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Chapter 1

Introduction

This chapter provides a brief introduction to microscopy and adaptive optics,
with references to the relevant literature. The concept of resolution in micro-
scopy is introduced by considering the simple case of a self-luminous point ob-
ject. We then consider scanning microscopy, with references to confocal and
two-photon microscopy. We discuss the detrimental e�ects that aberrations
have on image-forming systems by mentioning the geometrical wavefront, the
phase aberration function, and Zernike polynomials. Aberrations can be min-
imised using adaptive optics, which we introduce in its original application for
astronomy. The problem of wavefront sensing is considered by examining the
classical Shack–Hartmann wavefront sensor. Finally, we discuss adaptive optics
in microscopy by considering specimen-induced aberrations, direct wavefront
sensing, and wavefront sensorless adaptive optics.

1.1 Microscopy

1.1.1 Introduction

Amicroscope, from the ancient Greek μικρός “small” and σκοπεῖν “see”, is an instrument
used to examine objects that are too small for the naked eye [1]. Some evidence [2] sug-
gests that the �rst microscope was invented in the Netherlands in 1595 by Jansen Sacha-
rias, a Dutch spectacle-maker originally from Den Haag. Sacharias’s microscope allowed
to view an object magni�ed up to nine times with respect to its original size [2, 3]. The
name “microscope” was coined later in 1625 by Giovanni Faber [1], who used it to denote
the microscope developed by Galileo Galilei. Robert Hooke popularised microscopy as an
investigation tool by publishing in 1665 his book Micrographia, which contained draw-
ings of his observations made with a microscope probably built by Christopher Cock.
A decade later, thanks to the discoveries of Antoni van Leeuwenhoek, microscopy had
already become an established tool for scienti�c research, and has been developed further
ever since.

Nowadays, �uorescence microscopy [4] is widely used in life sciences. This technique
allows to selectively analyse a structure of interest inside a specimen, by labelling it with
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1. Introduction

a �uorescent dye, or by relying on the intrinsic �uorescence of the structure. The func-
tional properties of the structure can be studied by recording 3D views with a scanning
microscope. Laser light is used to excite the �uorophores of the dye, which subsequently
re-emit light with a longer wavelength. The �uorescence emission is conveniently sep-
arated from the excitation light and collected onto a detector to generate high-contrast
images.

1.1.2 The resolving power

A fundamental property in microscopy is the resolving power [5], which we consider in
this section. In Fig 1.1, the reference frame centred in O denotes the object space, where
the specimen is positioned. The reference frame centred in O ′ denotes the image space,
where the image the of the specimen is formed. A point source is located inO and emits a
monochromatic radiation with wavelength λ. The microscope maps the �eld distribution
inO to a corresponding �eld distribution inO ′. Due to the di�raction of light [5, 6] at the
circular pupil of the microscope objective, the intensity of the �eld in O ′ is proportional
to [7, 8, 9]

Iw (v ) =
�����
2J1 (v )

v

�����
2

, (1.1)

where J1 (·) is the �rst-order Bessel function of the �rst kind [10], andv is the normalised
lateral coordinate, which is de�ned as [7]

v =
2π

λ
rn sin(α ). (1.2)

The normalised lateral coordinatev is related to r , the radial coordinate in the x ′y ′ plane,
i.e., r = (x ′2+y ′2)1/2. n is the index of refraction [5] in the object space, and α is the acute
angle that the marginal ray [5] makes with the optical axis OO ′. The product n sin(α ) is
the object-side numerical aperture, which is denoted as NA.

Throughout this introduction, we always assume that the paraxial approximation [7, 5] is
valid, and only consider the Fraunhofer approximation [5, 11] for the di�raction of light.
More re�ned models, which are suitable for modern microscope objectives, have been
developed in the literature, see for example [12, 13] and the references therein.

For a given microscope objective, the manufacturer provides the equivalent paraxial
quantities for the magni�cation M and the numerical aperture NA. These quantities are
related to the focal length f and to the radius of the pupil a of the microscope objective
by [12]

f = F/M , a =
F · NA
M
, (1.3)

where F is the focal length of the tube lens of the microscope, which is a constant �xed
to 200mm for Leika and Nikon [12].

A plot of Iw (v ) is found in Fig. 1.2, where it can be seen that the intensity of the �eld due
to a point source in O has a maximum value in O ′ but is also non-zero in the rest of the
x ′y ′ plane. The Rayleigh criterion [5] is employed as a reference to quantify the spread of
Iw (v ) within the x ′y ′ plane. This criterion considers the �rst minimum of Iw (v ), which

2



1.1 Microscopy

Figure 1.1: Simpli�ed illustration of a microscope. The reference frame centred in O is
the object space, where the index of refraction [5] is n. The reference frame
centred in O ′ is the image space, where the image is formed. The marginal
rays [5] depart from O , touch the edges of the entrance pupil (EnP), emerge
from the edges of the exit pupil (ExP), and meet again in O ′. The circular
entrance pupil has radius a. The angle between the optical axisOO ′ and the
marginal ray is α .

3



1. Introduction

occurs for v ≈ 1.220π . Using this criterion, the lateral resolution is de�ned as

rl ≈ 1.220λ/(2 · NA). (1.4)

If the distance between two points in the object space is less than rl , then the two points
are said to be unresolved. The lateral resolving power of the microscope is de�ned as [5]
1/rl .

0.0π 0.5π 1.0π 1.5π 2.0π 2.5π 3.0π

v

0.0

0.2

0.4

0.6

0.8

1.0

I w
(v
)

0π 1π 2π 3π

10
−10

10
−7

10
−4

10
−1

Figure 1.2: Pro�le of the intensity Iw (v ) of the �eld due to a point source inO . The pro�le
is radially symmetric in the x ′y ′ plane, and is reported here as a function of
the normalised coordinatev . Themain lobe centred inO , called theAiry disk,
is surrounded by attenuated concentric rings. The full Airy disk, obtained
by rotation along the z ′ axis is reported later in Fig. 1.6. Note that the local
minima in the inset plot are actually zeros.

To examine the Rayleigh criterion in more detail, consider two incoherent point sources
located atO and P in the xy plane. The intensity of the total �eld due to the two sources
in the x ′y ′ plane is shown in Fig. 1.3 for four di�erent locations of P along the radial
coordinate r . The separate contributions due toO and P can be distinguishedmore clearly
as the distance d (O ,P ) is larger than rl . On the contrary, for d (O ,P ) < rl , it appears that
a single point source is present in the xy plane.

Similarly, one can also consider the intensity of the �eld along the z ′ axis, and de�ne the
axial resolution as [4]

ra ≈ 2λn/NA2, (1.5)

where n is the index of refraction [5] in the object space. The axial resolving power is
then de�ned as 1/ra .

4



1.1 Microscopy

d (O, P ) = 0.5 · rl d (O, P ) = 0.8 · rl

d (O, P ) = 1.0 · rl d (O, P ) = 1.5 · rl

Figure 1.3: Illustration about the Rayleigh criterion. The �gure shows the intensity of
the �eld due to two incoherent point sources inO and P within the xy plane
in Fig. 1.1. It is easier to tell the two sources apart as d (O ,P ) becomes larger
than rl .
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1. Introduction

The conclusion from this section is that the resolving power in conventional microscopy
is limited by the wavelength (λ) and by the numerical aperture (NA) according to Eq. (1.4)
and Eq. (1.5). To improve the resolving power, i.e., to achieve smaller values for rl and
ra , one possibility is to consider a shorter λ. Nevertheless, λ is subject to constraints de-
termined, for example, by the type of �uorophores used and by the availability of suitable
microscope objectives. A second possibility is to choose a microscope objective with a
higher NA.When an oil-immersion objective [4] is used, the numerical aperture can be as
high as 1.4 [14]. In the next subsections we introduce two di�erent imaging techniques
that allow to improve the resolving power with respect to the conventional microscope
described in this section. It should also be noted that measurement noise, which was not
considered in this section, is also a limiting factor to the resolving power [15].

1.1.3 Scanning microscopy

Scanning microscopy is a sequential image acquisition technique, whereby the image is
built point by point executing a raster-type scan [7, 4]. This technique provides higher
resolving powers with respect to conventional microscopy [7], and 3D views of biological
specimens. In the following subsections two types of scanning microscopes are brie�y
introduced.

1.1.4 Confocal microscopy

Confocal microscopy (CM) was invented and patented by Minsky in 1957 [16]. In com-
bination with �uorescent labels, CM provides 3D views of biological specimens [17, 18].

An illustration of a confocal microscope is found in Fig. 1.4. In a modern confocal micro-
scope, laser light (laser) is focused by the objective towards a pointO within the specimen
(S), creating a double cone illumination pro�le along the optical axis. The �uorescence
emission from the double cone is collected by the objective and separated from the excita-
tion light using a dichroic beam splitter (DB). A pinhole (P), which is located in the image
space before the detector, lets through the �uorescence emitted from O , but blocks the
�uorescence emitted from the out-of-focus planes I and J . An image can be composed
by moving the specimen (S) within the xy plane.

We now consider the lateral resolution of a confocal microscope when a point object is
located inO , which is equivalent to assume that the concentration of �uorophores is non-
zero only in O . Neglecting for simplicity the �nite size of the pinhole [19, 20] P and the
di�erence in wavelength between the excitation light (λil l ) and the �uorescence emission
(λf l ), it can be shown that [7, 21] the intensity of the �eld in O ′ is proportional to

Ic (v ) =
�����
2J1 (v )

v

�����
4

. (1.6)

In Fig. 1.5, it can be seen that Ic (v ) has a sharper main lobe and reduced side lobes with
respect to Iw (v ), which results in an improved lateral resolution [7, 21]. Similarly it can be
shown that the axial resolution [22, 7, 21] is also improved. A comparison between Iw (v )
and Ic (v ) is also found in Fig. 1.6, where the case of an extended object is considered.

6



1.1 Microscopy

Figure 1.4: Illustration of a confocal microscope. Laser light propagates from left to right
(λil l ), passes through a dichroic beam splitter (DB) and is focused inside the
specimen, which is depicted as a box (S). A double-cone illumination pro�le
is created inside the specimen. The �uorescence emission from each point in
the double cone propagates right to left (λf l ), is collected by the microscope
objective, and is re�ected by DB towards a detector covered by a pinhole
(P). Because the pinhole aperture and O are confocal, only the �uorescence
emission from O reaches the detector, whereas the remaining emission is
blocked.

7



1. Introduction

0.0π 0.5π 1.0π 1.5π 2.0π 2.5π 3.0π

v

0.0

0.2

0.4

0.6

0.8

1.0

Iw (v )

Ic (v )

0π 1π 2π 3π

10
−20

10
−12

10
−4

Figure 1.5: Comparison of the intensity pro�les of a conventional (Iw (v )) and a confocal
microscope (Ic (v )). Ic (v ) exhibits a thinner main lobe and reduced outer
rings. As a consequence, a higher resolving power is expected when using
confocal microscopy.

8



1.1 Microscopy

Iw (·) Ic (·)

Figure 1.6: The top row shows the intensity of the �eld due to a point source in O for a
conventional (Iw (·)) and for a confocal (Ic (·)) microscope. The disk in the top
left image is called Airy disk. In the bottom left-hand corner, the intensity of
the �eld in the image space is shownwhen a self-luminous extended object is
examined with a conventional microscope. In the bottom right-hand corner,
the same object is assumed to be labelled with a �uorescent dye and imaged
using a confocal microscope.
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1. Introduction

1.1.5 Two-photon excitation microscopy

Two-photon excitationmicroscopy (2PEM)was developed byDenk et al. in 1990 [23], and
uses the nonlinear light-matter interaction phenomenon of two-photon absorption, pre-
dicted by Göppert-Mayer [24] in 1931, to induce the �uorescence emission [25]. Contrary
to CM, where the emission originates from the whole double cone illumination pro�le as
depicted in Fig.1.4, in 2PEM most of the emission originates from a small focal volume
centred in O , where the intensity of the �eld is su�ciently high [25]. In 2PEM one uses
near-infrared excitation light, which can penetrate deeper inside the specimen [25, 26].
An improved resolving power is also obtained without including the confocal pinhole
in front of the detector [23, 26]. Nevertheless, an expensive pulsed laser source must be
used to achieve the instantaneous peak intensity necessary for the two-photon absorp-
tion [25], and a broader focal spot is generated due to the longer illumination wavelength.

It can be shown [27] that the intensity of the �eld in O ′, due to a point object in O , is
proportional to

I2 (v ) =
�����
2J1 (v/2)

v/2

�����
4

, (1.7)

where the 1/2 factor accounts for using an illumination wavelength of 2λ to generate the
�uorescence emission with wavelength λ. A plot of I2 (v ) is reported in Fig. 1.7. From this
simple analysis, it appears that the resolution achievable with 2PEM is worse with respect
to conventional and confocal microscopy. In spite of this, CM and 2PEM achieve com-
parable resolutions in practice [28, 29]. This can be concluded by a more re�ned analysis,
where the e�ect of the �nite pinhole [30, 31] and the Stokes shift [28] are considered for
CM. In addition, the excitation wavelength used for 2PEM is often shorter [28] than 2λ,
where λ is the wavelength that one would use for CM. The resolving power can further
be improved in 2PEM by including a confocal pinhole [32, 33].

1.2 Aberrations

1.2.1 Introduction

Amicroscope that achieves one of the resolving powers outlined in the previous sections
is said to be di�raction-limited, i.e., its resolving power is only constrained by the phe-
nomenon of the di�raction of light [5, 6]. Unfortunately, this ideal case is never attained
in practice, and the actual resolving power is limited, instead, by the presence of aberra-
tions [8, 11, 34]. Aberrations can be caused by imperfections in the optical components,
such as manufacturing defects in the pro�les of lenses, or by incorrect alignment within
the optical system, for example when the axis of a lens does not coincide with the op-
tical axis of the rest of the system. More importantly, aberrations are caused when light
passes through a medium in which the index of refraction n is not constant, but varies
as a function of time or space. Two notable examples of such media are the turbulent
atmosphere of the earth [35] and biological specimens [36, 37, 38].
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Figure 1.7: Comparison of the intensity pro�les of a conventional (Iw (v )), confocal
(Ic (v )), and two-photon microscopy (I2 (v )) where the same emission
wavelength is assumed.
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1.2.2 The geometrical wavefront

We use some intuitive geometrical optics arguments to try to convey how spatial vari-
ations of n within an optical system lead to aberrations. With reference to Fig. 1.8, con-
sider a point source inO , and assume that the propagation of light fromO up to the exit
pupil (ExP) is described using geometrical optics [8, 5]. Also assume that the index of re-
fraction is equal to one in both the object and the image space. The ray that departs from
O , follows the optical axis and �nishes at the centre of the exit pupil P0, has travelled a
certain optical path length, i.e,

[OP0] =

∫ P0

O

nds, (1.8)

where the line integral is taken along the curvilinear coordinate s , which follows the path
of the ray through the optical system. Similarly, we can take all the other rays that depart
fromO , pass through the optical system and travel the same amount of optical path length
[OP0]. The surface that passes through the end-points of all these rays is called a wave-
front. For a di�raction-limited optical system, the wavefront coincides with the Gaussian
reference sphere [5, 8]Vд , which is a spherical surface with centre of curvature inO ′. We
can repeat the same procedure when the optical system is a�ected by aberrations, and
de�ne a di�erent surface V . If we consider the ray depicted as a dashed line in Fig. 1.8,
the wave aberration is given by the optical path length di�erence [P̄1P1] = [OP1]− [OP̄1].
In the example in Fig. 1.8, the path length di�erence is caused by a patch depicted in grey

Figure 1.8: Geometrical optics description of the wavefront. Light rays depart from O ,
pierce the entrance pupil (EnP) and travel through the optical system exiting
at the exit pupil (ExP) and converging to O ′. One light ray depicted as a
dashed line travels through a region where the index of refraction is n2 , 1.
The corresponding wave aberration is given by [P̄1P1].

in the object space, where the index of refraction is n2 , 1.
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1.2 Aberrations

1.2.3 The phase aberration function

We now consider the scalar di�raction theory [8, 11] and conveniently assume that the
Fraunhofer approximation is valid [5, 11]. The e�ects of the aberrations can be modelled
using the generalised pupil function (GPF) [11], i.e.,

P (ρ,θ ) = A(ρ,θ ) exp(iΦ(ρ,θ )). (1.9)

The GPF is a complex-valued function de�ned over the normalised pupil of the optical
system, which we assume to be circular. The real-valued functionA(ρ,θ ) accounts for the
amplitude aberrations, e.g., due to amplitude apodisation [11]. Instead, the real-valued
function Φ(ρ0,θ0) accounts for the phase aberrations. Considering a point (ρ0,θ0) in the
pupil disk, we have that that the phase aberrationΦ(ρ0,θ0) is equal to (2π/λ) ·OPD, where
OPD is the optical path di�erence discussed in the previous subsection.

Assuming that the exit pupil of the optical system is the unit disk and that a point source
is located in O , the intensity of the �eld in the x ′y ′ plane is proportional to [5, 11]

I (v,ϕ) =
1

π

�����
∫ 1

0

∫ 2π

0
P (ρ,θ ) exp(ivρ cos(θ − ϕ)) ρ dρ dθ

�����
2

. (1.10)

Note that for A(ρ,θ ) = 1 and Φ(ρ,θ ) = 0, one can compute the integral analytically [7]
and recover I (v,ϕ) = Iw (v ) from Eq. (1.1).

1.2.4 Zernike polynomials

It is useful to analyse the phase aberrations by decomposing Φ(ρ,θ ) into a series of
Zernike polynomials [39, 5, 40], which are a complete set of orthogonal polynomials
de�ned over the unit disk. Orthogonal polynomials have also been derived for other
pupil geometries in [41, 42, 43]. For a circular pupil, we have

Φ(ρ,θ ) =
∑

n,m

αmn Zm
n (ρ,θ ), (1.11)

where indices n ∈ N0 andm ∈ Z denote respectively the radial order and the azimuthal
frequency of the Zernike polynomialZm

n , and are such that n − |m | ≥ 0 and even 1 The
coe�cients of the Zernike polynomials are denoted by αmn ∈ R. Each Zernike polynomial

Zm
n is given by the product of a radial polynomial R |m |n (ρ) and a trigonometric function

Θm
n (θ ),

Zm
n (ρ,θ ) = cmn R

|m |
n (ρ)Θm

n (θ ). (1.12)

The coe�cients cmn and the functions Rmn (ρ) and Θm
n (θ ) are de�ned as follows,

cmn =

√
n + 1 m = 0

√

2(n + 1) m , 0
, Θm

n (θ ) =


cos(mθ ) m ≥ 0

− sin(mθ ) m < 0
, (1.13)

1 We use the symbol n to denote both the radial order of a Zernike polynomial and the index of refraction,
as is commonly done in the literature [5]. No confusion should arise since the distinction is clear from the
context.
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Rmn (ρ) =

(n−m)/2
∑

s=0

(−1)s (n − s )!
s! ( n+m2 − s )! (

n−m
2 − s )!

ρn−2s . (1.14)

Here, we have ordered and normalised the Zernike polynomials according to Noll [44].
A table of the �rst 37 Zernike polynomials and a list of properties are available in [40].

Zernike polynomials represent classical aberrations [5] that are combined tominimise the
aberration variance over the pupil [45, 42], and are widely employed in optical design and
adaptive optics. The �rst three Zernike polynomials, the piston (Z0

0 ), x-tilt (Z1
1 ), and y-

tilt (Z−11 ), are reported in Fig. 1.9. The column on the left shows a plot of Φ = 0.8Zm
n , the

central column shows the intensity of the �eld in the image plane due to a point source,
and the column on the right reports the intensity of the �eld in the image plane due to
a self-luminous object, assuming an incoherent shift-invariant imaging system [11]. As
can be seen, these three aberrations a�ect neither the image quality nor the resolving
power. In fact, the piston aberration is not detectable from the intensity in the image
plane, and the x-tilt and y-tilt correspond to shifts in the image plane. Therefore, the
images are di�raction-limited and the Rayleigh criterion is applicable. Finally, the image
generated by a point source can be computed analytically, and is equivalent to Iw (v ).

In Fig. 1.10, the defocus (Z0
2 ), and the primary astigmatisms (Z−22 and Z2

2 ) are shown.
For the defocus aberration, the same arguments outlined in the �rst paragraphs could be
applied if the image plane were moved to the defocused position along the z ′ axis 2. Nev-
ertheless, in the current position of the image plane (z ′ = 0), the image is not di�raction-
limited, as the image of the point source shows a larger main lobe than the one expected
from the Rayleigh criterion. The astigmatism aberrations lead to a decreased resolving
power. Note that in this case it is di�cult to assess the resolving power, since the in-
tensity pro�le of the �eld due to a point source is not radially symmetric. This analysis
holds also for the primary coma aberrations (Z−13 andZ1

3 ), and a trefoil aberration (Z−33 )
reported in Fig. 1.10.

It is useful to associate a scalar indicator to a given phase aberration function Φ(ρ,θ ), so
that one can compare the severity of two di�erent phase aberration functions by com-
paring the two indicators. Using the following functionals [40, 46],

Ek [Φ] =
1

π

∫ 1

0

∫ 2π

0
Φ(ρ,θ )k ρ dρ dθ , (1.15)

for k = 1 and k = 2, one can de�ne [40] the variance 3 and the rms of Φ(ρ,θ ) as

var(Φ) = E2[Φ] − (E1[Φ])
2, rms(Φ) = (E2[Φ])

1/2. (1.16)

Exploiting the orthogonality properties of the Zernike polynomials and the normalisation
factors cmn in Eq. (1.13), one has that [40] E1[Φ] = α

0
0 and E2[Φ] =

∑

n,m (αmn )2. Therefore

2It should be remarked that if the hypothesis of shift-invariance is not valid or other e�ects such as vignet-
ting are not negligible [11], then Z1

1 , Z−11 and Z0
2 may indeed a�ect the resolving power.

3Note that even though the name “variance” is commonly used, the functionΦ(ρ, θ ) is deterministic, and the
functionals Ek [Φ] compute the de�nite integrals of Φ(ρ, θ )k in the unit disk. No probability density function
is considered here.
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Z0

0

Z1

1

Z−1
1

Figure 1.9: Examples of Zernike aberrations. In each row, we have Φ(ρ,θ ) =

0.8Zm
n (ρ,θ ). A plot of Φ(ρ,θ ) is reported in the left column. The intensity

of the �eld in the image plane is reported in the central and right columns,
respectively when a point object and a self-luminous extended object are
present in the object space. The piston (Z0

0 ), x-tilt (Z1
1 ), and y-tilt (Z−11 )

polynomials are shown in each row.
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Z0

2

Z−2
2

Z2

2

Figure 1.10: See the caption of Fig. 1.9. The defocus (Z0
2 ), and the primary astigmatisms

(Z−22 andZ2
2 ) polynomials are shown in each row.

one can evaluate the functionals above using the following simple formulas,

var(Φ) =
∑

n,0,m,0

(αmn )2, rms(Φ) = *,
∑

n,m

(αmn )2+-
1/2

. (1.17)

These results are motivated by the fact that, except for the piston Z0
0 , Zernike poly-

nomials have unit variance and zero mean value (E1[·]) over the unit disk. In fact, the
piston mode is commonly neglected in adaptive optics literature, since it does not a�ect
the image as seen in the �rst row in Fig. 1.9. When a �nite set of Nα Zernike polyno-
mials is considered, one can collect the corresponding Zernike coe�cients into a vector
α ∈ RNα , and neglect the piston by arbitrarily setting α0

0 = 0. In this case, we have that
rms(Φ) = (var(Φ))1/2, and one can easily compute the rms by evaluating the 2-norm of
α , i.e., rms(Φ) = ‖α ‖.

1.3 Adaptive optics

1.3.1 Introduction

Adaptive optics (AO) is concerned with minimising the aberrations in an optical system,
and was initially conceived by Babcock [47] in 1953 to counteract “seeing”, the detri-
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Z−1
3

Z1

3

Z−3
3

Figure 1.11: See the caption of Fig. 1.9. The primary coma (Z−13 and Z1
3 ), and a trefoil

aberration (Z−33 ) polynomials are shown in each row.

mental e�ect on astronomical observations caused by the turbulent atmosphere of the
earth. An adaptive optics systemwas also independently described by Linnik in 1957 [48].
When considering only phase aberrations [35], the objective of AO is to render the phase
aberration function Φ(ρ,θ ) identically zero over the pupil 4, which implies that all the
Zernike coe�cients αmn are also zero.

An illustration of an adaptive optics system is found in Fig. 1.12. Light emitted from
a distant celestial object propagates through space, where n is uniformly equal to one,
and reaches the atmosphere of the earth. At this point no phase aberration is present. As
light propagates through the atmosphere and reaches the aperture of a telescope, it passes
through a turbulent medium where n varies randomly as function of time and space. As
a consequence, a phase aberration Φab is found in the entrance pupil of the telescope.
The aperture of the telescope is reimaged onto a deformable mirror [35, 49, 50] (DM)
with Na actuators, which introduces a controllable phase aberration Φdm , such that the
residual phase aberration after re�ection by the DM becomes Φr = Φab +Φdm . An image
of the celestial object is �nally formed by focusing the light onto a detector (CCD). A
beam splitter (BS) directs part of the light onto a wavefront sensor (SH), which provides
an estimate of Φr , for example in the form of a set of Nα Zernike coe�cients collected
into a vector α̂ ∈ R

Nα . A controller (C) receives α̂ as input, and computes a vector
u ∈ R

Na that contains the control signals of the Na actuators of the DM. The objective

4The phase aberrations are also completely suppressed when Φ(ρ, θ ) = α 0
0 · Z0

0 for a non-zero α 0
0 . As seen

earlier, we can neglect the piston coe�cient and assume α 0
0 = 0.
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of the controller is to minimise ‖α̂ ‖.

Figure 1.12: Example of an adaptive optics system. An aberrated wavefront is incident
on the aperture of a telescope, which is reimaged onto a DM. After re�ec-
tion on the DM, light passes through beam splitter BS and is focused onto
a CCD detector. The residual phase aberration is Φr = Φab + Φdm , where
Φab and Φdm are respectively the initial wavefront aberration and the ab-
erration introduced by the DM. Part of the light is directed by BS onto a
wavefront sensor SH, which estimates a �nite set of Zernike coe�cients.
The controller C uses α̂ to drive the actuators of the DM u and cancel the
aberration.

The problem of controlling an AO system has been extensively studied for astronomy
applications [35]. For example, optimal control algorithms [51, 52, 53, 54] and adaptive
algorithms [55, 56] have been investigated. A comprehensive review of control strategies
for AO is found in [57, 58]. More recently, e�ort has been spent in devising control al-
gorithms for large-scale AO systems [59, 60, 61, 62, 63, 64], where the wavefront correct-
ing element is expected to have up to 40000 degrees of freedom [64].

Adaptive optics has also found numerous applications in other �elds. For example, AO
has been recently considered to counteract thermally-induced aberrations in EUV litho-
graphy [65, 66, 67], and to suppress spherical aberration in laser machining [68]. Extens-
ive use of AO is now common in �elds such as ophthalmology [69, 70, 34, 71], optical
coherence tomography [72, 73, 74, 75, 76], and microscopy [36, 37, 38].

1.3.2 Shack–Hartmann wavefront sensing

The wavefront sensor has a pivotal role in AO, as it allows the controller to compute
the necessary aberration correction. An example of a wavefront sensor is the Shack–
Hartmann wavefront sensor [77, 78, 79] (SHWFS), which has been extensively studied
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1.3 Adaptive optics

and experimentally validated in astronomy applications [35]. It consists of an aper-
ture with small lenses, called the lenslet array, that focus light onto a CCD detector,
see Fig. 1.13. Each lens de�nes a subaperture that samples a di�erent part of the wave-
front in the pupil of the optical system. In this section we describe in some detail the

Figure 1.13: Illustration of the Shack–Hartmann wavefront sensing principle. (a) A �at
wavefront is incident on the lenslet array of the SHWFS. The CCD detector
records a focal spot for each subaperture. (b) An aberrated wavefront is
incident on the lenslet array. The focal spots are displaced from their ref-

erence position. (c) Plot of the displacement vector (s
(j )
x ,s

(j )
y ) referenced to

the centre O (j ) of the subaperture (j ).

implementation of a modal-based wavefront reconstruction method. We provide the for-
mulas to compute the de�nite integrals of the Zernike polynomial gradients over each
subaperture. These integrals can be easily computed since the domain of integration is
normal in θ , and the Zernike polynomials are separable in polar coordinates. To the best
knowledge of the author, these formulas have not been reported in the literature.

We assume that the SHWFS has a circular aperture so that the phase aberration is given
by Φ(ρ,θ ) =

∑

n,m αmn Zm
n (ρ,θ ). To calibrate the SHWFS, light from a point source is col-

limated generating a plane wave with negligible phase aberration (Φ(ρ,θ ) ≈ 0), which is
then directed towards the SHWFS. As a consequence, a focal spot appears in each region
of the CCD that corresponds to a subaperture, see Fig. 1.13(a). For each subaperture (j ),

the centre of the focal spot (x
(j )
c ,y

(j )
c ) is found by computing the centroids

x
(j )
c =

∑

i xipi
∑

i pi
, y

(j )
c =

∑

i yipi
∑

i pi
, (1.18)

where pi is the intensity measured by the pixel in location (xi ,yi ), in a global reference
frame within the CCD surface, which is centred to aperture of the SHWFS.
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During normal operation, an aberratedwavefront is incident on the SHWFS, as illustrated
in Fig. 1.13(b), causing a displacement of the focal spots. As depicted in Fig. 1.13(c), the

displacements s
(j )
x and s

(j )
y are found by computing the centroids with respect to the ref-

erence position O (j ) located at (x
(j )
c ,y

(j )
c ) in each subaperture, i.e.,

s
(j )
x =

∑

i (xi − x (j )c )pi
∑

i pi
, s

(j )
y =

∑

i (yi − y (j )c )pi
∑

i pi
. (1.19)

If one replaces the summation symbols with continuous integrals in Eq. (1.19), it can be
shown [80, 81] that

s
(j )
x ≈

λf

2πAsa

∫

Asa

∂Φ(ρ,θ )

∂x
ρ dρ dθ ,

s
(j )
y ≈

λf

2πAsa

∫

Asa

∂Φ(ρ,θ )

∂y
ρ dρ dθ ,

(1.20)

where f is the focal length of each lenslet, Asa is the area of each subaperture, and the
integrals are restricted to Asa.

As suggested by Dai [82], one can obtain the derivatives of each Zernike polynomial with
respect to x and y in polar coordinates,

∂Zm
n (ρ,θ )

∂x
=

∂Rmn (ρ)

∂ρ
Θm
n (θ ) cos(θ ) − R

m
n (ρ)

ρ

∂Θm
n (θ )

∂θ
sin(θ ),

∂Zm
n (ρ,θ )

∂y
=

∂Rmn (ρ)

∂ρ
Θm
n (θ ) sin(θ ) +

Rmn (ρ)

ρ

∂Θm
n (θ )

∂θ
cos(θ ).

(1.21)

We consider a �xed number Nα of Zernike polynomials, i.e., a truncation of Eq. (1.11). By

stacking the displacements s
(j )
x and s

(j )
y into a vector s ∈ R2Nsa , where Nsa is the number

of subapertures present in the SHWFS, one �nds the following linear relationship,

s ≈ Eα , (1.22)

where each element in matrix E ∈ R2Nsa×Nα is given by

en,m
(j ),x
=

λf

2πAsa

∫ θ
(j )

b

θ
(j )
a

*,
∫ ρ

(j )

b

ρ
(j )
a

∂Rmn (ρ)

∂ρ
ρ dρ · Θm

n (θ ) cos(θ )−

∫ ρ
(j )

b

ρ
(j )
a

Rmn (ρ) dρ · ∂Θ
m
n (θ )

∂θ
sin(θ )+- dθ ,

en,m
(j ),y
=

λf

2πAsa

∫ θ
(j )

b

θ
(j )
a

*,
∫ ρ

(j )

b

ρ
(j )
a

∂Rmn (ρ)

∂ρ
ρ dρ · Θm

n (θ ) sin(θ )+

∫ ρ
(j )

b

ρ
(j )
a

Rmn (ρ) dρ · ∂Θ
m
n (θ )

∂θ
cos(θ )+- dθ .

(1.23)

The subscripts ·(j ),x and ·(j ),y denote the two rows of E corresponding to aperture (j ), and
the superscript ·n,m denotes the column of E that corresponds toZm

n .

20



1.3 Adaptive optics

As illustrated in Fig. 1.14, the boundaries of the integration intervals are

θ
(j )
a = θ0 − arctan(ρsa/ρ0),
θ
(j )

b
= θ0 + arctan(ρsa/ρ0),

ρ
(j )
a = ρ0 cos(θ − θ0) −

√

ρ20 (cos(θ − θ0)2 − 1) + ρsa,

ρ
(j )

b
= ρ0 cos(θ − θ0) +

√

ρ20 (cos(θ − θ0)2 − 1) + ρsa,

(1.24)

where (ρ0,θ0) are the polar coordinates of O
(j ) and ρsa is the radius of the subapertures.

In this case we have assumed circular subapertures. Nevertheless, the integrals on the
right-hand side of Eq. (1.20) can also be easily computed without approximation in case
of square subapertures, by using the Zernike polynomials expressed in cartesian coordin-
ates. Lenslet arrays are usually fabricated using square or hexagonal lenses [83], to min-
imise the space between each pair of lenses and to collect more light. For hexagonal
lenses, we use the circular approximation of Asa as outlined in this section.

Figure 1.14: Illustration of the boundaries of the integration intervals reported in
Eq. (1.24). O is the centre of the global reference frame over the CCD. O (j )

is the centre of subaperture (j ).

Using the reference image (see Fig. 1.13(a)), matrix E can be precomputed at calibration
time, by numerically evaluating the integrals in θ . During operation of the SHWFS, an
aberrated image is recordedwith the CCD (Fig. 1.13(b)), the displacements in Eq. (1.19) are
computed, and �nally an estimate of α is obtained by solving Eq. (1.22) in a least-squares
sense, under the assumption thatNα < 2Nsa. One can consider the condition number [84]
of E to select the number of Zernike polynomials Nα to estimate. The condition number
depends [82, 85, 86] on Nsa and on the arrangement of the subapertures, which are �xed
parameters once the lenslet array is manufactured.

Numerous wavefront reconstruction [87] methods have been proposed in the literature.
The so called zonal-based methods were initially developed by Hudgin and Fried [88, 89,
90, 91, 92]. These methods establish a rectangular grid where each node represents an

unknown value of the phase aberration function Φ[i, j] ∈ R, and the displacements s
(j )
x

and s
(j )
y are linear combinations of neighbouring nodes, e.g., s

(j )
x = Φ[i + 1, j] − Φ[i, j].

Zonal methods do not provide a Zernike analysis of Φ(ρ,θ ), which can be obtained by
�tting [93] the Zernike polynomials in a second step.
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Hudgin developed a geometry that uses a single displacement, either s
(j )
x or s

(j )
y , from each

subaperture, and formulates the wavefront reconstruction problem into a least-squares
problem. Fried [90] proposed a di�erent grid arrangement whereby both displacements
are used. This geometry turns out to be insensitive to the “wa�e” mode [35]. South-
well [94] compared the zonal-based methods of Hudgin and Fried with a modal-based
method proposed by Cubalchini [95], and concluded that the modal-based method ap-
peared be superior in terms of ease of implementation and noise propagation properties.

A modal-based estimation method that uses the discrete Fourier transform was studied
by Freischlad [96], who showed that it is equivalent to a �ltering operation [96]. More
recently, in [59], Poyneer discussed the computational advantages of using a method
based on the fast Fourier transform (FFT), which is suitable for large-scale adaptive op-
tics systems. In her paper, a discussion is found about the issue of the missing boundary
displacements (see Fig. 3 and Fig. 4 in [59]), which arises when a method based on a
rectangular grid is used with a non-rectangular arrangement of apertures. Padding the
missing displacements with zeros leads to a large reconstruction error [59]. More re-
cently, a wavefront reconstruction method based on splines has also been proposed [97].
This method accommodates non-rectangular arrangements of subapertures. The issue of
aliasing with higher-order modes for modal-based methods was �rst discussed by Her-
rmann in [98] and later by Dai [82, 85, 86].

Finally, we remark that the method outlined in this section is also independent of the ar-
rangement of the subapertures and does not su�er from the issue of the missing bound-
ary displacements. Because the integrals in Eq. (1.20) have been computed numerically,

the displacements s
(j )
x and s

(j )
y are not de�ned as the di�erence between two nodes in a

grid, as is the case for zonal methods and for the modal-based method described in [95].
A MATLAB toolbox that implements the method described in this subsection is freely
available [99].

1.4 Adaptive optics in microscopy

Aberrations in microscopy arise from the fact that specimens are heterogeneous media.
To illustrate this point, three di�erent cases are considered in Fig. 1.15. In Fig. 1.15(a),
a microscope objective converts a �at wave into a spherical wave, which converges to
the focal point. In this case, the medium under the objective is homogeneous and has a
constant index of refraction equal to n1. A di�raction-limited focal spot is created in the
focal point, i.e., the intensity of the �eld is proportional to Iw (v ) in Eq. (1.1). In Fig. 1.15(b),
instead, the medium is heterogeneous and has a non-constant index of refraction. As
a consequence, an aberrated focal spot is created. As shown in Fig. 1.15(c), adaptive
optics [100, 37, 38] can be used to introduce an aberration in the pupil of the objective,
so that some of the specimen aberration is cancelled.

The e�ects of aberrations in confocal microscopy were initially studied in [101, 102]. Ex-
periments showed, for both confocal [103, 104] and multi-photon microscopy [105], a
substantial degradation of the �uorescence emission and of the resolving power when
focusing through media with refractive index mismatches. This is a common situation
in microscopy where the indices of refraction of the immersion liquid, cover glass, and
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1.4 Adaptive optics in microscopy

Figure 1.15: Illustration of a microscope objective that focuses light. (a) the medium
under the objective is homogeneous with index of refraction n1, and a
di�raction-limited focal spot is formed. (b) the medium under the objective
is heterogeneous (n1 , n2), and an aberrated focal spot is formed. (c) AO is
used to minimise the aberration at the focus by introducing an aberration
in the pupil of the objective.

specimen usually cannot match, resulting in a depth-dependent spherical aberration. Ef-
forts were made to model the image formation in the presence of strati�ed media for
confocal [31, 104, 106, 107] and multi-photon [32] microscopy. Hell [31] notes that sev-
eral other factors, not considered in the image formation models, can also contribute to
loss of �uorescence intensity and resolution, such as the di�usion of �uorophores inside
the specimen, losses due to scattering and absorption, and �uorescence saturation [108].
Nevertheless, aberrations are expected to be the predominant factor, as shown in exper-
imental veri�cation [31].

Incorporating an additional lens to compensate the spherical aberration was considered
in [109]. Instead, the bene�ts of themore general approach of AOwere considered in [30],
where it was concluded that correcting up to the third-order (Z0

8 ) spherical aberration
essentially recovers di�raction-limited imaging. Early demonstrations of aberration cor-
rection are found in [110, 111, 112, 113] for two-photon microscopy and in [114] for
confocal microscopy.

1.4.1 Specimen-induced aberrations in microscopy

The aberrations induced by a number of typical biological specimens were measured us-
ing phase step interferometry in [115, 116]. A Zernike analysis of the aberrations showed
that high-order Zernike polynomials have only a limited contribution [115, 116, 117]
with respect to the overall aberration and therefore a signi�cant improvement is expec-
ted when applying AO to correct low-order Zernike aberrations. Two other observations
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were that, as expected, spherical aberration was dominant, and the aberrations varied
over the �eld of view. This insight was later further supported in [118], where correcting
low-order Zernike aberrations was also found to signi�cantly reduce the overall aberra-
tion, even though aberration correction may not be feasible in some parts of the speci-
men where the distortions are too large. In [118], the authors also studied the correlation
between the spatial variations of the aberrations and the structure of the specimen. For
example, in skin tissue, the topology of the outermost layers determines the predom-
inant part of the aberration. On the contrary, in mouse hippocampus, the aberrations
were mostly determined by in-depth heterogeneity. The combined e�ect of the specimen
structure and of the aberrations has also been studied in [119]. Finally, in [120, 121], us-
ing multi-conjugate adaptive optics [122] has been investigated to counteract the spatial
variations of the aberrations over the �eld of view.

From the discussion presented in the previous paragraph, it should be noted that aberra-
tions in microscopy are fundamentally di�erent from aberrations in astronomy. The air
�ow in the atmosphere corresponds to fully developed turbulence [123], which is math-
ematically modelled using statistical theory [124, 123, 125]. One has that the physical
quantities that a�ect the index of refraction, such as temperature, exhibit random �uctu-
ations [124]. In scanning microscopy, one can assume that the time necessary to acquire
an image is much smaller than the time scale in which biological processes evolve (see for
example [126]), since otherwise a distorted image would be obtained. Therefore the spa-
tial variations of the index of refraction are more relevant, and these are deterministically
given by the structure of the specimen and by the path followed during the scanning pro-
cess. As a consequence, modelling the aberrations with statistical theory is more di�cult
in microscopy [38]. For example, if the scanning acquisition is repeated multiple times,
one would not expect signi�cant changes in the aberration maps obtained for the skin
specimens in [118], unless the topology of the strata is also changing or photodamage oc-
curred. On the contrary, in astronomy, one would not expect to obtain the same sequence
of aberration measurements if an observation period is repeated multiple times, due to
the turbulence of the atmosphere. In astronomy, under the same optimal observing con-
ditions, two di�erent seeing periods can be expected to provide similar statistics for the
aberrations [127]. In microscopy, unless the same region of a given specimen is acquired
multiple times, similar statistics for the aberrations are not guaranteed, as can be seen by
qualitatively examining the aberrations maps in [118, 38].

1.4.2 Direct wavefront sensing

In astronomy applications, the wavefront sensor is positioned after the aberrating me-
dium and before the imaging lens, as shown in Fig. 1.12. Such a con�guration is not pos-
sible in microscopy applications, where the aberrating medium is positioned just after
the microscope objective, as shown in Fig. 1.15. As a consequence, measuring the aber-
rations directly with a wavefront sensor is more involved [128, 129] in microscopy, and
speci�c solutions must be developed.

One solution that uses the back-scattered illumination light was investigated in [130,
131, 132]. The authors used coherence-gating to select only the light originating from
the focal region, and a phase stepping interferometry algorithm to retrieve the com-
plex amplitude. In [133], coherence-gating was combined with a confocal pinhole to
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reduce ghost re�ections and speckles. In this case, the reference beam was tilted and
Fourier analysis was employed to recover the complex amplitude from a single fringe
pattern. In [130, 131, 132, 133], once the complex amplitude was obtained, virtual Shack-
Hartmann wavefront sensing was used to recover the phase aberrations. A disadvantage
of this solution is given by the complexity of implementing the interferometric setup.
Furthermore, this solution is weakly sensitive to odd-symmetry Zernike aberrations 5,
such as coma, due to the double-pass e�ect [135].

Another solution was investigated in [136], where Shack–Hartmann wavefront sensing
was applied directly to the back-scattered light. In this case, the light originating from
the out-of-focal regions was rejected using a confocal pinhole. In [137, 138], the in�uence
of the size of the confocal pinhole was studied. In [137], the sensitivity and cross-talk of
the measured Zernike aberrations were analysed. This solution also su�ers from weak
sensitivity to odd-symmetry Zernike aberrations.

A di�erent approach was followed in [139, 140, 141, 142, 143], where the �uorescence
emission from point objects inside the specimen is used to perform Shack–Hartmann
wavefront sensing. The objects can be endogenous �uorescent microspheres that must
be inserted into the specimen [139, 143], �uorescent proteins that label appropriate struc-
tures inside the specimen [141] or auto�uorescence from speci�c structures [142].

1.4.3 Wavefront sensorless adaptive optics

Aberration correction in microscopy can also be achieved using wavefront sensorless
adaptive optics, where the aberrations are determined indirectly, by analysing the amount
of �uorescence emission. This approach only requires the addition of a DM to an existing
microscope and avoids the complexity of implementing a wavefront sensor. In practice,
an image quality metric is established, and a series of trial aberrations are sequentially
applied with the DM until the metric is maximised. The drawback is that the number of
necessary trial aberrations can be large [36, 144, 145], consequently leading to increased
bleaching and phototoxicity.

Due to its experimental simplicity, sensorless adaptive optics was employed early in mi-
croscopy related applications. In [111], a parabolic mirror was used to focus pulsed laser
light into a sample. A genetic algorithm was used to maximise the second-harmonic sig-
nal emitted from the focal region. This led to the correction of the aberrations caused
when the beam is scanned o�-axis. In [112], correction of the spherical aberration was
demonstrated by applying a genetic algorithm to maximise the emitted �uorescence. A
comparison of the performance of general optimisation algorithms used to maximise the
�uorescence emission is found in [146, 147, 148], concerning both confocal and two-
photon microscopy. Other general optimisation algorithms that have been applied in

5A Zernike polynomial Zm
n is said to be even whenm > 0 and odd whenm < 0 [134, 40]. This denotation

refers to Noll’s [44] single-index ordering, whereby the polynomials are ordered using a single index j such that,
form , 0, an even j and an odd j correspond respectively to Θmn (θ ) = cos(mθ ) and Θmn (θ ) = − sin(mθ ). This
denotation should not be confused with the even- and odd-symmetry about the origin in the pupil plane, which
instead is determined by whetherm and n are even or odd respectively. Direct wavefront measurement using
the back-scattered illumination light is weakly sensitive to odd-symmetry aberrations, i.e., Zernike aberrations
wherem and n are odd.

25



1. Introduction

sensorless adaptive optics include hill-climbing algorithms [113, 146], imaged-based al-
gorithms [149], stochastic parallel gradient descent methods [150] and the Nelder–Mead
algorithm [151, 152, 153, 154]. The solutions listed in this paragraph can be denoted as
model-free, since they employ o�-the-shelf optimisation algorithms that have no prior
knowledge about the image quality metric. When a new aberration must be corrected,
these algorithms start the optimisation from scratch, as if the image quality metric were
a completely general function, and no use is made of the information gained from the
previous executions of the algorithms.

For small aberrations, a model of the image quality metric can be exploited to accelerate
the correction procedure [155, 156, 157, 158]. In [155], a quadratic polynomial was used to
model the image qualitymetric. Aberration correction is achieved using a closed-form ex-
pression that requiresNα+1 trial aberrations to correctNα Zernike aberrations. Amodel-
based solution was also devised for incoherent optical systems in [159]. Model-based
wavefront sensorless algorithms have been applied to correct aberrations in a number of
di�erent microscopy techniques that include structured illumination microscopy [160],
two-photon microscopy [161, 144, 118], second-harmonic microscopy [162, 163], third-
harmonic microscopy [126], and STED microscopy [164, 165]. In general, the minimum
number of trial aberrations required to apply the correction is linear in Nα , and the ac-
curacy of the correction depends on the number of trial aberrations [144].

It should be mentioned that algorithms that are not based on optimisation have also been
developed for two-photon microscopy. In [166, 167], the pupil is divided into segments.
Illuminating each segment at a time generates a set of shifted images. By analysing the
shifts of the images, the global wavefront can be reconstructed. In [168], a heuristic for
rejecting the background �uorescence was considered.

1.5 Contributions & outline of this thesis

This thesis comprises �ve chapters. The current chapter provides some introductory no-
tions about microscopy, adaptive optics and wavefront sensorless adaptive optics. The
contributions of the thesis are collected into three chapters. Each chapter corresponds
to a separate scienti�c publication, uses a self-contained notation, and can be read inde-
pendently of the other chapters.

• Chapter 2 considers a wavefront sensorless adaptive optics system that is imple-
mentedwith an optical breadboard. The signal recorded using a photodiode covered
by a pinhole is selected as the image quality metric. The metric is modelled with a
quadratic polynomial. Quadratic polynomials have beenwidely employed tomodel
image quality metrics in di�erent optical systems, e.g, in [161, 126, 169, 144, 155,
170, 159, 157, 160, 128]. A general procedure to compute the parameters of the
quadratic polynomial directly from input–output measurements is developed. This
procedure is implemented and shown to outperform another procedure, previously
described in the literature [169].

A new closed-form expression to estimate the aberration is also developed. Provided
that the quadratic polynomial is a valid model of the metric, this expression re-
quires a minimum of Nα + 1 trial aberrations to estimate Nα Zernike aberrations.
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Aberration correction experiments are performed using the optical breadboard,
and a comparison is made between the proposed expression to estimate the aber-
ration and two other aberration correction algorithms.

Reference: J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Ger-
ritsen, and C. U. Keller, “Semide�nite programming for model-based sensorless ad-
aptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012).

• Chapter 3 describes the results of applying wavefront sensorless adaptive optics to
a second-harmonic microscope. A set of basis functions used for controlling the
deformable mirror is obtained via the singular value decomposition. This set of
basis functions can be made approximately orthogonal to the x-tilt, y-tilt and de-
focus Zernike aberrations. This is of interest in scanning microscopy, as applying
these Zernike aberrations with the DM introduces distortions in the acquired im-
ages. This is also relevant for astronomy applications, where the x-tilt and y-tilt
correction is usually applied with a separate mirror.

A collagen �bre specimen is used in the aberration correction experiments. The
mean image intensity [162] is selected as the image quality metric, which is again
modelled with a quadratic polynomial. The parameters of the polynomial are com-
puted using the procedure developed in Chapter 2, which is veri�ed using a biolo-
gically relevant specimen for the �rst time.

A new algorithm that computes the least-squares estimate of the aberration by
solving a non-convex [171] optimisation problem is considered. With the assump-
tion that the quadratic polynomial is a valid model of the image quality metric, the
algorithm requires a minimum of Nα + 1 trial aberrations. Aberration correction
experiments are performed using the second-harmonic microscope.

Reference: J. Antonello, T. van Werkhoven, M. Verhaegen, H. H. Truong, C. U.
Keller, and H. C. Gerritsen, “Optimization-based wavefront sensorless adaptive op-
tics for multiphoton microscopy,” J. Opt. Soc. Am. A 31, 1337–1347 (2014).

• Chapter 4 investigates using a phase retrieval [172] algorithm to correct the ab-
errations in a wavefront sensorless adaptive optics system. Using the extended
Nijboer–Zernike theory [173, 174], the phase retrieval problem is formulated into a
matrix rank minimisation problem [175, 176, 177]. A solution of the phase retrieval
problem is obtained using PhaseLift [178, 179], a convex relaxation [180, 181, 182]
of the rank minimisation problem.

The wavefront sensorless adaptive optics system is implemented using an optical
breadboard and aberration correction experiments are performed. The perform-
ance of the aberration correction is assessed using a Shack–Hartmann wavefront
sensor.

Although this phase retrieval algorithm, as presented in this chapter, cannot be
directly applied to correct aberrations in scanning microscopy, it is useful to char-
acterise [183, 184] the deformable mirror.

Reference: J. Antonello and M. Verhaegen, “Modal-based phase retrieval for ad-
aptive optics,” (in preparation).
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The conclusions are drawn in Chapter 5. The author implemented the setups used in
Chapter 2 and Chapter 4. The second-harmonic microscope used in Chapter 3 was im-
plemented by Dr. T. van Werkhoven.
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Chapter 2

Semide�nite programming for

model-based sensorless adaptive

optics

Wavefront sensorless adaptive optics methodologies are widely considered in
scanning �uorescence microscopy where direct wavefront sensing is challen-
ging. In these methodologies, aberration correction is performed by sequen-
tially changing the settings of the adaptive element until a predetermined image
quality metric is optimised. An e�cient aberration correction can be achieved
by modelling the image quality metric with a quadratic polynomial. We propose
a new method to compute the parameters of the polynomial from experimental
data. This method guarantees that the quadratic form in the polynomial is semi-
de�nite, resulting in a more robust computation of the parameters with respect
to existing methods. In addition, we propose an algorithm to perform aberration
correction requiring a minimum of N +1 measurements, where N is the number
of considered aberration modes. This algorithm is based on a closed-form ex-
pression for the exact optimisation of the quadratic polynomial. Our arguments
are corroborated by experimental validation in a laboratory environment.

Reference: J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Ger-
ritsen, and C. U. Keller, “Semide�nite programming for model-based sensorless
adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012).

2.1 Introduction

Adaptive optics is concerned with the active suppression of disturbances in optical sys-
tems. The sources of the disturbances can be di�erent, according to the application in
question. Notable examples are atmospheric turbulence for astronomy and heterogen-
eity in the index of refraction within specimens for microscopy. As a consequence, phase
aberrations develop in the pupil of the objective lens, severely a�ecting the quality of
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the image [185]. The principle of adaptive optics is that by measuring such phase vari-
ations with a sensor, they can be cancelled by appropriately driving an active wavefront
correction element. In astronomy this practice is well established with the use of a Shack-
Hartmann wavefront sensor and a deformable mirror [185].

Nonetheless, there are instances where the deployment of a wavefront sensor is chal-
lenging. This is the case for scanning �uorescence microscopy [36], due to di�culties
in the rejection of out-of-focus light and in the lack of reference point sources within
specimens [139, 136, 130, 186, 187, 140, 141].

Alternatively, sensorless adaptive optics schemes have been considered, where the �uor-
escence emission is used as a feedback signal for the suppression of the aberrations. One
approach involves the rejection of out-of-focus background [168]. More commonly, in-
stead, aberration correction is achieved by sequentially modulating the adaptive element
until a selected image quality metric is optimised. The assumption is that the global ex-
tremum of the metric is attained when the aberrations have been maximally suppressed.
Examples of such metrics are, among others, sharpness measures for images [153] and
the amount of �uorescence emission.

In the literature, a number of proposed solutions make use of model-free optimisations.
These include hill-climbing algorithms [113, 146], genetic algorithms [111, 148, 112, 147,
146], image-based algorithms [149, 166], conjugate gradient methods [188], stochastic
parallel gradient descent methods [150], and the Nelder–Mead simplex algorithm [151,
152, 153]. Such general methodologies require a large number of measurements of the
metric [36, 144, 145] andmay not converge to the global optimum [152, 155]. Reducing the
number of necessary measurements is a critical factor for the overall image acquisition
time [113, 146] and for inhibiting side e�ects, such as phototoxicity and photobleach-
ing [36].

It has been shown [155] that physical modelling of the image quality metric allows for
direct and deterministic optimisation methods, requiring a reduced number of measure-
ments with respect to model-free solutions. Initially, model-based methodologies were
proposed for optical systems where the object is a point source. In [170, 155], a quad-
ratic polynomial was employed to model a Strehl-based metric. For small aberrations, it
was shown that the proposed model-based approach outperforms model-free algorithms.
This result was extended to encompass larger aberrations in [128], by using ametric based
on the Lukosz-Zernike functions and a nonlinear detector. In [157] a generalisation was
provided to handle arbitrary functions other than the Lukosz-Zernike functions. The case
of incoherent imaging was analysed in [159]. Here �rst principles derivations motivated
employing a quadratic polynomial in order to model a metric based on the low spatial
frequency content of the recorded images. Similarly, in [160], theoretical derivations
supported using a quadratic polynomial to model an image quality metric that is appro-
priate for structured illumination microscopy. Experimental validation of model-based
approaches was also provided for two-photon microscopy [161] and for multiharmonic
microscopy [126].

One challenge of model-based approaches is found in the need to compute the paramet-
ers of the quadratic polynomial for a given real optical system. Initially, this task was
performed using �rst principles, i.e., by computing the theoretical value of each para-
meter [170, 155, 128, 157, 159]. In this way, however, imperfections in the real optical

30



2.2 Quadratic modelling of a wavefront sensorless adaptive optics system

system are not accounted for [169]. Also, experimentally computing the parameters is
more suited, for example, in the case of coherent microscopies such as third-harmonic
generation [169]. To address these shortcomings, experimental methods for the compu-
tation of the parameters were developed [160, 169]. Such methods, nevertheless, fail to
guarantee that the quadratic form in the polynomial used to model the image quality
metrics is semide�nite. This latter property always follows from the theoretical analysis
of the image formation processes [161, 126, 169, 144, 170, 159, 160, 128]. In this paper, we
present and validate a new method that guarantees that the semide�niteness property is
satis�ed. We compare our procedure with the previously proposed methods [160, 169]
and show that a more accurate �tting of the experimental data is achieved. We remark
that an inaccurate computation of the parameters of the polynomial adversely a�ects the
performance in the correction of the aberrations as shown elsewhere [169, 144].

Once the parameters of the polynomial are known, the correction of an arbitrary aberra-
tion is performed by solving an optimisation problem that exploits the knowledge about
the quadratic polynomial. For the imaging system considered in [170, 155, 128, 157], an
approximate solution of the optimisation was proposed in [170, 155, 128], using N + 1
measurements. In [157] an exact solution was provided, using N + 1 measurements. For
the remaining imaging systems [161, 126, 169, 144, 159, 160], an exact solution of the
optimisation was provided using a minimum of 2N + 1 measurements. In this paper, we
derive an exact solution of the optimisation requiring a minimum of N +1 measurements.
Because our formulas are derived for a quadratic polynomial in its most general form, all
the model-based approaches mentioned so far are encompassed as special cases.

This paper is organised as follows. Section 2.2 provides a �rst principles derivation show-
ing that a quadratic polynomial can model the image quality metric used in our experi-
mental validation. Section 2.3 considers the experimental computation of the parameters
of a quadratic polynomial used to model an image quality metric. Section 2.4 focuses on
the algorithms used for aberration correction. Section 2.5 provides a description of the
optical system used in the experimental validation. Experimental results are reported in
Section 2.6. Finally, conclusions are found in Section 2.7.

2.2 Quadratic modelling of a wavefront sensorless ad-

aptive optics system

2.2.1 Problem formulation

Consider the problem of correcting a static aberration in a wavefront sensorless adaptive
optics system. Such a problem can be formulated as follows

max
u(k )

ỹ (k ) (2.1)

where ỹ (k ) ∈ R is the value of a metric quantifying the image quality, k ∈ Z is the
discrete time index, and u(k ) ∈ R

N is the control signal applied to an active element
with N degrees of freedom. An instance of this problem is found when imaging a single
focal spot in a �uorescence scanning microscope [4, 23], where static specimen-induced
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aberrations are to be suppressed. In this case, the value of metric ỹ (k ) depends on the
amount of �uorescence emission originating from the focal spot. A phase deformation
can be applied to the illumination light in the pupil of the objective lens, for instance by
employing a deformable mirror that is controlled via vector u(k ). When the deformation
induced by the deformable mirror maximally suppresses the specimen-induced aberra-
tion, a solution of Eq. (2.1) is found.

In general we have that ỹ (k ) = f (u(k )), where f (·) is a function with a global maximum
and possibly multiple local extrema. For this reason, a general nonlinear optimisation
algorithm can be employed in order to solve Eq. (2.1) as discussed for the model-free
methodologies in the introduction. Instead, model-based methodologies exploit the fact
that within a suitable neighbourhood of the global maximum, f (·) can be approximated
by a quadratic polynomial. Here, metric ỹ (k ) = f (u(k )) can be modelled with an approx-
imate metric y (k ) = q(u(k )), where q(·) is a quadratic polynomial. The knowledge about
q(·) allows us to e�ciently solve Eq. (2.1). In the next section we provide a derivation for
q(·) based on �rst principles for the optical system that was used in our experimental val-
idation. This serves as an example in order to highlight the advantage of experimentally
determining q(·) as proposed in this paper.

2.2.2 Modelling of awavefront sensorless adaptive optics imaging
system

aberrated
wavefront

entrance
pupil

lens L1 lens L2

beam
splitter deformable

mirror

lens L3

pinhole

photodiode

ỹ(k)

u(k)

Controller

Figure 2.1: Schema representing a sensorless adaptive optics system. An unknown ab-
erration applied at the entrance pupil of the system must be corrected by
a deformable mirror that is conjugated to the entrance pupil. The measure-
ment ỹ (k )made with a photodiode covered by a pinhole is an indicator of the
residual aberration in the wavefront. The controller changes control signal
u(k ) in order to maximise ỹ (k ).

Consider the optical con�guration in Fig. 2.1. A disturbance in the entrance pupil of L1
induces an unknown time-invariant aberration to the wavefront. The entrance pupil is
reimaged by lenses L1 and L2 onto the membrane of the deformable mirror. An image is
formed by lens L3 onto a photodiode, which is covered by a pinhole aperture. Let ỹ denote
the integral over the pinhole aperture of the intensity distribution in the focal plane of
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L3. Such quantity will be hereafter referred to with the general term “intensity,” as is
commonly done in the literature [170, 155, 156]. The intensity is taken to be proportional
to the voltage recorded at the output of the photodiode. As outlined in [170, 155, 156],
it is assumed that ỹ is a valid image quality metric, i.e., maximising ỹ minimises the
aberration of the wavefront. In Section 2.6.3 such a conjecture is experimentally veri�ed
by measuring the residual aberration with a Shack-Hartmann wavefront sensor.

The intensity ỹ (k ) can be modelled [11] by

ỹ (k ) =

(

A

λf

)2 ∫

Σ2

�����
∫

Σ1

exp

[
j
2π

λ
W (ξ ,η,k ) − j 2π

λf
(ξα + ηβ )

]
dξdη

�����
2

dαdβ +w (k ), (2.2)

where k is the time index, A and λ are, respectively, the amplitude and wavelength of
the monochromatic wave, f is the focal distance of L3, Σ2 is the pinhole aperture, Σ1 is
the pupil, j =

√
−1,W (ξ ,η,k ) is the wavefront aberration and w (k ) is the measurement

noise.

If the e�ects due to the �nite size of the pinhole are neglected (see [170, 155]),

ỹ (k ) ≈
(

A

λf

)2 �����
∫

Σ1

exp
[
j
2π

λ
W (ξ ,η,k )

]
dξdη

�����
2

+w (k ). (2.3)

Let Φ̃(ξ ,η,k ) = 2π
λ
W (ξ ,η,k ) and S =

∫

Σ1
dξdη. As done in [5, 46] for k �xed, the expo-

nential in Eq. (2.3) is expanded into a Taylor series and the terms of order higher than 2
are neglected. The approximation becomes

ỹ (k ) ≈
(

AS

λf

)2 1 − (
1

S

∫

Σ1

Φ̃(ξ ,η,k )2dξdη −
(

1

S

∫

Σ1

Φ̃(ξ ,η,k )dξdη

)2

)

 +w (k ). (2.4)

We assume that Φ̃ can be expanded into the following series

Φ̃(ξ ,η,k ) =

∞
∑

i=1

Ψi (ξ ,η)vi (k ). (2.5)

Possible choices forΨi (·, ·) include, among others, Zernike polynomials [44], mirrormodes
[189], or simply the in�uence functions of the actuators of a deformable mirror [151]. Let

F (ξ ,η) =
[
Ψ1 (ξ ,η) . . . ΨN (ξ ,η)

]T
and v(k ) =

[
v1 (k ) . . . vN (k )

]T
, then the N -th

order truncation of Eq. (2.5) is denoted as

Φ̃(ξ ,η,k ) ≈ F (ξ ,η)T v(k ). (2.6)

Substituting Eq. (2.6) into Eq. (2.4) and performing the integrations leads to the following
quadratic approximation,

ỹ (k ) ≈ c̃0 − v(k )T Q̃v(k ) +w (k ), (2.7)
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where c̃0 = (AS
λf

)2 and

Q̃ =

c̃0

(

1

S

∫

Σ1

F (ξ ,η)F (ξ ,η)Tdξdη − (
1

S

∫

Σ1

F (ξ ,η)dξdη) (
1

S

∫

Σ1

F (ξ ,η)Tdξdη)

)

.
(2.8)

Note that the elements of F need not be orthogonal over the pupil. If such elements
are chosen among N Zernike polynomials, the Strehl ratio can be recognised and Q̃ is
diagonal. It can be seen that Q̃ must be positive semide�nite, i.e., Q̃ � 0. Vector v(k )
accounts for both the contribution due to the unknown aberration x in the entrance pupil
of L1 and the aberration u(k ) induced by the deformable mirror. Letting v(k ) = x− u(k ),
Eq. (2.7) is rewritten into

ỹ (k ) ≈ c̃0 − (x − u(k ))T Q̃ (x − u(k )) +w (k ). (2.9)

Quadratic polynomials, such as the right-hand side of Eq. (2.9) without the noise term
w (k ), have been used in order to model image quality metrics in a variety of di�erent
imaging techniques [161, 126, 169, 144, 155, 170, 159, 157, 160, 128]. This suggests that
Eq. (2.9) can be employed as a generalised approximate metric. In each of these publica-
tions, a thorough analysis of the image formation process led to a quadratic polynomial
where matrix Q̃ was positive semide�nite [respectively negative semide�nite if optim-
isation Eq. (2.1) is formulated as a minimisation problem as in [128] for example]. The
semide�niteness property of Q̃ stems from the fact that ỹ exhibits a global extremum.
Nevertheless, when applying the experimental computations proposed in [160, 169], such
a property can be violated. This shortcoming is addressed in the procedure proposed in
Section 2.3.2.

2.3 Identi�cation of the parameters for quadratic ap-

proximate metrics

Oncemetric ỹ has been selected, depending on the imaging system (see [161, 126, 169, 144,
170, 159, 160, 128]), parameters c̃0 and Q̃ must be computed before aberration correction
can be applied. This operation is required once only. As in [160, 169], the unknown
aberration x is assumed to be zero throughout this calibration procedure.

One possibility is to compute c̃0 and Q̃ from their �rst principles de�nitions, e.g., Eq. (2.8)
for Q̃ . Such an approach can be cumbersome. First, accurately measuring a number of
quantities in a real system is both prone to errors and inconvenient. Also additional
equipment may be necessary. In Eq. (2.8), amplitude A and the surface of the pupil S
must be measured. Second, a di�erent numerical integration must be solved for each
di�erent choice of the basis functions Ψi (·, ·) in Eq. (2.5). In addition, a �rst principles
computation of the parameters does not account for defects in the real optical system
such as misalignment, imperfect illumination pro�le, non-circular pupils, etc. (see the
discussion in [169]). A �nal drawback is related to the fact that the overall modelling error
is neither explicitly de�ned nor minimised. As remarked earlier, an inaccurate choice
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2.3 Identi�cation of the parameters for quadratic approximate metrics

for Q̃ leads to a decreased performance in the correction of aberrations [169, 144]. The
alternative followed in this paper, instead, is to select the values of c̃0 and Q̃ byminimising
the �tting error, e.g.,

∑

k (c̃0 − u(k )T Q̃u(k ) − ỹ (k ))2, over some set of real input–output
measurements. For these reasons an experimental computation of c̃0 and Q̃ is desirable.

2.3.1 Débarre’s experimental identi�cation procedure

We brie�y report the latest, most accurate experimental procedure to compute Q̃ , which
was proposed in [169], in order to compare it with our proposed method. The idea is to
compute Q̃ by independently estimating each of its elements q̃i,j . First, the diagonal ele-
ments are recovered. Afterwards, the o�-diagonal elements are computed by estimating
each of the N (N − 1)/2 submatrices of Q̃ of dimension 2 × 2.

As an example, consider Eq. (2.9) when N = 3,

y (u1,u2,u3) = c̃0 −

u1
u2
u3


T 
q̃1,1 q̃2,1 q̃3,1
q̃2,1 q̃2,2 q̃3,2
q̃3,1 q̃3,2 q̃3,3



u1
u2
u3

 . (2.10)

By keeping u2 and u3 �xed to zero, an input–output data set is collected. Subsequently,
element q̃1,1 and c̃0 can be estimated by �tting the resulting parabola y (u1) = c̃0 − q̃1,1u21 .
Repeating this step allows us to recover c̃0 and all the diagonal elements of Q̃ . This
demands p1N input–output data points altogether, where p1 ≥ 2.

The estimation of q̃2,1 can be achieved by taking input–output data sets where u3 is �xed
to zero and u2 is �xed to a constant ū. A parabola in u1 results

y (u1,ū) = c̃1 −
[
u1
ū

]T [
q̃1,1 q̃2,1
q̃2,1 q̃2,2

] [
u1
ū

]
. (2.11)

The extremum of Eq. (2.11) is reached when u1 = −(q̃1,2/q̃1,1)ū. Fitting this latter linear
relation allows us to compute q̃1,2. This demands p3 ≥ 3 input–output data points for
p2 ≥ 1 di�erent �xed values of ū. This step needs to be repeated N (N − 1)/2 times.
Altogether, c̃0 and Q̃ can be estimated using p1N + p2p3N (N − 1)/2 input–output data
points.

One shortcoming of such a methodology is that the total amount of necessary measure-
ments can be large (see Section 2.6.3). Measurements in each input–output data set are
only exploited for estimating a subset of the parameters instead of all the parameters at
once. Most importantly, this procedure cannot ensure that the resultingmatrix Q̃ be semi-
de�nite, as predicted by the theoretical derivations [161, 126, 169, 144, 170, 159, 160, 128].
Indeed, noise in the measurements of ỹ and numerical errors can lead to computing an
inde�nite Q̃ . A more robust estimation of Q̃ (see Section 2.6.1) is achieved including the
semide�nite constraint in the estimation. In this way inde�nite matrices are excluded a

priori.
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2. Semide�nite programming for model-based sensorless adaptive optics

2.3.2 Data driven identi�cation procedure

In [190], we �rst proposed using semide�nite programming [191] for estimating Q̃ and
c̃0. This allows us to recast the computation of the parameters into a single mathematical
optimisation. The constraint Q̃ � 0 is also satis�ed.

Metric Eq. (2.9) can be slightly generalised by including a linear term. This allows to relax
the assumption that no aberration is present during the experimental computation of the
parameters. Hence Eq. (2.9) is rede�ned as

y (k ) = c0 + c
T
1 (x − u(k )) − (x − u(k ))TQ (x − u(k )) +w (k ) (2.12)

where c0 ∈ R, c1 ∈ R
N , Q ∈ R

N×N , Q � 0. Term w (k ) represents the uncertainty
in approximating ỹ with Eq. (2.12), and as such it cannot be measured by de�nition.
Quantities c0, c1 and Q are the new set of parameters that must be estimated.

Again, as in Section 2.3.1, we temporarily assume that x = 0. A collection of input
vectors {u(k ) ∈ R

N | k = 1, . . . ,D} is applied as the input to the deformable mirror
and the corresponding measurement of ỹ is recorded. This results into the identi�cation
data set {(y (k ),u(k )) | k = 1, . . . ,D}. Such a collection of input vectors can be selected
arbitrarily, in contrast with the methods proposed in [160, 169], where speci�c pupil
functions must be generated. In addition all the data points are used at once to estimate
all the parameters.

Minimal �tting error could be attained by solving a linear least-squares problem [192].
However, such an approach does not guarantee that the constraint Q � 0 be satis�ed.
For this purpose, the following constrained optimisation problem is de�ned

min
c0,c1,Q

D
∑

k=1

|y (k ) − (c0 − cT1 u(k ) − u(k )TQu(k )) |2

s.t. Q � 0

(2.13)

where c0 ∈ R, c1 ∈ R
N , and Q ∈ R

N×N are decision variables. Optimisation Eq. (2.13)
belongs to the realm of semide�nite programming [191]. A convenient tool for formu-
lating Eq. (2.13) is the modelling suite YALMIP [193]. The widely used numerical solver
SeDuMi [194] is employed to solve Eq. (2.13).

In [190], we included a regularisation condition on Eq. (2.13). This leads to a matrix Q
that is strictly positive de�nite. Such a constraint, however, should be removed as some
modes naturally correspond to a null space inQ . Examples of these modes are the piston
mode if Zernike polynomials are used, or high-frequency aberrations that deform the
Airy disk while keeping the encircled energy stationary. A better approach is to include
regularisation only when invertingQ , for instance truncating negligible singular values.

The computational complexity of SeDuMi is a function of the number of scalar decision
variables and of the number of rows in the total linear matrix inequality constraint [195].
This latter is related to D in Eq. (2.13). A QR factorisation can be used in order to com-
press the second-order cone constraint implicit in the cost function of Eq. (2.13). For this
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purpose, it is convenient to rewrite the least-squares cost function in Eq. (2.13) as

min
z
‖b −Az‖22 , (2.14)

where b =
[
y (1) . . . y (D)

]T
,

A =


1 −u(1)T −u(1)T ⊗ u(1)T

...
...

...

1 −u(D)T −u(D)T ⊗ u(D)T


∈ RD×(1+N+N 2 ) , (2.15)

and z =
[
c0 cT1 vec(Q )T

]T
. Here, function vec(·) denotes the vectorisation transform-

ation and ⊗ the Kronecker product [192]. Assuming the rank r ofA is 1+N +N (N +1)/2,

let A = Q̄
[
R̄T 0T

]T
be the QR factorisation of A, where Q̄ ∈ R

D×D is an orthogonal

matrix and R̄ ∈ Rr×r is an upper triangular matrix. Left multiplication by Q̄T inside the
norm in Eq. (2.14) leads to the following equivalent formulation for Eq. (2.13)

min
z
‖b1 − R̄z‖22

s.t. Q � 0
(2.16)

where b1 =
[
Ir×r 0

]
Q̄T b. Solving Eq. (2.16) is preferable to Eq. (2.13) as that leads to a

smaller semide�nite programme (see Section 2.6.3).

2.4 Aberration correction for quadratic approximate

metrics

With the parameters c0, c1 and Q known, we now discuss correcting for the unknown
aberration x. In the scanning microscope example, this situation corresponds to introdu-
cing the specimen and recording the �uorescence emitted from a given focal volume.

2.4.1 Independent parabolic optimisation algorithm

We brie�y outline the correction method proposed in [159] and used in [161, 126, 170,
159, 160, 128]. For simplicity, we take both c1 and w (·) to be zero. Since Q = QT , there
exists an orthogonal matrix V such that Q = V∆VT , where ∆ is a diagonal matrix. Let
z = VT x and p = VT u and let zi , pi , λi,j denote respectively the elements of z, p and ∆.
Eq. (2.12) can be rewritten as

y (p) = c0 −
N
∑

i=1

λi,i (zi − pi )2 (2.17)

The diagonalisation of Q is referred to as “linear crosstalk removal” in [169] and has the
purpose of reformulating the N dimensional optimisation of Eq. (2.12) into N independ-
ent one-dimensional parabola optimisations. If Q is semide�nite, a global optimum of
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Eq. (2.17) is found by composing the result of the one-dimensional optimisations. Con-
sider the i-th parabola optimisation. As p is the independent variable, we can set pj = 0
for i , j so that optimising Eq. (2.17) results in

max
pi

α1p
2
i + α2pi + α3, (2.18)

where the coe�cients α1, α2, α3 are unknown as they depend on z. If three measurements
are taken: y1 for pi = −b, y2 for pi = 0, and y3 for pi = b, where b ∈ R+ is a bias, a
Vandermonde system can be solved giving


α1 = (y1 − 2y2 + y3)/(2b2)
α2 = (y1 − y3)/(2b)
α3 = y2

. (2.19)

Consequently the extremum of the parabola is found by setting pi = −α2/(2α1) which
evaluates to

− b (y1 − y3)/(2y1 − 4y2 + 2y3) (2.20)

(Eq. (33) in [159]). If the measurement for pi = 0 is shared among all the modes, this
requires a minimum of 2N + 1 measurements.

We note that in this way not all information derived fromQ = V∆VT has been exploited.
In fact, α1 is known a priori as the opposite of the i-th eigenvalue of Q , namely, −λi,i .
Henceforth, only two coe�cients α2 and α3 are unknown for each mode. Sharing one
measurement among all the modes, one sees that N + 1 measurements are su�cient to
exactly optimise Eq. (2.17).

We illustrate this fact by examining Eq. (2.17) for N = 1. Taking 0 and p̄ , 0 for the
independent variable p, we have


y (0) = c0 − λz2

y (p̄) = c0 − λz2 + 2λp̄z − λp̄2
. (2.21)

Considering the di�erence δ = y (p̄) − y (0) between two measurements of ỹ, we have
p∗ = (δ + λp̄2)/(2λp̄). A generalisation to N dimensions is reported in the next section.
Note that this result is achieved via a closed-form expression, i.e., without resorting to
an approximate solution as was proposed in [155, 170, 128].

2.4.2 Linear least-squares optimisation

In this section we provide formulas for the exact optimisation of Eq. (2.12) in a minimum
of N + 1 measurements of ỹ. In our proposed solution, there is no need to diagonalise Q
and the optimisation is solved simultaneously for all the modes in a linear least-squares
sense.

The system is excited with M input vectors {u(k ) ∈ RN | k = 1, . . . ,M }, where M ∈ N+,
M ≥ 2 and the rank of

[
u(1) . . . u(M )

]
is min(N ,M ). The corresponding output

values are collected {y (k ) ∈ R | k = 1, . . . ,M }.
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2.4 Aberration correction for quadratic approximate metrics

De�ne δy (k ,l ) = y (k ) − y (l ). Then, we obtain

δy (k ,l ) = − cT1 (u(k ) − u(l )) + 2(u(k ) − u(l ))TQx
+ u(l )TQu(l ) − u(k )TQu(k ) +w (k ) −w (l ).

(2.22)

It can be seen that Eq. (2.22) is linear in the unknown x. By stacking a number of such
expressions together, a linear set of equations in x is established.

From {y (k ) ∈ R | k = 1, . . . ,M }, M − 1 values of δ (·, ·) can be computed, namely,
δ (M ,1), . . . ,δ (M ,M − 1). The linear set of equations in x is arranged as

FMx + LMeM = dM , (2.23)

where

FM =


2(u(M ) − u(1))TQ

...

2(u(M ) − u(M − 1))TQ


∈ R(M−1)×N , (2.24)

LM =
[
−I (M−1)×(M−1) 1M−1

]
, 1M−1 denotes a vector of ones, eTM =

[
w (1) . . . w (M )

]
∈

R
M and

dM =



δy (M ,1) + cT1 (u(M ) − u(1)) − u(1)TQu(1) + u(M )TQu(M )
...

δy (M ,M − 1) + cT1 (u(M ) − u(M − 1))
−u(M − 1)TQu(M − 1) + u(M )TQu(M )


∈ RM−1. (2.25)

The solution x̂M of the weighted least-squares problem

min
x

eTMeM

s.t. FMx + LMeM = dM ,
(2.26)

satis�es the normal equation

(FTMWMFM )x̂M = F
T
MWMdM , (2.27)

whereWM = (LML
T
M )−1.

We consider the case where the set of equations Eq. (2.23) is not underdetermined, i.e.,
M ≥ N + 1. Between time k = 1 and k = N + 1 inclusive, the system is excited with an

N + 1 input sequence. In Section 2.6, the column vectors of b
[
0 V

]
were used for such

an input sequence, where b is a bias andV a base of eigenvectors ofQ as in Section 2.4.1.
At time k = N + 2, output y (N + 1) has been acquired and x̂N+1 is computed. Hence, an
estimate of the input u(N + 2) maximising the intensity y (N + 2) is

u(N + 2) = x̂N+1 − 1
2Q
−1c1. (2.28)

Similarly, in the following time instants, a re�ned estimation of x is obtained by solving
the overdetermined system, whereM > N +1. The control law for sample time k > N +1
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2. Semide�nite programming for model-based sensorless adaptive optics

is
u(k ) = x̂k−1 − 1

2Q
−1c1. (2.29)

Note that if the additive noisew (k ) ∈ R is assumed to be white noise with zero mean and
covariance E[w (k )w (j )] = δ (k−j ), where δ (·) is the unit pulse, then x̂N+1 is the minimum
variance unbiased linear estimator of x (see [192] for further details). The choice of �xing
index k in Eq. (2.22) toM is arbitrary, and di�erent arrangements are possible as long as
at leastM − 1 non-zero values of δy (·, ·) can be computed.

Equation (2.12) models the image quality metric for small aberrations, e.g., when the
approximations made in Eq. (2.4) are valid (see Section 2.6.2). For larger aberrations, the
error in modelling ỹ with a quadratic polynomial is not negligible and therefore applying
Eq. (2.29) fails tomaximally suppress the aberration. Nevertheless, experimental evidence
suggests that applyingmultiple iterations of Eq. (2.29) enables to gradually suppress large
amounts of aberration. This experimental observation is also reported in [144]. One
feasible approach is to implement a window-based aberration correction. Let i denote the
i-th iteration. Each iteration consists of a data acquisition part followed by a correction
part. In the �rst part, input–output data is collected by exciting the system with input
vectors taken from a neighbourhood centred at the estimate of x in the previous iteration.
In the second part, aberration correction takes place by solving Eq. (2.26) over the input–
output data acquired in the �rst part. This process is illustrated in Fig. 2.2.

k

iteration i − 1 iteration i

data acquisitiondata acquisition correctioncorrection

N + 1 stepsN + 1 steps C stepsC steps

x̂
(i−1)

x̂
(i)

Figure 2.2: Timeline of the iterative aberration correction algorithm. Each iteration con-
sists of a data acquisition part where N + 1 data points are acquired and a
correction part where correction is performed using Eq. (2.29) for C time
instants. The vectors in the i-th data acquisition are taken from a neigh-
bourhood of the estimate of x at iteration i − 1, i.e., x̂(i−1) .

2.5 Experimental setup

Experimental validation was performed with the system depicted in Fig. 2.3. As was done
in [128, 159, 144], a deformable mirror was simultaneously used as the source of the ab-
erration and as the correcting element. Aberrations were generated by adding an o�set x
to the control signal of the deformable mirror. Assuming x to be unknown, an aberration
correction algorithm was subsequently applied. The performance of the aberration cor-
rection was quantitatively assessed by measuring the residual aberration with a Shack-
Hartmannwavefront sensor. Obviously, themeasurements from the photodiodewere the
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only information that was supplied to the aberration correction algorithms. With refer-
ence to Fig. 2.3, light from a He–Ne laser source (632.8nmwavelength) is spatially �ltered
and collimated using lens L1 (11mm), pinhole P1 (30 µm), lens L2 (500mm), and I1 in or-
der to �ll two thirds (10mm) of the membrane of the deformable mirror DM (MMDM37,
OKOTech, The Netherlands). The pupil is demagni�ed and reimaged by L3 (200mm)
and L4 (100mm) onto the hexagonal microlens array MLA (127 microlenses, 18 mm fo-
cal distance, 300 µm pitch, OKOTech, The Netherlands). The image of the microlens
array is recorded with the camera C1 (svs340, 648×492 pixels, 7.4 µm pixel size, SYS-
VISTEK, Germany). The beam splitter BS2 divides light between the Shack-Hartmann
wavefront sensor and the pinhole-photodiode sensor. Lens L5 (200mm) focuses the beam
onto the photodiode (TSL250R-LF, TAOS, Korea), which is covered by the 50 µm pinhole
P2. Voltage to the electrodes of the deformable mirror is supplied by a high-voltage amp-
li�er (OKOTech, The Netherlands) with 40 channels. An external power supply provides
150V to the high-voltage ampli�er. The system is operated using a desktop PC running
Linux. The high voltage ampli�er is controlled with a 16-bit analogue output card (PD2-
AO-96/16A, United Electronic Industries, United States). Voltage from the photodiode
is acquired with a 16-bit analogue input card (PCI-6220, National Instruments, United
States). A framegrabber card (Leonardo CL Full, Arvoo, The Netherlands) is used to ac-
quire images from camera C1. Customised software written in C and MATLAB (Version
R2011a, The MathWorks, United States) is used to perform the experiments.

Amodalwavefront reconstructionmethodwas implemented [82] using the �rst 15 Zernike
polynomials de�ned and enumerated as in [44]. We estimated with a least-squares �t a
linear relationship between the square root of the voltage applied to the electrodes of the
deformable mirror and the Zernike coe�cients [196]. As done in [160, 144], 11 Zernike
coe�cients (Z5 to Z15, see [44]) were controlled, so that N = 11 in the previous formulas.
As suggested by OKOtech, bidirectional operation of the deformable mirror was achieved
by slightly misaligning L3 to compensate for the defocus that is introduced when the mir-
ror is biased [196].

2.6 Experimental results

Experimental validation has been performed using the system described in the previous
section.

2.6.1 Comparison of the identi�cation procedures for the approx-
imate metric

A comparison was made between Débarre’s experimental computation method (see Sec-
tion 2.3.1) and our proposed procedure (see Section 2.3.2). First the system was initial-
ised by �attening the deformable mirror with the Shack-Hartmann wavefront sensor.
Subsequently, the Nelder–Mead simplex method [152] was brie�y applied to correct for
relative misalignment between the Shack-Hartmann wavefront sensor and the pinhole-
photodiode detector. In this way, any residual aberration was removed from the system
so that both x and c1 are zero in Eq. (2.12). From this initial condition, Débarre’s method
and Eq. (2.16) were repeatedly applied to compute c0 and Q .
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Figure 2.3: The spherical wavefront is generated by spatially �ltering a laser beam with
lens L1 and pinhole P1. The beam is collimated by lens L2 and clipped by
iris I1 to �ll 10mm of the aperture of the deformable mirror DM . The mem-
brane ofDM is reimaged by lenses L3 and L4 onto a microlens arrayMLA. C1

and MLA implement a Shack-Hartmann wavefront sensor. Lens L5 focuses
the beam onto a photodiode that is covered by a pinhole P2. Flat mirror
M1 is used to calibrate the Shack-Hartmann wavefront sensor. An aberra-
tion is introduced as an unknown o�set x to the control signal of DM . An
aberration correction experiment consists of suppressing x when only the
measurements of the photodiode are available. Afterwards, a measurement
of the residual aberration is obtained with the wavefront sensor to assess the
performance of the correction.
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The result of each identi�cation experiment was assessed by evaluating the variance

accounted for (VAF). This is de�ned as VAF(y, ŷ) = max
(

1 − var(y−ŷ)
var(y) ,0

)

× 100%, where

the elements of vector y are taken from real output measurements of the system, whereas
the elements of vector ŷ are the corresponding output predictions computed using the
right-hand side of Eq. (2.12). If the VAF is 100% for one identi�cation experiment, then
that indicates that metric ỹ has been perfectly modelled. Forty di�erent identi�cation
experiments were executed. In each, an input–output data set was collected and both
Débarre’s procedure and Eq. (2.16) were applied in order to compute c0 and Q . The VAF
was computed using this identi�cation data. Afterwards, a second input–output data set
was collected in order to perform a cross-validation. In this second set, the input was
randomly selected. The VAF was then computed using this cross-validation data.

In Fig. 2.4(a), the mean value, maximum, minimum and standard deviation of the VAFs
computed with the identi�cation data sets are reported. These show that using Eq. (2.16)
guarantees a higher mean value for the VAF with respect to Débarre’s procedure. The
maximum values for the VAFs show comparable performance between the two proced-
ures. Instead the minimum values and standard deviations for the VAF show that a robust
performance is achieved by including the semide�nite constraint in the identi�cation
procedure. In fact an inde�nite matrix Q was recovered using Débarre’s procedure in 32
out of the 40 trials. In Fig. 2.4(b), the mean value, maximum, minimum, and standard
deviation of the VAFs computed with the cross-validation data sets are reported. These
numbers also support that our identi�cation procedure produces an accurate result. Fig-
ure 2.4(c) shows themean value ofQ for both identi�cation procedures. As expected, both
matrices have large elements in the diagonal. Nonetheless, some cross-talk elements are
also present due to the �nite size of the detection pinhole (see [197]). Whereas the diag-
onal elements are quite similar for both identi�cation procedures, di�erences are found
in the o�-diagonal elements. The consequences of employing an inaccurate matrix Q in
the correction of aberrations have already been discussed elsewhere [144, 169].

2.6.2 Empirical analysis of the quadratic approximation

Optimisation Eq. (2.16) can also be used to empirically study the region of validity within
which metric ỹ can be approximated with Eq. (2.12). For this purpose, a large input–
output data set with 50,000 tuples was recorded where the maximum input aberration
was 2 rad rms. Afterwards, optimisation Eq. (2.16) was solved by choosing 10 di�erent
subsets of the identi�cation data. In each subset, the maximum rms for the input aber-
rations, denoted by ρmax, was increased and a quarter of the tuples were reserved for
validation. The resulting identi�cation and validation VAFs are reported in Fig. 2.5. It
can be seen that between 0.4 and 0.6 rad rms, the e�ect of the modelling error becomes
appreciable and ỹ begins to deviate from its value as predicted by a quadratic polynomial.

Experimentally, we found that employing an iterative aberration correction scheme (e.g.,
the one depicted in Fig 2.2) provided a better performance instead of solving Eq. (2.26) for
M ≫ N +1. This empirical observation is in agreement with Fig. 2.5. Assuming that after
each iteration the residual aberration is decreased, then from Fig. 2.5 one can see that the
VAF computed with the input–output tuples within each iteration increases. Henceforth,
the input–output tuples of the previous iterations should not be reused to solve Eq. (2.26)
as they are �tted less accurately by Eq. (2.12).
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Figure 2.4: Comparison of the experimental computation of matrix Q with Débarre’s
method (see Section 2.3.1) and our proposed procedure (see Section 2.3.2).
First a data set of 15246 input–output tuples is acquired (p1 = 21, p2 = 13
and p3 = 21) andQ is computed with Débarre’s method, resulting inQd . The
same input–output data set is used to compute Q with Eq. (2.16), resulting
in Qsdp. The VAFs for Qd and Qsdp are computed over the identi�cation data
set. Subsequently, a new input–output data set with 15,000 tuples is acquired
for cross-validation. In this second set the input aberrations are chosen ran-
domly. The VAFs for Qd and Qsdp are computed using this latter validation
set. Such steps are repeated 40 times. (a) Mean value µ, maximum max, min-
imum min, and standard deviation σ of the identi�cation VAFs for Qd and
Qsdp. (b) Mean value µ, maximum max, minimum min, and standard devi-
ation σ of the cross-validation VAFs for Qd and Qsdp. (c) Mean value of Qd

and Qsdp over the 40 realisations. The colour map is scaled to the maximum
and minimum of the elements of Qsdp in order to preserve contrast between
the two matrices. Matrix Qd resulted inde�nite 32 times out of the 40 trials.
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An additional observation regards the selection of the bias b in the initial N +1 excitation
sequence (see Section 2.4). Using a small bias (e.g. < 0.5 rad rms) is preferable as this
ensures that the data points collected during the N + 1 data acquisition (see Fig 2.2) have
a similar VAF.
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Figure 2.5: Optimisation Eq. (2.16) was solved for 10 di�erent input–output data sets
where the maximum rms of the input aberration (ρmax) is linearly increasing
up to 2 rad rms. The VAF is reported for both identi�cation (3750 data points)
and validation (1250 data points). Between 0.4 and 0.6 rad rms, the di�erence
between ỹ and Eq. (2.12) becomes noticeable.

2.6.3 Aberration correction using the quadratic approximatemet-
ric

We report a number of aberration correction experiments where we compare our pro-
posed method with the model-based 3N and 5N algorithms (see [144] and Section 2.4.1)
and the model-free Nelder–Mead simplex method [152]. For the model-based algorithms,
i.e., the 3N, 5N, and our proposed solution, the same parameters c0, c1, and Q were used.
Such parameters were identi�ed by collecting an input–output data set with 6000 tuples.
The input aberrations were randomly chosen with a maximum rms of 0.5, as motivated
in Section 2.6.2. The data set was split into two sets, reserving 4500 tuples for identi�ca-
tion and 1500 tuples for validation. Identi�cation was completed in a couple of seconds
by solving Eq. (2.16) using YALMIP [193] and SeDuMi [194]. Note that SeDuMi took
less time to solve Eq. (2.16) instead of Eq. (2.13) (the ratio between the two computation
times was 0.17). A VAF of 98.27% and 98.16% was found respectively for identi�cation
and validation.

Figures 2.6(a)–2.6(d) show the results of the correction of random aberrations with mag-
nitudes of 0.3, 0.4, 0.6, and 0.8 rad rms. Such magnitudes are of interest in microscopy
applications, where moderate amounts of aberrations are corrected at intermediate depth
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2. Semide�nite programming for model-based sensorless adaptive optics

levels as one focuses deep within a sample (see Section 5 of [144]). For each �gure, 50
random aberrations were generated, where the Zernike coe�cients of each aberration
were randomly selected so that the resulting rms phase pro�le had a determined value.
In the upper plot, the initial aberration and the �nal residual aberrations are plotted. The
circles, vertical bars, and horizontal bars denote respectively the mean value, standard
deviation and minimum and maximum for the correction of the 50 aberrations. The ho-
rizontal dashed-dotted magenta line denotes the rms corresponding to a Strehl ratio of
0.9. The lower plot reports the mean value of the intensity against sample time for the
50 correction experiments. The vertical axis is normalised to the maximum intensity
recorded when no aberration is applied.

Figure 2.6(a) reports a summary of the correction of 50 random aberrations of 0.3 rad rms
with one iteration of our proposed method (LS1) [see Eq. (2.29)], the 3N (3N) algorithm
(see [144] and Section 2.4.1) and themodel-free Nelder–Mead simplexmethod [152] (Sim-
plex). The residual aberration is comparable for the three algorithms. Nevertheless, a
value of 0.95 for the normalised intensity is already achieved at sample time 13 for (LS1),
whereas the other two algorithms reach about 0.94 at sample time 34. A bias of 0.5 rad is
used for the 3N algorithm, as suggested in [144] for small aberrations. Instead, a smaller
bias of 0.02 rad was used for our proposed solution, as motivated in Section 2.6.2. Such
a small bias can be advantageous in scanning image acquisition processes, as it leads to
less excitation of the dynamics of the deformable mirror and to a smoother variation of
the image as aberration correction is being applied.

Figure 2.6(b) shows a summary of the correction of 50 random aberrations of 0.4 rad rms
with one iteration of our proposed method (LS1), the 3N algorithm (3N) and the simplex
method (Simplex). Also in this case the two model-based approaches outperform the
model-free one. Lower mean values of the residual aberrations are reached for both (LS1)
and (3N). In addition, the average normalised intensity is also higher than in (Simplex).
This time, at sample time 13, (LS1) reaches a normalised mean intensity of 0.91, which
is exceeded by (3N) only at sample time 32. (Simplex) instead stops at 0.9 at sample time
34. Note that both in Fig. 2.6(a) and in Fig. 2.6(b) the mean intensity of (LS1) does not
improve signi�cantly after the �rst correction is applied at sample time N + 2, as was
discussed in Section 2.6.2.

Fig. 2.6(c) reports a summary of the correction of 50 random aberrations of 0.6 rms with
two iterations of our proposed method (LS2) (see Fig. 2.2), the 3N algorithm (3N) and
the simplex method (Simplex). In this case, the 3N algorithm is underperforming. A
similar behaviour was also reported in [144] (see Fig.4 therein). Nevertheless, a robust
performance is shown by (LS2), as can be seen by the reduced standard deviation of the
residual aberration and the mean value of the normalised intensity.

In Fig. 2.6(d), 50 random aberrations with a magnitude of 0.8 rms were corrected. Here,
four iterations of our proposed method (LS4), the 5N (5N) algorithm (see [144]) and the
simplex method [152] (Simplex) are applied. The performance of (5N) is worse than what
is reported in [144] (see, for instance, Fig.5 in [144]). Such a discrepancy can be explained
by three facts. First, in [144], both the imaging system and the selected metric were
di�erent from our case. Second, a maximum bias of 0.5 rad was used, instead of the
suggested maximum of 2 rad as in [144]. We found that the deformable mirror could
not reproduce such a large deformation without saturating the actuators or producing
an inaccurate phase pro�le, especially for coma, spherical aberration, and second-order
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astigmatism. Finally, in [144], the square root of a Lorentzian curve was used instead of
Eq. (2.12) (see also the discussion in the next section). Nevertheless, on average, (LS4)
reaches a Strehl ratio higher than 0.9 (see the horizontal dashed-dotted line in the upper
plot) and outperforms (Simplex).

2.6.4 Aberration correctionusingnon-quadratic approximatemet-
rics

As seen in Section 2.6.2, approximating ỹ with a quadratic polynomial is accurate within
a restricted neighbourhood of the global maximum of ỹ. Nonetheless, empirically, it was
found that a broader range of aberrations could be encompassed when using Gaussian or
Lorentzian functions to approximate ỹ (see [160, 126] and [144, 159, 161] respectively).
Neglecting issues related to numerical computations and the measurement noise, the
quadratic polynomial is recovered by assuming that t (ỹ (k )) ≈ c0 + cT1 (x − u(k )) − (x −
u(k ))TQ (x − u(k )), where t (·) is the logarithm when Gaussian functions are used. The
use of such an output transformations to recover the quadratic polynomial follows what
has been done in [160, 126, 144, 159, 161].

In Fig. 2.7 we report a summary of the corrections of 50 random aberrations with a mag-
nitude of 1.0 rad rms. Here a Gaussian function was used to model ỹ and a new identi�ca-
tion was performed by solving Eq. (2.16). A comparison is made between three iterations
of our proposed solution (LS3E) and the simplex method (Simplex). It can be seen that
(LS3E) outperforms (Simplex), since a lower mean value is achieved for the residual ab-
erration and the mean intensity is consistently higher than the one of (Simplex) after
sample time 11. A study of the amount of aberration that can be corrected with model-
based approaches is found in [144] and is not worth repeating here. Similar results should
be expected if our aberration correction algorithm is employed.

2.7 Conclusions

In this paper, a new experimental procedure to compute the parameters of quadratic
approximate metrics in wavefront sensorless adaptive optics has been presented. Such
metrics are applicable to a broad spectrum of di�erent imaging techniques [161, 126, 169,
144, 155, 170, 159, 157, 160, 128]. Our proposed procedure has been shown to produce
a more robust computation of the parameters with respect to existing procedures [160,
169]. Arbitrary input–output data can be used without the need to generate speci�c pupil
functions as in [160, 169]. An additional bene�t is found in the possibility to empirically
study the region of applicability of the quadratic approximate metric.

A second contribution is found in the algorithm used for aberration correction. Formulas
have been provided where aberration correction is achieved by exactly optimising the
quadratic approximate metric using a closed-form expression in a minimum of N + 1
measurements. Since these expressions are given for a quadratic polynomial in its most
general form, they are widely applicable [161, 126, 169, 144, 155, 170, 159, 157, 160, 128]
and they represent an improvement to previously employed algorithms that required a
minimum of 2N + 1 measurements [161, 126, 169, 144, 159, 160]. Finally, our arguments
have been corroborated by experimental validation in a laboratory environment.
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Figure 2.6: Each �gure reports a summary of the correction of a set of 50 random ab-
errations. In the upper plot, the mean value, standard deviation, minimum,
and maximum of the residual aberrations after the correction are reported
in radians. These are denoted, respectively, by a circle, a thick vertical bar,
and thin horizontal lines. The same indicators are also reported for the ran-
dom initial aberrations before correction. (LS1), (LS2), and (LS4) denote re-
spectively 1, 2, and 4 iterations of Eq. (2.29) as depicted in Fig. 2.2. (3N) and
(5N) are described in Section 2.4.1 and [144]. (Simplex) and (SPL) denote the
Nelder–Mead simplex method [152]. The horizontal dashed-dotted magenta
line denotes a Strehl ratio of 0.9. The lower plots report the mean value of
the normalised intensity against sample time for the 50 aberration correction
experiments.
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Figure 2.7: Summary of 50 random aberration correction experiments. The same con-
ventions as in Fig.2.6 are employed to report the results. In this case, a Gaus-
sian function instead of Eq. (2.12) was used to model ỹ, as outlined in Sec-
tion 2.6.4. (LS3E) denotes three iterations of Eq. (2.29) as depicted in Fig. 2.2.
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Chapter 3

Optimisation-based wavefront

sensorless adaptive optics for

multiphoton microscopy

Optical aberrations have detrimental e�ects in multiphoton microscopy. These
e�ects can be curtailed by implementing model-based wavefront sensorless ad-
aptive optics, which only requires the addition of a wavefront shaping device,
such as a deformable mirror to an existing microscope. The aberration correc-
tion is achieved by maximising a suitable image quality metric. We implement a
model-based aberration correction algorithm in a second-harmonic microscope.
The tip, tilt and defocus aberrations are removed from the basis functions used
for the control of the deformable mirror, as these aberrations induce distortions
in the acquired images. We compute the parameters of a quadratic polynomial
that is used to model the image quality metric directly from experimental input–
output measurements. Finally, we apply the aberration correction by maxim-
ising the image quality metric using the least-squares estimate of the unknown
aberration.

Reference: J. Antonello, T. van Werkhoven, M. Verhaegen, H. H. Truong, C. U.
Keller, and H. C. Gerritsen, “Optimization-based wavefront sensorless adaptive
optics for multiphoton microscopy,” J. Opt. Soc. Am. A 31, 1337–1347 (2014).

3.1 Introduction

Multiphoton microscopy techniques such as two-photon �uorescence microscopy [23]
and second-harmonic microscopy [198] are commonly employed to image biological spe-
cimens. Exploiting the image sectioning properties of these processes, one can create
high-resolution 3D reconstructions that are invaluable for biomedical research. One lim-
iting factor is the presence of specimen-induced aberrations. Because the index of refrac-
tion is not homogeneous within the specimen, aberrations a�ect both the resolution and
the maximum depth of penetration [36]. Using adaptive optics [35], these detrimental
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3. Optimisation-based WFSless AO for multiphoton microscopy

e�ects can be minimised by reducing the phase aberrations. A phase aberration can be
introduced in the excitation beam by means of a deformable mirror, for example. Chosen
correctly, such a phase aberration can suppress some amount of the specimen-induced
aberrations.

Direct measurement of the specimen-induced aberrations is challenging. One solution
involves measuring the aberrations of the excitation light that is back-scattered from the
specimen [137, 133, 187, 131, 136, 199]. In this case, the di�culty arises in excluding the
light that is re�ected from the out-of-focus layers of the specimen [137, 133]. Additionally,
these measurements are weakly sensitive to odd aberrations [137], due to the double
pass e�ect [135]. In another solution, instead, the emission from a point source inside
the specimen is used to perform Shack–Hartmann wavefront sensing [139, 140, 138, 142,
143]. Here the di�culty stems from the lack of such reference point sources within the
specimen and from the limited number of photons available in the emission signal.

An alternative, indirect approach involves deducing the specimen-induced aberrations
solely by examining the emission signal. This approach only requires the addition of a
deformable mirror into the excitation path of an existing microscope. A solution that is
based on the segmentation of the pupil has been proposed [166, 167]. Other solutions are
based on the optimisation of an image quality metric, which attains its global maximum
when the residual aberration is maximally suppressed. In practice, di�erent trial aberra-
tions are sequentially applied with the deformable mirror until the image quality metric
attains its maximum.

General optimisation algorithms can be used to maximise the image quality metric [151,
111, 150, 113, 153, 146]. However, because these algorithms have no prior knowledge
about the metric, a large number of trial aberrations must be evaluated before the met-
ric is maximised [36, 155, 158]. Reducing the number of trial aberrations is critical in
achieving short image acquisition times and in limiting side e�ects, such as photobleach-
ing and phototoxicity. For small aberrations, the response of the image quality met-
ric can be approximated using a simple model, such as a quadratic polynomial [197,
200, 155, 159, 128, 160, 161, 162, 144, 118, 158]. Model-based aberration correction al-
gorithms [197, 200, 155, 159, 128, 160, 161, 162, 156, 157, 201, 144, 118, 158] exploit the
knowledge about the model of the metric to quicken the aberration correction, thus cur-
tailing the aforementioned side e�ects.

In this paper, we investigate applying a model-based wavefront sensorless aberration
correction algorithm to a second-harmonic microscope.

The paper is organised as follows. In Section 3.2 we discuss the de�nition of the basis
functions for the control of the deformable mirror. In Section 3.3 we outline our proposed
algorithm for the aberration correction. In Section 3.4 we report the experimental results.
The conclusions are drawn in Section 3.5.

3.2 De�nition of the basis functions for the control of

the deformable mirror

The basis functions should satisfy two di�erent requirements. In scanning microscopy,
the aberration correction should not introduce x-tilt, y-tilt and defocus Zernike aberra-
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tions [44]. These aberrations do not a�ect the image quality. Instead, they a�ect the
position of the focal point within the specimen and they induce translations or distor-
tions in the acquired images [160, 161, 202]. For this reason, a �rst requirement is that
the basis functions be orthogonal to the x-tilt, y-tilt and defocus aberrations.

A second requirement is that the basis functions express the capabilities of the deformable
mirror in an accurate and concise form, by taking into account the mechanical limitations
of the mirror and the misalignment in the optical system as much as possible. This re-
quirement is not satis�ed when using Zernike polynomials as the basis functions since
a deformable mirror with Na actuations cannot accurately induce a set of Na Zernike
polynomials.

We now discuss a simple procedure to de�ne a new set of basis functions that satisfy
the two requirements discussed so far. This procedure is based on the Singular Value
Decomposition (SVD) of a matrix H that approximately describes a linear relationship
between the control signals of the deformable mirror and a set of Zernike coe�cients. For
completeness, we �rst report howH can be computed from input–output measurements.

3.2.1 Computation ofmatrixH from input–outputmeasurements

Let Na be the number of actuators of the deformable mirror. Assuming that the deform-
able mirror is a linear device, the phase aberration Φ(ξ ) is given by the superposition of
the in�uence functions [203, 50]ψi (ξ ) of each actuator, where ξ is the spatial coordinate
in the pupil and ui is the control signal of the i-th actuator

Φ(ξ ) =

Na
∑

i=1

uiψi (ξ ). (3.1)

For a suitable number Nz of Zernike polynomialsZj (ξ ), the phase aberration is approx-
imated by

Φ(ξ ) ≈
1+Nz
∑

j=2

zjZj (ξ ), (3.2)

where zj is the j-th Zernike coe�cient. We neglect the piston mode Z1 since this does
not a�ect the image and assume that Φ(ξ ) andψi (ξ ) have zero mean value over the pupil.

The coe�cients ui and zj are collected respectively into vectors u ∈ R
Na and z ∈ R

Nz .
By considering a grid de�ned in the pupil, Nc samples of Φ(ξ ) are collected into a vector
ϕ ∈ R

Nc . Similarly, we evaluate ψi (ξ ) and Zj (ξ ) over the grid and de�ne two matrices
Ψ ∈ RNc×Na and Z ∈ RNc×Nz . Using Eqs. (3.1) and (3.2), we �nd ϕ = Ψu and ϕ ≈ Zz.

We would like to recover a matrixH that maps an actuation vector u into the correspond-
ing vector of Zernike coe�cients z, i.e., z ≈ Hu. H can be computed using input–output
measurements, so that the misalignment in the optical system is accounted for. Using
a Shack–Hartmann wavefront sensor or interferometric methods [189, 204, 50, 183] one
can collect a set of measurements of the phase ϕ1, . . . ,ϕD corresponding to di�erent set-
tings of the deformable mirror u1, . . . ,uD .
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We compute H by minimising the following criterion,

min
H

D
∑

i=1

‖ϕi − ZHui ‖2. (3.3)

Setting the derivative with respect to H to zero leads to the following normal equation

ZTZH (

D
∑

i=1

uiu
T
i ) = Z

T (

D
∑

i=1

ϕiu
T
i ), (3.4)

which can be solved by multiplying from the left and from the right by the inverse
matrices of ZTZ and

∑D
i=1 uiu

T
i . For a properly de�ned grid, the inverse of ZTZ exists,

sinceZ is full column rank due to the orthogonality property of the Zernike polynomials.
Additionally, vectors ui can be selected so that

∑D
i=1 uiu

T
i is full rank.

In our system we have Na = 17 and Nc = 75912. We performed D = 4Na measurements
of the phase ϕ1, . . . ,ϕ4Na

. In each measurement, a single actuator is poked while the
other actuators are at rest. We empirically chose D = 4Na , other choices are possible
provided D ≥ Na . The choice of Nz is more critical. With a poor choice of Nz , the
accuracy requirement discussed at the beginning of Section 3.2 may not be ful�lled and
the approximation z ≈ Hu may be too rough. We chose Nz = 35 by evaluating the error
in approximating the phase measurements ϕi using an increasing number of Zernike
polynomials.

3.2.2 SVD-based removal of the x-tilt, y-tilt and defocus aberra-
tions

From the previous section, we conclude that, in our system, the Na = 17 in�uence func-
tions approximately span a subspace of the space spanned by the �rst Nz = 35 Zernike
polynomials. Because rank(H ) < Nz , there exist non-zero vectors z that do not belong
to the range of H and the Zernike polynomials should not be used as the basis functions
for the control of the deformable mirror.

We can split vector z and matrix H so that z ≈ Hu is partitioned as[
zl
zh

]
≈

[
Hl

Hh

]
u, (3.5)

where the x-tilt, y-tilt and defocus coe�cients are collected into zl = [z2,z3,z4]
T . The

SVD of Hl is

Hl = Ul
[
Σl 0

] [VT
l1
VT
l2

]
, (3.6)

where Σl has dimensions 3×3,Vl1 has dimensions Na ×3 andVl2 has dimensions Na ×Np

with Np = Na − 3. The required constraint that zl ≈ 0 is enforced if we choose u such
that Hlu = 0. This is achieved by parametrising u using the columns of Vl2, i.e., letting
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u = Vl2p, where p ∈ RNp . Therefore, the phase aberration is

Φ(ξ ) =

Na
∑

i=1

uiψi (ξ ), s.t. u = Vl2p (3.7)

or equivalently

Φ(ξ ) =

Np
∑

i=1

piωi (ξ ), (3.8)

where ωi (ξ ) are the new basis functions. These functions are de�ned by

ωi (ξ ) =

Na
∑

j=1

(Vl2)jiψj (ξ ),

where (Vl2)ji denotes the element of Vl2 at position (j,i ). For a given vector p, we can
compute the control signals of the actuators with u = Vl2p. Similarly, for a given p, the
Zernike analysis of the induced wavefront aberration is given by z ≈ HVl2p.
In our experiments, we also applied regularisation [205] by truncating the SVD of HVl2
to U1Σ1V

T
1 . Using no more than 80% of the sum of the singular values, Σ1 was a 7 × 7

matrix and the deformable mirror was controlled with a vector r ∈ R
N , where N = 7.

For a given r, the control signals of the actuators of the deformable mirror are computed
using u = Vl2V1r. The Zernike analysis of the induced wavefront aberration is computed
using zh ≈ HhVl2V1r and the rms of the phase pro�le is given by computing the 2-norm,
i.e., ‖zh ‖. This is equivalent to applying another parametrisation to Eq. (3.8). We remark
that in this way, no pseudo-inverse is ever computed or used to control the deformable
mirror, di�erently from what is done in [203], for example.

3.3 Least-squares estimation of the unknown aberra-

tion

In this section we discuss the aberration correction algorithm. In [161, 144, 118], the
authors show that, for small aberrations, the image quality metric can be modelled using
a quadratic polynomial. We denote a measurement of the image quality metric at time
instant k with ỹk , so that

ỹk = c0 − (x + rk )
TQ (x + rk ) + ϵk , (3.9)

where c0 and Q are the parameters of the quadratic polynomial. Matrix Q is a posit-
ive semide�nite matrix, i.e., Q � 0 [158]. Vector x represents the unknown aberration
whereas rk accounts for the aberration induced by the deformable mirror. The term ϵk
is a placeholder that collects both the uncertainty in modelling the image quality metric
and the measurement noise, and as such it cannot be measured by de�nition. By in-
cluding this term, a measurement ỹk can be set equal to the right-hand side of Eq. (3.9).
Excluding ϵk , the right-hand side of Eq. (3.9) is referred to as the approximate image qual-
ity metric in [158]. The parameters c0 and Q can be computed using the input–output
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measurements recorded in a calibration experiment described in Section 3.4.3 or using
the methods described in [160, 169].

3.3.1 De�nition of the least-squares problem

The aberration correction is achieved by maximising the image quality metric, i.e., by
letting rk = −x in Eq. (3.9). For this reason, we must �rst estimate the unknown vector x.
This can be done by applyingm ≥ N + 1 trial aberrations r1, . . . ,rm with the deformable
mirror and by taking the corresponding measurements ỹ1, . . . ,ỹm .

Collect ϵ1, . . . ,ϵm into a vector ϵ and ỹ1, . . . ,ỹm into a vector ỹ. By stackingm instances
of Eq. (3.9), we can de�ne a vector-valued function g,

g(x) =


c0 − (x + r1)

TQ (x + r1)
...

c0 − (x + rm )TQ (x + rm )


, (3.10)

such that
ỹ = g(x) + ϵ . (3.11)

The least-squares estimate of x is obtained by minimising ‖ϵ ‖2, i.e., by solving

min
x

f (x), (3.12)

where
f (x) = ‖ỹ − g(x)‖2. (3.13)

We note that if vector ϵ follows a multivariate normal distribution with zero mean and
covariance proportional to the identity matrix, solving Eq. (3.12) provides the maximum
likelihood [206] estimate of x.

3.3.2 Analysis of the least-squares problem

Finding the global minimum of f (x) appears to be non-trivial as f (x)may be non-convex.
This is illustrated with a two-dimensional example in Fig. 3.1. Here, the contour plot of
Eq. (3.13) is shown, when m > N + 1 measurements of ỹ are taken. The measurement
noise is zero, i.e., ϵ = 0. Nevertheless, f (x) is not convex and exhibits two critical points.
In addition to the least-squares solution xls of Eq. (3.12), which is the global minimum
and for which f (xls) = 0, a local minimum xloc is present. In case one uses rk = −xloc to
perform the aberration correction, then the residual aberration is not zero and the image
quality metric is not maximised.

Because the convexity property is not satis�ed in general, it is unclear how xls can be
computed. For example, a gradient based method applied to solve Eq. (3.12) may fail to
compute xls. Alternatively, more sophisticated algorithms may be unsuitable to meet the
requirements of a real time implementation. Nevertheless, the global solution of Eq. (3.12)
can be computed e�ciently even when f (x) is not convex, as is outlined in the following
section.
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Figure 3.1: Contour plot of Eq. (3.13). In this example, f (x) is not convex and
exhibits a local minimum. The parameters are c0 = 100 and Q =

[1.25,0.433; 0.433,1.25]. Four measurements of ỹ, taken at r1 = [0,0]T , r2 =
[1,0]T , r3 = [0,1]T and r4 = [0,−1]T are marked with × symbols. The global
minimum xls = [−1.2,1.2]T and the local minimum xloc ≈ [1.2582,−0.3421]T
are indicated with ∗ symbols. Isolines with an elevation greater than 70 have
been removed for clarity. A cross section along the dashed line is reported
in the plot in the bottom.
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3.3.3 E�cient computation of xls

In [207], an e�cient algorithm to �nd the global solution of a possibly non-convex op-
timisation similar to Eq. (3.12) was developed, in the context of localisation problems.
In this section we show how the solution proposed in [207] can be applied to our prob-
lem. For the remaining part of the paper we assume that Q is strictly positive de�nite.
This assumption is reasonable since if there are aberrations that do not a�ect the image
quality metric then these cannot be corrected and they should be neglected during the
aberration correction [158].

Introducing an additional scalar variable α , we can reformulate Eq. (3.12) into the follow-
ing equivalent constrained optimisation

min
x,α

m
∑

k=1

(

−α − 2rTkQx + c0 − r
T
kQrk − ỹk

)2

s.t. α = xTQx.

(3.14)

Problem (3.14) is written concisely in matrix form as

min
w
‖Aw − b‖2 s.t. wTDw + 2fTw = 0, (3.15)

where
wT
=

[
xT α

]
, R =

[
r1 . . . rm

]
,

A =
[
−2RTQ −1

]
, b =


rT1Qr1 + ỹ1 − c0

...

rTmQrm + ỹm − c0


,

D =

[
Q 0

0 0

]
, fT =

[
0 −1/2

]T
(3.16)

and 1 and 0 denote vectors of appropriate dimensions where all components are respect-
ively ones and zeros. The authors in [207] note that Eq. (3.15) is a Generalised Trust
Region Subproblem [208]. Such problems, although non-convex in general, have neces-
sary and su�cient optimality conditions [208]. In particular, from [207, 208], we know
that w is a global minimiser of Eq. (3.15) if and only if there exists a Lagrange multiplier
ν such that

(ATA + νD)w = AT b − νf
wTDw + 2fTw = 0

ATA + νD � 0.

(3.17)

We assume that matrixA is full column rank, which in turn implies thatm ≥ N + 1. This
assumption onA is by no means restrictive. BecauseQ ≻ 0, it can be factoredQ = V∆VT ,
where ∆ is diagonal and full rank. Choose R = [V ,0], where 0 is a vector of zeros, then
A is full column rank. We further assume that the optimal Lagrange multiplier ν∗ is such
that ATA+ ν∗D is strictly positive de�nite. The authors in [207] point out that this more
restrictive assumption could be removed with a more re�ned analysis. However the case
where ν∗ is such that ATA+ ν∗D is not strictly positive de�nite is unlikely to occur both
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in theory and in practice [207].

Under these assumptions, one can compute

w(ν ) = (ATA + νD)−1 (AT b − νf ) (3.18)

for a �xed value of ν . By replacing w in the second equation in Eq. (3.17) with the right-
hand side of Eq. (3.18), one �nds a univariate rational polynomial equation in ν :

w(ν )TDw(ν ) + 2fTw(ν ) = 0. (3.19)

The optimal Lagrange multiplier ν∗ can be found examining the solutions of Eq. (3.19).
From the assumption ATA + νD ≻ 0, it can be derived [208, 207] that ν must be in the

interval (Il ,+∞), where Il = −1/λmax (∆
−1/2
A

VT
A DVA∆

−1/2
A

), and we used the factorisation
ATA = VA∆AV

T
A . In addition, it is known [208, 207] that Eq. (3.19) is strictly decreasing in

ν within the considered interval. Therefore the desired root ν∗ of Eq. (3.19) can be found
e�ciently, for example via a bisection algorithm [207]. Once ν∗ is found, the estimate of
x is extracted from the �rst N components of w(ν∗).

The aberration correction algorithm is therefore applied in the following manner. First
the data collection step takes place, whereby them ≥ N + 1 trial aberrations are applied
and the corresponding measurements ỹ1, . . . ,ỹm are taken. Then, ν∗ is computed by
�nding the root of Eq. (3.19) within (Il ,+∞). The estimate xls of the aberration is found
in the �rst N components of w(ν∗). The second step involves applying the aberration
correction with the deformable mirror, by letting r = −xls. These steps can be repeated in
the following time instants by including more thanm measurements to achieve a re�ned
correction. We note that in [158], the least-squares estimate of x was not computed
since the quadratic constraint in Eq. (3.14) was neglected to obtain a linear least-squares
problem.

3.4 Experimental results

We implemented the model-based wavefront sensorless algorithm and report the exper-
imental results in this section. Following [162], we employ the mean image intensity
as a metric to correct aberrations in our second-harmonic microscope. Our experiments
show successful aberration correction using this metric (see Section 3.4.7).

Our �rst purpose is to validate a previously proposed method [158] to compute the para-
meters c0 and Q of Eq. (3.9) using input–output measurements. This validation has not
been previously done in a realistic setting, since in [158] no microscope and no specimen
were involved. Additionally, we intend to validate the aberration correction algorithm
described in Subsection 3.3.3. We report our results in the following sections.

3.4.1 Description of the experimental setup

A schematic of the experimental setup is shown in Fig. 3.2. The source is a Coher-
ent Chameleon Ultra II Ti:Sa 140 fs pulsed, near-infrared laser, with a beam diameter
of 1.2mm. This beam is expanded to a 14mm wide beam by lenses L1 and L2.
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The beam is stopped down to 9.5mm (AP) before it is re�ected under an angle of about 10◦

by the deformable mirror (DM; Okotech, 17-channel micromachined deformable mirror
with tip-tilt stage). The deformable mirror is reimaged one-to-one onto the objective
back-aperture by lenses L3 and L4 (focal lengths, 300mm). Because the deformablemirror
can only introduce negative de�ection, we bias the mirror so that we can apply positive
and negative de�ections to correct the wavefront (see [50]). In addition, the relationship
between the control signal ui of each actuator of the deformable mirror and the voltage
applied to the corresponding electrode is quadratic, so that a linear displacement of the
membrane is expected [50]. Due to this bias, the collimated beam coming from L2 is
converging after being re�ected by the deformable mirror. We corrected this by using
lenses L4 and L3, so that a collimated beam is fed into the objective.

The sample is mounted on an xyz-piezo stage (XYZ; PI, Nanocube P-611.3S). The second-
harmonic signal from the specimen is collected by the objective and split o� by a 705 nm
cut-o� dichroic beam splitter (DBS; Semrock, FF705-Di01-25x36). This light is focused
onto a 600 µm multi-mode �bre which is connected to a photomultiplier tube (PMT;
Hamamatsu, GaAsP photocathode H7422P-40). The objective used (OBJ) is a 40×/0.9 NA
Nikon air objective with spherical correction collar. We manually adjusted the collar to
correct for the spherical aberration due to the cover glass and the specimen at the selected
depth.

For characterisation of the deformable mirror, we interfere a tilted reference beam with a
sample beam de�ected o� the deformable mirror to create fringes that encode the wave-
front deformation. To allow this, a 50/50 beam splitter (BS1; Thorlabs, BS016) splits o�
part of the light into a reference arm beam, which is relayed onto the camera (CCD; AVT,
Guppy Pro F-033b) by mirrors M3, M4, and M5. The sample arm beam is de�ected by
the deformable mirror once before �ip mirror FM1 directs the light into the calibration
arm. Lenses L6 and L7 reimage the deformable mirror onto a camera. For this calibration
we use the alignment laser, which is a continuous wave. We used the method described
in [133] to decode the wavefront from the fringe patterns.

The piezo stage is controlled with a data acquisition board (National Instruments, PCI-e
6259) on a Windows computer running LabView. The deformable mirror is controlled
through a PCI DAC card on a Linux computer runningMATLAB and custom C code.

In the aberration correction experiments we imaged collagen �bre extracted from rat tail
washed four times in distilled water. Following �xation in 4% paraformaldehyde, the �bre
was washed in phosphate bu�er saline and then embedded in 3% agarose (Sigma-Aldrich
chemie GmbH) in a 35mm glass bottom dish (MatTek Corporation). We used 900 nm
excitation light to generate the second-harmonic signal.

3.4.2 Preparation of the experiments

We �rst imaged a 20 µm×20 µm region, approximately 33 µmdeep into the collagen �bre.
The region is labelled with A in Fig. 3.3. The in�uence of the size of the region used for
the aberration correction has been studied elsewhere [118]. For a certain setting of the
deformable mirror r, the region is scanned using the xyz stage. The corresponding value
of the image quality metric ỹ is measured as the mean image intensity [162, 161, 144, 118],
i.e., the mean pixel value recorded over the region. The pixel dwell time is 0.5ms and the
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Figure 3.2: Illustration of the optical setup. The components in black are used through-
out the aberration correction experiments. The components in grey are used
only for the initial characterisation of the deformable mirror (DM). A pulsed
laser beam is expanded with lenses L1 and L2, clipped by aperture AP and
re�ected by �at mirror M1 onto the DM. The DM is in an image of the back
aperture of the microscope objective (OBJ), using lenses L3 and L4. The DM
is illuminated under an angle of about 10◦ using the �at mirrorsM1 andM2.
The microscope objective (OBJ) focuses the light onto the specimen, which is
supported by an xyz stage (XYZ). The second-harmonic signal emitted from
the focal point inside the specimen is collected with the objective and sep-
arated from the illumination beam using a dichroic beam splitter (DBS). The
emitted signal is focused by lens L5 onto a photomultiplier tube (PMT). For
characterising the DM, the surface of the DM is reimaged onto a CCD cam-
era (CCD) using the �ip mirror FM1, �at mirror M6 and lenses L6 and L7.
A reference arm is created using beam splitter BS1, �at mirrors M3, M4, M5

and beam splitter BS2. A coherence-gated fringe analysis method described
elsewhere [133] is applied to the fringe pattern generated onto CCD.

61



3. Optimisation-based WFSless AO for multiphoton microscopy

sampling is 24 pixels × 24 pixels. With these settings, the xyz stage does not reach the
full 20 µm distance in the x scanning direction, which is the fast axis. This was not an
issue since such a coarse sampling was only used to perform the aberration correction in
a short time [144]. The �nal images taken after the aberration correction were recorded
with a higher sampling. The image deformation due to both the non-linearity and non-
uniform speed of the xyz stage were removed from the �nal images, using interpolation
and the signals recorded with the position sensors of the xyz stage.

First, the static aberrations in the system due to misalignment and imperfections in the
optical components were corrected. We used the non-zero initial aberration that was
found during the calibration of the deformable mirror in Section 3.2 (about 0.79 rms rad
at 900 nm, mostly astigmatism). At this point the Nelder–Mead algorithm [152] was ex-
ecuted four times to �nd a value r that maximises ỹ. Unfortunately, this led to the satur-
ation of two actuators, indicating that the stroke of the deformable mirror may be insuf-
�cient to completely suppress the aberration in this region. We selected a slightly sub-
optimal vector r from the vectors generated by the Nelder–Mead algorithm. For the selec-
ted vector, the maximum normalised voltage of the actuators was 0.72, i.e., ‖u‖∞ ≤ 0.72,
ỹ improved by 3% and a total aberration of about 0.18 rms rad was suppressed. This state
was used as the new initial condition for the rest of the experiments, i.e., r = 0 is mapped
to this setting of the deformable mirror. In the following sections, all the units in rad are
referenced to the 900 nm excitation laser light.

10µm

A
y

x

B

C

10µm

z

x

Figure 3.3: Cross sections of rat tail collagen �bre used in our experiments. The smal-
ler image on the right-hand side is an xz cross section [50 µm × 50 µm,
128 pixels×128 pixels]. The dashed line denotes an xy cross section [80 µm×
80 µm, 256 pixels×256 pixels] approximately 33 µm deep, which is shown on
the left-hand side. Three di�erent 20 µm × 20 µm regions are marked.
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3.4.3 Computation of the parameters of the quadratic polynomial
using input–output measurements

We executed the computation of the parameters of the quadratic polynomial used for
modelling the image quality metric multiple times. Each time, the sequence of input vec-
tors consisted of two sub-sequences. The �rst sub-sequence contained random vectors
r1, . . . , r250 and was used for the validation and the cross-validation. The second sub-
sequence contained 70 �xed vectors (each vector having a single non-zero component).
The second sub-sequence was included because the 250 random vectors may be insu�-
cient to uniformly sample the N -dimensional space of the inputs. In [158], 3750 random
vectors were used, but this was impractical here, due to the time necessary to move the
xyz stage. The maximum rms rad of the input aberrations did not exceed 0.81. This value
was empirically tuned by examining the goodness of �t as a function of the maximum
rms [158].

For each input vector in the sequence, we measured the corresponding output of ỹ. The
resulting input–output data, i.e., collections ỹ1, . . . , ỹ320 and r1, . . . , r320 were used to
formulate the following optimisation problem [158]

min
x̃
‖Ãx̃ − b̃‖ s.t.

Ã =


1 rT1 −rT1 ⊗ rT1
...
...

...

1 rT320 −rT320 ⊗ rT320


,

b̃ =
[
ỹ1 . . . ỹ320

]T
,

x̃ =
[
c0 cT1 vec(Q )T

]T
,

Q � 0,

(3.20)

where vec(·) denotes the vectorisation operation and ⊗ the Kronecker product. This
programme was solved using cvxopt [209] (see [210] for further details).

3.4.4 Validation and cross-validation of the computed parameters

The results of applying Eq. (3.20) in regionAmarked in Fig. 3.3 are shown in Fig. 3.4. The
computation of the parameters was repeated six times. Each time, a new input–output
data set was acquired, D1, . . . , D6. For each input–output data set, optimisation (3.20)
was solved generating six sets of parameters, each set comprising c0, c1 and Q . The sets
are denoted asM1, . . . ,M6. We quanti�ed the goodness of �t for all combinations of D
andM by means of the R2 indicator. Using the random input sub-sequence of Di and
Mj , we computed the predicted output ô ∈ R250 of the image quality metric. The input–
output data points obtained from the deterministic input sub-sequence of 70 vectors were
discarded andwere not included in the computation of theR2 indicator, which is obtained
using the following equations:

R2
= 1 − Sr /St , Sr = ‖o − ô‖2,

St = ‖o − ō1‖2, ō = (1/250)1T o,
(3.21)
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where o is the measured output ofDi . An R2
= 1 implies a perfect �t of the experimental

data.

Fig. 3.4 reports R2 indicators that are close to one, implying a good �t of the experimental
data. A good �t is also found for the combinations that are o� themain diagonal. Here the
parameters c0, c1 and Q allow to accurately predict cross-validation output data. Similar
results were found for the other two regions marked in Fig. 3.3.

D1

D2

D3

D4

D5

D6

M1 M2 M3 M4 M5 M6

 

 

0.935

0.957

0.979

Figure 3.4: Validations and cross-validations of the computation of c0, c1 and Q using
Eq. (3.20). The computation has been performed six times in region A in
Fig. 3.3. Di denotes the input–output data taken during the i-th time. Mi

denotes the set of parameters [c0, c1 and Q in Eq. (3.20)] computed from
Di . For each combinationMi and Dj , the i-th random input sub-sequence
andMj are used to compute the predicted output ô ∈ R

250. Each rectangle
reports the goodness of �t [R2, see Eq. (3.21)] computed comparing ô with
the corresponding measured output o ∈ R

250 of Dj . A value of one for the
goodness of �t indicates that the model �ts the data without error. High
values of the goodness of �t are reported in all combinations showing that
Eq. (3.20) is a robust method to compute the parameters.

3.4.5 Correction of the residual aberration

In this section we apply the aberration correction algorithm described in Section 3.3.3.
First, we attempt to further reduce the residual aberration in region A, which is marked
in Fig. 3.3. Some aberration may not have been completely suppressed by the Nelder–
Mead algorithm, which was applied to region A in Subsection 3.4.2. We therefore expect
no improvement or a small improvement in region A. Second, we apply the aberration
correction to regions B and C , where the Nelder–Mead algorithm was not applied. Here
we expect some improvement, provided that the aberrations found in regions B and C
are di�erent from the aberration found in region A.

We take the parameters c0, c1 and Q that were computed using D6 in Subsection 3.4.4.
In order to apply the algorithm, the following modi�ed parameters need to be used, i.e.,
c ′0 = c0 + (1/4)cT1Q

−1c1, c′1 = 0 and Q ′ = Q . This modi�cation is necessary since, for
simplicity, in Section 3.3 we neglected the linear term c1. This term corresponds to the
aberration that is present when computing the parameters of the quadratic polynomial,
see [158] for further details. The aberration correction experiment is applied in the three
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regions using the corresponding parameters for each region. A summary of the results
is given in Fig. 3.5.

In Fig. 3.5(a), the normalised measurements of the image quality metric are reported for
region A (curve with ◦ markers), region B (curve with � markers) and region C (curve
with ⋆markers). The measurements are normalised using the corresponding maximum
recorded measurement ỹmax in each region. The initial value of ỹ is reported at sample
time k = 0. This measurement is not supplied to the aberration correction algorithm. The
data collection step is performed between time k = 1 and k = 8 inclusive, whereN +1 = 8
trial aberrations are applied. From time k = 9 onwards, the aberration correction step is
applied.

As expected, a marginal improvement is found in regionA (curve with ◦markers), where
an aberration of about 0.38 rms rad is corrected. The rms of each aberration is estimated
using ‖HhVl2V1x

ls‖, adjusted for the 900 nm excitation light. Also in region B (curve with
�markers), a small aberration of about 0.37 rms rad is corrected. In regionC (curve with
⋆markers), an estimated 1.27 rms rad aberration is corrected, leading to an improvement
of 20% of the image quality metric. Nevertheless, two actuators of the deformable mirror
are saturated.

Two 256 pixels × 256 pixels images of region C are reported in Fig. 3.5(b) and Fig. 3.5(c).
These images are recorded before [k = 0, Fig. 3.5(b)] and after [k = 24, Fig. 3.5(c)] the
aberration correction. The cross sections marked in the images are reported in a single
graph in Fig. 3.5(d). The image taken at time k = 24 is 18% brighter and shows �ner detail
in the bottom and right parts. Here some structure of the �bre was not visible at time
k = 0. The improvement is less clear when examining the left and top parts of the region.
One possible reason for the variability of the improvement is that the aberration is not
spatially invariant over the considered region. We also note that the applied correction
was not optimal, due to the saturation of two actuators of the deformable mirror. We
conclude by observing that this improvement after the aberration correction is compat-
ible with what was achieved by running four iterations of the Nelder–Mead algorithm in
Section 3.4.2.

3.4.6 Validation of the aberration correction algorithm

To assess whether the aberration correction algorithm is e�ectively removing aberration
we performed a di�erent kind of experiment. First we introduce a known amount of ab-
erration using the deformable mirror. We then apply the aberration correction algorithm
to suppress this aberration. The algorithm is not supplied with any information about the
known aberration. Finally we evaluate the residual aberration by comparing the estimate
of the aberration provided by the algorithm with the known aberration. This experiment
is commonly employed in the literature to assess the e�ectiveness of the aberration cor-
rection [159, 144, 118, 158].

Fig. 3.6 reports a summary of the correction of 20 random aberrations introducedwith the
deformable mirror in regionA. The upper plot in Fig. 3.6 shows some statistical indicators
of the normalised measurements of the image quality metric. The measurements have
been normalised using the maximum measurement of the metric ỹmax that is recorded
throughout the 20 experiments. The median, 25th and 75th percentiles are computed in
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Figure 3.5: Summary of three aberration correction experiments. (a) evolution of the
normalised image quality metric. The experiments were performed in region
A (curve with ◦ markers), B (curve with � markers) and C (curve with ⋆
markers), which are marked in Fig. 3.3. For each region, the corresponding
parameters computed by solving Eq. (3.20) were used. ỹmax is the maximum
measurement of ỹ in each region. The estimated rms rad of each aberration
is 0.38 for region A, 0.37 for region B and 1.27 for region C . (b) 256 pixels ×
256 pixels image of region C at sample time k = 0. (c) 256 pixels × 256 pixels
image of region C at sample time k = 24. (d) cross sections taken along the
arrows marked in (b) and (c), black for (b) and grey for (c).

each time instant, see the caption of Fig. 3.6 for a detailed legend. The same analysis
has been made for the residual aberration and is reported in the lower plot in Fig. 3.6.
The rms of the residual aberration is computed as the rms of the di�erence between
the known aberration introduced by the deformable mirror and the respective estimate
provided by the algorithm. From this �gure, we conclude that the image quality metric
is consistently maximised, as the median is close to 1 after the aberration correction is
applied from sample time k = 9 onwards. This is consistent with the reduction in the
residual aberration reported in the lower plot.

The same experiments were performed in region B and C . In both cases we used the
corresponding modi�ed parameters, computed using D6 in Subsection 3.4.4. The results
are reported in Figs. 3.7 and 3.8. Whereas the results for regionC are similar to the results
obtained in region A, the results in region B do not show a good performance, since the
medians of the residual aberration are comparable with the initial aberration before the
correction.

Out of the 20 trials in region B, we report respectively the ones that resulted in the max-
imum and in the minimum improvement of ỹ in Fig. 3.9. In Fig. 3.9(a), some �ne structure
of the �bre is more visible after the correction, which is compatible with a successful ab-
erration correction. On the other hand, in Fig. 3.9(b), the aberration correction failed,
as both the image after the correction is visually worse and the intensity is slightly de-
creased.

The experiments resulting in the maximum and in the minimum improvement of ỹ in
regionC are also reported in Fig 3.10. In Fig 3.10(a), a successful aberration correction is
shown, with a clear maximisation of ỹ and a noticeable improvement in the contrast of
the image after the correction. In Fig 3.10(b), the improvement is more marginal.
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Figure 3.6: Summary of the correction of 20 random aberrations induced by the deform-
able mirror in region A, which is marked in Fig. 3.3. The upper plot reports
the normalised measurements of the image quality metric. The measure-
ments are normalised using the maximum measurement ỹmax that is recor-
ded throughout the 20 experiments. At time k = 0 the initial value of ỹ
is reported, this data point is not supplied to the aberration correction al-
gorithm. Between time k = 1 and k = 8, the data collection step is executed.
From time k = 9 onwards, the aberration correction step is applied. A stat-
istical analysis is made at each time instant using the function boxplot from
MATLAB. The tops and bottoms of the rectangles denote the 25th and 75th
percentiles, the horizontal lines in the middle of the rectangles denote the
medians, the whiskers extend to the furthest measurements not considered
as outliers. The + symbols denote single outliers. The same statistical ana-
lysis is performed for the residual aberration and the results are shown in
the lower plot.
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Figure 3.7: Summary of the correction of 20 random aberrations induced by the deform-
able mirror in region B. See the caption of Fig. 3.6 for a legend of the plots.
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Figure 3.8: Summary of the correction of 20 random aberrations induced by the deform-
able mirror in region C . See the caption of Fig. 3.6 for a legend of the plots.
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Figure 3.9: Two aberration correction experiments from the set of experiments reported
in Fig. 3.7. These two experiments resulted, respectively, in the maximum (a)
and the minimum (b) improvement of ỹ. Both in (a) and (b), a 256 pixels ×
256 pixels image is taken before [on the left, k = 0] and after [on the right,
k = 24] the aberration correction. The graphs in the bottom of (a) and (b)
show respectively the evolution of the normalised metric [on the left] and
the cross sections indicated by the arrows in the images [on the right]. In
the cross section graphs, the dark and the light lines correspond respectively
to k = 0 and k = 24.
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Figure 3.10: Two aberration correction experiments from the set of experiments repor-
ted in Fig. 3.8. These two experiments resulted, respectively, in the max-
imum (a) and the minimum (b) improvement of ỹ. Refer to the caption of
Fig. 3.9 for a detailed legend.

69



3. Optimisation-based WFSless AO for multiphoton microscopy

3.4.7 Analysis of the experimental results

We computed the correlation among di�erent quantities to concisely assess the results of
the 60 aberration correction experiments reported in Figs. 3.6, 3.7 and 3.8. Considering
the last time instant k = 24, we set up a saturation indicator variable s1, . . . , s60 that is 1
if saturation of some actuators of the deformable mirror occurred and -1 otherwise.

We computed a correlation of −0.2477 between the normalised measurement of the im-
age quality metric and the saturation indicator variable. These two quantities are slightly
inversely correlated, meaning that saturation of some actuators negatively a�ected the
�nal value of the image quality metric. The correlation between the �nal rms of the
residual aberration and the saturation indicator variable was 0.3457. This positive cor-
relation shows that a larger amount of residual aberration was found when the stroke
of the deformable mirror was exhausted. Finally we computed a correlation of −0.7388
between the normalised measurement of the image quality metric and the rms of the
residual aberration, which con�rms that some aberration is removed by maximising the
image quality metric. We conclude that saturation of the deformable mirror was an issue
that hampered the results in our experimental validation.

3.4.8 Variations of the parameters over the �eld of view

We report spatial variations in the parameters c0, c1 andQ . The parameters di�ered when
computed respectively in region A, B and C in Fig. 3.3. Due to the variations, we were
not able to apply the aberration correction algorithm using a single set of parameters,
e.g., by correcting aberrations in region B and C using the parameters computed from
region A. Variations in the parameters represent a challenge for model-based aberration
correction algorithms, since the parameters are computed once only using a calibration
experiment [197, 200, 155, 159, 128, 160, 161, 162, 156, 157, 144, 118, 158].

Parameter c1 depends on the non-zero aberration that is present when collecting the
input–output measurements used in Eq. (3.20). This parameter can be removed by ap-
plying the aberration correction algorithm as done in Subsection 3.4.5. Instead, c0 is de-
pendent on the maximum value of the image quality metric, which di�ered in the three
regions. We found variations in Q . For example, the largest eigenvalue of Q varied by
about 30% in region B and by about 22% in regionC with respect to its value in region A.
The eigenvectors ofQ were also a�ected. For instance, the eigenvector corresponding to
the second largest eigenvalue of Q was rotated by about 7◦ in region B and by about 21◦

degrees in region C with respect to its orientation in region A.

From Section 3.4.5 and Section 3.4.6 we conclude that the minimum number of measure-
ments necessary to apply the aberration correction when c0 and Q are known is N + 1,
as also found in [155, 128, 158]. If the parameters c0 and Q vary during the acquisition
of di�erent regions of the specimen, then additional measurements are necessary to up-
date the parameters before the aberration correction can be applied. This is consistent
with [159, 160, 161, 162, 144, 118], where algorithms that use a minimum of 2N + 1 meas-
urements were employed. By approximating the solution of Eq. (3.12), these algorithms
use the additional N measurements to estimate all the eigenvalues ofQ each time the ab-
erration correction is applied (see Section 4 in [158]). Nevertheless, variations in the ori-
entations of the eigenvectors, such as the ones detected during our experiments, are not
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accounted for and a�ect the accuracy of the aberration correction (see Section 3 in [144]).
For these reasons, detecting variations and updating the parameters of the model as dif-
ferent regions of the specimen are acquired is an open research challenge.

3.5 Conclusions

In this paper we present a procedure to de�ne a new set of basis functions for the control
of the deformablemirror. The new basis functions can bemade approximately orthogonal
to a set of Zernike polynomials. This is necessary for applying aberration correction in
scanning microscopy applications, where the deformable mirror must not induce the x-
tilt, y-tilt and defocus aberrations.

The second contribution concerns the algorithm used for the aberration correction. We
consider computing the least-squares estimate of the unknown aberration. Although this
problem is non-convex in general, the least-squares estimate can be computed e�ciently
by exploiting results already applied in the solution of localisation problems [207]. Once
the estimate is computed, the aberration correction is applied by maximising the image
quality metric.

We implement the aberration correction algorithm in a second-harmonic microscope.
First, we are able to compute the parameters of the quadratic polynomial used to model
the image quality metric directly from input–output measurements, using a previously
proposed method [158]. Second, we validate the aberration correction algorithm dis-
cussed in this paper. We also report the measurement of variations in the parameters of
the quadratic polynomial over the �eld of view.
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Chapter 4

Modal-based phase retrieval for

adaptive optics

We consider a phase retrieval (PR) algorithm to correct phase aberrations in an
optical system. Our solution uses three measurements of the point-spread func-
tion (PSF) to estimate the aberration. We apply a di�erent defocus aberration
with a deformable mirror (DM) in each of the three measurements of the PSF.
Once the aberration is estimated using the PR algorithm, weminimise it with the
DM. Using the extended Nijboer–Zernike theory, the PR problem is formulated
into a matrix rank minimisation problem. A solution to the rank minimisation
problem is obtained with PhaseLift, a signal recovery method based on convex
optimisation. We demonstrate the feasibility of this algorithm by performing
aberration correction experiments with an optical breadboard.

Reference: J. Antonello and M. Verhaegen, “Modal-based phase retrieval for
adaptive optics,” (in preparation).

4.1 Introduction

The phase retrieval (PR) problem consists in �nding the unknown phase of a complex-
valued function from a set of measurements of the magnitude of its Fourier transform
[172]. This inverse problem has a number of applications in crystallography [211], as-
tronomy [212], optical imaging [213], microscopy [214, 215, 216, 217], single-molecule
localisation [218] and adaptive optics [219], which we consider in this paper. In this lat-
ter application, one is concerned with minimising the phase aberration in the pupil of an
optical system using an adaptive element, such as a deformable mirror (DM). To achieve
this, an estimate of the aberration must be obtained. One can estimate the aberration by
applying a PR algorithm to a set of measurements of the point-spread function (PSF) of
the optical system. This is an attractive way to estimate the aberration for some optical
systems [220, 221, 65], due to the experimental simplicity in recording the measurements
of the PSF. Further, non-common path errors are avoided and no additional optical com-
ponents must be included, as is required for implementing interferometric methods or
Shack–Hartmann wavefront sensing.
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4. Modal-based phase retrieval for adaptive optics

A number of di�erent algorithms have been developed to solve PR problems, for a recent,
comprehensive review we refer to [222]. The most widely used algorithms are based
on alternating projections (AP), such as the Gerchberg–Saxton algorithm [223] and its
variants developed by Fienup [224]. AP algorithms formulate the PR problem into a set
theoretic framework, where one seeks the unknown function that lies in the intersection
of two or more sets. A set can express the constraint about the magnitude of the Fourier
transform of the function, or some additional a priori information, such as knowledge
about the support of the function. Successful applications of these algorithms, which are
relevant for our case of aberration estimation, have been reported, e.g., in [214, 184, 218].
Here, the authors collect measurements of the PSF at di�erent defocus planes, to improve
the convergence of the AP algorithm. This is similar to the practice in the more di�cult
problem of phase diversity (PD) [219, 225, 226], which we do not consider in this paper,
and where both the aberration of the optical system and the object that is imaged are
jointly estimated. In general, AP algorithms are not guaranteed to converge to the unique
solution [227, 228, 229, 230], provided a unique solution to the PR problem exists up to
trivial ambiguities [231, 222, 232].

More recently, new algorithms based on convex optimisation [171] have been proposed
to address the PR problem. The principle is that a solution of the PR problem is obtained
if one is able to solve a related matrix rank minimisation problem [233, 178, 179, 234, 235],
which is known to be an NP-hard problem [175, 176, 177]. For this reason, one does not
attempt to solve the rank minimisation problem itself, but instead considers a convex
relaxation [180]. In this paper we employ the convex relaxation proposed in [178, 179],
which the authors call PhaseLift. Using semide�nite programming [191], we can e�-
ciently compute the solution of this convex relaxation and, as a result, we obtain an
approximate solution to the PR problem. As pointed out in [178, 179], one advantage of
PhaseLift is that it can be made robust to measurement noise. On the contrary, measure-
ment noise is a serious issue that can lead to inconsistency in AP algorithms, whereby
the intersection of the sets that express the constraints becomes empty, see [229] and the
references therein.

An important issue encountered in PR algorithms is the computational burden. For ex-
ample, when considering AP algorithms, one does not work with the unknown function
itself, which is a continuous function. Instead, the discrete signal obtained by sampling
the unknown function over a �nite grid is considered, and the 2D fast Fourier trans-
form (FFT) is used to approximate the Fourier transform in each iteration of the AP al-
gorithm. This approach can lead to an overall signi�cant computational burden [236]. In
this paper, instead of working with a sampling grid, we employ a modal decomposition
of the unknown function to reduce the computational burden. By applying the extended
Nijboer–Zernike theory (ENZ) [173, 174], we approximate the unknown function using
a low number of complex-valued Zernike polynomials [44], only 21 in our case. Instead
of evaluating the unknown function over a sampling grid and computing the FFT, we
use the ENZ formulas to compute the complex PSF via a matrix-vector product, which is
computationally cheaper, since we considered only 21 Zernike polynomials.

To corroborate our arguments, we perform aberration correction experiments using an
optical breadboard. We introduce an unknown aberration in the optical system with a
DM. After recording three measurements of the PSF, where in each measurement the DM
applies a di�erent amount of additional defocus aberration, we estimate the unknown

74



4.2 Formulation of the PR problem using the ENZ theory

aberration with the PR algorithm. Using the estimate, we apply the aberration correction
with the DM, and wemeasure the residual aberration with a Shack–Hartmann wavefront
sensor.

The paper is organised as follows. In Section 4.2, the PR problem is formulated using
the ENZ theory. Section 4.3 discusses how to solve the PR problem using PhaseLift. In
Section 4.4, we report the experimental results. The conclusions are drawn in Section 4.5.

4.2 Formulation of the phase retrieval problem using

the extended Nijboer–Zernike theory

For completeness, we brie�y recall some necessary results of the ENZ theory, which is
discussed in detail elsewhere [173, 174, 237, 238]. The generalised pupil function (GPF)
of an aberrated optical system is a complex-valued function which is de�ned as [11]

P (ρ,θ ) = A(ρ,θ ) exp(iΦ(ρ,θ )), (4.1)

where ρ and θ are the normalised polar coordinates in the exit pupil plane of the optical
system,A(ρ,θ ) is the amplitude apodisation function, and Φ(ρ,θ ) is the phase aberration
function. Both A(ρ,θ ) and Φ(ρ,θ ) are real-valued. We can approximate the GPF using a
truncated series of complex-valued Zernike polynomials [44],

P̂ (ρ,θ ) =
∑

n,m

βmn Nm
n (ρ,θ ), (4.2)

so that P (ρ,θ ) ≈ P̂ (ρ,θ ). In Eq. (4.2), n and m are respectively the radial order and
the azimuthal frequency of the complex-valued Zernike polynomial Nm

n (ρ,θ ), which is
de�ned in Eq. (4.21) within Appendix 4.A. The coe�cient βmn of Nm

n (ρ,θ ) is a complex
number. Eq. (4.2) is a generalisation for complex-valued functions of the real-valued
Zernike series, which is commonly used to analyse Φ(ρ,θ ) in adaptive optics literat-
ure [44]. When a maximum radial order nM is considered, the summation in Eq. (4.2)
extends over Nβ = (nM +1) (nM +2)/2 addends, and the coe�cients can be collected into
a vector β ∈ CNβ .

The normalised complex PSF corresponding to P (ρ,θ ) is given by [173, 174]

U (r ,ϕ, f ) =
1

π

∫ 1

0

∫ 2π

0
exp(i f ρ2)P (ρ,θ )

× exp(i2πrρ cos(θ − ϕ)) ρ dρ dθ ,
(4.3)

where r and ϕ are coordinates in the image plane that are normalised by the di�raction
unit λ/NA, NA is the image-side numerical aperture of the optical system, and f is the
defocus parameter [173, 174]. The authors in [173, 174], show that by replacing P (ρ,θ )

75



4. Modal-based phase retrieval for adaptive optics

with P̂ (ρ,θ ), one has the following approximation forU (r ,ϕ, f ),

Û (r ,ϕ, f ,β ) =

2
∑

n,m

βmn
√
n + 1imVm

n (r , f ) exp(imϕ), (4.4)

where the complex terms Vm
n (r , f ) are de�ned in Eq. (2.47) in [237]. These terms can

be computed using semi-analytic formulas (Eq. (2.48) in [237]) for the required accur-
acy [173]. Note that we employ a di�erent normalisation for Nm

n (ρ,θ ) than what is
adopted in [173, 174, 237, 238], which is useful to evaluate the error in approximating
P (ρ,θ ) with P̂ (ρ,θ ) (see Section 4.4.4 and Appendix 4.C).

Using the ENZ theory to compute the complex PSF can be computationally advantageous
with respect to the conventional method of propagating the �eld using the FFT. While
a 2D FFT has a complexity of O (N 2 log(N )) for a square N × N sampling grid, Eq. (4.4)
can be expressed as a matrix-vector product (see also Section 4.3), where the matrix can
be precomputed once only, and the vector is β ∈ CNβ . The complexity of evaluating the
matrix-vector product is 2N 2 (2Nβ − 1), which is O (N 2). Henceforth, provided that the
constant Nβ is small enough, using Eq. (4.4) is computationally pro�table.

We can now formulate the PR problem. One can measure the PSF, using a CCD detector
with Np pixels, at Nf di�erent locations along the optical axis, which correspond to Nf

di�erent values of the defocus parameter f . As a result, the collected pixel values can be
stored into a vector I ∈ R

Nm , where Nm = NpNf . Each element Ik of I corresponds to
the intensity recorded by the pixel at position (rk ,ϕk ) in the image plane, and at defocus
position fk along the optical axis. In practice, one can obtain I by moving the CCD
detector with a motorised stage. In this paper, we collected I by applying the necessary
defocus with the DM instead of requiring mechanical movement of the CCD detector.

The error between the recorded measurements and the expected PSF is given by a vector
ϵ ∈ RNm , where for each element ϵk of ϵ ,

ϵk = Ik − |Û (rk ,ϕk , fk ,β ) |2. (4.5)

The solution of the PR problem is found by minimising the norm of the error, i.e.,

min
β ∈CNβ

‖ϵ ‖. (4.6)

In [220, 221], the authors assume a small phase aberration consisting of cosine terms
only, and describe a procedure to linearise |Û (rk ,ϕk , fk ,β ) |2, so that the PR problem can
be solved via a linear system of equations. This procedure is not adequate for medium to
large aberrations [238], and was improved in [221] by considering a predictor-corrector
method to overcome the linearisation error. In the following section, instead, we formu-
late a convex relaxation of Eq. (4.6) using PhaseLift. In our case, a general aberration
comprising sine and cosine terms can be handled, as in [238]. Nevertheless, contrary
to [238], we do not need to explicitly derive the linearisation of |Û (rk ,ϕk , fk ,β ) |2, since
the task of computing the solution is left to the convex optimisation solver.
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4.3 Solution of the phase retrieval problem using

PhaseLift

By de�ning the complex vectors ak ∈ CNβ for k = 1, . . . ,Nm as

ak =



...

2
√
n + 1Vm

n (rk , fk )
Hei (fk−m(ϕk+

π
2 ))

...


, (4.7)

where ·H denotes the conjugate transpose, we can expand Eq. (4.6) into

min
β ∈CNβ

*,
Nm
∑

k=1

(

Ik − |〈β ,ak 〉|2
)2+-

1/2

, (4.8)

where the angle brackets denote the inner product, i.e., 〈β ,ak 〉 = aH
k
β . Exploiting the

properties of the trace operator tr(·), one can show [233, 178, 179, 234, 235] that |〈β ,ak 〉|2 =
tr(a

k
aH
k
ββH ). Letting Ak = a

k
aH
k
and B = ββH , Eq. (4.8) is equivalent to

min
B∈CNβ ×Nβ
ϵ ∈RNm

‖ϵ ‖ s.t.

ϵk = Ik − tr(AkB) k = 1, . . . ,Nm

B � 0

rank(B) = 1.

(4.9)

The problem in Eq. (4.9), is known to be NP-hard [178, 179], due to the rank constraint.
Following [178, 179], the rank constraint is removed and the cost function is modi�ed
from ‖ϵ ‖ to ‖ϵ ‖ + λr rank(B), where λr is a regularisation parameter [178]. A convex
relaxation of Eq. (4.9) is obtained [178, 179] by replacing rank(B) with its convex surrog-
ate [177] tr(B), which results in the following optimisation problem,

min
B∈CNβ ×Nβ
ϵ ∈RNm

‖ϵ ‖ + λr tr(B) s.t.

ϵk = Ik − tr(AkB) k = 1, . . . ,Nm

B � 0.

(4.10)

The problem in Eq. (4.10) is a complex semide�nite programme, which can be solved
using cvxopt [239] as outlined in Appendix 4.D. Once a solution B has been computed,
the estimate of β is obtained by considering the rank-1 approximation of B that has the
largest eigenvalue, as done in [178, 179].

We note that, by employing the ENZ theory, one can select a low value of Nβ , which res-
ults in low dimensions for the complex semide�nite constraint B � 0. In this paper, B is
a 21× 21 complex matrix. For comparison, consider the case where one uses the discrete
signal generated by sampling the GPF over a square grid instead of the modal decompos-
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ition of the GPF (see Eq. (4.2)). In this case, a 16 × 16 complex semide�nite constraint is
necessary if the GPF is sampled using a 2 × 2 grid, which is a rough approximation of
the GPF. Choosing a 3× 3 grid, would require a 81× 81 complex semide�nite constraint.
We select Nβ = 21 and numerically estimate the approximation error between Eq. (4.1)
and Eq. (4.2) in Section 4.4.4. This choice has the additional bene�t that it is practical to
use an interior-point method [210] to solve Eq. (4.10), instead of the �rst-order methods
employed in [178, 179]. Finally, we remark that, as outlined in the introduction, this for-
mulation is robust to measurement noise, since the error ‖ϵ ‖ is minimised, as it appears
in the cost function of Eq. (4.10).

4.4 Experimental results

In this section we report the experimental results of applying the PR algorithm to correct
static phase aberrations. Although we only consider phase aberrations, we note that the
PR algorithm also provides estimates of the amplitude apodisation function.

We implemented an adaptive optics system comprising a DM, a Shack–Hartmann wave-
front sensor, and a CCD detector to measure the PSF. A single aberration correction
experiment consists in the following three steps. First, a static aberration is applied with
the DM and the corresponding PSF is measured at Nf di�erent defocus positions. The
PR algorithm has, of course, no knowledge about the static aberration. Second, the PR
algorithm is applied to obtain an estimate of the static aberration, which is used for the
aberration correction. Third, both the static aberration and the aberration correction are
applied simultaneously using the DM. The Shack–Hartmann wavefront sensor is used to
measure the residual aberration and to assess the performance of the aberration correc-
tion.

4.4.1 Description of the experimental setup

The layout of the experimental setup is depicted in Fig. 4.1. The He–Ne laser source
(LASER; wavelength 632.8 nm) is spatially �ltered using lens L1 (focal length 11mm) and
pinhole P (diameter 35 µm). The resulting diverging beam is collimated by lens L2 (focal
length 300mm) and stopped down with an iris diaphragm (AP) to a 9mm wide circular
section with uniform amplitude. After passing through beam splitter BS1, the beam is re-
�ected by the DM (DM; Okotech, 17-channel micromachined deformable mirror with tip-
tip stage), and then is directed towards the sensors by BS1. The DM is reimaged by lenses
L3 (focal length 200mm) and L4 (focal length 100mm) onto a Shack–Hartmann wave-
front sensor (SH), which consists of a hexagonal microlens array (Okotech, hexagonal
array with 127 microlenses, 18mm focal distance, 300 µm pitch) and a CCD sensor (Sys-
Vistek, svs340, 648 × 492 pixels, 7.4 µm pixel size). A second beam is created with beam
splitter BS2, and is focused by lens L5 (focal length 500mm) onto a CCD detector (CCD;
Sys-Vistek, svs340, 648 × 492 pixels, 7.4 µm pixel size), which measures the PSF.

A desktop PCwith a 3GHz processor (Intel, Xeon X5472) running Linux is used to control
the equipment. The voltage for the actuators of the DM is supplied by a high voltage
ampli�er (Okotech, 20-channel HV unit), which is connected to a 16 bit analogue output
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card (United Electronic Industries, PD2-AO-96/16A). The CCD detectors in CCD and in
SH are connected to two framegrabber cards (Arvoo, Leonardo CL Full). The hardware
is controlled via customised code written in C and in Python.

For the calibration of the Shack–Hartmann wavefront sensor, we temporarily replaced
the DM with a �at mirror and recorded a reference image. The control signal of each
actuator uk of the DM is quadratically related to the corresponding voltage applied with
the high voltage ampli�er, so that a linear displacement of the mirror is expected [50].
We operate the DM from a biased reference position, so that both positive and negative
de�ections of the wavefront can be induced [50], which causes the beam re�ected by BS1
to be converging. To restore a collimated beam, we move lens L3 along the optical axis
until the defocus measured with the Shack–Hartmann wavefront sensor is minimised.
The coe�cients of the Zernike analysis of the wavefront are estimated by applying a
modal-based wavefront reconstruction [82].

Figure 4.1: Illustration of the optical setup used in the experiments. The laser beam is
spatially �ltered using lens L1 and pinhole P, and collimated by lens L2. A
9mm wide circular section of the beam is selected with diaphragm AP to
illuminate the DM. The DM is reimaged two-to-one using lenses L3 and L4

onto a Shack–Hartmann wavefront sensor (SH). A second beam is directed
by beam splitter BS2 through lens L5, and is focused onto a CCD sensor
(CCD).

4.4.2 Preparation of the experiments

We use the Nelder–Mead (NM) algorithm [152] to align the tip-tilt stage of the DM. The
NM algorithm is applied to �nd the orientation of the stage that minimises the 2-norm of
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the vector [α1
1 ,α
−1
1 ]T , which is estimated using the Shack–Hartmann wavefront sensor.

Once aligned, the stage is kept at the same orientation throughout all the experiments,
and the two actuators used to operate the stage are neglected.

The control signals of the Na = 17 actuators, i.e., u1, . . . ,uNa
, are collected into a vector

u ∈ R
Na . Each control signal uk is normalised so that −1 ≤ uk ≤ 1, where −1 and 1

correspond, respectively, to the minimum and to the maximum voltage that is applicable
to the actuator. In our experiments, the Shack–Hartmann wavefront sensor provided
estimates of the Zernike coe�cients up to the sixth radial order, so that we consider
Nα = 28 Zernike polynomials to describe the aberration.

Assuming linearity, Φ(ρ,θ ) is given by the superposition of the in�uence functions [50]
ψk (ρ,θ ) of each actuator of the DM,

Φ(ρ,θ ) =

Na
∑

i=1

ukψk (ρ,θ ). (4.11)

Using the �rst Nα = 28 Zernike polynomials, we have the following approximation,

Φ(ρ,θ ) ≈
∑

n,m

αmn Zm
n (ρ,θ ). (4.12)

We model the DM using a matrix H ∈ RNα×Na that approximately maps a certain actu-
ation vector u to the corresponding vector of Zernike coe�cients α , i.e., α ≈ Hu. Note
that in this paper we always assume α0

0 = 0 (see also Appendix 4.C). Although we do
not make this explicit in the formulas involving H to maintain a simple notation, only
the sub-matrix obtained by neglecting the �rst row of H is used in our computations. To
estimate H , we collected input–output data by applying D ≥ Na random actuation vec-
tors u1, . . . ,uD and by recording the corresponding estimates of the Zernike coe�cients
α1, . . . ,αD obtained with the Shack–Hartmann wavefront sensor. H is subsequently re-
covered by solving a least-squares problem. Once H is available, we can suppress the
initial aberration in the system, which is due to the misalignment of the optical compon-
ents and to the non-�at initial shape of the DM.

4.4.3 Generation of the random Zernike aberrations

We performed 100 random aberration correction experiments. The random aberrations
were generated by drawing 100 random actuation vectors u1, . . . ,u100 from a set of nor-
mal multivariate distributions. A boxplot of the expected Zernike aberrations, i.e., α1,
. . . , α100, is reported in Fig. 4.2. The expected Zernike aberrations can be estimated using
α ≈ Hu. From the boxplot, it can be seen that the magnitude of the Zernike coe�-
cients decreases for increasing radial order and azimuthal frequency. Therefore, the DM
can correct signi�cant amounts of low-order Zernike aberrations, i.e., aberrations whose
Zernike polynomials have low radial order and low azimuthal frequency. On the contrary,
the mirror can introduce only a negligible amount of high-order Zernike aberrations, due
to the �nite number of actuators and to the mechanical limitations of the mirror. There-
fore, we regard α1, . . . ,α100 as typical aberrations that should be estimated by the PR
algorithm, since they express the correction capabilities of our DM.
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Figure 4.2: Boxplot of the 100 random Zernike aberrations. Each aberration is gener-
ated by drawing a random actuation voltage uk . The corresponding Zernike
analysis αk is estimated using α ≈ Hu. The Zernike coe�cients are ordered
and normalised according to Noll [44]. For each position in the x-axis, the
elements αmn,1, . . . ,α

m
n,100 of vectors α1, . . . ,α100 are considered to compute

the boxplot indicators. The tops and bottoms of the boxes denote the 25th
and 75th percentiles, the horizontal lines in the middle denote the medians,
the whiskers extend to the furthest measurements not considered as outliers
using a 1.5 interquartile range. This description holds for all the boxplots
reported in this paper.
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4. Modal-based phase retrieval for adaptive optics

4.4.4 Error in approximating the generalised pupil function

In this subsection, we estimate the error that is expected when the GPF is approximated
using 21 complex-valued Zernike polynomials. For each vector αk ∈ R

Nα , we consider
the corresponding GPF with uniform unit amplitude, i.e.,

Pk (ρ,θ ) = exp *,i
∑

n,m

αmn,kZ
m
n (ρ,θ )+- , (4.13)

and its approximation obtained with a �nite set of Zernike polynomials

P̂k (ρ,θ ) =
∑

n,m

βmn,kN
m
n (ρ,θ ). (4.14)

The approximation error is Ek (ρ,θ ) = Pk (ρ,θ ) − P̂k (ρ,θ ). Although Ek is a complex-
valued function de�ned over the pupil, we employ the real-valued rms(Ek ), to con-
cisely quantify the error using a scalar number. The de�nition of rms(·) is given in
Appendix 4.C, where we also discuss that this indicator is a generalisation of the rms
indicator that is commonly used for the real-valued phase aberration function. First, we
employ Nβ = 136 Zernike polynomials in Eq. (4.14), to obtain accurate estimates of the
GPFs. For each k , we estimate the Zernike coe�cients βm

n,k
∈ C by sampling Eq. (4.13)

over a �nite grid and by taking the approximate inner products, as described in Ap-
pendix 4.B. This results in 100 vectors β1, . . . ,β100, where each vector belongs to C

136.
We estimated that rms(Ek ) ≤ 8.74e − 5 for all k when Nβ = 136 in Eq. (4.14). We neglect
this error and assume Ek ≈ 0 for the rest of this subsection. In the following paragraph,
we use the vectors β1, . . . ,β100 to estimate the error in approximating the GPF using
Nβ = 21 instead of Nβ = 136 in Eq. (4.14).

Each vector βk can be split into two vectors β l
k
and βh

k
, where the �rst 21 elements of

βk are collected into β l
k
and the remaining elements are collected into βh

k
. By exploiting

the orthogonality properties of the Zernike polynomials and the normalisation employed
in Appendix 4.A, we have rms(Ek ) ≈ ‖βhk ‖ when only 21 Zernike polynomials are used
in Eq. (4.14). The approximation sign is due to the error in computing the approximate
inner products and in considering the �rst 136 Zernike polynomials instead of an in�nite
number of polynomials. In Fig. 4.3, we report each estimate of rms(Ek ) using × symbols,
against the corresponding rms of the phase aberration, rms(Φ̂k ), which is computed as
‖αk ‖ (see Appendix 4.C). It can be seen that the error in using 21 Zernike polynomials
in Eq. (4.14) grows for an increasing rms of the phase aberration.

For comparison, we can evaluate the error when one uses the linear approximation of
the GPF,

P̂ lk (ρ,θ ) = 1 + i
∑

n,m

αmn,kZ
m
n (ρ,θ ), (4.15)

which is widely employed in the literature, e.g. in [220, 221, 65]. To evaluate the error
El
k
(ρ,θ ) = Pk (ρ,θ ) − P̂ lk (ρ,θ ) using the vectors β1, . . . ,β100, we must compute the coe�-

cientsγm
n,k
∈ C of the complex Zernike polynomialsNm

n (ρ,θ ) that express the right-hand

82
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side of Eq. (4.15). We use the following equations,



γ 00 = 1 n = 0,m = 0

γmn = iα
m
n n , 0,m = 0

γmn = (α−mn + iαmn )/
√
2 m > 0

γmn = (−αmn + iα−mn )/
√
2 m < 0

, (4.16)

where the index k is removed for clarity, and we have used the assumptions of unit amp-
litude and thatα0

0,k
= 0. The rms of the error El

k
(ρ,θ ) is approximately given by ‖βk−γk ‖,

where the �rst Nα elements of vectors γk ∈ C136 are given by the corresponding coe�-
cients γm

n,k
. The approximation sign here is intended in the same sense as in the previous

paragraph, whereas the relations between αm
n,k

and γm
n,k

given in Eq. (4.16) are exact. We

report rms(El
k
) using + symbols in Fig. 4.3. Note that even though in the linear approx-

imation Nα = 28 Zernike polynomials are considered, the approximation error is still
larger than that of using only 21 Zernike polynomials in Eq. (4.14). The error in the lin-
ear approximation stems from the fact that the coe�cients αk and γk are non-linearly
related [174] by the complex exponential function. In addition, Eq. (4.15) introduces a
larger amplitude error with respect to Eq. (4.14), see Section 2.1 in [63].

0.0 0.5 1.0 1.5 2.0 2.5

rms(Φ̂k) [rad]

0.0

0.5

1.0

1.5

2.0

2.5

rms(Ek)

rms(El

k
)

Figure 4.3: Expected error in approximating Pk (ρ,θ ) with P̂k (ρ,θ ) (× symbols, rms(Ek ))
and P̂ l

k
(ρ,θ ) (+ symbols, rms(El

k
)). rms(Ek ) is estimated as ‖βh

k
‖ and El

k
(ρ,θ )

is estimated as ‖βk −γk ‖. Both errors increase as the rms of the phase aber-
ration rms(Φ̂k ) increases.
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4. Modal-based phase retrieval for adaptive optics

4.4.5 Aberration correction experiments

We �rst apply the PR algorithm to correct for the non-common path error between the
arm with the Shack–Hartmann wavefront sensor and the arm with the CCD, see Fig. 4.1.
All the following measurements of the residual aberrations performed with the Shack–
Hartmann wavefront sensor are referenced to this initial aberration correction, which
we denote with (R). We perform 100 aberration correction experiments and record three
measurements of the PSF in each experiment, respectively at defocus position f1 = 0.0,
f2 = −1.0, and f3 = 1.7, so that Nf = 3. A measurement consists of a 35 pixels× 35 pixels
image.

Each experiment comprises the following steps. First the DM applies the aberration αk ,
and the initial rms of the aberration is measured with the Shack–Hartmann wavefront
sensor. At this point, the three measurements of the PSF at defocus position f1, f2, and
f3 are recorded, by simultaneously applying with the DM the aberration αk and the cor-
responding Zernike defocus α0

2 = fj/(2
√
3) for j = 1, . . . ,3. The PR algorithm is sub-

sequently applied, by solving Eq. (4.10) using the three PSF measurements and letting

λr = 1. As a result, an estimate β̂k ∈ C
21 is obtained. To correct the aberration, we

must obtain the estimate of αk from β̂k . We replace β̂k into Eq. (4.2), and evaluate the
phase arg(P̂ (ρ,θ )) over a grid, by applying a simple phase unwrapping algorithm [240].
The estimate of αk is obtained by evaluating the the inner products as discussed in Ap-
pendix 4.B. Finally, we execute the aberration correction, by simultaneously applying
with the DM both the phase aberration αk and the aberration correction −α̂k . We con-
clude the single experiment bymeasuring the �nal rms of the residual aberrationwith the
Shack–Hartmann wavefront sensor, and the corrected PSF with the CCD. When solving
the PR problem, we neglect the pixel measurements that are below 6% of the maximum
value that can be measured with the CCD. In doing this, we avoid most of the contribu-
tion of the background noise of the CCD and we decrease the computational cost of the
PR algorithm.

The results of the experiments are reported using boxplots in Fig. 4.4 and Fig. 4.5, where
the 100 experiments are divided into two sets of 50 experiments according to the mag-
nitude of the initial aberration. The boxplot indicators are computed for the initial rms
‖αk ‖ (initial) on the left, and the �nal rms ‖αk − α̂k ‖ (�nal) on the right, both measured
using the Shack–Hartmann wavefront sensor. It can be seen that the algorithm con-
sistently removes some aberration, which con�rms that a successful phase retrieval is
achieved. The computational time is dominated by the time necessary to solve Eq. (4.10),
whereas the time spent in the phase unwrapping operation and in the numerical evalu-
ation of the inner products is negligible. Throughout the 100 experiments, the median
time spent to solve Eq. (4.10) is about 30 seconds, and the maximum time is about 45
seconds.

We also report the PSFs recorded for three single experiments from the 100 trials in
Fig. 4.6, Fig. 4.7, and Fig. 4.8. The PSF recorded after correcting the non-common path
error at the beginning of this section is reported on the left (R) for reference. At time
instant t = 0, the random aberrationαk is introduced, and the PSF and the initial rms are
recorded for the defocus position f1 = 0. The same measurements are repeated at time
instants t = 1 and t = 2, which correspond to the defocus positions f2 = −1.0 and f3 = 1.7
respectively. The PSF after the aberration correction and the �nal rms are reported for
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Figure 4.4: Boxplot of 50 aberration correction experiments. The boxplot indicators are
computed for the initial rms ‖αk ‖ (initial) on the left, and the �nal rms ‖αk −
α̂k ‖ (�nal) on the right, both measured with the Shack–Hartmannwavefront
sensor. A lower �nal rms denotes a successful aberration correction.
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Figure 4.5: Boxplot of the remaining 50 aberration correction experiments. See the cap-
tion in Fig. 4.4.
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4. Modal-based phase retrieval for adaptive optics

time instant t = 3 on the right. Fig. 4.6 shows the maximum intensity jump from the 100
experiments, i.e., the experiment in which we recorded the maximum di�erence between
the brightest pixel at t = 3 and the brightest pixel at t = 0. Whereas Fig. 4.7 and Fig. 4.8,
report respectively the experiment with the minimum and the median intensity jump.
In Fig. 4.6 and Fig. 4.8, the PR algorithm is successful, and an improved PSF is observed
after the aberration correction. In Fig. 4.7, instead, the PR algorithm fails to signi�cantly
improve the PSF.

(R), rms = 0.0 t = 0, rms = 1.7 t = 1, rms = 1.9 t = 2, rms = 1.6 t = 3, rms = 0.53

Figure 4.6: Single aberration correction experiment. Each image reports the PSF meas-
ured with the CCD detector. The rms of the residual aberration is measured
with the Shack–Hartmann wavefront sensor and is referenced to the correc-
tion of the non-common path error (see the beginning of Section 4.4.5), which
is reported in (R). At time instant t = 0, the aberration is introduced and the
PSF and the initial rms are recorded for the defocus position f1 = 0. Two
more measurements of the PSF are collected at time instants t = 1 (defocus
position f2 = −1.0) and t = 2 (defocus position f2 = 1.7). The PSF after the
aberration correction and the �nal rms are reported for time instant t = 3.
Only the measurements in t = 0, t = 1 and t = 2 are supplied to the PR
algorithm. This experiment refers to the maximum intensity jump from the
100 experiments, i.e., the experiment with the maximum di�erence between
the brightest pixel at t = 3 and the brightest pixel at t = 0. A noticeable
improvement of the PSF is observed. All �ve images use the same colour
scale.

(R), rms = 0.0 t = 0, rms = 1.3 t = 1, rms = 1.3 t = 2, rms = 1.4 t = 3, rms = 1.1

Figure 4.7: For the legend, see the caption in Fig. 4.6. This experiment refers to the min-
imum intensity jump from the 100 experiments. In this case, the PR algorithm
fails to signi�cantly improve the PSF.
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(R), rms = 0.0 t = 0, rms = 0.7 t = 1, rms = 0.67 t = 2, rms = 0.98 t = 3, rms = 0.26

Figure 4.8: For the legend, see the caption in Fig. 4.6. This experiment refers to the
median intensity jump among the 100 experiments. The PR is successful,
and an improved PSF is observed.

4.5 Conclusions

In this paperwe consider the problem of correcting phase aberrations in an optical system
using a phase retrieval (PR) algorithm. The proposed solution uses threemeasurements of
the point-spread function (PSF) of the optical system, where each measurement is taken
at a di�erent position along the optical axis. The three measurements can be obtained by
applying an appropriate Zernike defocus aberration with the deformable mirror (DM).
We formulate the PR problem using the extended Nijboer–Zernike theory [173, 174], and
compute a solution using PhaseLift, a signal recovery method based on convex optimisa-
tion that is robust to additive measurement noise. Finally, we demonstrate the feasibility
of this approach by performing aberration correction experiments with an optical bread-
board, which includes a DM to induce and correct phase aberrations, a CCD detector to
measure the PSF, and a Shack–Hartmann wavefront sensor to assess the the aberration
correction.
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4.A Zernike polynomials for the analysis of real- and

complex-valued functions

The truncated Zernike analysis of the real-valued phase aberration functionΦ(ρ,θ ), which
is de�ned over the unit disk, is given by

Φ̂(ρ,θ ) =
∑

n,m

αmn Zm
n (ρ,θ ), (4.17)
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4. Modal-based phase retrieval for adaptive optics

where indices n ∈ N0 andm ∈ Z denote respectively the radial order and the azimuthal
frequency of the Zernike polynomialZm

n , and are such that n − |m | ≥ 0 and even.

Terms αmn ∈ R are the coe�cients of the real-valued Zernike polynomials Zm
n , which

are de�ned [5, 44, 40] by

Zm
n (ρ,θ ) = cmn R

|m |
n (ρ)Θm

n (θ ), (4.18)

where

cmn =

√
n + 1 m = 0

√

2(n + 1) m , 0

Θm
n (θ ) =


cos(mθ ) m ≥ 0

− sin(mθ ) m < 0
.

(4.19)

The de�nition of Rmn (ρ) can be found in [5, 44, 40]. According to Noll [44], the coe�cients
αmn can be ordered using a single index, which is a function of n andm. By considering a
maximum radial order of nM and Noll’s single index, we can collect the coe�cients αmn
into the elements of a vector α ∈ RNα , where Nα = (nM + 1) (nM + 2)/2 [40].

Similarly, we can consider the truncated Zernike analysis of the complex-valued GPF
P (ρ,θ ), which is given by

P̂ (ρ,θ ) =
∑

n,m

βmn Nm
n (ρ,θ ), (4.20)

where terms βmn ∈ C are the coe�cients of the complex-valued Zernike polynomials
Nm
n , which are de�ned in [237] as

Nm
n (ρ,θ ) =

√
n + 1R |m |n (ρ) exp(imθ ). (4.21)

The coe�cients βmn ∈ C can also be ordered using Noll’s single index, and collected into
a vector β ∈ CNβ , where Nβ = (nM + 1) (nM + 2)/2 and nM is the maximum radial order
considered. Note that in (4.21), we used a di�erent normalisation than [237]. Clearly, the
complex-valued Zernike polynomials may also be used to analyse a real-valued function
Φ(ρ,θ ).

4.B Numerical evaluation of the inner products

Each coe�cient αmn ∈ R in Eq. 4.17 can be estimated by evaluating the inner products [44,
40],

〈Φ,Zm
n 〉 =

1

π

∫ 1

0

∫ 2π

0
Φ(ρ,θ )Zm

n (ρ,θ ) ρ dρ dθ . (4.22)

As suggested in [241], we evaluate Φ(ρ,θ ) using a separable cosine sampling in ρ. De�ne
a grid {θl = 2πl/L, l = 0, . . . ,L − 1} × {ρk = cos((K − k − 1/2)π/(2K ), k = 0, . . . ,K − 1}.
Assuming Φ(ρ,θ ) is approximately constant in each neighbourhood of (ρk ,θl ), we can

88
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approximate the right-hand side of Eq. (4.22) with

cmn
π

∑

l,k

Φ(ρk ,θl )

∫

Iρk

Rmn (ρ)ρ dρ

∫

Iθl

Θm
n (θ ) dθ , (4.23)

where Iρk = [cos((K −k )π/(2K )),cos((K −k − 1.0)π/(2K ))] and Iθl = [(2l − 1)π/L, (2l +
1)π/L]. One can collect the values Φ(ρk ,θl ) into a vector and use Eq. (4.23) to de�ne
a matrix, so that the estimates of α are computed via a matrix-vector product. In our
experiments, we chose L = 200 and K = 200.

Similarly, the coe�cient βmn ∈ C in Eq. 4.20 can be estimated by evaluating the inner
products,

〈P ,Nm
n 〉 =

1

π

∫ 1

0

∫ 2π

0
P (ρ,θ )Nm

n (ρ,θ )H ρ dρ dθ , (4.24)

where ·H denotes complex conjugation. Using the same sampling de�ned for Eq. 4.23,
we have the following approximation for the right-hand side of Eq. (4.24)

√
n + 1

π

∑

l,k

P (ρk ,θl )

∫

Iρk

Rmn (ρ)ρ dρ

∫

Iθl

exp(−imθ ) dθ , (4.25)

which allows to estimate β via a matrix-vector product.

4.C Root-mean-square value of the phase aberration

and the generalised pupil functions

Using the following functional [40, 46],

E2[Φ̂] =
1

π

∫ 1

0

∫ 2π

0
Φ̂(ρ,θ )2 ρ dρ dθ , (4.26)

one can de�ne the rms of a real-valued function Φ̂(ρ,θ ) as [40]

rms(Φ̂) = (E2[Φ̂])
1/2. (4.27)

Due to the normalisation coe�cient cmn in Eq. (4.18), we have that [40] rms(Φ̂) = ‖α ‖.
Note that in this paper we always assume α0

0 = 0 when considering the rms of the phase
aberration function, since the piston coe�cient does not a�ect the image quality.

The de�nition of the rms indicator can be extended to the complex �eld to evaluate the
error E (ρ,θ ) between two GPFs, when these are expressed using Eq. (4.20) as done in
Section 4.4.4. We therefore use the following functional,

E2[E] =
1

π

∫ 1

0

∫ 2π

0
|E (ρ,θ ) |2 ρ dρ dθ , (4.28)

which is real-valued. Using the de�nitions of rms in Eq. (4.27), and the normalisation in
Eq. (4.21), we have that rms(E) = ‖β ‖.
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4.D Solving the convex relaxation with cvxopt

Following [242], we can reformulate the complex semide�nite programme in Eq. (4.10)
into a real programme, which can be solved using cvxopt [239]. Let s0 ∈ R, S1 ∈ RNβ×Nβ

such that S1 = S
T
1 , S2 ∈ RNβ×Nβ such that S2 = −ST2 , and û ∈ RNm be the variables of the

following real semide�nite programme,

min s0 + λr tr(S1) s.t.

s0 ≥ ‖I − û‖[
S1 −S2
S2 S1

]
� 0,

tr(DkS1) − tr(FkS2) = ûk

(4.29)

In Eq. (4.29), the last equality must hold for k = 1, . . . ,Nm , and ûk is an element of û.
Further, we have Dk = dkd

T
k
+ fk f

T
k
and Fk = fkd

T
k
− dk fTk , where dk and fk are respect-

ively the real and imaginary parts of the complex vector ak , i.e., ak = dk + ifk . By solving
Eq. (4.29), and letting B = S1 + iS2 one �nds a solution to Eq. (4.10). In our case, we used
the default settings for cvxopt [239]. A more e�cient interior-point method could be im-
plemented by exploiting techniques to handle large second-order cone constraints [210],
as one can expect Nm ≫ Nβ for this application.
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Chapter 5

Conclusions

5.1 Summary of this research

In this thesis we considered the problem of correcting aberrations in a wavefront sensor-
less adaptive optics system by maximising an image quality metric, which we model
using a quadratic polynomial. In Chapter 2, we developed a procedure to compute the
parameters of the polynomial directly from input–output measurements. The procedure
was experimentally validated using a second-harmonic microscope and a biologically
relevant specimen in Chapter 3.

A closed-form expression to estimate the unknown aberration was derived in Chapter 2.
This expression requires a minimum of Nα + 1 measurements to estimate Nα Zernike
coe�cients of the unknown aberration. Eachmeasurement is obtained by applying a trial
aberration with the deformable mirror (DM), and by recording the corresponding value
of the image quality metric. In Chapter 3, we solve a non-convex optimisation problem
to compute the least-squares estimate of the unknown aberration. This algorithm is the
preferred method to estimate the aberration, since the expression reported in Chapter 2
does not provide the least-squares estimate.

In Chapter 4, we used a phase retrieval algorithm to correct the aberrations in a wave-
front sensorless adaptive optics system. Using the extendedNijboer–Zernike theory [173,
174] (ENZ), the phase retrieval problem is formulated into a matrix rank minimisation
problem [175, 176, 177]. A solution of the phase retrieval problem is obtained using
PhaseLift [178, 179], a convex relaxation [180, 181, 182] of the rankminimisation problem.

5.2 Limitations encountered

A number of limitations that we encountered in applying wavefront sensorless adaptive
optics in a multiphoton microscope have been reported at the end of Section 1.6 in [129].
In particular, we recommend using a DM that is capable of introducing several radians of
the �rst 15 Zernike aberrations. We found that our 17-actuators DMwas able to introduce
a limited amount of spherical aberration (less than 1 radian) and secondary astigmatism at
900 nm. One should also consider that some of the available stroke of the DM is depleted
to correct the static aberrations in the optical system, and therefore is not available for
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correcting specimen-induced aberrations. The lack of stroke a�ects the accuracy of the
aberration correction, since when one applies a trial aberration that results in saturation
of the DM, the e�ective aberration introduced in the system is not known with precision.
One may be forced to use a smaller rms for the trial aberration, to avoid saturation.
Nevertheless, in this case it is worth to note that the Hessian of (3.12) in Chapter 3 is more
likely not to be positive de�nite, so that a non-convex aberration estimation problem
must be solved (see Fig.3.1). In this case, an accurate estimate of the aberration is still
obtained using the algorithm found in Chapter 3.

A delicate matter is determining the minimum number of measurements that are neces-
sary to estimate Nα Zernike coe�cients of the aberration. Assuming that the quadratic
polynomial is a valid model of the metric, this minimum number is Nα +1, as determined
in Chapter 2, and as experimentally veri�ed also in Chapter 3. The assumption about the
validity of the model is certainly satis�ed in a number of optical systems, e.g., the ones
considered in [155, 128, 157, 158]. In Chapter 3, we detected variations of the paramet-
ers of the quadratic polynomial when considering di�erent regions of the specimen, and
therefore a single model was not valid throughout all the regions. As a consequence, we
were not able to successfully apply the aberration correction in all the regions using the
parameters computed from a single region. The authors in [161, 144, 118] report excellent
aberration correction when using a minimum of 2Nα +1 measurements. In their case, the
extra Nα measurements are used to recompute a subset of the parameters from scratch,
as outlined in Section 2.4.1 in Chapter 2.

As far as Chapter 4 is concerned, the main limitation was found to be the dynamic range
of the CCD camera. We chose the maximum exposure time for which no saturation of the
pixels in the CCD occurs when the system is almost di�raction limited. For this exposure
time, we measure a non-zero noise level of about 0.035 when no light is incident on the
CCD, where 1.0 corresponds to saturation. For the selected exposure time we found that
aberrations in the order of 1.5 rms rad or more can lead to a point-spread function that
becomes comparable with the background noise, thus a�ecting the aberration correction
accuracy.

5.3 Suggestions for future work

As far as Chapter 2 and Chapter 3 are concerned, we did not consider the problem of de-
tecting and tracking the variations of the parameters of the quadratic polynomial, which
is used to model the image quality metric. This topic could be addressed in future re-
search, for example using fault detection techniques or adaptive �ltering. It is possible
that the variations are due to the structure of the specimen. In this case, this problem has
also been detected in direct wavefront sensing using back-scattered illumination light,
since in [129, 186] the authors report variations in the sensitivity to the measured Zernike
coe�cients.

As far as Chapter 4 is concerned, modulating the exposure time could be considered to
broaden the range of the aberrations that can be corrected. Assuming that the aberra-
tions are not known a priori, an algorithm that obtains the optimal exposure time should
be developed, and the pixel measurements should be processed to account for the dif-
ferent exposure times. With more research e�ort, the phase retrieval algorithm could
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be extended and applied in scanning microscopy. On the one hand the bene�ts would
include that the ENZ theory has been developed to provide a vectorial representation
of the �eld [243] and to model high numerical aperture systems [244]. On the other
hand, one could exploit recently developed algorithms in convex optimisation [171] to
solve the phase retrieval problem e�ciently. In addition, one could possibly try to obtain
guarantees about the exactness of the retrieval, such as the ones derived in [178, 179].

Eventually, research could aim at estimating both the aberrations and the 3D structure
that emits the �uorescence, thereby extending the work of [225] to scanning microscopy.

5.4 Notes about the software

All illustrations in this thesis have been created using Inkscape. The graphs in Chapter 1
and Chapter 4 were created usingmatplotlib [245], whereas the graphs in Chapter 2 and
Chapter 3 were produced usingMATLAB [246].

The software that the author developed for this thesis was implemented using C [247],
MATLAB [246] and Python [248]. Some notable software packages and applications that
the author used during his research are cvxopt [239], CVX [249, 250], YALMIP [193],
SeDuMi [194], SDPT3 [251, 252], scipy and numpy [253, 254, 255], IPython [256], comedi

[257], and most of the standard GNU/Linux software.
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Summary

Optimisation-based wavefront sensorless adaptive optics for microscopy

Jacopo Antonello

Microscopy is an essential tool for life sciences. Thanks to the development of confocal
and multiphoton microscopy, scientists are able to obtain high-resolution 3D views of
biological specimens. Nevertheless, spatial variations in the index of refraction within
specimens cause aberrations that degrade the quality of the 3D views. One can tackle
this issue by implementing adaptive optics (AO) techniques, whereby an active element
such as a deformable mirror (DM) is used to suppress the aberrations.

In this thesis we consider the problem of estimating aberrations in microscopy. Well-
established methods to measure aberrations, such as Shack–Hartmann wavefront sens-
ing, cannot be easily applied due to the lack of well-de�ned reference wavefronts within
specimens. Instead, one can consider wavefront sensorless AO (WFSless-AO), where ab-
errations are estimated indirectly using a suitable image quality metric. In practice, a
series of trial aberration corrections are applied with the DM until the image quality
metric is maximised. One can reduce the number of necessary trial corrections by mod-
elling the image quality metric, so that the overall image acquisition time is minimised,
and side e�ects such as photobleaching and phototoxicity are curtailed.

Quadratic polynomials have been used extensively to model image quality metrics in
microscopy. In the �rst part of this thesis, the problem of computing the parameters of
the polynomial directly from input–output measurements is solved using a mathemat-
ical optimisation. Once the parameters are known, the aberration estimation problem is
formulated into a linear least-squares optimisation, which requires a minimum of N + 1
trial corrections to estimate N orthogonal aberration modes, such as Zernike polynomi-
als. Both the computation of the parameters and the aberration estimation are validated
experimentally using an optical breadboard.

In the second part of this thesis, we implement a WFSless-AO algorithm in a second-
harmonic microscope. To achieve a more re�ned aberration correction, we compute the
least-squares estimate of the aberration by solving a non-convex optimisation problem.
Aberration correction experiments are performed using a biologically relevant specimen.

In the last part of this thesis, we consider using a phase retrieval algorithm to correct
aberrations. We propose an algorithm that uses three measurements of the point-spread
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function of the optical system. The phase retrieval problem is formulated using the exten-
ded Nijboer–Zernike theory, and it is solved using PhaseLift, a signal recovery method
based on convex optimisation. The feasibility of this approach is demonstrated by per-
forming aberration correction experiments using an optical breadboard.
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Samenvatting

Optimalisatiegebaseerde gol�rontsensorloze adaptieve optiek voor microscopie

Jacopo Antonello

Microscopie is een belangrijk gereedschap voor wetenschappers, die confocale- en mul-
tifotonmicroscopen gebruiken om 3D hogeresolutieafbeeldingen van biologische mon-
sters te maken. Helaas wordt de resolutie van de afbeeldingen door aberraties beperkt.
De aberraties worden veroorzaakt omdat de brekingsindex van biologische monsters niet
homogeen is. Adaptieve optiek is een oplossing voor dit probleem waarbij een actief ele-
ment zoals een vervormbare spiegel (VS) gebruikt wordt om de aberraties te corrigeren.

Dit proefschrift gaat over het schatten van aberraties in microscopen. Gewone oplos-
singen zoals het gebruik van een Shack–Hartmann gol�rontsensor zijn niet geschikt
voor microscopie omdat een referentiegol�ront binnen biologische monsters niet altijd
beschikbaar is. Een andere oplossing is gol�rontsensorloze adaptieve optiek (GFSloos-
AO) te gebruikenwaarbij aberraties indirectmet een afbeeldingskwaliteitmetriek geschat
worden. In de praktijk wordt een aantal pogingen gedaan om de aberratie te corrigeren
met de VS totdat de afbeeldingskwaliteitmetriek geoptimaliseerd is. Dankzij een model
van de afbeeldingskwaliteitmetriek kan het aantal pogingen verlaagd worden zodat de
tijd om een volledige afbeelding te maken geminimaliseerd wordt en negatieve nevenef-
fecten zoals fototoxiciteit en fotobleking worden verminderd.

Kwadratische polynomen werden uitgebreid gebruikt om afbeeldingskwaliteitmetrieken
van microscopen te modelleren. In het eerste deel van dit proefschrift wordt het schatten
van de polynoomparameters direct uit input–output metingen opgelost met een wiskun-
dige optimalisatie. Nadat de polynoomparameters geschat zijn schatten we de aberratie
met een stelsel lineaire vergelijkingen dat minimaal N + 1 poging aberratiecorrecties no-
dig heeft om N orthogonale aberratiefuncties te schatten, zoals Zernikepolynomen. Zo-
wel het schatten van de polynoomparameters en het schatten van de abberratie worden
experimenteel geëvalueerd met een optische opstelling.

In het tweede deel van dit proefschrift implementeren we een GFSloos-AO algoritme op
een second-harmonic microscoop. Om een betere correctie van de aberratie uit te voeren
berekenen we de kleinste-kwadraten schatter van de aberratie die door een niet-convex
optimalisatieprobleem geschat kan worden. We voeren een aantal aberratiecorrectie-
experimenten uit met een biologisch representatief monster.
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In het laatste deel van het proefschrift gebruiken we een fase terugvinden algoritme om
de aberratie te corrigeren. We stellen het fase terugvinden probleem op met de uitge-
breide Nijboer–Zernike theorie en we lossen het op met PhaseLift, een signaalterugvin-
denalgoritme gebaseerd op convexe optimisatie. We voeren een aantal aberratiecorrectie-
experimenten uit met een optisch opstelling om het algoritme te evalueren.
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