Confidentiality-
Preserving

Collaborative
Bayesian

Networks

Abele Malan

Confidentiality-
-reserving

Collaborative
Sayesian

NetWOrks

by

Abele Malan

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Thursday August 24, 2023 at 13:00.

Student number: 4764307
Project duration: November 14, 2022 — August 24, 2023

Thesis committee: Dr. L. Chen, TU Delft, supervisor
Dr. J. Decouchant, TU Delft supervisor
Dr. T. Guzella, ASML, supervisor

Dr. B. Kulahcioglu Ozkan, TU Delft, committee
This thesis is confidential and cannot be made public until January 24, 2024.

An electronic version of this thesis is available at https://repository.tudelft.nl/.

]
TUDelft

https://repository.tudelft.nl/

Preface

This thesis was a joint project between the university and ASML, and | thank both parties for their
help and support. Specifically, | want to thank my supervisors in the distributed systems group, Lydia
Chen and Jérémie Decouchant, for their invaluable guidance through the process and positive attitude
alongside the many other group members | have had the pleasure to interact with and learn from. Just
as importantly, | want to thank my ASML supervisor, Thiago Guzella, for his unrivaled availability and
consistent feedback alongside his team and colleagues for their warm welcome during my time with
them. | also want to profoundly thank my family and friends for their patience, understanding, and
encouragement during these months and in general. Furthermore, | want to thank Burcu Kulahcioglu
Ozkan for being very approachable and agreeing to be part of my thesis committee.

Abele Malan
Delft, August 2023

Introduction

Research Paper

Background

3.1 BayesianNetworks.
3.1.1 Related Model Types.
3.1.2 Structure and Parameter Learning.
3.1.3 Discretization.
3.1.4 Probabilistic Inference

3.2 Secure Computation
3.2.1 Homomorphic Encryption
3.2.2 Secret Sharing Schemes.

Additional Experiments

4.1 Probability Function Merge Operator

4.2 Variable Elimination Ordering Heuristic

4.3 GPU-Accelerated Inference

Conclusion

Contents

Introduction

As probabilistic graphical models, Bayesian networks allow great flexibility in data used during model-
ing and inference, particularly relevant in manufacturing use cases [32, 30, 22, 50, 20] for industries
like semiconductor production [51] or steelmaking [31]. They explicitly yet compactly represent inter-
actions between features by expressing them as nodes in a graph where edges denote probabilistic
relations [25]. The creation of Bayesian networks can happen without relying on data instances when
unavailable or of subpar quality, but prior knowledge exists about the target system. Having experts
directly encode domain-specific knowledge in the model once can make later analysis more accessible
and reduce the need for their involvement. Furthermore, inference outputs can be any non-overlapping
subset of the features. Thus, any available observations help refine estimates for concepts of interest.

Collaborative learning entails creating a global model for some domain by merging information that
multiple parties, like different expert groups in a manufacturing setting, contribute. The general problem
is prevalent in machine learning, partly due to its real-world applicability, as information extractable from
a single party may often not suffice to achieve an appropriate model. Many variations exist, each with its
challenges. Most, however, make some assumptions about data samples available within parties but
aim to maintain its confidentiality. Data partitioning amongst parties is commonly considered horizontal
(i.e., having the same features but different instances) or vertical (i.e., having the same instances but
different features). Furthermore, features shared amongst a (sub-)set of parties can either be identically
and independently distributed or non. Similarly, each party may either get (a personalized version of)
the final model, or it can remain split between them, making analysis a distributed process [28].

The collaboration challenge increases when supporting Bayesian networks that may not be learned
from data and contain only partly overlapping features while simultaneously considering confidentiality
at the model and data level. Intuitively, information must be merged at the model level when certain
parties have a model but no underlying data instances. Furthermore, even if all parties contain local
observations, but they have different features and are not fragments of the same instances, merging
models could still be a worthwhile strategy, given the lack of data commonality. Fortunately, the graph-
ical backbone of Bayesian networks makes models naturally composable, at least structurally, to some
degree. Most importantly, should party Bayesian networks explicitly encode confidential information,
any combined model would likely still contain much of it unaltered and readable. Thus, simply storing
a complete model in parties should be forbidden.

Federated learning is a ubiquitous collaboration approach, studied in the context of various model
types, that protects the locality of party data from which it learns [27, 53]. For Bayesian networks,
most existing work [33, 17, 21] focuses on horizontal data splits and learns only the graph structure
without probability function definitions. The method of [1] additionally explores vertical splits, but only
for structure. Finally, [11] learns a complete model strictly on vertical partitions.

Some works investigate the direct combination of probabilistic graphical models with varying levels
of assumptions about their properties. As a base approach, [13] studies intersection and union, albeit
only from a structural standpoint. Also, it assumes networks are equally important and, to avoid cycles,
the existence of a shared ancestral ordering for the union of the combined network’s nodes, under which
each node comes before its parents from all networks. Later, [16] proposes an approach between the
union and intersection while also giving a procedure for combining probability functions but maintaining

1

2 1. Introduction

the shared ancestral ordering requirement and equal weighting assumption. Similarly, [43] gives an
alternative version of [16] using simulated annealing to forego the ancestral ordering condition. More
recently, [2] outlines a way of combining the general class of causal models, which includes Bayesian
networks, in a weighted manner, without updating parameters but with stricter compatibility clauses.

Others have trialed additional methods for incorporating party knowledge in specific contexts. A
human-in-the-loop strategy is showcased in [47], which in devising a methodology for assisted diag-
nostics, creates a domain-specific language for working with models backed by Bayesian networks
that also support composition but relies on user input for resolving inconsistencies. The system of [44]
chains models under the assumption of a discrete timeline where they get used one at a time in some
given order, refining their priors based on information gathered from earlier steps. Despite the confi-
dentiality advantages of not having to exchange networks, many workloads do not limit themselves to
localized interactions with Bayesian networks or at least cannot adhere to a predetermined ordering.
Furthermore, two-way interactions between features from different models are possibly only approxi-
mated by reusing them in different chain parts.

This thesis covers multi-party Bayesian network modeling and analysis, primarily in data-scarce
and model-confidential scenarios. Specifically, it looks to confidentially join party models via common
features without additional data, restricting compatible network types, or involving a trusted coordinator.

The research questions are:

1. Can predictive performance comparable with a classic centralized combination be achieved in
such a collaborative, confidential environment?

2. What would be the overhead of a solution exhibiting the desired properties?

3 What are some of the choices influencing probabilistic inference prediction quality and overhead?

The thesis consists of three main parts. The first is a research paper that presents the main contribu-
tions in the form of the proposed CCBNet framework and results, alongside further motivation from the
steel manufacturing industry. It aims to address the first two research questions. The second chapter
provides extra insight into concepts relevant to the paper’s content, like probabilistic graphical models,
namely Bayesian networks, and secure computation methods, namely homomorphic encryption and
secret sharing schemes. The third chapter contains additional experiments showcasing possible differ-
ences between alternative (implementation) approaches for certain framework parts, aiming to address
the third research question.

/

Research Paper

CCBNet: Confidential Collaborative Bayesian Networks Inference

Abstract

Effective large-scale process optimization in manufacturing
industries requires close cooperation between different par-
ties of human experts who encode their knowledge of related
domains as Bayesian network models. For example, parties
in the steel industry must collaboratively use their Bayesian
networks on process parameters at the maker, steel proper-
ties, and application demands at the client to identify process
optimizations effectively. However, business confidentiality
across domains hinders collaboration, demanding alterna-
tives to centralized inference. We propose CCBNet, the first
Confidentiality-preserving Collaborative Bayesian Network
inference framework. CCBNet leverages secret sharing to se-
curely perform analysis on the combined knowledge of party
models by joining two novel subprotocols: CABN, which aug-
ments probability distributions for features across modeling
parties into secret shares of their normalized combination;
and (ii) SAVE, which aggregate party inference result shares
through distributed variable elimination. We extensively eval-
uate CCBNet on nine public Bayesian networks. Our results
show CCBNet achieves similar predictive quality to central-
ized methods while preserving model confidentiality. We fi-
nally demonstrate that CCBNet scales to challenging manu-
facturing use cases, where involving many (16-128) parties in
large networks (223-1003 features), on average, enables 45%
less computation while communicating 251k values/request.

Introduction

Improving productivity and quality standards in manufac-
turing demands effectively expressing complex interaction
between domain items. Bayesian networks (BNs) are com-
monly adopted to graphically model causality in manufac-
turing (Nannapaneni, Mahadevan, and Rachuri 2016), with
nodes representing features and directed edges showing de-
pendencies. An essential trait of these models is the ability
to run inference queries with arbitrary inputs and outputs.
Let us consider the steel industry. Steelmakers must col-
laborate with clients to better serve their needs and supplier
to improve production efficiency (Miskiewicz and Wolniak
2020) while protecting trade secrets on all sides. Specifi-
cally, steelmakers encode their insight about settings dic-
tating the production process and its outcome in a BN. At
the same time, clients craft BNs describing the effects of

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the different steels’ properties (e.g., durability, ductility, cor-
rosion resistance) on their products (e.g., appliances, auto-
motive, railroad). Figure 1 illustrates such a scenario. Pool-
ing together parties’ knowledge would allow new kinds of
higher-quality analysis for optimizing production environ-
ments, leading to new business opportunities.

Existing studies on collaborative inference for BNs dis-
regard model confidentiality constraints or make conces-
sions about which party information can be merged and
how. Many focus on centralized scenarios that combine local
BNs’ knowledge into a larger one (Del Sagrado and Moral
2003; Feng, Zhang, and Shaoyi Liao 2014) without protect-
ing confidential knowledge within the input networks and
global output. Models get stitched together based on com-
mon nodes, remaining in the final version as largely unal-
tered sub-models whose encoded knowledge is easily in-
spectable. (Pavlin et al. 2010) proposes a distributed com-
bination variant that partially preserves confidentiality by
maintaining the locality of combined party models. How-
ever, it leaks information between parties when connecting
them and does not allow merging inner graph nodes with
both parents and children. The method of (Tedesco et al.
2006) maintains confidentiality about how nodes are linked
within parties but only allows propagating information be-
tween them in a fixed sequential order. (Kim and Ghahra-
mani 2012) is another distributed approach with similar con-
fidentiality properties but even greater compatibility restric-
tions by requiring models to share inputs and outputs.

In this paper, we propose CCBNet, the first confiden-
tial, collaborative BNs inference framework that combines
knowledge of multiple parties involved in inference queries
through a novel secret sharing scheme. CCBNet does not
require a trusted third party, protecting confidentiality at
the level of both party models and data instances. The two
key components of CCBNet are: (i) confidential sharing of
a normalized combination of features’ probability distribu-
tions across all overlapping parties; and (ii) distributed infer-
ence based on variable elimination for aggregating party re-
sults. The novelty of the augmentation procedure lies in con-
structing discrete conditional probability distributions for all
features present in more than one party, which represent se-
cret shares of a combined and normalized distribution from
a centralized scenario without exposing any party’s initial
probability function. Augmentation constructs shares for a

Maker J7 Client

Maker J7 Client

3 Y
—’_ -‘:~‘

]
><»A"_

X X
A AF) | AF) | AT | AT A AF) | AF) | AT | AT A AF) | AF) | AT) | AT)
B B(F) B(T) B(F) B(T) B B(F) B(T) B(F) B(T) B B(F) B(T) B(F) B(T)
X(F) | P P12 P13 P14 X(F) [Va1 V12 V13 Vig X(F) | wqq Wip | Wyg [Wqg
o) o) XM | P21 | Pop | Po3 | P X(T) | Vo1 | Vo2 | Vo3 | Vo4 X(T) | Waq | Wpp | W3 | Wo4
Confidential Confidential
e et T
LocaJl7 Nets Non-conﬁdentgjl Combination CCiNet
PiEIA=)~ X PZ=F[A=_)=pF PZ=F|A=_)=pF
[Pzt o %) (PzctiaZE] Pe=TIaz7p]

Figure 1: Sample Bayesian networks collaboration in steel industry: Parties’ separate models overlap within feature X,
ductility. Maker features A and Y inform about carbon content and storage requirements. Client features B and Z inform about
operating temperatures and max load for the steel-based product. After observing A, inferring updated state probabilities for Z
requires propagating information between A, B, and X, which is impossible by merely averaging model outputs. The typical
non-confidential approach reveals the combined graph and probability tables to parties. CCBNet exchanges minimal structural
information amongst parties, and secret shares overlap feature tables, reconstructing the final result by distributed inference.

feature are consistent within the parties modeling it, while

the distributed inference variant joins the shares together

after parties perform the necessary local computation on

them. We use different public BNs as references and simu-

late knowledge compartmentalization to evaluate CCBNet.
In summary, we make the following contributions:

¢ We design the first confidential, collaborative framework
for BNs, CCBNet, to satisfy the needs of industry use
cases like process optimization in manufacturing.

* We design a novel secret sharing-based protocol, CABN,
to confidentially augment the conditional probability
function of overlapping features in parties.

* We define SAVE, a new method for performing dis-
tributed inference on augmented party models backed by
variable elimination that aggregates their result shares.

* We evaluate CCBNet over various scenarios based on
nine public BNs to show similar predictive accuracy to
non-confidential centralized alternatives and, for many
collaborators in large networks, an average 45% compu-
tation decrease with 251k communicated values/request.

Background

The following paragraphs outline BN notions relevant to this
work. We illustrate specific discussed points via Figure 1.
Bayesian Networks are probabilistic graphical models
that maintain explicit conditional probability distributions
(CPDs) for features whose dependencies form a directed
acyclic graph (Stephenson 2000). Within such context, fea-
tures are often referred to as (probabilistic) variables or
(graph) nodes. Shown in Figure 1, features and the influ-
ences between them give the graph nodes and edges, re-
spectively. Principally for performance and interpretability,

features in practical applications are generally discrete, with
CPDs specifically embodying conditional probability tables.
Learning may be algorithmic, by human experts, or hy-
brid (Koller and Friedman 2009; Daly, Shen, and Aitken
2011), as with other human-readable models like decision
trees. Automated learning discovers the graph structure and
then populates CPD parameters from training data. Man-
ual learning is desirable when incorporating concepts with
known governing rules that need no approximation from ob-
servations. Examples are physical phenomena or, in manu-
facturing, human-engineered processes and tools, like Party
2’s scanner wafer table from Figure 1.

Inference in BNs finds updated posterior probabilities for
the states of target variables, given the observed states of any
evidence variables (Russell 2010; Pearl 2009). As general
inference is NP-Hard, approximate algorithms help decrease
computation costs compared to exact ones while sacrificing
some precision in the result. The main exact inference tech-
niques are variable elimination and junction tree belief prop-
agation, which decomposes the network into a tree of vari-
able clusters, running variable elimination within them and
then disseminating updates between neighbors by message-
passing (Koller and Friedman 2009). In Figure 1’s query, Z
is the target, given some observed state of A.

Computation in discrete BNs relies on a few base opera-
tions for propagating information: normalization, reduction,
marginalization, and products (Koller and Friedman 2009).
We outline them with help from the non-confidential combi-
nation in Figure 1. Normalizing a CPD divides its entries by
their column sum. Thus column summations, like p11 + p21,
would equal 1. Reduction and marginalization remove vari-
ables from a CPD by fixing their states or, respectively, sum-
ming them out. Reducing or normalizing A from X would

leave B as its sole parent. Flattening CPD structures yields
factors that specify a value for each state combination of
their variables without discriminating between the child and
parents. Previous operations apply to both representations.
Products operate on CPDs of the same variable or factors
and create a new CPD/factor over the input variables’ union,
where each entry is the multiplication of the corresponding
ones in the original representations. The product of X and
Z’s factors would, thus, additionally contain A and B.

Markov random fields (MRFs) are a generalization of
BNs, backed by undirected graphs, into which every BN
is easily transformable via moralization (Li 2009; Scutari
and Denis 2021). Apart from lacking acyclicity constraints,
MRF:s directly define parameters as factors and can deal with
scenarios where directionality is unspecified, but BNs are
more compact and efficient for generative use. For inference,
BN properties and algorithms remain applicable.

Prior Art

We identify two high-level categories of collaborative anal-
ysis for BNs: single- and multi-model. The first synthesizes
one global model, while the others use multiple local ones.

Single-model approaches harness party data instances or
models but neglect confidentiality. Federated learning dis-
covers models (Ng and Zhang 2021; Gao et al. 2021; Huang
et al. 2022; Abyaneh et al. 2022; van Daalen et al. 2022)
from private party instances with a coordinator, but fully de-
centralized methods exist (Campbell and How 2014; Gho-
lami, Yoon, and Pavlovic 2016). Direct network combina-
tion fuses structure (Del Sagrado and Moral 2003; Alrajeh,
Chockler, and Halpern 2020) and also parameters (Feng,
Zhang, and Shaoyi Liao 2014) from party models.

Multi-model methods have parties work together during
inference to produce a complete analysis result. The sys-
tems of (Tedesco et al. 2006) chains model without exchang-
ing their contents but only allows using them one at a time
in a predetermined order. Less confidential but more flexi-
ble, (Pavlin et al. 2010) fuses party networks based on com-
mon nodes but still requires them to be roots or leaves in the
party’s directed acyclic graph. The patent of (Ypma, Koop-
man, and Middlebrooks 2018) envisions a similar solution
for industrial processes, also mentioning anonymization to
help preserve data confidentiality. The approach of (Kim and
Ghahramani 2012) runs models autonomously and only av-
erages their final outputs, maintaining confidentiality but ex-
pecting models to accept the same inputs and outputs.

In summary, single-model techniques break confidential-
ity by centralizing knowledge, and multi-model ones trade
modeling power for it. CCBNet addresses both concerns.

CCBNet

We propose a two-part framework for secure distributed
analysis over a related set of confidential, discrete BN, re-
gardless of learning method and local data instance avail-
ability. The first augments party BNs through overlapping
variables, and the second performs joint inference on them.

The assumptions we make are that features from differ-
ent parties have the same name only if they represent the

Algorithm 1: CABN
1: for pX, pY <« Parties x Parties do

2: for node < PrivateNodelntersect(pX, pY) do

3: overlaps[node] U + {pX, pY}

4: for node, parties <— overlaps do

50 states <= Upepartics P-obfuscatedStatesCPD(node)
6: idCPD < IdentityCPD(node, states)

7. weightSum < > ... p.weight

8: for p < parties do

9: p-CPD[node] * <— idCPD

10: p-CPD[node] *x* < p.weight / weightSum
11: for col < idCPD.cols do

12: colsHE «+ Upepam'es HE(p.CPD[node | col])
13: normVal < LIHadamardProdHE(colsHE)
14: for p < parties do
15: p.CPD[node | col] / < normVal!/[parties|

16: MultipicSecretShare(Upepm,ties p-CPD[node])

same concept, and independently treating distinct parents for
the same node across parties still yields a reasonable approx-
imation of the ground truth. These are shared by previous
BN combination works. Thus, names identify the overlap-
ping (common) nodes between models, giving the contact
points for graph fusion. Since features modeled by parties
may be any subset of those from the full domain, modeling
direct interactions between their non-overlapping variables
requires great amounts of often unavailable information.

Our adversarial model includes semi-honest parties that
follow the protocol while trying to abuse gained informa-
tion (Goldreich 2005) but do not collude. Further, no trusted
third party exists. The goal is to protect all network parame-
ters and only disclose common nodes’ structure/state infor-
mation amongst parties containing them.

Confidentially Augmented Bayesian Networks

We now present the CABN! protocol, which updates lo-
cal CPDs for overlap variables to hold secret shares of their
normalized central combination while protecting the initial
probabilities. Algorithm 1 details the four steps of the proto-
col, illustrated in Figure 2b: (i) private common node identi-
fication; (ii) local alignment; (iii) secure normalization; and
(iv) secret sharing. The protocol updates parties whenever
(enough) changes exist in local models to propagate.

Overview. Structurally, CABN imitates a union of the in-
volved networks, like in (Del Sagrado and Moral 2003), and
parameter-wise, it uses the same process as (Feng, Zhang,
and Shaoyi Liao 2014) but replaces the superposition op-
erator with the geometric mean. We use the union instead
of the more complex ruleset of (Feng, Zhang, and Shaoyi
Liao 2014) for deciding which overlapping node parents to
retain because the more straightforward logic reduces the
surface area for attacks and allows for combining more than
two BN at a time, lowering the number of communication
rounds. For fusing probabilities, the geometric mean enables
a multiplication-based secret sharing scheme in CABN where

! Confidentially Augmented Bayesian Networks

R A AF) |AF)| AT A A A(F) A | AF) |- Party 1 : Party 2
(F)|AT) B B(F) B(T) B(F) B(T) B B(F) B | B(F) '
Party 1:|X(F)| 0.3 | 0.6 T Query request:
Y 1:X(E) X(F)|0.30-5 = 0.55| 0.55 |0.60-5=0.77|0.77| | [X(F)|0.55/0.879-5 = 0.59 |- X(F) V1 * w'|... PZlA=.) | S
X(T)| 0.7 | 0.4 :
M X(T)|0.79-5 = 0.84| 0.84 |0.40.5 =0.63|0.63 X(T)| 0.84/0.8795=0.90 |- X(T) J; 5
Normalization Value A(F), B(F): 0.87 Vi7Vv4'=05 Local query: S2 Local query:
=0.55%0.89 +0.84 * 0.45 V2" Vvp'=0) " P(B, X, Z|A=..)
8 [mlem A A(F) A(F) A(T) |AT) A A(F) A : 47
Party 2:x(F)| 0.8 09 || |_B B(F) B(T) | B(F) [B(M) B B(F) B | B(F) |.. [Factor over:] s3 [Factor over:]
Xmlo2| 1 X(F) [0.80-5 = 0.89(0.99-5 = 0.95| 0.89 |0.95 X(F)|0.89/0.879-5=0.95|... X(F) V1 *wq'|... ;
- PV V :
X(T)0.205=0.45/0.10-5 = 0.32| 045 |0.32| | |X(T)|0.45/0.870-5=0.48 |- X(T)|v2 * w2'|... s'4
- <l —_—
1) Common Node CPDs 2) Local Alignment 3) Secure Normalization 4) Secret Sharing z '

(a) Key Steps of computing augmented CPDs

(b) Distributed inference flow

Figure 2: CABN & SAVE steps for Figure 1 scenario

reconstruction happens automatically during distributed in-
ference when computing intermediary party factor products.
The mean also outperformed the superposition in our cen-
tralized tests. Having described the general strategy, we con-
tinue with the protocol phases.

Step 1: Private Common Node Identification. CABN
starts with party pairs identifying their common nodes like
in the central case, albeit privately. We use private set inter-
section protocol (De Cristofaro and Tsudik 2010) to achieve
this. The pseudocode highlights this step in 1. 1-3. When
only a subset of parties has updates, they will be the only
ones recalculating their intersections with others. Outside
the private intersection context, node and state names are
communicated obfuscated to prevent information leakage
about which nodes are modeled by which party. Parties
can choose any unique representation for non-overlapping
nodes, but involved parties agree on an obfuscated represen-
tation for overlapping ones.

Step 2: Local Alignment. After parties know which own
nodes overlap with which peers, they start solving overlaps
by exchanging shape and weight information about their lo-
cal CPDs and independently updating local representations
accordingly (1l. 4-10). First, the obfuscated union of CPD
nodes and states for overlapping CPDs is determined (1. 5).
From it, an identity CPD containing all the parents across
parties gets created for the union (1. 6). An identity CPD (or
factor) has all entries equal to 1, so its product with another
replicates the later’s columns over their joint state space. The
initial CPD gets replaced by the product with the identity
in each party, giving all overlap CPDs the same shape (1.
9), as seen in Figure 2a. Parties have a public weight rep-
resenting confidence in their BN, which in the default un-
weighted case is 1. They compute the sum of their weights
(1. 7) and individually raise the entries of their CPD to the
ratio between their weight and the sum, computing the par-
tial geometric mean (1. 10). By the exponent product rule
(XY)* = X*Y*, the CPDs’ product would already yield
the unnormalized central combination CPD.

Model Weighting. As previously explained, CABN allows
weighting CPDs through the geometric mean, contrary to
previous BN works that cover parameter fusion. A natural
integration of unequal weighting of inputs is another advan-
tage of using a geometric mean instead of (Feng, Zhang,

and Shaoyi Liao 2014)’s superposition operator. We im-
plement weights at the model level as values from O to 1,
encoding the human expert’s confidence in the network or
data availability for algorithmic learning. Nevertheless, if
desired, weighting can trivially be applied at the CPD level.

Step 3: Secure Normalization. Homomorphic encryp-
tion (HE) (Cheon et al. 2017) helps privately compute col-
umn normalization values (1l. 11-15). One party is elected
to generate the public/private key pair, while another does
the computation. All parties receive the public key and send
their encrypted columns (1. 12) to the party that calculates
normalization value ciphers (1. 13), which the private key
party later receives, decrypts, and shares with the rest. A
column normalization value is the sum of entries obtained
by multiplying corresponding party columns element-wise.
Letting P;; denote party i CPD column j, the calculated
value is || ®; Pi;||1. Then, the K overlapping parties individ-
ually divide each column by the K -th root of the appropriate
normalization value (1. 14), so their factor product is the nor-
malized geometric mean. Figure 2a shows an example.

Because local columns no longer sum to 1 after expo-
nentiation, even in a two-party overlap where the variable
has only two possible states, a party cannot reconstruct the
other’s entries by only knowing the normalization values and
its own entries. Furthermore, vital for HE schemes in prac-
tice, we know that the number of consecutive multiplications
needed for each column is equal to the party count, which
allows configuring the scheme accordingly. Functional en-
cryption, in which completing the desired computation also
decrypts the output (Boneh, Sahai, and Waters 2011), would
be an even more fitting choice, but existing implementations
have overly stringent limits on the number of inputs and
complexity of the applied functions. Using a secret sharing
scheme (SSS) (Cramer, Damgérd, and Nielsen 2015) instead
of HE is also possible, but we favor decreasing the com-
munication count over computing overhead for this step. A
SSS has the advantage of requiring fewer computational re-
sources and being more robust against collusion. However,
it requires communication for each multiplication operation
and, depending on the scheme, the presence of a third party.
Despite the expectation that CABN needs to run more rarely
than inference, we still favor optimizing for message count,
as high communication latency is likelier to be a bottleneck

Algorithm 2: SAVE
Input: Q={x, y, ...}, E={a;, bj, ...}
Output: Factor

: auxFacts < {}
: for party < Parties do

1
2
3: partyFacts < Ucpdepm,ty_c pps Factor(cpd)
4
5

auxFacts U + {VarElim(Q, E, partyFacts)}
: return VarElim(Q, {}, auxFacts)

than processing for envisioned deployments.

Step 4: Secret Sharing. Finally, to prevent specific
kinds of inference attacks, we secret share (Kilbertus et al.
2018) the CPD entries of parties in each overlap through a
multiplication-based scheme (1. 16). The common shape of
updated local CPDs facilitates the procedure. In the classic
additive secret sharing scheme, a secret value is split into
shares distributed amongst parties whose sum is the secret. It
allows efficient and secure computation of expressions sum-
ming multiple secret values and applying other operations
involving non-secret values. Parties perform the computa-
tion with their local share of each secret and all aggregate
their results to reconstruct the answer. The utilized scheme
functions similarly but uses multiplication as the base op-
eration instead. Reconstruction happens during inference as
before, with no extra overhead compared to skipping the step
since party CPDs already contain different information that
needs merging. Figure 2a exemplifies the share splitting.

Handling potential cycles. To avoid compatibility restric-
tions between combinable BN, if solving overlaps creates a
cycle, the distributed global network gets treated as an MRF,
with no changes to the inference, which operates on factors
regardless. Edges that form cycles in the BN are effectively
incorporated into the moralized MRF and treated as undi-
rected. Since the main target is not to share the complete
combined network, the readability advantages of BNs are
not applicable. There often needs to be more information
to decide which edges to remove from cycles reasonably,
and alternatives like treating all nodes within a cycle as a
single node (Ypma, Koopman, and Middlebrooks 2018) are
coarse-grained and threaten confidentiality.

Share Aggregation Variable Elimination

SAVE? is the inference protocol that has all parties run
variable elimination locally before aggregating their outputs
into the final factor. Algorithm 2 describes its steps, and Fig-
ure 2b visualizes them for an example query. The party re-
questing inference sends the evidence and query variables
to all others in obfuscated form (S1 in fig.). Parties run the
query locally, adding to the target set their overlapping vari-
ables and direct parents (S2 in fig.). Unmodeled variables
are ignored. Their intermediate factors, representing shares
of the final result, are sent back to the requesting party in ob-
fuscated form (S3 in fig.), which runs a final round of vari-
able elimination for the result after receiving all replies (S4
in fig.). Adding overlap variables and parents to local tar-

2Share Aggregation Variable Elimination

Class Name #Nodes #Edges #Params

Small
(<20 Nodes) ASIA 8 8 18
Medium CHILD 0 25 230
oo Nodesy ALARM 37 46 509
INSURANCE 27 52 1008
Large
(50-05 Noqesy WINOSPTS 76 112 574
Very Large ANDES 223 338 1157
PIGS 441 592 5618
(101-999 Nodes) | g 724 1125 14211

Massive

(>= 1000 Nodes) MUNIN2 1003 1244 69431

Table 1: Evaluation datasets w/ node, edge, parameter counts

get sets avoids marginalization before reuniting all informa-
tion related to them. Marginalization entails summing val-
ues, which cannot happen locally with the chosen SSS, so
we delay it until implicit share reconstruction within the last
variable elimination call at the initiating party.

Queryable Nodes. To maintain confidentiality, parties
can only specify modeled variables in inference by default,
even if the result will still reflect the effect of prior knowl-
edge about others, so we propose mechanisms for expanding
the set of possible queries. The first involves all parties that
own a node agreeing to expose its unobfuscated name and
states with select others to use as a target or evidence. Doing
so only requires revealing a node’s existence, not its place
in the network(s). The other mechanism implicitly enhances
evidence with the help of some key shared between parties
(e.g., timestamp, product batch identifier). If a query request
also includes a value for the shared key, parties will incorpo-
rate any observations for the key’s value as evidence during
their local inference step. Parties do not have to disclose the
value of the observed data, but the query output will be the
same as if it had been part of the initial evidence.

Communication Properties. The number of messages
exchanged within an inference request is of magnitude
O(N) (where N is the number of parties), but the size of
the messages varies. Regarding count, the requester sends
out N — 1 messages and receives the same amount of replies
adding up to 2N — 2. The size of the messages, particularly
replies, varies greatly depending on the number and com-
plexity of the responder’s overlaps and the query itself.

Performance Evaluation
Setup

Our experiments evaluate average predictive performance,
computation overhead, and communication cost in single-
machine simulations. We measure prediction quality via the
Brier Score (= & Y1 S8 (fu — 04)? where N is the
number of queries, R is the number of target variables state
combinations, while f and o are predicted and reference
probabilities). We report the total processing time ratio be-
tween examined methods and the ground truth network for
computation overhead. Regarding communication, we con-
sider the count of factor values exchanged per query.

Method 1-3656 Method Method
c ASIASSL35 == DOM ASIA W DOM
= DOM 16 BoE CCBNet) SN CCBNet)
CHILD 0.045 mmm CCBNet CHILD W CCBNet CHILD mm CCBNet
L Y B
5 5 =
S ALARM S ALARM S ALARM
- - -
Q [[}
z 0.068 z z
INSURANCE 9 INSURANCE INSURANCE
WINISPTS WIN9SPTS WIN95PTS 375723
12.45 613947,
0.00 002 004 006 0.08 0 5 10 15 102 104 106

Brier Score Avg. Computation Time Overhead Avg. #Communicated Values

(a) Brier scores relative to original network, re- (b) Average computation time overhead rela- (c) Average #communicated values rounded to
lated splits tive to original network, related splits nearest integer, related splits (log scale)

Method 2.16 Method Method
ASIA 0.052 mpm CC == DOM ASIA meAa DOM
0.041 @ DOM N CCBNet) 39 SN CCBNet)
mmE CCBNet W CCBNet mmm CCBNet
9] 5] 9]
kY] 90 90 CHILD
— — —
o o o
2 2 2
@ @ @
z z =4 ALARM 36647
3.87 142622
INSURANCE INSURANCE INSURANCE
19045
0.00 0.02 0.04 0.06 0.08 0.10 0 1 2 3 4 102 104 10°
Brier Score Avg. Computation Time Overhead Avg. #Communicated Values

(d) Brier scores relative to original network, (e) Average computation time overhead rela- (f) Average #communicated values rounded to
random splits tive to original network, random splits nearest integer, random splits (log scale)

Figure 3: Results for 4 parties, 30% of vars in >1 party (lower is better for all)

We test on public networks® (Table 1), consider two vari-
able splitting methods, and multiple overlap variable ratios.
Related splits assign to parties variables connected in the
ground truth network. Random splits ensure parties have
equal variable counts and share the same overlaps. Test sets
contain 2000 queries, each randomly specifying an overlap
variable as the target and fixing 60% of others as evidence.

Baselines

Centralized Combination (CC) iteratively combines par-
ties with (Feng, Zhang, and Shaoyi Liao 2014)’s method
while treating the network as an MRF once any cycles form.
Centralized Union (CU), the approach confidentially
mimicked by CCBNet, is structurally based on the union
of (Del Sagrado and Moral 2003), combines parameters via
geometric mean, and also applies the MRF principle.
Decentralized Output Mean (DOM) is a naive approach
that takes the geometric mean for each target variable’s state
probabilities over independently operating contained par-
ties. It trades modeling long-range effects for confidentiality.
CCBNetJ is a degenerate CCBNet variant that stores the
fully combined central CPDs for overlaps in one of the con-
cerned parties, trading some safety for faster inference.

CCBNet Performance Overview

3https://www.bnlearn.com/bnrepository/

Here, we summarize the Brier score, computation time, and
communication overhead of CCBNet under two splitting
methods, different overlapping ratios (10%, 30%, and 50%),
and the party number (2, 4, and 8). Due to the space limita-
tion, we present the full results in an appendix and highlight
in Figure 3 the performance trend through the representative
case of four parties with an overlap ratio of 30%.

Predictive Performance. Regardless of split type,
CCBNet predictions often outperform or match the classic
CC and always beat the naive DOM. Figure 3a gives results
for related splits, CCBNet only scores worse than CC on the
smallest network (0.016 versus 0.005) and gains a signifi-
cant advantage over the two largest ones (0.05 versus 0.068
and 0.004 versus 0.012). Apart from a tie on the smallest net-
work, CCBNet has an advantage over DOM in all scenarios.
Examining the random splits in Figure 3d, CCBNet flips to
only scoring a win over CC on the largest tested network
(0.011 vs 0.014) but extends its lead over DOM in all but
the smallest network. Since CCBNet yields the same pre-
dictive ability as its centralized counterpart CU, the differen-
tiating points with CC are the structure combination policy
and parameter combination operator. With related splits, the
geometric mean of CCBNet fares better than superposition,
but CC’s parent selection policy is more effective than the
union approach over random splits, even with the nondeter-
minism it involves. Finally, complete test results confirm the
expectation that adding more parties tends to decrease per-

formance while increasing overlaps has the opposite effect.
Computation Overhead. Regarding computation cost
relative to centralized inference on the original network, av-
erage slowdowns are 1.65x for DOM, 1.82x for CCBNetdJ,
and 3.15x for CCBNet. Communication latency is unac-
counted for as it can vary greatly based on the deployment.
Still, we overestimate wall time by summing computation
time across parties, as much processing would happen con-
currently in reality. In the related splits from Figure 3b, for
all networks but the large one, CCBNet J is the fastest, while
others follow closely. The final network is a tipping point
for both CCBNet and CCBNet J, as their overhead (12.45x
and 5.72x, respectively) explodes, while DOM observes no
change in pattern. The networks also examined for random
splits in Figure 3e show a similar trend, with slightly higher
general overhead, especially for CCBNet in one medium
network (3.87x). Thus, as expected, DOM is less affected
by network complexity and overlap variable density, despite
the implementation having a higher base overhead. Between
the sibling approaches, CCBNet J is faster than CCBNet but
both perform reasonably in most scenarios, although they
degrade rapidly when dealing with too many complex over-
laps. Further, complete results certify that adding parties im-
proves speed while increasing overlaps decreases it.
Communication Cost. Regarding the number of com-
municated CPD values per query, DOM averages merely
9, while CCBNetJ and CCBNet need orders of magni-
tude more at 46k and 85k, respectively. Since the number
of communicated values depends on which party initiates
a query, the reported figures include communication inter-
nal to the initiator to eliminate variability, somewhat over-
estimating reality. The number of messages to complete a
query is the same for all methods. Furthermore, the raw data
transmitted in bytes remain in the low megabyte range for
hundreds of thousands of values before compression. Fig-
ure 3c shows the mentioned discrepancy over related splits
for all but the smallest network, in which the three methods
are comparable. DOM merges complete party outputs and
cannot propagate evidence between parties. Thus, it does not
increase communication with the number of overlaps, and
parties that do not contain any target variables send empty
replies. The situation for random splits, illustrated in Fig-
ure 3f, is very similar, although the disadvantage of CCBNet
over CCBNet J widens slightly. As for adding parties and in-
creasing overlaps, the complete appendix results attest that
they both increase communication overhead for all methods.

Party Weighting

Table 2 shows the weighted version of the proposed method
having better predictive performance than the unweighted
one in most scenarios with random splits. In weighting tests,
we reduce the overall amount of data used for learning lo-
cal BNs to ensure more variance and randomly assign each
party a fraction of the max training data. Over the few sce-
narios where the unweighted version performs better, parties
with lower data get overly punished for its perceived impre-
cision.Since each CPD has a single weight, all parents of
a node within the party are still treated uniformly accord-
ing to that value, even if there is a mismatch between it and

#Parties 2 4

Vars in >1 Party 10% 30% 10% 30%

Method uw W Uw W |UW W UW W
~ ASIA 0.051 0.031 0.052 0.03 [0.238 0.251 0.166 0.145
ECHILD 0.128 0.13 0.14 0.107|0.196 0.19 0.133 0.118
5 ALARM 0.086 0.068 0.077 0.061|0.117 0.12 0.16 0.153
Z INSURANCE|0.056 0.054 0.137 0.111|/0.206 0.2 0.185 0.175

Table 2: Unweighted (UW) & Weighted (W) Brier scores for
CCBNet relative to original network - random splits, imbal-
anced learning data (lower is better)

Brier Score
CC DOM CCBNet

Avg Comp Time Overhead
DOM CCBNetJ CCBNet

Avg #Comm Values

Networks/
DOM CCBNetJ] CCBNet

Parties

ANDES/16 [0.051 0.047 0.041 | 0.56 0.6 0.67 4 4368 10651
PIGS/32 0.073 0.083 0.064 | 0.36 0.78 0.93 6 742527 745361
LINK/64 0.107 0.104 0.098 | 0.23 0.3 0.33 6 62636 67470
MUNIN2/128 |0.017 0.16 0.014 | 0.18 0.21 0.24 11 50705 181859

Table 3: Metrics for large networks & many parties - related
splits, 10% of vars in >1 party (lower is better for all)

the actual quality of the estimates. Similarly, if a party with
lower overall confidence is the only one to model a highly-
influential parent, its importance will be somewhat misrep-
resented in the final result. Nevertheless, the weighting has a
positive, albeit contained, overall impact in tested scenarios.

Large Networks & Many Parties

Lastly, in Table 3, our tests for challenging use cases with
large networks (223-1003 features), many parties (16-28),
and related variable splits, but lower overlaps reconfirm
prediction/communication trends, yet computation improves
over original networks. As previously, in larger networks,
CCBNet’s predictions beat CC, and communication size
increases with parties and network size, averaging 251k
values/request. Computation overhead is always <1 (i.e.,
a speedup) by 45% on average, as the hardness of infer-
ence makes approximating a big network by splitting it into
chunks faster, even before considering parallel party solving.

Conclusion

We propose CCBNet to address the issue of collabora-
tive analysis for BNs in confidential (manufacturing) set-
tings. The framework allows distributed analysis spanning
involved models without revealing their contents. It has
no model compatibility restrictions and allows unequally
weighting parties. We extensively evaluate the method and
a lower-overhead but less robust variant, CCBNet J, against
non-confidential central approaches and a naive, distributed,
confidential formulation. Results show CCBNet having pre-
dictive performance similar to the naive option and similar
centralized approaches. Inference computation overhead is
often reasonable, barring challenging scenarios with large
networks with many overlapping party variables. However,
in specific situations, our approach can even reduce total
computation. Compared to the minimal interaction naive
formulation, messages are many times but remain accept-
able in most cases, and their count is equal. Future work
could improve model merger quality (e.g., by exploiting ex-
tra party data instances when updating probability functions)
and reduce communication costs.

References

Abyaneh, A.; Scherrer, N.; Schwab, P.; Bauer, S.; Scholkopf,
B.; and Mehrjou, A. 2022. FED-CD: Federated Causal Dis-
covery from Interventional and Observational Data.

Alrajeh, D.; Chockler, H.; and Halpern, J. Y. 2020. Combin-
ing experts’ causal judgments. Artificial Intelligence, 288:
103355.

Annamalai, M. S. M. S.; Gadotti, A.; and Rocher, L. 2023.
A Linear Reconstruction Approach for Attribute Inference
Attacks against Synthetic Data. arXiv:2301.10053.

Boneh, D.; Sahai, A.; and Waters, B. 2011. Functional En-
cryption: Definitions and Challenges. In Ishai, Y., ed., The-
ory of Cryptography, 253-273. Berlin, Heidelberg: Springer
Berlin Heidelberg. ISBN 978-3-642-19571-6.

Campbell, T.; and How, J. P. 2014. Approximate Decentral-
ized Bayesian Inference. arXiv:1403.7471.

Cheon, J. H.; Kim, A.; Kim, M.; and Song, Y. 2017. Homo-
morphic Encryption for Arithmetic of Approximate Num-
bers. In Takagi, T.; and Peyrin, T., eds., Advances in Cryp-
tology — ASIACRYPT 2017, 409-437. Cham: Springer Inter-
national Publishing. ISBN 978-3-319-70694-8.

Clauset, A.; Newman, M. E. J.; and Moore, C. 2004. Find-
ing community structure in very large networks. Physical
Review E, 70(6).
Cramer, R.; Damgard, 1. B.; and Nielsen, J. B. 2015. Secure
Multiparty Computation and Secret Sharing. Cambridge
University Press.

Daly, R.; Shen, Q.; and Aitken, S. 2011. Learning Bayesian
networks: approaches and issues. The knowledge engineer-
ing review, 26(2): 99-157.

De Cristofaro, E.; and Tsudik, G. 2010. Practical Private Set
Intersection Protocols with Linear Complexity. In Sion, R.,
ed., Financial Cryptography and Data Security, 143—159.
Berlin, Heidelberg: Springer Berlin Heidelberg.

Del Sagrado, J.; and Moral, S. 2003. Qualitative combina-
tion of Bayesian networks. International Journal of Intelli-
gent Systems, 18(2): 237-249.

Feng, G.; Zhang, J.-D.; and Shaoyi Liao, S. 2014. A novel
method for combining Bayesian networks, theoretical anal-
ysis, and its applications. Pattern Recognition, 47(5): 2057-
2069.

Gao, E.; Chen, J.; Shen, L.; Liu, T.; Gong, M.; and Bondell,
H. 2021. FedDAG: Federated DAG Structure Learning.
Gholami, B.; Yoon, S.; and Pavlovic, V. 2016. Decentral-
ized Approximate Bayesian Inference for Distributed Sensor
Network. Proceedings of the AAAI Conference on Artificial
Intelligence, 30(1).

Goldreich, O. 2005. Foundations of Cryptography — A
Primer. Foundations and Trends® in Theoretical Computer
Science, 1(1): 1-116.

Huang, J.; Yu, K.; Guo, X.; Cao, F.; and Liang, J. 2022. To-
wards Privacy-Aware Causal Structure Learning in Feder-
ated Setting.

Kilbertus, N.; Gascon, A.; Kusner, M.; Veale, M.; Gum-
madi, K.; and Weller, A. 2018. Blind Justice: Fairness with

Encrypted Sensitive Attributes. In Dy, J.; and Krause, A.,
eds., Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine
Learning Research, 2630-2639. PMLR.

Kim, H.-C.; and Ghahramani, Z. 2012. Bayesian Classifier
Combination. In Lawrence, N. D.; and Girolami, M., eds.,
Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics, volume 22 of Proceed-
ings of Machine Learning Research, 619-627. La Palma,
Canary Islands: PMLR.

Koller, D.; and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.

Li, S.Z.2009. Markov random field modeling in image anal-
ysis. Springer Science & Business Media.

Li, T.; Sahu, A. K.; Talwalkar, A.; and Smith, V. 2020. Fed-
erated Learning: Challenges, Methods, and Future Direc-
tions. IEEE Signal Processing Magazine, 37(3): 50-60.
Miskiewicz, R.; and Wolniak, R. 2020. Practical Application
of the Industry 4.0 Concept in a Steel Company. Sustainabil-
ity, 12(14).

Nannapaneni, S.; Mahadevan, S.; and Rachuri, S. 2016. Per-
formance evaluation of a manufacturing process under un-

certainty using Bayesian networks. Journal of Cleaner Pro-
duction, 113: 947-959.

Ng, I.; and Zhang, K. 2021. Towards Federated Bayesian
Network Structure Learning with Continuous Optimization.
Pavlin, G.; de Oude, P.; Maris, M.; Nunnink, J.; and Hood,
T. 2010. A multi-agent systems approach to distributed
bayesian information fusion. Information Fusion, 11(3):
267-282. Agent-Based Information Fusion.

Pearl, J. 2009. Causality. Cambridge University Press, 2
edition.

Russell, S. J. 2010. Artificial intelligence a modern ap-
proach. Pearson Education, Inc.

Scutari, M.; and Denis, J.-B. 2021. Bayesian networks: with
examples in R. CRC press.

Stephenson, T. A. 2000. An introduction to Bayesian net-
work theory and usage. Technical report, Idiap.

Tedesco, R.; Dolog, P; Nejdl, W.; and Allert, H. 2006.
Distributed Bayesian Networks for User Modeling. In
Reeves, T.; and Yamashita, S., eds., Proceedings of E-Learn:
World Conference on E-Learning in Corporate, Govern-
ment, Healthcare, and Higher Education 2006, 292-299.
Honolulu, Hawaii, USA: Association for the Advancement
of Computing in Education (AACE).

van Daalen, F.; Ippel, L.; Dekker, A.; and Bermejo, 1. 2022.
VertiBayes: Learning Bayesian network parameters from
vertically partitioned data with missing values.

Ypma, A.; Koopman, A. C. M.; and Middlebrooks, S. A.
2018. Methods & apparatus for obtaining diagnostic infor-
mation, methods & apparatus for controlling an industrial
process.

Zhang, J.; Cormode, G.; Procopiuc, C. M.; Srivastava, D.;
and Xiao, X. 2017. PrivBayes: Private Data Release via
Bayesian Networks. ACM Trans. Database Syst., 42(4).

Algorithm 3: Related Split

Algorithm 4: Random Split

Input: bnDAG, nrSplits, nrOverlaps, randGen
Output: Splits
1: dfsTree < DFSTree(bnDAG)
2: splits <— GreedyModularityComms(DFSTree, nrSplits)
(Clauset, Newman, and Moore 2004)
: shuffledEdges +— randGen.shuffle(bnDAG.edges)
: initNodeSplit « {}
: for splitNr <— 1 ... nrSplits do
for node < splits[nrSplit] do
initNodeSplit[node] < splitNr
: ovNodes < { }
9: connSplits < { }
10: extraEdges < []
11: for nodeO, nodel < shuffledEdges do
12: if |ovNodes| > nrOverlaps then
13: break
14: es « {initNodeSplit[nodeO], initNodeSplit[nodel]}
15: if |es| == 1 then

16: continue

17: if |connSplits| < nrSplits AND es C connSplits then
18: extraEdges += (nodeO, nodel)

19: else

20: ovNodes U= {nodeO, nodel}

21: connSplits U= es

22: splits[initNodeSplit[nodeO]] U= {nodeO}

23: splits[initNodeSplit[nodel]] U= {nodel}

24: for nodeO, nodel «+ extraEdges do

25: if |ovNodes| > nrOverlaps then

26: break

27: ovNodes U= {nodeO, nodel}

28: splits[initNodeSplit[nodeO]] U= {nodeO}
29: splits[initNodeSplit[nodel]] U= {nodel}
30: return splits

Experiment Method & Results Details

We detail the procedures used for related and ran-
dom splits of ground truth variables amongst parties, used
throughout all experiments, in Algorithm 3 and Algorithm 4,
respectively. Table 4, Table 5, and Table 6. Regarding addi-
tional experiment results with related splits, Table 4 covers
predictive performance, Table 5 covers computation over-
head, and Table 6 covers communication cost. In a few net-
works under related splits, adjacent overlap figures (e.g.,
30% and 50%) have the same splits and inherently score,
either because of the small number of nodes (ASIA) or be-
cause all possible overlaps for the given topology are formed
(CHILD, ALARM). Table 7 shows extra results for all three
metrics under random splits. For choosing the order of vari-
able elimination during inference, we use a min neighbors
heuristic, which greedily chooses a variable such that the
product of factors containing it has the smallest size.

We ran each experiment once, with a fixed seed deter-
mining the randomness for sampling data instances from the
reference network and splitting it into overlapping variables
sets of parties. In terms of computing infrastructure, we uti-
lized 16 threads of an Intel(R) Xeon(R) Gold 6134 CPU @

Input: bnDAG, nrSplits, nrOverlaps, randGen
Output: Communities
shuffledNodes <— randGen.shuffle(bnDAG.nodes)
ovs <— randGen.sample(shuffledNodes, nrOverlaps)
splits <— SplitEqualParts(shuffledNodes, nrSplits)
for split < splits do

split U= ovs
return splits

SANANE S e

3.20GHz (note that inference in the single-machine simu-
lation was single-threaded), 120 GB of RAM, and RedHat
Enterprise Linux 7.9 OS. We implemented the codebase in
Python 3.10, using pgmpy 0.1.22* as the backbone for BNs
in our framework, tenseal 0.3.14° for homomorphic encryp-
tion, and openmined.psi 2.0.1° for private set intersection.

Attacks on CCBNet

To recap, a classic combination of related BNs, which en-
code confidential information into a single global model, has
a very high risk of leaking information to all parties with di-
rect access to it. As seen in the toy example from Figure 1,
even at a purely structural level, the centralized combination
from the middle part can contain much, if not all, of the local
party information. Furthermore, at a parameter level, prob-
ability functions for any non-overlap nodes remain unmod-
ified. Since BNs are human-readable, inspection can com-
promise sensitive information before any inference.

Barring encrypting the model or only allowing access to
it through a trusted party, no existing protections directly
target the model itself. Defensive (Zhang et al. 2017) and
offensive (Annamalai, Gadotti, and Rocher 2023) measures
for Bayesian models consider the privacy of training dataset
instances. Similarly, differential privacy (DP) is a gener-
ally applicable technique that injects minimal noise into
the model to achieve the desired level of privacy (Li et al.
2020). However, constructing a complete model and apply-
ing DP to it before distributing it to the parties still involves a
trusted third party, and, unlike network parameters, its struc-
ture would be unchanged, breaking confidentiality.

We briefly review two attacks to reconstruct CPDs during
CABN and SAVE, respectively, along with their implications
in CCBNet and CCBNetdJ. The attacks do not bypass the
obfuscation of unowned variable names and states but still
expose potentially sensitive information via the recovered
probability values. We successfully execute the attacks on
ASIA and CHILD network instances involving two parties.

CABN Attack. The first attack concerns only CCBNetJ
in two-party overlap scenarios and has the attacker recon-
struct the private CPD of its overlap coutnerpart. Since in
CCBNetd, one party recreates the combined CPD before
inference, if only two parties are involved, the holder can
remove its contribution from the result and apply the CABN

“https://github.com/pgmpy/pgmpy
>https://github.com/OpenMined/TenSEAL
®https://github.com/OpenMined/PSI

#Parties 2 4 8

Vars in >1 Party 10% 30% 50% 10% 50% 10% 30% 50%
Method CC DOM CCBNet CC DOM CCBNet CC DOM CCBNet| CC DOM CCBNet CC DOM CCBNet| CC DOM CCBNet CC DOM CCBNet CC DOM CCBNet
ASIA 0 0.008 0.001 0 0.008 0.001 0 0.012 0.001 [0.005 0.016 0.016 0.005 0.015 0.011 [0.068 0.068 0.068 0.068 0.068 0.068 0.046 0.046 0.046

g CHILD 0.026 0.039 0.015 0.001 0.02 0.001 0.001 0.02 0.001 |0.104 0.128 0.104 0.014 0.03 0.01 [0.177 0.194 0.178 0.087 0.105 0.087 0.063 0.054 0.037
2 ALARM 0.001 0.017 0.005 0.001 0.017 0.005 0.001 0.017 0.005 |0.036 0.04 0.025 0.002 0.011 0.004 |0.021 0.045 0.029 0.039 0.044 0.035 0.037 0.024 0.014
< INSURANCE|0.012 0.026 0.016 0.009 0.018 0.007 0.009 0.01 0.007 [0.106 0.112 0.104 0.06 0.054 0.047 |0.134 0.14 0133 0.146 0.147 0.143 0.082 0.083 0.077

WINISPTS |0.003 0.002 0.001 0.017 0.007 0.004 0.017 0.007 0.004 |0.003 0.006 0.004 0.013 0.008 0.005 |[0.045 0.036 0.031 0.021 0.018 0.014 0.013 0.014 0.007

Table 4: Brier score relative to original Network - related splits (lower is better)

#Parties 2 4 8

Vars in >1 Party 10% 30% 50% 10% 50% 10% 30% 50%

Method DOM CCBNet) CCBNet DOM CCBNet] CCBNet DOM CCBNet) CCBNet| DOM CCBNet) CCBNet DOM CCBNet] CCBNet| DOM CCBNet) CCBNet DOM CCBNet] CCBNet DOM CCBNet] CCBNet
ASIA 1.56 122 137 156 1.23 148 1.69 1.37 146 | 1.65 1.48 1.53 1.7 1.25 157 | 1.83 1.61 179 182 1.6 178 222 1.64 1.98

‘é CHILD 118 1.05 1.13 1.42 1.08 1.27 1.36 1.08 1.31 1.21 111 1.17 1.74 118 1.7 1.36 1.23 1.3 1.57 1.27 1.58 1.92 1.34 1.94

2 ALARM 1.13 0.99 1.05 1.11 0.99 1.06 1.11 0.99 1.06 1.11 0.97 1.09 1.37 1.06 1.43 1.15 1.03 1.1 1.33 1.1 1.34 1.61 1.21 1.67

2 INSURANCE| 1.14 098 1.07 132 1.08 1.31 1.44 1.7 254 | 1.16 099 1.08 1.66 1.74 282 | 1.18 1.08 115 132 1.15 135 1.65 1.21 1.66
WINISPTS 1.03 098 1.07 115 10123 13792 117 100.66 137.46 | 0.91 0.85 091 132 5133 14193 | 09 0.84 092 114 1.03 1.82 144 1.29 19.27

Table 5: Average computation time overhead relative to original network - related splits (lower is better)

#Parties 2 4 8

Vars in >1 Party 10% 30% 50% 10% 50% 10% 30% 50%

Method DOM CCBNet] CCBNet DOM CCBNet) CCBNet DOM CCBNet] CCBNet |DOM CCBNet] CCBNet DOM CCBNet) CCBNet | DOM CCBNet] CCBNet DOM CCBNet) CCBNet DOM CCBNetJ CCBNet
ASIA 4 4 6 8 4 4 4 11 15 4 10 12 4 10 4 11 14

; CHILD 9 47 78 7 122 230 7 122 230 9 34 54 9 144 575 9 22 34 8 40 97 9 131 526

2 ALARM 6 43 78 6 43 78 6 43 78 7 63 199 7 843 5277 8 59 79 6 172 321 7 2961 4849

2 INSURANCE| 6 66 108 6 862 1656 6 31784 63349 6 44 73 7 25821 57966 6 36 48 6 221 338 8 395 1195
WIN9SPTS 4 1693 3365 4 42606160 8532220 4 4266160 8532220| 4 107 129 4 2407170 4658690| 4 49 145 4 897 60102 5 8646 887145

Table 6: Average #communicated values rounded to nearest integer - related splits (lower is better)

Metric Brier Score Average Computation Time Overhead Average #Communicated Values
2

#Parties 4 4 4

Vars in >1 Party 10% 30% 10% 10% 30% 10% 10% 30% 10%

Method CC DOM CCBNet CC DOM CCBNet CC DOM CCBNet| DOM CCBNet] CCBNet DOM CCBNet] CCBNet DOM CCBNet] CCBNet| DOM CCBNet] CCBNet DOM CCBNet) CCBNet DOM CCBNet] CCBNet
~ ASIA 0.06 0.025 0.026 0.038 0.017 0.016 0.005 0.068 0.005 [1.45 1.28 1.38 1.67 1.33 1.52 1.9 1.36 1.55 4 11 15 4 17 25

§ CHILD 0.034 0.021 0.025 0.007 0.019 0.007 0.04 0.053 0.037 | 121 1.07 1.16 1.4 1.15 1.37 1.36 1.14 1.37 6 130 233 7 1038 1879 12 85 275
£ ALARM 0.009 0.022 0.013 0.011 0.017 0.012 0.037 0.06 0.037 | 1.07 1 112 1.27 1.62 2.16 1.22 1.02 1.25 6 667 1298 6 23332 46368 11 448 1574
Z INSURANCE|0.012 0.013 0.007 0.008 0.019 0.006 0.03 0.033 0.013 1.1 1.02 112 1.24 1.26 161 1.31 1.05 L3 7 443 843 7 9356 16496 13 376 1366

Table 7: Results for random splits (lower is better for all)

steps (except secret sharing) in reverse to retrieve the other
peer’s original CPD. Although secret sharing augmented lo-
cal CPDs protects them during the computation of the com-
bined version, once the combiner knows the result along-
side one of the two inputs, it can find the other. CCBNet
is not vulnerable, as it does not join shares before applying
inference operations. A minimal-change fix for CCBNetJ
in the assumed no-collusion setting is to store the combined
CPD for overlaps between two parties in another party if
available. Name obfuscation ensures secrecy toward the ad-
ditional party, but it still gains some insight, like the node’s
final parent count and which parties model it. For overlaps
with three or more parties, the attacker can only reconstruct
a mix of the other overlap parties’ CPDs.

SAVE Attack. The second attack builds upon the first, uti-
lizing specific inference patterns to threaten CCBNet (and
consequently CCBNetJ), also in two-party overlaps. By
querying for a known overlap variable and specifying states
for all its parents as evidence, an attacker makes other par-
ties containing the variable return the corresponding column
from their secret-shared local CPDs. Repeating the proce-
dure for all combinations of parent states retrieves the com-
plete secret-shared local CPDs from overlap parties. By the
nature of secret sharing, these do not encode any confidential
information. However, since their product yields the com-
bined CPD, the previously described attack becomes appli-
cable in two-party overlap cases. A simple avoidance strat-
egy involves parties refusing to serve peer queries that target
two-party overlap nodes and fix all their parents as evidence.

Background

3.1. Bayesian Networks

A Bayesian network (BN) is a type of probabilistic graphical model represented by a directed acyclic
graph structure, with features as nodes and dependencies amongst them as edges, and parameters
in the form of a probabilistic variable for each node, specifying a conditional probability distribution
(CPD) over its parents [42]. Figure 3.1 shows a small example. Its explicit yet compact representation
of features and their relationships allows it to accept queries with arbitrary inputs and outputs while
remaining suitable for construction and inspection involving human experts. The flexibility comes at a
computation cost, as even in the classic setting where CPDs are represented in tabular form, modeling
only discrete features, learning, and inference are NP-Hard [8, 7]. CCBNet also focuses on the discrete
case. Overviews of related models, learning, discretization, and inference follow.

3.1.1. Related Model Types

A Markov random field (MRF) is a sibling model to a BN, which instead of a DAG, is based on a cyclic
undirected graph [26]. Within a BN, a CPD discriminating between the parents and child corresponds
to each node in the standard discrete case. Meanwhile, an MRF directly uses factors that do not make
that distinction, so a node is associated with all factors containing it. Any BN is transformable into an
MRF through moralization, which involves removing the directionality of existing edges and adding new
ones between all parents of a node. Figure 3.2 has an example. CPDs become factors by flattening
their structure, shown in the right-hand side of Figure 3.3. Although largely overlapping in capabilities,
both models have specific advantages. For example, MRFs offer enhanced flexibility by allowing cyclic
dependencies or when dealing with problems where the direction of dependencies is undetermined.
When it comes to generating data instances by sampling, BNs are much more suitable thanks to their
directionality. An easy procedure, also used to generate party train data from the reference network
for CCBNet experiments, is forward sampling [25]. It starts with fixing the state of DAG root nodes by
randomly sampling their prior probability and recursively repeats the process for children (whose state
for all parents has become known) until all leaf nodes also have a state.

Although most real-world use cases work specifically with BNs where all variables are discrete
(including CCBNet), some usage of variants involving continuous variables exists [49], and the two
main such ones both rely on Gaussian variable distributions [38]. The first type, a Gaussian BN, has
only continuous variables of the previously mentioned type. In contrast, the second, a Conditional
Gaussian BNs, contains discrete and continuous ones, hence sometimes being referred to as hybrid,
but discrete variables are not allowed to have continuous parents. Furthermore, an extra condition by
which variables are linearly related to their parents applies to both cases, so they are sometimes also
referred to as (Conditional) linear Gaussian BNs.

Other BN variants differ mainly from a semantic perspective, and as such, CCBNet requires little
to no adaptation to accommodate them, with dynamic and causal BNs being two important ones [37].
Dynamic BNs express temporal dependencies within and between discrete time steps. Any variable
within some time slice may depend on other variables from slices not later than its own. By extension,
BNs not dealing with time series data are described as static. Causal BNs are a restricted class of BNs

15

16 3. Background

[P(Wet | Sprinkler = F) = 2|

V4

Sprinkler Rain

Rain Rain (F) | Rain (T) Rain (F)| 0.2
Sprinkler (F) 0.6 0.99
Sprinkler (T)| 0.4 | 0.01 Rain (T)| 0.8

\/

Wet

Rain Rain (F) Rain (F) Rain(T) Rain (T)

Sprinkler | Sprinkler (F) | Sprinkler (T) | Sprinkler(F) | Sprinkler (T)

Wet (F) 0.0 08 0.9 0.99

Wet (T) 1.0 0.2 0.1 0.01

V4

‘P(Wet = F | Sprinkler = F) = 0.77’

P(Wet =T | Sprinkler = F) = 0.23

Figure 3.1: Example Bayesian network & inference request

that specifies that the dependencies between BN nodes encoded in edges should always correspond
to a causal relation [35], which, even to obtain a network encoding equivalent knowledge, does not
necessarily have to be the case otherwise. The main benefit of causal representations over any other
non-causal equivalent is that it tends to be more compact and more accessible to assess, even though
both would yield the same results during analysis.

3.1.2. Structure and Parameter Learning

BN learning is a two-step process: first, structure learning fixes the graph structure in place before
parameter learning finds the CPDs for the variable represented within each node. In terms of human
involvement, learning can either be fully manual, mixed, or fully automated. Manual learning is favored
when experts have extensive pre-existing knowledge to encode into the model. For the mixed case,
the most natural scenario involves humans entirely devising the structure or guiding a semi-automated

m

tub tub

—Moralization—>

ASIA Bayesian network ASIA Markov random field

Figure 3.2: Example moralization of ASIA Bayesian network into a Markov random field - existing edges remove directionality,
new undirected edges added between variable parents (in red)

3.1. Bayesian Networks 17

process, for example, to ensure the output satisfies causality, while parameter learning likely happens
algorithmically. Finally, fully automated learning is most similar to usual machine learning settings,
where a computer algorithm for each step learns the corresponding part of the model from a dataset.
Finally, as with forests of decision trees, Bayesian model averaging is an approach that takes multiple
models and, during analysis, averages their outputs in some way to obtain the final one. However, it
requires enough data or expert opinions to create multiple models, and they all have to represent the
same feature space, making it often unfeasible despite potentially higher-quality analysis [25].

Several structure learning algorithms exist, falling into three categories: constraint-based, score-
based, and hybrid [38]. CCBNet experiments use a score-based, greedy hill-climbing approach.

Constraint-based structure algorithms trace their roots back to the Inductive Causation algorithm [48],
which learns through conditional independence tests. A variable X is conditionally independent of A
given B if P(X|A,B) = P(X|B), which can be interpreted in a graph context as B being on the path
between X and A. The algorithm uses these tests to identify which edges from the fully connected
undirected graph to discard. Then, with the help of the same tests, it determines, between triples of
non-connected nodes that share some neighbor, those where the common node is a child of the other
two. Finally, based on the partial directionality information acquired, it iteratively fills out the orientation
of the remaining undirected edges. The first practical implementation is the PC algorithm [41, 9]. It
involves heuristics for the first two steps determining which of the exponentially many conditional in-
dependence tests to perform. Later efforts, like Grow-Shrink [29] and Incremental Association [46],
further tweak the utilized heuristics.

Score-based structure algorithms treat learning as an optimization problem where different can-
didate DAGs are assigned a score based on some chosen function. Thus, possibly within a prede-
termined computation budget, the algorithm searches for the DAG with the best score possible. The
search can be exact, yielding a globally optimal result, or more often heuristic, trading some potential
model quality for speed improvements. Greedy heuristics, like hill-climbing, repeatedly add, delete
or reverse arcs one at a time, starting from some initial network, possibly employing random restarts
to decrease the chances of getting stuck in a local optimum. Heuristics based on genetic algorithms
combine parts of parent network pairs into a new child, with a chance of undergoing random mutations.
Simulated annealing randomly picks between variations, weighting them based on the change in score.

Hybrid structure algorithms combine the other two techniques to harness their strengths while cur-
tailing their weaknesses but often do not result in better empirical performance [39]. They have two
core steps: restrict, which uses a constraint-based method to reduce the DAG search space, and max-
imize, which uses a score-based method to find the best candidate amongst the remaining ones. One
of the most known realizations is the Max-Min Hill-Climbing algorithm [45].

Parameter learning is a more straightforward process thanks to knowing which variables describe
each distribution, and the usually applied techniques are Maximum Likelihood and Bayesian estima-
tion [38]. The simpler Maximum Likelihood directly optimizes the likelihood function based on available
data instances, while its more complex Bayesian counterpart also accounts for prior and evidence
information. CCBNet experiments use Bayesian Estimation to learn parameters.

3.1.3. Discretization

Discretization is the most common way to integrate continuous variables into the ubiquitous discrete BN
case, and there are three main types: manual, supervised, and unsupervised [4]. In short, it consists
of partitioning a continuous variable’s input range into some selected amount of consecutive intervals
(bins), forming a discrete version. Manual discretization, like learning, is done by humans and has an
interpretability advantage by allowing experts to select threshold values of importance to the domain
and assign more appropriate names to the intervals. Unsupervised discretization is based solely on the
target variable’s distribution, and some typical example strategies are equal length, where all intervals
span ranges of (approximately) the same size, and equal frequency, where intervals contain (roughly)
the same amount of data instances. Supervised discretization requires observing the output of some
discrete variable(s) to inform the optimization process. They tend to perform better than unsupervised
ones [34], but the auxiliary variable requirement may sometimes be unsatisfiable.

Extending cCBNet to perform joint discretization of party variables while preserving confidentiality
properties is possible with an unsupervised method like equal length, which exchanges minimal ad-
ditional information between parties during the process. For each variable present in more than one
party, assuming all agree the variable is inherently continuous, they can convene on a discretization,

18

3. Background

A X ¢
A A(0) | A(0) A A(0) | A(0) A(0) | X(0 0.4
X() | 04 0.2 [~Normalize> X (0) | 0.4 0.1 [—Factorize> A(0) | X(1) | 0.6
X(1) | 06 1.8 X(1) | 06 0.9 A(1) | X(@©) | 0.1
Unnormalized CPD X | A CPD P(X |A) A(1) | X(1) | 09
Factor A, X
Figure 3.3: Example normalization on CPD & transformation to factor
A A0 A A1) | A() A A(0) A0 A1) A1)
B B() B(1) B B(O) B(1)
B | B() B(1) B()|B(1) B B(0) B(1) B(© B(1)
X(0) | 055 045 o X(0) | 125 1.05
X(0) 055 045 0.7 0.6 *ReduceA=0—>L X(0) 055 045 0.7 0.6 *MarglnallzeA»L
X(1) | 045 055 X(1) | 075 095
X(1) | 045 055 03 | 04 X(1) 045 055 03 04
CPD P(X | B) CPD P(X | B)
CPD P(X | A, B) CPD P(X | A, B)

(a) Reduce A=0 (b) Marginalize A

Figure 3.4: Examples for operations that remove variables on CPD

even if any subset performed discretization locally beforehand. Specifically, the average of some bin
count proposed by each, rounded to the nearest integer, could give the final number of bins. Addi-
tionally, the bounds for the variable would be the minimum, respectively, the maximum value known
across all parties. The protocol would then be on hold until involved parties modify their local models
to apply the discretization, later continuing normally. Joint manual discretization would be unfit as it
would equate to the involvement of a trusted third party in human form. Supervised methods would
also be unsuitable because the different parties are not guaranteed to have a shared discrete variable
to observe the output of, and they would, in principle, require more information shared between parties,
increasing the risk of leaking undesired information.

3.1.4. Probabilistic Inference

Probabilistic inference in BNs (or MRFs) finds the updated posterior probabilities for a specified
set of target variables, given the observed states of any other variables as evidence [25]. Figure 3.1
illustrates a sample query and its output. In the default marginal case, inference outputs one factor
spanning all target variables. The result is easily transformable into a set of separate factors, one for
each target. Further, each variable’s most likely state is trivially obtainable from such a factor set, giving
the result for the Maximum a posteriori case. Similar to learning, its high computational cost has led to
the development of approximate variants alongside exact ones. CCBNet focuses on exact inference.

The two principal exact inference techniques are variable elimination (VE) and junction tree belief
propagation, which builds upon VE [38]. Both were ideated for discrete BNs, but have seen adaptations
for networks containing continuous variables.

VE takes the network parameters in factor form, fixes the state of evidence variable within them,

Figure 3.5: Example product between two factors

B (0)
B (0)
B (1)
B(1)

X(0)
X (1)
X (0)
X(1)

0.1

B (0)
- B (0)
B (1)
B (1)

Factor A, X

Factor B, X

B (0)
B (0)
B (1)
B (1)

X (0)
X (1)
X (0)
X (1)
X(0)
X (1)
X (0)
X (1)

Factor A, B, X

3.1. Bayesian Networks 19

Algorithm 1 Variable elimination exact inference
Input: Q={x, y, ...}, E={a;, b;, ...}, facts=[fy, f, ...]
Output: Factor
vars « {v | f « facts, v « facts.vars, v¢& Q U E}
workingFacts « {f.reduce(E) | f « facts}
: for v « VarElimOrderHeuristic(vars, facts) do
vars \=v
relFacts « {f | f « workingFacts, v € f.variables}
workingFacts \= relFacts
workingFacts « Marginalize(Product(relFacts), v)
return Normalize(Product(workingFacts))

N RN 2

Algorithm 2 MinNeighbors variable elimination ordering heuristic
Input: vars={x, y, ...}, facts=[fy, f5, ...]
Output: Variable
varNrFacts « {v: 0 | v « vars}
: for f « facts do

for v < f.vars do

if v € vars then
varNrFacts[v] += 1

return MinValKey(varNrFacts)

R T s

and uses a dynamic programming formulation to iterate through each non-query variable and merge
factors that contain it before removing it from the result. In the case of BNs, the factors passed to VE
are the converted CPDs. VE forms the backbone of inference in CCBNet.

VE only involves the following operations: normalization, reduction, marginalization, and products.
The first three apply to CPDs and factors, while the last one applies to any factors but only to CPDs
targeting the same variable. Normalization, exemplified in the left-hand side of Figure 3.3, divides the
entries of each column within a CPD to ensure they sum up to 1. Since a factor has a single column,
its entries get divided by the sum of all. For VE to provide correct results, the starting factors must
be normalized. Reduction, shown in Figure 3.4a, fixes the state of a variable, removing it from the
CPD or factor and discarding entries in which its state differs. Marginalization, shown in Figure 3.4b,
removes a variable from a CPD or factor by summing all entries with the same state instead. A product,
illustrated in Figure 3.5, takes two or more CPDs or factors and creates a new CPD or factor over all
their variables, where each entry in the output is the multiplication of corresponding input ones.

The VE procedure, outlined in Algorithm 1, takes as input the query and evidence variables along-
side a list of factors for the network and outputs a factor with the refined probabilities of requested
variables. It starts by searching within factors for variables that are not targets or evidence to find all
those it must eliminate (. 1) and reducing all evidence from factors (I. 2). From there, variables get
iterated through, usually in an order imposed by some heuristic (I. 3). In each iteration, the selected
variable leaves the set of pending eliminations (I. 4), all relevant factors containing the chosen vari-
able are found (I. 5) and removed from the list of factors (I. 6), while the output of their product after

Algorithm 3 MinWeight variable elimination ordering heuristic
Input: vars={x, vy, ...}, facts=[f;, f5, ...]
Output: Variable
varSibblings « {v: | v « vars}
: for f « facts do
for v < f.vars do
if v € vars then
varSibblings[v] U= f.vars
return MinValKey({v: Prod({NrStates(s) | s « varSibblings[v]}) | v « varSibblings})

@ a s wh 2

20 3. Background

marginalizing the eliminated variable is added to the list (I. 7). After eliminating all variables, the nor-
malized product of all factors left over in the list forms the answer (I. 8). Should only one factor exist in
a product chain, the output factor is simply the input.

The order of selecting variables for elimination does not affect the final result. However, the differ-
ence in the sizes of resulting intermediate factors can significantly impact runtime. Since all of the n!
ways to order n variables can lead to different sets of intermediate factors, the problem of elimination
order is itself NP-Hard, like learning and inference, so different heuristics are employed. One is Min-
Neighbors (Algorithm 2), which greedily selects among the variables to eliminate one which appears in
the fewest factors. Another is MinWeight (Algorithm 3), which selects, also greedily, a variable yielding
the intermediary factor of the smallest size. The names for both come from the factor graph represen-
tation of a network, which contains factors as nodes in addition to variables and connects each variable
to the factors in which it appears. Unless otherwise specified, CCBNet experiments use MinWeight.

The belief propagation algorithm only works on undirected tree networks and computes inference
results by passing messages (which contain intermediate factors from ordinary VE) through the tree.
However, by caching messages, effectively storing intermediate factors from VE for longer than the
execution of a single inference call, it can answer subsequent queries for different variables with the
same evidence much more efficiently.

A junction tree represents any undirected network as a tree. Its nodes contain clusters of variables
such that for every factor, some cluster contains all its variables. Additionally, for every cluster pair, any
other cluster on the path between them must contain their shared variables.

Junction tree belief propagation brings the benefits of belief propagation to all networks (moralizing
them first if directed) with the help of a junction tree representation while running VE within resulting
clusters. Finding the junction tree representation for a network most computationally efficient for infer-
ence is NP-Hard, so heuristics are employed. Harnessing junction tree belief propagation is unfeasible
for CCBNet, as the overlapping nodes between parties do not generally yield a tree structure, to begin
with, and attempting to create a junction tree by assigning each party one or more variable clusters
would require parties to receive information from variables they do not model.

The two principal approximate inference techniques are sampling-based and variational [37]. Sam-
pling, or particle filtering, methods repeatedly draw from the network distribution and estimate the prob-
ability for each outcome of the target variables by checking how many of the samples with that outcome
also match the evidence. Asymptotically, the results of sampling methods approach the exact one, but
estimating the pace of convergence is hard. Variational methods reduce the problem to a simpler one
that still tracks the original as close as possible. They tend to produce less precise results but can have
faster runtime and often offer bounds on accuracy.

3.2. Secure Computation

The primary secure computation methods in CCBNet are homomorphic encryption for computing nor-
malization values and secure multiparty computation via secret sharing for the actual probability table
entries. The following first defines some shared basic concepts before giving additional context into
the techniques in general and the specific versions employed in the proposed framework.
Assumptions about the attacker’s computational power and ability to corrupt parties dictate the se-
curity properties of different protective measures, which may also differ in the types of information they
can protect. An adversary is passive (semi-honest) if it merely has access to the internal state of corrupt
parties and active (malicious) if it can also alter corrupt party behavior [19]. Furthermore, information-
theoretic security means an adversary with unlimited computation power can not break the system,
while computational security assumes an adversary with bounded computational resources [14]. A
dishonest majority setting involves the corruption of more than half of all parties. Finally, some tech-
niqgues may only be able to protect (and manipulate) integer values directly, so an often-used trick to
allow floating-point values involves transforming the latter into the former via fixed-precision encoding.

3.2.1. Homomorphic Encryption

Homomorphic encryption (HE) allows performing computation on encrypted data and getting (almost)
the same result upon decrypting the cyphertext as if having operated on plaintext data. Although litera-
ture outlines secret key variants [52], where the same secret key handles encryption and decryption, in
practice, most rely on the more flexible public key cryptography, where an additional public key exists

3.2. Secure Computation 21

Party A (SA = 5) SN 20, Sa2 = 16 Spa1 = 20, Sgo = 24 (SA1 + SBZ) % 31=13
— > (13+29) % 31 = (5 + 6) % 31 = 11
PartyB (SB = 6) Sg1 = 13, Sgy = 24 Sgq1 = 13, Sa2 = 16 (SB1 + SAZ) % 31 =29

Create Shares Distribute Shares Add Locally Reconstruct Sum

Figure 3.6: Example of computing the sum of two parties’ additively secret shared variables in Z5,

only for encrypting data. An outline of HE types, the primary available methods/schemes, and overall
strengths/weaknesses follow.

There are three main types of HE based on the operations they allow on encrypted data and how
many times they can be applied. Although the concept has been known for a long time, more powerful
realizable schemes are relatively recent. The general idea of HE formalized in 1978 [36], can be further
broken down into different subclasses: partial HE, which allows one of addition (typically) or multipli-
cation unlimited times; somewhat HE, which allows performing both a limited number of times; and full
HE, which allows performing both unlimited times. The first full scheme with reasonable enough com-
putational requirements to be practical works on integers only came in 2009, courtesy of Gentry [18].
It achieves full homomorphism by bootstrapping a somewhat homomorphic scheme, which involves
homomorphically decrypting the cyphertext into an equivalent one to refresh the remaining number of
applicable operations.

BGV [5] and CKKS [6] are currently two of the most popular encryption schemes, and libraries
like Microsoft Seal’ implement both. BGV is a leveled scheme for exact computation on integers that
functions without the expensive bootstrapping of Gentry’s prior work [18]. Leveled HE lies between
somewhat HE and full HE, allowing unlimited additions but having a limited budget for multiplications.
BFV [15] is a scheme with similar properties. CKKS is a leveled homomorphic for approximate arith-
metic on floating point numbers. It provides a more efficient and feasible choice for handling floating-
point values than using a fixed-precision encoding with integer schemes. All mentioned approaches
achieve computational security. The Microsoft SEAL and OpenFHE? libraries contain optimized imple-
mentations of the abovementioned techniques.

Underpinning its most significant advantage and downside, existing HE trades communication for
local computation. The only interaction involves transferring the encrypted data to the party performing
the computation and back to the one in charge of decryption. Thus, the number of messages and total
data transmitted remains low. Unfortunately, although entirely local, computation on the cyphertext is
many times more demanding than on the equivalent plaintext, and balancing security and performance
tends to require appropriately selected parameters for the scheme. The public key nature is also a
double-edged sword. Any parties can encrypt input once they generate or receive the key, but private
key ownership directly determines decryption, even after falling into the wrong hands.

3.2.2. Secret Sharing Schemes

Definition 1 (Group). A group [23] is a set G(# @) and operation » : G X G — G such that:
1. Asociativity: ae (bec) =(aeb)ec,Va,b,ceG
2. Neutral element: 3le € G suchthateea=aee =a,YVa e G

3. Inverse element:aea’ = a’' ea =e,Va € G,3!a’, where e is the neutral element

Definition 2 (Z,). Z, is a group under {0, 1, ...,n — 1} and addition modulo (%) n.
Definition 3 (Z;). Z,, for p prime, is a group under {1,2, ...,n — 1} and multiplication modulo (%) p.
Proposition 1. The inverse x' of x € Z;, is xP~2%p.

Secret sharing schemes are a family of methods that allow the distribution of a secret value among a
group of parties by assigning each a share that does not yield any information about the secret but can,

"https://www.microsoft.com/en-us/research/project/microsoft-seal/
2https://www.openfhe.org/

22 3. Background

Party A (s5 = 5):lspq = 20, spp = (5 * 20%12) % 31 =8 | sp =20, 555 = 10 [(sa1 * Sg2) % 31 = 14
—> (14*11) % 31=(5*6) % 31=30
Party B (sg = 6):|sgq =13, g5 = (6 * 133712) % 31 =10 | sg1=13,522=8 |(sgq *sa2) % 31 =11

Create Shares Distribute Shares Multiply Locally Reconstruct Product

Figure 3.7: Example of computing the product of two parties’ multiplication-based secret shared variables in Z3,

when pooled with enough others, reveal the secret [10]. The following describes certain terminology
surrounding such schemes and gives examples of specific approaches before diving deeper into the
multiplication-based version used for CCBNet.

The threshold and linearity help describe specific properties of different schemes, whose build-
ing blocks are often constructs like groups or multiplication triples. Under a threshold of (¢t,n), where
t,n € N*and t < n, at least t of the n parties must correctly bring together their shares to recon-
struct the secret. A scheme is linear if reconstructing the secret entails applying linear operations on
the shares. Consequently, performing linear operations on the secret happens efficiently by mirroring
them on each share before reconstruction. Not leaking any information about a secret requires sam-
pling it from a uniform distribution, which is impossible for any infinite set, like Z or any subset of R.
Thus, most schemes perform their computation within (derivatives of) finite integer groups (Definition 1)
large enough to contain all possibly required values for computations on the secrets. The previously
mentioned fixed-precision encoding is the usual method for incorporating floating-point values. Multi-
plication in linear schemes requires additional interaction between the parties. Usually, it involves the
help of a secretly sharing an additional set of values a, b, ¢, called Beaver triples [3], obeying a * b = c,
with a and b chosen arbitrarily. Protocols exist for parties to generate triples amongst themselves
securely, but a trusted third party, if available, can simplify the procedure.

Additive [23] and Shamir’s [40] secret sharing are two popular schemes in literature, but more re-
cent ones like SPDZ [12] offer good security guarantees in more scenarios, alongside computation
and communication efficiency improvements. Additive secret sharing is an (n,n) scheme defined on
Z,, (Definition 2), with information-theoretic security for up to n — 1 passively corrupt parties. Figure 3.6
exemplifies adding two parties’ secret values. Shamir’s secret sharing has a configurable (¢, n) thresh-
old scheme, which produces secret shares based on a polynomial whose constant coefficient is the
secret, and all others are random. It has information-theoretic security for up to [n/2| passive corrupt
parties and |n/3| active ones. SPDZ is another (n,n) scheme that achieves computational security
for up to n — 1 actively corrupt parties, requires less computation than prior similar efforts, and has
spawned multiple other schemes based upon in like MASCOT [24]. All three schemes are linear and
use Beaver triples to allow multiplication.

The multiplication-based scheme utilized in CCBNet is similar to the additive one but becomes non-
linear by swapping efficient share addition for multiplication. As it works under Z,, (Definition 3), not
Z,, instead of agreeing on a large enough n, parties agree on a large enough prime p to instantiate
the group. As in the additive case, to split a secret s into k shares, parties get shares s; through s;,_;
by uniformly sampling the group’s set of values and fix s, = s ¢ (s; ... » s;,_;)’. From Proposition 1, it
follows that s, = s * (s1 * ... * s,_1)P~2, where all multiplications are modulo p. Modular exponentiation
can be efficiently computed even for large exponents. Reconstruction still happens by applying the
group operator to all shares. Note that, although 0 & Z;,, assuming that the party holding the secret
keeps one of the shares, it can set its share to 0, and sample Z,, for the remaining ones. Figure 3.7
gives a small example of multiplying two parties’ secret values.

Additional Experiments

The quality and speed of analysis in a BN and related models can be affected by various (implementa-
tion) choices within the inference itself and, leading up to it, in the steps for preparing the model. The
following subsections examine a few such choices, aiming to quantify them: the operator for merging
probability values during the combination of networks, the heuristic for ordering in variable elimination,
and the possibility of hardware-accelerating inference. A representative slice of the results is presented
as figures for all examined criteria, while the accompanying tables contain the complete results. Em-
ployed metrics are also the same. Moreover, all performed experiments involve four parties to contain
the number of runs while retaining helpful insight. As a reminder, the two considered cases for splitting
reference network variables amongst parties are: related, ensuring the connectedness of variables
assigned to a party in the original network, and random, only ensuring equally sized splits.

4.1. Probability Function Merge Operator

The three candidates chosen to compare the effect on prediction quality of different operators for merg-
ing probability function values are the superposition of Feng [16], the arithmetic mean, and the geomet-
ric mean used in CCBNet. The operator choice does notimpact the structure of a combined network but
gives different parameters for variables contained in more than one member. To recap, the superposi-
tion (@) of x and y is x + y — x * y, while the arithmetic mean is % and the geometric mean is 3/x * y.
Notably, with normalized input CPDs, the arithmetic mean output CPD does not require renormalization,
which is not the case for the other two operators. Additionally, unlike the superposition, both means
can naturally incorporate weighting and apply to more than two inputs. The performed experiments
cover the two centralized baselines from the paper, only swapping the different operators: Centralized
Combination (CC), which combines the structure of networks two at a time via Feng’s ruleset [16], or-
dinarily using the superposition, and Centralized Union (CU), which takes the union of all networks’
structures, employing the geometric mean in prior experiments. CCBNet relies on multiplication-based
parameter combination and inference products for its secret sharing scheme to function as intended,
so its probability merging operator can not be swapped out like for the central methods. However,
given its equivalence to the default geometric mean CU, those results still show the effects of different
operators on hypothetical framework variants. The reference networks, number of variables in multiple

Vars in >1 Party 10% 50%

Method CcC CuU CcC CuU

Operator Superpos Arith Geo Superpos Arith Geo Superpos Arith Geo Superpos Arith Geo
ASIA 0.005 0.005 0.005 0.034 0.02 0.016 0.005 0.005 0.005 0.019 0.013 0.0M1

'g CHILD 0.104 0.104 0.104 0.108 0.103 0.104 0.014 0.014 0.014 0.035 0.018 0.01

2 ALARM 0.036 0.031 0.024 0.053 0.039 0.025 0.002 0.002 0.002 0.015 0.008 0.004

2 INSURANCE| 0.106 0.104 0.104 0.109 0.104 0.104 0.06 0.053 0.046 0.075 0.056 0.047
WIN95PTS 0.003 0.003 0.003 0.008 0.006 0.004 0.013 0.01 0.007 0.03 0.019 0.005

Table 4.1: Brier scores for different probability function merge operators and model fusion strategies - related splits, 4 parties,
60% of vars evidence in queries (lower is better)

23

24 4. Additional Experiments

888? Method 0.021
ASIA 0.005 A CC - SUPERPOS ASIA
0016 ™= CC-ARITH
CHILD .014 mmm CC-GEOM CHILD
) 012 0
Y YA
o S
2 ALARM = ALARM
-+ -t
[J] (0]
2 0.068 zZ
INSURANCE INSURANCE Method
@A CC - SUPERPOS
WINOSPTS WIN95PTS NN CC - ARITH
EEE CC - GEOM
0.00 0.02 0.04 0.06 0.08 0.00 0.01 0.02 0.3 0.04 0.05
Brier Score Brier Score
(a) Centralized Combination, related splits (b) Centralized Combination, random splits
0.034 Method 0.077
ASIA Em CU - SUPERPOS ASIA
0.039 ™ CU - ARITH
CHILD mm CU - GEOM CHILD
9 Y,
o o
2 ALARM = ALARM
-+t -t
(V] (0]
= 0.077 4
INSURANCE INSURANCE Method
B CU - SUPERPOS
WIN95PTS WIN95PTS @A CU - ARITH
mm CU - GEOM
0.000 0.025 0.050 0.075 0.100 0.125 000 0.02 0.04 0.06 0.08
Brier Score Brier Score
(c) Centralized Union, related splits (d) Centralized Union, random splits

Figure 4.1: Brier scores for different probability function merge operators and model fusion strategies, 4 parties, 30% of vars in
>1 party, 60% of vars evidence in queries (lower is better)

parties, and amount of evidence per query are unchanged from the main paper experiments.
Regardless of the variable splitting method, the geometric mean performs best overall, while the
arithmetic one comes second and the superposition third across both CC and CU. Figure 4.1a and
Figure 4.1b show the results for CC under related and random splits, respectively. The geometric
mean fares worse than the arithmetic one only slightly in two cases, specifically under random splits,
while the superposition never outperforms any other operator. Figure 4.1c and Figure 4.1d give the
results for CU under the abovementioned splits, showcasing the same trends even more strongly, with
the geometric mean never performing worse than the alternatives. The difference between operators
is more pronounced in CU than CC for both splits. The predictive performance for both techniques is
higher across the board with related splits. In contrast, there is a more significant relative difference
between the operators in the more challenging random splits. The full related (Table 4.1) and random
(Table 4.2) results with different numbers of variables in multiple parties reconfirm the same patterns.

4.2. Variable Elimination Ordering Heuristic

The strategies selected to explore the effect of VE ordering on inference computation overhead are
a baseline unoptimized approach, which eliminates variables in the order they appear within given
factors, alongside the two previously described ordering heuristics, MinNeighbors (Algorithm 2), and
MinWeight (Algorithm 3). Naturally, the baseline no heuristic approach is the most lightweight, running
in constant time, while the other two need to iterate through all factors and variables within them.
MinNeighbors is the less intensive heuristic, as it merely has to count the number of factors in which
each variable appears. In contrast, MinWeight must keep track of the variables forming each possible

4.2. Variable Elimination Ordering Heuristic 25

Vars in >1 Party 10% 50%

Method CcC CuU CC CuU

Operator Superpos Arith Geo Superpos Arith Geo Superpos Arith Geo Superpos Arith Geo
ASIA 0.005 0.005 0.005 0.006 0.005 0.005 0.005 0.004 0.003 0.048 0.023 0.019

g CHILD 0.04 0.034 0.035 0.049 0.036 0.037 0.013 0.009 0.009 0.053 0.016 0.016

2 ALARM 0.037 0.035 0.033 0.057 0.04 0.037 0.004 0.003 0.002 0.03 0.01 0.008

2 INSURANCE| 0.03 0.022 0.019 0.035 0.017 0.013 0.02 0.017 0.015 0.044 0.021 0.017
WIN95PTS 0.019 0.016 0.016 0.029 0.019 0.018 0.011 0.009 0.008 0.018 0.008 0.007

Table 4.2: Brier scores for different probability function merge operators and model fusion strategies - random splits, 4 parties,
60% of vars evidence in queries (lower is better)

1.4 Heuristic Method
. o ALARM
ASIA H‘g‘ @A None > 10 I None
1.44 N Min Neigh 8 W Min Neigh
CHILD{ 1.48 EEE Min Weight S 1118.07 Wl Min Weight
9 1552 g B INSURANCE 6506 71 E
5 1.29 2 30 651.11
3 ALARM | 1.35
far 1.35 54 539.66
% 14 v WATER
INSURANCE {§1.52 S >0
: =
= 202.16
WIN95PTS) 4198 9 HEPARZ N141.88
.37 181.04
0 10 20 30 40 50 0 1000 2000 3000
Avg. Computation Time Overhead Avg. Computation Time Overhead
(a) 30% of vars in >1 party, 60% of vars evidence in queries (b) 50% of vars in >1 party, varying % of vars evidence in queries

Figure 4.2: Average computation time overhead relative to original network, 4 parties, related splits (lower is better)

new factor and calculate their size accordingly, implicitly optimizing for reduced memory usage. With the
expectation that related splits would more closely represent most real-world applications than random
ones, conducted experiments forgo the latter to explore more scenarios involving the former. Some
tests involve two new reference networks not used in the paper, one medium and one large in terms
of node count, namely WATER (32 nodes, 66 edges, 10083 parameters) and HEPAR2 (70 nodes,
123 edges, 1453 parameters). Since the goal is to measure the differences between choices in the
framework, experiments use CCBNet directly. As in all other assessments, inference queries in the
reference networks always utilize the same MinWeight heuristic for a fair comparison.

In the usual scenario from Figure 4.2a, with 30% of variables in more than one party and query
evidence supplied for 60% of variables, the approaches perform similarly in all but the largest network,
where the heuristics are much faster. The heuristic-less approach is consistently the fastest in all small
and medium networks, albeit by a minimal margin. At the same time, MinNeighbors is marginally better
than or equal to MinWeight in all but the largest medium network. On the large network, however, not

Vars in >1 Party 10% 30% 50%
Heuristic None Min Neigh Min Weight None Min Neigh Min Weight None Min Neigh Min Weight
ASIA 1.6x 1.45x 1.46x 1.4x 1.44x 1.49x 1.41x 1.43x 1.45x
(0.79s) (0.72s) (0.72s) (0.69s) (0.72s) (0.74s) (0.81s) (0.82s) (0.83s)
CHILD 1.24x 1.17x 1.2x 1.44x 1.48x 1.52x 1.45x 1.49x 1.52x
~ (1.53s) (1.45s) (1.49s) (1.82s) (1.87s) (1.92s) (1.97s) (2.03s) (2.08s)
g ALARM 1.08x 1.1x 1.12x 1.29x 1.35x 1.35x 1.55x 1.47x 1.54x
S (2.67s) (2.72s) (2.78s) (3.11s) (3.28s) (3.27s) (3.69s) (3.5s) (3.66s)
z 1x 1.04x 1.07x 1.4x 1.52x 1.5x 2.87x 2.74x 2.85x
INSURANCE| 1 856) (1.93s) (1.98s) (2.46s) (267s) (2.62s) (5.08s) (4.86s) (5.05s)
WIN95PTS 0.83x 0.88x 0.93x 41.98x 20.29x 15.37x 236.68x 140.61x 144.87x
(5.09s) (5.4s) (5.67s) (256.65s) (124.21s) (94.08s) (1460.5s) (867.66s) (893.96s)

Table 4.3: Average computation time overhead relative to original network & total compute time for different variable elimination
ordering heuristics - related splits, 4 parties, 60% of vars evidence in queries (lower is better)

26 4. Additional Experiments

Heuristic None Min Neigh Min Weight
i ALARM, 10 (1222081'9212)(5) (36468'9062);) (36326?815(3)
§ INSURANCE, 30 (;;11?)'.%2) (1670966.7515);) (1%5215.1(;32;)
%{ WATER, 50 (1543896.6265)(3) (381656.9783); (931353.6691(3)
§ HEPAR2, 50 (f?é';gi) (11;415?287)(5) (1138313'974;3)

Table 4.4: Average computation time overhead relative to original network & total compute time for different variable elimination
ordering heuristics - related splits, 4 parties, 50% of vars in >1 party, varying % of vars evidence in queries (lower is better)

1.4 Compute o 65.58 Method
ASA NN 8.98 mmm CPU | & ALARM mam CPU
o GPU | O 10 o GPU
1.5 c
") CHILD N9.34 v 667.28
Y AR -2 INSURANCE
o 1.25 m 30
% ALARM NSO 7.43 % 325.59
z 1.53 2 warer
INSURANCE NNy 8.24 2 50
)
19.58]
b4
WIN95PTS 7.22 HEPAFS‘S 7.55
10! 10! 102 103
Avg. Computation Time Overhead Avg. Computation Time Overhead
(a) 30% of vars in >1 party, 60% of vars evidence in queries (b) 50% of vars in >1 party, varying % of vars evidence in queries

Figure 4.3: Average computation time overhead relative to original network, 4 parties, related splits (log scale, lower is better)

involving a heuristic is an order of magnitude slower, while the more complex and expensive MinWeight
is =25% faster than MinNeighbors. The complete results of Table 4.3, including absolute figures for
the total computation time and different numbers of variables present in multiple parties, yield similar
conclusions, noting that, for the large network, the differences between approaches only start showing
up when the overlap in party variables increases.

Table 4.4’s further tests with an overlap in party variables increased to 50%, and lower levels of
query evidence verify that in more complex scenarios, the time spent by heuristics searching for a bet-
ter variable more than pays off. These tests on the more complex medium networks from the previous
setting and the two new ones mentioned previously lower the evidence used in queries to create chal-
lenging enough scenarios. Thus, the evidence reduction for simpler networks is more drastic than for
more intricate ones. The heuristics are always faster, by around an order of magnitude or more in most
cases one case. MinNeighbors is only bested by MinWeight in one case, by a small amount, while in
the others, it performs better, although also by a modest amount, except for the last one, where its ad-
vantage expands. Table 4.4 also contains the absolute computation time values for the tests. All in all,
heuristics for elimination ordering provide a net benefit also in CCBNet, but increasing their complexity
does not necessarily result in a speedup across all workloads.

4.3. GPU-Accelerated Inference

Knowing that inference computation cost explodes as network and query complexity increase and that
the values of discrete factors take the form of an array makes it worthwhile to investigate whether
introducing accelerator hardware like a GPU can lessen variable elimination computation time. As
the implementation of CCBNet uses the pgmpy' BN Python package, which depends on arrays from

"https://pgmpy.org/

4.3. GPU-Accelerated Inference 27

Vars in >1 Party 10% 30% 50%
Compute CPU GPU CPU GPU CPU GPU
ASIA T64x 924 14x 898x 14ix B8.95x
(0.82s) (4.59s) (0.72s) (4.61s) (0.82s) (5.17s)
CHILD 115x 7.36x 15x 9.34x 163x 10.08x
« (1.43s) (9.17s) (1.88s) (11.7s) (2.07s) (12.75s)
5 113x 6.99x 1.25x 7.43x 148x 8.49x
Z ALARM (2.71s) (16.74s) (3.25) (18.98s) (3.555) (20.3s)
z 11 6.94x 153x 824x 2.81x 10.82x
INSURANCE| 1 96) (12.33s) (2.73s) (14.7s) (4.96s) (19.08s)
0.88x 5.34x 19.58x 7.22x 134.52x 8.01x
WINOSPTS | 5 55) (33.23s) (123.83s) (45.69s) (828.03s) (49.3s)

Table 4.5: Average computation time overhead relative to original network & total compute time for CPU-only and GPU-aided
execution - related splits, 4 parties, 60% of vars evidence in queries (lower is better)

Method CPU GPU
§ ALARM, 10 (36154.568;3) (2695_1685)(3)
g INSURANCE, 30 1696075_20858) (2;14_2)3()
%J“WATER, 50 (382757-_589S>; . 21232 5
§ HEPARZ2, 50 (11;498'?727)(3) (572'?953;(5)

Table 4.6: Average computation time overhead relative to original network & total compute time for CPU-only and GPU-
accelerated execution - related splits, 4 parties, 50% of vars in >1 party, varying % of vars evidence in queries (lower is better)

the NumPy? package for factor values, the CuPy® package is a fitting choice to GPU-accelerate the
array-based part of the computation, thanks to its NumPy-compatible interface. Apart from attempting
to limit undue information transfer between the two devices, the trialed GPU-accelerated version is
an unoptimized implementation, identical to the CPU-based one in terms of the variable elimination
code, that only makes the minimum required changes to pgmpy’s class for factors to allow choosing
between working with the probability values in CPU and GPU. Additionally, only the manipulation of
factor values itself is switchable. Other logic related to computation with the factor, like determining
the set of variables in the resulting product between factors, still always happens on the CPU. The
utilized GPU is a Tesla V100-SXM2-32GB, alongside version 12.1.0 of cupy-cuda11x. Both devices
store values at full (64-bit) precision. On a related note, GPUs tend to have access to considerably
less memory than CPUs, which can be problematic when working with expansive, densely connected
networks. Reducing the precision of stored numbers is a common trick to maximize available GPU
memory, but not all workloads can tolerate it to the same extent. Because of the multiplication-based
secret sharing, CCBNet is also sensitive, so precision must be carefully decreased based on the task.
The examined scenarios are the same as the previous comparison of VE ordering strategies.

The usual setting with fixed 30% overlaps in party variables and 60% evidence in Figure 4.3a shows
the GPU as many times slower than the CPU for all networks but the large one, where it is twice as
fast. The communication overhead between the two devices dominates the computation time in more
straightforward cases, corroborated by GPU utilization being uneven and relatively low. Although low-
ering it further should be possible, a non-trivial amount of overhead always exists so long as the two
devices communicate over a standard interface instead of being tightly integrated into the same pack-
age. Covering additional numbers of overlaps in party variables, the unabridged figures in Table 4.5
reaffirm the results and report absolute total computation time alongside relative. Nevertheless, the
speedup in the largest network hints that, similarly to VE ordering heuristics, the advantage only un-
veils itself in more complicated situations.

2https://numpy.org/
Shttps://cupy.dev/

28 4. Additional Experiments

The more involved Figure 4.3b tests with 50% party variable overlaps and varying, lower query
evidence show, as before, the expected benefits, amounting to speedups of 10-78x. Thus, despite the
room for device-specific improvements, the GPU implementation achieves over 34x more performance
on average than the CPU counterpart. Table 4.6, which also contains the absolute computation time
for the results, reveals that the GPU implementation finishes all tests in under one minute. At the
same time, on the CPU, they all require many (tens of) minutes. Thus, acceleration seems unlikely to
provide many advantages in more mundane scenarios, where thousands of queries can run in, at most,
a couple of minutes. However, in demanding environments, the improvement is massive. Choosing
which device to assign queries based on prior knowledge could provide the best of both worlds.

Conclusion

With the learnings from previous chapters, some conclusions for the initial research questions follow:

1 Can predictive performance comparable with a classic centralized combination be achieved in
such a collaborative, confidential environment?

Yes, CCBNet achieves performance equal to its mimicked centralized union variant and similar to
other centralized baselines while protecting confidential party knowledge by having parties collabo-
ratively perform analysis on an augmented version of their local model instead of a global one. Its
predictive performance remains similar to the tested non-union centralized baseline, even when some-
times being outperformed in small networks. In larger networks, it and the corresponding centralized
union tend to outperform other methods significantly. Although a straight union over input network
structures produces denser outputs with potentially superfluous edges, it avoids the risk of discarding
essential connections and exchanging extra statistics likely to leak private party knowledge. Similarly,
for parameters, merging corresponding party probability values via the geometric mean yields good
interpolation while allowing for a secret sharing scheme where reconstruction happens at inference.

2 What would be the overhead of a solution exhibiting the desired properties?

Considering the implemented version of the proposed CCBNet framework, inference computation
overhead is negatively correlated with party count but positively correlated with the overlap in their
knowledge and network size, ranging from many times slower to faster than the central case, while
communication size increases with all. The communication count is linear in the party count. Overlap
in party knowledge contributes most to computation and communication increases. Still, the expo-
nential scaling of probabilistic inference means that spreading the computation over enough parties
can improve its efficiency for large networks. Computation and communication needed to prepare the
system for inference by updating party models also increase with the three abovementioned criteria.
However, the process typically only happens seldom with decreased cost after the initial execution.

3 What are some of the choices influencing probabilistic inference prediction quality and overhead?

All examined choices, probability function merge operator, variable elimination ordering heuristic,
and GPU acceleration significantly influence inference performance in various scenarios. The geomet-
ric mean provides better predictions than other operators almost always. Both tested variable ordering
heuristics yield sizeable speedups in more demanding workloads over the baseline. The overhead of
working with a GPU brings slowdowns to simpler settings but has enormous benefits in complex ones.

Many future work avenues exist, ranging from efficiency improvements to enhanced functionality.
Two important ones also mentioned in the paper are improving the quality of model mergers, possibly
by utilizing any extra vertically partitioned data instances when available and reducing communication,
especially for inference message size. Furthermore, allowing joint variable discretization as previously
outlined or even directly supporting continuous variables would be helpful extensions. Another already-
mentioned improvement is caching intermediate factors between inference calls to speed up similar
queries. Finally, other possible enhancements are supporting approximate inference and relaxing the
assumption about variables being equivalent only when their names match exactly.

29

(1]

(2]

[3]

[4]

[5]

[6]

[7]

8]

(9]
[10]

[11]

[12]

[13]

[14]

Bibliography

Amin Abyaneh et al. FED-CD: Federated Causal Discovery from Interventional and Observational
Data. 2022. DOI: 10.48550/ARXIV.2211.03846. URL: https://arxiv.org/abs/2211.
03846.

Dalal Alrajeh, Hana Chockler, and Joseph Y. Halpern. “Combining experts’ causal judgments”. In:
Artificial Intelligence 288 (2020), p. 103355. ISSN: 0004-3702. DOI: https://doi.org/10.
1016/j.artint.2020.103355. URL: https://www.sciencedirect.com/science/
article/pii/S0004370220301065.

Donald Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”. In: Advances in
Cryptology — CRYPTO ’91. Ed. by Joan Feigenbaum. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 1992, pp. 420—432. ISBN: 978-3-540-46766-3.

Tomas Beuzen, Lucy Marshall, and Kristen D. Splinter. “A comparison of methods for discretiz-
ing continuous variables in Bayesian Networks”. In: Environmental Modelling & Software 108
(2018), pp. 61-66. ISSN: 1364-8152. DOI: https://doi.org/10.1016/7 .envsoft.
2018.07.007. URL: https://www. sciencedirect.com/science/article/pii/
513648152173132609.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully Homomorphic Encryp-
tion without Bootstrapping”. In: ACM Trans. Comput. Theory 6.3 (July 2014). ISSN: 1942-3454.
DOI: 10.1145/2633600. URL: https://doi.org/10.1145/2633600.

Jung Hee Cheon et al. “Homomorphic Encryption for Arithmetic of Approximate Numbers”. In:
Advances in Cryptology — ASIACRYPT 2017. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Cham:
Springer International Publishing, 2017, pp. 409—-437. ISBN: 978-3-319-70694-8.

David Maxwell Chickering. “Learning Bayesian Networks is NP-Complete”. In: Learning from
Data: Artificial Intelligence and Statistics V. Learning from Data: Atrtificial Intelligence and Statis-
tics V. Springer-Verlag, 1996, pp. 121-130. URL: https : / / www . microsoft . com/ en -
us/research/publication/learning-bayesian-networks-is-np-complete/.

David Maxwell Chickering, Christopher Meek, and David Heckerman. Large-Sample Learning
of Bayesian Networks is NP-Hard. 2012. DOI: 10.48550/ARXIV.1212.2468. URL: https:
//arxiv.org/abs/1212.2468.

Diego Colombo, Marloes H Maathuis, et al. “Order-independent constraint-based causal struc-
ture learning.” In: J. Mach. Learn. Res. 15.1 (2014), pp. 3741-3782.

Ronald Cramer, Ivan Bjerre Damgard, and Jesper Buus Nielsen. Secure Multiparty Computation
and Secret Sharing. Cambridge University Press, 2015. DOI: 10.1017/CB09781107337756.

Florian van Daalen et al. VertiBayes: Learning Bayesian network parameters from vertically par-
titioned data with missing values. 2022. DOI: 10.48550/ARXIV.2210.17228. URL: https:
//arxiv.org/abs/2210.17228.

Ivan Damgard et al. “Multiparty Computation from Somewhat Homomorphic Encryption”. In: Ad-
vances in Cryptology — CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 643-662. ISBN: 978-3-642-32009-5.

José Del Sagrado and Serafin Moral. “Qualitative combination of Bayesian networks”. In: Inter-
national Journal of Intelligent Systems 18.2 (2003), pp. 237—249. DOIl: https://doi.org/10.
1002/int.10086. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
int.10086. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/int.
10086.

Daniel Escudero. An Introduction to Secret-Sharing-Based Secure Multiparty Computation. Cryp-
tology ePrint Archive, Paper 2022/062. https://eprint.iacr.org/2022/062.2022. URL:
https://eprint.iacr.org/2022/062.

31

https://doi.org/10.48550/ARXIV.2211.03846
https://arxiv.org/abs/2211.03846
https://arxiv.org/abs/2211.03846
https://doi.org/https://doi.org/10.1016/j.artint.2020.103355
https://doi.org/https://doi.org/10.1016/j.artint.2020.103355
https://www.sciencedirect.com/science/article/pii/S0004370220301065
https://www.sciencedirect.com/science/article/pii/S0004370220301065
https://doi.org/https://doi.org/10.1016/j.envsoft.2018.07.007
https://doi.org/https://doi.org/10.1016/j.envsoft.2018.07.007
https://www.sciencedirect.com/science/article/pii/S1364815217313269
https://www.sciencedirect.com/science/article/pii/S1364815217313269
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600
https://www.microsoft.com/en-us/research/publication/learning-bayesian-networks-is-np-complete/
https://www.microsoft.com/en-us/research/publication/learning-bayesian-networks-is-np-complete/
https://doi.org/10.48550/ARXIV.1212.2468
https://arxiv.org/abs/1212.2468
https://arxiv.org/abs/1212.2468
https://doi.org/10.1017/CBO9781107337756
https://doi.org/10.48550/ARXIV.2210.17228
https://arxiv.org/abs/2210.17228
https://arxiv.org/abs/2210.17228
https://doi.org/https://doi.org/10.1002/int.10086
https://doi.org/https://doi.org/10.1002/int.10086
https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.10086
https://onlinelibrary.wiley.com/doi/pdf/10.1002/int.10086
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.10086
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.10086
https://eprint.iacr.org/2022/062
https://eprint.iacr.org/2022/062

32

Bibliography

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]
[27]

[28]
[29]

[30]

[31]

Junfeng Fan and Frederik Vercauteren. “Somewhat practical fully homomorphic encryption”. In:
Cryptology ePrint Archive (2012).

Guang Feng, Jia-Dong Zhang, and Stephen Shaoyi Liao. “A novel method for combining Bayesian
networks, theoretical analysis, and its applications”. In: Pattern Recognition 47.5 (2014), pp. 2057—
2069. ISSN: 0031-3203. DOl: https://doi.org/10.1016/7.patcog.2013.12.005. URL
https://www.sciencedirect.com/science/article/pii/S0031320313005232.

Erdun Gao et al. FedDAG: Federated DAG Structure Learning. 2021. DOI: 10.48550/ARXIV.
2112.03555. URL: https://arxiv.org/abs/2112.03555

Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In: Proceedings of the Forty-
First Annual ACM Symposium on Theory of Computing. STOC ’09. Bethesda, MD, USA: Asso-
ciation for Computing Machinery, 2009, pp. 169-178. ISBN: 9781605585062. DOI: 10.1145/
1536414.1536440. URL: https://doi.org/10.1145/1536414.1536440.

Oded Goldreich. “Foundations of Cryptography — A Primer”. In: Foundations and Trends® in The-
oretical Computer Science 1.1 (2005), pp. 1-116. ISSN: 1551-305X. DOI: 10.1561/0400000001.
URL: http://dx.doi.org/10.1561/0400000001.

Seyedmohsen Hosseini, Abdullah Al Khaled, and MD Sarder. “A general framework for assess-
ing system resilience using Bayesian networks: A case study of sulfuric acid manufacturer”. In:
Journal of Manufacturing Systems 41 (2016), pp. 211-227. ISSN: 0278-6125. DOI: https://
doi.org/10.1016/73.3msy.2016.09.006. URL: https://www.sciencedirect.com/
science/article/pii/S0278612516300632.

Jianli Huang et al. Towards Privacy-Aware Causal Structure Learning in Federated Setting. 2022.
DOI: 10.48550/ARXIV.2211.06919. URL: https://arxiv.org/abs/2211.06919.

B. Jones et al. “The use of Bayesian network modelling for maintenance planning in a manu-
facturing industry”. In: Reliability Engineering & System Safety 95.3 (2010), pp. 267—277. ISSN:
0951-8320. DOI: https://doi.org/10.1016/j.ress.2009.10.007. URL: https:
//www.sciencedirect.com/science/article/pii/50951832009002518.

Daniel Kales. Secret Sharing. URL: https : //www . iaik . tugraz . at /wp- content /
uploads/teaching/mfc/secret sharing.pdf.

Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: Faster Malicious Arithmetic Se-
cure Computation with Oblivious Transfer”. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security. CCS ’16. Vienna, Austria: Association for
Computing Machinery, 2016, pp. 830-842. ISBN: 9781450341394. DOI: 10.1145/2976749.
2978357. URL: https://doi.org/10.1145/2976749.2978357

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
press, 2009.

Stan Z Li. Markov random field modeling in image analysis. Springer Science & Business Media,
2009.

Tian Li et al. “Federated Learning: Challenges, Methods, and Future Directions”. In: IEEE Signal
Processing Magazine 37.3 (2020), pp. 50-60. DOI: 10.1109/MSP.2020.2975749.

Yang Liu et al. Vertical Federated Learning. 2022. arXiv: 2211.12814 [cs.LG].

Dimitris Margaritis et al. “Learning Bayesian network model structure from data”. PhD thesis.
School of Computer Science, Carnegie Mellon University Pittsburgh, PA, USA, 2003.

Ken McNaught and Andy Chan. “Bayesian networks in manufacturing”. In: Journal of Manufac-
turing Technology Management 22.6 (Jan. 2011). Ed. by Khairy A.H. Kobbacy and Sunil Vadera,
pp. 734-747.1SSN: 1741-038X. DOI: 10.1108/17410381111149611. URL: https://doi.
org/10.1108/17410381111149611.

Radostaw Miskiewicz and Radostaw Wolniak. “Practical Application of the Industry 4.0 Con-
cept in a Steel Company”. In: Sustainability 12.14 (2020). ISSN: 2071-1050. DOI: 10. 3390/
sul2145776. URL: https://www.mdpi.com/2071-1050/12/14/5776.

https://doi.org/https://doi.org/10.1016/j.patcog.2013.12.005
https://www.sciencedirect.com/science/article/pii/S0031320313005232
https://doi.org/10.48550/ARXIV.2112.03555
https://doi.org/10.48550/ARXIV.2112.03555
https://arxiv.org/abs/2112.03555
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1561/0400000001
http://dx.doi.org/10.1561/0400000001
https://doi.org/https://doi.org/10.1016/j.jmsy.2016.09.006
https://doi.org/https://doi.org/10.1016/j.jmsy.2016.09.006
https://www.sciencedirect.com/science/article/pii/S0278612516300632
https://www.sciencedirect.com/science/article/pii/S0278612516300632
https://doi.org/10.48550/ARXIV.2211.06919
https://arxiv.org/abs/2211.06919
https://doi.org/https://doi.org/10.1016/j.ress.2009.10.007
https://www.sciencedirect.com/science/article/pii/S0951832009002518
https://www.sciencedirect.com/science/article/pii/S0951832009002518
https://www.iaik.tugraz.at/wp-content/uploads/teaching/mfc/secret_sharing.pdf
https://www.iaik.tugraz.at/wp-content/uploads/teaching/mfc/secret_sharing.pdf
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1145/2976749.2978357
https://doi.org/10.1109/MSP.2020.2975749
https://arxiv.org/abs/2211.12814
https://doi.org/10.1108/17410381111149611
https://doi.org/10.1108/17410381111149611
https://doi.org/10.1108/17410381111149611
https://doi.org/10.3390/su12145776
https://doi.org/10.3390/su12145776
https://www.mdpi.com/2071-1050/12/14/5776

Bibliography 33

[32] Saideep Nannapaneni, Sankaran Mahadevan, and Sudarsan Rachuri. “Performance evaluation
of a manufacturing process under uncertainty using Bayesian networks”. In: Journal of Cleaner
Production 113 (2016), pp. 947-959. ISSN: 0959-6526. DOIl: https://doi.org/10.1016/7.
Jjclepro.2015.12.003. URL: https://www.sciencedirect.com/science/article/
pii/S0959652615018144.

[33] Ignavier Ng and Kun Zhang. Towards Federated Bayesian Network Structure Learning with Con-
tinuous Optimization. 2021. DOIl: 10.48550/ARXIV.2110.09356. URL: https://arxiv.
org/abs/2110.09356.

[34] Farnaz Nojavan A., Song S. Qian, and Craig A. Stow. “Comparative analysis of discretization
methods in Bayesian networks”. In: Environmental Modelling & Software 87 (2017), pp. 64—71.
ISSN: 1364-8152. DOI: https://doi.org/10.1016/j.envsoft.2016.10.007. URL:
https://www.sciencedirect.com/science/article/pii/S1364815216308672.

[35] Judea Pearl. Causality. 2nd ed. Cambridge University Press, 2009. DOI: 10.1017/CB09780511803161.

[36] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. “On data banks and privacy homo-
morphisms”. In: Foundations of secure computation 4.11 (1978), pp. 169-180.

[37] Stuart J Russell. Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

[38] Marco Scutari and Jean-Baptiste Denis. Bayesian networks: with examples in R. CRC press,
2021.

[39] Marco Scutari, Catharina Elisabeth Graafland, and José Manuel Gutiérrez. “Who Learns Better
Bayesian Network Structures: Constraint-Based, Score-based or Hybrid Algorithms?” In: Pro-
ceedings of the Ninth International Conference on Probabilistic Graphical Models. Ed. by Vaclav
Kratochvil and Milan Studeny. Vol. 72. Proceedings of Machine Learning Research. PMLR, Sept.
2018, pp. 416-427. URL: https://proceedings.mlr.press/v72/scutaril8a.html.

[40] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (Nov. 1979), pp. 612—613. ISSN:
0001-0782. DOI: 10.1145/359168.359176. URL: https://doi.org/10.1145/359168.
359176.

[41] Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction, and search. MIT
press, 2000.

[42] Todd Andrew Stephenson. An introduction to Bayesian network theory and usage. Tech. rep.
Idiap, 2000.

[43] Vahid Rezaei Tabar and Fatemeh Elahi. “A Novel Method for Aggregation of Bayesian Net-
works without Considering an Ancestral Ordering”. In: Applied Artificial Intelligence 32.2 (2018),
pp. 214—227. DOI: 10.1080/08839514.2018.1451134. eprint: https://doi.org/10.
1080/08839514.2018.1451134. URL: https://doi.org/10.1080/08839514.2018.
1451134.

[44] Roberto Tedesco et al. “Distributed Bayesian Networks for User Modeling”. In: Proceedings of
E-Learn: World Conference on E-Learning in Corporate, Government, Healthcare, and Higher
Education 2006. Ed. by Thomas Reeves and Shirley Yamashita. Honolulu, Hawaii, USA: Asso-
ciation for the Advancement of Computing in Education (AACE), Oct. 2006, pp. 292-299. URL:
https://www.learntechlib.org/p/23699.

[45] loannis Tsamardinos, Laura Brown, and Constantin Aliferis. “The Max-Min Hill-Climbing Bayesian
Network Structure Learning Algorithm”. In: Machine Learning 65 (Oct. 2006), pp. 31-78. DOI:
10.1007/s10994-006-6889-17.

[46] loannis Tsamardinos et al. “Algorithms for large scale Markov blanket discovery.” In: FLAIRS
conference. Vol. 2. St. Augustine, FL. 2003, pp. 376-380.

[47] Marina Velikova et al. “Assisted Diagnostics Methodology for Complex High-Tech Applications”.
In: 2019 4th International Conference on System Reliability and Safety (ICSRS). 2019, pp. 457—-
463. DOI: 10.1109/ICSRS48664.2019.8987704.

[48] TS Verma and Judea Pearl. “Equivalence and Synthesis of Causal Models”. In: Probabilistic
and Causal Inference: The Works of Judea Pearl. 1st ed. New York, NY, USA: Association for
Computing Machinery, 2022, pp. 221-236. ISBN: 9781450395861. URL: https://doi.org/
10.1145/3501714.3501732.

https://doi.org/https://doi.org/10.1016/j.jclepro.2015.12.003
https://doi.org/https://doi.org/10.1016/j.jclepro.2015.12.003
https://www.sciencedirect.com/science/article/pii/S0959652615018144
https://www.sciencedirect.com/science/article/pii/S0959652615018144
https://doi.org/10.48550/ARXIV.2110.09356
https://arxiv.org/abs/2110.09356
https://arxiv.org/abs/2110.09356
https://doi.org/https://doi.org/10.1016/j.envsoft.2016.10.007
https://www.sciencedirect.com/science/article/pii/S1364815216308672
https://doi.org/10.1017/CBO9780511803161
https://proceedings.mlr.press/v72/scutari18a.html
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1080/08839514.2018.1451134
https://doi.org/10.1080/08839514.2018.1451134
https://doi.org/10.1080/08839514.2018.1451134
https://doi.org/10.1080/08839514.2018.1451134
https://doi.org/10.1080/08839514.2018.1451134
https://www.learntechlib.org/p/23699
https://doi.org/10.1007/s10994-006-6889-7
https://doi.org/10.1109/ICSRS48664.2019.8987704
https://doi.org/10.1145/3501714.3501732
https://doi.org/10.1145/3501714.3501732

34

Bibliography

[49]

[50]

[51]

[52]

[53]

Wim Wiegerinck, Bert Kappen, and Willem Burgers. “Bayesian Networks for Expert Systems:
Theory and Practical Applications”. In: Interactive Collaborative Information Systems. Ed. by
Robert Babuska and Frans C. A. Groen. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 547-578. DOI: 10.1007/978-3-642-11688-9 20. URL: https://doi.org/10.
1007/978-3-642-11688-9 20.

Eric Wolbrecht et al. “Monitoring and diagnosis of a multistage manufacturing process using
Bayesian networks”. In: Al EDAM 14.1 (2000), pp. 53—-67.DOI: 10.1017/50890060400141058.

Wei-Ting Yang. “An Integrated Physics-Informed Process Control Framework and Its Applica-
tions to Semiconductor Manufacturing”. Theses. Université de Lyon, Jan. 2020. URL: https:
//theses.hal.science/tel-03461289.

Xun Yi, Russell Paulet, and Elisa Bertino. “Homomorphic Encryption”. In: Homomorphic Encryp-
tion and Applications. Cham: Springer International Publishing, 2014, pp. 27-46. ISBN: 978-3-
319422298.D0k10.1007/978—3—319—12229—8_2.URL:https://doi.org/lO.
1007/978-3-319-12229-8 2.

Chen Zhang et al. “A survey on federated learning”. In: Knowledge-Based Systems 216 (2021),
p. 106775. ISSN: 0950-7051. DOI: https://doi.org/10.1016/j.knosys.2021.106775.
URL: https://www.sciencedirect.com/science/article/pii/S0950705121000381.

https://doi.org/10.1007/978-3-642-11688-9_20
https://doi.org/10.1007/978-3-642-11688-9_20
https://doi.org/10.1007/978-3-642-11688-9_20
https://doi.org/10.1017/S0890060400141058
https://theses.hal.science/tel-03461289
https://theses.hal.science/tel-03461289
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/10.1007/978-3-319-12229-8_2
https://doi.org/https://doi.org/10.1016/j.knosys.2021.106775
https://www.sciencedirect.com/science/article/pii/S0950705121000381

	Introduction
	Research Paper
	Background
	Bayesian Networks
	Related Model Types
	Structure and Parameter Learning
	Discretization
	Probabilistic Inference

	Secure Computation
	Homomorphic Encryption
	Secret Sharing Schemes

	Additional Experiments
	Probability Function Merge Operator
	Variable Elimination Ordering Heuristic
	GPU-Accelerated Inference

	Conclusion

