions
eed to be applied.

5. Quantum bounce back boundary conditions

One of the most commonly used boundary conditions in practi-
cal LBM is the bounce back boundary condition which amounts to
fully reflecting the direction of particles that get into contact with
 t

3 
Fig. 2. Illustration of bounce back boundary conditions (top, in red and blue arrows)
versus specular reflection boundary conditions (bottom, in green and magenta).

obstacles and resetting them to their original position inside the flow
domain [18,19]. This is different from the specular reflection boundary
conditions that we adopted in our earlier work [10], which reverses
nly the normal component of the velocity vector. Fig. 2 illustrates the

difference between the two types of boundary conditions.
The algorithm for implementing bounce back boundary conditions

in a classical LBM can be summarized as follows. First, the particles
that virtually travelled into the obstacle have their velocity direction
reversed in all dimensions and subsequently these particles are placed
outside of the obstacle. The particles are placed in the correct position
outside of the obstacle by moving one grid point in the dimension(s)
that they previously moved in.

For implementing the bounce back boundary condition as a quan-
um primitive we require only one ancilla qubit 𝑎 to indicate whether
𝑜
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Fig. 3. The first part of the bounce back boundary conditions, applied to the example of Fig. 6 to properly reset the particles moving to the right in the 𝑥-direction hitting the
articles on the left wall. This part of the algorithm sets the ancilla qubit, indicating that particles have virtually travelled into the object and need to have their velocity reversed

and be moved out.
Fig. 4. This figure shows part of the bounceback boundary conditions quantum algorithm where the velocity qubits of the particles hitting the object get reversed and subsequently
moved back out of hte object.
t

𝑎
d
b
a
c
𝑎
a
g

a particle has virtually moved into an object. The ancilla 𝑎𝑜 is initialized
in the |0⟩ state and flipped to |1⟩ when a particle has virtually travelled
into one of the points inside the obstacle. We check whether a particle
has virtually travelled into the object using the efficient object encoding
method as described in Section 5 of [10]. In Fig. 3 we show how this
efficient object encoding method can be implemented for the example
ive in 6. In Fig. 3 we show the quantum comparison operation that
an check whether or not a particle has come into contact with the

wall from (2,2) to (2,5). This is done by checking whether the location
on the 𝑥-axis is equal to two as is done by applying an X gate to
the 𝑔𝑥0 and 𝑔𝑥2 qubit. We use two quantum comparison operations to
check whether 2 ≤ 𝑦 ≤ 5 as can be seen in the picture by the QFT
operations followed by rotations and IQFT. The mathematics behind
this procedure is explained in Section 5.4 of [10].

As a next step we flip the state of the 𝑣𝑗dir qubits for all dimensions
controlled on the state of the 𝑎𝑜 ancilla. By doing this we make sure

that the velocity direction is reversed in all dimensions after contact
with an obstacle as is required for bounce back boundary conditions.
And subsequently the particles are moved by one position controlled on
the 𝑎𝑗𝑣, 𝑣

𝑗
dir, and 𝑎𝑜 qubits to ensure that the particles move one step in

the correct direction in the dimension(s) that they moved in when they
moved into the obstacle and of course to ensure that this only happens
after the particles moved into the obstacle.

This is done by the operation controlled double NOT operation
shown in the beginning of Fig. 4. Subsequently, as can be seen in the
same figure, controlled or whether or not the 𝑎𝑜 qubit is in the state
1, we stream in the 𝑥 and 𝑦 dimension, thereby making sure we only
4 
stream the particles that just collided with the object. This is done to
ensure that the particles are set back outside of the object again.

Finally the 𝑎𝑜 qubits need to be reset to |0⟩ before we can start
the next time step. As in our previous work [10] the blue and green
encircled points outside of the object constitute the trivial case in Fig. 6.
We reset the 𝑎𝑜 qubits controlled on if we are in one of the blue (green)
encircled points, the direction of the 𝑥 (𝑦) velocity and the ancilla qubit
indicating whether we moved in the dimension in this time step 𝑎1𝑣 (𝑎2𝑣).
Specifically we reset the ancilla qubit 𝑎𝑜 if we are in a blue (green)
encircled grid point outside the object and 𝑎1𝑣 = 1 (𝑎2𝑣 = 1) and 𝑣1dir
(𝑣2dir) points away from the object. Using this logic the 𝑎𝑜 qubits are
reset to |0⟩ for each wall separately.

Resetting the 𝑎𝑜 qubit is a bit more difficult around the edges as
indicated with black and orange encircled points in Fig. 6.

For the black encircled points outside the corner we need to reset
he ancilla qubit 𝑎𝑜 if and only if both 𝑣1dir and 𝑣2dir point in the direction

away from the object and 𝑎1𝑣 = 𝑎2𝑣 = 1 holds.
As for the orange encircled ‘side-edge’ grid point we first reset the

𝑜 ancilla in the same way as for the blue (green) encircled points
escribed above. Now we only need to note that for the case described
y the red arrow in Fig. 6 we have wrongly flipped the 𝑎𝑜 ancilla qubit
nd so we need to verify whether we are in the ‘red arrow’ case by
hecking if 𝑣1dir and 𝑣2dir pointed in the direction of the arrow and if
1
𝑣 = 𝑎2𝑣 = 1 holds. If the particle is in a state where 𝑎1𝑣 = 𝑎2𝑣 = 1 and 𝑣1dir
nd 𝑣2dir are such that the particle is in an red arrow case the 𝑎𝑜 ancilla
et flipped again, back to the original state of |0⟩.

In Fig. 5 we show how the ancilla qubits are reset. In this picture
it can be seen that controlled on the conditions described above, an X
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Fig. 5. This figure shows part of the bounceback boundary conditions quantum algorithm where the ancilla qubit 𝑎𝑂 qubits of the particles that hit the object and got reversed
and subsequently moved back out of hte object gets reset.
q
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t
q
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t
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Fig. 6. Illustration of all possible corner cases to be taken into account when particles
ollide with an obstacle (black box). The arrows and colours indicate the physically
orrect behaviour for a fail-safe implementation of the boundary conditions.

gate is applied to the ancilla qubits to re-set them to the zero state if and
nly if they were in the one state to begin with. Resetting the ancilla

qubits in this particular use case is non-trivial as the ancilla qubits were
originally set based on location and then streamed, so we need to keep
track on how all the particles moved in order to be able to reset them
properly. The core is to now check if the particles are just outside the
bject pointing away from the object in such a way that could only have
appened if they just reflected from the object. We can safely reset the
ncilla qubits based on this, the circuit is given in Fig. 5.

6. Quantum momentum exchange method

In this section we explain how the momentum exchange method can
e expressed as an observable for the encoding described in Section 4.

In order to do this we will first change the density encoding of the
quantum state into a rooted density encoding. Using this rooted density
ncoding we can subsequently define the observable that calculates the

force using Eq. (8) and finally we describe how this method can be
mplemented as an executable quantum circuit.

Rooted density encoding. Since the momentum exchange method is
inear in nature, whereas quantum observables are quadratic, it is
5 
advisable to change from encoding the density function 𝑓𝑖 (𝐱, 𝑡) in the
uantum state |𝜓⟩ to an encoding of the square root of the density
unction

√

𝑓𝑖 (𝐱, 𝑡). Such a shift to a rooted density encoding can be
done without altering any subsequent circuits in the methods [6,10].
In practice the densities should be rooted before the start of the quan-
um algorithm, therefore the information will be initialized into the
uantum state such that the density is already rooted and no quantum
ethod is required for this task.

6.1. Momentum exchange method as an observable

We now derive the observable that calculates the force exerted on
the object using the momentum exchange method. As force is described
using a vector, we need to calculate the values of the vector for all
𝑑 dimensions. Here we show how to calculate this vector using 2𝑑
different observables, where each observable calculates the value of
the force vector in one spatial dimension, 𝑑 ∈ {1, 2, 3}, and one
velocity direction. This is done to make the resulting observable easier
to portray and explain, since all the observables can be expressed as
diagonal matrices they do commute and so they can all be measured in
the same runs.

Considering the encoding described above, Eq. (8) can be evaluated
from the quantum state |𝜓⟩ encoding

√

𝑓𝑖 (𝐱, 𝑡), by the diagonal observ-
ble 𝑂OME to be specified below. The diagonal of the matrix expressing
he observable 𝑂OME is built up using 𝐵OME matrices, which are placed
t grid points in the fluid domain directly adjacent to the obstacle. All

the other indices of the matrix expressing 𝑂OME will remain zero. An
example of this is the matrix

𝑂OME =

⎡

⎢

⎢

⎢

⎢

⎣

… … … …
… 𝐵OME … …
… … … …
… … … …

⎤

⎥

⎥

⎥

⎥

⎦

, (13)

where the dots represent 4 × 4 matrices with only 0 indices and 𝐵OME
is a 4 × 4 matrix that can be written as

𝐵OME =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

. (14)

The example given in Eq. (13) represents a 1-dimensional case with
4 grid points and three possible speeds (one in the positive and one in
the negative 𝑥-direction as well as the zero speed) and the wall adjacent
o the second grid point as represented in Fig. 7. Since 𝐵OME = 𝐵†

OME,
both 𝐵OME and 𝑂OME are Hermitian and therefore 𝑂OME constitutes a
uantum observable. It can easily be seen that any other distribution
f 𝐵OME along the diagonal will also lead to a quantum observable.

For the D1Q3 case with four grid points described above we have
the following quantum state encoding

|𝜓⟩ = 1
√

∑

∑

𝑥,𝑖

√

𝑓𝑖 (𝐱, 𝑡)|𝑔12𝑔11𝑣1𝑣1dir⟩, (15)

𝑥,𝑖 𝑓𝑖 (𝐱, 𝑡)
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Fig. 7. Example of the D1Q3 case with four grid points and one obstacle located on the third grid point.
t

o
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p
𝑥

where 𝑔12𝑔
1
1 represent the binary value of the location of the 𝑥-axis,

|𝑣1𝑣1dir⟩ = 10 indicates streaming in the positive 𝑥-direction, |𝑣1𝑣1dir⟩ =
1 indicates streaming in the negative 𝑥-direction and |𝑣1𝑣1dir⟩ = 01 as
ell as |𝑣1𝑣1dir⟩ = 00 indicates that the particle is not streaming in the
-direction. Here and in the remainder of this Section we do not take
nto account the ancilla qubits as they play no role in the final density
unction and as such will not be part of the measurement process.

With the above convention, the quantum state can be written as the
oefficient vector relative to the computational basis as follows:

|𝜓⟩ =
∑

𝑥,𝑣
𝛼𝑥,𝑣|𝑔

1
2𝑔

1
1𝑣

1𝑣1dir⟩ =
1

√

∑

𝑥,𝑖 𝑓𝑖 (𝐱, 𝑡)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
√

𝑓0(0, 𝑡)
√

𝑓1(0, 𝑡)
√

𝑓2(0, 𝑡)
0

√

𝑓0(1, 𝑡)
√

𝑓1(1, 𝑡)
√

𝑓2(1, 𝑡)
0

√

𝑓0(2, 𝑡)
√

𝑓1(2, 𝑡)
√

𝑓2(2, 𝑡)
0

√

𝑓0(3, 𝑡)
√

𝑓1(3, 𝑡)
√

𝑓2(3, 𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (16)

Using expression (16) and some basic linear algebra it follows that

⟨𝜓|𝑂OME|𝜓⟩ =
2𝑓1 (1, 𝑡)

∑

𝑥,𝑖 𝑓𝑖 (𝐱, 𝑡)
. (17)

Since the value of ∑𝑥,𝑖 𝑓𝑖 (𝐱, 𝑡) is known when starting the algorithm we
can simply multiply Eq. (17) by ∑

𝑥,𝑖 𝑓𝑖 (𝐱, 𝑡) to find the value of the force
we wish to calculate as described in Eq. (8), which can subsequently be
sed to calculate the drag and lift coefficient [17].

Extension to more dimensions. This method can easily be extended to
more dimensions by noticing that the 𝐵OME matrix is of size 2𝑛𝑣 × 2𝑛𝑣
and should consist of only one non-zero element. This non-zero element
will always be placed on the diagonal at the position of the basis state
|𝑣𝑖⟩.

6.1.0.1. Complexity analysis. The number of measurements required to
etermine the force with an 𝜖 precision using our proposed approaches
epends on multiple factors. As long as the total number of grid
oints located inside and adjacent to the boundary of the obstacle is

polynomial in the total number of grid points, the number of diagonal
elements that are non-zero in the observable is polynomial in the size
of the grid. This means that the number of non-zero elements in the
observable is not exponentially small in the total size of the system.
Therefore, in this case, we wish to measure a subspace that is only
polynomially small in the total size of the system which is feasible
without exponential overhead.

7. Practical implementation of the momentum exchange method
n a quantum computer

Realizing an observable on a real-world quantum computer amounts
to implementing a quantum circuit that translates the observable to
6 
measurements in the computational Z-basis. We will now present the
quantum circuit that translates the observable described in Section 6.1
for determining the force in one dimension in one direction to mea-
suring one qubit in the Z-basis, making the process clear and easily
implementable on a quantum device.

We will first describe how this operation can be applied by using an
already implemented circuit for the bounce back boundary condition
and we will subsequently show that this operation indeed transforms
the described observable to one that consists of a Z measurement on
one qubit.

7.1. Implementation using ancilla qubits for bounce back boundary condi-
ions

We have implemented a method to measure the expectation value
f the described observable by measuring only one qubit. This is done

using the implementation of the bounce back boundary conditions. In
this implementation a qubit 𝑎𝑜 gets flipped to indicate that a particle is
inside an object. To determine the expectation value of the observable
we will use these ancilla qubits differently. We will from now on
call this 𝑎𝑜 ancilla qubit that was used for the bounce back boundary
conditions 𝑎𝑜,+ and we define a second ancilla qubit 𝑎𝑜,−. These ancilla
qubits will be flipped if a force was exerted on the object in a positive
or negative direction, respectively. In order to do this we apply a
multi-controlled NOT operation controlled on the qubits to determine
whether we are in the object and the qubit indicating the direction of
the particles in the dimension to the 𝑎𝑜,+ (𝑎𝑜,−) qubits.

By doing this we are extracting the relative density of particles
hat come into contact with an obstacle in the positive and negative
irection for the considered dimension. Subsequently we measure the
ubits 𝑎𝑜,+ and 𝑎𝑜,− and subtract the expectation value of 𝑎𝑜,− = 1
rom 𝑎𝑜,+ = 1. The resulting value expresses the relative pressure in

the positive/negative direction. Fig. 8 shows the quantum circuit that
implements this quantum momentum exchange method for the example
of Fig. 6.

7.2. Proof of method

In this section we show that using the method described above, we
indeed calculate the force exerted on an object in one dimension as
expressed in Eq. (8).

We flip the 𝑎𝑜,+ ancilla qubit in the case that particles have im-
inged on the object and the particles have a positive velocity in the
-direction. Therefore, after re-arranging some qubits, we can write
(

√

𝑓𝑣0
(

𝑥0, 𝑡
)

|

(

𝑔𝑛𝑔 … 𝑔1
)

0

(

𝑣𝑛𝑣 … 𝑣1
)

0
⟩ +⋯+

√

𝑓𝑣1
(

𝑥1, 𝑡
)

|

(

𝑔𝑛𝑔 … 𝑔1
)

1

(

𝑣𝑛𝑣 … 𝑣1
)

1
⟩

)

|0⟩𝑎𝑜,++
(

√

𝑓𝑣2
(

𝑥2, 𝑡
)

|

(

𝑔𝑛𝑔 … 𝑔1
)

2

(

𝑣𝑛𝑣 … 𝑣1
)

2
⟩ +⋯+

√

𝑓𝑣3
(

𝑥3, 𝑡
)

|

(

𝑔𝑛𝑔 … 𝑔1
)

3

(

𝑣𝑛𝑣 … 𝑣1
)

3
⟩

)

|1⟩𝑎𝑜,+ ,

(18)

where for 𝑣𝑖 and 𝑥𝑖 the subscript is simply used to indicate that a
specific value for the location and velocity is considered and similarly
for the qubits

(

𝑔𝑛𝑔 … 𝑔1
)

𝑖

(

𝑣𝑛𝑣 … 𝑣1
)

𝑖
the subscript is used to indi-

cate the velocity and grid point qubits are in a specific state. Here
the states |

(

𝑔 … 𝑔
) (

𝑣 … 𝑣
)

⟩ + ⋯ + |

(

𝑔 … 𝑔
) (

𝑣 … 𝑣
)

⟩
𝑛𝑔 1 0 𝑛𝑣 1 0 𝑛𝑔 1 1 𝑛𝑣 1 1
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Fig. 8. The quantum algorithm for the QMEM, applied to the example of Fig. 6 to determine the force of the particles moving to the right in the 𝑥-direction hitting the particles
n the left wall. This part of the algorithm sets the ancilla qubit, indicating that particles have virtually travelled into the object. Subsequently the ancilla qubit 𝑎𝑜,+ is measured
o determine the force.
n
n

U

describe exactly the particles that do not impinge on the object in
the positive 𝑥-direction in the current time step, as the 𝑎𝑜,+ qubit
is in the |0⟩ state. Similarly the states |

(

𝑔𝑛𝑔 … 𝑔1
)

2

(

𝑣𝑛𝑣 … 𝑣1
)

2
⟩ +

⋯ + |

(

𝑔𝑛𝑔 … 𝑔1
)

3

(

𝑣𝑛𝑣 … 𝑣1
)

3
⟩ represent the relative densities of the

particles that have impinged the object in the positive 𝑥-direction. From
this we can conclude that the total probability of finding |𝑎𝑜,+⟩ = |1⟩
upon measurement is equal to
𝑓𝑣2

(

𝑥2, 𝑡
)

+⋯ + 𝑓𝑣3
(

𝑥3, 𝑡
)

, (19)

which is precisely equal to the relative density of particles hitting the
object with a positive velocity and which is precisely what we wish to

easure.

8. Conclusion

In this paper we have presented a quantum approach to determine
the force of the flow field acting on an object immersed in the fluid
ia an efficient and easily implementable measurement procedure for
he quantum lattice Boltzmann method. To the best of our knowledge,
his is the first time that efficient measurement strategies are addressed
n the QLBM literature. Previous works are limited to reading out the
ntire flow field which cannot be realized efficiently on a quantum
omputer, thereby destroying any quantum advantage.

Our approach represents the quantum analog of the momentum
xchange method and consists of a quantum primitive for implementing
ounce back boundary conditions at the end of each time step and
n observable that can be easily implemented as measurements in the
omputational basis to obtain the forces exerted by the fluid on an
nternal object.
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