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Efficient Calibration of Radio Interferometers Using

Block LDU Decomposition

Ahmad Mouri Sardarabadi1, Alle-Jan van der Veen2 and Léon V. E. Koopmans1

Abstract—Having an accurate calibration method is crucial
for any scientific research done by a radio telescope. The next
generation radio telescopes such as the Square Kilometre Array
(SKA) will have a large number of receivers which will produce
exabytes of data per day. In this paper we propose new direction-
dependent and independent calibration algorithms that, while
requiring much less storage during calibration, converge very
fast. The calibration problem can be formulated as a non-linear
least square optimization problem. We show that combining
a block-LDU decomposition with Gauss-Newton iterations pro-
duces systems of equations with convergent matrices. This allows
significant reduction in complexity per iteration and very fast
converging algorithms. We also discuss extensions to direction-
dependent calibration. The proposed algorithms are evaluated
using simulations.

Index Terms—Calibration, Radio Astronomy, Non-Linear Op-
timization, Covariance Matching

I. INTRODUCTION

One of the key challenges for current and future radio–

telescopes, such as LOFAR (LOw Frequency ARray) [4] and

SKA (Square Kilometre Array) [10], is the accurate calibration

of the instrument with reasonable computational complexity.

Modern radio telescopes consist of many receivers which

can be large dishes or sub-arrays beamformed into a single

element. The calibration problem for radio interferometers

has already been addressed by several authors [1], [6]–[8],

[12]. During a calibration cycle we use our current knowledge

of the radio sources (fore example known from previous

observations), to find the gains of the receivers. However,

because a typical interferometer has a direction-dependent

behavior, we need to solve these gains for different directions

[9], [13]. In this paper we assume to have access to an accurate

model for the sources and we are interested in developing

computationally efficient algorithms that scale well with multi-

channel observations.

Based on the resolution of the instrument, in order to

avoid source smearing, the observations are divided into small

snapshots (order of seconds). However, in order to study very

weak sources we need to observe for a very long time (e.g.

hundreds of hours). This, combined with a large number of

channels (several hundreds), produces a substantial volume of

data that needs to be processed. Also, because calibration is a

non-linear and non-convex problem, iterative and alternating

approaches usually form the basis for a practical solution [12],

[13].

1 A. Mouri Sardarabadi (ammsa@astro.rug.nl) and L.V.E. Koopmans are
affiliated with Kapteyn Astronomical Institute, University of Groningen, The
Netherlands. 2 Alle-Jan van der Veen is affiliated with Delft University of
Technology, Delft, The Netherlands

In this paper we use the Khatri–Rao structure of the matrices

involved in data model to develop a computationally efficient

direction independent gain calibration algorithm. We then use

this method as a building block for a direction dependent

calibration algorithm. Additionally, for very large problems

we propose a conjugate gradient based algorithm and use

simulation to evaluate the performance of these methods.

II. DATA MODEL

In this section we introduce the covariance model for the

data. We assume to have access to P (single polarization

or unpolarized) receivers which are exposed to Ns (com-

pact/point) sources. We assume that sources can be grouped

into Q clusters which are affected by the same direction-

dependent gain similar to the model presented in [6]. We stack

the voltage output of each receiver in a vector denoted by y

and assume that narrow-band assumptions hold. This allows

us to model the sampled output of the array as

y[n] =

Q
∑

q=1

Gqsq[n] + n[n]

where sq[n] represents the total signal from the qth cluster

which includes the array response, Gq = diag(gq) is the

common gain for the qth cluster and n[n] is the noise of each

receiver. The covariance matrix for this model is given by

E{yyH}. However, we assume that some of the elements of

this matrix are contaminated and/or are removed. We use a

masking matrix M containing zeros and ones to capture this

missing data in the model. We also assume that the gains are

stable over several “snapshots” in both time and frequency. We

assume to have K frequency channels with T snapshots each.

Including the masking matrix we get the following covariance

model for each snapshot

Rt,k = M⊙ E{yt,ky
H
t,k} = M⊙

Q
∑

q=1

GqΣq,t,kG
H
q , (1)

where t = 1, . . . , T , k = 1, . . . ,K, ⊙ is the element-

wise or Hadamard product, H is the Hermitian transpose and

Σq,t,k = E{sq,t,ks
H
q,t,k} is the covariance of the qth cluster

or the “predicted sky-model”, which is assumed to be known.

We also assume that Rn = E{nnH} is diagonal and is always

removed as a result of applying the mask matrix, M.

During the measurements, a noisy estimate of Rt,k is made

using the output of the receivers. This estimate is denoted as a

sample covariance matrix or sampled visibilities and is given
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by

R̂t,k = M⊙
N
∑

n=1

yt,k[n]yt,k[n]
H , (2)

where N is the number of (voltage) samples in a single

snapshot.

For the rest of this paper we stack the covariance (visibility)

model and the data, respectively, into vectors

r(θ) =











vect(R1,1)
vect(R2,1)

...

vect(RT,K)











, r̂ =











vect(R̂1,1)

vect(R̂2,1)
...

vect(R̂T,K)











(3)

where vect(.) produces a vector from the argument matrix by

stacking its columns and

θ =
[

gT
1 gH

1 . . . gT
Q gH

Q

]T

is the “augmented” vector of variables. The term augmented

means that a complex variable and its conjugate are used as

separate variables instead of the real and imaginary part of the

complex variables.

Using this data model we want to estimate the gains for

each direction.

III. DIRECTION INDEPENDENT ALGORITHM

In this section we discuss the case where Q = 1. In this

case the entire available sky-model is used and as a result the

gain solutions are assumed direction independent. This case

forms the basis for the direction-dependent calibration, which

is discussed in the next section.

We use the least squares cost function to find an estimate

for the gains:

θ̂ = argmin
θ

‖r̂− r(θ)‖22 (4)

where ‖.‖2 is the l2 norm of a vector. Because of the non-linear

and non-convex nature of this problem we use a Newton-based

iterative method known as the Gauss-Newton algorithm. The

updates for this algorithm are given by

θ̂
(i+1)

= θ̂
(i)

+ µ(i)δ (5)

where the GN direction of descent δ is given by the solution

of [5]

JHJδ = JH [̂r− r(θ)] (6)

where

J =
∂r(θ)

∂θT
=

[

JT
1,1 . . . JT

T,K

]T
, (7)

Jt,k = P
[

G∗ΣT
t,k ◦ IP IP ◦GΣt,k

]

, (8)

with ◦ the Khatri-Rao product, ∗ the complex conjugate and

P = diag(vect(M)) a projection matrix corresponding to

the mask matrix M. There exists a phase ambiguity for the

solutions, i.e. if g is a solution so is g′ = eiφg for any real φ.

We call the problem identifiable if rank(J) = 2P − 1 where

the deficiency by 1 is the result of the phase ambiguity. In this

case a basis for the null space of J is given by

z = [gT ,−gH ]T . (9)

Because r(θ) = 1/2Jθ we have JHJ(δ + 1/2θ) = JH r̂

which combined with the fact that θHz = 0 and hence θ

is in the row space of J, leads to

θ̂
(i+1)

=

(

1−
µ(i)

2

)

θ̂
(i)

+ µ(i)δ̃ (10)

which is equivalent to (5) for δ̃ satisfying

JHJδ̃ = JH r̂. (11)

With this change of variables for the direction of descent,

we remove the necessity to update the model, r(θ). However,

since J depends on θ, this is only beneficial if we can calculate

operations involving J and JH sufficiently fast. Calculating

the models Σt,k which are needed for calculating J is very

expensive and we would like to pre-calculate these matrices

only once. However, because TK is large, storing all of these

model matrices should also be avoided. The rest of this section

focuses on solving (11), while avoiding storage of the sky-

models Σt,k.

For square matrices A and B we have

I ◦ (A⊙B) = diag(vect(B))(I ◦A) and

(BT ⊙A) ◦ I = diag(vect(B))(A ◦ I) . Using these relations

we have

Jt,k =
[

G∗(M⊙Σt,k)
T ◦ IP IP ◦G(M⊙Σt,k)

]

.

Combining these results with JHJ =
∑

k

∑

t J
H
t,kJt,k and

JH r̂ =
∑

k

∑

t J
H
t,kr̂t,k we have

JHJ =

[

diag [H (g ⊙ g∗)] GHG

G∗HG∗ diag [H (g ⊙ g∗)]

]

(12)

and

JH r̂ =

[

Eg

E∗g∗

]

(13)

where

H = M⊙
∑

k

∑

t

ΣT
t,k ⊙Σt,k, (14)

E = M⊙
∑

k

∑

t

ΣT
t,k ⊙ R̂t,k. (15)

We only need to calculate the real symmetric matrix H and

the Hermitian matrix E once in order to solve δ̃ and θ̂. This

means that we can discard Σt,k during the calculation of H

and E. This allows for a dramatic reduction of the required

storage and also I/O overhead during the calibration.

The remaining problem is the actual solution of (11) which

we address now. We would like to point out that this system of

equations is normal and consistent. This allows for the solution

to be obtained from

δ̃ = XJH r̂,

where X is any generalized inverse of JHJ (i.e.

JHJXJHJ = JHJ). However, not all δ̃ found in this way

will have the augmented form [yT ,yH ]H , which is required

for a valid direction of descent. We use the following lemma

to find a simple solution for this problem.

Lemma 1. Let K be a permutation matrix of the form

K =

[

0 IM
IM 0

]

,

and A be any square matrix of size 2M × 2M such that
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A∗ = KAK. Let Ag be a generalized inverse of A (i.e.

AAgA = A) then X = 1
2 (A

g +K(Ag)∗K) is also a gen-

eralized inverse of A.

Proof. The proof is a simple verification:

AXA = 1
2 (AAgA) + 1

2 (AK(Ag)∗KA)
= 1

2A+ 1
2 (KKAK(Ag)∗KAKK)

= 1
2A+ 1

2 (K(AAgA)∗K) = A,
where we used KK = I.

It is trivial to verify that KJHJK = (JHJ)∗ and

KJH r̂ = (JH r̂)∗. This allows us to show that for any gen-

eralized inverse solution δ̃1 = (JHJ)gJH r̂,

δ̃ = XJH r̂ =
1

2
(δ̃1 +Kδ̃

∗

1) (16)

is a solution to the system of equation with the correct format.

Based on this discussion, it is always possible to transform

any solution to the correct (augmented) format. This gives us

more flexibility in choosing our solver. For the matrix JHJ

we will show that using a block LDU decomposition will lead

to solving a system of equations which involves a convergent

matrix which has a stable and fast iterative solution [3].

In order to simplify the notation we introduce the following

definitions: g̃ ≡ g∗ ⊙ g, D ≡ diag(Hg̃), b ≡ D−1/2Eg and

C ≡ D−1/2G∗HG∗D−1/2. With these definitions the block-

LDU decomposition of JHJ = LD̃LH is given by

L =

[

D1/2 0

D1/2C D1/2

]

and D̃ =

[

I 0

0 I−CCH

]

.

Applying forward-backward substitution we find the following

expression for δ̃1 in (16):

δ̃1 =

[

D−1/2(b−CH δ̃1,2)

D−1/2δ̃1,2

]

, (17)

where δ1,2 is the solution to the following system of equations

(I−CCH)δ̃1,2 = b∗ −Cb. (18)

Remembering that JHJ is rank-deficient by one and the fact

that L is positive definite, we know that I−CCH is also

rank deficient by one and positive semidefinite. We already

discussed that z given by (9) is a basis for the null space of

JHJ. This means that LHz is a basis for the null space of D̃

and hence

z̃ =
1

√

gHDg
D1/2g∗

is a unit-norm basis for the null space of I−CCH . Because

the system of equations in (11) is consistent, so is (18) and

δ̃1,2 = (I−CCH)†(b∗ −Cb)
= (I−CCH + zzH)−1(b∗ −Cb).

Note that I−CCH + z̃z̃H is positive definite with λmax = 1,

which means that the spectral radius of ρ(zzH −CCH) < 1
and hence this matrix is a convergent matrix. For convergent

matrices we know [3] that

δ̃
(j+1)

1,2 = b∗ −Cb− (zzH −CCH)δ̃
(j)

1,2 (19)

will converge to a solution of (18).

To summarize, in order to find a solution to (11), first we

need to calculate D, C, z̃ and then use (19), (17) and (16).

The complexity of these operations are P divisions and O(P 2)
operations needed for the matrix vector multiplications. This

means that we will benefit from the fast convergence of the

GN algorithm, while having the same complexity as slower

converging alternating algorithms.

The only unsolved issue is the optimal step-size µ(i) which,

as we show in Appendix A, requires solving for the roots of a

third order polynomial with real coefficients, for which closed-

form solutions exists.

IV. EXTENSION TO DIRECTION DEPENDENT CALIBRATION

Now that several key ideas have been derived for the

direction independent scenario, we extend to the direction-

dependent case. Again we use the least squares cost function

to find an estimate for the gains

θ̂ = argmin
θ

‖r−

Q
∑

q=1

rq(θq)‖
2
2

where

rq(θq) =







vect(GqΣq,1,1Gq)
...

vect(GqΣq,T,KGq)






.

Using this cost function we discuss two different approaches

for solving this problem. The first one is based on the

repeated application of the method developed for the direction

independent scenario which we will denote as “Block Gauss-

Newton” (BGN) and the second approach which is based on

the Conjugate Gradient (CG) method.

A. Block Gauss-Newton

We can extend the matrices H and E defined by (14) and

(15) to the direction dependent case as

Eq =
∑

t

∑

k

ΣT
q,t,k ⊙ R̂t,k (20)

Hq1,q2 =
∑

t

∑

k

ΣT
q1,t,k ⊙Σq2,t,k (21)

where q, q1 and q2 take values 1, . . . , Q, Hq1,q2 is Hermitian

and Hq1,q2 = HT
q2,q1 . The use of these matrices is beneficial

only if KT/Q > 1. If this condition does not hold, storing

R̂t,k and Σq,t,k will be more efficient than generating Eq and

Hq1,q2 . We assume that this condition holds for a practical

calibration scenario.

Using Eq and Hq1,q2 , the gradient for the qth direction can

be written as

γq = JH
q (r̂− r(θ)) =

[

Eqgq −
∑

q2
Gq2Hq,q2(gq ⊙ g∗

q2)

ET
q g

∗
q −

∑

q2
G∗

q2H
T
q,q2(g

∗
q ⊙ gq2)

]

.

(22)

If we change the summation above such that q2 6= q, then

the direction of descent can be found by applying the method

discussed in the previous section separately for each direc-

tion in a parallelized fashion. Because the updates are done

separately for each direction, we are not limited to a single

iteration and we can update each solution several time before

updating the gradients. This approach is very similar to the

ADMM [2]. However, the calibration problem is not convex

and the convergence of BGN is local.
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B. Conjugate Gradient

For the next generation radio telescopes, such as the SKA,

the number of stations and directions will increase dramati-

cally. In these cases where the problem becomes very large

even the modified Gauss-Newton method used in previous

section could become prohibitive. Simple classical methods

such as Conjugate Gradient (CG) become attractive in these

scenarios. The CG has very nice convergence properties if

the exact optimal step-size is used [5]. If KT/Q > 1 we

can use the matrices Eq and Hq1,q2 to find the optimal step-

size (see Appendix A). This, in combination with the Polak-

Ribière method [5] will produce a relatively fast converging

CG method for the direction-dependent calibration.

For this algorithm we use the previous direction of descent

and the gradient given by (22) to a new direction of descent.

The updates for the direction of descent are

δ(j) = γ(j) + λδ(j−1)

where γ = [γT
1 , . . . ,γ

T
Q] and λ is given by Polak-Ribière ratio

λ =
ℜ{(γ(j) − γ(j−1))Hγ(j)}

γ(j−1)Hγ(j−1)
,

where ℜ{.} is the real part of the argument. Using simulations

we show that this algorithm is computationally competitive

with other methods.

V. SIMULATIONS

A. Direction Independent Calibration

In this section we use simulations to evaluate the per-

formance of the proposed direction independent calibration

technique. We simulate sample covariance data (visibilities)

using the array configuration of the LOFAR radio telescope

consisting only of the Dutch stations [11] with P = 62. For

the sky model we use the North Celestial Pole (NCP)1. We

use 5000 strongest component (point sources) in this field

to generate both the data and construct the predicted sky

model (i.e. Σt,k). We divide a typical LOFAR channel with

195.3 kHz bandwidth into K = 3 sub channels of ≈ 65kHz

around the central frequency of 150 MHz. For each channel

we generate T = 600 snapshots, each with an integration

time of 1 second, which translates into N = 2 × 65 × 103

samples with Nyquist sampling. We repeat this for a total

of 9 observations which are separated by 1 hour from each

other. This is done in order to have enough rotation of the

Earth to synthesize an image. Fig. 1 show an MVDR dirty

image of the simulated field using 10 snapshot from each

hour. Table I summarizes the computation on an Intel 7i-

6700K CPU with 16GB of RAM. As we see, generating the

predicted model Σt,k is the most expensive part of the problem

which cannot be avoided and is common among all currently

available calibration models which use a sky model. By using

H and E for the direction independent calibration we reduce

the storage during the calibration by a factor of TK = 1800
and as is shown in fig. 2 and Table I, the algorithm converges

1We would like to thank Sarod Yatawatta for this sky model.

NCP field

-0.05 0 0.05

l

-0.05

0

0.05

m

Fig. 1: The MVDR dirty image of the simulated NCP field.

TABLE I: Computation time DIC

Generating Σt,k Calculating H and E optimization

25s 0.1s 0.006s

very fast both in number of iterations and in computing time.

B. Direction Dependent Calibration

For the direction dependent calibration we use again P = 62
receivers with 20 randomly generated sources per direction.

We use a single snapshot with N = 104 samples, which is

moderate for radio astronomical observations. We then use

the algorithm discussed in Sec. IV to find the gains.

Fig. 3 shows the convergence speed of both algorithms

based on the gradient. As expected the Block-Gauss-Newton

1 2 3 4 5

# interations

10
-15

10
-10

10
-5

10
0

Norm gradient DIC

Fig. 2: Convergence of the direction independent calibration

for 9 calibration runs
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0 20 40 60 80

# iterations

10
-5

10
0

10
5

Norm of the gradient DDC

CG,    Q = 2

BGN,  Q = 2

CG,    Q = 5

BGN,  Q = 5

CG,    Q = 10

BGN,  Q = 10

Fig. 3: Convergence of the direction-dependent calibration

(BGN) converges faster than the CG method. However, based

on several repetition of our simulations, we have observed

that the total computation time of the CG method, especially

for larger Q, is much lower. For example in the case where

Q = 10 BGN method takes ≈ 7s while CG take ≈ 0.3s.

This fast convergence of CG is mainly because of the exact

step-size calculations.

VI. CONCLUSION

In this paper we have proposed new calibration algorithms

for both direction dependent and independent calibration for

radio interferometric array. We have shown that the optimal

step-size can be calculated in a closed form fashion and does

not require (expensive) line-search methods or approximations.

All of the proposed algorithms converge reasonably fast and

have very small storage requirements.

There are several issues that are not addressed in this paper,

including polarization, ionospheric effects and frequency de-

pendency of the gains. The latter places additional restriction

on the gains and hence will only improve the proposed

algorithm without much anticipated modifications. It can be

shown that if the sky model consist of un-polarized sources,

the polarized direction independent gain calibration can be

formulated as an un-polarized direction-dependent calibration

with two directions. These extensions will be addressed in

future works.
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APPENDIX A

STEP SIZE

The least square costs function in Sec. IV can be written as

f(θ) = r̂H r̂− 2
∑

q g
H
q Eqgq +

∑

q g̃
H
q Hq,qg̃

H
q

+2
∑

q1

∑

q2>q1
g̃H
q1,q2Hq1,q2 g̃q1,q2

where g̃q = gq ⊙g∗
q and g̃q1,q2 = gq1 ⊙g∗

q2 . Let the direction

of descent be δ and its sub-vector for qth direction be δq , we

are interested in

µopt = argmin
µ

f(θ + µδ).

Because of the quadratic relations in g̃ we know that the

cost function is a fourth order polynomial in µ with real

coefficients, which means that finding optimal µ requires

solving the roots of a third order polynomial. The gradient

of the cost function with respect to µ is given by

f ′(µ) = 4c1µ
3 + 3c2µ

2 + 2c3µ+ c1
where ci = ai + bi with

a4 =
∑

q 2ỹ
H
q Hq,qg̃q − 4ℜ{δHq Eqgq},

a3 =
∑

q 2g̃
H
q Hq,qx̃q + ỹH

q Hq,qỹq − 2ℜ{δHq Eqδq},

a2 =
∑

q 2ỹ
H
q Hq,qx̃q,

a1 =
∑

q x̃
H
q Hq,qx̃,

b4 =
∑

q

∑

p>q 4ℜ{ỹ
H
q,pHq,pg̃q,p},

b3 =
∑

q

∑

p>q 2ℜ{ỹ
H
q,pHq,pỹq,p + 2g̃H

q,pHq,px̃q,p},

b2 =
∑

q

∑

p>q 4ℜ{ỹ
H
q,pHq,px̃q, p},

b1 =
∑

q

∑

p>q 2ℜ{x̃
H
q,pHq,px̃q,p},

ỹq,p = gq ⊙ δ∗p + δq ⊙ g∗
p,

x̃q,p = δq ⊙ δ∗p,

ỹq = ỹq,q and x̃q = x̃q,q .
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