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Abstract: We formally define homological quantum rotor codes which use multiple
quantum rotors to encode logical information. These codes generalize homological or
CSS quantum codes for qubits or qudits, as well as linear oscillator codes which encode
logical oscillators. Unlike for qubits or oscillators, homological quantum rotor codes
allow one to encode both logical rotors and logical qudits in the same block of code,
depending on the homology of the underlying chain complex. In particular, a code based
on the chain complex obtained from tessellating the real projective plane or a Möbius
strip encodes a qubit. We discuss the distance scaling for such codes which can be
more subtle than in the qubit case due to the concept of logical operator spreading
by continuous stabilizer phase-shifts. We give constructions of homological quantum
rotor codes based on 2D and 3D manifolds as well as products of chain complexes.
Superconducting devices being composed of islands with integer Cooper pair charges
could form a natural hardware platform for realizing these codes: we show that the
0-π qubit as well as Kitaev’s current-mirror qubit—also known as the Möbius strip
qubit—are indeed small examples of such codes and discuss possible extensions.

1. Introduction

Quantum computation is most conveniently defined as quantum circuits acting on a sys-
tem composed of elementary finite dimensional subsystems such as qubits or qudits.
However, for various quantum computing platforms, the underlying hardware can con-
sist of both continuous and countably-infinite (discrete) degrees of freedom. For such
platforms, one thus considers how to encode a qubit in a well-chosen subspace, and
how the possibly continuous nature of the errors affects the robustness of the encoded
qubit. This paradigm has been explored for bosonic encodings [1,2], that is, one makes a
choice for a qubit(s) subspace inside one or multiple oscillator spaces, such as the GKP
code [3]. Other work has formalized encodings of a qubit into a rotating body (such as
that of a molecule) [4] or many qubits into a single (planar) rotor [5]. In these works the
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discreteness of the encoding is arrived at, similar to the GKP code, by selecting stabilizer
operators which constrain the angular momentum variable in a modular fashion.

In this paper, we take a rather different approach and introduce the formalism of
homological quantum rotor codes. These are codes defined for a set of n quantum rotors
and form an extension of qudit homological codes and linear oscillator codes (defined
e.g. in [6]) which do not make use of modular constraints to get non-trivial encodings.
As for prior work, we note that the authors in [7] consider mainly stabilizer rotor states
whereas here we consider stabilizer subspaces to encode information. Quantum rotor
versions of the toric code and Haah’s code have been previously proposed [8,9] and small
rotor codes were studied as U (1)-covariant codes [10,11]: all of these are included
in our formalism. The novelty of our formulation is that our codes can also encode
finite dimensional logical systems such as qubits via the torsion of the underlying chain
complex.

In the first half of the paper, after some preliminaries (Sect. 2), we define homological
quantum rotor codes (Sect. 3) and present mathematical constructions of such codes
(Sect. 4). In the second half of the paper (Sect. 5) we show how two well-known protected
superconducting qubits, namely the 0-π qubit [12–14] and Kitaev’s current mirror qubit
[15–17], can be viewed as examples of small rotor codes. The code perspective is useful
as it allows one to understand the mechanism behind its native noise protection in terms
of the code distance. By the continuous nature of the phase-shift errors leading to logical
operator spreading, we discuss how the Z distance of a rotor code is more subtle than
for qubit codes, see Sect. 3.3.2. We hope that our work stimulates further research into
the effect of homology on encodings and the robustness of the encoded qubit(s), be it
via active or passive quantum error correction.

2. Notations and Preliminaries

We denote the group of integers as Z and the phase group or circle group as T =
[0, 2π) = R/2πZ. We denote the cyclic group Z/dZ as Zd and the subgroup of T

isomorphic to Zd as Z
∗
d , that is,

Z
∗
d =

2π

d
Zd =

{
2π

d
k ∈ T

∣∣∣∣ k ∈ Zd

}
. (1)

These groups are Abelian and we denote their operations with +. The groups Z
n or

T
n do not have the structure of vector spaces. They do have the structure of Z-modules

since multiplication of an element of Z
n or T

n by an integer is naturally defined by
repeated addition. The homomorphisms of Z-modules or Z-linear maps are well defined
using integer matrices and matrix multiplication. As such we will abuse the terminology
and refer to elements of Z

n , T
n as integer vectors and phase vectors respectively. We

always use bold font to denote these vectors m ∈ Z
n and φ ∈ T

n . Note that there is no
unambiguous definition for a multiplication operation over T so we can never write φφ′
for some (φ, φ′) ∈ T

2.

2.1. Quantum rotors. We consider a quantum system called a quantum rotor [7,9]. The
Hilbert space, HZ, where this system lives has a countably-infinite basis indexed by Z,

∀� ∈ Z, |�〉 ∈ HZ.
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The states in HZ are therefore sequences of complex numbers which are square-
integrable, so in �2(Z), and normalized,

|ψ〉 =
∑
�∈Z

α�|�〉,
∑
�∈Z
|α�|2 = 1.

These states could represent the states of definite angular momentum in a mechani-
cal setting, hence the name rotors (or planar rotors). Using the discrete-time Fourier
transform1 we can also represent the states as square-integrable functions on the circle
T:

|ψ〉 =
∑
�∈Z

α�|�〉 =
∫

θ∈T
dθ ψ(θ)|θ〉,

∫
θ∈T

dθ |ψ(θ)|2 = 1,

with the function ψ(θ) given by

ψ(θ) = 〈θ |ψ〉 = 1√
2π

∑
�∈Z

ei�θα�, (2)

or formally

|�〉 = 1√
2π

∫
T

dθei�θ |θ〉. (3)

Even though they are not physical states in the Hilbert space (as they do not correspond
to square-integrable functions), we define the un-normalized phase states, |θ〉, as

∀θ ∈ T, |θ〉 = 1√
2π

∑
�∈Z

e−i�θ |�〉, 〈θ ′|θ〉 = δ(θ ′ − θ). (4)

2.2. Generalized Pauli Operators. The generalized Pauli operators, X (m)m∈Z and
Z(φ)φ∈T, for a single rotor are defined as

∀m ∈ Z, X (m) = eimθ̂ , (5)

∀φ ∈ T, Z(φ) = eiφ�̂, (6)

where the angular momentum operator �̂ can be defined via its action on the phase and
angular momentum basis:

∀� ∈ Z, �̂|�〉 = �|�〉, 〈θ |�̂|ψ〉 = −i
∫

dθ
∂

∂θ
ψ(θ). (7)

We note that “the phase operator θ̂” in Eq. (6) is only a convenient notation as it should
only occur in 2π -periodic functionals, see for instance [18]. The action of the generalized
Pauli operators on the states |θ〉 and the angular momentum eigenstates |�〉 reads

X (m)|θ〉 = eimθ |θ〉, Z(φ)|θ〉 = |θ − φ (mod 2π)〉, (8)

1 The name “discrete-time” here comes from Fourier analysis of functions sampled periodically at discrete
times (indexed by Z).
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X (m)|�〉 = |� + m〉, Z(φ)|�〉 = eiφ�|�〉, (9)

which can be verified through the Fourier transform in Eq. (4). By direct computation
we have the following properties

1 = X (0) = Z(0), (10)

X (m1)X (m2) = X (m1 + m2), (11)

Z(φ1)Z(φ2) = Z(φ1 + φ2), (12)

and the commutation relation

X (m)Z(φ) = e−iφm Z(φ)X (m). (13)

When we consider systems of n quantum rotors, we write X j (m) and Z j (φ) for the
generalized Pauli operators acting on the j th rotor. For a multi-rotor Pauli operator,
using the bold vector notation for row vectors m and φ, we have

m ∈ Z
n, X (m) =

n∏
j=1

X j (m j ), (14)

φ ∈ T
n, Z(φ) =

n∏
j=1

Z j (φ j ). (15)

The commutation relations for multi-rotor operators are straightforwardly computed
from Eq. (13)

∀(m,φ) ∈ Z
n × T

n, X (m)Z(φ) = e−imφT
Z(φ)X (m). (16)

Finally, it is not hard to show that the generalized Pauli operators form an operator basis
for the rotor space.

3. Definition of Homological Quantum Rotor Codes

In this section we define homological quantum rotor codes. We describe their code
states, logical code space and logical operators. For this we explain their connection to
the homology and co-homology of chain-complexes. We also propose a generic noise
model and define the related notion of code distance for it as well as ways to bound this
distance. Finally, we explain how to define a Hamiltonian whose groundspace coincides
with the code space of a homological quantum rotor code.

3.1. Definition and relation to homology. We consider defining a subspace, the code
space or logical subspace, of the Hilbert space of n quantum rotors, in a CSS fashion
[19,20].

Definition 1 (Homological Quantum Rotor Code, Crot(HX , HZ )). Let HX and HZ be
two integer matrices of size rx × n and rz × n respectively, such that

HX H
T
Z = 0. (17)

https://errorcorrectionzoo.org/c/css
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We define the following group of operators, S, and call it the stabilizer group:

S =
〈
Z(ϕHZ )X (sHX )

∣∣∣∣ ∀ϕ ∈ T
rz , ∀s ∈ Z

rx

〉
. (18)

We then define the corresponding homological quantum rotor code, Crot(HX , HZ ), on
n quantum rotors as the subspace stabilized by S:

Crot(HX , HZ ) = {|ψ〉 ∣∣∀P ∈ S, P|ψ〉 = |ψ〉}. (19)

The matrices HX and HZ are used to generate the X and Z parts of the stabilizer
group S. Stabilizers of X - or Z -type are labeled by integer vectors, s ∈ Z

rx , or phase
vectors, ϕ ∈ T

rz , and are generated and denoted as follows:

SX (s) = X (sHX ), (20)

SZ (ϕ) = Z(ϕHZ ). (21)

Condition (17) implies that the stabilizers all commute and the code is therefore well
defined. Indeed, one can check that

SZ (ϕ)SX (s) = Z (ϕHZ ) X (sHX )

= exp
(
iϕHZ H

T
X s

T
)
SX (s)SZ (ϕ) = SX (s)SZ (ϕ), (22)

where we have used Eq. (16) and Eq. (17). We will also refer to the generators of the
stabilizer group given by the rows of HX and HZ . For this we take a basis of integer
vectors (s j )i = δi j and define

SX
j ≡ SX (s j ) = X (hX

j ) = eih
X
j ·θ̂ , (23)

so we denote the j th row of HX as the integer vector hX
j . The operators SX

j for j =
1, . . . , rx generate the X part of the stabilizers. For the Z part of the stabilizer, we can
take ϕs j , ϕ ∈ T and we define the continuous set of generators

SZ
j (ϕ) ≡ SZ (ϕs j ) = Z(ϕhZ

j ) = eiϕh
Z
j ·�̂, (24)

so we denote the j th row of HZ as the integer vector hZ
j .

Remark. We do not consider stabilizer groups generated by finite subgroups of T, such
as for the GKP code and generalizations [3,4,21,22] defined on an oscillator space.
Such stabilizers would correspond to modular measurements of angular momentum,
while here we only need angular momentum measurements, see Sect. 3.5. A second
remark is that the same integer matrices used to define a quantum rotor code can be used
to define a related qudit code which we then denote as Cd(HX , HZ ), see Appendix B,
Definition 3 for the exact definition. A third remark is that one can view the quantum
rotor space as a subspace of an oscillator space with quadrature operators p̂ and q̂ , with
[q̂, p̂] = i1, obeying a ‘stabilizer’ constraint ei2π p̂ = 1, enforcing that p̂ → �̂ has
integer eigenvalues. From this perspective, the homological quantum rotor codes that
we introduce can be viewed as a subclass of ‘general multi-mode GKP codes’ which
can encode both discrete as well as continuous information, see e.g. Appendix A in
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[6]. Realizing homological quantum rotor codes as particular instances of multi-mode
GKP codes would be as challenging as realizing any general multi-mode GKP code. By
contrast, when one has access to physical quantum systems natively behaving as rotors,
the constraints to impose to realize a homological quantum rotor code are simpler since
they are non-modular. Still, this connection gives a way to design multi-mode GKP
codes encoding rotors or qudits.

Stabilizers also allow to define the syndrome of error states, i.e. the information that
can be learned about errors, in the usual way. To see this, pick a code state, |ψ〉 ∈
Crot(HX , HZ ). Consider error states, X (e)|ψ〉 and Z(ν)|ψ〉, and consider the stabilizers
SZ (ϕ) and SX (s):

X (e)|ψ〉 = X (e)SZ (ϕ)|ψ〉 = e−iϕHZ eT SZ (ϕ) [X (e)|ψ〉] , (25)

Z(ν)|ψ〉 = Z(ν)SX (s)|ψ〉 = ei sHXνT SX (s) [Z(ν)|ψ〉] . (26)

The error states X (e)|ψ〉 and Z(ν)|ψ〉 are therefore eigenstates of SZ (ϕ) and SX (s)
respectively, with eigenvalue eiϕHZ eT and e−i sHXνT . The values HZ eT ∈ Z

rz and
HXνT ∈ T

rx is what we call the syndrome.
To gain insight into the structure of these rotor codes, errors and logical operators,

we make the standard connection between a quantum CSS code and the homology
and cohomology of a chain complex. The fact that X -type and Z -type operators have
different underlying groups in the rotor case (unlike the qubit, qudit or oscillator case)
makes this connection a bit more subtle but also clarifies it.

To construct a chain complex we are going to take the map from the X part of the
stabilizer group, Z

rx , to the full group of X -Pauli operators, Z
n , as well as the map from

the X -Pauli operators to their syndromes Z
rz . We denote the map from the stabilizer

group to the operator group by ∂2 : Z
rx → Z

n , given in matrix form by HX ∈ Z
rx×n

(and which is applied to a row vector in Z
rx from the right). We denote the syndrome

map by ∂1 : Z
n → Z

rz which is given as a matrix by HT
Z ∈ Z

n×rz . The stabilizers are
designed so that they all commute, that is to say, they have trivial syndrome, so that we
have ∂1 ◦ ∂2 = 0. This is the defining property of a chain complex, hence we have a
chain complex, C, with integer coefficients:

C : C2
∂2−−−→
HX

C1
∂1−−−→
HT
Z

C0

� � �

Z
rx Z

n
Z
rz

� � �

stabilizers operators syndrome

. (27)

Given a chain complex C, the maps ∂1 and ∂2 are called boundarymaps and automatically
obey ∂1 ◦ ∂2 = 0 (the boundary of the boundary is zero). Thus, given a chain complex
over Z we can construct a rotor code or given a rotor code one can associate with it a
chain complex. In order to find codes it is useful to consider chain complexes obtained
from tessellations of manifolds as we do in Sect. 4.1.

Viewed as a chain complex C, the group of logical X operators corresponds to the
first homology group over Z, i.e.

H1(C, Z) = ker ∂1/im∂2 = ker
(
HT
Z

)
/im (HX ) = LX . (28)
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One can also understand the logical operators by constructing the code states, namely
the +1-eigenstates of the stabilizers. The Z -type stabilizers constrain a code state |ψ〉 =∑

�∈Zn α�|�〉 in the following manner

∀ϕ ∈ T
rz , |ψ〉 = Z(ϕHZ )|ψ〉

⇒
∑
�∈Zn

α�|�〉 =
∑
�∈Zn

eiϕHZ�T α�|�〉

⇒ ∀�, α� 
= 0 ⇒ HZ�T = (�HT
Z )T = 0. (29)

This means that code states can only have support on angular momentum states which are
in the left kernel of HT

Z , which we denote as ker
(
HT
Z

)
. The X -type stabilizers constrain

|ψ〉 as follows:

∀s ∈ Z
rx , |ψ〉 = X (sHX )|ψ〉

⇒
∑
�∈Zn

α�|�〉 =
∑
�∈Zn

α�|� + sHX 〉

⇒ ∀�,∀s, α� = α�−sHX . (30)

This means that in a code state, all states of angular momentum differing by an element
in the (left) image of HX , im (HX ), must have the same amplitude. Since im (HX ) ⊆
ker
(
HT
Z

)
, we can split the latter into cosets with respect to this subgroup. Logical

operators of X -type should then move between these cosets, i.e. they are elements of
ker
(
HT
Z

)
but they are not in im (HX ). We therefore obtain the group of X -type logical

operators LX as the first homology group of the chain complex.
To characterize Z -type operators we go to some cochain complex which is dual to

the initial one. Concretely for a general chain complex,

C : . . .
∂ j+1−−→ C j

∂ j−→ C j−1
∂ j−1−−→ . . . , (31)

we define the dual complex with dual spaces as

C∗j = Hom(C j , T). (32)

Here Hom(A, B) denotes the (continuous) group homomorphisms from A to B, i.e

Hom(A, B) =
{
f : A→ B

∣∣∣∀(a1, a2) ∈ A2, f (a1 +A a2) = f (a1) +B f (a2)
}
,

(33)

where +A, +B denote the group operation on A and B, respectively. The choice of T in
Eq. (32) is specific to our setting but other choices can be made.2 With our choice, the
elements of the dual space are the characters of the group. The dual boundary map is
given by

∂∗j : C∗j−1 −→ C∗j
f �→ f ◦ ∂ j

. (34)

2 In the literature of integer chain complexes it is more frequent to take the dual with respect to integer
coefficients, that is to say, to consider Hom(C j , Z) instead of Hom(C j , T). This could be interpreted in our
case as interchanging X and Z , but this exchange is not trivial for rotors as there is no corresponding unitary
operation. Furthermore, in the case of qubits we have Hom(Z2, T) � Hom(Z2, Z2) � Z2. Similarly for
oscillators we have Hom(R, T) � Hom(R, R) � R. Hence the correct way to take the dual is obscured as all
the groups are the same.
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One can check that Hom(Zn, T) � T
n and that Hom(Tn, T) � Z

n .
Specializing to our specific length-3 chain complex in Eq. (27), we can also check,

using Eq. (34), that ∂∗2 and ∂∗1 are given as matrices by taking the transpose of HX and
HZ . The cochain complex is therefore structured as follows

C∗ : C∗2
∂∗2←−−−
HT
X

C∗1
∂∗1←−−−
HZ

C∗0
� � �

T
rx T

n
T
rz

� � �

syndrome operators stabilizers

. (35)

Note also that the role of stablizer and syndrome are exchanged by the dualization.
The logical operators expressed as homology and cohomology representatives behave

in the expected way to form a quantum system in the logical subspace. More formally
we have the following theorem.

Theorem 1. Let C be a chain complex of free Abelian groups. Then its nth level coho-
mology group over T coefficients is isomorphic to the character group of its nth level
homology group, that is to say

Hn(C, T) � Hom(Hn(C), T). (36)

A proof can be found for instance in [23, Chap. VIII] or in more general terms in [24].
The cohomology group is given in the usual way

H1(C, T) = ker ∂∗2 /im∂∗1 = ker
(
HT
X

)
/im (HZ ) = LZ . (37)

Note that the applications ∂∗2 and ∂∗1 are specified using integer matrices but represent
maps from phases to phases. In particular computing ker is slightly different from stan-
dard linear algebra with real matrices as integer multiples of 2π are equivalent to zero.

This description of the logical operators is consistent with inspecting the action of a
Z -type generalized Pauli operator on code states given in Eq. (47). In order to apply the
same phase for every element of a given coset, the vector needs to be in ker(HT

X ) and
two vectors differing by an element of im(HZ ) will have the same action.

3.2. Encoded information. Now the question is: what do rotor codes encode? For a
homological or CSS code on qubits, the code will encode some number k of logical
qubits and this is captured by the (co)homology groups for the chain complex C over
Z2. As argued, this is the same for our codes, namely the (co)homology of the chain
complex determines the logical information. However, the nature of the (co)homology
groups depends both on the chain complex C and the coefficient group that is used, i.e.
Zp, Z or R, see Table 1.

Before we spell this out in mathematical detail, let us consider a simple example
which captures the main idea. We have 4 rotors and the check matrices

HX =
⎛
⎝+1 −1 0 0

0 0 −1 +1
−1 −1 +1 +1

⎞
⎠ , HZ =

(
+1 +1 +1 +1
−1 −1 −1 −1

)
. (38)
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Table 1. Homology and cohomology groups for a chain complex C over coefficient groups G = Z, T, Zp
for prime p and R. All entries are expressed in terms of the free and torsion part of the homology groups over
Z (higlighted in gray). The nth homology group Hn(C, Z) is separated in its free part Fn (some number of
copies of Z) and its torsion part Tn (equal to some number of cyclic groups Zd for different d). The (·)∗ means
taking the dual, see Eq. (32). The notation Zp(G) designates the group containing a Zp summand for every
Z or Zpk summand in G, see [25, Corollary 3A.6]. The notation R(G) designates replacing each Z by a R.

Homology

C2
∂2−−−→ C1

∂1−−−→ C0

G H2 H1 H0

Z F2 ⊕ T2 F1 ⊕ T1 F0 ⊕ T0

T (F2 ⊕ T1)∗ (F1 ⊕ T0)∗
(
F0 ⊕ T−1

)∗
Zp Zp (F2 ⊕ T2 ⊕ T1) Zp (F1 ⊕ T1 ⊕ T0) Zp

(
F0 ⊕ T0 ⊕ T−1

)
R R (F2) R (F1) R (F0)

Cohomology

C∗2
∂∗2←−−− C∗1

∂∗1←−−− C∗0
G H2 H1 H0

Z F2 ⊕ T1 F1 ⊕ T0 F0 ⊕ T−1

T (F2 ⊕ T2)∗ (F1 ⊕ T1)∗ (F0 ⊕ T0)∗

Zp Zp (F2 ⊕ T2 ⊕ T1) Zp (F1 ⊕ T1 ⊕ T0) Zp
(
F0 ⊕ T0 ⊕ T−1

)
R R (F2) R (F1) R (F0)

If this were a qubit code, then±1 entries in the check matrices would be equivalent and
hence the checks would be XX I I, I I X X, Z Z Z Z which are the checks of the smallest
error-detection surface code encoding 1 logical qubit. If this were an oscillator code,
then ±1s matter, and there is only 1 vector which is orthogonal to the rows of HX (in
ker(HT

X )), but this vector is a row of HZ (in im(HZ )), hence no logical information
is encoded. The rotor code version occupies a place in between: we do not seek a
vector which is orthogonal to the rows of HX . Rather, we note that the operator Z =
Z(0, 0, π, π) = eiπ(�̂3+�̂4) is not generated by any product of Z(ϕhZ

j ) for any ϕ, but Z

still commutes with all X (hX
j ), since the commutator can be e2πki1 = 1 for any integer

k. This is precisely the niche that rotor codes encoding qudits explore and for codes
based on tessellations of manifolds, this opportunity is captured by the manifold having
torsion. We will come back to this example and similar ones in Sect. 4.1.1.

In all generality the homology group over Z is decomposed into a so-called free part,
F , and a so-called torsion part, T , with

H1(C, Z) = F ⊕ T, (39)

F � Z
k′ , (40)

T � Zd1 ⊕ · · · ⊕ Zdk′′ , (41)

for some integers k′,3 k′′ and torsion orders d1,…, dk′′ . The homology group over Z

and its generators can be obtained using the Smith normal form of HX and HT
Z [26,27].

3 k′ is often called the Betti number.
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In Ref. [28] we provide software to obtain the generators of H1(C, Z) as well as its
decomposition into free and torsion parts, for our examples. The code is based on the
open source software “Sage". We accompanied the code with detailed explanations on
how to use the Smith normal form to obtain the generators of H1(C, Z).

When studying the homology of chain complexes over a field, such as Fp for prime
p or R, there can be no torsion. The torsion comes from the fact that Z is not a field (but
a ring) and as such does not have multiplicative inverses. Therefore it can happen that
there exists some element, w ∈ C1 which is a boundary only when multiplied by some
integer d, that is to say

∃s ∈ C2, ∂2(s) = dw, w 
∈ im(∂2). (42)

Such elements, w, are called weak boundaries in [26]. They are homologically non-
trivial but become trivial when multiplied by d and so are elements of order d in the
homology group.

The homology group, H1(C, Z), as in Eq. (39) corresponds to a code which encodes
k′ logical rotors and k′′ qudits of respective dimensions d1, . . . , dk′′ . We denote as k the
number of independent logical systems which are encoded so that

k = k′ + k′′. (43)

We can structure the generating set of LX according to this decomposition. Namely,
there are k′ integer vectors generating the free part, which correspond to the logical X
operator of the k′ logical rotors. We can stack them into a k′ × n integer matrix Lr

X .
There are also k′′ integer vectors generating the torsion part which form the rows of a
matrix Ld

X , which correspond to the X logical operators of the logical qudits. We denote
all these vectors as l Xi , and we set them as rows in a k × n integer matrix LX :

LX =
(
Lr
X

Ld
X

)
. (44)

A generating set of X -type logical operators can be then written as follows

m ∈ Z
k′ ⊕ (Zd1 ⊕ · · · ⊕ Zdk′′

) ≡ GX
logical, X(m) = X (mLX ). (45)

Generating all X -type logical operators is done as follows

m ∈ GX
logical, ∀s ∈ Z

rx , X(m) = X (mLX + sHX ). (46)

Note that we do not strictly need to restrict the torsion part of m to be in Zd j and
can pick m ∈ Z

k . Indeed picking m in Z
k will also generate all logical operators but

some will be stabilizer equivalent through Eq. (42). Coming back to the code states, this
characterization allows us to write down a basis of code states as equal superpositions
over cosets and label these (unphysical) basis states by m, namely

|m〉 ∝
∑
g∈Zrx

|� = gHX + mLX 〉, (47)

Hence we can write the code states as

|ψ〉 =
∑
m∈Zk

αm|m〉. (48)
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Theorem 1 guarantees that H1(C, T) has the same structure as the one given for
H1(C, Z) in Eq. (39), that is

H1(C, T) � T
k′ ⊕

(
Z
∗
d1
⊕ · · · ⊕ Z

∗
dk′′

)
, (49)

with Z
∗
d in Eq. (1). Representatives of the logical operators are generated using a k × n

integer matrix LZ :

φ ∈ T
k′ ⊕

(
Z
∗
d1
⊕ · · · ⊕ Z

∗
dk′′

)
≡ GZ

logical, Z(φ) = Z(φLZ ), (50)

Generating all Z -type logical operators is done as follows

φ ∈ GZ
logical, ∀ν ∈ T

rz , Z(φ) = Z(φLZ + νHZ ). (51)

Note that the vector φ contains unconstrained phases (for the logical rotors) as well
as constrained ones (for the encoded qudits). Contrarily to the logical X operators, we
cannot here relax the restriction on the phases since doing so would produce operators
not commuting with the X stabilizers. We can again split the logical generators in two

φ =
(
φr , φd

)
. (52)

We can also split the matrix LZ in two parts: a k′ × n integer matrix Lr
Z generating

the rotor part and a k′′ × n integer matrix Ld
Z generating the qudit part.

LZ =
(
Lr
Z

Ld
Z

)
. (53)

The rows of the matrix LZ with integer entries can be denoted as l Zi . Theorem 1 also
guarantees us that we can find a pairing of the X -type and Z -type logical operators such
that

LX L
T
Z = 1. (54)

3.3. Formal noise model and distance of the code. We want to characterize the level of
protection offered by a rotor code which is usually captured by the distance of the code.
The motivation for the definition of a distance is given by the noise model. For a qubit
stabilizer code, the distance is the minimal number of physical qubits on which to act to
realize any logical operation. For a qudit (or classical dit) code, it is more ambiguous:
it could be the minimal number of qudits to act on to realize any logical operation, or
some other measure of the minimal total change of any code state to another code state.

We first discuss a reasonable noise model to which we tie our definition of distance
for rotor codes.

Since the group of generalized Pauli operators forms an operator basis, we consider a
simple noise model consisting of Pauli noise. More precisely, we assume that each rotor
independently undergoes X - and Z -type errors, of the form X (m) and Z(φ) respectively,
with probabilities of the following generic form

∀m ∈ Z, P (X (m)) = AX exp (−βXVX (m)) , (55)

∀φ ∈ T, P (Z(φ)) = AZ exp (−βZ VZ (φ)) . (56)
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The parameters AZ and AX are some normalizing positive constants and βZ and βX are
some real and positive strength parameters. We assume that the potential function VZ (φ)

is unchanged under φ → 2π − φ and monotonically increasing from VZ (φ = 0) = 0
to φ = π . Similarly, the potential function VX (m) is monotonically increasing with |m|
and VX (m = 0) = 0. One straightforward choice is

VZ (φ) = sin2
(

φ

2

)
, βZ = 1

σ 2 , (57)

VX (m) = |m|, βX = − log p. (58)

This choice makes P(Z(φ)) a normalized von Mises probability distribution character-
ized by standard deviation σ , and p is the probability of a ladder jump |�〉 → |�± 1〉.
The normalization constants are given by

A−1
Z = exp

(
− 1

2σ 2

)
2π I0

(
1

2σ 2

)
, A−1

X = 1 + p

1− p
, (59)

where In(x) = 1
π

∫ π

0 dθ ex cos(θ) cos(nθ) is the modified Bessel function of the first kind
of order n.

The von Mises probability distribution is a natural choice since, unlike Gaussian
noise, it respects the periodicity of the φ-variable, and for small σ and thus small values
for φ, it can be approximated by a Gaussian distribution.

For n quantum rotors we consider independent and identically distributed noise given
by probability distributions

∀m ∈ Z
n, P(X (m)) = An

X exp (−βXWX (m)) , (60)

∀φ ∈ T
n, P(Z(φ)) = An

Z exp (−βZWZ (φ)) , (61)

where

WX (m) =
n∑
j=1

VX (m j ), (62)

WZ (φ) =
n∑
j=1

VZ (φ j ), (63)

Using these weights, we can introduce X and Z distances for the code. We define
the X distance from the definition of the weight in Eq. (62) and minimize over stabilizer
equivalent logical operators:

dX = min
m∈GX

logical,m 
=0
min
s∈Zrx

WX (mLX + sHX ) , (64)

where GX
logical was defined in Eq. (46).

As mentioned earlier, the distance in Z is less straightforward when the code encodes
some logical rotors. For this reason, if one encodes logical rotors (besides qudits), we
can compare the distance of a logical Z operator to the weight of its bare implementation
and we denote this distance slightly differently, namely as

δZ = min
φ∈GZ

logical,φ 
=0
min
ν∈Trz

WZ (φLZ + νHZ )

WZ (φ)
, (65)
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where GZ
logical was defined in Eq. (50) and WZ (φ) =∑k

j=1 VZ (φ j ), the sum of weights
on the k unencoded degrees of freedom. For example, if the rotor code encodes a single
logical qudit of dimension d we have logical shifts φ ∈ Zd , which implies that 1

WZ (φ)
is

always bounded away from 0 by a constant C . This constant is noise-model dependent
but irrelevant for the distance scaling with the number of physical qubits and hence we
can omit the denominator and obtain a similar definition as dX . When the rotor code
encodes a logical rotor with logical shifts φ ∈ T, the denominator goes to zero when
φ → 0, but so does the numerator, hence, it is the ratio that matters. In this paper we focus
on codes encoding qubits so δZ is like dX . For the codes that we consider, a difference
between the X distance and the Z distance is that a lower probability logical Z can be
obtained by spreading the support of the logical operator by stabilizers; we discuss this
in Sect. 3.3.2.

3.3.1. X Distance bound from qudit versions of the code We can compare the X distance
of the rotor code which encodes k logical rotors to the distance of the corresponding qudit
code for any qudit dimension l. Let us denote as Cl(HX , HZ ) the quantum code obtained
by replacing each physical rotor by a qudit of dimension l defined using generalized Pauli
operators for qudits, see the definition in Appendix B. We denote the X distance of the
qudit code as dlX defined using the Hamming weight of logical operators.

Theorem 2 (Lower bound on dX ). Given a rotor code Crot(HX , HZ ) encoding k degrees
of freedom. Let Mmin be the set of non-trivial logical operators with a representative of
minimal weight:

Mmin =
{
m ∈ GX

logical,m 
= 0

∣∣∣∣ min
s∈Zrx

WX (mLX + sHX ) = dX

}
. (66)

Let L be the set of qudit dimensions, l = 2, 3, . . ., such that there exists a logical operator
of minimal weight which is non-trivial in Cl(HX , HZ ):

L =
{
l ∈ N

≥2
∣∣∣∣∃m ∈ Mmin, ∀s ∈ Z

rx , mLX 
= sHX (mod l)

}
. (67)

Then dX is lower bounded as follows:

dX ≥ max
l∈L dlX . (68)

Proof. Pick mmin and smin forming a minimum weight logical operator and consider
the obtained vector

vmin = mminLX + sminHX , WX (vmin) = dX . (69)

Taking vmin (mod l) yields a valid logical operator for the corresponding qudit code.
If vmin (mod l) corresponds to a non-trivial logical operator then its weight is lower
bounded by the distance of the qudit code, meaning that

dX = WX (vmin) ≥ WX (vmin (mod l)) ≥ WH (vmin (mod l)) ≥ dlX . (70)

where WH () is the Hamming weight of a vector x, counting the non-zero entries
WH (x) = ∣∣{x j |x j 
= 0

}∣∣. This means that we can also take the maximum of the dlX
over l for which there is a minimum weight logical operator in the rotor code which is
non-trivial in the qudit code. ��
Note that if there is no torsion, i.e. there are only rotors in the code space then L = N

≥2,
see Appendix B.
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3.3.2. Z Distance and logical operator spreading It is not clear that the distance mea-
sures that we have introduced are achieved by seeking logical operators which have
minimal support, as we are used to in the qubit case. This is particularly true for the log-
ical Z operators as we can spread such operator around by adding νHZ for a continuous
ν ∈ T

rz .
This can have non-trivial consequences for the stability and protection of the encoded

information, also for the rotor codes which encode a logical qubit. The question whether
spread-out logical operators have lower probability than minimal-support logical oper-
ators depends on the error model through the weight function WZ . This function has a
quadratic dependence on φ in VZ (φ) for small φ as in Eq. (57), thus making spread-out
logical Z operators consisting of many small shifts more likely than logical Z operators
with minimized support.

To bound this phenomenon, it turns out that a measure of disjointness of the logical X
operator4 plays a role in minimizing the Z distance as captured by the following Lemma.
In this Lemma we focus on codes encoding a single logical degree of freedom, a rotor
or a qudit, for simplicity. In addition, we impose some constraints on the support of the
logical X which is obeyed by all the homological codes for which we wish to apply the
Lemma in this paper.

Lemma 1. Let Crot(HX , HZ ) be a rotor code encoding one logical degree of freedom
(k = 1). Suppose one can find a set 
X ⊂ Z

n of NX representatives of the logical
operator X(1). Suppose furthermore that any of these representatives m ∈ 
X has only
entries in {−1, 0, 1} and that they all have non-overlapping support pairwise. Define
DX as the maximum weight among the elements of 
X , i.e DX = maxm∈
X |m|. Then
for sufficiently large distance dX , as defined by Eq. (64), one can lowerbound the weight
of any logical Z(α), with α ∈ GZ

logical, as

δZ ≥
NX DX sin2

(
α

2DX

)
sin2

(
α
2

) . (71)

When Crot(HX , HZ ) encodes a qubit, we have only one logical Z with α = π and hence
Eq. (71) becomes

δZ ≥ NX DX sin2
(

π

2DX

)
∼ NXπ2

4DX
. (72)

When Crot(HX , HZ ) encodes a rotor we have α ∈ T (α 
= 0) and hence Eq. (71) at
α → 0 becomes

δZ ≥ NX

DX
. (73)

Proof. Let Z(α) be realized by some vector of phases, φ ∈ T
n , i.e. Z(α) = Z(φ). For

all representatives m ∈ 
X we require

X (m)Z(φ) = eim·φZ(φ)X (m)⇒ ∃k ∈ Z, m · φ = α + 2kπ. (74)

4 Interestingly, disjointness of logical operators was studied previously [29] to understand which logical
gates can be realized by Clifford or constant depth operations.
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Note that for every index j where m has no support (m j = 0) the value of φ j is not
constrained. Since allm ∈ 
X are non overlapping, one can impose all constraints simul-
taneously. Now consider minimizing the weight WZ (φ) of Z(α) under these constraints,
i.e. we have

min
φ 
=0∈Tn , k∈Z

∀m∈
X ,m·φ=α+2kπ

WZ (φ) ≥ NX min
m∈
X

⎡
⎢⎣ min

φ 
=0∈Tn , k∈Z
m·φ=α+2kπ

WZ (φ)

⎤
⎥⎦ . (75)

In Appendix C we show that when m contains only 0, +1,−1, the minimum in the
previous equation for a fixed m is attained by spreading φ evenly over all non-zero
entries of m. That is, we prove for |m| = n (assuming a sufficiently large n and hence a
sufficiently large dX ) that

WZ (φ) ≥ n sin2
( α

2n

)
. (76)

Clearly, the bound is smallest when the (sufficiently large) weight n of m is maximized,
hence equal to DX , leading to Eq. (71), using the definition of δZ in Eq. (65). ��

3.4. Notation for the parameters of a quantum rotor code. Now that we have defined
quantum rotor codes, examined their code space and defined a notion of distance, we
can choose a notation to summarize the main parameters. The main difference with the
usual �n, k, d� notation for qubit codes is that we have to fully specify the homology
group and both X and Z distances but it is otherwise very similar.

Definition 2 (Parameters of a quantum rotor code). Given a quantum rotor code Crot

(HX , HZ ) we say it has parameters

�n, (k, d1 · d2 · · · dk′), (dX , δZ )�rot, (77)

if it involves n physical rotors, it encodes k logical rotors and k′ qudits of respective
dimensions d1, …, dk′ and has X distance dX as given by Eq. (64) and Z distance δZ as
given by Eq. (65).

When there are m qudits of same dimension d we write dm in the sequence of qudit
dimensions.

3.5. Measuring stabilizers and Hamiltonian of the code. In active stabilizer quantum
error correction, we measure the stabilizer generators of the code in order to infer errors.
For qubits, Pauli stabilizers are directly observable and can thus be measured. Here, for
the X part of the stabilizer one can construct a set of rx Hermitian observables for each
generator SX

j , i.e.

Oc,X
j = SX

j + SX
j

†

2
= cos

(
hX
j · θ̂

)
, Os,X

j = SX
j − SX

j
†

2i
= sin

(
hX
j · θ̂

)
. (78)

Clearly, an eigenstate of SX
j with eigenvalue eiθ is an eigenstate of Oc,X

j with eigenvalue

cos(θ) and of Os,X
j with eigenvalue sin(θ). For the Z part of the stabilizer one can

construct a set of rz observables, namely

OZ
j = hZ

j · �̂, (79)
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such that learning the integer eigenvalue, say a, of OZ
j , fixes the eigenvalue of SZ

j (ϕ) to

be eiϕa for any ϕ.
Instead of active error correction in which these observables are approximately mea-

sured, we can consider passive error correction and construct a (dimensionless) code
Hamiltonian whose groundspace (and excited spaces) is the code space. We thus seek
a suitable function of the observables which makes the code space have the smallest
eigenvalue. A natural choice is

Hcode = −
rx∑
j=1

Oc,X
j +

rz∑
j=1

(
OZ

j

)2 = −
rx∑
j=1

cos
(
hX
j · θ̂

)
+

rz∑
j=1

(
OZ

j

)2
. (80)

One can compute the energy of an excitation of type X (m) or Z(φ) on a ground state
|ψ〉:

E(m) = mT HT
Z HZm, E(φ) =

rx∑
j=1

cos
(
hX
j · φ

)
. (81)

One observes that the Z(φ) excitations are gapless due to the continuous nature of φ.
Since actual physical states are only supported on a finite range of �, and are thus only
approximate eigenstates for SX

j , the spectrum in such physical subspace will not be
continuous, see e.g. the discussion in Ref. [30] and Sect. 5.5.

4. Constructions of Homological Quantum Rotor Codes

In this section we give general as well as concrete ways to construct homological quan-
tum rotor codes and investigate their parameters. We start by using tessellations of 2D
manifolds, higher dimensional ones and then products of chain complexes.

4.1. Homological quantum rotor codes from tessellations of manifolds. A common way
of getting a chain complex is to consider a manifold with a tessellation [31]. Given a
D-dimensional manifold and a tessellation of it, one chooses some i ∈ {1, . . . , D − 1}
and puts rotors on the i-cells. The (i + 1)-cells and (i − 1)-cells are used to define the
X and Z stabilizers respectively as in Eq. (27).

Note that we will always choose to put the X stabilizers on the higher dimensional
(i +1)-cells and the Z stabilizers on the lower dimensional (i−1)-cells. This is opposite
to the usual choice for homological quantum codes, in particular on two-dimensional
manifolds. What is important is that in our case exchanging X and Z is not equivalent
and the opposite choice is less interesting, in particular in 2D.

In this section we consider tessellations of two-dimensional manifolds such as the
torus, the projective plane and the Möbius strip. For instance, the torus using a w × N
tessellation by square faces simply gives rise to a toric rotor code,—see also [9], and [6]
for the oscillator toric code—, encoding two logical rotors, as its homology is Z

2. We
denote this code T2(w, N ) and the parameters, in particular the distance, of this code
can be computed to be

T2(w, N ) : �2wN , (2, 0),

(
min(N , w), min

(
N

w
,
w

N

))
�rot. (82)
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Table 2. Homology and cohomology groups of the real projective plane RP
2 over different coefficient groups

G. The Z and T rows give the possibilities for rotor codes. Depending on if one chooses to put X -type
stabilizers on vertices (highlighted in red) or on faces (highlighted in violet), one gets either an empty code
space or a logical qubit. The Z2 row gives qubit codes [31]. The R and Z3 rows show what would happen for
oscillator and qutrit codes which would yield an empty logical code space in both cases.

Homology Cohomology

C2
∂2−−−→ C1

∂1−−−→ C0 C∗2
∂∗2←−−− C∗1

∂∗1←−−− C∗0
System G H2 H1 H0 H2 H1 H0

Rotor Z 0 Z2 Z Z2 0 Z

T Z2 0 T 0 Z2 T

Qubit Z2 Z2 Z2 Z2 Z2 Z2 Z2

Qutrit Z3 0 0 Z3 0 0 Z3

Oscillator R 0 0 R 0 0 R

The X distance bound min(N , w) is simply the minimal support of a loop along the
two directions. The Z distance bound comes from applying Eq. (73) in Lemma 1 twice.
Once with a set of disjoint representatives of X1 and once of X2. One set can be chosen
as containing NX = N disjoint representatives each of size DX = w. The other set can
be chosen as containing NX = w disjoint representatives each of size DX = N .

4.1.1. Real projective plane encoding a qubit The real projective plane, denoted as RP
2,

is an interesting example since its first homology group has a trivial free part (i.e. not
encoding any logical rotor) but a non-trivial torsion part. Table 2 recalls the homology
and cohomology groups of the real projective plane for different choices of coefficient
groups.

To be concrete, let us construct some codes and see how the non-trivial qubit encoding
comes about. Given a tessellation of a surface, one associates an arbitrary orientation,
clockwise or anti-clockwise, with each two-dimensional face, the elements in C2 in
Eq. (27). In addition, one associates an arbitrary direction with each edge, the elements
in C1. The properties of the code, i.e. what is encoded and what is the code distance, are
not dependent on these choices. To construct a row of HX corresponding to a face in the
tessellation, we then place an integer entry m = m′ −m′′ for some edge, when the edge
is in the boundary (∂) of the face with the same direction as the face m′ times, and when
the edge is in the boundary (∂) of the face with the opposite direction as the face m′′
times. Similarly, to construct a row in HZ , corresponding to a vertex in the tessellation,
we place an integer entry ±1 for some edge, namely +1 when the edge is incoming to
the vertex, and −1 when the edge is outgoing to the vertex (when two vertices with an
edge between them are identified in the tessellation, one places both a +1 and −1 so 0
in total).

In Fig. 1 we give three tessellations of increasing size of the real projective plane
which encode a logical qubit.

The tessellation in Fig. 1a leads to a stabilizer group generated by the operator X (2),
in other words, HX = 2 and HZ = 0. The logical operators of the encoded qubit are

X = X (1) = ei θ̂ and Z = Z(π) = eiπ�̂. The code Hamiltonian, H = − cos(2θ̂ ),
obtained through Eq. (80), can be viewed as that of a 0-π qubit: the state |+〉 = |θ = 0〉
and |−〉 = |θ = π〉 are related by the π -phaseshift Z = Z(π).
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Fig. 1. In a–c, points on the outer circle are identified in antipodal pairs. a The smallest chain complex
describing the real projective plane RP

2 with one vertex, one edge and one face. The face is attached twice to
the edge (from “both sides”) seeing the same orientation twice. The vertex is attached twice to the edge with
two opposite (canceling) orientations. b A small tessellation of RP

2 with 4 edges and c with 9 edges. The
potential support for the two complementary logical operators are shown in green and blue. One can observe
that twice the green path can be generated by the sum of all the faces. One can also observe that the blue path
can host a logical operator, satisfying face constraints, only with coefficients that double to zero, hence they
should be π . These two observations can help developing an intuitive understanding for the (co)homology
groups in Table 2.

For the tessellation in Fig. 1b we have the check matrices, previously given in Eq. (38)

and the logical operators are X = X (0,−1, 0, 1) = ei(θ̂4−θ̂2) and Z = Z(0, 0, π, π) =
eiπ(�̂3+�̂4). For this code, a spread-out logical, see Sect. 3.3.2, is Z = Z

(−π
2 ,−π

2 , π
2 , π

2

) =
ei

π
2 (�̂3+�̂4−�̂1−�̂2) and a possible code Hamiltonian would be of the form

H = − cos(θ̂1 − θ̂2)− cos(θ̂3 − θ̂4)− cos(θ̂1 + θ̂2 − θ̂3 − θ̂4) + (�̂1 + �̂2 + �̂3 + �̂4)
2.

(83)

This four-rotor projective plane code, RP
2(4), has parameters

RP
2(4) : �4, (0, 2), (2, 2)�rot. (84)

For the third example code in Fig. 1c we have

HX =

⎛
⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0 0 0
−1 0 1 0 −1 0 1 0 0
0 0 0 −1 1 0 0 1 −1
0 0 0 0 0 −1 1 −1 1
0 1 1 −1 0 1 0 0 0

⎞
⎟⎟⎟⎟⎠ , HZ =

⎛
⎜⎜⎜⎜⎝

1 1 0 1 0 0 1 1 0
0 0 −1 −1 −1 0 0 0 0
−1 −1 0 0 1 1 0 0 1
0 0 1 0 0 −1 −1 0 0
0 0 0 0 0 0 0 −1 −1

⎞
⎟⎟⎟⎟⎠ .

(85)

and we can define

l X = (0, 0,−1, 1, 0, 0,−1, 0, 0), l Z = (0, 0, 0, 1, 0, 1, 0, 0, 1), (86)

and the logicals are X = X (l X ) = ei l X ·�̂ and Z = Z (l Z ) = eiπ l Z ·θ̂ .
The parameters of this 9-rotor projective plane code, RP

2(9), can be estimated to be

RP
2(9) : �9, (0, 2), (3, δZ )�rot, 3 ≥ δZ ≥ 9

4
. (87)
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Fig. 2. Thin tessellation of a Möbius strip with a ‘rough’ boundary with no rotors on the dashed edges or
vertex checks on that boundary. The edges are numbered from 1 to 2N .

The lower bound is obtained by considering a set of three X logical operators of weight
three each. The support can be (3, 4, 7), (1, 8, 9) and (2, 4, 5) which has a single overlap
and equal weights so the minimization technique of Sect. 3.3.2 still works.

Table 2 shows what happens when one puts qubits resp. oscillators on the edges for
these tessellations, so that one encodes a single qubit resp. no logical information. We
can also directly verify here that one cannot interchange HX and HZ : this is expressed
in the homology groups shown in Table 2. In terms of freedom to define the code, we
note that the± signs in the matrices HX and HZ depend on the choice of orientation for
each face, i.e. the signs in each row in HX could be flipped. In addition, the choice for
orientation for each edge can be flipped which leads to a column in HZ and HX being
flipped in sign. Many other small tessellations of the real projective plane exist in the
form of projective polyhedra such as the hemicube [32] and the tetrahemihexahedron
[33, Table 1].

4.1.2. Möbius strip encoding a qubit The Möbius strip is known to be the real projective
plane without periodic boundaries on one side. One can thus obtain a Möbius strip by
removing a face, say, the face between edges 2,3,4 and 6 in Fig. 1c, i.e., the last row
of HX in Eq. (85), and identify the removed face with the logical operators X(m) =
eim(θ̂2−θ̂4+θ̂3−θ̂6) of an encoded rotor. This makes a Möbius strip with so-called ‘smooth’
boundaries and the logical Z(φ) can attach to such smooth boundaries.

One can also make a Möbius strip with so-called ‘rough’ boundaries. It can be con-
structed from the real projective plane by removing a vertex (while keeping the edges
adjacent to it). On a closed manifold a single removed vertex is equivalent to the sum of
all the other vertices. Hence, no additional logical rotor is associated with the removed
vertex. Such Möbius-strip code will encode only a qubit due to the twist in orientation,
see Fig. 2.

In Fig. 2 the strip is very thin: it is only one face wide. This rotor code is defined on
a set of n = 2N rotors (one for each directed edge) where the rotors above each other
are labeled by i and N + i . The face stabilizers, corresponding to the rows of HX are

SX
j = ei(θ̂ j−θ̂N+ j+θ̂N+ j+1−θ̂ j+1), j = 1, . . . , N − 1,

SX
N = ei(θ̂N−θ̂2N−θ̂N+1+θ̂1), (88)

where the last face is twisted. The vertex stabilizers are

∀ϕ, SZ
j (ϕ) = eiϕ(�̂ j+�̂N+ j ).

Let’s examine how to construct the logical Z . Imagine phase shifting the upper rotors

by ε each, i.e. we apply eiε
∑N

i=1 �̂i . Due to the twisted check SX
N , ε can only be π . For

this thin Möbius strip, we can spread out the Z by moving half its support from the top
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Fig. 3. a A thicker Möbius strip with (odd) length N and odd width w = 5. In red is the support of the logical
Z and in green is the support of the logical X . b The support of the logical Z operator in red in a has been
shifted to all the rows (±π/5 phase-shifts) and 2 edges with 2π/5 and 2 with 4π/5 shifts occur at the twist: the
shift is done by multiplying with vertex stabilizers with values given in c. c The value of the vertex stabilizers
to choose to perform the spreading-out operation. To obtain the phase shift applied to each edge, one sums the
values at its two neighbouring vertices (without changing the signs). Applying these shifts starting from the
logical operator with π shifts in the middle row (highlighted in red) yields the logical operator in b.

of the ladder to the bottom. Using Eqs. (65) and (57) we see that this spread-out logical
has distance δZ = 2N sin2(π/4) = N which is exactly the same as the minimal support
logical Z .

The matching logical X = ei(θ̂ j−θ̂N+ j ) for any choice of j and it has distance dX = 2
using Eqs. (64) and (58). So the parameters of the thin Möbius trip are given

�2N , (0, 2), (2, N )�rot. (89)

One can observe that X
k

for any k also commutes with the stabilizers and is not equal
to X as an operator, but one can show that X

m
for even m is in the stabilizer group. To

understand this, observe that we can move the support of X over the strip while keeping

its form the same. This means that X
2

can be split to different rungs on the ladder, and
then we can move and annihilate them at the twist, since the face at the twist has the
appropriate opposite signs.

The previous choice of logical X and Z operators gives the logical |0〉 and logical
|1〉 code states for the thin Möbius strip, which in the angular momentum basis read:

|0〉 =
∑

�1,...,�N ∈Z∑N
k=1 �k=even

|�1, . . . , �N ,−�1, . . . ,−�N 〉, (90a)

|1〉 =
∑

�1,...,�N ∈Z∑N
k=1 �k=odd

|�1, . . . , �N ,−�1, . . . ,−�N 〉. (90b)

In Sect. 5.4 we show how Kitaev’s current mirror qubit [15,16] can be interpreted as
a physical realization of the thin Möbius strip code described above.

We can make the Möbius strip code thicker: for example, we can take a strip of odd
length N and odd width w, see Fig. 3. This Möbius-strip code, denoted as M(w, N ), on
2Nw− N rotors is defined by the following stabilizers. The X stabilizer generators are
labeled by the faces μ and the Z stabilizer generators by the vertices ν of the lattice:

μ = 1, . . . , Nw, SX
μ = ei

∑
i∈∂2(μ) sμ,i θ̂i , with sμ,i = ±1,

ν = 1, . . . , N (w − 1), ∀ϕ SZ
ν (ϕ) = e

iϕ
∑

i∈∂∗1 (ν) tν,i �̂i
, with tν,i = ±1. (91)
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Here the ±1 values for the sμ,i and tν,i variables depend on orientation. Along the
top and the bottom, the X stabilizers act on three rotors, representing rough boundaries.
The compact, minimal support, logical Z runs along a loop γ ∗ on the dual lattice (in red

in Fig. 3a) and applies a π -phaseshift on each rotor, i.e. Z = eiπ
∑

i∈γ ∗ �̂i . We observe

that the operator Z = eiφ
∑

i∈γ ∗ �̂i with φ 
= kπ , k ∈ Z does not commute due to the
fact that the twisted face has support on the rotors a and b over which γ ∗ runs of the

form ei(θ̂a+θ̂b) (Note that an alternative commuting support for the logical of the form

eiφ(�̂a−�̂b) would not work since it would not be commuting with all other faces). The
logical X runs over a straight line γ from top to bottom (in green in Fig. 3a) and acts as

ei(θ̂a−θ̂b) on two adjacent edges a and b, incident to a vertex, in order to commute with

the vertex check which has support eiϕ(�̂a+�̂b) for any ϕ. We can view X as applying
a sequence of angular momentum or Cooper pair jumps along γ . The distance of the
logical X is thus dX = w, as γ has to run from top to bottom in order to commute. These
logical operators Z and X overlap on one edge where they anti-commute.

To determine the distance δZ one considers spread-out logical operators, as discussed
in Lemma 1 in 3.3.2. We observe that one can move the support of the logical Z in red
in Fig. 3a on all the rows by multiplying by all SZ

ν (±2π/5) for vertices alongside the
logical operator and SZ

ν (±π/5) for vertices closer to the boundary, see Fig. 3c. This
creates a logical Z with ±π/5-phaseshifts on all vertical edges, and it includes four
horizontal edges with ±2π/5 and ±4π/5 shifts at the twist, see Fig. 3b.

We can apply Lemma 1 with dX = DX = w and NX = N since there are N disjoint
representatives of the logical X , all of weight w. One thus has

Proposition 1. The rotorMöbius strip code,M(w, N ), of widthw and length N encodes
one logical qubit with distance dX = w and, for sufficiently large w, distance δZ ≥
Nw sin2( π

2w
) ∼ Nπ2

4w
.

This directly implies that one should choose the length of the strip N = w2 in order to
balance both distances and have them both increase with the number of physical rotors.
Indeed this would yield the following parameters

M(w,w2) : �2w3 − w2, (0, 2), (w,�(w))�rot. (92)

This yields a Möbius strip which is in a sense asymptotically 1D as the length increases
quadratically faster than the width.

4.1.3. Cylinder encoding a rotor Instead of a Möbius strip, one can also choose a normal
cylinder with a rough boundary on one side and periodic boundaries on the other side.
The form of the checks is as in Eq. (91). In this case one encodes a logical rotor with

Z(φ) = eiφ
∑

i∈γ ∗ �̂i and X(m) = eim
∑

i∈γ ±θ̂i with alternating signs± between adjacent
edges i , see Fig. 4. We can again apply Lemma 1 in Sect. 3.3.2 using DX = w disjoint
representatives for the logical X(1), each of weight w, and obtain

Proposition 2. The cylinder code of width w and length N encodes one logical rotor

with X distance dX = w and, for sufficiently large w, ∀α, δZ ≥ Nw sin2( α
2w

)

sin2(α/2)
∼ N

w
.

Again, this implies that one should choose the length of the strip to be N = w2 in
order to balance both distances and have them both increase with the number of physical
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Fig. 4. a A normal strip with (odd) length N and odd width w = 5. The support of the logical Z is in red and
the support of the logical X is in green. For this strip, one identifies the vertices at the left and right boundary.

rotors. The shape of the system is then also asymptotically 1D. In the next section we
show that in higher dimensions we do not have to change the dimensionality of the
system to obtain the same distance scaling.

As a curiosity one can also consider a tessellation of the Klein bottle: since the Klein
bottle has first homology group H1(Klein bottle, Z) = Z× Z2, it encodes both a qubit
and a rotor with parameters �n, (1, 2), (dX , δZ )�rot.

In general, using 2D manifolds, we cannot encode more than a logical qubit alongside
some number of logical rotors. This comes from the relation between orientability and
the torsion subgroup of HD−1(M, Z) at the D − 1 level of a connected and closed
D-dimensional manifold. More precisely, if M is orientable then there is no torsion
in HD−1(M, Z) whereas if it is non-orientable the torsion subgroup is Z2, see [25,
Corollary 3.28]. We also give an elementary proof of this fact in the case where we
have a finite tessellation of M in Appendix D. In larger dimensions D > 2, the torsion
subgroups of Hk(M, Z) for k < D − 1 have no connection to orientability and can be
arbitrary and the number of encoded logical qubits or qudits is not restricted.

4.1.4. Higher dimensions To overcome the restrictions imposed by 2D-manifolds on the
number of logical qubits and the Z distance scaling in, say, Proposition 1 and Proposition
2, an option is to turn to higher-dimensional manifolds, starting with 3D. Take a 3-torus,
say the N × N × N cubic lattice with periodic boundary conditions. We identify the
edges with rotors, faces with X stabilizers and vertices with Z stabilizers, so that the
number of physical rotors is 3N 3. We denote this code by T3. The homology at level
1 is Z

3, implying that there are 3 logical rotors in the code space. With this choice of
dimensions, the X -type logical operators are non-trivial closed 1D loops and the Z -type
operators are 2D cuts in 2D-torus shape. We can compute the following parameters for
the 3D-toric rotor code

T3 : �3N 3, (3, 0), (N , N )�rot. (93)

To get the lower bound on the Z distance via Lemma 1, we can exhibit a set of NX =
�(N 2) disjoint X -logical operators each of weight DX = N . All the parallel lines along
the x-direction for instance. This yields using Eq. (73)

δZ = �

(
NX

DX

)
= �(N ) . (94)
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Fig. 5. a Representation of RP
3 as a 3-ball with identified antipodal points on its boundary. b A specific

tessellation of RP
3 from which a point has been removed creating a rough boundary in the shape of a sphere.

The top rough boundary and the bottom rough boundary in the drawing are connected and form a single
boundary. They form the double cover of a real projective plane, i.e. a sphere. Each section plane is a real
projective plane and hosts a Z logical operator. There are N2 vertical X logical operators of weight N each.

So here we have a genuine growing distance with the system size for both X and Z
without tweaking its shape.

To get an example with torsion at level 1 we can turn to the real projective space in 3D
denoted as RP

3. A way to visualize RP
3 is to take a 3-ball and identify antipodal points

on its boundary surface, see Fig. 5a. We have that H1
(
RP

3, Z
) = Z2 hence encoding a

single logical qubit.
Similarly as how a rough Moebius strip can be obtained from the projective plane

by removing a vertex we can obtain a slightly simpler manifold than RP
3, with a rough

boundary in the shape of a 2-sphere by removing one vertex (but keeping the edges
attached to it) from RP

3. To be concrete, we take again a N × N × N chunk of the cubic
lattice with rough boundaries at the z = 0 and z = L planes. Then we connect the four
other sides anti-podally, see Fig. 5b. For short we label this code as RP

3∗.
This punctured RP

3 code has parameters

RP
3∗ : �3N 3 − N 2, (0, 2), (N , N )�rot. (95)

The Z distance is obtained using the same set of disjoint X logical operators as in the
3-torus case, i.e N 2 vertical paths from the top rough boundary to the bottom one in
Fig. 5b. In Sect. 5.5 we will come back to the impact of distance scaling on the protection
of the encoded information, although this is partially left to future work.

Many other 3-manifolds with different 1-homology can be found and some have been
tabulated [34]. For instance the 3-manifold named “m010(1,3)” in the “orientable closed
manifold census” of SnapPy [35] has its 1-homology equal to Z42.

4.2. Constructions from a product of chain complexes. For qubit and qudit codes, con-
structions exist to build CSS quantum codes from products of classical codes. The first
construction of this sort was the hypergraph product construction [36] which can be



   53 Page 24 of 59 C. Vuillot , A.Ciani, B.M.Terhal

reformulated as a tensor product of chain complexes [37]. We show here how to use it
to generate quantum rotor codes.

Given two chain complexes,
(C, ∂C

)
and

(D, ∂D
)

given by Z-modules C j , Dj and
boundary maps ∂Cj : C j → C j−1 and ∂Dj : Dj → Dj−1, we define the tensor product(E, ∂E

)
, where we define its Z-modules and boundary maps as

Ek =
⊕
i+ j=k

Ci ⊗ Dj , ∂Ek =
∑
i+ j=k

∂Ci ⊗ 1Dj + (−1)i1Ci ⊗ ∂Dj . (96)

The tensor product of groups, A ⊗ B, is defined by the following properties

∀(a, a′) ∈ A2, ∀(b, b′) ∈ B2, ∀n ∈ Z, na ⊗ b = a ⊗ nb (97)

(a + a′)⊗ b = a ⊗ b + a′ ⊗ b (98)

a ⊗ (b + b′) = a ⊗ b + a ⊗ b′. (99)

Note the following useful identities:

Z⊗ Z = Z, Z⊗ Zd = Zd , Zd1 ⊗ Zd2 = Zgcd(d1,d2). (100)

The homology of E is readily obtained from the Künneth theorem, see for instance [25,
Theorem 3B.5].

Theorem 3 (Künneth Theorem). Given two chain complexes C and D such that the C j
are free, the homology groups of the product are such that

Hk(E) �
⎡
⎣⊕
i+ j=k

Hi (C)⊗ Hj (D)

⎤
⎦⊕

⎡
⎣ ⊕
i+ j=k−1

Tor
(
Hi (C), Hj (D)

)
⎤
⎦ . (101)

In order to compute the Tor part in our case, we only need to know that it maps pairs
of groups to some other group obeying the following rules [25, Proposition 3A.5]

Tor(A, B) = Tor(B, A), Tor

(⊕
i

Ai , B

)
=
⊕
i

Tor(Ai , B),

Tor(A, Z) = 0, Tor(Zd1, Zd2) = Zgcd(d1,d2). (102)

From Eq. (101) and Eqs. (100) and (102), we see that if we want to construct rotor
codes encoding logical rotors we can take the product of chain complexes with free
homology and the usual parameter scaling will follow in the same way as with qubit
code construction. If we want a rotor code encoding qubits or qudits, the torsion groups
need to agree or we can combine free homology with torsion.

We can thus adopt different construction strategies depending on what we want our
logical space to be. In Appendix E we develop in detail three different ways to use
this construction to construct rotor codes. Notably we show how taking the product of
a repetition code and a good LDPC code with asymmetric code-lengths yields a code
family for encoding logical rotors with parameters

�n,
(
�( 3
√
n), 0

)
,
(
�( 3
√
n),�( 3

√
n)
)
�rot. (103)

The distance scaling is the same as that of the 3D-toric code, Eq. (93), or skewed 2D-
cylinder code but with a better encoding rate.
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We also show that taking a repetition code with a sign twist together with a good LDPC
code still with asymmetric code-lengths yields a code family with the same parameter
scalings but encoding logical qubits, so described by parameters

�n,
(

0, 2�( 3√n)
)

,
(
�( 3
√
n),�( 3

√
n)
)
�rot. (104)

Again, the distance scaling is the same as for the 3D real projective space code, Eq. (95),
or skewed 2D Moebius code, Eq. (92), but with a better encoding rate.

5. Physical Realizations in Circuit-QED

Superconducting circuits form a natural platform for the realization of rotor codes, where
the superconducting phase θ of a superconducting island of sufficiently small size can
realize the physical rotor degree of freedom, while its conjugate variable � represents
the (excess) number of Cooper pairs on the island (relative to another island). Thus,
we seek to engineer the Hamiltonian or the stabilizer measurements of a rotor code
with circuit-QED hardware, namely using Josephson junctions and capacitors between
superconducting islands, and possibly inductors, to realize the X and Z terms in the
Hamiltonian. To this end, we will use standard procedures for converting an electric
circuit to a Hamiltonian [38–40]. This passive approach to quantum error correction
has been discussed in circuit-QED systems in Ref. [41], and pursued to obtain the
Hamiltonian of the GKP code [30,42–44] and of the surface code [45]. In what follows,
in order to avoid confusion, we will also denote matrices with bold symbols.

Naturally, in such superconducting systems, the number of Cooper pairs on an island
is confined to a range which is set by the capacitive couplings that the island has to other
conducting structures. In particular, we imagine that each island i is capacitively coupled
to a common ground-plane via a sufficiently large capacitance Cgi and for simplicity we
will take Cgi = Cg . This sets an energy scale for the charge fluctuations on each island.
In the absence of any further couplings, the Hamiltonian would be H = 4ECg

∑
i �̂

2
i

with

ECg =
e2

2Cg
, (105)

where e is the charge of a single electron. We can then consider the effect of adding a
large capacitor C between two islands 1 and 2, with C � Cg . The Hamiltonian of two
such islands is

H = 4e2

2

∑
i, j=1,2

�̂i (C−1)i j �̂ j , (106)

with capacitance matrix

C =
(
C + Cg −C
−C C + Cg

)
. (107)

The eigenvalues of C−1 are 1/Cg (eigenvector (1, 1)) and 1
2C+Cg

(eigenvector (1,−1))
hence

H = 2ECg (�̂1 + �̂2)
2 +

e2

2C + Cg
(�̂1 − �̂2)

2. (108)
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For large C � Cg , the second term is small and the first term enforces the constraint

�̂1 + �̂2 = 0. This shows that a rotor code with weight-2 checks of the form ei(�̂i+�̂ j ) can
be fairly directly realized using capacitors as long as the pair (i, j) is disjoint from other
pairs (k, l). In the Sects. 5.2, 5.3 and Appendix F we will refer to this idea as gapping
out the ‘agiton’ variable 1

2 (�i + � j ). The code Hamiltonian is realized in the low-energy
no-agiton sector with �i + � j = 0 where the ‘exciton’ variable 1

2 (�i − � j ) can still vary.
The Hamiltonian of a superconducting Josephson junction between two islands i and

j is given by H = −EJ cos(θ̂i − θ̂ j ), if we neglect the small capacitance induced by
the junction between the nodes. Hence, this naturally represents a code constraint of
weight-2.

To understand the challenge of engineering an electric network which implements all
code constraints, consider the following approach. One designs a capacitive network of
nodes (all coupled to ground) which is composed of disjoint connected components Vm
with m = 1, 2, . . ., with the nodes in each connected component Vm connected by some
large capacitance C � Cg . The capacitance matrix C will have the smallest eigenvalue
of Cg associated with eigenvectors of the form (1, 1, . . . , 1) on the support of any of
the connected components. Hence one can obtain a set of capacitive code constraints
(
∑

i∈Vm
�̂i )

2 for non-overlapping sets Vm . However, these capacitive constraints act
only on non-overlapping sets of nodes and thus we need a way of ‘identifying’ nodes.
However, if we would do this too strongly, then it was a priori incorrect to treat each
connected component separately. Instead, we want to identify the node variables only
in the subspace where one obeys the constraints

∑
i∈Vm

�̂i = 0 whose violation costs
energy ECg . This can be in principle be done using inductors which should act as
closed circuits at sufficiently low energies. Furthermore, inside the subspace where the
capacitive constraints are obeyed, the pair wise Josephson junction terms should be
treated perturbatively so as to generate face terms which express the joint tunneling
of multiple Cooper pairs. In Sects. 5.3 and 5.4 we will show this approach for some
particular known examples.

5.1. Subsystem rotor codes and Bacon–Shor code. One can easily generalize the defi-
nition of stabilizer rotor codes, Definition 1 to subsystem rotor codes where one starts
with a group G generated by non-commuting generalized Pauli operators X (m) and
Z(φ). The reason to study subsystem [46] (or Floquet) codes is that one can potentially
construct non-trivial codes with gauge checks operators acting only on two rotors. In
particular, due to the interest of rotor codes in circuit-QED, we consider codes of a
particular restricted form with 2-rotor X checks, which, as Hamiltonians, relate to a
Josephson junction between two superconducting islands, i.e. H ∼ − cos(θ̂a − θ̂b). We
prove the following:

Proposition 3 (Josephson-Junction Based Subsystem Codes). Given n rotors, let G =〈
eih

X
j ·θ̂ , eiϕhZ

k ·�̂
∣∣∣∣ ∀ j = 1, . . . , rx ,∀ϕ ∈ T,∀k = 1, . . . , rz

〉
where the vector hX

j is of the

general restricted form hX
j = (0, . . . , 1, 0, . . . , 0,−1, . . . , 0). Let C(G) be the group

of generalized Paulis which commute with all elements in G. Let S = G ∩ C(G) be
the stabilizer center.5 Then either C(G) = S (i.e., one encodes nothing) or C(G) =

5 In this notation we ignore any phases by which elements in the center can be multiplied due to the
non-commutative nature of G, so that S is a stabilizer group with a +1 eigenspace.
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〈
S, Xi (m), Zi (φ),

∣∣∣∣ ∀φ ∈ T,m ∈ Z, i = 1, . . . , k

〉
(i.e. one encodes some k > 1 logi-

cal rotors).

Proof. Consider a Pauli Z(φ) that should commute with elements of G. In order to

commute with some eih
X
j ·θ̂ , with hX

j having nonzero entries on rotor a and b, the support

of Z(φ) on rotor a and b must be of the form eiφ(�̂a+�̂b) for any φ ∈ T (or its Hermitian

conjugate). Notice that the case in which the support is of the form eiπ(�̂a−�̂b) is a

special case of eiφ(�̂a+�̂b), since eiπ(�̂a+�̂b) = eiπ(�̂a−�̂b)ei2π�̂b = eiπ(�̂a−�̂b). Now consider
the support of the collection of vectors hX

j : this could break down in several disjoint

connected components Vm . Then to make some operator Z(φ) commute with all hX
j ,

without loss of generality, its support on a connected component Vm must be of the

form eiφ
∑

i∈Vm �̂i for some arbitrary φ ∈ T. In subsystem codes logical operators are
operators that are in C(G), but not in G, i.e., not in the stabilizer center S. Thus, we just
need to exclude the possibility that an operator Z(φ) of the previous form is not in G
for some discrete set of d values of φ for any d. However, since the generators of the Z

part of G are of the form eiφh
Z
k ·�̂, ∀φ ∈ T, this cannot be the case. ��

Remark. If hX
j can be of the form hX

j = (0, . . . , 1, 0, . . . , 0, 1, . . . , 0), then the no-go
result expressed in the Proposition 3 would not hold. Such constraint would correspond
to a Hamiltonian with terms − cos(θ̂a + θ̂b) which would model a coherent increase or
decrease of the number of Cooper pairs on both islands a and b by 1 (instead of the
tunneling of a Cooper pair through the junction) which is not immediately physical.

The following example demonstrates that even though we have defined (stabilizer)
rotor codes in Definition 1 with checks for continuous values ϕ ∈ T

rz in Eq. (18) (no
modular constraints), a subsystem rotor code can have a stabilizer subgroup in which
Z -checks only appear for discrete values of ϕ.

Example 1. Consider an even-length chain of n rotors with

G =
〈
ei(θ̂ j−θ̂ j+1), eiϕ(�̂ j−�̂ j+1)

∣∣∣∣ ∀ j = 1, 2, . . . , n − 1,∀ϕ ∈ T

〉
. The stabilizer subgroup

is S = G ∩ C(G) = eiπ
∑n/2

j=1(�̂2 j−1−�̂2 j ) as this is the only element which is in G and
which commutes with all elements in G. The subsytem code encodes one logical rotor,

namely C(G)\G is generated by Z(φ) = ei
φ
n

∑n
j=1 �̂ j and X(m) = eim

∑n
j=1 θ̂ j obeying

Eq. (13).

The point of Proposition 3 is that it demonstrates that one cannot capture the difference
between a Möbius strip and a cylinder using such restricted (Josephson-junction based)
weight-2 checks.

5.1.1. Thin rotor Bacon–Shor code An example of a subsystem code is the rotor Bacon–
Shor code, of which we consider a thin example. For such thin Bacon–Shor code, in
analogy with the qubit Bacon–Shor code [47], the group G is generated by

GX
j = ei(θ̂ j−θ̂ j+1), j = 1, . . . , N − 1, (109)

G̃X
j = ei(θ̂N+ j−θ̂N+ j+1), j = 1, . . . , N − 1, (110)
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Fig. 6. Electric circuit for the thin Bacon–Shor code: capacitances to ground for each node are not shown.

GZ
j (φ) = eiϕ(�̂ j+�̂N+ j ), j = 1, . . . , N ,∀ϕ ∈ T. (111)

The logical rotor operators can be taken as Z(φ) = eiφ
∑N

i=1 �̂i and X(m) = eim(θ̂k−θ̂N+k ),
where we can choose k to be any k in {1, . . . , N }, forming a row and column which
intersect on a single rotor as in the standard Bacon–Shor code [47]. The ‘double column’
operators and ‘double row’ operators generate the stabilizer group S = G ∩ C(G):

SX
j = GX

j (G̃X
j+1)

−1 = ei(θ̂ j−θ̂ j+1−θ̂N+ j+θ̂N+ j+1), (112)

SZ (ϕ) =
N∏
j=1

GZ
j (ϕ) = eiϕ

∑2N
j=1 �̂k ,∀ϕ. (113)

The X distance of the code is dX = 2 since X(m) acts on at least two rotors and the
minimum in the definition of the X distance in Eq. (64) is achieved at m = 1. For the
logical Z distance we consider δZ in Eq. (65). One notices that one can make a slightly

spread-out logical Z(φ) = ei
φ
2 (
∑N

j=1 �̂ j−∑2N
j=N+1 �̂ j ), which extends over two rows, and

δZ ∼ N as the expression in Eq. (65) is linear in N times a constantC(φ) which depends
on the choice of φ but which is bounded away from 0 for all φ.

The targeted (dimensionless) Hamiltonian associated with this code is of the form

Hthin−BS = −
N−1∑
j=1

[
cos(θ̂ j − θ̂ j+1) + cos(θ̂N+ j − θ̂N+ j+1)

]
+

N∑
j=1

(�̂ j + �N+ j )
2.

(114)

In principle Hthin−BS has a spectrum in which each eigenlevel is infinitely-degenerate,
i.e. in each degenerate eigenspace, we can build a rotor basis |�〉with X(m)|�〉 = |� + m〉.
In practice, the Hamiltonian is approximately realized by the circuit in Fig. 6, where each
node is connected to a ground plane via the capacitance Cg � C . The Hamiltonian,
omitting the Josephson capacitances and assuming that the Josephson junctions are
equal, of the network then equals:

Hthin−BS,circuit = −EJ

N−1∑
j=1

[
cos(θ̂ j − θ̂ j+1) + cos(θ̂N+ j − θ̂N+ j+1)

]

+ 2ECg

N∑
j=1

(�̂ j + �̂N+ j )
2 +

N∑
j=1

e2

2C + Cg
(�̂ j − �̂N+ j )

2, (115)

where the large capacitance C � Cg suppresses the last term.
It is clear that, in general, the constraints imposed by parity check matrices HX and HZ

do not immediately translate to a circuit-QED Hamiltonian constructed from capacitors
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Fig. 7. Electric circuit of the four-phase gadget (showing capacitances to ground).

and Josephson junctions. However, two protected superconducting qubits exist, namely
the 0-π qubit [12] and the current-mirror qubit by Kitaev [15] which can be identified as
rotor codes based on tessellating RP

2 and a Möbius strip respectively, as will be shown
in the next sections.

5.2. The four-rotor circuit. In this section, we introduce a fundamental circuit, shown
in Fig. 7, that will be the building block for obtaining a rotor code face term with four
rotors (with alternating signs) when we work in the regime C � Cg . The Hamiltonian
of the circuit can also be interpreted as the approximate code Hamiltonian associated
with a four-rotor Bacon–Shor code discussed in Sect. 5.1 encoding a logical rotor. One
can provide analytical expressions of its spectrum, in full analogy with the Cooper-
pair box spectrum [48,49], as we will see. When we treat the Josephson junction terms
perturbatively, we call this circuit element the four-phase gadget realizing an effective
four-rotor face term.

For the four-rotor Bacon–Shor code, the group G is generated by

G =
〈
eiϕ(�̂1+�̂3), eiϕ

′(�̂2+�̂4), ei(θ̂2−θ̂1), ei(θ̂3−θ̂4)
∣∣∣ ϕ, ϕ′ ∈ T

〉
. (116)

We define the gauge rotor logicals in G as Xg(m) = eim(θ̂2−θ̂1) and Zg(φ) = eiφ(�̂2+�̂4).
The stabilizer is generated by

S =
〈
SX (1) ≡ ei(θ̂1−θ̂2−θ̂3+θ̂4), SZ (φ) ≡ eiϕ(�̂1+�̂2+�̂3+�̂4)

∣∣∣ ∀ϕ ∈ T

〉
. (117)

The encoded logical rotor has logical operators

Zl(φ) = eiφ(�̂1+�̂2), Xl(m) = eim(θ̂2−θ̂4).

A basis for the four-rotor space is thus |�l , �g, φx ∈ T, sz ∈ Z〉where φx is the eigen-
value of the SX (1) check, i.e. SX (1) = eiφx , and sz = �1 +�2 +�3 +�4 is the syndrome of
the SZ -check. Here |�g〉 is defined by Xg(m)|�g〉 = |(� + m)g〉, Zg(φ)|�g〉 = eiφ�|�g〉.
The targeted (dimensionless) Hamiltonian, a special case of Eq. (114), is

H4−BS = (�̂2 + �̂4)
2 + (�̂1 + �̂3)

2 − cos(θ̂1 − θ̂2)− cos(θ̂3 − θ̂4). (118)
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Looking at the circuit in Fig. 7 and setting CJ = 0 and neglecting capacitive terms
∼ 1/C , we have the circuit-QED Hamiltonian

HCJ=0 ≈ 2ECg

(
�̂1 + �̂3

)2 + 2ECg

(
�̂2 + �̂4

)2 − EJ cos(θ̂1 − θ̂2)− EJ cos(θ̂3 − θ̂4).

(119)

For simplicity, we now assume EJ = 2ECg so that we can remove the energy scales.
We can also include the effect of the Josephson capacitances CJ in this description, by
using a first-order approximation in CJ /Cg in a Taylor expansion of C−1. Applying this
to the dimensionless Hamiltonian, we get an extension of Eq. (118), namely

H = (�̂2 + �̂4)
2 + (�̂1 + �̂3)

2 + ε(�̂1 + �̂3)(�̂2 + �̂4)− cos(θ̂1 − θ̂2)− cos(θ̂3 − θ̂4),

(120)

where ε = 4CJ /Cg . All terms in H commute with S and the logical operators Zl(φ),

Xl(m), and thus H has a degenerate spectrum with respect to the logical rotor. Each
eigenlevel can additionally be labelled by the quantum numbers φx and sz . It remains
to consider the spectrum of H with respect to the gauge logical rotor: this spectrum is
identical to that of a Cooper-pair box in the presence of some off-set charge set by sz and
ε, and a flux-tunable Josephson junction with flux set by φx . To derive this explicitly we
use

〈�1, �
′
g, φx , sz |(�̂1+�̂3)

2|�1, �g, φx , sz〉=〈�1, �
′
g, φx , sz |(sz−�̂2−�̂4)

2|�1, �g, φx , sz〉,
(121)

and introduce the operators ei θ̂g = ei(θ̂1−θ̂2) and �̂g = �̂2 + �̂4. Using a transformation

ei θ̂
′
g = ei(θ̂g−

φx
2 ) and dropping primes and the subscript label g, Eq. (120) can be rewritten

as

H = (2− ε)

(
−i ∂

∂θ
− sz

2

)2

+
s2
z

2

(
1 +

ε

2

)
− 2 cos

(
φx

2

)
cos(θ̂). (122)

In the sector labeled by sz and φx , this Hamiltonian has a spectrum En(sz, φx ) and
eigenfunctions ψn(θ) which are determined by the solutions of the Mathieu equation.
The analysis of the Cooper-pair box, which has the transmon qubit as a particular case
[49], is precisely done in this fashion [48]. For the Cooper-pair box, sz/2 models an
off-set charge and φx/2 models the effect of an external flux in a flux-tunable Josephson
junction. Unlike the Cooper-pair box, the spectrum also has a sz-dependent shift and the
groundstate sits in the sector with smallest sz = 0, see Fig. 8. To convert to the standard
form of the Mathieu equation, one defines gn(θ) = e−2iszθψn(2θ), (with ψ(θ + 2π) =
ψ(θ), thus translating into a different boundary condition for gn(θ)), setting ε = 0 for
simplicity:

[
− ∂2

∂θ2 − 4 cos

(
φx

2

)
cos(2θ) + 2s2

z − 2En(sz, φx )

]
gn(θ) = 0 (123)

It is known that the spectrum of the effective Hamiltonian in Eq. (122), depends only
on the parity of the integer sz (besides the sz-dependent shift) [48,49]. We show the first
three energy levels for even and odd sz as a function of φx in Fig. 8.

The encoded logical rotor is protected when events which change the logical rotor
state are (energetically) suppressed: such events are small fluctuations of phase and
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Fig. 8. First three energy bands of the four-rotor Bacon–Shor code as a function of φx for even (solid) and
odd (dashed) sz with ε = 0. The ground states are associated with even sz at φx = 0 and φx = 2π . When
φx = π , the Josephson term is zero, and the degeneracies between the first and second band at odd sz , and
second and third band at even sz , are true degeneracies associated with the charging term.

Cooper-pair jumps on each rotor, such that two rotors are affected as characterized by
the weight-2 logical operators. Some of these events could happen in conjunction with
the excitation of the gauge logical rotor or changes in stabilizer quantum number, in
particular when these additional events cost little energy. If one encodes into the logical
rotor at sz = 0 at φx = 2π , one observes from the spectrum in Fig. 8 that there is a gap
towards the second excited state (at sz = 0 and φx = 2π ), and one is at the minimum
for continuous variations in φx , so this seems a good working point. In addition, there
is a gap to the state sz = 1 at φx = 2π , suppressing processes which change sz .

One could generalize this analysis of the four-rotor Bacon–Shor code to the 2N -
rotor Bacon–Shor code where there will be one eigenvalue sz = ∑ j=1 � j and N − 1

eigenvalues eiφx, j of the stabilizers SX
j in Eq. (113) as quantum numbers, besides N − 1

gauge logical rotors and 1 encoded logical rotor. Again the Hamiltonian, corresponding
to the circuit in Fig. 6 in the regime C � Cg will only act on the gauge logical rotors
(�̂g j = �̂ j + �̂ j+N ) as

H =
N−1∑
j=1

�̂2
g j

+ (sz −
∑
j

�̂g j )
2 − 2

N−1∑
j=1

cos(φx, j ) cos(θ̂ j − θ̂ j+1).

We note that the degeneracy of the spectrum with respect to Z(φ) = eiφ
∑N

j=1 �̂ j for all
φ is only lifted when connecting the last nodes on this strip in twisted fashion as is done
in the Möbius strip qubit, discussed in Sect. 5.4.

5.2.1. The four-phase gadget For the four-phase gadget, we study a particular regime of
the circuit in Fig. 7: namely, the effect of the Josephson junctions is treated perturbatively
(while the dependence on CJ is kept in analytical form). In the language of the previous
analysis this corresponds to considering the Cooper-pair box spectrum when EJ � EC
and applying second-order perturbation theory with respect to the Josephson term which
connects states of different charge.
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The capacitance matrix of the circuit in Fig. 7 in terms of the nodes variables �k, k =
1, . . . , 4 reads

C =
⎛
⎜⎝
Cg + C + CJ −CJ −C 0

−CJ Cg + C + CJ 0 −C
−C 0 Cg + C + CJ −CJ

0 −C −CJ Cg + C + CJ

⎞
⎟⎠ . (124)

It is convenient to first introduce another set of variables, namely the left and right
exciton θL ,Re and agiton θL ,Ra variables defined as

⎛
⎜⎝

θLe
θRe
θLa
θRa

⎞
⎟⎠ =

⎛
⎜⎝

1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

⎞
⎟⎠

︸ ︷︷ ︸
M

⎛
⎜⎝

θ1
θ2
θ3
θ4

⎞
⎟⎠ ,

⎛
⎜⎝

�Le
�Re
�La
�Ra

⎞
⎟⎠ =

⎛
⎜⎜⎝

1
2 0 − 1

2 0
0 1

2 0 − 1
2

1
2 0 1

2 0
0 1

2 0 1
2

⎞
⎟⎟⎠

︸ ︷︷ ︸
(MT )−1

⎛
⎜⎝

�1
�2
�3
�4

⎞
⎟⎠ . (125)

These variables have been employed in Ref. [16] to study Kitaev’s current mirror qubit
[15]. Note that the change of variables in Eq. (125) does not represent a valid rotor
change of variables as described in Appendix A which would require the matrices M
and (MT )−1 to be integer matrices. This manifests itself, as one can see from Eq. (125),
in that the exciton and agiton charges on the left L (or right R) have either both integer
or both half-integer eigenvalues.

The choice for exciton and agiton variables is motivated by block-diagonalizing the
capacitance matrix C , i.e. we define

C̃ = (MT )−1CM−1 = 1

2

⎛
⎜⎝

2C + Cg + CJ −CJ 0 0
−CJ 2C + Cg + CJ 0 0

0 0 Cg + CJ −CJ
0 0 −CJ Cg + CJ

⎞
⎟⎠ .

Let the transformed charging energy matrix be

ẼC = e2

2
C̃
−1 =

(
E(e)
C 0
0 E(a)

C

)
, (126)

with the exciton and agiton sub-matrices given by

E(e)
C = e2

(2C + Cg)(2C + Cg + 2CJ )

(
2C + Cg + CJ CJ

CJ 2C + Cg + CJ

)
, (127a)

E(a)
C = e2

Cg(Cg + 2CJ )

(
Cg + CJ CJ

CJ Cg + CJ

)
. (127b)

The Hamiltonian of the circuit in Fig. 7 then equals

H4−phase = 4E (e)
C,11

(
�2
Le + �2

Re

)
+ 8E (e)

C,12�Le�Re + 4E (a)
C,11

(
�2
La + �2

Ra

)
+8E (a)

C,12�La�Ra + V

= 2e2

2C + Cg
(�Le + �Re)

2 +
2e2

2C + Cg + 2CJ
(�Le − �Re)

2
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+
2e2

Cg
(�La + �Ra)

2 +
2e2

Cg + 2CJ
(�La − �Ra)

2 + V, (128)

using matrix entries E(e/a)
C,i j and

V = −2EJ cos

[
1

2

(
θLa − θRa

)]
cos

[
1

2
(θLe − θRe)

]
. (129)

We show in Appendix F that in the limit C � CJ ,Cg and when EJ is much smaller
than the characteristic energy of an agiton excitation, the four-phase gadget gives rise to
an effective potential in the zero-agiton subspace given by

Veff = −EJeff cos(θ̂1 + θ̂4 − θ̂2 − θ̂3), (130)

where the effective Josephson energy is given by

EJeff ≡
E2
J

4E (a)
C,diff

. (131)

Here the typical energy of an agiton excitation E (a)
C,diff is approximately given by, see

Eq. (F113) in Appendix F,

E (a)
C,diff ≈

e2

Cg + 2CJ
. (132)

For later convenience, we introduce the typical energy of a single exciton as

E (e)
C = 4E (e)

C,11 ≈ 2
e2

C
. (133)

In the following subsections, we will see that the perturbative four-phase gadget is
a fundamental building block of the 0-π qubit [12,13,50] in Sect. 5.3 and of Kitaev’s
current mirror qubit [15,16] in Sect. 5.4.

The crucial point here is that while the four-rotor Bacon–Shor encodes a logical rotor,
the 0-π and current mirror circuits aim to encode a qubit. Note that if we were to treat
the Josephson junctions perturbatively in the four-rotor Bacon–Shor Hamiltonian, we
still encode a logical rotor. Hence, in order to encode a qubit with the four-rotor circuit,
one uses inductors to ‘identify nodes’ and effectively tessellate a non-orientable surface,
as we will see.

5.3. The 0-π qubit as small real projective plane rotor code. The 0-π qubit Hamiltonian
in [12–14,51,52] can be seen as the smallest example of a quantum rotor code obtained
by tessellating RP

2. We start with the tessellation in Fig. 9a (left) with two rotors (on the
edges). The single face uses each edge twice so that the face constraint is HX = (2 − 2).
For later convenience, we label the vertices 1 and 3. The two vertex constraints are
identical and equal �̂1 + �̂3 = 0, or HZ = (1 1). The logical Z is a π -phaseshift on a

single edge, say Z = Z1(π) = eiπ�̂1 and X = ei(θ̂1−θ̂3). The dimensionless Hamiltonian
associated with the code is

H = (�̂1 + �̂3)
2 − cos[2(θ̂1 − θ̂3)]. (134)
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Fig. 9. a A very simple tiling of the real projective plane with two rotors and a representation of how it can
be associated with the 0-π qubit circuit. Each node (on an edge) is split into two nodes (grey dots) and we put
an inductor between them. Then two (large) capacitances are added on the edges to implement the capacitive
‘vertex stabilizers’. Finally, Josephson junctions are added to implement the ‘face stabilizer’ perturbatively
leading to the circuit in b. b Final circuit of 0-π qubit which can be viewed as a circuit-QED realization of
the code in a. The 0-π qubit is essentially the four-phase gadget in Fig. 7, with inductances on the diagonal
(capacitances Cg to ground are not shown in the picture).

It is clear that the potential energy has two minima, one at θ1 − θ3 = 0 and one at
θ1 − θ3 = π . In particular, the (unphysical) logical codewords are

|0〉 ∝
∑
�∈Z
|2�〉1|−2�〉3, |+〉 ∝

∫
T

dθ |θ〉1|θ〉3,

|1〉 ∝
∑
�∈Z
|2� + 1〉1|−2�− 1〉3, |−〉 ∝

∫
T

dθ |θ〉1|π + θ〉3. (135)

The question is how to obtain the second term in Eq. (134) using Josephson junctions.
A first solution was conceived in Ref. [12], which introduced the circuit of the 0-π qubit.
We note that engineering a 0-π circuit allowing an effective two-Cooper pair tunneling
process is also the goal of [53] which we do not analyze here. In Fig. 9a we sketch the
idea of how the 0-π circuit comes about from a simple tessellation of the real projective
plane, using the doubling of each rotor to two rotors coupled by an inductor. Figure 9b
shows the final circuit of the 0-π qubit. We see that the circuit of the 0-π qubit in Fig. 9b
is the same as that of the four-phase gadget in Fig. 7, with the addition of inductances
on the diagonal. More specifically, the system is operated in the regime of C � CJ ,Cg
and when the perturbative analysis in Appendix F is valid.

In what follows, we provide a simplified and intuitive explanation of why the circuit
of the 0-π qubit gives rise to the code associated with the Hamiltonian in Eq. (134), using
the exciton and agiton variables introduced in Sect. 5.2. We remark that in the literature a
different change of variables is usually used to study the 0-π circuit [13,14,52]. However,
the exciton-agiton picture lets one see the connection to the rotor code more clearly.
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The impedance of an inductor in the Fourier domain is ZL(ω) = iωL , which means
that at high frequencies the circuit behaves as an open circuit, while at low frequencies
it functions as a short circuit. In the four-phase gadget circuit, when C � CJ ,Cg agiton
excitations have high energy, i.e., high frequency. Thus, we expect intuitively that if
the inductance is large enough, it will behave as an open circuit with respect to the
agiton excitations, which are consequently only weakly affected. Mathematically, this
requires that the typical energy of an agiton excitation E (a)

C,diff given in Eq. (132) satisfies

E (a)
C,diff � EL , with EL = �2

0
4π2 L

the inductive energy of the inductor. This means that

the perturbative analysis in Appendix F is still valid if the previous condition is satisfied
and we expect that within the zero-agiton subspace the four-phase gadget effectively
gives a potential as in Eq. (130).

On the other hand, we want the inductor to behave as a short circuit within the low-
frequency, zero-agiton subspace. This condition requires that the energy of a typical
exciton E (e)

C defined in Eq. (133) and approximately equal to 2e2

C is much smaller than

EL . In this case, we can identify θ̂1 ≈ θ̂4, θ̂3 ≈ θ̂2, and obtain

Veff = −EJeff cos[2(θ̂1 − θ̂3)]. (136)

In what follows, we provide an analysis at the Hamiltonian level of the previous
argument. The classical Hamiltonian of the 0-π circuit, using the exciton and agiton
variables, is

H0−π = H4−phase +
EL

4
(θLa − θRa)

2 +
EL

4
(θRe + θLe)

2. (137)

where H4−phase is given in Eq. (128).
First, we note that the inductive terms do not couple excitons and agitons and the

effect of EL
4 (θ̂La − θ̂Ra)

2 is zero in the no-agitons subspace. This latter term induces
a coupling between different agiton variables, which we do not expect to modify the
perturbative analysis in Appendix F, as long as E (a)

C,diff � EL .
Next, in the zero-agiton subspace the idea is that the capacitive terms, which have

characteristic energy scale E (e)
C , are small relative to the inductive term. Then, the in-

ductive term can enforce θ̂Le + θ̂Re = θ̂1 − θ̂3 + θ̂2 − θ̂4 = 0 which leaves θ̂Le − θ̂Re =
θ̂1 + θ̂4 − θ̂2 − θ̂3 ≈ 2(θ̂1 − θ̂3), hence plugging this into Eq. (130) we realize the term
in Eq. (136). We note that this also implies �̂Le = −�̂Re = 1

2 (�̂1 − �̂3). Finally, we get
the Hamiltonian

H0−π ≈ E (e)
C (�̂1 − �̂3)

2 − 2EJeff cos[2(θ̂1 − θ̂3)], (138)

where the eigenstates must satisfy the zero-agiton constraint

�̂1 + �̂3 = 0, (139)

which effectively implements the Z -type stabilizer associated with the rotor code in
Eq. (134). Thus, in order for the eigenstates to represent the codewords of the rotor
code, we need to neglect the charging term in Eq. (138) and require

E (e)
C � EJeff . (140)
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Let us also examine the wavefunctions obeying these constraints. The zero-agiton sub-
space restricts the wavefunctions of the four variables θ1, θ2, θ3, θ4 to be states of the
form

|ψ〉 =
∑

�∈Z,�′∈Z
α�,�′ |�〉1|�′〉2|−�〉3|−�′〉4.

Now consider that this state has to obey the inductive energy constraint, θ̂1−θ̂3+θ̂2−θ̂4 =
0. This requires at least that the state is an approximate +1 eigenstate of ei(θ̂1−θ̂3+θ̂2−θ̂4),
hence α�+1,�′+1 = α�,�′ .

Now to be at a minimum of the effective potential in Eq. (130), one also wishes to

be a +1 eigenstate of ei(θ̂Le−θ̂Re) = ei(θ̂1−θ̂3−θ̂2+θ̂4), which implies α�+1,�′−1 = α�,�′ , or
α�,�′ = f (�+�′) (only a function of the sum �+�′). Thus, both constraints together imply
that α�,�′ is some constant for even � + �′ (and even � − �′), and (another) constant for
odd � + �′ (and odd �− �′). Such states can be made from a superposition of orthogonal
basis states

|0〉 =
∑

�∈Z,k∈Z
|�〉1|� + 2k〉2|−�〉3|−�− 2k〉4,

|1〉 =
∑

�∈Z,k∈Z
|�〉1|� + 2k + 1〉2|−�〉3|−�− 2k − 1〉4. (141)

If we use Eq. (3) and Fourier sums, one can also write

|+〉 ∝ |0〉 + |1〉 =
∫

dθ

∫
dθ ′|θ〉1|θ ′〉2|θ〉3|θ ′〉4,

|−〉 ∝ |0〉 − |1〉 =
∫

dθ

∫
dθ ′|θ〉1|θ ′〉2|θ + π〉3|θ ′ + π〉4. (142)

We observe that |±〉 are product states between nodes 1&3 and 2&4, i.e. they are of
the form |±〉 = |±〉|±〉 where |±〉 are the codewords in Eq. (135). Hence, the 0-π
circuit represents the code in ‘doubled form’ and we observe that due to this doubling

the logical Z is now a π -phaseshift on two rotors eiπ(�̂1+�̂3) while the logical X is the
same as before.

We note that in this analysis we have connected each node to ground via a capacitance
Cg while in the usual analysis one of the nodes is grounded itself. That grounding choice
would remove one degree of freedom, setting, say, θ = 0 in Eq. (142), so we get the
code without doubling.

5.4. Kitaev’s current-mirror qubit as thin Möbius-strip rotor code. Kitaev’s current
mirror qubit [15,16] has a direct interpretation as the quantum rotor code of the thin
Möbius strip discussed in Sect. 4.1.2 and Fig. 2. As stabilizer checks in the Hamiltonian
we have

Oc,X
j = cos(θ̂ j − θ̂N+ j + θ̂N+ j+1 − θ̂ j+1), j = 1, . . . , N − 1,

Oc,X
N = cos(θ̂N − θ̂2N − θ̂m+1 + θ̂1), j = N . (143)
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Fig. 10. Kitaev’s current mirror qubit [15,16]. The circuit can be viewed as a sequence of four-phase gadgets
discussed in Sect. 5.2 (highlighted in red) in the limit C � CJ ,Cg that we analyze in detail in Appendix F.
Each node is assumed to have a capacitance Cg to ground (not shown in the picture).

The weight-2 vertex Z checks are specified as

OZ
j = �̂ j + �̂N+ j , j = 1, . . . , N , (144)

The key to understand this mapping is the perturbative analysis of the four-phase
gadget circuit (in red in Fig. 10) as performed in [16] and shown in Appendix F. We
refer the reader to Appendix F for all the details, while here we highlight the main
features of the analysis:

• In the limit of C � CJ ,Cg it is energetically unfavourable to have charges on
the Josephson junction capacitance CJ and/or on the ground capacitance Cg . This
translates into the ‘no-agiton’ constraints

�̂ j + �̂m+ j = 0, j = 1, . . . , N , (145)

which is exactly the stabilizer constraint imposed by the weight-2, Z -type stabilizers
in Eq. (144).
• The Josephson potential associated with the two junctions in the four-phase gadget

is treated perturbatively. The perturbative regime corresponds to the condition

EJ

E (a)
C,diff

≈ EJ (Cg + 2CJ )

e2 � 1, (146)

with E (a)
C,diff defined in Eq. (132), under the additional assumption that

EJ,eff

E (e)
C

≈ E2
JC(Cg + 2CJ )

8e4 � 1, (147)

where we used the definition of the effective Josephson energy in Eq. (131), while
E (e)
C is given in Eq. (133), respectively. In this regime, the four-phase gadgets in

Kitaev’s current mirror qubit in Fig. 10 contribute terms in the Hamiltonian that are
dominated by the purely inductive terms given by (see Eq. (F129) in the Appendix
F)

− EJeff cos(θ̂ j − θ̂N+ j + θ̂N+ j+1 − θ̂ j+1), j = 1, . . . , N − 1,

− EJeff cos(θ̂N − θ̂2N − θ̂N+1 + θ̂1), j = N , (148)

while the charging terms are smaller in magnitude. The contributions in Eq. (148)
are exactly the terms of the X -type stabilizers in Eq. (143).
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• Consequently, the (unphysical) codewords of the thin Möbius strip given in Eq. (90)
give an ideal representation of the degenerate ground states of Kitaev’s current mirror
qubit.

We remark that Eq. (147) is not in contradiction with Eq. (146). In fact, we can
satisfy both constraints if we take a very large ratio E (a)

C,diff/EC , which again means
C � CJ ,Cg . In practice, we will have residual charging energy terms that can be seen
as a perturbation of the ideal rotor code Hamiltonian, and thus of the code subspace.

As for the spectrum of the Möbius strip qubit, we observe the following. If one takes
the Bacon–Shor strip with its circuit in Fig. 6 and adds the Josephson junctions with
a twist at the end to get the circuit in Fig. 10, then the degeneracy with respect to the
encoded logical rotor of the Bacon–Shor code is lifted through the additional Josephson
junctions. However, these rotor states still constitute many low-lying eigenstates (local
minima) as discussed in [16].

5.5. Distance and protection. In this subsection, we discuss in what way the distance
of the rotor code determines the level of noise protection of the encoded qubit or rotor.
It seems intuitive that the larger the X and Z distance, defined in Sect. 3.3, the more
protected the encoded qubit or rotor should be.

As a first comment, we note that we have assumed that a superconducting island is
characterized by (an excess) number of Cooper pairs �, but in practice any superconductor
has a distribution of dynamically-active (single electron) quasi-particles, as excitations
above the superconducting ground state. Rotor codes do not intrinsically protect against
this source of noise, as it breaks the assumption of the rotor model.

Otherwise, noise in superconducting devices can physically originate from many
sources, but can be classified as either charge noise, coupling to �̂, or flux noise coupling to

ei θ̂ . One can thus imagine that the code Hamiltonian in Eq. (80) is arrived at, imperfectly,

as Hcode + f ({ei θ̂i }) + g({�̂i }) where f () and g() are (time-dependent) functions which

are 1- or 2-local (or more generally O(1)-local) in the variables eθ̂i resp. �̂i (and which
may involve other noncoding degrees of freedom).

A large X distance dX suggests protection against flux noise, as the logical X cor-
responds to changing the number of Cooper pairs on a collection of superconducting
islands, which, via the OZ

j charging constraints in the code Hamiltonian in Eq. (80),

costs energy. If such processes, modeled by f ({ei θ̂i }), are present in the Hamiltonian
itself, then, if they are sufficiently weak to be treated perturbatively, their effect on the
spectrum would only be felt in dX -th order. This captures the idea of (zero-temperature)
topological order which, for qubit stabilizer codes, has been proved rigorously [54].
Similarly, one can think about a large Z distance δZ as protection against charge-noise
processes, and these processes are modeled by the additional term g({�̂i }) in the code
Hamiltonian, for example representing fluctuating off-set charges. However, there is no
direct argument for a gap in the spectrum with respect to these fluctuations, i.e. the
spectrum of Oc/s,X

j in Eq. (78) varies continuously, and this continuous freedom is also
expressed in the phenomenon of logical operator spreading suppressing the effective
distance δZ . Thus, we expect that the nature of a zero-temperature topological phase
transition for these systems would be fundamentally different than in the qubit case. In
particular, one may expect only a zero-temperature Kosterlitz–Thouless type transition
for a 2D rotor code, and only a proper memory phase for the 3D rotor code in Sect. 4.1.4.
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The nature of these phase transitions could be explicitly studied for a model of ac-
tive error correction in which one (inaccurately) measures the stabilizer observables,
and one can map the decoding problem onto a statistical mechanics problem, see e.g.
[6,55]. Our preliminary investigation shows that decoding the 2D rotor code under-
going continuous phase errors,—in a model of noiseless stabilizer measurements—,
maps onto a (disordered) 2D XY model, which does not exhibit spontaneous magneti-
zation due to the Mermin–Wagner theorem and can only undergo a finite-temperature
Kosterlitz–Thouless phase-transition. Similarly, the decoding problem for a 2D rotor
code undergoing discrete angular momentum errors can be related to a disordered 2D
solid-on-solid model [56]. It will be interesting to relate properties of these phase tran-
sitions in these disordered models to properties of a possible memory phase. A 3D rotor
code would similarly map to (disordered) 3D XY model and a 3D solid-on-solid model
for which one would expect a genuine memory phase for sufficiently weak noise. Natu-
rally, decoding the code when stabilizer measurements are inaccurate is the physically
more relevant question and can alter the nature of these phases.

Let us now further examine the consequences of distance for the Hamiltonians of
the 0-π qubit and the Möbius-strip qubit in particular. For both qubits, dX is only 2, not
growing with system size. If the qubits are operated in the presence of external flux, then
the Hamiltonian will contain terms such as−EJ cos(θ̂a− θ̂b +φext(t)) ≈ −EJ cos(θ̂a−
θ̂b) + EJφext(t) sin(θ̂a − θ̂b) + O(φ2

ext(t)), directly proportional to logical X of the thin
Möebius-strip code. Since the dependence on external flux (noise) only depends on a
small EJ in these circuits and one can work at a flux sweet-spot to remove first-order
effects, its effect on T1 and Tφ may be small, but should however get progressively worse
with N . Hence this qubit does not have flux noise protection beyond standard sweet-spot
arguments.

For the thin Möbius-strip qubit, δZ scales with N and this results in Tφ increasing
with N [16]. The effect of charge noise on T1 depends on transitions between the logical
|0〉 and |1〉 via multiple perturbative steps to higher levels, i.e. an individual noise term
in the Hamiltonian has the property that 〈0|g({�̂i })|1〉 = 0 as g() only affects O(1)

rotors. However, the analysis in [16] suggests that T1 decreases with N , but this may
be due to the authors defining T1 by any transition to a low-lying excited state (instead
of transitions from ‘a valley of states’ around |0〉 to a valley of states |1〉). However, as
the authors also note, transitions from |0〉 to |1〉 require stepping through N multiple
low-lying (energy scaling as 1/N ) excitations,—these excitations are the logical rotor
encodings of the Bacon–Shor code—, and one may expect that T1 = O(1) instead.

6. Discussion

In this paper, we have introduced a formalism of quantum rotor codes and have explored
how such codes can encode qubits via torsion of the underlying chain complex. We have
discussed physical realizations of these codes in circuit-QED and we have pointed out
some challenges and opportunities. Here we like to make a few concluding remarks.

It is not clear that a Hamiltonian encoding is preferred over realizing the code by
active error correction, measuring face and vertex checks, or perturbatively, by mea-
suring weight-2 checks by employing weakly-coupled circuits. It might be possible
to continuously measure a total charge on two islands (�̂i + �̂ j ) and simultaneously
weakly measure the current through a junction proportional to sin(θ̂a − θ̂b), to realize
the four-rotor Bacon–Shor code, in analogy with continuous monitoring of the four-qubit
Bacon–Shor code [57].



   53 Page 40 of 59 C. Vuillot , A.Ciani, B.M.Terhal

On the topic of two-body measurements, recently new families of quantum error cor-
rection protocols, named Floquet codes, have attracted interest [58]. They use carefully
chosen sequences of two-qubit measurements to stabilize a dynamical code space. The
first schemes involved Y operators and present a periodic Hadamard transformation of
the logical information, this hints that they most likely cannot work with quantum rotors.
Some other schemes use only Z Z - or XX -measurements [59,60] and could possibly be
adapted for quantum rotors. While it seems that the adaptation would work well on 2D
orientable manifolds, it is less clear if it would work on non-orientable manifolds which
is required in order to encode a logical qubit.

For a bosonic code such as the GKP code, a useful theory of approximate codewords
has been developed in various papers. It would be of interest to develop numerically-
useful approximations to explore rotor codes since the Hilbert space of multiple large
rotor spaces grows rather quickly and limits numerics.

The Josephson junction has been invoked to contribute a − cos(θ̂a − θ̂b) term to the
Hamiltonian, but the tunnel junction can also include some higher-order terms of the
form− cos(k(θ̂a− θ̂b)) for k > 1, which relate to the tunneling of multiple Cooper pairs
[61,62]. It is not clear whether such higher-order processes could help in engineering
the targeted code terms more directly.

As a separate observation, we note that the encoded qubit proposed in [63] does not
seem to be captured by the rotor code formalism. In [63] one uses Josephson junctions
and external fluxes φext through loops to generate terms of the form− cos(θ̂a− θ̂b+φext).
Degeneracy in the spectrum comes about from classical frustration in these (commuting)
potential terms, allowing to encode a qubit.

Another interesting avenue for further investigations is that of better constructions
of quantum codes based on quasi-cyclic codes [64–66] or modified products [67–70].
Notably it would be interesting to see if LDPC rotor code families with linear encoding
rate as well as growing distances for both dX and δZ exists. The main difficulty we see
is to be able to guarantee a lower bound on δZ . In the examples we presented we had to
degrade the other parameters of the codes to be able to prove a lower bound on δZ .

Finally some manifolds are equipped with a Riemannian metric, in such cases, a
relation can be established between the distance of the codes based on this manifold and
the size of the smallest non-trivial p-dimensional cycle according to the metric, called
the p-systole. Some D-dimensional Riemannian manifolds can exhibit so-called systolic
freedom, meaning that the size of the p-systole and q-systole, for p+q = D, multiply to
more than the overall volume of the manifold. Systolic freedom has been used to build the
first qubit codes with larger than

√
n distance [71]. Strikingly, this feature is more easily

obtained with integer coefficients than Z2 coefficients [72,73], and only recently more
than logarithmic freedom was obtained over Z2 [74]. An interesting question one can
ask is whether systolic freedom over integer coefficients can be used to obtain quantum
rotor codes with good parameters and what is the interplay between torsion and systolic
freedom. One complication needing further investigation is that contrary to the direct
relation between the p-systole and the corresponding dX the connection between the
p-cosystole and δZ is less straightforward due to the possibility of operator spreading.

Supplementary information

Relevant code to reproduce the results of the paper is available at Ref. [28].
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Appendix A Quantum Rotor Change of Variables

For continuous variable degrees of freedom representing, the 2n quadratures of, say
n, oscillators, it is common to perform linear symplectic transformations [6] which
preserve the commutation relations and which do not change the domain of the variables,
namely R

2n . For n rotor degrees of freedom one cannot perform the same transformations
and obtain a set of independent rotors. Imagine we apply a transformation A, with
�̂′j =

∑
k A jk �̂k , defining new operators. This in turn defines an operator Z ′(φ) =∏

j e
iφ j �̂

′
j =∏ j e

iφ j
∑

k A jk �̂k =∏k e
i
∑

j φ j A jk �̂k = Z(φ′) with φ′ = ATφ. We require

that φ′ ∈ T
n , implying that AT is a matrix with integer coefficients. Similarly, we can

let θ̂ ′j =
∑

k B jk θ̂k , defining X ′(m) = X (m′) with m′ = BTm. We also require that

m′ ∈ Z
n , which implies that BT is a matrix with integer coefficients. In order to preserve

the commutation relation in Eq. (16), we require that

∀m,φ X ′(m)Z ′(φ) = e−imφT
Z ′(φ)X ′(m) = e−im′φ

′T
Z ′(φ)X ′(m),

which implies that BAT = 1, or A = (BT )−1. Thus A needs to be a unimodular matrix,
with integer entries, having determinant equal to ±1. An example is a Pascal matrix

A =
⎛
⎝1 0 0

1 1 0
1 2 1

⎞
⎠ , B =

⎛
⎝1 −1 1

0 1 −2
0 0 1

⎞
⎠ .

In the circuit-QED literature other coordinate transformations are used for convenience
which are not represented as unimodular matrices. For example, for two rotors one can
define the (agiton/exciton) operators

θ̂± = θ̂1 ± θ̂2, �̂± = 1

2
(�̂1 ± �̂2).

In such cases it is important to understand that the new operators, even though the correct
commutation rules are obeyed, do not represent an independent set of rotor variables.
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Appendix B Quantum Qudit Code Corresponding to a Quantum Rotor Code

First, recall the definition of the cyclic groups Zd and Z
∗
d in Eq. (1) in Sect. 2, where

the group operation for Zd is addition modulo d and for Z
∗
d it is addition modulo 2π .

Given a qudit dimension d ∈ N
≥2, the Hilbert space of a qudit, HZd , is defined by d

orthogonal states indexed by Zd ,

∀ j ∈ Zd , | j〉 ∈ HZd . (B1)

The qudit quantum states are

|ψ〉 =
d∑
j=1

α j | j〉,
d∑
j=1

|α j |2 = 1. (B2)

The qudit generalized Pauli operators are given by

∀k ∈ Zd , Xd(k)| j〉 = | j + k (mod d)〉, (B3)

∀φ ∈ Z
∗
d , Zd(φ)| j〉 = eiφ j | j〉. (B4)

By direct computation we have the following properties

1 = Xd(0) = Zd(0), (B5)

Xd(k1)Xd(k2) = Xd(k1 + k2 (mod d)), (B6)

Zd(φ1)Zd(φ2) = Zd(φ1 + φ2 (mod 2π)), (B7)

and the commutation relation

Xd(k)Zd(φ) = e−iφk Zd(φ)Xd(k). (B8)

The multi-qudit Pauli operators are defined by tensor product of single-qudit Pauli op-
erators and labeled by tuples of Zd and Z

∗
d similarly to the rotor case. If we have integer

matrices HX and HZ as in Definition 1 we can define a qudit stabilizer code as follows.

Definition 3 (Quantum Qudit Code, Cd(HX , HZ )). Let HX and HZ be two integer ma-
trices of size rx × n and rz × n respectively, such that

HX H
T
Z = 0. (B9)

We define the following group of operators, S, and call it the stabilizer group:

Sd = 〈Zd(ϕHZ )Xd(sHX ) | ∀ϕ ∈ Z
∗
d
rz , ∀s ∈ Z

rx
d 〉. (B10)

We then define the corresponding quantum qudit code, Cd(HX , HZ ), on n quantum
rotors as the code space stabilized by S:

Cd(HX , HZ ) = {|ψ〉 ∣∣ ∀P ∈ Sd , P|ψ〉 = |ψ〉}, (B11)
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In other words: to go from the quantum rotor code to the qudit code we restrict the phases
to d th roots of unity and pick the X operators modulo d. A general definition of qudit
stabilizer codes (beyond the ‘CSS’ codes described here) can be found at the error
correction zoo.

We can relate logical operators from a quantum rotor code and the corresponding qudit
code. Pick a non-trivial logical X operator for Crot(HX , HZ ), that is to say, let

X(m) = X (mLX + sHX ). (B12)

The following then holds:

0 = (mLX + sHX ) HT
Z (B13)


 ∃s′, s′HX = mLX + sHX . (B14)

Eq. (B13) still holds if taken modulo d so Xd(mLX + sHX ) is a valid logical X operator
for Cd(HX , HZ ). On the other hand, Eq. (B14) might not hold when considering things
modulo d. This is the case for instance in the projective plane where taking d = 3 makes
the logical operator become trivial since −2 = 1 (mod 3). Note that these cases only
occur for logical operators in the torsion part of the homology.

For the Z logical operators we can get a logical operator from the rotor code to the
qudit code if and only if the logical operator is generated with Z

∗
d phases.

φ, ν ∈ Z
∗
d
k
, Z(φ) = Z(φLZ + νHZ ). (B15)

In this case we have that

0 = (φLZ + νHZ ) HT
X , (B16)


 ∃ν′ ∈ T
rZ , ν′HZ = φLZ + νHZ , (B17)

and Eqs. (B16) and (B17) will remain valid when restricting phases to Z
∗
d (note that

addition is modulo 2π in Eqs. (B16) and (B17)). That is to say, some Z logical operators
present in the quantum rotor code can be absent in the qudit code if these logical operators
come from the torsion part, from some Zp and d does not divide p.

Appendix C Bounding the Z Distance from Below

This appendix proves Eq. (76) in the proof of Lemma 1. Given m ∈ 
X , with n = |m|,
we want to lower bound the following quantity from Eq. (75):

min
φ∈Tn , k∈Z
m·φ=α+2kπ

WZ (φ) = min
φ∈Tn , k∈Z
m·φ=α+2kπ

n∑
j=1

sin2
(

φ j

2

)
. (C18)

We define the Lagrangian function

L(φ, λ) =
n∑
j=1

sin2
(

φ j

2

)
− λ (m · φ − α − 2kπ) . (C19)

We can compute the partial derivatives of L

∀ j, ∂L
∂φ j

= 1

2
sin(φ j )− m jλ, (C20)

https://errorcorrectionzoo.org/c/qudit_stabilizer
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∂L
∂λ
= α + 2kπ − m · φ. (C21)

According to the Lagrange multiplier theorem [75] there exists a unique λ∗ for an optimal
solution φ∗ such that {∀ j, sin(φ∗j ) = 2m jλ

∗,
m · φ∗ = α + 2kπ.

(C22)

For the optimal solution we have, for each j , two options for φ∗j :

φ∗j =
{

arcsin
(
2m jλ

∗) ,
π − arcsin

(
2m jλ

∗) . (C23)

We set a binary vector x with x j = 0 if it is the first case and x j = 1 if it is the second.
We deduce that

α + 2kπ =
n∑
j=1

m jφ
∗
j (C24)

=
n∑
j=1

(−1)x j m j arcsin
(
2m jλ

∗) + wπ (w = WH (x)). (C25)

with Hamming weight WH (). From now on we restrict ourselves to the case where
m j = ±1.

⇒ α + (2k − w)π

n − 2w
= arcsin

(
2λ∗
)
. (C26)

Let’s compute the objective function

WZ (φ∗) =
n∑
j=1

sin2

(
φ∗j
2

)
(C27)

= (n − w) sin2
(

α + (2k − w)π

2(n − 2w)

)
+ w cos2

(
α + (2k − w)π

2(n − 2w)

)
(C28)

= (n − w)

2

(
1− cos

(
α + (2k − w)π

n − 2w

))
+

w

2

(
1 + cos

(
α + (2k − w)π

n − 2w

))

(C29)

= n

2
+

2w − n

2
cos

(
α + (2k − w)π

n − 2w

)
. (C30)

We can assume that

w <
n

2
, (C31)

as the other case behaves symmetrically and the case w = n/2 always yields WZ (φ∗) =
n/2 (see Eq. (C28)). Minimizing over w and k will give the lower bound. From Eq. (C30)
we always have

WZ (φ∗) ≥ w. (C32)
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We consider the asymptotic regime when n →∞. If w grows with n then WZ (φ∗) has
to grow as well. Therefore choosing w constant can (and indeed will) yield a smaller
value for WZ (φ∗). Hence we fix w to a constant from now on. We can always put each
φ∗j in the range [−π, π) so that k is in the range [−n/2, n/2]. To minimize WZ (φ∗) one
needs to make

α + (2k − w)π

n − 2w
∼ 0, (C33)

for which the best choice of k ∈ [−n/2, n/2] is k = 0. In fact w = 0 is also the best
choice, since

WZ (φ∗) = n

2
+

2w − n

2
cos

(
α + (2k − w)π

n − 2w

)
(C34)

= n

2
+

2w − n

2
cos

(
α − wπ

n − 2w

)
(C35)

= w +
1

4n
(α − πw)2 + o

(
w2

n

)
. (C36)

Therefore, with w = 0, we have

WZ (φ∗) = n

2

(
1− cos

(α

n

))
= α2

4n
+ o

(
1

n

)
. (C37)

Appendix D Orientability and Single Logical Qubit at the (D − 1) Level

We consider the case of a rotor code Crot(HX , HZ ) where the entries in HX and HZ
are taken from {−1, 0, 1} and HX has the additional property that each column contains
exactly 2 non-zero entry. This corresponds to the boundary map from D to D− 1 in the
tessellation of a closed D-dimensional manifold (in 2D edges are adjacent to exactly 2
faces, in 3D faces are adjacent to exactly 2 volumes etc.…). We also assume that the
bipartite graph obtained by viewing HX as an adjacency matrix (ignoring the signs) is
connected. This corresponds to the D-dimensional manifold being connected.

We want to consider the possibility that there is some Zp torsion, for an integer p ≥ 2,
at the (D− 1)-level in the corresponding chain complex. For this it needs to be the case
(see Eq. (42)) that there exist s ∈ Z

rX such that

sHX = pv, (D38)

and such that

v 
∈ im(HX ). (D39)

For any entry of pv, say j , we have that

pv j = ±sk ± sl , (D40)

for some k and l. Since the manifold is connected this implies that all entries of s have the
same residue modulo p, say r ∈ {1, . . . , p− 1} (r cannot be zero without contradicting
Eq. (D39)). In turns this means that

pv = 2ru + pw, (D41)
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where u is a vector with entries in {−1, 0, 1} and w some integer vector. We conclude
from this that p is necessarily even, so p = 2q. Hence we have

q (v − w) = ru. (D42)

This implies in turn that q divides r , say r = tq. Although we have tq = r < p = 2q
hence

r = q. (D43)

Which yields

quHX = 2qv′, (D44)

where v′ differs from v by the boundary of the quotient of s by p. We see that v has in
fact order 2 as the q simplifies and so we can fix q = 1 and p = 2. This leaves the only
the possibility of r = 1 and so s has only odd entries.

Finally any Z2 torsion generator v1 and v2 are related by a boundary since the cor-
responding s1 and s2 (having each only odd entries) sum to a vector with even entries
so

s1 + s2

2
HX = v1 + v2. (D45)

This concludes the proof that any finite tessellation of a connected closed D-dimensional
manifold has either Z2 or no torsion in the homology group HD−1(M, Z) at the (D−1)-
level. In particular rotor codes obtained from a 2D manifold will have at most one logical
qubit and some number of logical rotors.

We remark that in this picture the manifold is orientable if there is a choice of signs
for the D cells s ∈ {−1, 1} such that

sHX = 0, (D46)

in which case there is no torsion since v is necessarily trivial.

Appendix E Products of chain complexes

In this Appendix we detail the construction of quantum rotor codes from the product of
chain complexes given in Sect. 4.2. We explore three settings, the first to encode logical
rotors, the next two to encode qudits.

We use this construction on two integer matrices seen as chain complexes of length
2. Take two arbitrary integer matrices ∂C ∈ Z

mC×nC and ∂D ∈ Z
nD×mD . They can be

viewed as boundary maps of chain complexes

C : Z
mC

∂C−→ Z
nC

H1(C) = ker(∂C) H0(C) = Z
nC /im(∂C)

D : Z
nD ∂D−→ Z

mD

H1(D) = ker(∂D) H0(D) = Z
mD/im(∂D),

(E47)

where the homology groups are given in the second row. Taking the product C ⊗D will
give a chain complex of length 3 characterized by two matrices HX and HZ

C ⊗D : Z
mCnD HX−−→ Z

nCnD+mCmD
HT
Z−−→ Z

nCmD . (E48)
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The matrices HX and HZ can be written in block form as

HX =
(
∂C ⊗ 1nD −1mC ⊗ ∂D

)
, (E49)

HZ =
(
1nC ⊗ ∂DT

∂CT ⊗ 1mD

)
. (E50)

The homology in the middle level, corresponding to the rotor code logical group, can
be characterized according to the Künneth formula in Eq. (101) as

H1(C ⊗D) �
(

ker(∂C)⊗ Z
mD/im(∂D)

)

⊕
(
Z
nC /im(∂C)⊗ ker(∂D)

)

⊕ Tor
(
Z
nC /im(∂C), Z

mD/im(∂D)
)

. (E51)

E.1 Free+Free product: logical rotors. By picking, for ∂C and ∂D, matrices which are
full-rank, rectangular, with no torsion and with

kC = nC − mC > 0, (E52)

kD = nD − mD > 0, (E53)

we can ensure that

Z
nC /im(∂C) = Z

kC , ker(∂D) = Z
kD , (E54)

and, that all other terms in Eq. (E51) vanish, such that we get, using Eq. (100)

H1(C ⊗D) = Z
nC /im(∂C)⊗ ker(∂D) = Z

kCkD , (E55)

that is to say, a rotor code encoding logical rotors. This configuration is the common
one when using the hypergraph product to construct qubit codes. To obtain the X logical
operators we can use the following matrix, LX , acting only on the first block of rotors:

LX =
(
EC ⊗ GD 0

)
, (E56)

where GD and EC are the generating matrices for ker(∂D) and Z
nC /im(∂C) respectively.

It is straightforward to check that HZ LT
X = 0 by definition of GD and that HX cannot

generate the rows of LX by definition of EC . To obtain the Z logical operators we can
use the following matrix, LZ , also acting only on the first block of rotors:

LZ =
(
GC ⊗ ED 0

)
, (E57)

where GC and ED are the generating matrices for ker
(
∂CT

)
and Z

nD/im
(
∂DT

)
re-

spectively. It is straightforward to check that HX LT
Z = 0 by definition of GC and that

HZ cannot generate the rows of LZ by definition of ED .
If ∂D is a full-rank parity check matrix of a classical binary code with minimum

distance dD, we get the following lower bound on the X distance

dC⊗DX ≥ dD, (E58)



   53 Page 48 of 59 C. Vuillot , A.Ciani, B.M.Terhal

using Theorem 2 and the known lower bound of the X distance of the qubit code corre-
sponding to the hypergraph product obtained by replacing all the rotors by qubits [36].
So we have for parameters

�nCnD + mCmD, (kCkD, 0), (�(dD), O(dC))�rot. (E59)

The weight of the logical Z operators in Eq. (E57) is O(dC) but they could be spread
around using Z stabilizers. To bound the Z distance using Lemma 1 one can try to get
a large set of disjoint logical X operators by considering sets of the type


X (eCi ⊗ gDj ) =
{((

ei ⊕ ∂C(s)
)⊗ gDj 0

)
| s ∈ S ⊂ Z

mC
}

, (E60)

where eCi is the i th row of EC and gDj the j th row of GD and the set S is the largest

subset of Z
mC which generates elements ei ⊕ ∂C(s) that are pairwise disjoints. The best

to hope for is a set S of size linear in nC for which we would have per Lemma 1

δZ = �

(
nC
dD

)
. (E61)

This is guaranteed for instance if ∂C is the parity check matrix of the repetition code.
Very similar to the Möbius and cylinder rotor codes in Sects. 4.1.2 and 4.1.3, one needs
to ‘skew the shape’ in order to have a growing distance δZ . So choosing for ∂C the
standard parity check matrix of the repetition code with size nC = �(n2

D) and a good
classical LDPC code for ∂D, with dD = �(nD) and kD = �(nD), one would have as
parameters of the C ⊗D code

�n,
(
�( 3
√
n), 0

)
,
(
�( 3
√
n),�( 3

√
n)
)
�rot. (E62)

To provide a concrete example, we can pick the [7, 4, 3]Hamming code with parity check
matrix, H , generator matrix, G, and generator matrix for the complementary space of
the row space of the parity-check matrix, E , given by

H =
⎛
⎝1 1 1 0 0 1 0

0 1 1 1 0 0 1
1 0 1 1 1 0 0

⎞
⎠ , G =

⎛
⎜⎝

1 0 0 0 −1 −1 0
0 1 0 0 0 −1 −1
0 0 1 0 −1 −1 −1
0 0 0 1 −1 0 −1

⎞
⎟⎠ , E =

⎛
⎜⎝

1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎞
⎟⎠ .

(E63)

We can set

∂C = H, ∂D = HT , (E64)

and so for the stabilizers

HX =
(
H ⊗ 17 −13 ⊗ HT

)
(E65)

HZ =
(
17 ⊗ H HT ⊗ 13

)
. (E66)

This rotor code has 58 physical rotors and 16 logical rotors. The minimal X distance is
dX = 3 and the minimal Z distance, δZ , is such that

3 ≥ δZ (α) ≥ 3 sin2
(

α
6

)
+ 9 sin2

(
α
18

)
sin2(α

2 )
−−−→
α→0

4

9
. (E67)
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This last inequalties are obtained by picking for the upper bound a logical Z represen-
tative

Z = Z
(
α
(
e1 ⊗ g1 0

))
, (E68)

and, for the lower bound, picking 
X (e1 ⊗ g1) as in Eq. (E60),


X (e1 ⊗ g1) =
{(
e1 ⊗ g1 0

)
,
(
(e1 + h1)⊗ g1 0

)}
. (E69)

To summarize the parameters we have

�58, (16, 0), (3, δZ )�rot, 3 ≥ δZ ≥ 4

9
. (E70)

E.2 Torsion+free product: logical qudits. In order to get some logical qudits in the
product we can do the following: Pick for ∂C a square matrix (nC = mC ), with full-rank
still, but also some torsion, that is to say

Z
nC /im(∂C) = Zd1 ⊕ · · · ⊕ ZdkC

, ker(∂D) = Z
kD . (E71)

The other terms in Eq. (E51) vanish and we get, using Eq. (100)

H1(C ⊗D) = Z
nC /im(∂C)⊗ ker(∂D) =

(
Zd1 ⊕ · · · ⊕ ZdkC

)kD
. (E72)

In this case the rotor code encodes logical qudits. The generating matrix for the logical
X operators is given by the same expressions as Eq. (E56). For the Z logical operators,
the expression is similar to Eq. (E57)

LZ =
(
G ′C ⊗ ED 0

)
, (E73)

but the generating matrix G ′C has a slightly different interpretation. It is actually related
to the weak boundaries defined in Eq. (42). The i th row of G ′C , gi , is such that

∂C gTi = di eT , (E74)

for some integer vector e 
∈ im(∂C) and di comes from Eq. (E71). This allows for

HX

(
2π
di
gi ⊗ eDj 0

)T = (∂C ⊗ 1nD −1mC ⊗ ∂D
) ( 2π

di
gi ⊗ eDj 0

)T
(E75)

= 2π
(
e⊗ eDj 0

)T
, (E76)

where eDj is the j th row of ED , i.e some element not generated by ∂D.

One simple choice for ∂C is derived from the repetition code with a sign twist:

∂C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0
. . . 0 0

0 1 −1
. . . 0 0

0 0 1
. . . 0 0

. . .
. . .

. . .
. . .

. . .
. . .

0 0 0
. . . 1 −1

1 0 0
. . . 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E77)
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This matrix is full rank and exhibits Z2 torsion with Z
nC /im(∂C) = Z2. This implies that

the logical code space of the product code contains kD qubits. This also guarantees we
can find a set of disjoint logical X representatives of size linear in nC as in the previous
section, see Eq. (E60). All in all with this choice, a good classical LDPC code for ∂D
with dD = �(nD) and kD = �(nD), and choosing once again a ‘skewed shape’ with
nC = �(n2

D), we can get a family of rotor codes with parameters

�n,
(

0, 2�( 3√n)
)

,
(
�( 3
√
n),�( 3

√
n)
)
�rot. (E78)

An other way to obtain a square matrix, ∂C , with more torsion of even order say, is to
take the rectangular, full-rank parity check matrix of a binary code, say H ∈ {0, 1}m×n
and define

∂C = HT H (mod 2). (E79)

In some cases such matrix will be full rank over R but not over F2. In particular for a
codeword of the binary code g ∈ ker(HT ) we would have

∂C gT = HT H gT = 2eT , (E80)

for some integer vector e 
∈ im(∂C) which then represents some even order torsion. This
choice can yield better encoding rates but we do not have a general way of bounding the
δZ distance in this case.

For instance, for the [7, 4, 3] Hamming code given in Eq. (E63), we have

∂C = HT H (mod 2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 1 0
1 0 0 1 0 1 1
0 0 1 0 1 1 1
1 1 0 0 1 0 1
1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (E81)

which is full rank, so ker(∂C) = {0}. We have Z
nC /im(∂C) = Z2⊕Z2⊕Z2⊕Z4, and

G ′C =
⎛
⎜⎝
−1 0 0 1 0 1 −1
−1 0 0 0 1 1 0
−1 1 0 0 1 0 −1
−1 1 −1 1 1 1 −1

⎞
⎟⎠ , E ′C =

⎛
⎜⎝

1 0 0 −1 0 0 0
1 0 1 0 0 0 0
1 −1 0 0 0 0 0
1 0 0 0 0 0 0

⎞
⎟⎠ , (E82)

where E ′C gives generators for Z
nC /im(∂C), the last row of E ′C is the generator of order

4 and G ′C is related to E ′C according to Eq. (E74).
So choosing ∂C = HT H (mod 2) and ∂D = HT yields a code with parameters

�70, (0, 212 · 44), (3, δZ )�rot, 3 ≥ δZ ≥ 18 sin2
( π

12

)
. (E83)

For the lower bound on δZ we pick 
X (e′1 ⊗ g1) as in Eq. (E60),


X (e′1 ⊗ g1) =
{(
e′1 ⊗ g1 0

)
,
(
(e′1 + ∂C2 )⊗ g1 0

)
,
(
(e′1 + ∂C5 )⊗ g1 0

)}
. (E84)
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E.3 Torsion+Torsion Product: Logical Qudits. Finally, one can take for both ∂C and ∂D
such full-rank square matrices with some torsion, and then get a logical space through
the Tor part of Eq. (101). Since the torsion groups have to agree (see Eq. (102)) we can
pick, for instance, both ∂C and ∂D in the same way as Eq. (E79), ensuring that they have
a common Z2 part. We would have

Z
nC /im(∂C) = Zd1 ⊕ · · · ⊕ ZdkC

, Z
mD/im(∂D) = Zp1 ⊕ · · · ⊕ ZpkD

, (E85)

where the di and p j are all even integers. All other terms vanish and we get

H1(C ⊗D) = Tor
(
Z
nC /im(∂C), Z

mD/im(∂D)
)
=
⊕
i, j

Zgcd(di ,p j ). (E86)

Since the di and p j were all chosen to be even, each term of Eq. (E86) is at least Z2 or
larger. The X logical operators are now slightly different than Eq. (E56),

LX =
(
�C
(
E ′C ⊗ G ′D

) −�D
(
G ′C ⊗ E ′D

))
. (E87)

The matrices �C and �D are integer diagonal matrices of size (kC × kD)2 defined as

�C = Diag

(
di

gcd
(
di , p j

)
)

, �D = Diag

(
p j

gcd
(
di , p j

)
)

. (E88)

They are such that given the matrices with the torsion orders on the diagonal, DC and
DD ,

DC = Diag
(
d1, d2, . . . , dkC

)
, DD = Diag

(
p1, p2, . . . , pkD

)
, (E89)

we have that

(
1kC ⊗ DD

)
�C =

(
DC ⊗ 1kD

)
�D = Diag

(
di p j

gcd
(
di , p j

)
)

. (E90)

The matrices G ′C and E ′C , and G ′D and E ′D , in Eq. (E87), are related to the weak
boundaries. More precisely, we have

∂CT G ′C
T = E ′C

T DC , (E91)

∂DT
G ′D

T = E ′D
T DD. (E92)

With this we can check that

HZ L
T
X =

(
1nC ⊗ ∂DT

∂CT ⊗ 1mD

) (
�C
(
E ′C ⊗ G ′D

) −�D
(
G ′C ⊗ E ′D

))T (E93)

=
(
E ′C

T ⊗ E ′D
T DD

)
�C −

(
E ′C

T DC ⊗ E ′D
T
)

�D (E94)

=
(
E ′C

T ⊗ E ′D
T
)

(1⊗ DD)�C −
(
E ′C

T ⊗ E ′D
T
)

(DC ⊗ 1) �D (E95)

= 0, (E96)

where the last line is obtained from the previous one using Eq. (E90). One can see that it
is crucial to get some common divisor in the torsion of C and D. If there is no common
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divisor for some pair (di , p j ) then the corresponding entries in �C and � j would be di
and p j respectively. It would still follow that the corresponding row in LX commutes
with the Z stabilizers but it would also be trivial (because generated by the X stabilizers)
since we have that

gC
′
i ⊗ gD

′
j HX = gC

′
i ⊗ gD

′
j

(
∂C ⊗ 1nD −1mC ⊗ ∂D

)
(E97)

= (di eC ′i ⊗ gD
′
j −p j gC

′
i ⊗ eD ′j

)
. (E98)

For the Z logical operators we have

LZ =
(
U
(
G ′C ⊗ E ′D

)
V
(
E ′C ⊗ G ′D

))
, (E99)

where the matrices U and V are diagonal matrices of size (kC × kD)2 recording the
smallest Bézout coefficients for all pairs (di , p j ), i.e so that diui j− p jvi j = gcd(di , p j ),
we therefore have that

(DC ⊗ 1)U − (1⊗ DD) V = Diag
(
gcd(di , p j )

)
. (E100)

We can check that

HX L
T
Z =

(
∂C ⊗ 1nD −1mC ⊗ ∂D

) (
U
(
G ′C ⊗ E ′D

)
V
(
E ′C ⊗ G ′D

))T (E101)

=
(
E ′C

T DC ⊗ E ′D
T
)
U −

(
E ′C

T ⊗ E ′D
T DD

)
V (E102)

=
(
E ′C

T ⊗ E ′D
T
)

((DC ⊗ 1)U − (1⊗ DD) V ) (E103)

=
(
E ′C

T ⊗ E ′D
T
)

Diag
(
gcd(di , p j )

)
. (E104)

We see that this would be trivial when multiplied by phases in Z
∗
gcd(di ,p j )

.
As for a concrete example, we can again use the Hamming code and the square matrix

in Eq. (E81) for both ∂C and ∂D. This example as well as other examples of square parity
check matrices of classical codes can be found in [76] where they are used in a product
for different reasons. The parameters are given by

�98, (0, 215 · 4), (3, δZ )�rot, 3 ≥ δZ . (E105)

Observe that compared to the qubit version,—a qubit code with parameters �98, 32, 3�
given in [76], the quantum rotor code has a bit above half as many qubits. This is due to
the fact that in the qubit case the two blocks do not have to conspire to form logical X
operators but can do so independently.

Appendix F Schrieffer-Wolff Perturbative Analysis of the Four-Phase Gadget

In this Appendix, we derive an effective low-energy Hamiltonian for the four-phase
gadget introduced in Sect. 5.2 and shown in Fig. 7. We will focus on the regime where
C � Cg,CJ and when EJ is smaller than the typical energy of an agiton excitation.
Our analysis will closely follow the one of the current-mirror qubit in Ref. [16]. In order
to perform the perturbative analysis, we work with exciton and agiton variables, and our
starting point is the quantized version of the classical Hamiltonian shown in Eq. (128).

WhenC � Cg,CJ the charging energy of a single exciton in either the left or the right

rung is given by E (e)
C given in Eq. (133) in the main text, which is much smaller than
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the energy of a single agiton 4E (a)
C,11 = 4e2 Cg+CJ

Cg(Cg+2CJ )
. We want to obtain an effective

low-energy Hamiltonian for the zero-agiton subspace defined as

Ha=0 =
{|ψ〉 | �̂L ,Ra |ψ〉 = 0

}
. (F106)

We will denote the non-zero agiton subspace, perpendicular to Ha=0 as Ha 
=0.
We carry out the perturbative analysis using a Schrieffer-Wolff transformation follow-

ing Ref. [77]. In our case, the unperturbed Hamiltonian is the charging term

H0 = 4E (e)
C,11

(
�̂2
Le + �̂2

Re

)
+ 8E (e)

C,12�̂Le�̂Re + 4E (a)
C,11

(
�̂2
La + �2

Ra

)
+ 8E (a)

C,12�̂La �̂Ra

(F107)

while the perturbation is given by the Josephson contribution

V = −2EJ cos

[
1

2

(
θ̂La − θ̂Ra

)]
cos

[
1

2

(
θ̂Le − θ̂Re

)]
. (F108)

In order to understand the relevant processes, let us consider a state withme ∈ Z excitons
on the left rung and m′e ∈ Z excitons on the right rung. We denote this state as |me,m′e〉
and it is formally defined as a state in the charge basis such that

|me,m
′
e〉 = |�Le = me, �Re = m′e, �La = 0, �Ra = 0〉
= |�1 = me, �2 = m′e, �3 = −me, �4 = −m′e〉. (F109)

We also wrote the state in terms of the original charge operators because the action
of the Josephson potential is more readily understood in terms of these variables. In
fact, the Josephson junction on the upper (lower) part of the circuit in Fig. 7 allows
the tunneling of a single Cooper-pair from node 1 (3) to node 2 (4), and vice versa.
Thus, a transition |me,m′e〉 ↔ |me − 1,m′e + 1〉 within the zero-agiton subspace can be
effectively realized via two processes which are mediated by the non-zero agiton states

|a+;me,m
′
e〉 = |�Le = me − 1

2
, �Re = m′e +

1

2
, �La = −1

2
, �Ra = 1

2
〉

= |�1 = me − 1, �2 = m′e + 1, �3 = −me, �4 = −m′e〉, (F110a)

|a−;me,m
′
e〉 = |�Le = me − 1

2
, �Re = m′e +

1

2
, �La = +

1

2
, �Ra = −1

2
〉

= |�1 = me, �2 = m′e, �3 = −me + 1, �4 = −m′e − 1〉. (F110b)

The two processes are

|me,m
′
e〉 → |a+;me,m

′
e〉 → |me − 1,m′e + 1〉, (F111a)

|me,m
′
e〉 → |a−;me,m

′
e〉 → |me − 1,m′e + 1〉, (F111b)

as well as the opposite processes.
The above-mentioned processes cause hopping of two Cooper-pairs from one rung

to the other. However, we also have to take into account the second order processes
which bring back a single Cooper-pair to the rung where it was coming from. These
processes are also mediated by the non-zero agiton states in Eq. (F110). The effect
of these processes is to shift the energy of |me,m′e〉, but we will see that in a first
approximation each state |me,m′e〉 gets approximately the same shift and so we are
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essentially summing an operator proportional to the identity in the zero-agiton subspace,
which is irrelevant.

The charging energy of an exciton state |me,m′e〉 is

E(me,m
′
e) = 4E (e)

C,11

(
m2

e + m′2e
)

+ 8E (e)
C,12mem

′
e, (F112)

while the intermediate non-zero agiton states |a±;me,me〉 both have the same charging
energy

E(a;me,m
′
e) = 4E(e)

C,11

(
me − 1

2

)2
+ 4E(e)

C,11

(
m′e +

1

2

)2
+ 8E(e)

C,12

(
me − 1

2

)(
m′e +

1

2

)

+ 2
(
E(a)
C,11 − E(a)

C,12

) ≈ 2
(
E(a)
C,11 − E(a)

C,12

) = 2e2

Cg + 2CJ
≡ 2E(a)

C,diff (F113)

where the last approximation is valid when me,m′e are small. Analogously, the states
|a±;me,m′e〉 have energy

E(a;me,m
′
e) = 4E (e)

C,11

(
me +

1

2

)2

+ 4E (e)
C,11

(
m′e −

1

2

)2

+ 8E (e)
C,12

(
me +

1

2

)(
m′e −

1

2

)
+ 2
(
E (a)
C,11 − E (a)

C,12

) ≈ 2E (a)
C,diff . (F114)

In the limit of C � Cg,CJ we can also make the approximation

E(a;me,m
′
e)− E(me,m

′
e) ≈ 2E (a)

C,diff . (F115)

The matrix elements of the perturbation, i.e., the Josephson potential in Eq. (F108)
between the exciton states and the intermediate agiton states are given by

〈me,m
′
e|V |a±;me,m

′
e〉 = −

EJ

2
. (F116)

Importantly, these are the only non-zero matrix elements of V between states in Ha=0
and Ha 
=0.

We now proceed with the perturbative Schrieffer-Wolff analysis. Let Ea=0 (Ea 
=0) be
the set of eigenvalues of H0 associated with eigenvectors in Ha=0 (Ha 
=0). We denote
by Pa=0 the projector onto the zero-agiton subspace and by Pa 
=0 the projector onto the
subspace orthogonal to it. We define the block-off-diagonal operator associated with the
perturbation V in Eq. (F108) as

Vod = Pa=0V Pa 
=0 + Pa 
=0V Pa=0 = Pa=0V Pa 
=0 + h.c. (F117)

The effective second order Schrieffer-Wolff Hamiltonian is given by

Heff = Pa=0(H0 + V )Pa=0 +
1

2
Pa=0[S1, Vod]Pa=0, (F118)

where the approximate generator of the Schrieffer-Wolff transformation is given by the
anti-Hermitian operator

S1 = S̃1 − h.c., (F119)
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with

S̃1 =
∑

E∈Ea=0

∑
E ′∈Ea 
=0

〈E |Vod|E ′〉
E − E ′

|E〉〈E ′|. (F120)

The first term on the right-hand side of Eq. (F118) reads

Pa=0(H0 + V )Pa=0 = 4E (e)
C,11(�̂

(e)
0,L)2 + 4E (e)

C,11(�̂
(e)
0,R)2 + 8E (e)

C,12�̂
(e)
0,L �̂

(e)
0,R, (F121)

where the operators �̂0,L and �̂
(e)
0,R are the projection of the exciton charge operators �̂

(e)
L ,R

onto the zero-agiton subspace, i.e., �̂
(e)
0,L = Pa=0�̂

(e)
L Pa=0 and �̂

(e)
0,R = Pa=0�̂

(e)
R Pa=0.

The operators �̂
(e)
0,L and �̂

(e)
0,R have only integer eigenvalues.

The explicit calculation of S̃1 using Eq. (F116) gives

S̃1 = −1

2

∑
me,m′e∈Z

∑
s=±

EJ

E(me,m′e)− E(a;me,m′e)
|me,m

′
e〉〈as;me,m

′
e| − h.c..

(F122)

Straightforward algebra shows that the last term in Eq. (F118) can be simply rewritten
as

1

2
Pa=0[S1, Vod]Pa=0 = 1

2
S̃1Pa 
=0V Pa=0 + h.c.. (F123)

Writing explicitly Pa 
=0V Pa=0 gives

Pa 
=0V Pa=0 = − EJ

2

∑
me,m′e∈Z

∑
s=±

|as;me,m
′
e〉〈me,m

′
e|. (F124)

Plugging into Eq. (F123), we obtain6

1

2
Pa=0[S1, Vod]Pa=0= 1

4

∑
me,m′e∈Z

E2
J

E(me,m′e)− E(a;me,m′e)
|me,m

′
e〉〈me,m

′
e|

+
1

4

∑
me,m′e∈Z

E2
J

E(me,m′e)− E(a;me,m′e)
|me,m

′
e〉〈me − 1,m′e + 1| + h.c.

= 1

2

∑
me,m′e∈Z

E2
J

E(me,m′e)− E(a;me,m′e)
|me,m

′
e〉〈me,m

′
e|

+
1

4

( ∑
me,m′e∈Z

E2
J

E(me,m′e)− E(a;me,m′e)
|me,m

′
e〉〈me − 1,m′e + 1| + h.c.

)
.

(F125)

We obtain the effective Hamiltonian

Heff = 4E (e)
C,11(�̂

(e)
0,L)2 + 4E (e)

C,11(�̂
(e)
0,R)2 + 8E (e)

C,12�̂
(e)
0,L �̂

(e)
0,R

6 Notice that all the
∑
± sums account for a factor of 2 here.



   53 Page 56 of 59 C. Vuillot , A.Ciani, B.M.Terhal

+
1

2

∑
me,m′e∈Z

E2
J

E(me,m′e)− E(a;me,m′e)
|me,m

′
e〉〈me,m

′
e|

+
1

4

( ∑
me,m′e∈Z

E2
J

E(me,m′e)− E(a;me,m′e)
|me,m

′
e〉〈me − 1,m′e + 1| + h.c.

)
.

(F126)

Using the approximation in Eq. (F115) we can write the effective Hamiltonian more
compactly as

Heff = 4E (e)
C,11(�̂

(e)
0,L)2 + 4E (e)

C,11(�̂
(e)
0,R)2 + 8E (e)

C,12�̂
(e)
0,L �̂

(e)
0,R

− E2
J

4E (a)
C,diff

(
1

2

∑
me,m′e∈Z

|me,m
′
e〉〈me − 1,m′e + 1| + h.c.

)
− E2

J

4E (a)
C,diff

Pa=0, (F127)

where the last term proportional to Pa=0 can be neglected since it is the identity on the
zero-agiton subspace. We identify the operators eiθ0,L and eiθ0,R as

eiθ
(e)
0,L =

∑
me∈Z

|me〉〈me − 1| ⊗ I, eiθ
(e)
0,R = I ⊗

∑
m′e∈Z

|m′e〉〈m′e − 1| (F128)

where the subscript 0 specifies that these are defined within the zero-agiton subspace.
In this way we rewrite the effective Hamiltonian as

Heff = 4E (e)
C,11(�̂

(e)
0,L)2 + 4E (e)

C,11(�̂
(e)
0,R)2 + 8E (e)

C,12�̂
(e)
0,L �̂

(e)
0,R − EJ,eff cos(θ̂ (e)

0,L − θ̂
(e)
0,R),

(F129)

with the effective Josephson energy EJ,eff defined in Eq. (131) of the main text. Finally,
in terms of the original node variables projected onto the zero-agiton subspace that we
denote as θ̂0,k we get

cos(θ̂ (e)
0,L − θ̂

(e)
0,R) = cos(θ̂0,1 + θ̂0,4 − θ̂0,3 − θ̂0,2). (F130)
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