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Summary

In the context of fault-tolerant flight control (FTFC), various types of incremental nonlinear
control methods have been previously proposed that should overcome important challenges
that are imposed by the use of nonlinear, model-based flight control systems. This work
presents an analysis, design and implementation of promising incremental nonlinear dynamic
inversion (INDI) and incremental backstepping (IBS) control laws for a fixed-wing aircraft.
Flight tests on an Unmanned Aerial Vehicle (UAV) validate the control design and confirm
many of the advantages of these methods. A summary of the contribution is split up into
three parts.

First, an analysis is done on the performance of incremental nonlinear dynamic inversion for
angular rate control. Incremental nonlinear dynamic inversion is shown to see great simi-
larities with ordinary PI(D) control. When not including the actuators of the system, the
gains of an incremental PI controller can be derived from the INDI control law, yielding an
equivalent control law. In a similar manner, similarities can be derived between INDI and a
non-incremental PI control law that does not need a feedback of the state derivative. Simula-
tions on a model of the fixed-wing UAV support the findings. Besides a comparison with PI
control, the validity of the assumptions of incremental methods are assessed for the case of
angular rate control for fixed-wing aircraft. Steady state tracking errors in the inner control
loop are caused by the assumption that the control-independent part of the acceleration does
not change significantly. The steady state errors are directly related to the so-called increment
delay, the effective time over which an incremental control action is given. Hence, the negative
effect of neglecting the system dynamics increments can be mitigated by using faster actuators
or by decreasing the acceleration measurement delay.

Secondly, integrated controller designs are presented for the attitude control of the aircraft.
Control laws are designed for both the Euler attitude angles, as well as for the aerodynamic
attitude. This is done using multi-loop nonlinear dynamic inversion and the Lyapunov-based
backstepping procedure, yielding a multi-loop INDI and an IBS controller. Supported with
model validation using flight data from open-loop experiments, the robustness of the controllers
is demonstrated. Furthermore, the IBS aerodynamic attitude controller has been extended
with an extra incremental backstepping loop to control the flight path angle and the airspeed.
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Finally, flight tests are performed that validate the controller designs. Mainly qualitative
conclusions can be drawn from the flight results. The INDI controller that controls the Euler
attitude angles has been successfully tested in nominal flight. Simulated controller responses
match closely with flight measurements. Also, a manually controlled flight with this INDI
control law as augmented control has been performed. In the longest experiment, lasting 241
seconds, the longitudinal and lateral mode were excited with pitch angles of ±22 deg and
roll angles of ±50 deg. The IBS controller that controls the aerodynamic attitude was tested
in both longitudinal and lateral mode, during separate maneuvers. Although results show a
stable response to angle of attack commands, the lack of a good estimate of the angle of attack
limits the applicability. The lateral mode of the aircraft was only tested with conservative,
non-nominal gains. The results correspond to the expected response, but subsequent tests
must be performed for a full validation.
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Chapter 1

Introduction

Commercial airliners and advanced military aircraft nowadays are equipped with flight-control
systems to provide augmented stability or to take over complete control tasks. During flight,
major system failures may change the aircraft dynamics in such a way that the flight control
system (FCS) is unable to provide the required stability and stops functioning, even though
the main control effectors may still yield some level of performance. The research for this
thesis aims to contribute to the development of adaptive and robust, nonlinear flight control
laws that can cope with a wide variety of system faults. The thesis includes analysis, design
and implementation of INDI and IBS flight control laws applied to fixed-wing aircraft. Flight
tests are performed on a unmanned aerial vehicle (UAV) to validate the flight control methods.

The UAV platform that is used is part of a project named free-flying aircraft for sub-scale
experimental research (FASER), initiated by the University of Minnesota (UMN). It entails
the development of a small low-cost unmanned aircraft to be used for research on advanced
flight control laws (Owens, Cox, & Morelli, 2006). An off-the-shelf aircraft platform has been
used, on which a complete flight computer and sensors have been installed. A picture of this
7 kg, 2m span aircraft is shown in Figure 1-1. Windtunnel tests are executed to create an
accurate nonlinear model used for simulations. The German Aerospace Center (DLR) has
acquired one FASER platform on which the presented control laws are tested.

The thesis consists of two parts. First, the final controller design and flight results are presented

Figure 1-1: The platform of the FASER project: the Ultrastick120. Image retrieved from
http://www.uav.aem.umn.edu/.
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Figure 1-2: Classification of contributing factors to fatal accidents of commercial jet flights
worldwide between 2005 and 2014 (Boeing Commercial Airplanes, 2010).

in a scientific paper. The subsequent chapters are part of the preliminary work done prior to
the flight tests. It contains analysis of the control laws and describes the controller design in
more detail. The remainder of this chapter will introduce the context, discusses the state-of-
the-art in nonlinear flight control methods, it will discuss the current challenges, it presents
the research objective of the thesis and finishes with a detailed outline of the thesis.

1-1 Research context

Since the advance of fly-by-wire actuation and control systems in aircraft, flight control systems
have developed into systems that do not only translate control signals directly to actuator
signals, but alter and create signals to augment stability characteristics and incorporate auto-
pilot systems. It became possible to monitor the state of the aircraft and reconfigure flight
control laws upon certain system faults. The integration of systems that perform these tasks
is referred to as fault-tolerant flight control (FTFC) systems and should prevent a range of
accidents that involve loss-of-control in-flight (LOC-I) events.

1-1-1 Loss of control in-flight

LOC-I events refer to all situations in which the aircraft cannot be controlled to the intended
path. Prior to LOC-I events, other failures might cause the loss of control, but it can also
be caused by an aircraft upset. LOC-I is still the largest contributing factor in all fatal
aircraft accidents worldwide (Boeing Commercial Airplanes, 2010; European Aviation Safety
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Agency (EASA), 2014). Figure 1-2 shows this clearly. Between 2005 and 2014, of all fatal
accidents with commercial jet flights, 23% involved a LOC-I event. The number of fatalities
due to accidents that involve a LOC-I is even more staggering: it contributed to more than
41% of all fatalities (Boeing Commercial Airplanes, 2010). In fact, loss of control accidents
are still complex because there are often multiple events that finally lead up to a LOC-I
accident. Therefore, no single intervention strategy can be designed to prevent these accidents.
NASA (Belcastro & Foster, 2010) carried out an analysis to get insight into this sequence of
events. The type of LOC-I events which are aimed to be prevented by FTFC system are those
situations in which there is still enough controllability available to potentially stabilize the
aircraft and keeping a certain degree of tracking performance, i.e. being able to follow some
trajectory which could successfully land the aircraft.

1-1-2 Fault-tolerant flight fontrol

FTFC systems can be classified by the way in which the flight control system deals with
faults. They can be subdivided into passive and active systems. Passive systems do not have
an online reconfiguration of control laws: there are for example no adaptations of controller
gains and the structure of the controller is not altered when certain faults are detected. Passive
systems are merely designed to be robust to system faults. General disadvantages of passive
systems are that the severity of the tolerated faults to be dealt with is limited and that the
performance is lower compared to active systems, even for nominal conditions.

The adaptive control laws discussed in this research fall into the class of active FTFC systems.
Active systems include some fault-detection and diagnosis (FDD) system in combination with a
mechanism that reconfigures the control laws. The general structure of an active fault-tolerant
control system is presented in Figure 1-3. The reconfiguration can be off-line projection based,
in which the control laws are shaped according to predefined controllers. The reconfiguration
can also be an online redesign. In this case control parameters are recalculated online and also
the structure of the control law can be altered. Active, on-line reconfigurable flight control
systems apply to a much wider range of system faults and are able to achieve higher per-
formance than passive or off-line projection based methods. However, these methods often
suffer from being computationally expensive (Edwards et al., 2010). Adaptive, on-line recon-
figurable flight control techniques were already a topic of research in the 1980’s, but only since
the more recent advances in computational power and software in the 1990’s, a rapid increase
arose in the number of reconfigurable flight control approaches and complexity of the systems.
Overviews of these developments can be found in Edwards et al. (2010); Steinberg (2005);
Zhang and Jiang (2008).

Faults can be classified into three categories, displayed in Figure 1-3. Actuator faults are any
faults that partially or completely change the control action. This includes actuator jamming,
aerodynamic degradation of the control surfaces or any other case by which the desired control
deflections do not correspond with the achieved signals because of some failure. Component
faults refer to changes to the plant dynamics parameters, such as mass and aerodynamic
coefficients. Lastly, sensor faults subdivide into total or partial faults. Total faults constitute
those sensor faults in which the sensor readings are not related at all anymore to the physical
quantity that is measured. Partial faults can be a scaling or constant bias in the sensor
reading.
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Figure 1-3: Main components of an active FTC system, adopted from Edwards et al. (2010)
and Zhang and Jiang (2008).

The research in this thesis focuses on those situations in which the aircraft may encounter some
system fault that changes the dynamics of the system, but still keeping full controllability. The
typical control effectors considered are the elevator, aileron and rudder control surfaces. Hence,
actuator failures are included only to such an extent that there is still some actuator action
available in the original control structure so that aerodynamic moments can be generated
that are large enough to bring the aircraft to a trimmed state, with some additional margin to
achieve a satisfactory level of performance. Sensor failures are not considered although sensor
dynamics, scaling and noise are included in the control law design. Component failures that
alter the aerodynamic properties and its mass distribution are included.

1-2 Backstepping and nonlinear dynamic inversion control

Traditional flight control systems are most often based on linear systems and classical con-
trol theory. The typical techniques to develop control laws with desirable characteristics are
root-locus techniques, frequency response analysis or more recent state space methods such as
linear-quadratic regulator (LQR) control or robust H∞ techniques (Stevens & Lewis, 2003).
The advantage of using linear techniques is that the controllers are easy to analyze, and the
control methods are well developed. However, these methods all suffer from being dependent
on local linearization points and not being able to capture nonlinearities in the system dy-
namics or control action. Hence, control laws in the nonlinear region of the flight envelope,
for example at high angles of attack, are more difficult to implement. Often, gain schedul-
ing techniques must be used to create controllers that operate throughout the entire flight
envelope. Interpolation can be performed between different linearization points. Nonlinear,
model-based control methods solve this by formulating a control law that is applicable to the
entire model. Hence, such control methods do not need gain scheduling techniques. NDI, a
subset of Feedback Linearization, and the Backstepping method, a Lyapunov control method,
are well-known nonlinear control methods based on a cancellation of the system dynamics.

Different topics and methods in the field of nonlinear control methods for aerospace applica-
tions are discussed in the next sections. This thesis focuses on incremental nonlinear control
methods, which can be viewed as simplifications or special applications of nonlinear dynamic
inversion or backstepping control. In Figure 1-4, it is shown how the discussed methods relate
to each other in a general framework of nonlinear control methods.
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Figure 1-4: Categorization of nonlinear control methods used in this thesis. Adopted from
Acquatella B. (2011).

1-2-1 Nonlinear dynamic inversion

Nonlinear control laws can capture the nonlinear dynamics and can provide a single solution
that applies directly to the entire flight envelope. A well developed class of methods is feedback
linearization, of which NDI is a subset that applies to first-order systems. The method involves
a transformation of the system dynamics through a change of coordinates in such a way
that the output is linearized with respect to a virtual input. The real input can be written
in terms of the system states and this virtual input, so that the output can be controlled
with linear methods. The limitations of these methods however are that it applies only to
systems that can be written in lower triangular form. NDI cannot directly be applied to non-
minimum phase systems because the virtual control uses the input that is separated from the
output by the least amount of integrators. Furthermore, there are no robustness guarantees
in the case of parametric uncertainties or unmodelled dynamics (Slotine, 1991). Since the
early 1990’s, nonlinear dynamic inversion has been successfully applied to many flight control
problems(Bugajski, Enns, & Elgersma, 1990; da Costa, Chu, & Mulder, 2003; Doman & Ngo,
2002; Ochi & Kanai, 1991).

1-2-2 Backstepping control

With linear methods, stability can always be analyzed by looking at its poles. However, time
responses of nonlinear systems do not have a general exponential solution and cannot be
converted to the frequency domain or analysed with linear state space methods. Nonlinear
systems do not have poles (in general) which characterize the overall stability of the system.
Backstepping control is a nonlinear control technique which uses part of the concepts of
feedback linearization, but the control laws are derived through Lyapunov stability concepts.
As such, the developed control laws can be proven to be stable. Also, the control laws can
easily be adapted to forms which account for parameter uncertainties. The theory originated
from the 1990’s, by P.V. Kokotović (Kokotovic, 1992). Since then, backstepping control has
been widely used for a great variety of nonlinear control problems, and the control methods
have been extended with command filters (J. Farrell, Polycarpou, & Sharma, 2003), tuning
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functions (Kanellakopoulos, Kokotovic, & Morse, 1991) and other techniques to increase its
applicability to realistic nonlinear systems with uncertainties.

The basic idea of backstepping control is to bring the system into strict-feedback form:

ẋ = f(x) + g(x)z1

ż1 = f1(x, z1) + g1(x, z1)z2
...

żi = fi(x, z1, . . . , zi) + gi(x, z1, . . . , zi)zi+1 for i = 1, . . . , k − 1
...

żk−1 = fk−1(x, z1, . . . , zk−1) + gk−1(x, z1, . . . , zk−1)zk
żk = fk(x, z1, . . . , zk) + gk(x, z1, . . . , zk)u

(1-1)

Where ẋ is in Rn, and z1, . . . , zk are scalars. In this form, the input is seperated from the
output by several integrator states which in turn all act as an affine virtual control in the
step closer to the output. In this way, a stabilizing virtual control can be designed at each
integrator step to finally yield a stabilizing control law which brings the output signal to zero.
Stability is proven by Lyapunov stability theory, based on the theorem of LaSalle-Yoshizawa,
see for example Krstić (1995) or Khalil (1996) for an account of this theorem. Usually, the
control Lyapunov functions (CLFs) are in the form:

Vi = Vi−1 + 1
2z

2
i for i = 2, . . . , k (1-2)

and V1 = 1
2z

2
1 in the case of scalar state x with a tracking error z1 = x− xr. The control laws

are designed such that the time derivatives V̇i are negative definite.

Next to its stability properties, a great advantage of backstepping control over NDI is that with
backstepping control the designer has more freedom in the design of the control laws. This is
due to the fact that the goal at each integrator step is to create a stabilizing control law that
forces the derivative of the CLF to be negative definite. There are no further restrictions than
that, so stabilizing terms do not have to be canceled by the control law. Also the Lyapunov
function is usually chosen as the square of the error state itself, but in fact can take any form
that will satisfy the requirements of a Lyapunov function (Krstić, 1995; Slotine, 1991).

Although the control laws developed through backstepping control have a theoretical stability
proof, care must be taking when implementing these control techniques. In realistic systems,
and especially for aircraft flight control, the basic assumptions for backstepping control are
not valid. For example, the system is often not in a pure strict-feedback form when controlling
attitude by the control surfaces. Also, noise and sensor dynamics make it impossible to know
the true state. Furthermore, the sampling frequency must be sufficiently high to resemble the
continuous system.

1-2-3 Adaptation methods

Apart from the nonlinear nature of backstepping control and NDI compared to traditional,
linear flight control techniques, a second major difference is that both backstepping control
and NDI are model-based, which means that the control laws depend on the model itself. In
general, backstepping control laws depend on the functions fi and gi in Equation 1-1. This
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creates two challenges for real-life applications: first of all, the nominal model must somehow
be identified to a certain accuracy, but cannot be known exactly. Hence, estimates f̂i and ĝi
are used in the control laws. Secondly, when system dynamics change, the estimates must
adapt to those or be robust to the estimation errors, but in either case one must make sure that
changes in system dynamics do not destabilize the control laws. Usually, system dynamics are
described as a function of a set of system parameters in such a way that f̂i and ĝi are found by
estimating the system parameters. Referring back to the general active FTFC system scheme
in Figure 1-3, one can see that the main task of the Fault Detection and Isolation block
in this case is to identify the system parameters. The reconfiguration block updates these
system parameters that are included in the control laws. Different techniques can be used to
model-based control laws that use parameter estimates. We distinguish modular methods and
integrated methods (Krstić, Kanellakopoulos, & Kokotovic, 1994).

Modular update law designs

Modular update law designs have a parameter update module that is separated from the
control law design. Parameters that are used by the control law are identified by this module.
Using this approach, the certainty equivalence principle is applied (Krstić, 1995). When
applying this principle, one uses the parameter estimates in the control laws as if they were
the true parameters. This separates the parameter estimation completely from the control law.
When using this principle however, it becomes hard to prove that the derivative of the CLF
is non-positive, hence stability proofs become difficult or even impossible with Lyapunov.
However, because this principle allows the use of all well developed parameter estimation
methods, it is still an attractive method. For example, some form of least squares parameter
estimation method can be used when the model structure is linear in the parameters.

Integrated update law designs

The problem with applying the certainty equivalence principle is that the original Lyapunov
functions do not exist any more, because the parameter estimation contains an uncertainty
which is not taken into account in the stability analysis. Integrated approaches aim to include
the parameter update laws in the Lyapunov-based control design method such that overall
stability is still guaranteed. A way to integrate parameter updates in a way that still satisfies
the Lyapunov stability proofs is by the Tuning Functions approach (Krstić, 1995). In this
approach, dynamic parameter update laws are defined. These parameter update laws are
incorporated in the control Lyapunov functions (CLFs) so that the input-to-state stability
and parameter convergence is proved. A typical CLF then has the following form:

Vi = Vi−1 +
1

2
z2
i +

1

2
θ̃
T
i Γ−1

i θ̃i for i = 2, . . . , k (1-3)

Where θ̃i are the parameter errors in step i and Γi is a diagonal matrix with positive update
gains. However, with the Tuning Functions approach the parameters do not converge to the
true parameter but are only proven to converge to some point in the direction of the true
parameters which guarantees stability of the overall system. The parameters update laws
are dependent mainly on the tracking error. Hence, the parameter estimates are not really
estimates of the model parameters anymore, but pseudo-estimates. Integrated approaches
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may be much more computationally expensive in the case of multiple dynamic update laws
because the dynamic update laws need to be integrated by the control algorithm itself.

1-3 Incremental control methods

In the context of nonlinear control in aerospace applications, incremental control methods
refer to a method whereby not the actual control u, but a control increment ∆u is calculated,
which is added to the previous control input. This representation of the control input is
closely related to an integrator, but there are some important differences and advantages.
The method can be integrated with NDI control, referred to as INDI. An application of such
methods applied to fixed-wing aircraft was already described in Smith (1998) and Bacon,
Ostroff, and Joshi (2001). A more general description of incremental NDI was given by Chen
and Zhang (2008). In this reference, it is for the first time referred to as an incremental control
method.

1-3-1 Incremental nonlinear dynamic inversion

The method is based on a Taylor series expansion of the system dynamics around a recent state
in the past. Using this approach, the system is described as a locally linear system. By feeding
back a measurement of the state derivative, only partial knowledge of the system dynamics
is required. In fact, when applying NDI, only knowledge about the control effectiveness is
necessary. As such, the control law is independent to any aerodynamic changes that do not
affect the controls, and the sensitivity to the aircraft model is decreased (Chen & Zhang,
2008). As the control law is derived from a Taylor series expansion using only the first terms,
the derived control structure is simple, even for more complex nonlinear systems.

The idea of an incremental description using Taylor series expansion for NDI was adopted
by Delft University of Technology in Sieberling, Chu, and Mulder (2010) and referred to as
INDI. The necessity for measurements of the angular accelerations was partially solved by
estimating and predicting the angular accelerations using angular rate measurements. The
predictive filter that is used is closely related to a simple n-point numerical differentiation for
which the weightings of the measurements are tuned for the specific control law (Sieberling
et al., 2010). Applying this INDI control law, the model dependency was greatly reduced
compared to NDI and robustness was increased. Furthermore, the INDI control law profits
from the usual advantages of nonlinear control methods.

Thereafter, more accounts of applications of nonlinear incremental control at Delft University
of Technology have become available. In Smeur (2016), the control methods are applied to a
small quad-rotor UAV. Furthermore, it is extended with adaptation methods to estimate the
remaining model parameters to decrease its model-dependency and increase its flexibility to
system faults. In Acquatella B., Falkena, van Kampen, and Chu (2012), the INDI method
was succesfully applied to spacecraft attitude control and to the longitudinal control.

1-3-2 Incremental backstepping

One of the disadvantages faced by an application of NDI is that in general, stability of the
overall system in combination with outer-loop control laws is not guaranteed. In his thesis and
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published article, Acquatella was the first to apply the incremental methods for backstepping
control (Acquatella B., 2011; Acquatella B., van Kampen, & Chu, 2013). Using a backstepping
procedure for the system to be controlled, an integrated control law is described which is
proven to be stable for the system as a whole rather than for each individual control loop
(Krstić, 1995). Incremental backstepping was then applied in adaptive forms by Ali, Chu, van
Kampen, and de Visser (2014) and Van Gils (2015) for an F-16 aircraft model. Again, the
strong robustness properties of incremental methods are shown, as well as the capability to
deal with the lack of good angular acceleration measurements. Different adaptation methods
are applied to further release the dependency on knowledge about the system dynamics.

1-4 Current challenges

Among others, one important challenge is to successfully implement and validate INDI and
IBS flight control methods on a physical platform. INDI control laws have been shown to work
well on quad-rotor UAVs (Smeur, 2016). It has also been applied to a fixed-wing UAV, but the
results were never officially published (Vlaar, 2014). A big contribution to the ongoing research
is to show the applicability of IBS methods and proof its validity by practical implementations
with flight test results.

Secondly, incremental methods, and in particular INDI, have been presented primarily in
forms that control angular rates in the inner loop of flight control systems. For fixed-wing
aircraft, the typical cascaded control loop hierarchy follows a structure like what is shown
in Figure 1-5. The structure relies on the fact that the velocity vector of any fixed-wing
aircraft must be controlled by using the lift and thrust forces in appropriate directions and
changing its magnitude. To achieve this, the aircraft’s angle of attack α and bank angle µ
are controlled. The total airspeed is usually controlled using the thrust. Attitude control is
achieved by creating moments by the aerodynamic control surfaces. To control these outer
loops, other control laws can be designed, resulting in a multi-loop NDI control structure.
For this, one usually assumes a time-scale-separation between the different control loops. A
drawback of this control structure is that it is not possible to proof the stability of the total
controlled system. For this reason, the backstepping control method has been proposed, as
it results in one integrated control law which is proven to be stable. In Van Gils (2015), a
controller is described to control the aerodynamic attitude including the total airspeed. These
control laws can be further extended for a control of the complete flight path described by the
aircraft’s course and vertical flight path angle.

Challenges that are not considered in this thesis are the adaptation of the remaining model
parameters on-line and the optimization of stabilizing control laws. These two topics both
support the goal to be able to apply incremental control methods in a systematic way on a wide
variety of platforms, without the need to perform extensive model identification. Adaptation
of INDI has been performed on quad-copter vehicles (Smeur, 2016). When using INDI for
the stabilization of angular rates of a vehicle, the resulting control law only depends on the
control effectiveness. Adaptation strategies then only need to consider a very limited set of
model parameters.

Secondly, the optimization of gains spans a broad subject and particular solutions depend on
the controller structure, optimization objectives and computational complexity. It may always
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10 Introduction

be done off-line with the use of general constrained, zero-th order, direct search optimization
methods such as genetic algorithms, Nelder-Mead simplex methods or combinations of multiple
methods. Optimization may also refer to on-line optimal control in which optimization is
integrated with the control law to maximize the performance.

Although adaptation and optimization of gains are not considered, this thesis does include
an analysis on comparisons with classical PI control. Under certain restrictions, INDI can
be used to derive gains of equivalent PI control laws. In this case, linear methods can be
used for the analysis of the control laws. Hence, this comparison can help in the analysis of
INDI in terms of the analysis of stability, parameter sensitivities and any other method for
the optimization and adaptation of linear systems.

Figure 1-5: Typical cascaded flight control loop structure

1-5 Research objective and preliminary thesis outline

The research objective for this thesis is to analyze to what extent and in which forms incre-
mental control laws, and in specific incremental backstepping control laws can be best applied
to fixed-wing aircraft. Thereafter, the goal in this thesis project is to conduct real flight tests
on the FASER UAV to proof the applicability of incremental nonlinear control methods. The
research question is formulated as:

“How can IBS flight control methods be implemented for the flight path control of fixed-wing
aircraft? How do IBS flight control methods perform on a small, fixed-wing UAV?”

The outline of the thesis is as follows. First, a final thesis paper is included, containing an
outline of the most important analysis and results. The chapters thereafter govern the so-
called ‘preliminary thesis’, which should be treated as preliminary studies executed prior to
the final flight control design and flight testing that is presented in the paper. In chapter 2
the concepts of backstepping control, nonlinear dynamic inversion and incremental control
are briefly discussed to introduce the methods mathematically before continuing to the actual
controller design for fixed-wing aircraft. The chapter also contains a general discussion about
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the similarities between incremental nonlinear control and PI(D) control. Then, the aircraft
model and equations of motion are introduced in chapter 3. It also contains a presentation
of the polynomial model of the aerodynamics, that has been found by a model fitting on the
look-up table interpolation data that was based on windtunnel tests. The next two chapters
focus on the actual controller implementation on the FASER model and analysis of the control
performance. Chapter 4 presents implementations of INDI control laws for angular rate and
attitude control. Since the angular rate control loop is the most important part of the control
laws, the major part of the chapter contains analyses and simulation results of the inner
loop tracking response. Chapter 5 presents IBS control laws for the attitude and trajectory
control, which use an inner loop control law that is in practice very similar to the discussed
INDI control law. Not much attention is paid to the trajectory control; this control was also
finally not tested on the FASER aircraft.

Figure 1-6: Structure of the preliminary thesis

Additionally, the thesis includes some appendices that support the results and analysis that
is presented in the article and in the other chapter of the thesis. These appendices are:

A. Aerodynamic Model This appendix includes estimated coefficients of a polynomial fit
for the aerodynamic model of the FASER aircraft. It also contains figures that display
both the table look-up data and the polynomial fit.

B. Flight Results The article presents flight results of the INDI/IBS control laws. This
appendix contains a more extensive overview of all flight test runs.

C. Model Validation Special maneuvers are performed to perform model validations. This
is reported in the article. The appendix contains more detailed time responses of the
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12 Introduction

performed maneuvers.

REMARK: It must finally be noted that there are differences in notation between the scientific
paper and the remaining chapters (preliminary thesis). The most important difference is the
numbering of the control loops. In the paper, the attitude loops and angular rate loop are
numbered by subscripts 1 and 2, respectively. Because in the rest of the thesis also a flight
path loop is considered, this loop is numbered with subscript 1, while the attitude and rate
loop are designated by 2 and 3, respectively. The paper is provided with its own nomenclature
at the first page. The list of symbols that is included at the start of this thesis applies to all
other chapters.
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Design, Implementation and Flight-Tests of Incremental
Nonlinear Flight Control Methods

Wim van Ekeren ∗, Gertjan Looye †, Qiping Chu ‡

Delft University of Technology, P.O. Box 5058, 2626HS Delft, The Netherlands

DLR, German Aerospace Center, 82234 Weßling, Germany

This paper presents the design and implementation of incremental nonlinear dynamic
inversion (INDI) and incremental backstepping (IBS) methods for the attitude control and
stabilization of a fixed-wing aircraft. The design consists of multiple functionalities such
as command-filtered backstepping, angle of attack control and Euler angle control which
are all based around an incremental control inner-loop that tracks the angular rates of the
aircraft. The results include flight data of an integrated INDI/IBS design to support sim-
ulation results of incremental nonlinear flight control laws shown previously in literature.
Furthermore, this paper contributes by showing that assumptions on neglecting system
dynamics increments are not always valid for fixed-wing aircraft, although a successfull
attitude control law can still be realized. Supported with model validation, the results
show that it is possible to implement robust nonlinear flight control laws that are easy to
tune and require only little knowledge about the system dynamics parameters.

Nomenclature

CD,Y,L Non-dimensional aerodynamic drag, lift and
side force

Ci Stabilizing control gain matrix in loop i
Cl,m,n Non-dimensional aerodynamic roll, pitch and

yaw moment
F∗ Model parameter scaling factor
FT Total propeller thrust, N
g Gravitational acceleration, m/s2

I Aircraft inertia matrix
m Aircrafts mass, m
S(·) Saturation function
Tij Coordinate transformation matrix from

frame j to frame i
Ts Controller sample time, s
V Aircraft inertial velocity, m/s
Vi Control Lyapunov Function in step i
x Total aircraft state including body veloci-

ties, attitude, aerodynamic angles and angu-

lar rates
z Tracking error, x− xr
α Aerodynamic angle of attack, rad
β Aerodynamic angle of sideslip, rad
ω Body angular rates, rad/s
ω Linear filter bandwidth or break frequency,

rad/s

Subscripts

a Aerodynamic
act Actuator
p Propeller+motor
i Inertial
ref Reference

Superscripts

0 Raw command
b Body reference frame

I. Introduction

Since the advent of fly-by-wire actuation systems in aircraft, it became possible to intercept and ma-
nipulate pilot control inputs and add augmented stability based on sensor feedback. Although these flight
∗Graduate Student, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology
†Head, Department of Aircraft Systems Dynamics, Institute of System Dynamics and Control, German Aerospace Center
‡Associate Professor, Faculty of Aerospace Engineering, Control and Simulation Division, Delft University of Technology
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control systems are designed to support the pilot and should improve the stability and performance in flight,
loss-of-control in-flight (LOC-I) still remains the largest contributing factor in all fatal commercial aircraft
accidents worldwide.1,2 In many cases, major system failures change the aircraft dynamics in such a way
that the FCS is unable to provide the required stability and stops functioning even though the main control
effectors may still yield some level of performance.3,4

The majority of aircraft are inherently stable, so that in nominal cases a pilot could easily take over
the control of the aircraft without requiring additional stability augmentation. However, system faults may
cause the aircraft to become unstable and very difficult to control. Furthermore, high-performance aircraft
are often inherently unstable and will always require flight control systems for additional stability. Therefore,
to prevent LOC-I events, fault-tolerant flight control (FTFC) that can provide main functionalities in the
event of system faults are essential.5 One way in which FTFC systems could prevent these LOC-I events is
by providing enough robustness to the control laws, often at the cost of performance in nominal flight. An
alternative is to use active reconfiguration of the control laws in combination with a system that provides
fault-detection and diagnosis (FDD).6

Conventional linear control laws always require gain scheduling methods to provide desired stability and
performance characteristics over the entire flight envelope.7,8 Reconfiguration upon system faults requires a
re-scheduling of those control laws. For integrated, general approaches in which flight control laws provide the
desired stability and performance criteria throughout the entire flight envelope, nonlinear model-based control
laws have been developed, such as feedback linearization, nonlinear dynamic inversion or backstepping. These
methods such attempt to cancel the system dynamics.9–15 In effect, they highly rely on model parameters.
Online identification and adaptation strategies are necessary to reconfigure the control laws.16–20

Incremental control methods attempt to solve the problem of the dependency on an accurate on-line
available model of the plant. The methods refer to a technique applied to nonlinear model-based control
laws that reduce their model-dependency by being more dependent on sensors and using actuator feedback.21
By measuring the state derivatives and actuator positions, no knowledge of the control-independent system
dynamics is necessary to apply control methods based on system dynamics cancellation. Incremental control
methods are therefore promising because they need only little information about the plant while they still
cancel the system dynamics to linearize the output with respect to a virtual control input. This makes the
controller easy to implement and easy to tune.

Previous work

Incremental nonlinear dynamic inversion (INDI) is a method in which the dynamics are written in an
incremental form. Dynamic inversion is applied to yield control law that is only dependent on the control-
dependent part of the model. In Bacon et al.,22 already an incremental, dynamic inversion based control
law was proposed to control the aircraft attitude and angular rates. This was shown on a tailless aircraft
model. Also in Smith23 such a method was used. Both papers suggest a simplified approach to dynamic
inversion by describing control increments and using angular acceleration feedback, but do assume that
the angular accelerations are readily available from measurements. In Sieberling,21 a study is done on the
robustness to delays in the angular accelerations measurements. The references stated here consider the
attitude or angular rate control of fixed-wing aircraft. Feedback linearization or nonlinear dynamic inversion
is applied on the dynamics of angular accelerations in incremental form, thereby only requiring knowledge
about the incremental control-dependent moments to linearize the output with respect to a virtual control.

Figure 1. The FASER UltraStick120 air-
craft. Image retrieved from http://www.uav.
aem.umn.edu/.

Because the core of these INDI control laws is based on an
incremental description of the angular rate dynamics on which
assumptions about the system dynamics are made, the method
is not restricted to the application of dynamic inversion. It has
also been applied as incremental backstepping (IBS) control by
Acquatella et al.24 for the attitude stabilization of spacecraft
and for longitudinal flight control laws on a launch vehicle. IBS
was also described for the attitude control of high-performance
fixed-wing aircraft.25,26 The backstepping control procedure is
especially useful for the design of cascaded control systems for
which stability must be guaranteed.

In Smith et al.,27 flight test results of a longitudinal pitch rate control law similar to INDI are pre-
sented. However, this article does not consider the effect of delays in the incremental control loop caused
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by actuator dynamics and synchronization with delayed acceleration measurements. Flight-tests of adaptive
INDI attitude control laws on a small quad-copter vehicle have been performed recently by Smeur et al.,28
showing the applicability of INDI as a novel, robust incremental control law. The dynamics of quad-copter
rotorcraft are however significantly different, because the influence of aerodynamic damping is much lower.
Real flight-tests of IBS control laws on aircraft or spacecraft has not been performed yet.

Contribution

The contribution of this paper consists of two parts. The first and major part is the presentation of the design,
implementation and flight test results of novel INDI and IBS attitude control laws on a fixed-wing aircraft.
The aircraft used for these flight-tests is the FASER UltraStick120 aircraft, a 2m span UAV developed by
the University of Minnesota.29 Tests were performed on one of these platforms which is operated by the
German Aerospace Center (DLR). The IBS and INDI methods are implemented as an integrated control
design, in which different controller functions can be chosen. The longitudinal mode of the controllers can
either track the pitch angle θ, suitable for manual flight, or the angle of attack α, which is more useful
for an outer loop autopilot controller or high-performance aircraft. The lateral mode of the controllers will
control the roll angle φ while minimizing the side slip angle β and the aerodynamic side force. The avionics
components that are available on this aircraft are relatively cheap and widely available. Therefore, the INDI
and IBS control laws presented in this paper proof its applicability as a robust, flexible and easy to tune
control law.

Secondly, the paper includes an analysis on the system dynamics increments, showing that for fixed-wing
aircraft the assumptions made to arrive at the simplified incremental control laws are not valid in general.
System dynamics increments due to aerodynamic damping and due to changes in the angle of attack and
angle of sideslip cause angular rate tracking errors. The size of these tracking errors is directly related to the
total increment delay. This analysis was not done beore. It is furthermore shown that although assumptions
are not valid for the system used in this paper, still a robust attitude control design can be achieved.

Outline

The structure of this paper is as follows. Section II presents the fixed-wing aircraft model that is used in the
design. Also, flight test data of open-loop experiments are presented that is used for model validation. The
incremental flight control laws are derived in section III. Thereafter, section IV discusses the final controller
design used on the aircraft. Section V discusses the the assumptions on neglecting the system dynamics
increments. In the remaining part of the paper, sections VI and VII the flight test experiments and results
are presented. The paper is concluded in section VIII.

II. Aircraft model

Table 1. Basic aircraft parameters of the Ultra-
Stick120 platform 1.

Parameter
Mass (take-off weight) m 8.13 kg

Length 1.26 m

C.G. from firewall xcg 0.315 m

Aero ref from firewall xa 0.320 m

Roll inertia Ix 1.031 kgm2

Pitch inertia Iy 1.21 kgm2

Yaw inertia Iz 2.05 kgm2

Roll-yaw inertia Ixz 0.433

Chord c̄ 0.433 m

Span b 1.92 m

Wing Area S 0.769 m2

1Mass moment of inertia parameters were adopted from the
already available model and scaled by the updated
operational weight as used by the German Aerospace Center
(DLR)

The FASER project consists of multiple plat-
forms that are equipped with similar software and
hardware aiming to make the process of implement-
ing and testing new flight control algorithms as sim-
ple as possible. Wind-tunnel tests are performed to
generate a high-fidelity model, which is defined in
MATLAB/Simulink. The platform used in this re-
search is the UltraStick120, a 2m span fixed-wing
aircraft. Basic properties of the aircraft are listed in
Tab. 1.

A. Equations of motion

The motion of the aircraft is described by rigid-body
equations of motion in the body reference frame,
as is common in most flight control problems. The
most important assumptions made are:
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• The aircraft is treated as a rigid body.

• The earth is flat and non-rotating, so that the north-east-down (NED) earth-fixed reference frame is
inertial and the gravity vector always points downwards.

• The only forces and moments acting on the aircraft are aerodynamics, propulsive forces and moments
and the aircraft’s weight. The propeller thrust FT acts purely in the direction of the body x-axis.

• The mass m of the aircraft is constant.

By applying Newton’s equations of motion in the body reference frame, the time derivative of the body
velocities V are defined as

V̇ =
Fa
m

+
Fp
m

+ g − ω ×V (1)

where ω are the rotational rates and Fa,Fp are the aerodynamic and propeller/motor forces respectively,
and g is the gravitational acceleration in body frame coordinates. The terms are given by

Fa =



X̄b

Ȳ b

Z̄b


 = Tbs(α)q̄S



−CD
CY

−CL


 , Fp =



FT
0

0


 , g = Tbe(φ, θ, ψ)




0

0

g


 =



−g sin θ

g cos θ sinφ

g cos θ cosφ


 , (2)

where q̄ = 1
2ρV

2
a S is the dynamic pressure, S is the wing surface area, CF = [CD, CY , CL]T the non-

dimensional aerodynamic force coefficients, g the gravitational acceleration and Tbs,Tbe are rotation matrices
from the stability to the body frame and from the NED frame to the body frame, respectively. In scalar
form, with V = [u, v, w]T and ω = [p, q, r]T , the equations can be written as

u̇ = rv − qw − g sin θ + 1
mX̄

b + 1
mFT

v̇ = pw − ru+ g cos θ sinφ+ 1
m Ȳ

b

ẇ = qu− pv + g cos θ cosφ+ 1
m Z̄

b

(3)

The time derivative of the angular rates ω is described as

ω̇ = I−1(Ma + Mp − ω × Iω) (4)

where I is the inertia matrix and Mp are the motor and propeller’s reaction moments acting on the aircraft
body due to the inertia of the motor and propeller. Ma is the aerodynamic moment, built up by non-
dimensional force and moment coefficients in the body reference frame, defined as

Ma = q̄S
[
b
c̄
b

]
CM (5)

with b the aircraft’s wing span, c̄ the mean chord length and CM = [Cl, Cm, Cn]T the aerodynamic moment
coefficients. Note that the aerodynamic moment coefficients are defined in the body frame while the force
coefficients are defined in the stability frame.

B. Aerodynamic model

Aircraft aerodynamic forces are described using non-dimensional force and moment coefficients, denoted as
CF = [CD, CY , CL]T ,CM = [Cl, Cm, Cn]T . The coefficients are modeled by look-up tables using wind-tunnel
test data.29,30 Coefficients are split up in a base part, depending on angle of attack and angle of sideslip α
and β, a part dependent on control surface deflections and a part dependent on the rotational rates, so that

CF = CF,base(α, β) + ∆CF,ctrl(δ, α, β) + ∆CF,rate(ω̂, α, β)

CM = CM,base(α, β) + ∆CM,ctrl(δ, α, β) + ∆CM,rate(ω̂, α, β)
(6)

with ω̂ = [ pb2Va
, qc̄

2Va
, rb

2Va
]T . Coefficients are measured at high angles of attack (−2 ≤ α ≤ 45deg) and

angles of sideslip (−30 ≤ β ≤ 30deg). Also, control moments CM (δ) and dynamic moments CM (p, q, r) are
incorporated for different angles of attack, for the complete range of control surface deflections and up to
150 deg/s (at V = 25 m/s).
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To get estimates of the control effectiveness of the actuators, and to create a flexible, simplified model
which is useful for simulation and controller design, the aerodynamic forces and moments are estimated by
a polynomial model at angles of attack smaller than the stall angle (α < 12 deg) and low angles of sideslip
(β < 20 deg), according to

[
CF

CM

]
=

2∑

i=0

2∑

j=0

cbaseijα
iβj + cbase03β

3 +

3∑

k=1

2∑

i=0

2∑

j=0

cctrlkijδkα
iβj +

3∑

l=1

2∑

j=0

cratelij ω̂lα
iβj (7)

Here, δk with k = 1, 2, 3 are the control surface deflections, and ω̂l with l = 1, 2, 3 are the non-dimensional
angular rates. c(...) are the polynomial coefficients. The basic estimated stability and control derivatives are
stated in Tab. 2. In a paper by Klöckner,31 a polynomial model of the Ultrastick120 unmanned aerial vehicle
(UAV) has already been estimated using an aerodynamic dataset generated using the vortex lattice method
(VLM), and mainly based on the geometrical information of the aircraft. Base coefficients Cbase and dynamic
coefficients Crate match closely with the table data and for these coefficients, the polynomial coefficients also
match closely with the polynomial model presented in this paper. The VLM dataset contained noticeable
differences in the control coefficients. Therefore, also the polynomial model fit of the VLM data does not
match for these coefficients.

Table 2. Most important estimated stability and control derivatives from the look-up table data.

Cmα Cnβ Clp Cmq Cnr Clδa
Cmδe

Cnδr

-0.3025 0.0714 -0.397563 -7.8542 -0.13664 -0.186475 -0.689396 -0.0360641

C. Actuator model identification
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Figure 2. Measured elevator position
(meas) for step commands, plotted with the
identical step response of the individual op-
timal parameters (opt) for the response and
the step response using the final identified
(mean) parameter estimates

The UltraStick120 in use at the DLR is equipped with
JR DS8411 servos that control all control surfaces individu-
ally. Incremental control laws rely on a good actuator feedback.
Because of practical reasons, the actuator position sensor data
was not used in a closed-loop test. The electric signal was
not reliable enough and in some cases the attachment of the
potentiometer displaced over the duration of the experiment.
However, the sensors could be used to gather open-loop step re-
sponse data in order to identify the model. The dynamics were
identified by commanding step inputs of different magnitude.
The actuator dynamics are modeled with first-order dynamics
with bandwidth ωact, including rate limits and a time delay
λact:

δ̇(t) = SR{−ωactδ(t) + ωactu(t− λact)} (8)

where SR is a saturation function, defined as

SR(x) =





R if x > M

x if |x| ≤M
−R if x < −M

(9)

Actuator time responses of the elevator deflections are shown in Fig. 2. For each step response, parameters
R, λact and ωact are found that minimize the root-mean-square (RMS) error between the measured and
simulated response. The final estimates are the mean of those values, listed in Tab. 3.

Table 3. Identified (mean) actuator dynamics parameters, with standard deviation σ

ωact [Hz] R [deg/s] λact [samples at 50Hz]
2.35 (σ = 0.44) 99.6 (σ = 30.4) 2.25 (σ = 0.707)
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D. Aircraft model validation
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Figure 3. Pitch maneuver angular rates and ac-
celerations

Open-loop, manually controlled flight tests have been per-
formed for model validation purposes. Different maneu-
vers have been executed to excite the different modes
of the system. For each maneuver, the pilot was in-
structed to give strong, aggressive inputs on a particu-
lar axis. Hence, executed maneuvers are pitch, yaw and
roll maneuvers caused by elevator, rudder and aileron in-
puts, respectively. To validate the model, simulations are
performed with the inputs as measured in-flight for each
maneuver. First, a trim condition was calculated at the
same airspeed. The simulation was then initialized at the
initial non-trimmed state taken from the flight data. The
simulation was thereafter performed by adding the mea-
sured input differences to the trim inputs. In this way,
the problem of trim mismatches between the model and
the flight tests was avoided.

Besides a simulation with the nominal model, simulations have been performed with scaled aerodynamic
moments. Because the aerodynamics are modeled using look-up table data interpolation, scaling of stability
derivatives has been implemented by scaling the respective moment component of part of the coefficient
(such as the scaling of Cm,base by FCm). Scaling factors are defined as

Ci,base,scaled = Fi,baseCi,base

∆Ci,ctrl,scaled = Fi,ctrl∆Ci,ctrl for i = l,m, n

∆Ci,rate,scaled = Fi,rate∆Ci,rate

(10)

where F∗ are scaling factors for each component of the aerodynamic model. By varying each scaling factor
over a mimimum, nominal and maximum value, simulations of each possible combination set of factors is
performed. In Figs. 3 to 5, measured and simulated responses are presented with scaling factors of F∗ = 25%.
The bounds of the simulations with scaled parameters are plotted with gray areas. The figures show that
the measured accelerations in flight can be explained by the model with the selected parameter offsets.
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Figure 4. Yaw maneuver angular rates and accel-
erations
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III. Incremental nonlinear attitude control laws

This section presents the IBS and INDI control laws that are applied for two different control problems.
In the first case, described in section A, the Euler attitude angles are the considered control variables. The
external tracking commands are φcmd and θcmd, while the heading rate ψ̇ is controlled such that coordinated
turns are achieved. In the second task, described in section B, the angle of attack α is tracked instead of the
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pitch angle θ and the side slip angle β is controlled to zero. This makes this controller a lift-control device,
which is more useful for outer loop flight path control tasks or for high-performance aircraft.32,33

A. Attitude control of Euler angles

The control task in this attitude control problem is to track references for the body Euler angles φ and θ, so
that

φ = φref and θ = θref . (11)

In this paper we specifically focus on the stabilization of the aircraft attitude angles φ and θ and we are not
interested in the total heading ψ or course χ. Normally, the aircraft’s heading is controlled by rolling the
aircraft into a coordinated turn. Hence, although the total heading is not controlled, it is desired to keep a
coordinated turn when performing a roll maneuver by commanding yaw rates. It will be shown that due to
the kinematic relation between φ̇, θ̇, ψ̇ and p, q, r, any reference ψ̇ref can always be chosen so that a reference
for p, q, r that tracks the pitch and roll references can be defined. At the end of this section, a reference for
ψ̇ref will be derived that controls the side force on the aircraft to zero and keeps the sideslip angle small. In
this section, the output, tracking error, states and input are

y1 =

[
φ

θ

]
, y1,ref =

[
φ

θ

]

ref

, z1 = y1 − y1,ref , x1 =



φ

θ

ψ


 , x2 =



p

q

r


 , u =



δe
δr

δa


 . (12)

The references are outputs of a pre-filter to prevent unachievable commands that will saturate the actuators.
The pre-filter also provides a time-derivative of the reference signal, which is used for feed-forward control.

1. Dynamics

The output y1 is related to the state x1 by

y1 =

[
1 0 0

0 1 0

]
x1 = H1x1 (13)

The dynamics of x1 are purely kinematic and we can write

ẋ1 = G1(x1)x2 (14)

with

G1 =




1 sinφ tan θ tan θ cosφ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ


 (15)

The dynamics of the angular rates x2 are stated in Eq. (4). The aerodynamic moment Ma in Eq. (4) is split
up in a control-dependent and a control-independent part, using Eq. (5) and Eq. (6)

ẋ2 = f2(x) + g2(x,u) (16)

with
f2(x) = I−1

(
q̄S
[
b
c̄
b

]
CM,base+rate + Mp − ω ×V

)

g2(x,u) = I−1q̄S
[
b
c̄
b

]
CM,ctrl

(17)

Here, x denotes the total aircraft state which also includes aerodynamic speed and attitude. The dynamics
of the angular rates can be written in incremental form by considering a Taylor series expansion around a
previous point t0 in the recent past21,34,35

ẋ2 = ẋ2,0 +

(
∂f2(x)

∂x
+
∂g2(x,u)

∂x

)

︸ ︷︷ ︸
F2,0

∣∣∣∣x=x0
u=u0

(x−x0) +
∂g2(x,u)

∂u︸ ︷︷ ︸
G2,0

∣∣∣∣x=x0
u=u0

(u−u0) +O
(
(x−x0)2, (u−u0)2

)
(18)
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The second term contains the control derivatives. The estimate Ĝ2,0 is constructed as

Ĝ2,0 = I−1q̄S




0 bClδr bClδa
c̄Cmδe 0 0

0 bCnδr bCnδa


 (19)

in which the non-dimensional control derivatives are obtained from the polynomial model fit described earlier.
Eq. (18) is written in shorter form as

ẋ2 = ẋ2,0 + F2,0∆x +G2,0∆u +O(∆x2,∆u2). (20)

Under the assumption that f2(x) and g2(x,u) do not change significantly due to changes of x in the interval
[t0, t], and that over this same interval the system is linear so that the higher order terms can be neglected,
we can use the following approximation for the angular accelerations:

ẋ2
∼= ẋ2,0 +G2,0∆u (21)

This assumption is the fundamental step in the simplifications for incremental nonlinear control techniques.
If this assumption cannot be made, the term F2,0∆x cannot be neglected in Eq. (21). Because F2,0 contains
the major part of the system dynamics, neglecting this term makes any derived model-based control law
only dependent on G2,0. In section V, an analysis has been presented that shows that for fixed-wing aircraft
steady state tracking errors in the angular rate loop are caused by system dynamics increments which are not
cancelled because the term F2,0∆x is significant. Fast actuators, high sample rate and a short measurement
delay must be used to reduce the influence of system dynamics increments.

Using the incremental description for the system dynamics, control laws can be made for the incremental
control input ∆u instead of the total control input u. This means that an incremental control ∆u will be
derived so that the total control is the sum of the increment and the input at a previous point in time, hence
u = ∆u + u0.

2. Backstepping Procedure

The idea of the backstepping procedure is to show that with appropriate choices for the inner loop command
x2,ref and input u, the compensated tracking error is asymptotically stable. By defining the the tracking error
z1, we convert the tracking problem into a stabilization problem. The system is proven to be asymptotically
stable if it can be shown that a Lyapunov function can be derived for the equilibrium point at z1, z2 = 0.
Command-filtered backstepping is implemented by using a linear, first-order command filter to calculate a
smooth reference x2,ref from the command value x2,cmd. This is obviates the need to calculate the time
derivative ẋ2,ref analytically. The bandwidth of this linear filter is high enough so that it is safe to assume
for the derivation that x2,ref = x2,cmd. Therefore, in the derivation below only the final stabilizing reference
x2,ref is used.

The backstepping procedure is started by defining the first control Lyapunov function (CLF) as a radially
unbounded function in the elements of z1 as

V1(z1) =
1

2
zT1 z1. (22)

Let the reference x2,ref satisfy

x2,ref = G−1
1

([
−C1z1 − C1,dż1

0

]
+

[
ẋ1,ref

ψ̇ref

])
(23)

with C1, C1,d being diagonal matrices with positive definite elements. The error dynamics ż1 yield

ż1 = H1G1(z2 + x2,ref )− ẋ1,ref

= H1G1z2 − C1z1 − C1,dż1

= (I2×2 + C1,d)
−1H1G1z2 − (I2×2 + C1,d)

−1C1z1

(24)
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By substition of Eq. (24), the time derivative V̇1 yields

V̇1 = zT1 ż1

= −zT1 (I2×2 + C1,d)
−1C1z1 + zT1 (I2×2 + C1,d)

−1H1G1z2

(25)

Then, V̇1 is negative definite along z1, except for the second term due to z2. This term will be accounted
for in the subsequent design step. To start the next and final step of the backstepping procedure, augment
the CLF by a term that is radially unbounded in the elements of z2:

V2(z1, z2) = V1 +
1

2
zT2 z2 (26)

The time derivative must be negative definite, in which we substitute for the system dynamics of x2 in
incremental form:

V̇2 = V̇1 + zT2
{
ẋ2,0 +G2,0∆u− ẋ2,ref

}
(27)

If the incremental control satisfies

∆u = G−1
2,0

(
−C2z2 − ẋ2,0 + ẋ2,ref +GT1 H

T
1 (I2×2 + C1,d)

−1z1

)
(28)

then the time derivative of the final CLF V̇2 yields

V̇2 = −zT1 C?1z1 − zT2 C2z2, (29)

with C?1 = (I2×2+C1,d)
−1C1 a diagonal matrix with positive definite elements. This shows that V̇2 is negative

definite along z1 and z2. The result implies that with the given commands, the equilibrium z1, z2 = 0 is
asymptotically stable, which implies that z1, z2 → 0 when t → ∞. Furthermore, the stabilization problem
is exponentially stable in all terms with a decay rate determined by C?1 and C2, because a positive definite
scalar η exists such that

V̇2 = −zT1 C?1z1 − zT2 C2z2

≤ −η
(

1

2
zT1 z1 +

1

2
zT2 z2

)

= −ηV2

(30)

Control diagrams of the outer and inner loop are shown in Figs. 6 and 7.

3. Heading rate reference for coordinated turn maneuvers

From the derived intermediate control law in Eq. (23) it follows that an arbitrary reference ψ̇ref may be
defined without affecting the stability of the controlled variables. Usually, a desired heading rate ψ̇ or course
rate χ̇ determines the required roll angle φ. However, in the control problem presented in this paper we are
only interested in the control of the roll and pitch angle. Therefore, the reference ψ̇ref is determined by the
actual roll angle to achieve a coordinated turn. Consider the course angle dynamics, using the sum of forces
in the lateral direction of the horizontal plane

mVc cos γcχ̇c = Ȳ b cosβ cosµc + L sinµc + FT (sinαc sinµc − cosαc cosµc sinβc) (31)

Here, V cos γc is the total airspeed in the horizontal plane and L the aerodynamic lift. We aim to bring the
body side force Ȳ to zero to achieve a coordinated turn. Furthermore, we neglect the effect of the thrust in
the lateral direction so that FT sinβc ≈ 0, and the reference course rate for a coordinated turn is set to

χ̇c,ref =
1

mVc cos γc
(L sinµc + FT (sinα sinµc)) (32)

in which an approximation of the vertical specific force can be substituted, because mAz ≈ L + FT sinα.
The calculation of the bank angle µ involves quite complex kinematics, although in practice and for the
experiments considered in this paper, it is very close to the roll angle φ. Furthermore, the reference χ̇c,ref is
set by the reference roll angle φref instead of the state φ. In this way, the course rate reference anticipates
for roll angle to be tracked. We are interested in finding a reference for ψ̇ref instead of χ̇ref . When there
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Figure 6. Outer loop control structure of the IBS Euler attitude control law. Angular rate references are
passed to an inner-loop control law shown in Fig. 7.
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Figure 7. Inner loop control structure for both the IBS Euler attitude control law and IBS aerodynamic
attitude control law

would be no wind, it holds that ψref = χref , but with a constant wind, the aircraft heading deviates with
a crab angle βf , so that a reference for ψref relates to the reference course angle by χ̇ref = ψ̇ref + β̇f . A
heading rate reference is therefore designed as

ψ̇ref = χ̇c,ref + ∆ψ̇ref

=
mAz sinφref
Vc cos γc

+ ∆ψ̇ref
(33)

with ∆ψ̇ref defined by a proportional control law on the side slip error that compensates for the effects of
the crab angle βf , as well as for all other deviations due to the assumptions made in this derivation, hence

ψ̇ref =
mAz sinφref
Vc cos γc

+KpψAy. (34)

4. Multi-loop nonlinear dynamic inversion control law

In this section, a multi-loop nonlinear dynamic inversion (NDI) control law will be derived for the same
control problem. It will be shown that the resulting control law is very similar. For a multi-loop NDI control
structure, time-scale separation is assumed between the two control loops. This means that the dynamics
of the inner loop, ẋ2, are assumed to be much faster than the outer loop dynamics ẋ1. It is hence assumed
that in the outer loop, references for the angular rate are achieved immediately. Consider the outer loop
dynamics:

y1 = H1x1

ẋ1 = G1x2

(35)
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Applying the control law x2,ref = G−1
1 ν1 yields ẋ1 = ν1 (when assuming time-scale separation). By forcing

the error dynamics to be exponentially stable, the virtual control is defined as

ν1 =

[
−C1z1 − C1,dż1

0

]
+

[
ż1,ref

˙ψref

]
(36)

By applying
∆u = G−1

2,0 (ν2 − ẋ2,0) (37)

for the inner loop, where ν2 is the virtual control law, set to

ν2 = −C2z2 + ẋ2,ref . (38)

With appropriate choices for C2 (in this case setting the elements positive definite), inner loop error dynamics
ż2 are stable and decoupled. Hence, the final multi-loop INDI control laws are

x2,ref = G−1
1

([
−C1z1 − C1,dż1

0

]
+

[
ż1,ref

˙ψref

])

∆u = G−1
2,0 (−C2z2 + ẋ2,ref − ẋ2,0)

(39)

with C1, C1,d, C2 being diagonal matrices with positive definite elements. Comparing the terms with Eq. (23)
and Eq. (28), one sees that the only difference is the compensation term GT1 H

T
1 z1.

B. Attitude control of aerodynamic angles

For the backstepping control procedure presented in this section, the aerodynamic attitude of the aircraft is
controlled. Controlled variables are

φ = φref , α = αref , β = βref (40)

By controlling the aerodynamic attitude, one effectively controls the aerodynamic forces on the aircraft,
since at given airspeeds the angle of attack is proportional to the vertical load. This type of control is useful
for trajectory control or the attitude control of high-performance aircraft. Simulations with INDI and IBS
aerodynamic attitude control laws are successfully shown previously in literature.25,33,36 βref is set to zero
to approximate a coordinated turn. This differs from the approach in the previous section where we aimed
to control the side force Ȳ to zero. The state x1 and tracking error z1 are now defined as

x1 =



φ

α

β


 , x1,ref =



φ

α

β



ref

, z1 = x1 − x1,ref (41)

1. Dynamics

While the time derivative of φ directly follows from the kinematic transformation presented in Eq. (14), the
time derivative of α and β can be derived from a coordinate transformation of [u, v, w] ⇔ [Vc, αc, βc]

25,33

and substitution in the equation for the linear accelerations in Eq. (3). A subscript c has been explicitly
added to denote that the aerodynamic angles are with respect to the inertial constant-wind reference frame,
because u, v, w in Eq. (3) are the inertial body velocities. Hence, they are not relative to the local wind.
When considering an inertial frame fixed to the constant horizontal wind component, the equations for α̇c
and β̇c hold. The time derivatives for αc and βc yield

α̇c = q − p cosαc tanβc − r sinαc tanβc +
1

mVc cosβc

(
−Ax sinαc +Az cosαc +mg3

)

β̇c = p sinαc − r cosαc +
1

mVc

(
−Ax cosαc sinβc +Ay cosβc −Az sinαc sinβc +mg2

) (42)

with Ax, Ay, Az the specific forces and

g2 = g (cosαc sinβc sin θ + cosβc sinφ cos θ − sinαc sinβc cosφ cos θ)

g3 = g (sinαc sin θ + cosαc cosφ cos θ)
(43)
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The dynamics can be written in a more general form as

ẋ1 = f1(x, ẋ) +G1(x)x2 (44)

with

f1(x, ẋ) =




0
1

mVc cos βc

(
−Ax sinαc +Az cosαc +mg3

)

1
mVc

(
−Ax cosαc sinβc +Ay cosβc −Az sinαc sinβc +mg2

)




G1(x1, θ) =




1 sinφ tan θ tan θ cosφ

− cosαc tanβc 1 − sinαc tanβc
sinαc 0 − cosαc




(45)

f1 depends on the state derivative ẋ, because accelerations appear in the equations for α̇c and β̇c. The
structure differs from the outer loop dynamics in the previous section in Eq. (14) because of the extra
system dynamics term f1. This term is measurable when Ax,yz and the aerodynamic attitude Vcαc, βc are
available and does only contain kinematic relationships.

2. Backstepping Procedure

The backstepping procedure for this control problem is very similar to the problem defined in the previous
section. Again, a fast, unconstrained command filter is used for x2,ref to obtain a time derivative ẋ2,ref .
The control Lyapunov function (CLF) is again defined as V1 = 1

2z
T
1 z1, and the raw intermediate control is

defined as
x2,ref = G−1

1 (−C1z1 − C1,dż1 − f1 + ẋ1,ref ) (46)

with C1 and C1,d diagonal matrices with positive definite elements. The error dynamics yield

ż1 = f1 +G1x2 − ẋ1,ref

= f1 +G1(x2,ref + z2)− ẋ1,ref

= −C1z1 − C1,dż1 +G1z2

= −(I3×3 + C1,d)
−1C1z1 + (I3×3 + C1,d)

−1G1z2

(47)

Taking the time derivative of V1 and substituting Eq. (47) yields

V̇1 = zT1 ż1

= −(I3×3 + C1,d)
−1C1z1 + (I3×3 + C1,d)

−1G1z2

(48)

The second step of the backstepping is identical to the previous section, except that one has to compensate
a different term from the first step, because zT1 G1 refers to different physical variables. Hence, augmenting
the CLF as V2 = V1 + 1

2z
T
2 z2 and selecting the raw incremental control law as

∆u = G−1
2,0

(
−C2z2 + ẋ2,ref +GT1 (I3×3 + C1,d)

−1z1

)
(49)

yields
V̇2 = −zT1 C?1z1 − zT2 C2z2 (50)

with C?1 = (I3×3 + C1,d)
−1C1. This implies again that z1, z2 → 0 when t → ∞, and asymptotic stability

is obtained. Furthermore, the stabilization problem is exponentially stable in all terms with a decay rate
determined by C?1 and C2, because a positive definite scalar η exist such that

V̇2 = −zT1 C?1z1 − zT2 C2z2

≤ −η
(

1

2
zT1 z1 +

1

2
zT2 z2

)

= −ηV2

(51)

A schematic of the outer loop control law is shown in Fig. 8. The schematic of the inner loop already shown
in the previous section in Fig. 7 also applies to the currently presented control law.
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3. Multi-loop nonlinear dynamic inversion control law

Like the Euler attitude control laws presented in the previous section, also the aerodynamic attitude back-
stepping control laws can be compared to a multi-loop nonlinear dynamic inversion control law by ignoring
some of the compensation terms that are introduced by the Lyapunov procedure. When considering again
time-scale separation between both integrator steps, the reference x2 that linearizes the output x1 with
respect to a virtual control ν1 is:

x2,ref = G−1
1 (ν1 − f1) (52)

The virtual control law can be defined such that the error dynamics are exponentially stable:

ν1 = −C1z1 − C1,dż1 + ẋref (53)

The inner loop INDI control law is identical to Eq. (39), hence the final multi-loop nonlinear dynamic
inversion control laws are

x2,ref = G−1
1 (−C1z1 − C1,dż1 − f1 + ẋref )

∆u = G−1
2,0 (−C2z2 + ẋ2,ref − ẋ2,0)

(54)

Again, the multi-loop NDI control law only differs from the backstepping control design by the term
GT1 (I3×3 + C1,d)

−1z1

G−1
1 (x1)C1 CF
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β
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cmd
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Figure 8. Outer loop control structure of the IBS aerodynamic attitude control law

C. Actuator dynamics

In the derivation for the backstepping and NDI control laws, the actuator dynamics have not been considered.
If the actuator dynamics would be considered as part of the plant, this would have created at least one extra
integrator step. Consequently, this would require to perform an extra step in the backstepping procedure,
which means one would need a feedback for ẍ2 in the control design.

In practise, actuator dynamics are considered to be time-scale separated from the controller, hence we
assume that commands are reached instantaneously. With incremental control however, one relies on a
synchronization of the inputs with the feedback of the state derivative. Therefore, u0 should be the delayed
real control surface deflection. Furthermore, the feedback of the actuator position includes filters and delays
that match the delays in the feedback of the state derivative ẋ2. It was already shown previously that this
is a corret way to implement the incremental control law when including actuator dynamics with delayed
acceleration measurements.28 In Fig. 7, the general control scheme of the incremental control loop as part
of the inner angular rate control loop has been depicted.

D. Parameter uncertainties

Thusfar, the derived control laws use a true inversion of G2,0, i.e., the control derivatives are supposed to be
perfectly known. Consider now the estimate Ĝ2,0 and the estimation error G̃2,0, related to each other by

G2,0 = Ĝ2,0 + G̃2,0 (55)

and the overestimation factor matrix Γ
Ĝ2,0 = ΓG2,0. (56)
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For the inner loop angular rate stabilization, applying the control law

∆u = Ĝ−1
2,0 (−C2z2 + ẋ2,ref − ẋ2,0) (57)

yields

ż2 = ẋ2,0 +G2,0∆u− ẋ2,ref

= ẋ2,0 + Ĝ2,0Ĝ
−1
2,0 (−C2z2 + ẋ2,ref − ẋ2,0)− ẋ2,ref + G̃2,0Ĝ

−1
2,0 (−C2z2 + ẋ2,ref − ẋ2,0)

= −C2z2 + (I3×3 − Γ)Γ−1 (−C2z2 + ẋ2,ref − ẋ2,0)

= −Γ−1C2z2 + (Γ− I3×3)Γ−1 (ẋ2,0 − ẋ2,ref )

(58)

where we used
G̃2,0Ĝ

−1
2,0 = (G2,0 − ΓG2,0)Ĝ−1

2,0

= (I3×3 − Γ)G2,0(ΓG2,0)−1

= (I3×3 − Γ)G2,0G
−1
2,0Γ−1

= (I3×3 − Γ)Γ−1.

(59)

For a more intuitive insight in the result, assume Γ to be a diagonal matrix, of which all elements on the
diagonal equal a constant factor 1/γ, so that Eq. (58) simplifies to

ż2 = −γC2z2 + (1− γ) (ẋ2,0 − ẋ2,ref ) . (60)

Note that γ now resembles an estimation factor such that γ > 1 implies an underestimation. Also note
that this notation of the uncertainty of the inner loop control effectiveness estimate by γ corresponds to the
definition used by Lu et al.37 The following conclusions can be drawn for result in Eq. (60):

• The first term in Eq. (60) shows that the decay rate of the error is scaled by γ. This implies a slower
convergence in the case of overestimation, i.e. when γ < 1,

• Comparing with the first equation of Eq. (58), the second term in Eq. (60) represents the untracked
accelerations when γ < 1 (overestimation) or the overcompensated accelerations when γ > 1 (under-
estimation).

• When γ is very small, the control input will be very small and the error dynamics approach the
open-loop dynamics.

In various previous studies on INDI and IBS, incremental angular rate control was combined with online
parameter estimation methods to adapt the matrix G2,0.26,28,38 A simple way to implement adaptation is to
use the certainty equivalence principle11 by treating the estimate Ĝ2,0 in the control law as the true parameter.
On-line identification of Ĝ2,0 can then be done in a separate, modular way. Because this type of adaption
does still violate the Lyapunov stability proof, one can use integrated methods such as adaptive backstepping
using tuning functions11 or immersion and invariance39,40 so that asymptotic stability is guaranteed. This
paper does not focus on the estimation of Ĝ2,0. The control laws will use the best off-line estimated control
derivatives to construct Ĝ2,0.

IV. Controller design and implementation

For a complete controller design, the control laws prented in section III are implemented with additional
subsystems in the flight control software. These systems include state estimation and filtering modules, an
auto-throttle system and functions dedicatated to the controller configuration. A functional overview of the
implemented systems can be found in Fig. 9. The software has been designed such that control laws can
be reconfigured quickly, for example to switch between the two different attitute control laws, or to switch
between NDI and backstepping (BS) control laws.
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Figure 9. General controller structure at a functional level.

Table 4. Aircraft avionics and hardware components1

Component Description
Flight Computer Phytec MPC5200B Tiny (400MHz,

64MB DDR DRAM, controller sample
rate 50Hz)

GPS Receiver Novatel OEM Star
IMU Analog Devices ADIS16405
Servos DS8411 (1.55 Nm @4.8 V)
Pressure sensors AMS5812

The software is implemented on the “Goldy flight
control system (FCS)”, of which the most important
hardware components are listed in Tab. 4. The con-
trol laws run at a rate of 50 Hz. Implementing con-
trol laws on a flight computer that runs at discrete
samples means that all integrators appearing in the
control law must be discretized.

A. Subsystems

1. Pre-filters and command filters

The system dynamics and platform specifications
have been assessed and simulated to design a suitable controller that matches the capabilities and limi-
tations of the platform. Pre-filters for the attitude commands are second-order linear filters with rate and
position limits, so that the dynamics for each reference signal are described by

[
q1(k + 1)

q2(k + 1)

]
=

[
SM{q1(k) + Tsq2(k)}

q2(k) + TsSR

{
2ζωn

(
ω2
n

2ζωn
[ycmd(k)− q1(k)]− q2(k)

)}
]

yref = q1

ẏref = q2

(61)

with ζ, ωn the damping and natural frequency of the filter, and SR and SM the magnitude and rate limits.
The dynamics of the prefilter have been set such that no unachievable references are passed to the controller.
Estimates of maximum achievable angular rates and accelerations are used to verify that the pre-filter
parameters have conservative settings. Estimates for maximum angular rates and accelerations are calculated
using basic estimates of the stability derivatives, e.g.

p̂max =
2V

b

Clδa
Clp

δamax , ˆ̇pmax = − q̄S
Ixx

Clδa (62)

The derivative for α depends both on the pitch rate q and the load factor nz (see Eq. (42)). The maximum
rate α̇ref has been determined empirically by finding a conservative limit that yields achievable commands.

1For a detailed list see Owens (2006)29 or the web page of the UAV Laboratory of the University of Minnesota: http:
//uav.aem.umn.edu/
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The dynamics of the command-filters for the angular rate references are a first-order linear filter to limit the
delays caused by each discrete integrator

xref (k + 1) = xref (k) + TsSR {ωn[xcmd(k)− xref (k)]} (63)

Table 5. Pre-filter parameters and estimated maximum angular rates and accelerations

Ref ωn[rad/s] ζ[−] rate limit [deg/s] ω̂max[deg/s] ˆ̇ωmax[deg/s2]

φref 4 0.7 60 146.8 500.8
θref 4 0.7 60 121.5 1571.4
αref 4 0.7 4

2. State estimation

The flight software is equipped with a main state estimation module that fuses the sensor data from the linear
accelerometers, rate gyros and GPS velocity using an extended Kalman filter (EKF) and estimates sensor
biases to yield the best possible state estimate. The Kalman filter is based on a standard kinematic model,
hence no detailed knowledge of the model is necessary for state estimation. The update rate is limited by
the GPS model to about 1Hz. The velocity and attitude estimations at intermediate samples are obtained
from integration of linear accelerations and angular rates after substraction of the estimated bias. Standard
deviations of the observed noise these sensors are 0.045 m/s2 (accelerations) and 0.021 deg/s (angular rates),
respectively.

3. Aerodynamic attitude estimation and filtering

On this UAV, no angle of attack or angle of sideslip measurements were available. This is problematic
for the aerodynamic attitude controller, since it relies on a feedback of α and β. For this reason, the
aerodynamic angles are estimated using the available aerodynamic model. For the angle of attack the
simplified aerodynamic lift model is used to estimate α using vertical acceleration measurements:

ĈL = CL0 + CLαα+ CLδe δe, with ĈLq̄S ∼= −mAz cosα (64)

This equation is solved for α. For β, lateral accelerations Ay are used:

ĈY = CYββ + CYr
rb

2Va
, with ĈY q̄S ∼= mAy (65)

When used in real flight, the estimations α̂ and β̂ will contain the experienced turbulence at each particular
moment. To prevent the aircraft to compensate for this turbulence and create unneccessary control effort,
a complementary filter is used that complements low-pass filtered estimates α̂ and β̂ with high-pass filtered
measurements of the inertial angle of attack αi and angle of sideslip βi, calculated using the inertial (ground)
velocity. The inertial velocity as estimated by the EKF is converted body frame coordinates by



u

v

w



i

= Tbe(φ, θ, ψ)



VN
VE

VD


 (66)

Then, angles αi and βi are calculated as

αi = arctan
wi
ui
, βi = arcsin

vi
Vi

(67)

The output of the complementary filter can be described by the discrete transfer function

αf (z) =
ωn,cTs

z + ωn,cTs − 1
αa(z) +

z − 1

z + ωn,cTs − 1
αi(z) (68)
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where ωn,c is the bandwidth of the filter, set to a frequency such that the turbulence is filtered out in αf .
This is implemented as

x1(k) = αi(k)− αi(k − 1) + x1(k − 1)− ωn,cTsx1(k − 1)

x2(k) = (1− ωn,cTs)x2(k − 1) + ωn,cTsαa(k − 1)

αf (k) = x1(k) + x2(k)

(69)

A complementary filter for βf is implemented similarly. Fig. 10 shows simulated output of the filters under
the presence of noise, turbulence and a constant horizontal wind, while executing a simultaneous pitch and
roll maneuver.

4. Angular acceleration estimation

Because no sensors for angular acceleration are available, the accelerations are estimated from the angular
rates. This is done using a washout filter. It is shown previously in literature that the use of a washout filter
is a simple way to obtain estimates of the angular accelerations that can be used for an incremental control
law.25,28 In discrete time the washout filter is implemented as

ωf (k + 1) = ωf (k) + Tsωn,w [ωm(k)− ωf (k)]

ω̇f (k) = ωn,w [ωm,k − ωf (k)]
(70)

with ωm = [p, q, r]Tm the measured angular rates, ωf = [p, q, r]Tf the filtered angular rates and ω̇ = [ṗ, q̇, ṙ]Tf
the filtered angular accelerations. ωn,w denotes the bandwidth of the washout filter in rad/s, which has been
set to 12 rad/s. It was determined minimizing by the phase lag caused by this filter while keeping acceptable
noise levels on the final control surface commands. Fig. 11 shows the simulated output of the washout filter
for three different bandwidth settings during a pitch up maneuver.

5. Auto-throttle

During the experiments, executed maneuvers will have an immediate effect on the airspeed. However, it is
desired to keep the airspeed at the same level during each executed experiment run, because the airspeed as
a great effect on the aerodynamic effectiveness of each control surface. A proportional-control auto-throttle
system is integrated in the flight software to keep airspeed within an acceptable range. The control law is

δt = SM{δt,trim +Kp,t(Va − Va,trim)} (71)
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where the trim point refers to the state at which the experiment run was started so that only differences
are commanded with respect to the initial state. The saturation levels of the throttle command are [0, 1].
During the executed experiments, the control gain was set to Kp,t = 0.15.

B. Controller gain tuning

Table 6. Controller gains for body and aerody-
namic attitude control

Aero Body
C1 C1d C2 C1 C1d C2 ωact[rad/s]

3 1 6 4 1.5 8 12
5 0 8 4 2 8 12
1 0 2 - - 8 12

Within the backstepping procedure, the only requirement
that is imposed on the value of the gains to provide Lya-
punov stability is that the gains are positive definite. In
the case of multi-loop NDI control, time-scale separation
is assumed. To guarantee time-scale separation, the con-
trolled bandwidth of the outer loop, which is determined
by the loop gain, should be lower than the inner loop so
that the inner loop dynamics are much faster than the
outer loop dynamics. Since actuator dynamics are not
considered as part of the plant during the control law derivation, the bandwidth of the inner loop must
respect the bandwidth of the actuators. Controller gains are tuned manually, by considering bandwidth
limits for each control loop.

During the control tuning it appeared that extra damping gains C1d in the outer loop were required to
decrease the overshoot. Tracking performance was improved by adding damping gains in the outer loop
controller. The damping gains were only added in the euler attitude variables, hence not in the feedback for
α and β.

Another parameter that can be tuned is the control effectiveness G2,0. To perfectly cancel the system
dynamics and to force the error dynamics stable and decoupled, the best estimate of the control effectiveness
Ĝ2,0 should be used. However, the total control aggressiveness can be scaled by scaling this matrix. An
overestimation of G2,0 will result in a slower tracking response, similar to decreasing the proportional gain
of a PID controller. In Acquatella et al.41 it is already shown that by comparing INDI/IBS control laws
with PID control, the proportional gain of the PID controller is directly related to Ĝ−1

2,0. For this reason,
control laws can configured to a conservative setting by an overestimation of G2,0. This corresponds with
our findings in section D

C. Incremental control loop with actuator position feedback

Reliable actuator position measurements were not available for closed-loop experiments. Therefore, actuator
positions are estimated using an on-line (discrete) model denoted by A(z), identified as a first-order linear
system with rate limits:

u(k + 1) = u(k) + TsSR {ωact[uc(k)− u(k)]} (72)

Here uc are the commanded actuator positions. Furthermore, to synchronize the actuator feedback u0 with
the angular acceleration feedback ω̇0, a controller time delay and a linear filter with the same bandwidth
ωf as the washout filter has been incorporated in the incremental control loop (denoted by H(z). Finally,
the controller command has been added to a constant initial command utrim, which correspond to the last
actuator commands before the controller is switched on. This ensures a smooth transition when switching
from manual to automatic control during flight. An overview of the final incremental control loop is displayed
in Fig. 16.

D. Simulation and controller robustness

With the specified controller parameters for the loop gains, pre-filters, command-filters and total controller
delay, series of simulations are performed to assess the robustness of the controllers. In these simulations,
aerodynamic model parameters are varied by scaling the stability derivatives of the model by specific uncer-
tainty factors F∗ as defined earlier in section D. Simulations with only the inner loop angular rate tracking
are also performed. Results of these simulations can be found in Figs. 12 and 13. A comparison is made
with faster control actions, by increasing the bandwidth of the actuators to 5Hz and increasing the washout
filter bandwidth to 24 rad/s. The controller gain was increased by 50%. This shows the advantage of the
systematic control structure; by only improving the controller specifications, the tracking response can be
greatly improved without additional tuning of controller parameters.
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Figure 12. Tracking response of the INDI inner angular rate control loop, simulated separately for each
different mode (roll/pitch/yaw), with the actual system specifications and with faster system specifications.
Colored areas depict the simulated bounds with control effectiveness model mismatches affecting g2 only with
Fi,ctrl = ±25%.
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Figure 13. Tracking response of the INDI inner angular rate control loop, simulated separately for each
different mode (roll/pitch/yaw), with the actual system specifications and with faster system specifications.
Colored areas depict the simulated bounds with system dynamics model mismatches affecting both f2 and g2
by using parameter scaling factors Fi,base, Fi,ctrl, Fi,rate = ±25%.
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Figure 14. Tracking response of the INDI/IBS euler attitude controllers. Colored areas depict bounds of the
simulations with control effector model mismatches of Fi,ctrl = ±25%
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Simulation results for the IBS and INDI euler attitude controllers are presented in Fig. 14. Simulation
results of IBS and INDI aerodynamic attitude controllers are presented in Fig. 15. In both attitude control
simulations, the estimation error of the control derivatives is varied by varying Fi,ctrl over ±25%. For both
control laws, the tracking response of the IBS controller is almost identical to INDI. Hence, in the current
tracking task the stabilizing term GT1 z1 has little effect. The simulation results show that the system is
highly robust to variations in model parameters.

V. Effects of system dynamics increments and total increment delay

We will now show that the assumption on neglecting system dynamics increments is not always valid,
especially for fixed-wing aircraft. Consider again the first-order Taylor-series expansion of the state derivative
around a previous point in time, as presented in Eq. (18):

ẋ2 = ẋ2,0 + F2,0∆x +G2,0∆u +O(∆x2,∆u2) (73)

Neglecting increments caused by system dynamics and assuming a locally linear model, this equation is
simplified to

ẋ2
∼= ẋ2,0 +G2,0∆u (74)

Previous papers on INDI and IBS have not discussed the validity of this assumption in detail, but usually
mentioned the assumption of time-scale separation. It is argued that the control input u can change very
fast and that the incremental time step is very fast, so that it can be assumed that ∆x = 0.21,25,28,34
In the paper by Sieberling et al.,21 the development of states other than the angular rates is not even
considered. Also, most papers refer only to the development of the state, instead of the entire system
dynamics increment F2,0∆x. In this section it will be shown that tracking errors in the angular rates arise
due to these system dynamics increments. The size of those tracking errors is directly related to the so-called
increment delay of the incremental control loop, which is smaller for faster actuator dynamics, for smaller
acceleration measurement delays and for smaller overall controller delays.

Validation of the assumptions can be done by grouping the neglected terms into ∆F and calculating this
term by

∆F = F2,0∆x +O(∆x2,∆u2) = ẋ2 − ẋ2,0 −G2,0∆u (75)
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ṗ
[d
eg
/s

2
]

Increments

0 2 4 6 8 10
-200

-100

0

100

∆
q̇
[d
eg
/s

2
]

∆F

G2,0∆u

∆F (ideal)

G2,0∆u (ideal)

0 2 4 6 8 10

time [s]

-50

0

50

∆
ṙ
[d
eg
/s

2
]

Figure 17. Comparison of incremental terms ∆F and
G2,0∆u from Equation 73 while tracking angular rate
references with the nominal INDI controller (solid)
and the ideal controller (dashed).

0 2 4 6 8 10
-50

0

50

100

∆
ṗ
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Figure 18. Breakdown of incremental term F2,0∆x
from Equation 73 while tracking angular rate refer-
ences with the nominal INDI controller.

For the remainder of this discussion, we will refer to ∆F as the system dynamics increments. Simulations
have been performed to calculate this term. Results are shown in Fig. 17 and Fig. 19. Simulations are
done both for the nominal model and for a system without actuator dynamics and with perfect angular
acceleration feedback. The nominal system includes filters, delays and actuator dynamics that match the
expected specifications of the FASER UAV. The ideal system does not include actuator dynamics and uses
perfect and angular acceleration feedback without delays. In these figures, it can be seen that at almost
any moment the control is applied, the system dynamics increment is not small. The system dynamics
increments do damp out quite quickly in the pitch axis, but in the yaw and roll axes increments achieve a
steady state value and are continuously counteracted by a control increment. The tracking response contains
both transient and steady state tracking errors.

When the aerodynamics are simulated with a simplified linear polynomial model, the higher order terms
in Eq. (73) can be neglected and the calculation of ∆F = F2,0∆x becomes straightforward. From Eqs. (16)
and (17) it follows that

F2,0∆x = q̄S
[
b
c̄
b

]



Clβ
2V
b Clp

Cmα
2V
c Cmq

Cnβ
2V
b Cnr







∆α

∆β

∆p

∆q

∆r



. (76)

The effect of the cross-product of the angular rates generally is small and can be neglected. A breakdown
of the different system dynamics increments is plotted in Fig. 18. From this the following can be concluded:
during the tracking of step responses, the transient system dynamics increments are dominated by terms
related to the angular rates, which are damping terms, whereas steady state increments are dominated by
the aerodynamic angles; in the longitudinal dynamics, the angle of attack has only little effect on the system
dynamics increment and the sideslip has no effect at all. However, in the lateral dynamics, the increment
related to the sideslip angle is non-negligible. Hence, the aerodynamic damping and stability coefficients in
Eq. (76) influence the size of the system dynamics increments.

Simulations are performed in which the specific stability derivatives Cmα , Cnβ , Clβ and dynamic damping
coefficients Cnp , Cmq , Clr are reduced. The tracking results are plotted in Figure 20. It can be seen that the
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Figure 20. INDI angular rate response with reduced
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Clr .
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Figure 21. RMS angular rate tracking error versus increment delay, for discrete controller delays of n = 1, 2, 3, 4
(at 50 Hz), actuator bandwidths from 2.5− 20 Hz and washout filter bandwidths of 6.125− 50 rad/s.

tracking errors are reduced when the aerodynamic coefficients are reduced.
Fig. 19 already indicates that the effect of system dynamics increments is also related to the bandwidth

of the actuators and the delay of the filter to obtain angular accelerations from the angular rates. We will
show that this is related to the total estimated delay in the incremental control loop. Consider the estimated
increment delay ∆t as an estimate of the time interval over which the Taylor series expansion of Eq. (73) is
performed. In reality, t0 is not related to a definite moment in time because ẋ2,0 and u0 are filtered states.
The estimated increment delay is defined as

∆t = nTs + τact +
1

ωf,n
(77)

Hence, the delay of the actuator and the filter are defined to be the modeled time constants. Simulations
are performed in which the discrete delay n, the actuator bandwidth and the washout filter bandwidth ωf,n
are varied. The RMS tracking error is plotted against the increment delay ∆t in Fig. 21. The result clearly
presents the relationship between the tracking error and the increment delay and shows the relevance to
consider a total increment delay ∆t to compare effects of varied filter bandwidths, actuator bandwidths and
discrete controller delays.

Concluding, Fig. 17 and Fig. 18 show that the assumption of neglecting the system dynamics increments
is not valid in general and causes steady state tracking errors in the angular rates. Furthermore, Fig. 21
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Table 7. List of sequentially executed experiments

# Controller configuration Tracking tasks

INDI Euler attitude control experiments
1A Pitch control only, manual roll/yaw and velocity control. con-

servative parameters
Stabilization
Pitch angle doublets (±10 deg)

1B Add auto-throttle control
1C Add roll/yaw control (fully automatic control) Stabilization

Roll angle doublets (±20,±30 deg)
2 Fully automatic control, nominal gains Stabilization

Pitch angle doublets (±10,±15 deg)
Roll angle doublets (±20,±45 deg)

3 Augmented manual control Pilot commands
IBS aerodynamic attitude control experiments
4 Pitch and velocity control only, manual roll/yaw control. con-

servative parameters
Stabilization
α doublets (±± 1,±2 deg)

5 Fully automatic control, nominal gains Stabilization
α doublets (±1,±2 deg)

6 Add roll/yaw control (fully automatic control) Stabilization
Roll angle doublets (±15 deg)

shows that a reduction of the increment delay caused by the discrete control delay, filters and actuator
dynamics reduces the effect of the system dynamics increments. By compensating for the system dynamics
increments in the control law, the tracking errors could potentially be eliminated. However, compensating
for system dynamics increments requires knowledge of extra model parameters.

VI. Experiment set-up

Figure 22. The FASER aircraft
during one of the experiments.
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Figure 23. Trajectory of flight
during the first two runs of ex-
periment 1A.

After the validation of the model and analysis of the controller robust-
ness in simulation, real flight tests were executed to validate the imple-
mentation of the controllers. Experiments were executed as follows. Each
flight is controlled by an experienced safety pilot that manually gives di-
rect inputs to the control surfaces of the aircraft. During manual flight,
speed is only roughly controlled by the throttle level. When the the air-
craft is in a trimmed horizontal flight condition, the safety pilot switches
from ‘manual’ to ‘automatic’ flight mode to iniate an experiment run. In
automatic mode, the flight computer can take over complete control au-
thority of all control surfaces. One flight can contain about 12 experiment
runs, each of about 12 seconds. Each experiment consists of a controlled
maneuver, in which the attitude commands are pre-programmed doublet
signals.

The different experiments that have been executed are listed in Tab. 7.
Each experiment defines a different controller configuration. Within each
experiment, different tracking tasks are executed. The first runs of each
experiment consist of a simple stabilization task in which the initial atti-
tude needs to be held. When stable responses are observed, doublet sig-
nals with increasing magnitude are commanded in the subsequent tasks
of most experiments. During the last flight of the Euler attitude control
experiments, the control law is used as an augmented control law in which
the pilot gives commands for the roll and pitch angle that are tracked by
the control system.

The experiments are executed in the order as listed so that the total
controller design is verified with each step of increasing complexity and
intensity. No on-line controller tuning was performed. Instead, control
laws are first tested with a set of conservative parameters. The conserva-
tive parameters are set by multiplying the control effectiveness parameters
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G2,0 with a factor 2. The experiments are all done for multiple runs, at flight speeds between 20 and 35m/s
and between 100 and 200m above ground. On total, a number of 68 successfully controlled runs are flown.
As an example, Fig. 23 shows the horizontal flight trajectory of the flight in which experiments 1A and 1B
were executed.

With the listed experiments, we aim to validate the simulation results of the presented control laws. A
trade-off was made to gain the highest value from the experiments. Due to time and resources constraints,
the following experiments therefore have not been executed:

• Actuator failures
• IBS Euler attitude control
• INDI aerodynamic attitude control
• Lateral IBS aerodynamic attitude control with nominal gains

An on-board camera was mounted on the vertical tail to capture all experiments. Videos are uploaded and
publicly availablea. Fig. 22 shows a movie frame as an example.

Finally, the following two notes concerning the experiment execution of the experiments with the IBS
aerodynamic attitude flight controller must be made:

1. The complementary filter for αf and βf as described in section 3 was finally not used during the
executed experiments due to practical implementation issues that were not yet solved when executing
the flight tests. Instead the unfiltered estimate, α̂a was used as feedback.

2. The lateral mode of the IBS aerodynamic attitude controller was only tested with conservative parame-
ters and without derivative gains C1,d in the roll angle feedback. Furthermore, in the IBS aerodynamic
attitude controller experiments, a simplified sideslip control was used. The sideslip control was a sim-
ple proportional control added to the yaw rate command, with a feedback from the measured lateral
acceleration. Therefore, the value of the flight results of the lateral mode is limited.

VII. Results

A. INDI Euler attitude control flight results

During the execution of experiments 1-3 (see Tab. 7), a total of 44 successful runs lasting about 10 seconds
each have been flown with the presented INDI Euler attitude controller. In Figs. 24 and 25, flight data of the
pitch angle tracking responses are shown. Roll angle tracking results are shown in Figs. 26 and 27. A manually
controlled flight with augmented INDI controller was performed and lasted on total 241 seconds. Results
of a typical part of the flight are shown in Fig. 28. All runs resulted in the stable and accurate responses
with a low tracking error, matching our expectations from simulation results. Both the experiments with
nominal parameters and the experiments with conservative parameters are very consistent and correspond
with the physics of the system. The tracking response during the manually augmented controlled flight is
very similar to the response of the other experiments.

Both for the longitudinal and lateral experiments, simulations with matched initial conditions were per-
formed. These simulation results are plotted in the same figures. The initial condition of the experiment was
considered to be a trim condition with some small offset. Therefore, the simulation starts from a trimmed
condition at the same altitude and airspeed and attitude. In some cases, an initial trim offset needed to
be matched experimentally. All observed controller responses could be replicated in simulation and show a
very similar tracking response and control behavior. We see that the simulation response matches well with
the response measured in-flight. The elevator input is slightly less damped in simulation. This indicates an
underestimation of the pitch damping in the model. Looking at the aileron input for the lateral experiments,
this difference is not visible. However, by looking at the angular rate response, these experiments show
relatively more disturbance effects. Disturbances from turbulence are not simulated here.

RMS of the tracking errors are shown in Fig. 32. The experiments with nominal parameters show a low
overall RMS error, following the same trends as observed in simulation. In flight, the RMS error is slightly
larger for all experiments. In the time responses, this is visible as a slight delayed tracking response. Because
the control surface commands show the same small delay, this is likely due to a different controller delay.

aA selection of the experiment runs can be viewed at https://youtu.be/PRnHx8323Ts.
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Figure 24. INDI longitudinal tracking response for
pitch angle commands of 10 deg (experiment 1B, 2),
showing pitch angle, pitch rate and elevator deflec-
tion. Pitch angles and elevator deflections are devia-
tions from the initial state.
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Overall, the results clearly show that the flight control laws function well over a variety of airspeeds
(V > 20 m/s). Figure 24 shows that at lower speeds the elevator inputs contain more oscillations due to
a decreased elevator effectiveness. Due to the variety of airspeeds that are tested and the two different
parameter settings (nominal and conservative) that are chosen, the results demonstrate that the controller
is able to impose specified reference with desired error dynamics.

B. IBS aerodynamic attitude control flight results

For experiments 4 and 5 (see Tab. 7), on total 22 runs each of about 10 seconds were executed. Results of
the longitudinal tracking of the IBS aerodynamic attitude controller are shown in Figs. 30 and 31. Results of
the lateral IBS aerodynamic attitude control with conservative parameters and simplified sideslip controller
are shown in Fig. 29. RMS tracking errors can be found in Fig. 32.

A clear tracking of the reference αref is visible. The results show that the controller functions well
between airspeeds of 25 and 35 m/s. Furthermore, the observed response in-flight matches with the simulation
results. The difference in RMS error between simulation and flight can be partly attributed to the additional
turbulence measured in flight which was not included in simulation. Since a direct estimate of the angle of
attack α was used as feedback, the signal included the turbulence. As can be seen in the results, especially
when tracking doublets with a magnitude of 1 deg, the variance of the turbulence is quite big compared to
the reference signal. Nevertheless, the observed effect of the turbulence propagating in the elevator deflection
is small, the response is stable and damped and tracking is fast.

An issue with using the unfiltered estimate of α is that upon initiation of the controller, the angle of
attack reference αref is set to its actual estimate which includes the measured turbulence. This results in
tracking a non-zero vertical load as reference offset and causes the aircraft to follow this reference, thereby
initially pitching either up or down. This effect can be seen in the pitch angle response in Figs. 30 and 31.
During certain runs, not shown in the figures, the offset was large enough to let the aircraft climb up to pitch
angles of about 70 degrees. Airspeeds dropped to about 10m/s. This resulted in heavy elevator oscillations
at its minimum speed, which stabilized and damped out again when the airspeed was above about 15m/s.

Looking at the roll angle response in Fig. 29, a clear tracking is observed. Since conservative parameters
are used for this mode and since the damping parameter C1,d was set to zero, the response is slow and
contains overshoot. Simulation results match closely with the observed response. The yaw rate response and
the rudder input (not shown here) contained oscillations that were only marginally damped.

Overall, the responses show that the IBS aerodynamic attitude controller follows the imposed dynamics
and performs as expected. Especially the longitudinal mode is showing that the controller can be used for
stable, accurate tracking of an imposed reference signal by cancelling all system dynamics while requiring
only little knowledge of model parameters.
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Figure 32. RMS tracking error results over all runs of the separate experiments with the INDI Euler attitude
controller and IBS aerodynamic attitude controller.

VIII. Conclusion

The paper presents the design and implementation of incremental nonlinear control laws on a fixed-
wing aircraft. Qualitative flight tests are performed to validate simulation results presented in this paper
and shown in previous studies on incremental nonlinear flight control methods. In particular, a successful
application of INDI and command-filtered IBS methods on a fixed-wing aircraft are shown, which was not
done before in practice. We presented a complete design for the attitude control of fixed-wing aircraft which
can be used for multiple purposes. By implementing control laws either for controlling pitch angle or angle of
attack, we showed the applicability of these results for manual augmented attitude control, outer loop flight
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path control or vertical load control. The UAV that is considered contains basic, relatively cheap and widely
available avionics components and actuators. Simulations show that robustness to system aerodynamic
changes can be greatly increased if faster actuators are used and if a better acceleration measurement with
a smaller delay is available.

Through repeated experiments, flight data results of the INDI and IBS attitude controllers show that
accurate tracking is achieved and system dynamics are canceled well without requiring much knowledge of
model parameters. Simulation results with identical controller configurations match closely with the observed
response. Hence, the results in this paper validate the applicability of the control methods under the presence
of parameter uncertainties, delayed measurements and turbulence disturbances.

Furthermore, we presented an analysis on the validity of neglecting the control-independent system dy-
namics related to the incremental control laws, which was also not done before. System dynamics increments
create tracking errors related to the aerodynamic damping and stability properties of the aircraft. The size
of the tracking errors is related to the total increment delay.

Control laws proposed in this paper require little knowledge about the system dynamics, yet they result
in an input-to-output linearized (INDI) and exponentially stable system (IBS) by being more dependent on
sensor measurements. Advantages compared to classical methods are that they are easy to tune and propose
one control design that is valid over the entire flight envelope. These properties together make it very easy
to implement high-performance, robust fault-tolerant flight control systems.
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Chapter 2

Backstepping and Nonlinear
Dynamic Inversion Control Theory

In this chapter, the basic tools that are used to build up the control laws of this research will
be presented. These tools inlcude backstepping control, nonlinear dynamic inversion control,
command filters, parameter adaptation methods and incremental control methods. In the
following sections these methods will be briefly explained, using examples to support the
explanation.

The purpose of this chapter is to give an overview of the methods used. For a more de-
tailed, theoretical reference, the reader is adviced to conduct the references mentioned in this
chapter. For a good understanding of (adaptive) nonlinear control methods such as Feedback
Linearization and Backstepping, the books written by Khalil (1996); Krstić (1995); Slotine
(1991) are good references.

2-1 Lyapunov-based backstepping control

To derive stable control laws by means of the backstepping control laws, control Lyapunov
functions (CLFs) need to be set op. Lyapunov functions are used in nonlinear systems to
assess the stability or convergence to a set. The theorem of Lasalle and Yoshizawa is used for
this and is stated below. The formulation of the theorem is adopted from Krstić (1995) and
Klamer (2007). The theorem is stated as follows:

Let x = 0 be the equilibrium point of the time-varying system ẋ = f(x, t) and suppose f is
locally Lipschitz and x uniformly in t. Let V : Rn → R+ be a continuously differentiable,
positive definite and radially unbounded function V (x) such that

V̇ =
∂V

∂x
f(x, t) ≤ −W (x) ≤ 0, ∀t ≥ 0, ∀x ∈ Rn (2-1)
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44 Backstepping and Nonlinear Dynamic Inversion Control Theory

Where W is a continuous function. Then, all soluations ẋ = f(x, t) are globally uni-
formly bounded and satisfy

lim
x→0

W (x(t)) = 0 (2-2)

In addition, if W (x) is positive definite, then the equilibrium x = 0 is globally uniformly
asymptotically stable.

In normal words, the theorem says that a system can be proven to be globally uniformly
asymptotically stable, if a scalar function V (x) can be found that greater than zero for ev-
ery non-zero state x and approaches infinity if x approaches infinity. Furthermore, its time
derivative must be negative definite. As an analogy one can look at the Lyapunov function as
a description of the energy of the error to be controlled. As long as the energy decreases at
any possible state, the system will return to its equilibrium point.

A backstepping control law can be defined for systems in strict-feedback form using control
Lyapunov functions (CLFs). control Lyapunov functions (CLFs) are candidates for Lyapunov
functions and control laws must be designed such that the CLF satisfies the constraints of a
Lyapunov function. Consider a system in strict-feedback form, which was already presented
in a slightly different form in Equation 1-1:

ẋ1 = f1(x1) + g1(x1)x2

...
ẋi = fi(x̄i) + gi(x̄i)xi+1 for i = 1, . . . , k − 1

...
ẋk−1 = fk−1(x̄k−1) + gk−1(x̄k−1)xk

ẋk = fk(x̄k) + gk(x̄k)u

(2-3)

Where the bar symbol in x̄j denotes collection of states x1, . . . , xj . The property of a system
in strict-feedback form is that the state derivatives ẋi only depend on states that are sepa-
rated by more integrators from the output signal x1 to be tracked. So ẋi only depends on
xi, xi+1, xi+2, . . .. The control task for this system is to track a reference yr by the output x.

2-1-1 Backstepping design for scalar systems without uncertainties

The backstepping design procedure starts by considering the subsystem that is closest to the
output, and defining the tracking error dynamics:

z1 = x1 − yr
ż1 = f1(x1) + g1(x1)x2 − ẏr (2-4)

Subsystem 1

Stable tracking is achieved when the tracking error z1 converges to zero. Therefore, we define
the first control Lyapunov function as:

V1 =
1

2
z2

1 (2-5)
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2-1 Lyapunov-based backstepping control 45

of which its derivative must be rendered negative definite for asymptotic stability:

V̇1 = z1

(
f1(x1) + g1(x1)x2 − ẏr

)
(2-6)

A stabilizing function α1 can be designed for x2:

α1 = g−1
1

(
− C1z1 − f1(x1) + ẏr

)
(2-7)

When x2 perfectly tracks the stabilizing function α1, V̇1 is rendered negative definite:

V̇1 = −C1z
2
1 if x2 = α1 (2-8)

Because x2 is a state and not an input, we must define a second tracking error:

z2 = x2 − α1 (2-9)

And the initial derivative of the CLF, V̇1 then equals:

V̇1 = z1

(
f1(x1) + g1(x1)(z2 + α1)− ẏr

)

V̇1 = −c1z
2
1 + z1g1(x1)z2

(2-10)

With c1 > 0. The remaining destabilizing term z1g1(x1)z2 must be cancelled in the subsequent
step.

Subsystem i

For all subsequent subsystems i = 2, . . . , k−1, the procedure in each step is as follows. Define
the tracking error dynamics in subsystem i:

zi = xi − αi−1

żi = fi(x̄i) + gi(x̄i)(zi+1 + αi)− α̇i−1
(2-11)

Augment the previous CLF:

Vi = Vi−1 +
1

2
z2
i (2-12)

Then, the derivative must be rendered negative definite:

V̇i= V̇i−1 + zi
(
fi + gi(zi+1 + αi)− α̇i−1

)

= −
i−1∑

j=1

Cjz
2
j + zi−1gi−1zi + zi

(
fi(x̄i) + gi(zi+1 + αi)− α̇i−1

) (2-13)

The stabilizing function αi is defined as:

αi = g−1
i

(
− Cizi − fi + α̇i−1 − zi−1gi−1

)
(2-14)

With ci > 0. This yields:

V̇i = −
i∑

j=1

cjz
2
j + zigizi+1 (2-15)
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Subsystem k

In the last design step, the control law for the input is finally derived. The error dynamics
are:

zk = xk − αk−1

żk = fk(x̄k) + gk(x̄k)u− α̇k−1
(2-16)

The CLF is augmented:

Vk = Vk−1 +
1

2
z2
k (2-17)

And its derivative is:

V̇k = −
k−1∑

j=1

cjz
2
j + zk

(
fk + gku− α̇k−1

)
(2-18)

A control law which renders V̇k negative definite is:

u = g−1
k

(
− ckzk − fk + α̇k−1 − zk−1gk−1

)
(2-19)

With ck > 0. The final derivative CLF equals:

V̇ = V̇k = −
k∑

j=1

cjz
2
j (2-20)

In each design step of the backstepping procedure that is shown, all system dynamics fi are
cancelled out. This is often not a necessary condition to proof stability. Damping terms which
have a stabilizing effect do not have to be cancelled. This can prevent the necessity of large
control inputs.

Backstepping control in vector form

The backstepping control law can be extended easily to dynamical systems described in vector
form. The Lyapunov functions must still be scalar and derive to:

Vi = Vi−1 +
1

2
zTi zi (2-21)

Intermediate stabilizing functions derive to:

αi = G−1
i

(
− Cizi − f i + α̇i−1 −GTi−1zi−1

)
(2-22)

Here, Gi is the control effectiveness matrix, analogous to its scalar version gi. It must be full
rank so that its inverse exists and controllability is provided. The control gain matrices Ci
are positive diagonal matrices.
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2-1-2 Example: backstepping control and nonlinear dynamic inversion

To show how both a backstepping and a NDI control law are defined for a simple problem, an
example control task is presented in this section. Consider the a system described by:

ẋ1 = −x3
1 + a sinx1 + x2

ẋ2 = bu
(2-23)

And suppose x1 = y is the output which should track the reference yr. Nonlinear dynamic
inversion can be applied to track yr, by means of feedback linearisation. In this process, the
output signal y is differentiated analytically until the control input u is appears explicitly.
The number of differentiations that are necessary equals the relative degree r of the system.
In this case this yields:

y = x1

ẏ = −x3
1 + a sinx1 + x2

ÿ = (−3x2
1 + a cosx1)ẋ1 + ẋ2

= (−3x2
1 + a cosx1)(−x3

1 + x2) + bu

(2-24)

The control input can be defined in terms of a virtual control v:

u =
1

b

(
v − (−3x2

1 + a cosx1)(−x3
1 + x2)

)
(2-25)

so that:
ÿ = v (2-26)

And the result it a linear system of states y, ẏ with a virtual control v, for which a stabilizing
control law can be defined. When the error is defined as z1 = x1 − yr, the error dynamics
must be stabilized to a form like:

z1 + k1ż1 + k2z̈1 = 0 (2-27)

with z̈ = v − ÿr, this yields a stabilizing virtual control:

v = ÿr −
k1

k2
ż1 −

1

k2
z1 (2-28)

which can be redefined as:
v = ÿr − d1ż1 − d2z1 (2-29)

and can be substituted in (2-25) to yield the complete control law:

undi =
1

b

(
− d1ż1 − d2z1 + (3x2

1 − a cosx1)ẋ1 + ÿr
)

(2-30)

To derive the control law with a backstepping procedure, the derivative of the first CLF derives
to:

V̇1 = z1(−x3
1 + a sinx1 + z2 + α1 − ẏr) (2-31)
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with:
α1 = −c1z1 + x3

1 − a sinx1 + ẏr (2-32)

The derivative of the second CLF derives to:

V̇2 = −c1z
2
1 + z1z2 + z2

(
bu− α̇1

)
(2-33)

which yields:

ubs =
1

b

(
− c2z2 + α̇1 − z1

)

=
1

b

(
− c2z2 − c1ż1 + (3x2

1 − a cosx1)ẋ1 + ÿr − z1

) (2-34)

Note that, because
z2 = x2 − α1

= x2 + c1z1 − x3
1 + a sinx1 − ẏr

= ẏ − ẏr + c1z1

= (1 + c1)z1

(2-35)

it yields that

ubs =
1

b

(
− c2(1 + c1)z1 − c1ż1 + (3x2

1 − a cosx1)ẋ1 + ÿr − z1

)
(2-36)

Comparing undi in (2-30) with ubx above, it can be seen that the two results are very similar.
There are only a two differences: first of all, with backstepping, feedback is performed on
the state errors instead of the output errors. Comparing (2-36) with (2-30), we see that the
control laws are equivalent for d2 = c2(1 + c1) and d1 = c1. Secondly, in the backstepping
control law, the term z1 is added to guarantee stability of the outer loop. Tracking results are
displayed in Figure 2-1.
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Figure 2-1: Tracking results of the example problem. The reference can be tracked perfectly by
both the NDI and the Backstepping (BS) controller.

If the problem is converted to a regulation problem, then the stabilizing term x3
1 does not

need to be cancelled by the backstepping controller. So when yr = 0 so that z1 = x1, the
first stabilizing function can be defined as α1 = −c1z1 + ẏr. The results of all three control
laws (NDI, full backstepping, reduced backstepping) for the regulation problem are given in
Figure 2-2.
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Figure 2-2: Regulation results of the example problem. The reduced backstepping controller
needs considerably smaller inputs than the NDI and full backstepping controller.

2-2 Adaptive backstepping

Adaptive control structures in Backstepping control can be devided into two classes. They are
distinguished by the way in which the parameter estimations or updates are combined with the
controller: this can be of an integrated or modular nature (Krstić et al., 1994). The modular
techniques are of a certainty-equivalence type: the estimated parameters θ̂ are assumed to be
the true parameters and the control law uses them as such. Any parameter estimation method
can be used in a modular adaptive control method. The tuning functions method however
is an integrated, Lyapunov based method: the parameter update laws are integrated in the
Lyapunov function.

The essence of the tuning functions approach lies in the fact that not the true parameters are
not really estimated. The parameter estimates that are used in the control law adapt using
special parameter update laws which are designed such that asymptotic stability of the entire
system is guaranteed. Hence, the parameter errors are incorporated in the control Lyapunov
functions (CLFs) to proof the stability. The basic approach to derive the update laws can be
shown as follows.

Consider integrator step i of a dynamical system in strict-feedback form, like in Equation 2-3:

ẋi = fi(x̄i) + gi(x̄i)xi+1 (2-37)

and express fi and gi as a product of function regressors with parameters, such that the
dynamical equations are linear in the parameters:

ẋi = φTfi(x̄i)θfi + φTgi(x̄i)θgixi+1 (2-38)

Describe the parameter values as the sum of the estimate and the error:

θj = θ̂j + θ̃j (2-39)

and assume constant parameters θj so that ˙̂θj = − ˙̃θj . Then, include the parameter estimation
errors in the CLF:

Vi = Vi−1 +
1

2
z2
i +

1

2
θ̃
T
fiΓ
−1
fi
θ̃fi +

1

2
θ̃
T
giΓ
−1
gi θ̃gi (2-40)
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so that its derivative at step i can be split up into the control error and the estimation error
as follows (compare it with (2-13)):

V̇i = V̇i−1 + zi
(
φTfiθfi + φTgiθgi(zi+1 + αi)− α̇i−1

)
+ . . .

+θ̃
T
fiΓ
−1
fi

˙̃
θfi + . . .

+θ̃
T
giΓ
−1
gi

˙̃
θgi

= V̇i−1 + zi
(
φTfi θ̂fi + φTgi θ̂gi(zi+1 + αi)− α̇i−1

)
+ . . .

+θ̃
T
fiΓ
−1
fi

( ˙̃
θfi + Γfiφfizi

)
+ . . .

+θ̃
T
giΓ
−1
gi

( ˙̃θgi + Γgiφgizixi+1

)

(2-41)

Then, because ˙̂
θj = − ˙̃

θj we can define the dynamic parameter update laws as:
˙̂
θfi = Γfiφfizi

˙̂
θgi = Γgiφgizixi+1

(2-42)

and the virtual control laws of step i equal to those showed already in (2-14), but based on
the parameter estimates:

αi = ĝ−1
i

(
− Cizi − f̂i + α̇i−1 − zi−1ĝi−1

)
(2-43)

Then, the CLF can be rendered negative definite in zi and negative semi-definite in θ̃fi and
θ̃fi , because the derivative V̇i equals:

V̇i = −
i∑

j=1

cjz
2
j + ziĝizi+1 (2-44)

The example from subsection 2-1-2 can be extended with parameter uncertainties for the
parameters a and b, by writing update laws for those parameters:

˙̂a = Γaz1 sinx1

˙̂
b = Γbz2u

(2-45)

Results are shown in Figure 2-3. We can see from the differential equations in Equation 2-23
that uncertainties in parameter estimates for â and b̂ do not directly have a destabilizing effect.
This is because the error terms ã sinx1 and b̃u are not destabilizing terms. However, consider
an extra parameter c that scales the damping in the first integrator:

ẋ1 = −cx3
1 + a sinx1 + x2

ẋ2 = bu
(2-46)

Then, the estimation error dynamics for this parameter are defined by the term c̃x3
1 which

really is destabilizing for a negative error. The parameter update law with the tuning functions
approach that should guarantee stability equals:

˙̂c = −Γcz1x
3
1 (2-47)

Results with estimation errors c̃ are shown in Figure 2-4. The normal, non-adaptive controllers
are unstable and the tuning functions controller still provides stability.
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Figure 2-3: Performance of Backstepping control with tuning functions for parameters a and b.
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Figure 2-4: Performance of Backstepping control with tuning functions for parameter c.
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2-3 Command filtering

Looking at the control laws derived in Equation 2-34, one can see that time derivatives of the
virtual control, α̇1 must be known. It can often become difficult to come up with analytical
expressions for these derivatives, as these virtual controls contain parts of the system dynamics.
Command filtering is a way to circumvent this problematic property of backstepping control.
In command filtered backstepping, the raw intermediate reference signals are passed through a
filter before it is used as the final reference. In this way, the filtered time derivate is retrieved.

Command filters can also be used to impose position, rate limit and bandwidth constraints
on the reference signals at each step. The command filters need to be integrated with a
backstepping control procedure so that global asymptotic stability is still guaranteed. This was
desribed by Dong, Farrell, Polycarpou, Djapic, and Sharma (2012); J. A. Farrell, Polycarpou,
Sharma, and Dong (2008). A modified tracking error is introduced to prove stability and to
implement valid parameter update laws in the presence of command saturation. In this thesis,
command filtering is only used to obtain time derivatives of the intermediate reference signals.
Only a brief overview of the theory is therefore described in this section, by using a command
filters for a second-order system.

Consider a second-order system in strict-feedback form with a relative degree of 2:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(x1, x2) + g2(x1, x2)u
(2-48)

Of which the x1 is the output command variable. Tracking errors are defined as:

z1 = x1 − x1,r

z2 = x2 − x2,r
(2-49)

The references x1,r, x2,r and the output u are the final, filtered and limited references. Raw,
unfiltered commands are denoted as x0

1,r, x
0
2,r and u0. Now define the modified tracking errors

as:
z̄1 = z1 − χ1

z̄2 = z2 − χ2
(2-50)

The variables χ1, χ2 are an estimation of the effect that the command filter limits has on the
tracking error. The dynamics of those variables are defined by stable linear filters:

χ̇1 = −c1χ1 + g1(x1)
(
x1,r − x0

1,r

)
χ̇2 = −c2χ2 + g2(x2)

(
u− u0

)
(2-51)

and control Lyapunov functions (CLFs) are set up for the modified tracking errors. Consider
the first CLF:

V1 =
1

2
z̄2

1 (2-52)

of which the time derivative must be rendered negative definite:

V̇1 = z̄1

{
f1 + g1x2 − ẋ1,r − χ̇1

}

= z̄1

{
f1 + g1x2,r + z2)− ẋ1,r + c1χ1 − g1

(
x2,r − x0

2,r

)}

= z̄1

{
f1 + g1(x2,r + z2)− ẋ1,r + c1χ1 − g1

(
x2,r − x0

2,r

)}

= z̄1

{
f1 + g1z2 − ẋ1,r + c1χ1 + g1x

0
2,r

}
(2-53)
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A possible choice for x0
2,r is:

x0
2,r = g−1

1

(
− c1z1 − f1 + ẋ1,r

)
− χ2 (2-54)

which yields:
V̇1 = z̄1

{
g1z2 + c1χ1 − c1z1 − g1χ2

}

= z̄1

{
g1z̄2 − c1z̄1

}

= −c1z̄
2
1 + z̄1g1z̄2

(2-55)

For the second step, augment the V1 with a term that is radially unbounded in z̄2:

V2 = V1 + z̄2
2 (2-56)

The time derivate should be rendered negative definite:

V̇2 = V̇1 + z̄2

{
f2 + g2u− ẋ2,r − χ̇2

}

= V̇1 + z̄2

{
f2 + g2u− ẋ2,r + c2χ2 − g2(u− u0)

}

= −c1z̄
2
1 + z̄1g1z̄2 + z̄2

{
f2 − ẋ2,r + c2χ2 + g2u

0
}

(2-57)

A possible choice for u0 is:

u = g−1
2

(
− c2z2 +−f2 + ẋ2,r − g1z1

)
(2-58)

which yields:
V̇2 = −c1z̄

2
1 + z̄1g1z̄2 + z̄2

{
c2χ2 − c2z2 − g1z1

}

= −c1z̄
2
1 − c2z̄

2
2

(2-59)

Which proofs global asymptotic stability of the modified tracking errors at the equilibrium
z̄1, z̄2 = 0. According to J. Farrell, Sharma, and Polycarpou (2005), if there are no constraints
of the command filters in effect, χ1, χ2 will approach zero with an exponential decay rate c1

and c2, respectively. This implies therefore that because z̄1, z̄2 are asymptotically stable, also
z1, z2 are stable. During a period where the implemented limits come into effect, it follows
from Equation 2-51 that χ becomes non-zero. But because the input to this stable linear filter
is bounded, also χ is bounded. Because z̄1, z̄2 are asymptotically stable, from Equation 2-50
it follows that also z1, z2 are bounded.

2-4 Incremental nonlinear control

This section covers a brief derivation of the INDI and IBS control laws applied to general
first-order nonlinear system dynamics. It highlights the similarity between the derived NDI
and backstepping control laws when the CLF is chosen to have a simple quadratic form, and
when all system dynamics are canceled in the control law. Furthermore, it will be shown that
the resulting incremental control law is under some conditions similar to classical PI-control.
These similarities are not yet published in literature. In subsection 2-4-3, various similarities
with PID control have been derived for continuous-time implementations. In subsection 2-
4-4, incremental nonlinear control has been compared with incremental PID control. An
equivalence is presented for discrete implementations of the control laws. This has been

Incremental Nonlinear Flight Control for Fixed-Wing Aircraft Wim van Ekeren



54 Backstepping and Nonlinear Dynamic Inversion Control Theory

performed both for INDI, as well for a second-order feedback linearizable system. Therefore,
the latter section presents a more general approach.

The idea that this incremental control method can be compared with classical PI(D)-control is
not entirely new; in a paper by Chang and Jung (2009), a similarity is shown in order to tune
the gains of a PI(D)-controller in a systematic way. This was done by comparing incremental
PID with time-delayed nonlinear dynamic inversion control, a control strategy very similar to
INDI. The result in subsection 2-4-4 in this report is contained in greater detail in a submitted
paper that is currently under review(Acquatella B., van Ekeren, & Chu, 2017). The author of
this report is also one of the contributors to this paper. The paper is included at the end of
this report as an appendix.

2-4-1 Incremental nonlinear dynamic inversion

INDI applies to any system on which normal dynamic inversion can be applied, but can also
be applied to systems that are non-affine in control. Because the derivation is based on a
first-order taylor series expansion about a previous point in the recent past, the system is
assumed to be locally linear, hence the control needs to be locally affine-in-control. For a
meaningfull result, it must furthermore be assumed that the variation of the system dynamics
contained in f(x) do not vary significantly over the time increment considered. Let us first
derive the simplified, incremental dynamics.

ẋ = f(x) + g(x, u)

y = h(x)
(2-60)

Taking the first taylor series expansion of ẋ at t0 yields:

ẋ = ẋ0 +

(
∂f(x)

∂x
+
∂g(x, u)

∂x

)

︸ ︷︷ ︸
A0

∣∣∣∣
x0

(x− x0) +
∂g(x, u)

∂u︸ ︷︷ ︸
B0

∣∣∣∣
x0,u0

(u− u0) +O(∆x2,∆u2)︸ ︷︷ ︸
ε

(2-61)

in which we defined ∆x = x− x0 and ∆u = u− u0. The equation can be written in short as:

ẋ = ẋ0 +A0∆x+B0∆u+ ε (2-62)

For locally linear systems, the higher order terms gathered in ε may be neglected. The
derivation of a general INDI control law is shown for a first-order system with a relative degree
of one and without hidden dynamics, but can be applied to any system in lower-triangular
form. As long as the system behaves linear between two samples, the overall system does not
even need to be affine in control, contrary to usal NDI. We start by taking the first derivative
of the output y and substituting (2-61). For the sake of simplicity in this example, consider
the output to equal the state, y = x.

ẏ =
∂h(x)

∂x
ẋ

= f(x) + g(x, u)

= ẋ0 +A0∆x+B0∆u

(2-63)
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By setting
∆u = B−1

0 (−ẋ0 −A0∆x+ ν) (2-64)

A linear input-to-ouput map is described between y and the virtual input ν:

y = h(x)

ẏ = ν
(2-65)

When defining the tracking error as:

e = yr − y
ė = ẏr − ẏ (2-66)

we are able to select the virtual control as:

ν = Kpe+ ẏr (2-67)

Such that the error dynamics yield by substitution of (2-65) in (2-66):

ė = ẏr − ν
= ẏr −Kpe− ẏr
= −Kpe

(2-68)

Then, we can design a value for Kp to achieve the desired error dynamics. The final control
law for ∆u is:

∆u = B−1
0 (−ẋ0 −A0∆x+ ν)

= B−1
0 (−ẋ0 −A0∆x+Kpe+ ẏr)

(2-69)

In (2-69), the terms Kpe + ẏr represent the desired acceleration (or desired time derivative),
ẏdes. The other terms, ẋ0 + A0∆x is the compensation to the actual acceleration at the
current state and input, ẏcur. The factor A0 still contains model parameters from the system
dynamics. When the sampling time is high, the increment A0∆x could be neglected, to release
this model-dependency. The assumption implies that the system dynamics are slow such that
it all system dynamics increments are measured using the feedback of the state derivative ẋ0.
With this assumption the incremental control law yields:

∆u = B−1
0 (−ẋ0 +Kpe+ ẏr) (2-70)

The final total control command at the current time step then equals the previous control
input plus the control increment:

u = u0 + ∆u (2-71)

If actuator dynamics are present between the commanded input uc and the actual input uf , the
actual actuator position u0 can be used as feedback, as illustrated in Figure 2-6. This method
is used for example by Smeur (2016); Van Gils (2015); Vlaar (2014). It justifies Equation 2-61
better, because in this equation u0 refers to the physical input at a previous point in time.
The advantage of applying the incremental control method presented in this section is that the
control is less dependent on system dynamics at the cost of a higher dependency on sensors,
as the state derivative ẋ0 needs to be known. Furthermore, actuator positions have to be fed
back.
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Figure 2-5: Implementation of incremental control law under the presence of actuator dynamics:
the control increment is added to the previous final actuator position.

Figure 2-6: Schematic of the general incremental control law as derived in this section.

2-4-2 Incremental backstepping

Backstepping control laws can be extended with incremental forms at any integration step of
the backstepping controller design process described in subsection 2-1-1.

Comparing (2-60) and (2-62), it can be seen that the nonlinear, non-affine in control system
has been converted to a locally linear, affine in control system. The input is now described by
means of its increment ∆u. Describe a CLF by

V =
1

2
z2 (2-72)

with z = y − yr is the error between the state and the reference signal. Note that e = −z.
Both notations are used to be consistent with literature both for feedback linearization as
backstepping control. The derivative must be renedered negative definite which yields the
following control law:

V̇ = z
(
ẋ− ẏr

)

= z
(
ẋ0 +A0∆x+B0∆u− ẏr

) (2-73)

∆u = B0
−1
(
− cz − ẋ0 −A0∆x+ ẏr

)
(2-74)

With c > 0. Again, if we assume system dynamics increments A0∆x are small, this yields:

∆u = B0
−1
(
− cz − ẋ0 + ẏr

)
(2-75)

Comparing with (2-70), it can be seen that the resulting control laws are equivalent, with
Kp = c. A diagram of this general incremental control law is depicted in Figure 2-6.
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2-4-3 Similarities with classical Proportional-Integral control

It can be shown that the INDI and IBS control law for systems with a relative degree of 1
show a large similarity with well-known classical proportional-integral (PI) control. First, we
consider system dynamics without actuator dynamics. Next, they will be included.

Without actuator dynamics

Consider the incremental control law (2-71) in discrete time with a total increment delay that
equals its sample time Ts:

uk+1 = uk + ∆uk (2-76)

When considering low sampling times, this control law is comparable with a continuous inte-
grator:

u(t) =

∫ t

0

∆u

Ts
dτ (2-77)

Substituting for the incremental control and taking terms outside the integrator term yields:

u(t) =

∫ t

0

B−1
0 (x)

Ts

(
− cz(τ)− ẋ(τ − Ts) + ẏr(τ)

)
dτ

=
B−1

0 (x)

Ts

(
−c
∫ t

0
z(τ)dτ − x(t− Ts) + yr(t)

)

=
B−1

0 (x)

Ts

(
−c
∫ t

0
z(τ)dτ − z(t)

)
(2-78)

when assuming that the state x changes slow enough compared to the sample time so that
the tracking error z(t) ≈ x(t − Ts) − yr(t). Now we can see the similarity with a classical
PI-controller. Equation 2-78 can written as:

u(t) = −Kpz(t)−Ki

∫ t

0
z(t)dt (2-79)

with:

• Kp = 1
Ts
B−1

0 (x), acting as proportional gain

• Ki = c 1
Ts
B−1

0 (x) = cKp, acting as integral gain

The control scheme of such a controller is presented in Figure 2-7. This is quite a remarkable
result: the derivation shows how a non-linear controller which is capable of (in theory) a
perfect tracking of the reference signal by an inversion of the system dynamics, is under
certain conditions equivalent to a linear PI-controller (although parameter-varying by B0(x)).
The conditions under which this can be compared are:

• Absence of feedback delays: Looking at Figure 2-6, there is no additional delay in the
feedback of the angular accelerations. Hence, the moment t0 in Equation 2-61 refers
to one sample back in time. However, the incremental controllers applied so far in
literature all use filtered estimates of the angular accelerations which causes some delay.
See (Sieberling et al., 2010; Smeur, 2016; Van Gils, 2015).
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Figure 2-7: Control diagram in continuous time for the derived PI-controller from an INDI
controller with low sampling times and without delays.

• High sample rates: The sample rate must be high enough to make the assumption that
uk+1 = uk+∆uk resembles a pure integrator which yields the continuous time integrator
in Equation 2-77. In this way, the feedback of angular accelerations results in a feedback
of normal angular rates after this integration.

With actuator dynamics

Now, let us consider first-order actuator dynamics with a time constant τa in the system and
feedback the actuator position to the incremental controller, as shown in Figure 2-5. From
the actuator dynamics we derive:

u̇f = − 1

τa
uf +

1

τa
uc

= − 1

τa
uf +

1

τa
(uf + ∆u)

=
1

τa
∆u

(2-80)

when the actuator limits are not reached, so that:

uf =
1

τa

∫ t

0
∆udτ (2-81)

Comparing this with (2-77), we see that by substitution, the result for the final actuator
position is similar:

uf (t) =

∫ t

0

B−1
0 (x)

τa

(
− cz(τ)− ẋ(τ − Ts) + ẏr(τ)

)
dτ

=
B−1

0 (x)

τa

(
−c
∫ t

0
z(τ)dτ − x(t− Ts) + yr(t)

)

=
B−1

0 (x)

τa

(
−c
∫ t

0
z(τ)dτ − z(t)

)
(2-82)

again, under the consideration of a high sample rate and without feedback delays included.
This can be compared with a PI-control with the following gains:
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• Kp = 1
τa
B−1

0 (x), acting as proportional gain

• Ki = c 1
τa
B−1

0 (x), acting as integral gain

This is the result when considering the final actuator position uf as comparison. The resulting
PI-controller is in this case not an actual controller that can be directly implemented as such.
This is because does not specify the commanded control uc, but the final actuator position uf .
This result is hence more useful as a reference for the incremental control. From the result in
(2-82) and (2-79), some important observations can be made:

• The inversed control effectiveness B−1
0 scales the proportional gain in the controller.

Hence, more agressive control is reached by an under-estimation of B0, while, over-
estimation, yields a safer and lower response.

• The time constant Ts or actuator time constant taua also has a proportional effect on
the proportional gain. Hence, faster control is reached by lowering the sampling time.

• The parameter c, which is the linear control parameter to reduce the tracking error, acts
as an integral gain. Hence, removing c will result in steady state errors.

When considering the commanded control uc instead of the actuator position uf , a different
result is obtained:

uc = uf + ∆u

=
1

τa

∫ t

0
∆udτ + ∆u

(2-83)

This is not a pure integrator; the control also contains a direct feed-through of ∆u. Writing
out the control law gives:

uc(t) =

∫ t

0

B−1
0 (x)

τa

(
− cz(τ)− ẋ(τ − τa) + ẏr(τ)

)
dτ + . . .

. . .+B−1
0 (x)

(
− cz(t)− ẋ(t− Ts) + ẏr(t)

)

=
B−1

0 (x)

τa

(
−c
∫ t

0
z(τ)dτ − z(t)

)
+B−1

0 (x)
(
− cz(t)− ż

)

= B−1
0 (x)

(
− c

τa

∫ t

0
z(τ)dτ −

(
1

τa
+ c

)
z(t)− ż

)

(2-84)

which compares with a PID-controller for which:

• Kp = −B−1
0 (x)

(
1
τa

+ c
)
is the proportional gain

• Ki = −B−1
0 (x) c

τa
is the integral gain

• Kd = −B−1
0 (x) is the derivative gain
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Note that this result is only valid for first-order actuator dynamics of which the model is
accurately known, so that it can be integrated in the gains of the PID controller.

An important difference between the PI-control and the incremental control technique is that
the latter leaves the possibility to feedback actual actuator positions, and hence integrate
actuator constraints and dynamics into the controller. Furthermore, in practical implementa-
tions, usually some non-negligible delay will be present. The incremental control techniques
provide a systematic way to compensate for this delay, because it is based on a taylor series
expansion about a previous point in time. In any case, however, the results obtained in this
section, especially those in Equation 2-78 and Equation 2-82, are usefull as a comparison.

In section 4-4, simulations are presented to show the similarity between both controllers.

2-4-4 Equivalence of incremental feedback linearization with incremental
proportional-integral-derivative control

In this section, a comparison with the gains of a PID control law is presented that is based on
Acquatella B. et al. (2017). A discrete formulation of both a feedback linearization control law
and an incremental PID control law is used to compare the terms and show the equivalence
between both.

Consider a tracking problem with a reference yr of which ẏr and ÿr are defined available and
consider a tracking error e = yr − y. Furthermore, consider the system to be controlled to be
a general, affine-in-control, lower-triangular second order system with a relative degree r of 2:

y = h(z1, z2)

ż1 = φ1(z1) + γ1(z1)z2

ż2 = φ2(z1, z2) + γ2(z2)u

(2-85)

On which a state transformation can be made to yield a triangular second-order system (Chu,
2014; Slotine, 1991):

y = x1

ẋ1 = x2

ẋ2 = f(x1, x2) + g(x1, x2)u

(2-86)

The system dynamics can be inverted and the output can be linearized with respect to a
virtual control ν:

u = g−1(ν − f) (2-87)

The virtual control can be defined such that the error dynamics are exponentially stable:

ν = Pfle(t) +Dflė(t) + ÿr (2-88)

where Pfl are Dfl are constants. To apply feedback linearization in incremental form, take a
first order taylor series expansion of ÿ = ẋ2 around a previous point t0 in time:

ÿ = ÿ0 +
∂

∂x̄

(
f(x1, x2) + g(x1, x2)u

)∣∣∣∣
x̄=x̄0

(x̄− x̄0) +
∂

∂u
g(x1, x2)

∣∣∣∣
x̄=x̄0

(u− u0) (2-89)
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with x̄ = [x1, x2]T . If then, it can be assumed that f and g do not change significantly over
t− t0, so that:

ε1(t) = f
(
x1(t), x2(t)

)
− f

(
x1(t0), x2(t0)

) ∼= 0

ε2(t) = g
(
x1(t), x2(t)

)
− g
(
x1(t0), x2(t0)

) ∼= 0
(2-90)

Then it can be assumed that:
ÿ ∼= ÿ0 +G0∆u (2-91)

with:

G0 =
∂

∂u
g(x1, x2)

∣∣∣∣
x̄=x̄0

∆u = u− u0

(2-92)

and feedback linearization can be applied similar to the non-incremental case in (2-87):

∆u = G−1
0

(
ν − ÿ0

)
(2-93)

with:
ν = Pifle(t) +Diflė(t) + ÿr (2-94)

where Pifl are Difl again are constants that yield exponentially stable error dynamics. We will
look now at a discrete implementation of the control laws. To that end, consider the increment
delay to sample time Ts, the smallest possible delay. We apply a numerical differentiation to
obtain time derivatives:

ėk =
1

Ts
(ek − ek−1)

ëk =
1

T 2
s

(ek + ek−2)
(2-95)

with Ts the sample time. With ÿ0 = ÿk, Equation 2-93 yields:

uk = uk−1 +G−1
0

(
Piflek +Diflėk + ëk

)

= uk−1 +G−1
0

(
Piflek +Difl

1

Ts
(ek − ek−1) +

1

T 2
s

(ek + ek−2)

) (2-96)

Now, consider a discrete PID control law:

uk = Ppidek + Ipid

k∑

i=1

Tsei +Dpidėk (2-97)

where Ppid, Ipid, Dpid are the gains of the PID controller. The derivative term can be written
out as a numerical differentiation of e. Then subtract the previous PID command from the
current command to yield a PID control law in incremental form:

uk = uk−1 + Ppid(ek − ek−1) + IpidTsek +Dpid(ėk − ėk−1)

= uk−1 + Ppid(ek − ek−1) + IpidTsek +Dpid
1

Ts
(ek + ek−2)

(2-98)

The result can be compared term by term with Equation 2-96, so that the gains of the PID
controller can be written in terms of the gains of the incremental feedback linearization control
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law:
Ppid = G−1

0

Difl

Ts

Ipid = G−1
0

Pifl
Ts

Dpid = G−1
0

1

Ts

(2-99)

The same process can be followed for a first order system with a relative degree of 1, so
that feedback linearization reduces to non-linear dynamic inversion. So, consider the tracking
problem of a first-order, nonlinear affine-in-control system, on which the same assumptions
can be made with respect to the increment of inner loop:

e = y − yr
y = x

ẋ = f(x) + g(x)u

ẋ ∼= ẋ0 +G0∆u

(2-100)

the incremental control law that yields exponentially stable and decoupled error dynamics is:

∆u = G−0 1
(
Pindie(t) +−ẏ0 + ẏr

)
(2-101)

In a discrete implementation, this yields:

uk = uk−1 +G−1
0

(
Pindiek +

1

Ts
(ek − ek−1)

)
(2-102)

The result can be compared again with the incremental PID controller in Equation 2-98. By
comparing terms, we find:

Ppid = G−1
0

1

Ts

Ipid = G−1
0

Pifl
Ts

Dpid = 0

(2-103)

It can be seen that the result is equivalent to what has been derived in Equation 2-79. The way
the simililarity is derived in this section is different in that it is based on a discrete formulation
through which an exact equivalence with incremental PID is shown, whereas in the previous
section the assumption had to be made that the continuous
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Chapter 3

Fixed-Wing Aircraft Model

Up to this point, all the basic tools that are need to present the flight control laws have been
presented. Before the control designs are discussed, the aircraft model will be presented. As
the control laws are implemented and tested on a real fixed-wing aircraft, first this platform
will be introduced. Subsequent sections discuss equations of motion, the aerodynamic model
and actuator dynamics

The FASER project consists of multiple platforms that are equipped with similar software and
hardware aiming to make the process of implementing and testing new flight control algorithms
as simple as possible. Wind-tunnel tests are performed to generate a high-fidelity model, which
is defined in MATLB/Simulink. The platform used in this research is the UltraStick120, a 2m
span fixed-wing aircraft. Basic properties of the aircraft are listed in Tab. 3-1. A schematic
of the hardware communications of the Flight Computer and the hardware compontents is
presented in Figure 3-1

3-1 Assumptions and reference frames

Multiple reference frames are used to the define equations of motion as well as variables that
are used in the control laws, like the acceleration components and aerodynamic forces. The
reference frames are consistent with the common conventions used in aircraft flight dynamics
Mulder et al. (2011); Stevens and Lewis (2003). To set up the equations of motion in the next
chapter, the most important assumptions made are:

• The aircraft is treated as a rigid body. No structural vibrations or aeroelastic effects are
considered.

• The mass of the aircraft is constant.

• The north-east-down is an inertial reference frame, hence it is assumed that the earth is
flat and non-rotating.
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Table 3-1: Basic aircraft parameters of the UltraStick120 platform.

Parameter
Mass (take-off weight) m 8.13 kg
Length 1.26 m
C.G. from firewall xcg 0.315 m
Aero ref from firewall xa 0.320 m
Roll inertia Ix 1.031 kgm2

Pitch inertia Iy 1.21 kgm2

Yaw inertia Iz 2.05 kgm2

Roll-yaw inertia Ixz 0.433
Chord c̄ 0.433 m
Span b 1.92 m
Wing Area S 0.769 m2

Table 3-2: Aircraft avionics and hardware components.

Component Description
Flight Computer Phytec MPC5200B Tiny (400MHz, 64MB DDR

DRAM, controller sample rate 50Hz)
GPS Receiver Novatel OEM Star
IMU Analog Devices ADIS16405
Servos DS8411 (1.55 Nm @4.8 V)
Pressure sensors AMS5812

Figure 3-1: FASER sensors and actuators communication signals structure
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3-1 Assumptions and reference frames 65

• The gravitational acceleration g is constant and always points in the vertical direction.

• Steady flow is considered. Hence, the aircrafts attitude with respect to the free-stream
velocity completely determine the aerodynamic forces acting on the aircraft.

Earth-fixed, north-east-down reference frame The north-east-down (NED) reference frame
is considered to be the inertial reference frame. Its origin coincides with the aircraft’s center
of gravity. The x-axis is pointing in north direction, the y-axis is pointing to the east and the
z-axis is pointing downward.

Body reference frame The body reference frame is fixed to the aircraft’s body and originates
in its center of gravity. The x-axis points in the nose direction, the z-axis points downward,
and the y-axis points in the starboard direction. Accelerations, body velocities and angular
rates are usually defined in this reference frame. The transformation from the NED to the
body reference frame can be defined in terms of three Euler angles:

Tbe(φ, θ, ψ) = Tx(φ)Ty(θ)Tz(ψ)

=




cosψ cos θ cos θ sinψ − sin θ
cosψ sinφ sin θ − cosφ sinψ cosφ cosψ + sinφ sinψ sin θ cos θ sinφ
sinφ sinψ + cosφ cosψ sin θ cosφ sinψ sin θ − cosψ sinφ cosφ cos θ




(3-1)

Stability reference frame The stability reference frame has its origin in the aircraft’s center
of gravity and is defined such that the xz-plane is aligned with the xz-plane of the body
reference frame, with the x-axis pointing in the direction of the aircraft’s velocity relative to
the wind. Hence, the reference frame is obtained by rotating the body reference frame over an
angle α around the negative y-axis. In this frame, the aerodynamic lift, drag and side force
acting on the aircraft are defined. The lift points in the negative z-direction, the drag points
in the negative x-direction and the side force points in the positive y-direction of the stability
reference frame. The transformation from the body to the stability reference frame is:

Tsb(α) = Ty(−α) =




cosα 0 sinα
0 1 0

− sinα 0 cosα


 (3-2)

Aerodynamic reference frame The aerodynamic reference frame has its origin in the center
of gravity. The frame is defined such that the x-axis points in the direction of the aircraft’s
aerodynamic velocity. It is obtained by rotating the stability reference frame over an angle β
around the positive z-axis. The transformation from the stability to the aerodynamic frame
of reference is hence given by:

Tas(β) = Tz(β) =




cosβ sinβ 0
− sinβ cosβ 0

0 0 1


 (3-3)
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Velocity frame The velocity frame becomes more usefull in outer loop, trajectory control
problems when the total inertial velocity of the aircraft needs to be controlled. It is defined by
3 Euler angles from the NED reference frame: the aircraft course χ, the flight path angle χ,
and the aircraft bank angle µ. When there is no wind, the velocity frame is aligned with the
aerodynamic reference frame. When wind is considered, this is not the case as the aircraft’s
velocity considered in the velocity frame is the inertial velocity, whereas the velocity considered
for the aerodynamic reference frame is the local velocity relative to the moving air.

3-2 Equations of motion

Following Newton’s laws of motion applied to rigid bodies with a constant mass, the transla-
tional equations of motion in the body reference frame can be defined:

V̇ =
Fb

m
− ω ×V (3-4a)

ω̇ = I−1(Mb − ω × Iω) (3-4b)

Where V = [u, v, w]T are the translational velocities, Fb = [F bx, F
b
y , F

b
z ]T are the total of forces

and ω = [p, q, r]T are the rotational rates, all in body frame components. The aircraft’s mass
is denoted by m and its inertia matrix by:

I =



Ix 0 Ixz
0 Iy 0
−Ixz 0 Iz


 (3-5)

Differential equations for kinematic motion can be derived by first writing the time derivative
of each Euler angle in (3-1) in body frame components. The sum must equal the rotational
rates in the body frame, because the NED frame is an inertial frame. So:



p
q
r


 = Tx(φ)Ty(θ)




0
0

ψ̇


+ Tx(φ)




0

θ̇
0


+



φ̇
0
0




=




1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ





φ̇

θ̇

ψ̇




(3-6)

Inverting this equation gives the equations for kinematic motion of the rotating body frame
of reference: 


φ̇

θ̇

ψ̇


 =




1 sinφ tan θ tan θ cosφ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ





p
q
r


 (3-7)

The three scalar translational equations are found by writing out (3-4a) and splitting up the
total force acting on the airplane, Fb into aerodynamic forces X̄b, Ȳ b, Z̄b, a propeller thrust
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FT acting purely in x-direction and gravitational force mg:

u̇ = rv − qw − g sin θ +
X̄
b

m
+
FT
m

(3-8a)

v̇ = pw − ru+ g cos θ sinφ+
Ȳ
b

m
(3-8b)

ẇ = qu− pv + g cos θ cosφ+
Z̄
b

m
(3-8c)

where X̄b
, Ȳ

b
, Z̄

b are the aerodynamic forces at the cg in body frame components. The
rotational equations are derived from (3-4b):

ṗ = (c1r + c2p)q + c3L̄
b

+ c4N̄
b (3-9a)

q̇ = c5pr − c6(p2 − r2) + c7M̄
b (3-9b)

ṙ = (c8p− c2r)q + c4L̄
b

+ c9N̄
b (3-9c)

where L̄b, M̄ b
, N̄

b are the aerodynamic moments around the cg in body frame components
and ci are inertia terms defined as:

Γc1 = (Iy − Iz)− I2
xz Γc4 = Ixz c7 =

1

Iy
(3-10a)

Γc2 = (Ix − Iy + Iz)Ixz c5 =
Iz − Ix
Iy

Γc8 = Ix(Ix − Iy) + I2
xz (3-10b)

Γc3 = Iz c6 =
Ixz
Iy

Γc9 = Ix (3-10c)

and Γ = IxIz − I2
xz. The following assumptions are made when defining the equations of

motion like above:

• The NED reference frame is an inertial reference frame, which implies that the earth is
flat and non-rotating.

• The aircraft is a rigid body with constant mass.

• Ixy = Iyx = 0, which implies that the aircraft is symmetrical in the xy-plane.

• The body reference frame is defined such that the thrust force only has a component in
the x-axis.

• The gravitational acceleration points in the positive z-direction of the NED reference
frame.

Furthermore, no assumptions about the wind have been made. The equations of motion are
given in inertial velocity components and a variable wind must be included when defining the
angle of attack as a function of the aircrafts velocity components. When a constant wind is
assumed, and the velocity V is defined relative to the constant wind, the equations of motions
do not change because the constant wind can be seen as a different inertial reference frame.
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3-3 Aerodynamical forces and moments

Extensive wind tunnel tests were performed on the particular model considered in this thesis
Hoe, Owens, and Denham (2012); Owens et al. (2006). Because of this, an accurate aerody-
namic model is available for simulations. The windtunnel test measurements are captured in
look-up tables of the aerodynamic coefficients on which interpolation methods can be used
to calculate the aerodynamic coefficients on a continuous domain. The aerodynamic forces
and moments are measured in and around the center of pressure rcp, so that the measured
aerodynamic forces also create a moment around the cg.

3-3-1 Aerodynamic model

The aerodynamic force coefficients are defined in the stability reference frame with its origin
at the cp. The dimensional aerodynamic forces are defined in terms of their coefficients as:

F̄
s,cp

= q̄S



−CD
CY
−CL


 (3-11)

and in body frame components at the cg as:

F̄
b,cg

= TbsF̄s,cp (3-12)

so: 

X̄
b

Ȳ
b

Z̄
b


 = Tbsq̄S



−CD
CY
−CL


 (3-13)

where q̄ is the dynamic pressure, S is the reference (wing surface) area and CD, CY , CL are
the drag, side force and lift coefficients, respectively. Tbs is the rotation matrix from the
stability to the body reference frame. The dimensional aerodynamic coefficients are defined
in the body reference frame with its origin at the cp. The dimensional aerodynamic moments
are defined in terms of their non-dimensional coefficients as:

M̄
b,cp

= q̄S



bCl,cp
c̄Cm,cp
bCn,cp


 (3-14)

where b and c̄ are the lateral and longitudinal reference lengths (wing span and mean aerody-
namic chord) and Cl, Cm, Cn are the non-dimensional moment coefficients.

M̄
b,cg

= M̄
b,cp

+ (rcp − rcg)× TbsF̄s,cp (3-15)

Written out, this gives:


L̄
b

M̄
b

N̄
b


 = q̄S





bCl,cp
c̄Cm,cp
bCn,cp


+ (rcp − rcg)× Tbs



−CD
CY
−CL




 (3-16)
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For simplicity, we can define the moment coefficients around the center of gravity to avoid
cross product with force-terms. Hence we can define:



L̄
b

M̄
b

N̄
b


 = q̄S



bCl,cg
c̄Cm,cg
bCn,cg


 (3-17)

with:


Cl,cg
Cm,cg
Cn,cg


 =



Cl,cp
Cm,cp
Cn,cp


+




0 0 0
−∆xcp/c sinα 0 −∆xcp/c cosα

0 ∆xcp/b 0





−CD
CY
−CL


 (3-18)

under the assumption that rcp − rcg = [∆xcp, 0, 0]T . This can be simplified to:


Cl,cg
Cm,cg
Cn,cg


 =




Cl,cp
Cm,cp + ∆xcp/cCL
Cn,cp + ∆xcp/bCY


 (3-19)

This holds under the assumptions that CD sinα � CL cosα and cosα ≈ 1. Note that even
when the assumptions are violated by more than, for instance 10%, this still does not have a
large effect on the dynamics, as ∆xcp/c = 0.012 is small. It can be compared with the position
of the neutral point:

rcp,x − rnp,x
c

= −Cmα,cp
CLα

= 0.068 (3-20)

which is larger than ∆xcp by about a factor 5.

The aerodynamic coefficients are split up in three parts: a base coefficient Cbase, a control part
Cctrl and a dynamic part dependent on the (non-dimensional) angular rates, Crate. All three
parts in turn depend on the aerodynamic angles α and β. So force and moment coefficients
are split up as:

Ci = Ci,base(α, β) + ∆Ci,ctrl(α, β, δe, δr, δa) + ∆Ci,rate(α, β, p̂, q̂, r̂) (3-21)

The non-dimensional angular rates are defined as:

p̂ =
pb

2Va
, q̂ =

qc̄

2Va
, r̂ =

rb

2Va
(3-22)

where Va is the total aerodynamic velocity. For each force/moment coefficient and each part,
a look-up table exist. The specific dependencies are listed in Table 3-3.

3-4 Polynomial estimation of aerodynamic coefficients

The advantage of look-up tables is that all nonlinearities that are measured in windtunnel tests
can be captured well and high-fidelity simulations can be performed. A disadvantage is that
the tables act like a black-box model: no real insight can be gained about the behavior of the
model and the strengths of the nonlinearities. Furthermore, it is less straightforward to design
model-based control laws with table-lookup models. For instance, if the aerodynamic pitching
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moment was described as an analytical equation like Cm = Cm0 + Cmαα + Cmδe δe, then it
would be easier to define a control law for the elevator that compensates a pitching moment
for a disturbance of α. Besides this, it was desirable to have an analytical aerodynamic model
which could be simplified easily to verify different control laws.

The look-up tables are therefore estimated by polynomials using a least-squares approach. The
goal was to create a model which was easy to work with and which approximates the look-up
table model well up to moderate angles of attack and angles of sideslip (α = 10 deg, β =
20 deg).

Base coefficients are modelled by a polynomial of the form:

Ci,base =
2∑

k=0

2∑

j=0

cjkα
jβk (3-23)

The elements in Table 3-3 that represent the different parts of the control and angular rate
coefficients are modeled by a polynomial of the form:

∆Ci =
2∑

k=0

2∑

j=0

cjk1α
jβkδ + cjk2α

jβkδ2 (3-24)

in which δ represents the control deflection or rotational rate. On page 71, the estimated
polynomial model as well as the table look-up values of some relevant coefficients are plotted.
For a more detailed overview, the reader is referred to Appendix A.

3-4-1 Model simplifications

In order to see the effect of nonlinearities in the model and to have a simple basis to test the
control laws, the polynomial model has been simplified by only keeping the most important
coefficients of the polynomial model. The simplified model is affine-in-control, so the squared
terms like αjβkδ2

a are set to zero. Furthermore, longitudinal coefficients are made independent
of β and all other insignificant higher order terms of α and β are left out. The final simplified
model is given as:

CD = CD0 + CD1α+ CD2α
2

CY = CY1β + CY2δr + CY3 r̂

CL = CL0 + CL1α+ CL2δe

Cl = Cl1β + Cl2δa + Cl3 p̂

Cm = Cm0 + Cm1α+ Cm2δe + Cm3 q̂

Cn = Cn1β + Cn2δr + Cn3 r̂

(3-25)

Open-loop step-responses of the different models are plotted in Figure 3-8. The most important
difference with the table-lookup model is in the behavior of the side slip angle β. Appearantly
the side force is not modeled well.

3-5 Actuators

The UltraStick120 in use at the DLR are equipped with JR DS8411 servos which control
all control surfaces individually. Incremental control laws rely on a good actuator feedback.
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full polynomial model (dash) and simplified polynomial model (dash dot).
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Table 3-3: Overview of dependency of the different force and moment coefficients on the aircraft
states in the aerodynamic look-up tables.

coefficient CD CY CL Cl Cm Cn

base Cbase α, β α, β α, β α, β α, β α, β

elevator Cbase,δe α, δe α, δe α, δe
rudder Cbase,δr α, β, δr α, β, δr
aileron Cbase,δa α, β, δa
roll rate Crate,p̂ α, β, p̂ α, β, p̂

pitch rate Crate,q̂ fixed Cmq
yaw rate Crate,r̂ α, β, r̂ α, β, r̂

Table 3-4: Identified (mean) actuator dynamics parameters, with standard deviation σ

ωact [Hz] R [deg/s] λact [samples at 50Hz]
2.35 (σ = 0.44) 99.6 (σ = 30.4) 2.25 (σ = 0.707)

Because a reliable actuator position measurement was not available, an online model of the
actuators was required. The original available model does not have an accurate estimation for
the complete actuator dynamics. Therefore, the dynamics were identified by commanding step
inputs of different magnitude. The actuator dynamics are modelled with first order dynamics
with bandwith ωact, including rate limits and a time delay λact:

δ̇(t) = SR{−ωactδ(t) + ωactu(t− λact)} (3-26)

where SR, a saturation function, is defined as

SR(x) =





R if x > M

x if |x| ≤M
−R if x < −M

(3-27)

Actuator time responses of the elevator deflections are shown in Figure 3-9. For each step
response, parameters R, λact and ωact that minimize the root-mean-square (RMS) error be-
tween the measured and simulated response are found. The final estimates are the mean of
those values, listed in Table 3-4.
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Chapter 4

Incremental NDI for Angular Rate
and Attitude Flight Control

This chapter elaborates on two control problems, for which both INDI control laws are used.
First, the angular rates are controlled with a single dynamic-inversion loop. Secondly, two
attitude control laws are presented, a multi-loop INDI control law (with an inner loop identical
to the former angular rate control law), and an integrated, single loop INDI controller, which
in fact uses feedback linearization for the second order system.

section 4-1 until section 4-6 discuss the angular rate control laws, with extensive analysis using
simulation results of multiple controller configurations. Because these sections cover a fairly
large part of the analysis of this thesis, it is concluded with an interim summary in section 4-6.
Thereafter, section 4-7 presents the derivation and simulation results of the attitude control
laws. The chapter is concluded in section 4-8

Introduction to INDI for angular rate control

The goal of an angular rate controller is to track the angular rates p, q, r using the aerody-
namic control devices. In fixed-wing aircraft, these three rates are normally controlled using
the elevator, rudder and aileron control surfaces. The longitudinal dynamics are often well
decoupled from the lateral dynmics, so the pitch rate q can be controlled by mainly using the
elevator δe. Due to dutch roll dynamics, the roll and yaw rate p and r are coupled and must
be decoupled by the control law.

First, both a NDI and a INDI control law are formulated. This makes the derivation of the
incremental control law more insightfull. After the formulation, simulation results on the
FASER model are presented.
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4-1 Nonlinear dynamic inversion angular rate controller

For this control problem, the state and input is defined as:

x3 = ω =



p
q
r


 , x3,ref =



p
q
r



ref

, u =



δe
δr
δa


 (4-1)

and use the subscript 3 to keep consistent with the notation for the angular rates in subsequent
outer loop control structures.

The dynamics, derived in section 3-2, can be described as:

ẋ3 = f3(x) + g3(x,u) (4-2)

with:

f3 = I−1(M0(x)− x3 × Ix3) (4-3a)

g3 = I−1Mδ(x,u) (4-3b)

where x describes the entire aircraft state, M0 is the control independent part of the moment,
and Mδ is the control dependent part of the moment. The aerodynamic moments can be
written out in terms of their coefficients and be split up in a control dependent and a control
independent part, using Equation 3-21:

M0 = q̄S



bCl,base+rate
cCm,base+rate
bCn,base+rate


 (4-4a)

Mδ = q̄S



b∆Cl,ctrl
c∆Cm,ctrl
b∆Cn,ctrl


 (4-4b)

A NDI control law requires that the system is affine in control, so we must assume simplified
aerodynamics for which Mδ can be written as:

Mδ = q̄S
[
b
c
b

]
CMδ



δe
δr
δa


 (4-5)

with CMδ
a constant matrix of control effectiveness coefficients. For the simplified model in

Equation 3-25 this clearly holds. Then Equation 4-2 can be written as:

ẋ3 = f3(x) +G3(x)u (4-6)

with:
G3(x) = I−1q̄S

[
b
c
b

]
CMδ

(4-7)

The control input u selected as:

u = G−1
3 (x) (ν3 − f3(x)) (4-8)
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yields a system dynamics of which the output has a linear relationship with the virtual control
ν3:

ẋ3 = ν3 (4-9)

By selecting this virtual control as:

ν3 = C3e + ẋ3,ref (4-10)

the error dynamics yield:
ė3 + C3e3 = 0 (4-11)

so that the linear control gain C3 can be designed to yield error dynamics as desired. Hence,
the final NDI control law is:

u = G−1
3 (x) (C3e3 + ẋ3,ref − f3(x)) (4-12)

The general control scheme to be implemented on the Ultrastick UAV is shown in Figure 4-1.
In this block, a prefilter is present to provide the controller with the time derivative of the
reference signal ẋ3. It is a linear, second order filter for all 3 channels of x3,des with natural
frequency ωn and damping ζ:

[
q̇1

q̇2

]
=

[
0 1
−ω2

n −2ζωn

] [
q1

q2

]
+

[
0
ω2
n

]
u (4-13)

Where q1 = x3,ref,i, q2 = ẋ3,ref,i and u = x3,des,i, for i = 1, 2, 3.

4-2 Incremental nonlinear dynamic inversion angular rate con-
troller

We apply incremental control to the systemd described by (4-2). To derive the equations in
incremental form, we perform the first taylor series expansion from a point in the recent past,
denoted by x0,u0, t0:

ẋ3 ≈ ẋ3,0 +

(
∂f3(x)

∂x
+
∂g3(x,u)

∂x

)

︸ ︷︷ ︸
A3,0

∣∣∣∣
x0,u0

(x− x0) +
∂g3(x,u)

∂u︸ ︷︷ ︸
B3,0

∣∣∣∣
x0,u0

(u− u0) (4-14)

Which is written in a shorter form as:

ẋ3 ≈ ẋ3,0 +A3,0∆x +B3,0∆u (4-15)

The advantage of writing the dynamics in this incremental form becomes apparent when
assuming that the incremental term caused by the control input, B3,0∆u is much larger than
the increment caused by the system dynamics, A3,0∆x. If this holds, then the incremental
control law can be derived as:

∆u = B−1
3,0 (ν3 − ẋ3,0) (4-16)

which yields a linear relationship between the output and the virtual control ν3:

ẋ3 = ν3 (4-17)
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By selecting the virtual control as

ν3 = C3e + ẋ3,ref (4-18)

the error dynamics result as:
ė3 + C3e3 = 0 (4-19)

and we can select the gain C3 to yield the desired error dynamics. The total control is given
by:

u = u0 + ∆u

= u0 +B−1
3,0 (C3e + ẋ3,ref − ẋ3,0)

(4-20)

Here, u0 refers to the control deflection in the recent past. Any calculated increment ∆u
should hence be added to this deflection. When the system includes actuator dynamics, we
are therefore feeding back the actuator position.

With this control law, the only required knowledge about the model is the (current) control
effectiveness matrix B3,0. As long as the model is locally linear, so that the first order taylor
series expansion in Equation 4-14 holds, the system can be steered accurately towards the
reference signal x3,ref . This advantage goes at the cost of dependence on angular acceleration
measurements ẋ3,0.

The general control scheme of the INDI angular rate controller is displayed in Figure 4-2.
Again, the reference signal is pre-filtered. Because this layout includes sensors to measure the
aircraft state, the angular accelerations must be obtained from the angular rates using a filter
which estimates ẋ3,0. This could be a second order washout filter with the following transfer
function H:

H(s) =
ω2
ns

s2 + 2ζωns+ ω2
n

(4-21)

with a damping ζ = 1 and a bandwith ωn which is high enough to keep the delay small.
The incremental controller strongly depends on a good synchronization of the inputs and
measured state derivative, because the calculated control increment ∆u is based on a taylor
series expansion at a given point in time t0, see (4-14). Therefore ∆u must be added to the
input that corresponds to ẋ3,0 in the controller. For this reason, the control increment must
be added to the delayed control deflection δ0 instead of the delayed commanded deflection u0.
Furthermore, for the same reason the measured control deflection must be filtered with a filter
that has the same delay as the washing filter that is used to obtain the angular accelerations.

4-3 Simulation results

4-3-1 NDI controller

With perfect knowledge of the model and states, a continuous-time NDI controller should
yield a response that exactly corresponds to the commands given, as long as the control is
not saturated. Any uncertainties in the system dynamics should result in imperfections in the
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Figure 4-1: General NDI angular rate control scheme

Figure 4-2: General INDI angular rate control scheme

tracking response. To show the effect of model uncertainties on the performance of the NDI
controller, multiple simulations results are presented.

The simulations in this section are done with continuous-time controllers that are as close to
the derived control laws as possible. The following propierties apply to the simulation, model
and controller set-up:

• A continuous-time controller has been simulated, i.e., continuous time control signal u(t)
has been calculated using a ode45 (Dormand-Prince) solver for the entire simulation,
with a sample time of 0.01 s unless stated otherwise.

• The aerodynamic model of the UAV has the simplified, affine-in-control aerodynamics, so
that the system dynamics can be fully known by the controller, and feedback linearization
is possible. Furthermore, the motor dynamics are not modeled, so that there are no
gyroscopic effects due to the motor and propeller inertia.

• No actuator dynamics are incorporated

• Controller gains are set to Kp = 5 in nominal cases to have first-order error dynamics
with a time constant of 1/Kp = 0.2 s.

• The simulation is initialized with a non-zero angular rate, to show the controller’s re-
sponse to a tracking error.
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Table 4-1: Parameters used for the simulations in Figure 4-3

Parameter Value
Solver ode3 Bogacki-Shampine
Sample time 0.01 s
Trim velocity 20m/s
Aerodynamics Simplified polynomial model
Motor and propeller inertia no
Actuator dynamics no
Sensor noise no
Sensor dynamics no
Control law NDI angular rate control, Equation 4-12
Command shaping ωn = 10 rad/s, rate limit 30 deg/s

Table 4-2: Changed aerodynamic parameters for case A (small uncertainties) and case B (to
mimic an asymmetrical damage in the horizontal stabilizer).

parameter old value case A case B
Cmα -0.03025 -0.02525 -0.02025
Clα 0 0.05
Cmδe -0.69 -0.49
Cnβ 0.0714 0.0614

• The command signal consist of combined doublets on all three axes to excite the entire
system. A command shaping filter has been applied to create a realistic reference signal.

• No sensors are modeled. Hence, the controller has a feedback of the true aircraft state
at each point in time.

The most important parameters for the simulation and controller are summarized in Table 4-1

The response is plotted in Figure 4-3. It can be seen that the reference is tracked well by
the NDI controller. At about T = 10 s, the rudder control is saturated, and the yaw and roll
rate cannot be tracked well anymore. To show the controllers response to a tracking error,
a second simulation has been plotted in the same figure. In this simulation, the control law
does not include the time derivative of the reference signal, and the commanded rates are not
filtered.

Effect of parametric uncertainties

The NDI control law is fully dependent on the model parameters. Therefore, simulations were
performed with some aerodynamic uncertainties. Two cases have been considered. In case A,
uncertainties in Cmα and Cnβ are considered to show the effect of a bad parameter estimation
of an aircraft in a nominal flight. In case B, some effects of an asymmetrical damage to
the horizontal stabilizer have been considered, whereas the controller still uses the nominal
parameters. The model parameters for this case are stated in Table 4-2

The uncertainties in the parameters mimic an asymmetrical damage in the horizontal stabi-
lizer.
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Figure 4-3: NDI controller response with and without feed-forward of ẋ3, with different controller
gain values Kp.
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Figure 4-4: NDI controller response with parametric uncertainties: small uncertainties (case A)
and asymmetrical damage to the horizontal stabilizer (case B).
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Figure 4-5: NDI controller response with unmodelled dynamics: only actuator dynamics (red)
and actuator and motor inertia dynamics (yellow).

Effect of unmodelled actuator and motor dynamics

Figure 4-5 shows simulation results where actuator dynamics and motor inertia is included.
The actuator effectively filters the control command and hence puts a delay on al control
signals. Therefore, the control is not unstable or showing diverging effects, but has small
steady errors. Motor inertia causes coupling moments in axes different than the controlled
axis. The tracking errors resulting from an imperfect control signal need to be canceled by
the linear controller.

4-3-2 INDI controller

The simulation results of the NDI controller presented above show that the NDI control
laws are highly dependent on the model parameters. The INDI controller however, does not
depend on any system dynamics parameters. It should therefore be robust or invariant to any
changes to the system dynamics. In this section, simulation results for the INDI controller
will be presented to show this robustness.

First, a simulation is performed to show the superiority of the INDI control law over NDI. The
very same parameter uncertainty cases are considered, see Table 4-2. In Figure 4-6, simulation
results are presented of four different cases:

• “exact”: This is a simulation that is as close to the derived incremental control law
in Equation 4-20. No actuator and motor dynamics are included, and true angular
accelerations are fed back to the controller. Furthermore, the aerodynamics of the
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Table 4-3: Parameters used for the simulations with INDI controllers in Figure 4-6.

Parameter “exact” “realistic”
Solver ode3 Bogacki-Shampine
Sample time 0.01 s
Trim velocity 20m/s
Aerodynamics Simplified polynomial model lookup tables
Motor and propeller inertia no yes
Actuator dynamics no yes, bandwidth 2.5Hz
Sensor noise no
Sensor dynamics no
Control law NDI angular rate control, Equation 4-12
Command shaping ωn = 10 rad/s, rate limit 30 deg/s
Angular accelerations true accelerations first order washout filter,

ωn = 30 rad/s

aircraft are modeled by the simplified polynomial estimation, so that exact, constant
control effectiveness coefficients can be used in the control law.

• “realistic”: In this simulation, the aircraft’s full model is used: actuator dynamics, motor
dynamics and the full table-lookup aerodynamics are used to model the plant. Compar-
ing this already with this NDI controller shows the advantage of INDI

• “uncertainty case A and B”: these simulations are identical to the “realistic” simulation,
but in this simulation also some parameter uncertainties are added. These are the same
as those used for the NDI controller results and can be found in Table 4-2.

The most important parameters for these simulations are summarized in Table 4-3. The results
in Figure 4-6 show that the INDI controller can easily cope with parameter uncertainties
and is robust to different system dynamics. There are however some small steady tracking
errors visible, especially in the roll rate. This error is correlated with the delay used for the
incremental control. In the next paragraph we will further analyze the influence of this delay.

Effect of increment delay

The incremental control method relies on calculating a control increment with respect to a
point in the recent past (see Equation 4-14). The time difference to this point is referred to
as the increment delay. The increment delay must be designed such that the delayed control
deflection u0 corresponds to the delay of the feedback signal of the angular accelerations.
Therefore, if the angular accelerations are estimated by a washout filter on the angular rate
sensors, a similar filter must be placed in the incremental control loop to compensate for this
effect. Likewise, an additional delay may be placed if there is an extra transport delay in the
control loop. The general incremental control diagram is shown in Figure 4-10.

Figs. 4-7 and 4-8 show the tracking response by varying the actuator bandwidth and washout
filter frequency, hence by effectively varying the increment delay. It can be seen that the
steady errors that were already apparent in Figure 4-6, now show to be clearly related to the
actuator bandwidth and the washout filter frequency.
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Figure 4-6: INDI controller response with unmodelled dynamics, plotted without uncertainties
(blue), with realistic aircraft dynamics (red), small parameter uncertainties (yellow) and asym-
metric horizontal stabilizer damage (purple). In fact, the “realistic” cases and both parameter
uncertainty cases show nearly the same tracking response, hence the red and yellow plots are not
visible.
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Figure 4-7: INDI angular rate responses
for different washout filter bandwidths in
rad/s.
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Figure 4-9: Root-mean-square of the tracking error, for simulations with varying actuator band-
width, washout filter frequency and additional delay. Individual lines connecting the markers
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Figure 4-10: Control diagram of general incremental control, including actuator dynamics A(s),
a linear filter H(s) and an additional delay τ .

In Figure 4-9, the RMS of the tracking errors are plotted against the estimated increment
delay. An estimate of the increment delay is calculated by taking the sum of the actuator and
washout filter time constants (rise time) and the additional delay. When the actuator and
washout filter are first-order linear filters, the 63% rise time is simply τ = 1/ωn = 1/2πf, with
ωn and f the filter frequency or bandwidth in respectively rad/s and Hz.

The results in Figure 4-9 clearly show that the tracking error is directly related to the increment
delay. The only discrepancy is the effect of the transport delay to the yaw rate tracking error,
although also in the yaw axis, the trend is that an increment delay directly causes an increase
in the tracking error. It will be discussed in section 4-5 what parts of the controller and system
dynamics cause these tracking errors.

4-4 Similar proportional-integral controller

In subsection 2-4-3 it was discussed and derived how, under some strict assumptions, incre-
mental control laws can be brought down to a similar PI-controller by treating the incremental
part as an integrator. In this section it will be shown that the the INDI control laws derived
to track the angular rates indeed yield a similar response.
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Incremental control without actuator dynamics

Referring to Equation 2-79 in Equation 2-74, the incremental control law in Equation 4-20
without actuator dynamics can be compared with the following PI control law:

u(t) = Kpe3(t) +Ki

∫ t

0
e3(t)dt (4-22)

with

• Kp =
B−1

3,0

Ts

• Ki = C3
B−1

3,0

Ts

Figure 4-12a shows a comparison of this PI control law with the INDI control law, for different
sample times. The INDI controller response has been simulated using true angular accelera-
tions, delayed by one sample to prevent algebraic loops. Also, in Figure 4-12b, the RMS of
the tracking error of both controllers, as well as the RMS of the error between both controllers
is plotted for different sample times.

It can be seen that in all three axes, the PI controller performs slightly better. Their difference
can result from a slightly different delay, as the PI controller has no feedback of the angular
accelerations.
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Figure 4-11: INDI and comparable PI control, at a sample time of Ts = 0.01 s. The ideal INDI
controller uses true angular accelerations with a delay of one sample. The filtered INDI controller
uses a washout filter to differentiate the angular rates. This filter is also included in the control
increment loop.
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Figure 4-12: Comparison INDI controller with a comparable PI-controller, for different sample
times. In the RMS error plot, circles (◦) and triangles (M) depict individual tracking errors.

Incremental control with actuator dynamics

When the INDI control law includes actuator dynamics, the feedback in the increment loop
includes these actuator dynamics to feed back the actual actuator positions δ. In subsection 2-
4-3 it was derived that this incremental control law can be compared to the following PI
controller:

u(t) = Kpe3(t) +Ki

∫ t

0
e3(t)dt (4-23)

with

• Kp =
B−1

3,0

τact

• Ki = C3
B−1

3,0

τact

The only difference with the previously derived PI control law is the the exchange of Ts for
τact. Because the sample time Ts is normally much lower than the actuator time constant τact
we expect less aggressive control actions. Simulation results are shown in Figure 4-13. It must
be noted that the PI control law does already include the actuator dynamics in the control law,
hence a correct comparison is an INDI controller with actuator dynamics, and the PI controller
without actuaor dynamics. Hence, this control law is not directly implementable, but only
serves as a comparison with the INDI controller. Additional simulations are performed that
include additional actuator dynamics with this PI controller. It can be seen that this results
in a less damped system.
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Figure 4-13: Comparison INDI controller with actuator dynamics with a comparable PI-controller,
for different values for the actuator bandwidth. Simulation results for the comparable PI control
law are shown with (w/) and without (w/o) actuator dynamics in the loop. In the RMS error
plot, circles (◦) and triangles (M) depict individual tracking errors.

Robustness

An indication for the robustness of the comparable PI control law can be given by performing
simulations with different aerodynamic parameters. In Figure 4-14, simulation results are
presented where the aerodynamic parameters Cmq and Cmα are varied. These are important
pitch dynamic parameters that determine the longitudinal stability of the plant.

4-5 Analysis on neglecting system dynamics increments

The incremental control laws are based on a first-order taylor-series expansion of the state
derivative around a previous point in time, as presented in Equation 4-14

ẋ3 ≈ ẋ3,0 +

(
∂f3(x)

∂x
+
∂g3(x,u)

∂x

)

︸ ︷︷ ︸
A3,0

∣∣∣∣
x0,u0

(x− x0) +
∂g3(x,u)

∂u︸ ︷︷ ︸
B3,0

∣∣∣∣
x0,u0

(u− u0) (4-24)

When the assumptions of the locally linear model and the neglection of the system dynamiccs
terms in Equation 4-14 are valid, no steady state errors are expected to occur with an INDI
controller. This is because every time step the measured angular accelerations are compared
with the expected accelerations, in contrast to normal NDI control, where angular rates are
used as feedback. However, previous simulation results in Figs. 4-6 to 4-8 do show steady state
tracking errors. Those errors are greater with a greater delay, as can be seen in Figure 4-9.
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Figure 4-14: Tracking response of INDI controllers compared with similar PI controllers (with
and without actuator dynamics in the loop), for different values of Cmq and Cmα . The coefficients
are resized with factor F .

4-5-1 Component breakdown of system dynamics components

To validate the assumptions made, all the terms in the system dynamics have been calculated
in the simulation. This includes the term f3 in Equation 4-2 and terms A3,0∆x and B3,0∆u
in Equation 4-15. Those terms are plotted in Figure 4-15. . In this figure, it can be seen that

FiXme: Make
this same
plot for the
case without
incrment
delays and
with faster
actua-
tors//or just
in the ideal
case

at almost any moment the control is applied, the system dynamics increment A3,0∆x is not
small and the time-scale separation is not valid. The system dynamics increments do damp
out quite quickly in the pitch direction, but in the yaw and roll, increments achieve a steady
state value, and are continuously counteracted by a control increment. It can indeed be seen
in the control deflections in Figure 4-6b that the rudder deflection (green) does not achieve
steady state values, whereas the elevator deflection (blue) does. The increments A3,0∆x and
B3,0∆u have also been calculated for the ideal INDI controller without actuator dynamics and
without a filter to obtain angular accelerations, but using the true angular accelerations as
feedback. The increments are plotted in Figure 4-17, and the difference in tracking response
between the normal and the ideal controller is plotted in Figure 4-18. It can be seen that
the increments A3,0∆x and B3,0∆u are both much smaller for the ideal controller. However,
the ratio between A3,0∆x and B3,0∆u is still almost identical. Hence, the fact that the ideal
controller does not show any steady state error, is only because the controller can respond
much faster to system dynamics increments. This suggests that the steady state errors will
scale proportionally with the increment delay t− t0.

Looking at the equations for the simplified aerodynamics in Equation 3-25, we see that the
system dynamics increments A3,0∆x can be split up in terms related to the aerodynamics
angles α and β, and the angular rates p̂, q̂, r̂. Those states capture the most important system
dynamics. The system dynamics increments related to these states have been calculated.
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Figure 4-15: Comparison of incremental
terms A3,0∆x and B3,0∆u from (4-15)
while tracking angular rate references with
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Figure 4-16: Breakdown of incremental
term A3,0∆x from (4-15) while tracking
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INDI controller.
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Hence, we calculated:

∂f3(x)

∂α
∆α =

∂

∂α
I−1(M0(x)− x3 × Ix3)∆α = q̄S

∂

∂α



bCl,base+rate
cCm,base+rate
bCn,base+rate


∆α (4-25)

and the incremental terms related to sideslip and angular rates. When the aerodynamics are
simulated with the simplified polynomial model the calculation of A3,0∆x becomes straight-
forward:

A3,0∆x = q̄S



b

c
b






Clβ
2V
b Clp̂

Cmα
2V
c Cmq̂

Cnβ
2V
b Cnr̂







∆α
∆β
∆p
∆q
∆r




(4-26)

Simulation results using the simplified polynomial model for the aerodynamics are performed,
and a breakdown of the different system dynamics increments is plotteed in Figure 4-16. From
these plotted terms we can conclude the following: during the tracking of step responses, the
transient system dynamics increments are dominated by terms related to the angular rates,
whereas steady state increments are dominated by the aerodynamic angles: in the longitudinal
dynamics, the angle of attack has only little effect on the system dynamics increment and the
sideslip has no effect at all. However, in the lateral dynamics, the increment related to the
sideslip angle is dominant.

Simulations are performed where the specific stability derivatives Cmα , Cnβ , Clβ and dynamic
damping coefficients Cnp , Cmq , Clr are reduced. The tracking results are plotted in Figure 4-
19. As expected, it can be seen that the tracking errors are reduced almost proportionaly to
the coefficient reduction.

Concluding, Figs. 4-15 and 4-16 clearly show that the assumption of neglecting the system dy-
namics increments is not valid and causes steady state tracking errors. The simulation results
in Figs. 4-16 and 4-19 indicate that by compensating for the system dynamics increments in
the control law, the errors could be removed. This will be discussed in the next section.

4-5-2 Compensation for system dynamics increments in control law

Without actuators

When the aerodynamic model is fully known, compensation for the system dynamics terms is
possible. The control law shown in (4-16) as derived from (4-15) while setting A3,0∆x would
yield in this case:

∆u = B−1
3,0 (C3e3 − ẋ3,0 −A3,0∆x + ẋ3,ref ) (4-27)

Controllers have been implemented and simulations are performed with the simplified poly-
nomial model for the aerodynamics.

We assume that the airspeed V appearing in the dynamic pressure q̄ has no significant effect
over the control increment time. The coefficients Cmα , Clβ , . . . denote the partial derivatives
to the particular states.
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Figure 4-19: INDI angular rate response with reduced system dynamics coefficients
Cmα , Cnβ , Clβ , Cnp , Cmq , Clr .

With actuators

In the simulation, actuator dynamics for control surface deflections are described by a first
order linear model:

δ̇i = − 1

τact
δi +

1

τact
ui (4-28)

where τact is the actuator time constant and δi the control surface deflection of control surface
i. In discrete time, the actuator dynamics are:

δi,k+1 = e
− Ts
τact δi,k + (1− e−

Ts
τact )ui,k

= e
− Ts
τact δi,k + (1− e−

Ts
τact )(δi,k + ∆ui,k)

(4-29)

which yields in incremental form:

∆δi,k = βact∆ui,k (4-30)

where βact = (1 − e−
Ts
τact ) is the actuator filter constant with 0 < βact < 1. The result above

shows that all increments commanded by the control are scaled as deflection increments. Now
define the filter constant matrix for all control deflections as:

βact =

[
βe

βr
βa

]
(4-31)
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Then, the system described by (4-15) including actuator dynamics and substituting for the
incremental control law in (4-27) yields:

ẋ3 = ẋ3,0 +A3,0∆x +B3,0∆δ

= ẋ3,0 +A3,0∆x +B3,0βact∆u

= ẋ3,0 +A3,0∆x +B3,0βactB
−1
3,0 (C3e3 − ẋ3,0 −A3,0∆x + ẋ3,ref )

= (I − βact)ẋ3,0 + (I − βact)A3,0∆x + βact (C3e3 + ẋ3,ref )

(4-32)

The resulting equation shows that the compensation for system dynamics increments is never
fully achieved, but depends on the sample time Ts and actuator time constant τact. For
example, with Ts = 0.01 s, τact = 0.05 s we have βact = 0.18. So, the compensation is achieved
by only 18%.

When the actuator dynamics behaves indeed according to the first-order model and when there
is a good estimate of time constants available, we can compensate for effect of the actuators by
scaling the compensation term A3,0∆x by 1/βact. The control law with a scaled compensation
for the system dynamics increments then is (compare with (4-27)):

∆u = B−1
3,0

(
C3e3 − ẋ3,0 − β−1

actA3,0∆x + ẋ3,ref

)
(4-33)

This yields for the system dynamics:

ẋ3 = ẋ3,0 +A3,0∆x +B3,0βact∆u

= ẋ3,0 +A3,0∆x +B3,0βactB
−1
3,0

(
−C3z3 − ẋ3,0 − β−1

actA3,0∆x + ẋ3,ref

)

= (I − βact)ẋ3,0 + βact (C3e3 + ẋ3,ref )

(4-34)

Simulation results for the normal compensation and the scaled compensation are shown in Fig-
ure 4-20. The system dynamics increments A3,0∆x are calculated according to Equation 4-26.
The full FASER model has been used for the simulation, i.e. table lookup aerodynamics and
motor inertia. Looking at the tracking errors, it is clearly shown that a normal compensation
only has a marginal effect. When actuator dynamics are taken into account by scaling the
compensation by 1/βact, the steady state tracking error indeed vanishes, although the yaw rate
tracking response still has a significant error when actuator dynamics are included. Looking
at Figure 4-21, it can be seen that simulations with the simplified polynomial model how-
ever, yield much lower tracking errors. The remaining tracking errors can therefore mainly be
attributed by to differences in both models.

From the RMS error results in Figure 4-21, it is that in roll and pitch motion, the minimum
errors are not achieved at F = 1, even with the simplified polynomial model. Rather, the
plot shows that an overcompensation yields a better result. The reason for this is that during
the transient part of the step inputs, the INDI controller typically has a small delay, due to
uncompensated damping effects and an increment delay caused by actuator dynamics and the
washout filter. An overcompensation effectively means that during this transient, the control
is more aggressive and therefore reaches the final comman faster. This can be seen in the
time-domain plot in Figure 4-20a.
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Figure 4-20: INDI controller tracking response, simulated with lookup table aerodynamics and
motor dynamics, using no compensation (blue), unscaled compensation (red) without actuator
dynamics and compensation with actuator dynamics. To show the effect of an imperfect estima-
tion the entire increment compensation in the control law is scaled by F , so the compensation
term equals −Fβ−1

actA3,0. Only roll and yaw rate tracking response are plotted.

F
0.5 1 1.5 2

R
M

S
 e

rr
or

 p
 [d

eg
/s

]

×10-4

4

4.5

5

5.5

6

6.5

7

7.5

full model
simplified

F
0.5 1 1.5 2

R
M

S
 e

rr
or

 q
 [d

eg
/s

]

×10-4

2

2.5

3

3.5

4

4.5

5

5.5

full model
simplified

F
0.5 1 1.5 2

R
M

S
 e

rr
or

 r
 [d

eg
/s

]

×10-4

0

0.5

1

1.5

2

2.5

3

full model
simplified

Figure 4-21: RMS tracking error for an INDI controller with compensation for system dynamics
increments. Simulation results plotted both for full table look-up aerodynamics as for the simplified
polynomial model.
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4-6 Intermediate summary and conclusions

Up until this point, we have presented an analysis on the application of INDI controllers to
the FASER UAV to track the angular rates. We have compared nominal NDI controllers with
INDI controllers. The NDI control law was derived as:

u = G−1
3 (x) (C3e3 + ẋ3,ref − f3(x)) (4-35)

The INDI control law was derived as:

u = u0 +G−1
3,0 (C3e3 + ẋ3,ref − ẋ3,0) (4-36)

A comparable PI control law was presented:

u =
G−1

3,0

τpi

(
e3 + C3

∫ t

0
e3dt

)
(4-37)

where τpi = Ts is the sample time when actuator dynamics are not included, and τpi = τact
is the actuator time constant when they are included. A control law with compensation for
system dynamics increments was presented:

∆u = G−1
3,0

(
C3e3 − ẋ3,0 − β−1

actF3,0∆x + ẋ3,ref

)
(4-38)

with βact = (1− e−τact/Ts).
We are able to draw the following main conclusions about INDI control laws for fixed-wing
aircraft that have dynamics comparable to the FASER UAV:

• According to our expectations, the INDI control laws show a higher robustness against
uncertainties in the control effectiveness and furthermore are completely independent to
system dynamics. See Figs. 4-3, 4-5 and 4-6.

• Non-zero transient and steady tracking errors are apparent, which are caused by the
neglection of the system dynamics increments F3,0∆x. These errors scale with the
increment delay time. Hence, a lower sample time will yield a better control response.

• A comparable PI-control yields responses with equal or even lower tracking errors in
nominal cases, but also show similar robustness properties. This comparison can be
beneficial or helpful in at least two ways: on one hand, it can give more insight in
the INDI control laws, e.g. when investigating the influence of control effectiveness
parameters in G3,0. On the other hand, it can help to find proper gains for PI control
laws. Results of the PI control law are not completely equilalent with INDI control laws.
This might be caused by the fact that the assumption had to be made for the comparison,
that the discrete implementation equals its continuous form, see subsection 2-4-3 and
in particular Equation 2-77. It is mathematically more correct to compare it with an
incremental PI control law, as discussed in subsection 2-4-4. The paper included as an
appendix of this thesis (Acquatella B. et al., 2017) shows indeed this indeed reseults in
identical responses.

Incremental Nonlinear Flight Control for Fixed-Wing Aircraft Wim van Ekeren



96 Incremental NDI for Angular Rate and Attitude Flight Control

• The system dynamics can be compensated for when estimates of stability derivatives
are known, see Figure 4-20. However, actuator dynamics must be taken into account.
Furthermore, simulations show that a simple compensation based on simplified aerody-
namical model of the aircraft might not give a good compensation in all axes.

The next sections will cover the extension of these controllers for the attitude control. The core
of these controllers is equivalent to the INDI control laws presented in the previous sections.

4-7 INDI for attitude flight control

Typical flight control laws include some cascaded control structure. Usually, the inner loop
consists of an angular rate control law. Around this loop, the attitude of the aircraft is
controlled. Examples of implementations with classical flight control laws can be found in
(Stevens & Lewis, 2003). A typical pitch angle hold mode can follow a reference θr by giving
commands for a pitch rate qcmd based on the measured tracking error:

qcmd = LC(θref − θm) (4-39)

Likewise, controlling the lateral modes involves a controller which gives references for the roll
rate p, based on a roll tracking error. To follow a coordinated turn, i.e., one without a resultant
lateral force, a yaw rate command can be designed in multiple ways.

The incremental control law presented in the previous section can be extended to an attitude
control law using similar techniques. The problem with a controller in which the pitch and
roll modes are separated, is that it relies on the assumption that the control laws do not have
a coupling effect on each other. The underlying assumption actually is that q ≈ θ̇ and p ≈ φ̇.
This approximation is only useful for small attitude angles. The true kinematic relation was
presented in Equation 3-7:



φ̇

θ̇

ψ̇


 =




1 sinφ tan θ tan θ cosφ
0 cosφ − sinφ
0 sinφ sec θ cosφ sec θ





p
q
r


 (4-40)

There are two ways in which we can use NDI to control the attitude angles of the aircraft.
First, two loops can be considered, much like the cascaded structure of a multi-loop PID
controlled aircraft. The outer loop then contains a (true) kinematic inversion to convert Euler
angle commands to angular rate commands. The inner loop then is exactly the same as the
INDI angular rate controller presented in the previous chapter. The second method consists
of a single loop, INDI controller by describing the system as a second order system with a
relative degree of two. We will present both controllers.

4-7-1 Multi-loop NDI-INDI attitude control

When we consider the angular rates to be the commands for the attitude control loop, the
equation shows that the dynamics are just a linear combination of the angular rates which
has no uncertainties when the state is known. Hence its relative degree is 1. It is therefore
perfectly suitable for a nonlinear dynamic inversion.
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Define the outer loop state, reference and error as:

x2 =



φ
θ
ψ


 , x2,ref =



φ
θ
ψ



ref

, e2 = x2,ref − x2 (4-41)

Although, in fact, we are aiming to control merely the pitch and roll angle, while keeping a
coordinated flight, i.e. without body side forces. To do this, we will set ψ − ψref = 0 for
this controller and hence leave the final heading angle uncontrolled. Instead, we only use a
time derivative of the heading reference ψ̇. The reason that we choose to define a reference
for the time derivative of the heading is that the heading of fixed-wing aircraft is indirectly
controlled by the bank or roll angle of the aircraft, given a (reasonable) coordinated turn. It
means that a fixed roll angle corresponds to a fixed reference heading rate ψ̇ by aiming for a
coordinated turn in which the lateral force is generated completely by turning the lift vector
of the aircraft. Normally, a reference for ψ and ψ̇ will determine the reference for the roll
angle φ or bank angle µ, hence the reference for the roll angle should normally be defined,
such that no body side force is needed to turn the aircraft with a desired rate. However, at
this point we are merely interested in finding an attitude control and we are not considering a
navigational loop. Therefore, a reference roll angle φ will determine a reference heading rate
ψ̇ref as follows. From Equation 5-41 we have:

χ̇ =
1

mV cos γ
(Y cosµ+ L sinµ+ FT (sinα sinµ− cosα cosµ sinβ)) (4-42)

Where V is the airspeed (not the inertial or ground velocity). In a coordinated turn at small
and constant side slip angles and with a cancellation of the (body) lateral aerodynamic force,
this approximates to:

ψ̇ ≈ χ̇ ≈ 1

mV cos γ
(L sinφ+ FT (sinα sinφ)) (4-43)

In which we identify the vertical load factor:

nz =
1

mg
(L+ FT sinα) (4-44)

which yields an equation to compute the heading rate reference from a roll angle:

ψ̇ref =
nzg

V cos γ
sinφ (4-45)

To prevent effects on ψ̇ref from turbulence and sharp control of the angle of attack which
affect nz, the load factor can be low-pass filtered.

Continuing with the derivation for the control law, write the state derivative presented in
Equation 4-40 in vector notation as:

θ̇ = N(θ)ω

ẋ2 = N(x2)x3
(4-46)
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If the virtual control ν2 is set equal to the derivative of the attitude θ, the commands for the
angular rate can be calculated by a simple inversion of the equation above:

x3,cmd = N(x2)−1ν2 (4-47)

The assumption must be made that the inner loop is time-scale separated from the attitude
loop, so that for the equation above we can assume that ω ≈ ωcmd. The virtual control ν2 is
a linear controller using the tracking error plus the first derivative of the attitude reference:

ν2 = Kpe2 +Kdė2 + ẋ2,ref (4-48)

so that:
x3,cmd = N(x2)−1 (Kpe2 +Kdė2 + ẋ2,ref ) (4-49)

with:

N−1(θ) =




1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ


 (4-50)

A command shaping filter is used to provide the signal ẋ2,ref and to impose constraints
to prevent saturation. The commands for the angular rates x3,cmd are passed to the inner
loop angular rate controller, which is identical to the angular rate controller presented in the
previous section. Hence, the final control law equals:

∆u = B−1
3,0 (Kpe3 − ẋ3,0 + ẋ3,ref ) (4-51)

An control diagram of this control law to control the attitude is given in Figure 4-22.

Figure 4-22: Multi-loop INDI control structure for attitude control.

4-7-2 Single loop INDI attitude control

Define the outer loop state, reference and error again as:

x2 = θ =



φ
θ
ψ


 , x2,ref =



φ
θ
ψ



ref

, e2 = x2,ref − x2 (4-52)
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And write Equation 4-40 again in vector notation as:

θ̇ = N(θ)ω (4-53)

Now, consider the angular rates ω = x3 as a real state and do not assume time-scale separation.
In that case we have to continue the feedback linearization process by taking the second
derivative of the output x2. However, to simplify the equations later on, note that the time
derivative of the angular rates ω̇ is kinematically related to the first and second time derivatives
of the Euler angles:

ω = N−1(θ)θ̇

ω̇ = [ ddtN
−1(θ)]θ̇ +N−1(θ)θ̈

(4-54)

Similarly, a direct eqution for θ̈ can be found by taking the time derivative of (4-53) directly:

θ̈ = [ ddtN(θ)]ω +N(θ)ω̇ (4-55)

This equation can be rewritten for ω̇ as:

ω̇ = N−1(θ)θ̈ −N−1[ ddtN(θ)]ω (4-56)

Note that, by comparison of terms with (4-54):

−N−1[ ddtN(θ)]ω = [ ddtN
−1(θ)]θ̇ (4-57)

Now, continue the feedback linearization process by taking the second time derivative of x2 = θ
and subsitute angular accelerations in incremental form as written in (4-15):

ẍ2 = [ ddtN(x2)]x3 +N(x2)ẋ3

ẍ2 = [ ddtN(x2)]x3 +N(x2) (ẋ3,0 +A3,0∆x +B3,0∆u)
(4-58)

The dynamics can be inverted to describe a control law which linearizes a virtual command
ν2 :

ẋ3,0 +A3,0∆x +B3,0∆u = N−1(x2)
(
ν2 − d

dtN(x2)x3

)

∆u = B−1
3,0

{
N−1(x2)

(
ν2 − d

dtN(x2)x3

)
− ẋ3,0 −A3,0∆x

} (4-59)

Note that we can substitute (4-57) which yields:

∆u = B−1
3,0

{
N−1(x2)ν2 + [ ddtN

−1(x2)]ẋ2︸ ︷︷ ︸
objective ẋ3

−ẋ3,0 −A3,0∆x︸ ︷︷ ︸
system dynamics ẋ3

}
(4-60)

This control law yields a system which is linear between the output x2 and the virtual control
ν2:

ẍ2 = ν2 (4-61)

If we select a virtual control as:

ν2 = Kdė2 +Kpe2 + ẍ2,ref (4-62)
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which yields:
0 = ë2 +Kdė2 +Kpe2 (4-63)

then, we can design Kd and Kp to yield stable tracking error dynamics. The control law in
(4-60) still contains a system dynamics increment term. We may assume that those increments
are small with respect to the control increments B3,0∆u and hence can be neglected in the
control law. Hence, the final total control is:

u = u0 +B−1
3,0

{
N−1(x2)ν2 + [ ddtN

−1(x2)]ẋ2︸ ︷︷ ︸
objective ẋ3

−ẋ3,0 −A3,0∆x︸ ︷︷ ︸
system dynamics ẋ3

}
(4-64)

with:

N−1(θ) =




1 0 − sin θ
0 cosφ cos θ sinφ
0 − sinφ cos θ cosφ


 (4-65)

and:

d
dtN

−1(θ)θ̇ =




0 0 − cos θθ̇

0 − sinφφ̇ − sin θθ̇ sinφ+ cos θ cosφφ̇

0 − cosφφ̇ − sin θθ̇ cosφ− cos θ sinφφ̇





φ̇

θ̇

ψ̇


 (4-66)

We can again identify the great similarity with the INDI angular rate controller by noting that
the first two terms inside the brackets form the objective for the angular accelerations ẋ3. The
difference between this single-loop attitude control law and the previously presented multi-
loop control law is that the kinematic inversion is now integrated with the incremental control
law. In the multi-loop controller, the reference signal for the angular rates and accelerations
x3,ref and ẋ3,ref was generated by a command shaping filter.

Figure 4-23: Single-loop INDI control structure for attitude control.

4-7-3 Simulation results

We will now present simulation results for the attitude INDI controllers presented in the
previous sections. These controllers are also compared against a baseline PI control law, for
which the gains have been tuned completely independent from the INDI control laws. The
PI controller consists of seperate control loops for the pitch and roll motion, giving inputs to
the elevator and aileron, respectively. The specific tuning of the gains of this controller is not
discussed here. It can be expected that for each different aircraft configuration (trim state,
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Table 4-4: Changed aerodynamic parameters for case A (small uncertainties) and case B (to
mimic an asymmetrical damage in the horizontal stabilizer).

parameter old value case B case C
Cmα -0.3025 -0.2025 0.0975
Clα 0 0.05 0
Cmδe -0.69 -0.49

aerodynamic parameters), a tuning of this PI controller can be made that gives a satisfactory
response.

The following simulation results are presented in this section:

• A nominal simulation without parameter uncertainties (Figure 4-24)

• A simulation with simulated horizontal stabilizer dammage, according to case B in Ta-
ble 4-4 (Figure 4-25)

• A simulation with a statically unstable aircraft (positive Cmα , according to case C in
Table 4-4 (Figure 4-25)

The parameter used for these simulation are stated in Table 4-5. Tuning was done manually,
by first tuning the inner loop, and thereafter the outer loop.

A degraded elevator has no visible effect on the performance of the PI controller like is the
case with both INDI control loops. Furthermore, other than a difference in tuning, the single
and multi-loop INDI controllers perform similar. During the acceleration in pitch and roll,
we do not see large differences between the controllers. This indicates that with the current
control task and controller set-up, time-scale separation can be assumed.

The robustness of the INDI controllers is best visible in the simulation with the statically
unstable aircraft. As the INDI controller does use acceleration feedback to measure system
dynamics, the tuned controllers have a similar performance even if the aerodynamics change
drastically. The PI controller would have to be re-tuned for the specific case.

4-8 Conclusion

In this chapter we presented INDI control laws for two control problems. The main part of
this chapter focused on the angular rate control problem. The INDI angular rate controller is
the core control law used for all control laws in this thesis and hence needed extensive analysis
on robustness and verification.

A summary and conclusion on the first part has already been given in section 4-6. We have
shown that system dynamics increments can not always be neglected to reduce the steady
state tracking error in the angular rates, especially when considering the yawing motion of the
aircraft. Furthermore, the INDI control law has been successfully compared with PI control.
Finally, the angular rate controller shows good performance and indicates its applicability for
real flight tests.

Incremental Nonlinear Flight Control for Fixed-Wing Aircraft Wim van Ekeren



102 Incremental NDI for Angular Rate and Attitude Flight Control

Table 4-5: Parameters used for the simulations with attitude INDI controllers in Figure 4-6.

Parameter value
Solver ode3 Bogacki-Shampine
Sample time 0.01 s
Trim velocity 20m/s
Aerodynamics lookup tables
Motor and propeller inertia yes
Actuator dynamics yes, bandwidth 2.5Hz
Sensor noise no
Sensor dynamics no
Control law Equation 4-64 and Equation 4-49
Attitude command shaping ωn = 10 rad/s, ζ = 0.7, rate limit 40 deg/s
Angular accelerations first order washout filter, ωn = 20 rad/s

Multi-loop control gains Kpθ = 2,Kpφ = 2,Kdθ = 1,Kdφ = 1.5,Kpω = diag([4, 4, 2])

Single-loop control gains Kpθ = 4,Kdθ = [10, 20, 10]
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Figure 4-24: Tracking response of INDI the multi and single loop control laws for attitude control
in the nominal situation without parameter uncertainties.
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Figure 4-25: Tracking response of INDI the multi and single loop attitude control laws with
parameter uncertainties case B.
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Figure 4-26: Tracking response of INDI the multi and single loop attitude control laws with
parameter uncertainties case C.
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As the attitude control problem essentially is an extension to the angular rate control problem
without unknown parts (only a kinematic relationship), the analyses done in the first part
also apply for the attitude control law, and not much extra analysis was needed to show
its applicability. We have presented both a multi-loop as well as an integrated feedback
linearization control structure, which have similar performance under the simulation conditions
used in this chapter. Simulation results show that even when the aircraft is statically unstable,
still a stable tracking response is achieved, hence proving its independence to system dynamics.
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Chapter 5

Incremental Backstepping for
Attitude and Trajectory Flight

Control

Backstepping control is a Lyapunov-based method to design a controller for a cascaded non-
linear system that has a mathematical foundation for its stability. As backstepping is always
performed on a system in strict-feedback form (an affine-in-control cascaded system), it is
especially suitable for outer loop flight control designs. This chapter presents both an aerody-
namic attitude controller (section 5-1) and a longitudinal trajectory controller (section 5-2).
Essentially, the latter is an extension of the former, but it is different compared to a usual
approach because the outer loop dynamics have been written in an incremental form.

5-1 Attitude control of aerodynamic angles

When dealing with fixed-wing aircraft, it is more appropriate to control the aerodynamic angle
of attack α rather than its body pitch angle θ. The angle of attack directly influences the
amount of lift generated by the wings, hence it determines the load factor and the change of
flight path. In the lateral direction, the bank angle µ determines the part of the lift used for
lateral acceleration.

A backstepping control law will be derived to track angle of attack α, roll angle φ and side slip
angle β (which needs to be kept zero). Instead of the bank angle µ, the roll angle φ will be
tracked. Tracking the aerodynamic bank angle involves complex kinematic transformations
and hence makes the control law unnecessarily complex. However, the bank angle φ is in most
cases very similar to the roll angle φ.

We define the output state and reference signal by:

x2 =



φ
α
β


 , x2,ref =



φ
α
β



ref

(5-1)
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5-1-1 Equations of motion

To derive the dynamics from the model dynamics presented in section 3-2, we need to apply
a coordinate transformation:

V =
√
u2 + v2 + w2 u = V cosα cosβ

α = arctan
w

u
⇔ v = V sinβ

β = arcsin
v

V
w = V sinα cosβ

(5-2)

Time derivatives are:

V̇ =
uu̇+ vv̇ + wẇ

V

α̇ =
uẇ − wu̇
u2 + w2

β̇ =
v̇V − vV̇
V 2 cosβ

(5-3)

Substituting u̇, v̇, ẇ from Equation 3-8 yields:

V̇ = u
(
rv − qw +

FT
m

+
X̄b

m
− g sin θ

)
+ w

(
qu− pv +

Z̄b

m
+ g cosφ cos θ

)
+

+v
(
pw − ru+

Ȳ b

m
+ g cos θ sinφ

)

α̇ = − 1

u2 + w2

(
w
[
rv − qw +

FT
m

+
X̄b

m
− g sin θ

]
−

−u
[
qu− pv +

Z̄b

m
+ g cosφ cos θ

])

β̇ =
−1

V 2 cosβ

(
v
[
u
(
rv − qw +

FT
m

+
X̄b

m
− g sin θ

)
+ w

(
qu− pv +

Z̄b

m
+ g cosφ cos θ

)
+

+v
(
pw − ru+

Ȳ b

m
+ g cos θ sinφ

)]
− V

[
pw − ru+

Ȳ b

m
+ g cos θ sinφ

])

Which can be simplified to yield the equations of motion in the transformed coordinates:

V̇ =
1

m

[
X̄b cosα cosβ + Ȳ b sinβ + Z̄b sinα cosβ + FT cosα cosβ +mg1

]
(5-4a)

α̇ = q − p cosα tanβ − r sinα tanβ +
1

mV cosβ

[
− X̄b sinα+ Z̄b cosα− FT sinα+mg3

]

(5-4b)

β̇ = p sinα− r cosα+
1

mV

[
− X̄b cosα sinβ + Ȳ b cosβ − Z̄b sinα sinβ − FT cosα sinβ +mg2

]

(5-4c)
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where g1, g2, g3 are the gravity components, given by:

g1 = g (− cosα cosβ sin θ + sinβ sinφ cos θ + sinα cosβ cosφ cos θ)

g2 = g (cosα sinβ sin θ + cosβ sinφ cos θ − sinα sinβ cosφ cos θ)

g3 = g (sinα sin θ + cosα cosφ cos θ)

(5-5)

The equations in (5-4) are effectively the force equations in the aerodynamic reference frame.
The terms between brackets are the sum of forces in the aerodynamic reference frame in x, z
and y direction, respectively. Those forces can be measured by the accelerometers in the body
reference frame:

Ax =
X̄b + FT

m
− g sin θ

Ay =
Ȳ b

m
+ g cos θ sinφ

Az =
Z̄b

m
+ g cos θ cosφ

(5-6)

The thrust acts in the body x-direction and is primarily used to control the airspeed V .
The airspeed is not considered to be a control variable in this section. Also, the airspeed
is controlled much slower compared to α and β. Because of these reasons, the thrust FT
appearing in the equations for α̇ and β̇ can be considered as system dynamics rather than
control terms. With this definition, the system dynamics of α and β can be fully measured
by the accelerometers.

The time derivative of the roll angle was derived in (3-7):

φ̇ = p+ q sinφ tan θ + r tan θ cosφ (5-7)

The time derivatives can be gathered to form ẋ2 and the terms can be grouped, while substi-
tuting specific forces in the equations for α and β:



φ̇
α̇

β̇


 =




0
1

V cosβ (Ax sinα+Az cosα)
1
V (Ax cosα sinβ +Ay cosβ −Az sinα sinβ)


+




1 sinφ tan θ tan θ cosφ
− cosα tanβ 1 − sinα tanβ

sinα 0 − cosα





p
q
r




(5-8)

This can be rewritten in the form:

ẋ2 = f2(x) +G2(x)x3 (5-9)

with:

f2 =




0
1

V cosβ (Ax sinα+Az cosα)
1
V (Ax cosα sinβ +Ay cosβ −Az sinα sinβ)


 (5-10)

G2 =




1 sinφ tan θ tan θ cosφ
− cosα tanβ 1 − sinα tanβ

sinα 0 − cosα


 (5-11)
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The state x3 are the rotational rates, for which the dynamics are already described in (4-2)
in its full form as:

ẋ3 = f3(x) + g3(x,u) (5-12)

and in incremental form as:

ẋ3
∼= ẋ3,0 +A3,0∆x +B3,0∆u (5-13)

5-1-2 Incremental backstepping control law

The task of the bacsktepping control law is to track a reference x2,ref , using thrust FT,c and
control deflection commands ue, ur, ua as inputs. For the moment, assume the thrust FT is
reached by giving thrust command inputs FT,c. On the Ultrastick UAV, throttle commands
in the range [0, 1] must be given which translates to a power level for the electrically driven
propeller. The system dynamics described by Eqs. (5-9) and (5-12) is in an affine-in-control
form. Therefore, a 2-step backstepping control can be derived as follows.

Define the tracking error of the output as:

z2 = x2 − x2,ref (5-14)

The error dynamics are:
ż2 = f2(x) +G2(x)x3 − ẋ2,ref (5-15)

For the first step, a CLF is defined:

V2 =
1

2
zT2 z2 (5-16)

Its derivative is:
V̇2 = zT2 ż2

= zT2 (f2 +G2x3 − ẋ2,ref )
(5-17)

If we define stabilizing functions for FT and x3 as

x3,ref = G−1
2 (−C2z2 − f2 + ẋ2,ref ) (5-18)

then the derivative V̇2 yields:
V̇2 = −zT2 C2z2 + zT2 G2z3 (5-19)

The second step is very similar to the INDI control law derived in section 4-2. Augment the
CLF to V3:

V3 = V2 +
1

2
zT3 z3 (5-20)

When subsystem 3 is described in incremental form the derivative of V3 equals:

V̇3 = V̇2 + zT3 (ẋ3,0 +A3,0∆x +B3,0∆u + ẋ3,ref )

= −zT2 C2z2 + zT3
(
ẋ3,0 +A3,0∆x +B3,0∆u + ẋ3,ref +GT2 z2

) (5-21)

under the assumption that the system is locally linear so that the Taylor series expansion
holds. Then, an incremental control law at this step defined by:

∆u = B−1
3,0

(
−C3z3 − ẋ3,0 −A3,0∆x + ẋ3,ref −GT2 z2

)
(5-22)

renders the last CLF negative definite.
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5-1-3 Command-filtered incremental backstepping control law

The 2-step backstepping control law in (5-22) is not augmented with command-filters. As such,
derivatives of the reference signal ẋ3,ref must be analytically calculated from Equation 5-
18. However, this is impossible as the term f3 depends on accelerometer measurements.
Command-filters can be used to obtain time derivatives of the reference signals. The thrust
command FT,c does not need to be filtered, as the time derivative is not needed. For the
reference signal x3,ref we define a raw reference x0

3,ref , which is filtered with a second order
filter:

x3,ref = CF{x0
3,ref} (5-23)

CF{.} denotes the command-filter, in this case a second order filter:

[
q̇1

q̇2

]
=

[
q2

SR
{

2ζωn
( ω2

n
2ζωn

SM (x0
3i,ref − q1)

)}
]

x3i,ref = q1

ẋ3i,ref = q2

(5-24)

With i = 1, 2, 3 denoting the elements of x3,ref . Define the compensated tracking error of the
attitude state as

z̄2 = z2 − χ2 (5-25)

where χ2 is the estimated effect of the command-filter on the tracking error z2. Its dynamics
are defined by a stable filter as

χ̇2 = −C2χ2 +G2

(
x3,ref − x0

3,ref

)
(5-26)

where G2,x3 is again the control effectiveness matrix of the angular rates to the attitude state,
defined by the last three rows of G2. The dynamics of z̄2 are then given by:

˙̄z = ż2 − χ̇2

= ẋ2 − ẋ2,ref − χ̇2

= f2(x) +G2(x)x3 − ẋ2,ref + C2χ2 −G2

(
x3,ref − x0

3,ref

) (5-27)

To derive the raw reference signal x0
3,ref in the first step using the command-filtered approach,

the energy of the compensated tracking errors are considered instead of the real tracking errors.
Hence, the CLF from (5-16) is now defined as

V2 =
1

2
z̄T2 z̄2 (5-28)

and its derivative yields by substitution of (5-27):

V̇2 = z̄T2 ˙̄z2

= z̄T2
(
f2 +G2x3 − ẋ2,ref + C2χ2 −G2

(
x3,ref − x0

3,ref

))

= z̄T2
(
f2 +G2z3 − ẋ2,ref + C2χ2 +G2x

0
3,ref

)

= z̄T2
(
f2 +G2x

0
3,ref − ẋ2,ref + C2χ2 +G2z3

)
(5-29)
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If the (raw) reference signals for FT and x3 are defined as

x0
3,ref = G−1

2 (−C2z2 − f2 + ẋ2,ref ) (5-30)

then V̇2 yields by substitution:

V̇2 = z̄T2 (−C2z2 + C2χ2 +G2,x3z3)

= −z̄T2 C2z̄2 + z̄T2 G2z3
(5-31)

If we compare the result with (5-19), it can be seen that the remaining term z̄T2 G2z3 which
has to be compensated for in the second step, has changed. As the control signal of the inner
loop is not fed through a command-filter, the derivation for the inner loop remains unchanged.
Therefore, the final incremental control law for the control deflection yields:

∆u = B−1
3,0

(
−C3z3 − ẋ3,0 −A3,0∆x + ẋ3,ref −GT2 z̄2

)
(5-32)

5-1-4 Simulation results

In Figure 5-1, simulation results are presented, of which the used parameters are stated in
Table 5-2. Parameters are varied for the cases that are previously described in Table 4-2
and Table 4-4. It can be seen that the control response for the unstable case (case C) is not
well damped, although it should be expected that the system is more or less independent to
changing system dynamics because of the acceleration feedback. However, simulations with
faster actuators, accelerations filters and with a higher sample rate. Parameters are shown
in Table 5-1 and the simulation results are presented in Figure 5-2. It can be seen that the
tracking performance is closely related with the speed of the control actions, without changing
any tuning parameters of the controller.

Table 5-1: Control parameter changes for the simulation in Figure 5-2

sim 1 (nominal) sim 2 sim 3
Sample time Ts [s] 0.02 0.01 0.005
Actuator bandwidth [Hz] 2.5 5 10
Washout filter bandwidth ωn,f [rad/s] 12 20 25

5-2 Trajectory control

For the trajectory control problem, the velocity variables χ, V , γ are the defining variables
for the velocity of the aircraft. The aircraft has to be steered in such a way that it will track
reference in these variables appropriately. By deriving the time derivatives of these variables,
one obtains the force equations, as the time derivative of velocity variables is proportional to
a force in the same direction. A schematic showing these variables is given in Figure 5-3.
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Table 5-2: Parameters used for the simulations with attitude IBS controllers in Figure 5-1 and
Figure 5-2.

Parameter value
Solver ode3 Bogacki-Shampine
Sample time 0.02 s
Trim velocity 25m/s
Aerodynamics lookup tables
Motor and propeller inertia yes
Actuator dynamics yes, bandwidth 2.5Hz
Sensor noise no
Sensor dynamics no
Control law Equation 4-64 and Equation 4-49
Attitude command shaping ωn = 10 rad/s, ζ = 0.7, rate limit 40 deg/s
Angular accelerations first order washout filter, ωn = 12 rad/s

C2 diag([3, 5, 1])
C2,d diag([1, 1, 0])
C3 diag([6, 8, 2])
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Figure 5-1: IBS aerodynamic attitude controller response
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Figure 5-2: IBS aerodynamic attitude controller response for parameter uncertainty case C, with
increasing sampling rate, faster actuators and faster acceleration filter (but with identical gains)

Figure 5-3: Flight path angles γ and χ (course) and total speed VT , setting up the aircrafts
speed vector to be controlled in outer loop control.
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5-2-1 Equations of motion

In the NED reference frame we apply the general equations of motion for a constant mass:

Fe

m
=
dVe

dt
(5-33)

And we transform the coordinates to the velocity frame (denoted by superscript v), obtained
by the Euler angle rotations from the NED reference frame over χ and γ:

Fv

m
= Tve(γ, χ)

dVe

dt
(5-34)

Because the velocity vector is always aligned with the x-axis of the velocity frame, an increment
dVe yields dV , dγ, dχ. It follows that:




dV
V cos γdχ
−V dγ


 = Tve(γ, χ)dVe (5-35)

Therefore, the time derivatives follow:



V̇
χ̇
γ̇


 =




1
1

V cos γ

− 1
V


Tve(γ, χ)

dVe

dt
(5-36)

Substituting (5-34) yields: 

V̇
χ̇
γ̇


 =




1
1

V cos γ

− 1
V


 Fv

m
(5-37)

Where Fv =
[
F vx F vy F vz

]T is the sum of forces expressed in the velocity frame components.
The aerodynamic forces are split up in lift, drag and side force in the aerodynamic frame:

Fva = Tvw(µ)



−D
Y
−L


 =




1 0 0
0 cosµ − sinµ
0 sinµ cosµ





−D
Y
−L


 (5-38)

The thrust force is assumed to act in the body x-axis:

FvT = Tvw(µ)Twb(α, β)



FT
0
0


 (5-39)

And the gravitational force:

Fvg = Tve(χ, γ)




0
0
mg


 (5-40)
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This yields by substition in (5-37)


V̇
χ̇
γ̇


 =




1
m

1
mV cos γ

− 1
mV


(Fva + FvT + Fvg

)

=




1
m

1
mV cos γ

− 1
mV




Tvw(µ)



−D
Y
−L


+ Tvw(µ)Twb(α, β)



FT
0
0


+ Tve(χ, γ)




0
0
mg






=




1
m (−D + FT cosα cosβ)− g sin γ

1
mV cos γ (Y cosµ+ L sinµ+ FT (sinα sinµ− cosα cosµ sinβ))

− 1
mV (L cosµ− Y sinµ+ FT (cosµ sinα+ cosα sinβ sinµ))− g

V cos γ




(5-41)
Alternatively, we can express (5-37) into a form to calculate the derivatives using accelerometer
measurments. This is possible because linear accelerometers measure the specific forces in
body frame, excluding the gravity:

Ab
x,y,z =

∑
Fb

m
− g =

Fba+T

m
(5-42)

This yields


V̇
χ̇
γ̇


 =




1
1

V cos γ

− 1
V




Tvb(µ, α, β)Ab

x,y,z + Tve(γ, χ)




0
0
g




 (5-43)

5-2-2 Command-filtered incremental backstepping control law for longitudinal
control

In this section, an incremental control law will be derived to control the aircrafts airspeed, V
and the flight path angle γ. It uses command filters between each step in order to constrain the
intermediate reference signals and to retrieve the time derivatives of those reference signals.
The heading angle remains uncontrolled, but the roll angle φ and side slip angle β are controlled
similar to the attitude backstepping control law presented in section 5-1.

Represent the state and tracking error to be controlled as:

y =




V
γ
φ
β


 , yref =




V
γ
φ
β



ref

(5-44)

We start of by considering only the outer loop states V and γ. The control of the other two
outputs φ and β will be treated in the second step.

Outer loop

The state and tracking error of the outer loop is defined as:

x1 =

[
V
γ

]
, z1 = x1 − x1,ref (5-45)
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The compensated tracking error is:
z̄1 = z1 − χ1 (5-46)

The term χ1 is a compensation for the effect the command-filter has on the tracking error.
The dynamics of χ1 will be defined later. Write the system dynamics of x1 in its general form
as:

ẋ1 = f1(x) + g1(x, δt, α) (5-47)

Where x represents the total state of the aircraft. The (virtual) inputs considered in this loop
are the throttle δt and the aerodynamic angle of attack α. From Equation 5-41 f1 and g1 can
be identified. For this, the lift force is split up into a static part L0, and a part dependant on
α, denoted by Lα, such that L = L0 + Lα(α).

f1 =

[
1
m(−D)− g sin γ

1
mV (L0 cosµ− Y sinµ)− g

V cos γ

]
(5-48a)

g1 =

[
1
mFT cosα cosβ

1
mV (Lα(α) cosµ+ FT (cosµ sinα+ cosα sinβ sinµ))

]
(5-48b)

The thrust FT is controlled by the throttle setting δt. Those dynamics can be approximated
by first order actuator dynamics and are modeled as such. The bandwidth of these dynamics
is around 1.7 Hz, depending on the airspeed and air density. When the actuator dynamics are
neglected in a similar way as with the actuator dynamics of the control surface deflection, we
can describe the thrust as some nonlinear function of the throttle setting, FT = f(δt). This
relationship also depends on the airspeed and the air density.

When aiming to control the airspeed and flight path angle [V, γ] using the throttle δt and the
angle of attack α, there are two reasons why the system described by Equation 5-47 might
benefit from a description into an incremental form. First of all, the system is (in general)
non-affine in control, as L(α) and F (δt) are not necessarily linear functions, hence g1(x, δt, α)
is non-linear. It is possible to use an algebraic inverse of g1, but for NDI this requires accurate
knowledge of the nonlinearity. By using an incremental description, only an estimate of the
local partial derivatives ∂g1

∂δt
and ∂g1

∂α are necessary. Secondly, writing the system in incremental
form poses the possibility to use the time-scale-separation principle to neglect system dynamics
increments, like what is done by the incremental control law in the inner loop. In this way,
no knowledge of the static lift L0 or the aerodynamic drag D is needed.

Writing Equation 5-47 in incremental form by using a taylor series expansion around a recent
point t0 yields:

ẋ1 ≈ ẋ1,0 +

(
∂f1

∂x
+
∂g1

∂x

)

︸ ︷︷ ︸
A1,0

∣∣∣∣
x0,t0

∆x +

[
∂g1

∂δt

∂g1

∂α

]

︸ ︷︷ ︸
B1,0

∣∣∣∣
x0,t0

[
∆δt
∆α

]
(5-49)

Then, perform the following simplifications:

• Neglect the system dynamics increments A1,0∆x that are due to the increments ∆γ and
∆V .

• Assume that the longitudinal control has only a small effect on the lateral dynamics
such that it can be assumed that µ ≈ µ0, Y ≈ Y0 and β ≈ β0. In fact, the only direct
effect the longitudinal dynamics have on the lateral dynamics are the gyroscopic effects
of the angular momentum of the motor and propeller.
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• Lastly, also assume that increments the aerodynamic dragD and the static part of the lift
L0 are small and or slow in comparison to the control increments. It is not immediately
clear that this assumption holds, as the static lift is continuously influenced by the
elevator deflection δe. It must be checked afterwards whether it is valid to make such
an assumption.

By applying the assumptions, the entire system dynamics increments A1,0∆x can be consid-
ered small in comparison with B1,0[∆δt,∆α]T . (5-49) can then be written as:

ẋ1 ≈ ẋ1,0 +B1,0

[
∆δt
∆α

]
(5-50)

Referring again to (5-49), the elements of B1,0 are given by partial derivatives of g1:

∂g1

∂δt
=




1

m

∂FT
∂δt

cosα cosβ

1

mV

∂FT
∂δt

(cosµ sinα+ cosα sinβ sinµ)


 (5-51a)

∂g1

∂α
=




− 1

m
FT sinα cosβ

1

mV

∂Lα(α)

∂α
cosµ+ FT (cosµ cosα− sinα sinβ sinµ)


 (5-51b)

B1,0 =

[
∂g1

∂δt

∂g1

∂α

] ∣∣∣∣
x0,t0

=

[
1
m
∂FT
∂δt

cαcβ − 1
mFT sαcβ

1
mV

∂FT
∂δt

(cµsα+ cαsβsµ) 1
mV

∂Lα(α)
∂α cµ+ FT (cµcα− sαsβsµ)

] ∣∣∣∣∣
x0,t0

(5-52)

in which we used cx = cosx and sx = sinx as shorthand notation. The model-dependent
parts of this matrix must be estimated in order to be able to use this matrix in the control
law. The model-dependent parts are:

• The throttle-to-thrust term ∂FT/∂δt.

• The lift-curve slope ∂Lα(α)/∂α, determined by its nondimensional coefficient CLα . Usually,
this value is fairly constant over α.

• The total thrust FT . It is often not so easy to have accurate knowledge of the total
thrust.

The backstepping control law is derived by defining the first CLF as:

V1(z̄1) =
1

2
z̄T1 z̄1 (5-53)

Where V1 should not be confused with the airspeed V . Its time derivative can be approximated
by substituting Equation 5-50:

V̇1 = z̄T1 (ẋ1 − ẋ1,ref − χ̇1) (5-54)
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Now, define the tracking error compensation term χ1 as:

χ̇1 = −C1χ1 +B1,0

([
δt
α

]

ref

−
[
δt
α

]

cmd

)
(5-55)

In which C1 is the gain of the outer loop. Then, substition into (5-54) yields:

V̇1 = z̄T1

{
ẋ1 − ẋ1,ref + C1χ1 −B1,0

([
∆δt
∆α

]

ref

−
[
∆δt
∆α

]

cmd

)}

≈ z̄T1

{
ẋ1,0 +B1,0

[
∆δt
∆α

]
− ẋ1,ref + C1χ1 −B1,0

([
∆δt
∆α

]

ref

−
[
∆δt
∆α

]

cmd

)}

= z̄T1

{
ẋ1,0 +B1,0

[
∆δt

∆αref

]
+B1,0

[
0
zα

]
− ẋ1,ref + C1χ1 −B1,0

([
∆δt
∆α

]

ref

−
[
∆δt
∆α

]

cmd

)}

= z̄T1

{
ẋ1,0 +B1,0

[
∆δtcmd
∆αcmd

]
+B1,0

[
0
zα

]
− ẋ1,ref + C1χ1

}

(5-56)
Where we used:

∆α = α− α0

= zα + αref − α0

= zα + ∆αref

(5-57)

And because the throttle δt is a real input to the system and not a virtual input like α, we
have δt = δtref and only a term with zα appears in the last equation.

Stabilizing functions for ∆δtcmd and ∆αcmd to provide asymptotic stability can now be de-
signed: [

∆δtcmd
∆αcmd

]
= B−1

1,0 (−C1z1 − ẋ1 + ẋ1,ref )− χ1 (5-58)

with C1 a diagonal matrix with each element positive definite. In this intermediate control law,
an estimate of B1,0 must be used. Furthermore, a measurement of ẋ1 must be available. It can
be calculated using (5-43), which means that ẋ1 is dependent on accelerometer measurements
and knowledge of the aerodynamic attitude. when we use αref = α0 + ∆αref as intermediate
control law. Substition of the stabilizing functions into (5-56) then yields:

V̇1 = z̄T1

{
− C1z1 +B1,0

[
0
zα

]
+ C1χ1 −B1,0χ1

}

= z̄T1

{
− C1z̄1 +B1,0

[
0
zα

]
−B1,0χ1

}

= z̄T1

{
− C1z̄1 +B1,0

[
0
z̄α

]}

= −z̄T1 C1z̄1 + z̄T1 B1,0

[
0
z̄α

]

= −z̄T1 C1z̄1 + z̄T1 B1,0α z̄α

(5-59)

Where B1,0α is the second column of B1,0.
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Middle loop

For the middle loop, the state and tracking errors are defined the same as in section 5-1:

x2 =



φ
α
β


 , x2,ref =



φref
αref
βref


 , z2 = x2 − x2,ref , z̄2 = z2 − χ2 (5-60)

Referring to (5-9), the dynamics are written as:

ẋ2 = f2(x) +G2(x)x3 (5-61)

Continue the backstepping procedure by augmenting the CLF from the previous step:

V2 = V1 +
1

2
z̄T2 z̄2 (5-62)

The time derivative equals:

V̇2 = V̇1 + z̄T2
{
f2(x) +G2x3 − ẋ2,ref − χ̇2

}

= −z̄T1 C1z̄1 + z̄T1 B1,0α z̄α + z̄T2
{
f2(x) +G2x3 − ẋ2,ref + C2χ2 −G2 (x3,ref − x3,cmd)

}

= −z̄T1 C1z̄1 + z̄αB
T
1,0α z̄1 + z̄T2

{
f2(x) +G2x3,cmd +G2z3 − ẋ2,ref + C2χ2

}

= −z̄T1 C1z̄1 + z̄T2




0
BT

1,0α

0


 z̄1 + z̄T2

{
f2(x) +G2x3,cmd +G2z3 − ẋ2,ref + C2χ2

}

= −z̄T1 C1z̄1 + z̄T2

{
f2(x) +G2x3,cmd +G2z3 − ẋ2,ref + C2χ2 +




0
BT

1,0α

0


 z̄1

}

(5-63)
Stabilizing functions for the angular rates x3 can now be designed:

x3,ref = G−1
2


−C2z2 − f2 + ẋ2,ref −




0
BT

1,0α

0


 z̄1


− χ3 (5-64)

Similar to (5-31), substitution into (5-63) yields:

V̇2 = −z̄T1 C1z̄1 − z̄T2 C2z̄2 + z̄T2 G2z̄3 (5-65)

As the control gain C2 is again a diagonal matrix with positive definite elements, only the last
term in this result needs to be canceled out in the next step. This term is exactly the same as
for the backstepping control law in section 5-1. Therefore, the last step of this backstepping
procedure is the same.

Inner loop

The inner loop state and tracking errors and inputs are defined equivalent to the definitions
in previous sections:

x3 =



p
q
r


 , x3,ref =



p
q
r



ref

, z3 = x3 − x3,ref , u =



δe
δr
δa


 (5-66)
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so that the incremental backstepping control law for the control surface deflections has the
same structure as in (5-22):

∆u = B−1
3,0

(
−C3z3 − ẋ3,0 + ẋ3,ref −GT2 z̄2

)
(5-67)

Figure 5-4: Overview of the total IBS control loop for longitudinal trajectory control

5-2-3 Simulation results

In Figure 5-5 and Figure 5-5 simulation results of the incremental backstepping flight path
angle controller is shown, at an aispeed of 25m/s. The first figure displays the effect of un-
certainties in the lift curve slope, by scaling this parameter in the control law with a factor
F . Underestimation of the lift curve slope leads to instability, although overestimation merely
causes the control law to behave less aggressive. This effect is in line with the effect of scaling
the inner loop control effectiveness for incremental angular rate control. The second figure
shows the effect of parameter uncertainties, again by the different cases discussed in the pre-
vious sections. It can be seen that the flight path angle is tracked while while maintaining
airspeed.

5-3 Conclusion

Backstepping control laws for the attitude stabilization and flight path control of fixed wing
aicraft are derived, using an incremental control loop, very similar to the inner loop of the
INDI control laws presented in chapter 4.

Simulation results of the aerodynamic attitude control law show that robustness is achieved
that is similar to the euler attitude control responses shown in chapter 4. This indicates the
applicability of the control laws for flight tests on the FASER UAV, if the aerodynamic state
can be measured. It also shows that backstepping is a convenient procedure to design stable
cascaded control structures without the need to assume time-scale separation between the
control loops.

The incremental form can also be used in outer control loops, such as the incremental control
of velocity and flight path angle via throttle and angle of attack, so that stable, nonlinear flight
control laws with complete cancelling of system dynamics can be derived without requiring
much extra knowledge of the model parameters.
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Figure 5-5: Nominal flight path angle tracking response with scaled estimates of CLα in the
controller. F is the scaling factor.
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Figure 5-6: Flight path angle tracking response with with aerodynamic parameter variations
according to the cases of Table 4-4.
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Chapter 6

Conclusion and Recommendations

6-1 Conclusion

In the context of fault-tolerant flight control (FTFC), incremental control methods have been
proposed previously in literature for the stabilization of the aircraft attitude or angular rates.
Both IBS and INDI control techniques show high potential by simulation on fixed wing aircraft.
The work presented in this thesis brings the scientific community a small step further on the
road to resilient, fault-tolerant flight control methods, by presenting the design, analysis,
implementation and flight testing of INDI and IBS methods. Based on the analysis presented
the preliminary thesis, the following conclusions can be drawn

• Focusing on the inner loop angular rate control, it can be concluded that incremental
control methods do not perfectly invert the system dynamics when the system dynamics
increment is not taken into account. This is shown by steady state tracking errors that
occur as a result of these system dynamics increments. Because the effect is directly
related to the aerodynamic stability and damping parameters of the aircraft, this should
apply to all fixed-wing aircraft that have similar configurations.

• The tracking errors due to an imperfect dynamic inversion are directly correlated with
the total increment delay. With the current design, the increment delay contains the
delay of the angular acceleration measurement, an additional controller delay, and the
actuator delays. Decreasing these delays, by for example increasing the bandwidth of
the actuators, shows the same positive effect on the tracking errors in all cases. This
is shown in simulation examples for the inner loop angular rate control, but also for
the IBS aerodynamic attitude controller on a statically unstable aircraft. Hence, faster
actuators, higher sample rates and shorter measurement delays are key factors for a
better tracking performance.

• Similarities of incremental NDI with classical PI(D) control exist. First of all, when
not considering actuators, the gains of a PI control law in incremental form can be
related to parameters of an INDI control law. They can also be related to incremental
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feedback linearization, which is essentially a nonlinear dynamic inversion control of a
second-order system with a relative degree of two. Secondly, an intuitive derivation that
can be supported by block diagrams shows a similar (but mathematically less sound)
result. This derivation uses the total, non-incremental form of a PID controller. When
actuators are included and can be approximated by first-order dynamics, very similar
results can be obtained.

• The backstepping procedure in combination with incremental control is a systematic
method, very useful for the typical cascaded control structure appearing in flight control
applications. Using the backstepping method, stable control laws are derived. Using
incremental forms of the system dynamics, its dependency on model is reduced at the
cost of requiring a feedback of the state derivative. From simulations of flight path
angle control it can be concluded that the use of an incremental control method is not
restricted to the inner control loop.

Additionally, the work in the scientific paper completes the thesis by presenting the design,
implementation and flight testing of the discussed control laws. Based on these flight test
results, additional conclusions can be made.

• Successful, qualitative flight tests are performed with IBS and INDI attitude control
laws. Results clearly show that both controllers perform well. It is for the first time
that results of real flight tests with IBS attitude control laws for fixed-wing aircraft are
reported in literature.

• The presented design of IBS and INDI control laws for the attitude control of fixed-
wing aircraft has been validated by showing that the controller response is according
to its specifications: with nominal estimates of the control effectiveness parameters,
the observed closed loop system has the capability of tracking the imposed reference
dynamics and hence canceling its system dynamics.

• The INDI Euler attitude control flight results show stable and decoupled responses with
an accurate tracking. The IBS aerodynamic attitude control flight results validate the
longitudinal mode to a limited manner. Small doublets in angle of attack can be followed
clearly. Both control laws show that they can be used over a wide range of airspeeds.
Flight test results on the lateral mode also indicate that the control laws behave as
expected, but are not tested yet with nominal settings.

• For the presented design and experiment set-up and with the imposed aerodynamic
parameter variations, the tracking response of the INDI and IBS control laws are almost
identical. It is suspected that the feed-forward of the outer loop tracking error does have
little effect.

6-2 Recommendations

As subsequent steps towards incremental nonlinear flight control laws as a successful fault-
tolerant flight control system, recommendations are suggested. Also, general points of im-
provement are proposed regarding the design and implementation of the analyzed control
laws.
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• The useful properties of incremental control methods rely on high-quality state and state
derivative measurements, knowledge of the true actuator position and a fast control
action. The value of the current controller design can be increased, by improving the
quality of the state measurements. Specifically, this includes a better estimation of the
aerodynamic angles α and β, smaller delays of angular acceleration measurement and a
higher actuator bandwidth.

• The incremental control law is still dependent on the control effectiveness of the aircraft.
The current design can be extended with a model identification module that estimates
the control derivatives appearing in the control effectiveness matrix. An adaptation
strategy can be implemented to reconfigure the control laws online in the event of system
faults. When the control laws are tested in flight with successful parameter adaptations,
the aircrafts control laws become (up to certain limitations) entirely independent to its
system dynamics.

• Flight tests with realistic fault cases have a great scientific value in terms of validation of
the applicability of the incremental control laws as a fault-tolerant flight control system.
Faults can include control surface jamming or changed stability properties such as shifts
in center of gravity or changes in the lift curve slope determined by CLα .

• The presented control laws are nonlinear control laws. It has already been shown in
this thesis that the control laws behave well over a variety of flight conditions (different
airspeeds), but the control laws have been used mainly in the linear regime of the aircraft,
at low angles of attack. Different previous studies, e.g. in Van Gils (2015), indicate that
the control laws perform well also in the nonlinear regimes. Flight tests in the nonlinear
regimes can therefore give a meaningful contribution to the research on these control
laws.

• Quantitative flight tests that proof the superiority of IBS and INDI control methods
should be done by comparing the methods to their non-incremental equivalents or to
conventional linear control methods.

• For the presented design and experiment and with the imposed aerodynamic parameter
variations, the tracking response of the INDI and IBS control laws are almost identical,
as already mentioned in the conclusion. It is suspected that the feed-forward of the
outer loop tracking error does have little effect in general. In fact, the outer loop error
is already appearing indirectly in the inner loop. For the presented attitude control
designs it can be mathematically shown that the feed-forward term introduced in the
backstepping controller has little effect, by comparing this term with the propagation of
the outer loop error to the inner loop. It could be interesting to know to which extent
this feed-forward term may be neglected. This may lead to a better comparison study
between multi-loop NDI and backstepping.
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Appendix A

Aerodynamic Model

For the aerodynamic model of the FASER Ultrastick120 UAV, the force and moment coeffi-
cients are measured using wind-tunnel testsHoe et al. (2012); Owens et al. (2006) and stored in
look-up tables. The coefficients are split up into a base, control and a dynamic part dependent
on the angular rates:

CF = CF,base(α, β) + ∆CF,ctrl(δ, α, β) + ∆CF,rate(ω̂, α, β)
CM = CM,base(α, β) + ∆CM,ctrl(δ, α, β) + ∆CM,rate(ω̂, α, β)

(A-1)

with

ω̂ =



pb
2V
qc̄
2V
rb
2V


 . (A-2)

In the look-up tables, only the most important effects of the states on the coefficients are
considered. Therefore, most force-moment coefficients are only dependent on a small set of
states. An overview of those dependencies is given in Tab. A-1. The pitch rate damping was
not measured in wind-tunnel tests. Instead, an estimation of Cmq is obtained from a digital
DATCOM estimationWilliams and Vukelich (1979).

Table A-1: Overview of dependency of the different force and moment coefficients on the aircraft
states in the aerodynamic look-up tables.

Coefficient part CD CY CL Cl Cm Cn

Base Cbase α, β α, β α, β α, β α, β α, β
Elevator ∆Cbase,δe α, δe α, δe α, δe
Rudder ∆Cbase,δr α, β, δr α, β, δr
Aileron ∆Cbase,δa α, β, δa
Roll rate ∆Crate,p̂ α, β, p̂ α, β, p̂
Pitch rate ∆Crate,q̂ fixed Cmq
Yaw rate ∆Crate,r̂ α, β, r̂ α, β, r̂
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A polynomial model estimation has been performed on the look-up tables using a least-squares
approach. The polynomials have been fitted for α < 12 deg and β < 20 deg. The general form
of all regressor terms that build up the polynomial is:

CF =

2∑

i=0

2∑

j=0

cbaseijα
iβj + cbase03β

3 +

3∑

k=1

2∑

i=0

2∑

j=0

cctrlkijδkα
iβj

CM =
2∑

i=0

2∑

j=0

cbaseijα
iβj + cbase03β

3 +
3∑

k=1

2∑

i=0

2∑

j=0

cctrlkijδkα
iβj +

3∑

l=1

2∑

j=0

cdynlij ω̂lα
iβj .

(A-3)
In Tables A-2 to A-7, the estimated coefficients are presented.

Table A-2: Polynomial coefficients of Cbase

Regressor CD CY CL Cl Cm Cn

1 0.042 0 -0.04 0 -0.0174 0
α -0.1443 0 4.419 0 -0.3025 0
α2 1.88 0 -0.5226 0 -1.041 0
β 0 -0.4126 0 -0.0401 0 0.0714
β2 -0.0254 0 -0.1194 0 0.2538 0
αβ 0 0.2347 0 -0.3039 0 -0.1015
αβ2 0.2094 0 -4.066 0 0.0438 0
α2β 0 -0.4635 0 0.6848 0 0.1074
α2β2 -0.9064 0 8.988 0 -0.9023 0
β3 0 0 0 0 0 0
RMS error 0.003181 0.002441 0.003648 0.0004296 0.001873 0.001132

Table A-3: Polynomial coefficients of Cctrl,δe

Regressor CD CL Cm

δe -0.01634 0.3048 -0.6894
δeα 0.2513 0.04222 0.1263
δeα

2 -0.2364 -1.306 -0.1516
δ2e 0.01406 -0.06121 0.347
δ2eα -0.3158 -0.8089 0.1992
δ2eα

2 2.937 9.372 -6.877
RMS error 0.002189 0.002245 0.002122
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Table A-4: Polynomial coefficients of
∆Cctrl,δa

Regressor Cl

δa -0.1865
δaβ 0.02747
δaβ

2 0.3395
δaα -0.2408
δaαβ 0.0004451
δaαβ

2 -0.007027
δaα

2 -0.4716
δaα

2β -0.00231
δaα

2β2 0.02938
δ2a 0.08956
δ2aβ -0.06551
δ2aβ

2 -0.6522
δ2aα 0.6373
δ2aαβ -0.001652
δ2aαβ

2 0.01204
δ2aα

2 1.238
δ2aα

2β 0.008538
δ2aα

2β2 0.02858
RMS error 0.000163

Table A-5: Polynomial coefficients of
∆Cctrl,δr

Regressor CY Cm

δr 0.02083 -0.03606
δrβ -0.0008474 0.001889
δrβ

2 0.4348 -0.1394
δrα -0.5212 0.1071
δrαβ 0.0001723 -5.398e-05
δrαβ

2 -0.001939 0.0005968
δrα

2 1.067 -0.2127
δrα

2β -0.000909 0.0002646
δrα

2β2 0.01374 -0.003882
δ2r -0.2249 0.01942
δ2rβ -0.1142 0.04648
δ2rβ

2 0.4667 -0.08927
δ2rα -1.194 0.2455
δ2rαβ 0.0003391 -0.0001046
δ2rαβ

2 -0.006994 0.001909
δ2rα

2 2.443 -0.487
δ2rα

2β -0.001159 0.0002877
δ2rα

2β2 0.07808 -0.01896
RMS error 0.0007614 0.001191

Table A-6: Polynomial coefficients of
∆Crate,p

Regressor CY Cl Cn

p̂ -0.07032 -0.3976 0.001675
p̂α 0.838 0.0364 -0.5065
p̂α2 -2.243 -1.711 0.2688

RMS error 0.0003317 0.0002019 0.0003126

Table A-7: Polynomial coefficients of
∆Crate,r

Regressor CY Cl Cn

r̂ 0.3091 0.04467 -0.1366
r̂α 0.1376 0.6087 -0.04955
r̂α2 -1.738 0.1337 1.684

RMS error 0.0002849 0.0002891 0.0006108
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Figure A-1: Base force/moment coefficient Ci,base versus α and β.
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Appendix B

Flight Results

This appendix contains more detailed figures on the tracking responses during all experiments,
displayed on the next pages. Stabilization tracking tasks are not included. The following table
depicts the presented experiments and the corresponding figure number. Flight videos of a
small selection of the experiment runs can be viewed at the following link: https://youtu.be/
PRnHx8323Ts.

Table B-1: List of detailed tracking response figures

# Figure Description Doublet magnitude
INDI Euler attitude control experiments
1A Fig. B-1 Pitch control only, manual roll/yaw and velocity control.

conservative parameters
θref = 10deg

1B Fig. B-2,
Fig. B-3

Add auto-throttle control θref = 10deg

1C Fig. B-4 Add roll/yaw control φref = 20deg
Fig. B-5 φref = 30deg

2A Fig. B-6 Fully automatic control, nominal gains θref = 10deg
Fig. B-7 θref = 15deg
Fig. B-8 φref = 20deg
Fig. B-7 φref = 45deg

IBS aerodynamic attitude control experiments
4 Fig. B-10

Fig. B-11
Pitch and velocity control only, manual roll/yaw control.
conservative parameters

αref = 1deg
αref = 2deg

5 Fig. B-12 Fully automatic control, nominal gains αref = 1deg
Fig. B-13 αref = 2deg

6 Fig. B-14 Add roll/yaw control, conservative parameters φref = 15deg
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Figure B-1: Experiment 1A, θref = ±10 deg, Run 1 to 4
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Figure B-2: Experiment 1B, θref = ±10 deg, throttle gain 0.10, Run 1 to 4
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Figure B-3: Experiment 1B, θref = ±10 deg, throttle gain 0.15, Run 1 to 3
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Figure B-4: Experiment 1C, φref = ±20 deg, Run 1 to 4
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Figure B-5: Experiment 1C, φref = ±30 deg, Run 1 to 7
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Figure B-6: Experiment 2A, θref = ±10 deg, Run 1 to 4
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Figure B-7: Experiment 2A, θref = ±15 deg, Run 1 to 8
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Figure B-8: Experiment 2A, φref = ±20 deg, Run 1 to 4
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Figure B-9: Experiment 2A, φref = ±45 deg, Run 1 to 4
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Figure B-10: Experiment 4, αref = ±1 deg, Run 1 to 4
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Figure B-11: Experiment 4, αref = ±2 deg, Run 1 to 4
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Figure B-12: Experiment 5, αref = ±1 deg, Run 1 to 2
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Figure B-13: Experiment 5, αref = ±2 deg, Run 1 to 4
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Figure B-14: Experiment 6, φref = ±15 deg, Run 1 to 5
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Appendix C

Model Validation

This appendix presents more flight data results supported with simulations for the model
validation discussed in section II of the paper. For three different maneuvers, all relevant
measured flight states are plotted together with open-loop simulation results in which identical
inputs are given. Furthermore, for each maneuver additional simulations have been performed
where aerodynamic parameters of the model are scaled. Scaling factors scale part of the
aerodynamic moment coefficents. They are defined as:

Ci,base,scaled = Fi,baseCi,base

∆Ci,ctrl,scaled = Fi,ctrl∆Ci,ctrl for i = l,m, n

∆Ci,rate,scaled = Fi,rate∆Ci,rate

(C-1)

Where F∗ are scaling factors for each component of the aerodynamic model. By varying each
scaling factor over a mimimum, nominal and maximum value, simulations of each possible
combination set of factors is performed. The limits are set to F∗ = ±25 % for each scaling
factor.

In Figs. C-1 to C-12 all results are presented. It can be seen that the total attitude shows
considerable offsets, which is expected as acceleration errors between the model and flight
propagate through the integration.

Results of the pitch maneuver are presented in Figs. C-1 to C-4. The pitch accelerations
are slightly out of bounds at acceleration peaks. This indicates that the aircraft has a lower
control effectiveness Cmδe than expected, or a higher pitch inertia Iyy. In this maneuver, the
roll accelation measurements contains strong vibrations and an oscillation in the yaw rate is
present which is not predicted by the model. These effects could be attributed to turbulence.

Results of the roll maneuver are presented in Figs. C-5 to C-8. At its peaks, the roll ac-
celerations measured in flight are significantly lower than what is predicted by the model,
which could also be attributed to aerodynamic model mismatches or to different flight con-
ditions (winda and angles of attack). It is unlikely that the aircraft contains nonlinearities
in the aileron effectiveness that may bring the effectiveness down at high aileron angles, as
the measured effectiveness in windtunnel tests showed a very linear and comparable result for
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all angles of attack and angles of sideslip (see Fig. A-7). In contrast with measurements, the
simulation also predicts a stronger coupling between the roll and yaw motion, and between
the longitudinal and lateral mode.

Results of the yaw maneuver are presented in Figs. C-9 to C-12. In this axis, accelerations seem
to correspond quite accurately. Yaw accelerations lie within the uncertainty bounds for the
major part of the measurements, and the yaw rate measurements align well with simulations
results.
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Figure C-1: Pitch maneuver angular ac-
celerations
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Figure C-2: Pitch maneuver attitude and
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Figure C-3: Pitch maneuver angular rates
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Figure C-5: Roll maneuver angular accel-
erations
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Figure C-6: Roll maneuver attitude and
airspeed
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Figure C-7: Roll maneuver angular rates
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ṗ
[d

eg
/s

2
] Uncertainties

Nominal

Flight

0 1 2 3 4 5

−500

0

500

q̇
[d

eg
/s

2
]

0 1 2 3 4 5

−500

0

500

time [s]

ṙ
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Figure C-9: Yaw maneuver angular accel-
erations
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Figure C-10: Yaw maneuver attitude and
airspeed
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Figure C-11: Yaw maneuver angular rates
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Abstract: Previous results reported in the robotics literature show the relationship between
time-delay control (TDC) and proportional-integral-derivative control (PID). In this paper, we
show that incremental nonlinear dynamic inversion (INDI) — more familiar in the aerospace
community — are in fact equivalent to TDC. This leads to a meaningful and systematic method
for PI(D)-control tuning of robust nonlinear flight control systems via INDI. We considered a
reformulation of the plant dynamics inversion which removes effector blending models from the
resulting control law, resulting in robust model-free control laws like PI(D)-control.

Keywords: aerospace, tracking, application of nonlinear analysis and design

1. INTRODUCTION

Ensuring stability and performance in between operational
points of widely-used gain-scheduled linear PID controllers
motivates the use of nonlinear dynamic inversion (NDI) for
flight control systems. NDI cancels out nonlinearities in
the model via state feedback, and then linear control can
be subsequently designed to close the systems’ outer-loop,
hence eliminating the need of linearizing and designing
different controllers for several operational points as in
gain-scheduling.

In this paper we consider nonlinear flight control strategies
based on incremental nonlinear dynamic inversion (INDI).
Using sensor and actuator measurements for feedback al-
lows the design of an incremental control action which, in
combination with nonlinear dynamic inversion, stabilizes
the partly-linearized nonlinear system incrementally. With
this result, dependency on exact knowledge of the system
dynamics is greatly reduced, overcoming this major ro-
bustness issue from conventional nonlinear dynamic inver-
sion. INDI has been considered a sensor-based approach
because sensor measurements were meant to replace a
large part of the vehicle model.

Theoretical development of increments of nonlinear con-
trol action date back from the late nineties and started
with activities concerning ‘implicit dynamic inversion’ for
inversion-based flight control (Smith (1998); Bacon and
Ostroff (2000)), where the architectures considered in this
paper were firstly described. Other designations for these
developments found in the literature are ‘modified NDI’

1 Research Engineer, Space Systems Dynamics Department.

paul.acquatella@dlr.de.
2 Graduate Student, Control & Simulation Department.

w.vanekeren@student.tudelft.nl.
3 Associate Professor, Control & Simulation Department.

q.p.chu@tudelft.nl.

and ‘simplified NDI’, but the designation ‘incremental
NDI’, introduced in (Chen and Zhang (2008)), is con-
sidered to describe the methodology and nature of these
type of control laws better (Chen and Zhang (2008); Chu
(2010); Sieberling et al. (2010)). INDI has been elaborated
and applied theoretically in the past decade for advanced
flight control and space applications (Sieberling et al.
(2010); Smith (1998); Bacon and Ostroff (2000); Bacon
et al. (2000, 2001); Acquatella B. et al. (2012); Simplicio
et al. (2013)). More recently, this technique has been
applied for quadrotors and adaptive control (Smeur et al.
(2016b,a)).

In this paper, we present three main contributions in the
context of nonlinear flight control system design.

1) We revisit the NDI/INDI control laws and we establish
the equivalence between INDI and time-delay control
(TDC).

2) Based on previous results reported in the robotics liter-
ature showing the relationship between discrete formula-
tions of TDC and proportional-integral-derivative control
(PID), we show that an equivalent PI(D) controller with
gains < K, Ti, (Td, ) > tuned via INDI/TDC is more
meaningful and systematic than heuristic methods, since
one considers desired error dynamics given by Hurwitz
gains < kP , (kD, ) >. Then, tuning the remaining effec-
tor/decoupled blending gain is much less cumbersome than
designing a whole set of gains iteratively.

3) We also consider a reformulation of the plant dynamics
inversion as it is done in TDC which removes the effector
blending model (control derivatives) from the resulting
control law, which has not been the case so far in the
reported INDI controllers, causing robustness problems
because of the susceptibility on their uncertainties.
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2. FLIGHT VEHICLE MODELING

We are interested in Euler’s equation of motion represent-
ing flight vehicles’ angular velocity dynamics

I ω̇ + ω × I ω = MB (1)

where MB ∈ R3 is the external moment vector in body
axes, ω ∈ R3 is the angular velocity vector, and I ∈ R3×3

the inertia matrix of the rigid body assuming symmetry
about the plane x− z of the body.

Furthermore, we will be interested in the time history of
the angular velocity vector, hence the dynamics of the
rotational motion of a vehicle in Eq. (1) can be rewritten
as the following set of differential equations

ω̇ = I−1
(

MB − ω × I ω
)

(2)

where

ω =

[

p
q
r

]

, MB =

[

L
M
N

]

= SQ

[

bCl

cCm

bCn

]

,

I =

[

Ixx 0 Ixz
0 Iyy 0
Ixz 0 Izz

]

,

with p, q , r , the body roll, pitch, and yaw rates, respec-
tively; L,M ,N , the roll, pitch, and yaw moments, respec-
tively; S the wing surface area, Q the dynamic pressure,
b the wing span, c the mean aerodynamic chord, and
Cl ,Cm ,Cn the moment coefficients for roll, pitch, and yaw,
respectively. Furthermore, let MB be the sum of moments
partially generated by the aerodynamics of the airframe
Ma, and moments generated by control surface deflections
Mc, assumed to be linear in the deflection angles δ, as

MB = Ma +Mcδ (3)

where

Ma =

[

La

Ma

Na

]

, Mc =

[

Lc

Mc

Nc

]

, δ =

[

δa
δe
δr

]

and δ corresponding to the control inputs: aileron, eleva-
tor, and rudder deflection angles, respectively. Hence the
dynamics in Eq. (2) can be rewritten as

ω̇ = f(ω) +G(ω)δ (4)

with

f(ω) = I−1
(

Ma − ω × I ω
)

, G(ω) = I−1Mc.

For practical implementations, we consider first-order ac-
tuator dynamics represented by the following transfer
function

δ

δc
= Ga(s) =

Ka

τas+ 1
, (5)

and furthermore, we don’t consider these actuator dynam-
ics in the control design process as it is usually the case
for dynamic inversion-based control. For that reason, we
assume that these actuators are sufficiently fast in the
control-bandwidth sense, meaning that 1/τa is higher than
the control system closed-loop bandwidth.

3. FLIGHT CONTROL LAW DESIGN

3.1 Nonlinear Dynamic Inversion

Let’s define the control parameter to be the angular
velocities, hence the output is simply y = ω. We then

consider an error vector defined as e = yd − y where yd
denotes the smooth desired output vector (at least one
time differentiable).

Nonlinear dynamic inversion is designed to linearize and
decouple the rotational dynamics in order to obtain an
explicit desired closed loop dynamics to be followed. In-
troducing the virtual control input ν = ω̇des, if the matrix
G(ω) is non-singular (i.e., invertible) in the domain of
interest for all ω, the nonlinear dynamic inversion (NDI)
control consists in the following input transformation (Slo-
tine and Li (1990); Chu (2010))

δ = G(ω)−1
[

ν − f(ω)
]

(6)

which cancels all the nonlinearities, and a simple input-
output linear relationship between the output y and the
new input ν is obtained as

ẏ = ν (7)

Apart from being linear, an interesting result from this
relationship is that it is also decoupled since the input νi
only affects the output yi. From this fact, the input trans-
formation (6) is called a decoupling control law, and the
resulting linear system (7) is called the single-integrator
form. This single-integrator form (7) can be rendered ex-
ponentially stable with

ν = ẏd + kP e (8)

where ẏd is the feedforward term for tracking tasks, and
kP ∈ R3×3 a constant diagonal matrix, whose i−th
diagonal elements kPi

are chosen so that the polynomials

s+ kPi
(i = p, q, r) (9)

may become Hurwitz, i.e., kPi
< 0. This results in the

exponentially stable and decoupled desired error dynamics

ė+ kP e = 0 (10)

which implies that e(t) → 0. From this typical tracking
problem it can be seen that the entire control system
will have two control loops (Chu (2010); Sieberling et al.
(2010)): the inner linearization loop based on Eq. (6), and
the outer control loop based on Eq. (8). This resulting
NDI control law depends on accurate knowledge of the
aerodynamic model contained in both Ma and Mc, hence
susceptible to model uncertainties.

In NDI control design, we consider outputs with relative
degrees of one (rates), meaning a first-order system to
be controlled, see Fig. 1. Extensions of input-output lin-
earization for systems involving higher relative degrees are
done via feedback linearization (Slotine and Li (1990); Chu
(2010)).

3.2 Incremental Nonlinear Dynamic Inversion

The concept of incremental nonlinear dynamic inversion
(INDI) amounts to the application of NDI to a system
expressed in an incremental form. This improves the ro-
bustness of the closed-loop system as compared with con-
ventional NDI since dependency on the accurate knowl-
edge of the plant dynamics is reduced. Unlike NDI, this
control design technique is implicit in the sense that de-
sired closed-loop dynamics do not reside in some explicit
model to be followed but result when the feedback loops
are closed (Bacon and Ostroff (2000); Bacon et al. (2000)).

To obtain an incremental form of system dynamics, we
consider a first-order Taylor series expansion of ω̇ (Smith
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Fig. 1. Four loop feedback design for nonlinear flight control. We are focused on nonlinear dynamic inversion of the rate
control loop in the following. Image credits: Sonneveldt (2010).

(1998); Bacon and Ostroff (2000); Bacon et al. (2000,
2001); Sieberling et al. (2010); Acquatella B. et al. (2012,
2013)), not in the geometric sense, but with respect to a
suffiently small time-delay λ as

ω̇ = ω̇0 +
∂

∂ω

[

f(ω) +G(ω)δ
]

∣

∣

∣

∣ω=ω0

δ=δ0

(ω − ω0)

+
∂

∂δ

[

G(ω)δ
]

∣

∣

∣

∣ω=ω0

δ=δ0

(δ − δ0) +O(∆ω2,∆δ2)

∼= ω̇0 + f0 (ω − ω0) +G0 (δ − δ0)

with

ω̇0 ≡ f(ω0) +G(ω0)δ0 (11a)

where ω0 = ω(t − λ) and δ0 = δ(t − λ) are the time-
delayed signals of the current state ω and control δ, re-
spectively. This means an approximate linearization about
the λ−delayed signals is performed incrementally.

For such sufficiently small time-delay λ so that f(ω) does
not vary significantly during λ, the following approxima-
tion holds

ǫ(t) = f0(ω(t))− f0(ω(t− λ)) ∼= 0 (12)

which leads to
ω̇ ∼= ω̇0 +G0 ·∆δ (13)

Here, ∆δ = δ − δ0 = δ − δ(t − λ) represents the so-
called incremental control input. For the obtained approx-
imation, NDI is applied to obtain a relation between the
incremental control input and the output of the system

δ = δ0 +G−1

0

[

ν − ω̇0

]

(14)

Note that the deflection angle δ0 that corresponds to ω̇0

is taken from the output of the actuators, and it has been
assumed that a commanded control is achieved sufficiently
fast according to the assumptions of the actuator dynam-
ics in Eq. (5). The total control command along with the
obtained linearizing control ∆δ can be rewritten as

δ(t) = δ(t− λ) +G−1

0

[

ν − ω̇(t− λ)
]

. (15)

Remark 1: By using the measured ω̇(t − λ) and δ(t − λ)
incrementally we practically obtain a robust, model-free
controller with the self-scheduling properties of NDI.

The dependency of the closed-loop system on accurate
knowledge of the dynamics in f(ω) is largely decreased, im-
proving robustness against model uncertainties contained
therein. Therefore, this implicit control law design is more
dependent on accurate measurements or accurate esti-
mates of ω̇0, the angular acceleration, and δ0, the deflection
angles, respectively.

Notice, however, that typical INDI control laws are nev-
ertheless also depending on effector blending models re-

flected in G0, which makes this implicit controller suscep-
tible to uncertainties in these terms. Instead, consider the
following transformation as in (Chang and Jung (2009))

ω̇ = H + ḡ · δ (16)

with
H(t) = f(ω) + (G(ω)− ḡ)δ,

and with the following (but not limited) options for ḡ
(Chang and Jung (2009)), where n = 3 in our case

ḡ1 = kG·In = kG









1 0 · · · 0
0 1
...

. . .
0 1









, ḡ2 =









kG1
0 · · · 0

0 kG2

...
. . .

0 kGn









.

Applying nonlinear dynamic inversion (NDI) to Eq. (16)
results in an expression for the control input of the vehicle
as

δ(t) = ḡ−1
[

ν(t)−H(t)
]

. (17)

Considering H0 = ω̇0 − ḡ · δ0, the incremental counterpart
of Eq.(17) results in a control law that is not depending
on the aerodynamic model nor effector blending moments

δ(t) = δ(t− λ) + ḡ−1

[

ν − ω̇(t− λ)
]

. (18)

Remark 2: The self-scheduling properties of INDI in
Eq.(15) due to the term G0 are now lost, suggesting that
ḡ should be an scheduling variable.

3.3 Time Delay Control and Proportional Integral control

Time delay control (TDC) (Chang and Jung (2009)) de-
parts from the usual dynamic inversion input transforma-
tion of Eq.(16)

δ = ḡ−1
[

ν − H̄(t)
]

(19)

where H̄ denotes an estimation of H, being the nominal
case when H̄ = H which results in perfect inversion.
Instead of having an estimate, the TDC takes the following
assumption (Chang and Jung (2009))

ǫ(t) ≡ H(t− λ)−H(t) ∼= 0. (20)

This relationship is used together with Eq.(16) to obtain
what is called time-delay estimation (TDE) as the follow-
ing

H̄ = H(t− λ) = ω̇(t− λ)− ḡ · δ(t− λ) (21)

In addition, ǫ(t) is called TDE error at time t. Combining
the equations we obtain the following TDC law

δ(t) = δ(t− λ) + ḡ−1
[

ν − ω̇(t− λ)
]

(22)

which is in fact equivalent to the INDI control law obtained
in Eq.(18). Appropriate selection of ḡ must ensure stability
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according to (Chang and Jung (2009)), and ideally, this
term should be tuned according to the best estimate of the
true effector blending moment ĝ(ω̃) for measured angular
velocities ω̃.

So far we have considered these derivations in continuous
form. For practical implementations of these controllers
and for the matters of upcoming discussions, sampled-time
formulations involving continuous and discrete quantities
as in (Chang and Jung (2009)) are more convenient. For
that, considering that the smallest λ one can consider is the
equivalent of the sampling period ts of the digital device.
The sampled formulation of Eq.(22) may be expressed as

δ(k) = δ(k − 1) + ḡ−1
[

ν(k − 1)− ω̇(k − 1)
]

(23)

where it has been necessary to consider ν at sample k−1 for
causality reasons. Replacing the sampled virtual control ν
according to Eq. (8) we have

δ(k) = δ(k − 1) + ḡ−1
[

ė(k − 1) + kP e(k − 1)
]

(24)

and we can consider the following finite difference approx-
imation of the error derivatives as angular accelerations
are not directly measured

ė(k) = [e(k)− e(k − 1)]/ts (25)

Consider now the standard proportional-integral (PI) con-
trol

δ(t) = K
(

e(t) + T−1

I

∫ t

0

e(σ)dσ
)

+ δDC , (26)

where K ∈ R3×3 denotes a diagonal (possibly time-
varying) proportional gain matrix, TI ∈ R3×3 a constant
diagonal matrix representing a reset or integral time, and
δDC ∈ R3 denotes a constant vector representing a trim-
bias, which acts as a trim setting and is computed by
evaluating the initial conditions. The number of PI gains
is 6 except for δDC . The discrete form of the PI is given
by

δ(k) = K
(

e(k − 1) + T−1

I

k−1
∑

i=0

Tse(i)
)

+ δDC (27)

When substracting two consecutive terms of this discrete
formulation, we can remove the integral sum and achieve
the so-called PI controller in incremental form

δ(k) = δ(k − 1) +K · ts
(

ė(k − 1) + T−1

I · e(k − 1)
)

(28)

Following the same steps, and for completeness, we also
present the PID extension by simply considering the extra
derivative term ë

δ(k) = δ(k−1)+K ·ts
(

TD ë(k−1)+ė(k−1)+T−1

I ·e(k−1)
)

,

where TD ∈ R3×3 a constant diagonal matrix representing
derivative time.

3.4 Equivalence of INDI/TDC/PI(D)

Having in mind the found the equivalence between INDI
and TDC, and comparing terms from Eq. (24) with
Eq. (28), we have the following relationships as originally
found in (Chang and Jung (2009)) which are the relation-
ship between the discrete formulations of TDC and PI in
incremental form

K = (ḡ · ts)
−1, TI = k−1

P (29)

Whenever the system under consideration is of second-
order controller canonical form, we will have error dynam-
ics of the form ë + kD ė + kP e = 0, and considering the
newly introduced derivative gain kD related to ë we have

K = kD · (ḡ · ts)
−1, TI = kD · k−1

P , TD = k−1

D , (30)

This suggests not only that an equivalent discrete PI(D)
controller with gains < K, Ti, (Td, ) > can be obtained
via INDI/TDC, but doing so is more meaningful and
systematic than heuristic methods. This is because we
begin the design from desired error dynamics given by
Hurwitz gains < kP , (kD, ) > and what follows is finding
the remaining effector blending gain ḡ either analytically,
whenever G is well known, or by tuning according with
a proper estimate. As already mentioned, details on a
sufficient condition for closed-loop stability under discrete
TDC, and therefore applicable to its equivalent INDI, can
be found in (Chang and Jung (2009)).

In essence, this procedure is more efficient and much less
cumbersome than designing a whole set of gains iteratively.
Moreover, for flight control systems, the self-scheduling
properties of inversion-based controllers have suggested su-
perior advantages with respect to PID controls since these
must be gain-scheduled according to the flight envelope
variations. The relationships here outlined suggests that
PID-scheduling shall be done at the proportional gain K
via the effector blending gain ḡ, and not over the whole
set of gains < K, Ti, (Td, ) >.

4. LONGITUDINAL FLIGHT CONTROL
SIMULATION

In this section, robust PI tuning via INDI is demon-
strated with an example consisting of the tracking con-
trol design for a longitudinal launcher vehicle model. The
second-order nonlinear model is obtained from (Sonn-
eveldt (2010); Kim et al. (2004)), and it consists on lon-
gitudinal dynamic equations representative of a vehicle
traveling at an altitude of approximately 6000 meters,
with aerodynamic coefficients represented as third order
polynomials in angle of attack α and Mach number M .

The nonlinear equations of motion in the pitch plane are
given by

α̇ = q +
q̄S

mVT

[

Cz(α,M) + bz(M)δ

]

, (31a)

q̇ =
q̄Sd

Iyy

[

Cm(α,M) + bm(M)δ

]

, (31b)

where

Cz(α,M) = ϕz1(α) + ϕz2(α)M,

Cm(α,M) = ϕm1(α) + ϕm2(α)M,

bz(M) = 1.6238M − 6.7240,

bm(M) = 12.0393M − 48.2246,

and

ϕz1(α) = −288.7α3 + 50.32α |α| − 23.89α,

ϕz2(α) = −13.53α |α|+ 4.185α,

ϕm1(α) = 303.1α3 − 246.3α |α| − 37.56α,

ϕm2(α) = 71.51α |α|+ 10.01α.

These approximations are valid for the flight envelope of
−10◦ ≤ α ≤ 10◦ and 1.8 ≤ M ≤ 2.6. To facilitate the
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control design, the nonlinear missile model is rewritten in
the more general state-space form as

ẋ1 = x2 + f1(x1) + g1u (32a)

ẋ2 = f2(x1) + g2u (32b)

where:

x1 = α, x2 = q

g1 = C1bz, g2 = C2bm
and

f1(x1) = C1

[

ϕz1(x1) + ϕz2(x1)M
]

, C1 =
q̄S

mVT

,

f2(x1) = C2

[

ϕm1(x1) + ϕm2(x1)M
]

, C2 =
q̄Sd

Iyy
.

The control objective considered here is to design a PI
autopilot via INDI that tracks a smooth command refer-
ence yr with the pitch rate x2. It is assummed that the
aerodynamic force and moment functions are accurately
known and the Mach number M is treated as a parameter
available for measurement. Moreover, for this second-order
system in non-lower triangular form due to g1u and f2(x1),
pitch rate control using INDI is possible due to the time-
scale separation principle (Chu (2010); Sieberling et al.
(2010)). With respect to actuator dynamics, we consider
Ka = 1, and τa = 1e−2 in Eq.(5).

4.1 Pitch rate control design

First, introduce the rate-tracking error

z2 = x2 − x2ref
(33)

the z2−dynamics satisfy the following error

ż2 = ẋ2 − ẋ2ref
(34)

for which we design the following exponentially stable
desired error dynamics

ż2 + kP2
z2 = 0, kP2

= 50 rad/s. (35)

According to the results previously outlined, the incremen-
tal nonlinear dynamic inversion control law design follows
from considering the approximate dynamics around the
current reference state for the dynamic equation of the
pitch rate as in Eq. (13)

q̇ ∼= q̇0 + ḡ ·∆δ (36)

assuming that pitch acceleration is available for measure-
ment and the scalar ḡ to be a factor of the accurately
known estimate of g2

ḡ = kGĝ2, kG = 1.

This is rewritten in our formulation as

ẋ2
∼= ẋ20

+ ḡ∆u (37)

where recalling that ẋ20
is an incremental instance before

ẋ2, and therefore the incremental nonlinear dynamic in-
version law is hence obtained as

u = u0 + ḡ−1
(

ν − ẋ20

)

, (38)

with
ν = −kP2

z2 + ẋ2ref
, (39)

or more compactly

u = u0 + ḡ−1
(

− kP2
z2 − ẋ20

+ ẋ2ref

)

(40)

This results as desired, in the following z2−dynamics

ż2 = ẋ20
+ ḡ ·∆u− ẋ2ref

. (41)

Notice that we are replacing the accurate knowledge of f2
by a measurement (or an estimate) as f2 ∼= ẋ20

, which will
result in a control law which is not entirely dependent on
a model, hence more robust.

So far the incremental control laws are in continuous
form, but these are usually implemented with sampled -
time formulations. To that end, we replace the small λ
with the sampling period ts so that tk = k · ts is the k−th
sampling instant at time k, and therefore

u(k) = u(k − 1)+

ḡ−1
[

− kP2
z2(k − 1)− ẋ2(k − 1) + ẋ2ref

(k − 1)
]

,
(42)

where due to causality relationships we need to consider
the independent variables at the same sampling time k−1.

Referring back to the derived relationship between INDI
and PI control, the equivalent PI control in incremental
form is

u(k) = u(k − 1) +K · ts
[

ż2(k − 1) + T−1

I z2(k − 1)
]

,
(43)

with

K = (ḡ · ts)
−1, TI = k−1

P2
(44)

The nature of the desired error dynamics (proportional)
gain kP2

is therefore of an integral control action, whereas
the effector blending gain ḡ act as proportional control.
Having designed for desired error dynamics, and for a
given sampling time ts, tuning a pitch rate controller is
only a matter of selecting a proper effector blending gain
ḡ according to performance requirements.

Remark 3: Notice at this point that having the PI control
in incremental form introduces a finite difference of the
error state, which is the equivalent counterpart of what
has been considered the acceleration or state derivative
ẋ20

in INDI controllers.

Remark 4: Notice also that designing the PI control
gains via INDI is highly beneficial, since only the effector
blending gain is the tuning variable. This strongly suggests
that robust adaptive control can be achieved by scheduling
this variable online during flight and not the whole set of
gains.

Simulation results for the INDI/PI control are presented in
Figure 2, considering smooth rate doublets for a nominal
longitudinal dynamics model at Mach 2.0. The designed
INDI gains of kP2

= 50 rad/s and kG = 1 are mapped
to PI gains resulting in K = 100 ĝ−1

2
and TI = 0.02 s,

both controller showing the exact same performance and
closed-loop response as expected.

With this example demonstrate how a self-scheduled PI
can be tuned via INDI by departing from desired error
dynamics with the gain kP2

, and considering an accurate
effector blending model estimate ḡ = ĝ2.

5. CONCLUSIONS

This paper presented a meaningful and systematic method
for PI(D) tuning of robust nonlinear flight control systems
based on results previously reported in the robotics lit-
erature (Chang and Jung (2009)) regarding the relation-
ship between time-delay control (TDC) and proportional-
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Fig. 2. INDI/PI tracking control numerical simulation of
the nominal longitudinal flight model for kP2

= 50
rad/s and kG = 1

integral-derivative control (PID). The method was demon-
strated in the context of an example for the longitudi-
nal pitch rate tracking of a conventional nonlinear flight
model, showing the same tracking performance under
nominal conditions.

Being incremental nonlinear dynamic inversion (INDI)
equivalent to TDC clearly suggests that imposing de-
sired error dynamics, as usual for INDI control laws,
and then mapping these into an equivalent incremental
PI(D)-controller together with control derivatives leads to
a meaningful and systematic PI(D) gain tuning method,
which is very difficult to do heuristically.

We considered a reformulation of the plant dynamics in-
version which reduces knowledge of the effector blending
model (control derivatives) from the resulting control law,
reducing feedback control dependency on accurate knowl-
edge of both the aircraft/engine and effector blending
models, hence resulting in robust and model-free control
laws like the PI(D) control. Since usual flight control
systems involves gain scheduling over the flight envelope,
another key benefit of this result is that scheduling only
the gain corresponding to the effector blending seems
promising for adaptive control systems. Since the decou-
pling ḡ is just dependent on the non-dimensional control
derivatives scaled by dynamic pressure, this already yields
a scheduling procedure of this term.
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