
Centre for Geo-Information

Thesis Report GIRS-2004-17

Constraints in geo-information models

Applied to geo-VR in landscape architecture

J.H. Louwsma

M
ay

 2
00

4

INSERT INTO prcv_treesrd_point
*
ERROR at line 1:
ORA-20003: 3: The tree (x=104999.32, y=482677.4) is placed inside
or within a distance of 1 meter from 1 paving or soft paving surface(s).
A tree must always be placed >1m from paving or soft paving.
ORA-06512: at "ORAGIS02.PCK_SALIX", line 220
ORA-06512: at "ORAGIS02.AST_SALIX", line 64
ORA-04088: error during execution of trigger 'ORAGIS02.AST SALIX'

Constraints in geo-information models

Applied to geo-VR in landscape architecture

Author

J.H. Louwsma
Reg.nr.

TU-Delft: G9530353
WUR: 800509-530-080

Supervisors Delft University of Technology

Prof. dr. ir. Peter van Oosterom
Dr. dipl.-ing. Sisi Zlatanova

Supervisor Wageningen University and Research centre

Dr. ir. Ron van Lammeren

May 2004

Wageningen, The Netherlands

Thesis for:
Delft University of Technology

Faculty of Civil Engineering and Geosciences
Department of Geodesy
Section GIS-technology

Thesis code number: GRS-80326

Wageningen University and Research Centre
Laboratory of Geo-Information Science and Remote Sensing

Thesis Report: GIRS-2004-17

5

Preface

This thesis is the final part of my study Geodesy at the Technical University in Delft. This research wasn’t
done in Delft but in Wageningen, because it’s actually a research for the centre of geo information (CGI)
of Wageningen University and Researchcentre (WUR). The CGI is more intersted in using GISs and in
Delft the emphasis is more to the technology of GISs. The combination of these two point of views was
very interesting and I enjoyed my stay in Wageningen (also because of the nice natural environment!).

When doing this thesis I had two supervisors; Sisi Zlatanova of the TUDelft and Ron van Lammeren of
WUR. Both supported me a lot and gave me good feedback about my activities. Also Peter van
Oosterom (TU Delft), John Stuiver (WUR), Theo Tijssen (TU Delft), Henk Kramer (WUR) and Arend
Ligtenberg (WUR) helped me on some (or more) parts. I’d like to thank them all very much for their time
and for sharing their expertise. And last but not least, I want to thank my friend Matthias Kruizinga for
his great support.

Jildou Louwsma

Wageningen, May 2004.

7

Content

Preface ...5

Abstract ...9

1. Introduction ... 11

2. Background information.. 13
2.1 Geo-data framework.. 13
2.2 Examples of geo-VR applications ... 14
2.3 Structure SALIX-2 as integration of DBMS, VRML and Java ... 17
2.4 External authoring interface ... 17
2.5 Conclusion... 18

3. Constraints ... 19
3.1 Description of objects ... 19
3.2 Object relations... 20

3.2.1 Spatial relations ... 20
3.2.2 Temporal relations.. 22
3.2.3 Quantity relations .. 23
3.2.4 Thematic relations .. 23
3.2.5 Conclusion object relations .. 23

3.3 Typology of constraints... 23
3.3.1 Forced and restricted relations ... 24
3.3.2 Simple and complex relations.. 24
3.3.3 Constraints as object relations... 25

4. Constraints in SALIX-2..27
4.1 Object model of SALIX-2 .. 27
4.2 Example constraints for implemting in SALIX-2... 27
4.3 Constraints as object relations in SALIX-2.. 29

5. Approaches for implementing constraints in a geo-VR environment 31
5.1 Implementing constraints in the DVM... 32

5.1.1 Possible moment of constraint checking in the DVM of SALIX-2c ... 32
5.1.2 Introduction VRML ... 33
5.1.3 Collision detection in VRML .. 34
5.1.4 Touch sensors in VRML... 35
5.1.5 VRML Script and routing .. 36
5.1.6 Conclusion of implementation possibilities in DVM ... 36

5.2 Implementing constraints in DLM.. 36
5.2.1 Structured Query Language.. 37
5.2.2 Integrity constraints in DBMSs.. 38
5.2.3 Integrity constraints in Oracle Spatial ... 39
5.2.4 Implementing constraints using Oracle’s CDM RuleFrame... 40
5.2.5 Implementation constraints using ArcSDE .. 41
5.2.6 Conclusion of implementation possibilities in DLM.. 42

5.3 Freeware or commercial software? .. 43
5.4 Criteria for best implementation approach of constraints... 43
5.5 Conclusion... 44

6. Conceptual model of SALIX-2c ...47
6.1 Most suitable implementation approach... 47
6.2 Unified Modelling Language... 47
6.3 Object Constraints Language ... 48

8 constraints in geo-VR

6.4 Static system structure of SALIX-2c... 50
6.5 Communication between application and user.. 50
6.6 Dynamic system structure of SALIX-2c .. 50

6.6.1 Starting the application... 51
6.6.2 Making a new plantation layout... 51
6.6.3 Loading a plantation layout ... 52
6.6.4 Adding a new object ... 53
6.6.5 Drag object to another position.. 54
6.6.6 Deleting an object ... 54
6.6.7 Saving a plantation plan .. 54

6.7 Conceptual Design of triggers to implement constraints .. 56
6.7.1 The example constraints as assertions ... 56
6.7.2 The example constraints as database triggers... 58

7. Constraint implementation in SALIX-2c ...59
7.1 Constraint implementation in DLM.. 59
7.2 Post constraint implementation ... 61
7.3 Conclusion... 63

8. Conclusions and recommendations...65
8.1 Conclusions ... 65
8.2 Discussion.. 66
8.3 Recommendations.. 67

Literature ...69

Abbreviations...73

List of figures...75

List of tables ..76

Appendix A. Static structure SALIX-2.. 77

Appendix B. Querying databases ... 81
B.1 SQL...81
B.2 MSAccess...81
B.3 Oracle Spatial 9i: ...81
B.4 ArcGIS 8.3...83

Appendix C. Agents .. 85

Appendix D. Required modifications of application before constraint implementation 87

Appendix E. Trigger codes... 89

Appendix F. DBHandler class ... 99

9

Abstract

Geo-VR applications can be created for a better communication about spatial data, especially for spatial
planning purposes. The design process, the presentation and the interactions about spatial plans can be
supported by these geo-VR applications.

The centre for geo-information (CGI) of Wageningen University and Research centre developed
among others a simulation program for landscape architectural design in virtual reality; SALIX-2. To
develop landscape architectural plans in SALIX-2, the growth of plantation objects (geo-objects) is
simulated. Some improvements are possible for SALIX-2 to make it more realistic and one of the
improvements concerns interaction of geo-objects. Plantation objects should not be allowed to be placed
on locations that are not logical, such as in the water or on a road. This is still possible in SALIX-2 and
this can be restricted to make the application more realistic. Therefore this research to the
implementation of constraints in geo-VR was done. The objective of this research was to define a way to
specify and implement constraints in a geo information model.

A number of constraints are specified for and implemented in SALIX-2 to serve as an example for
implementing constraints in a geo-VR application. SALIX-2 is an application consisting of a VRML
world for visualization, a Java applet for more interaction possibilities with buttons and scroll down
menus and a DBMS for the storage of all data. Because SALIX-2 consists of a DBMS, Java and VRML,
this research is also limited to geo-VR applications consisting of these components.

Many geo-VR applications are looked at but none of them had constraints to restrict the virtual world in a
way that actions inside the application looked more like the real world actions. Therefore a general
definition of a constraint was found (Molenaar, 1998) and converted to a definition of constraints for
geo-VR applications. This definition is: a condition that must always be true for objects in a 3D model.
An object description consist of attributes, behaviour and relations of that object. The different types of
relations are:
- spatial topology;
- spatial metric;
- temporal;
- quantity;
- thematic.
With these types of relations also the different types of constraints are defined. When more than one
constraint is defined, a check is necessary if all specified constraints do not conflict each other. In this
research this check is only manually done in the conceptual phase.

Geo-VR applications consisting of VRML, Java and a DBMS have two different implementation
approaches for constraints in the application. The implementation can be done in the digital visualization
model (DVM) or in the digital landscape model (DLM). The question ‘what is the best way to implement
constraints’ cannot be answered in general for all geo-VR applications, because each application is unique.
To decide which implementation approach is most suitable for which application, some criteria have to
be taken into account.

The possibilities of the DVM (Java and VRML) of the application for implementing constraints are very
limited for VRML and good for Java. The only nodes in VRML that can make the virtual world more
realistic are the collision detection and scripting. These nodes can add dynamic functionality to the virtual
world, like starting a sound when an object is touched. The constraints that are defined in this research
cannot be implemented using these VRML nodes.

The Java part of the application takes care of the more complex interaction possibilities in the
VRML world and of the communication with the DBMS. Java is a programming language so there is a lot
possible, including constraint implementation. However, for the constraint checking everything has to be
designed and programmed from scratch and the constraints are not stored on a central place. Moreover,
when new constraints are implemented, the program code has to be tested and debugged again.

In the DLM (DMBS) all constraint types can be implemented. Literature about DBMSs all mention the
possibilities of implementing integrity constraints, however the possibilities of integrity constraints are

10 constraints in geo-VR

limited to rather simple constraints. One should be able to implement complex constraints by using
general and base table constraints. However, general constraints only exist in theory (no mainstream
DBMS has implemented them) and the base table constraints cannot contain subqueries in the check.
The solution of implementing complex constraints in the DBMS means using database triggers and
procedures. The advantages of using triggers with procedures are that:
- they are stored on a central place;
- it is possible to enable and disable database triggers separately;
- existing functions and operations of the DBMS can be used inside the triggers and procedures;
- software development environments often offer functionality to generate the code for

triggers/procedures needed for the constraint implementation.

For the constraint implementation in SALIX-2c triggers are used to start the constraints checking and
stored procedures and functions are invoked inside the triggers for the computations. Oracle is used as
DBMS for this implementation and the syntax of Oracle database triggers is very clear. The original Java
code is changed so Oracle could be used instead of MSAccess. Also some other changes were made to
improve the application (like working with RD coordinates and give textual feedback about constraints).

Feedback about the constraints can best be done beforehand when the application is started and
afterwards when some changes are made. A combination of visual and textual feedback is the best
solution. Visual feedback is desirable, because a picture is more than thousands words and textual
feedback is desirable because this can give more detailed information.

The combination of before, after, visual and textual feedback is however not easy to implement.
VRML nodes must be generated to give visual feedback, for example a red area. The geometry of this
area must actually be constructed in the DBMS and then a conversion to a VRML node with a certain
appearance is necessary. It is difficult to create VRML nodes in Oracle. It is probably easier to generate
such nodes in software with 3D extensions. Because the visual feedback was too complex, only textual
feedback is implemented in SALIX-2c.

This research was only done for applications consisting of VRML, Java and a DBMS. This is rather
limited and therefore a closer look to other geo-VR applications is desirable (e.g. applications with a
gaming environments or geoVRML). They can have different system structures and implementation
possibilities for constraints.

Furthermore DBMSs and their possibilities for implementing complex constraints can be
investigated in more detail. Here database triggers and procedures are used, but there also exist
development tools (like Oracle’s Custom Development Method) and the Unified Modelling Language
with Object Constraint Language. These tools/languages can be of help with modelling and
implementing functionality to databases and can also offer possibilities for automatic code generation and
easy constraint implementations.

11

1. Introduction

The overall approach of geographical information is rapidly expanding from only two-dimensional digital
spatial data to 2½D and full 3D models. 3D models can among other things be used for spatial planning.
The design process, the presentation and the interactions about spatial plans can be supported by 3D
models, which especially improve the communication about spatial planning.

One of the institutes in the Netherlands who is active in spatial planning support with 3D models is the
centre for geo-information (CGI) of Wageningen University and Research centre (WUR). They already
finished a research on games for interactive spatial planning (Wachowicz et al., 2002) and also developed
a simulation program for landscape architectural design in virtual reality (SALIX-2) (Lammeren et al.,
2003).

SALIX-2 is a simulation program, which is meant for students of the study landscape architecture of
the Wageningen University to develop landscape architectural plans. With SALIX-2, the idea to develop a
virtual environment application of simulations of the growth of plantation objects (bushes and trees) in a
park environment was fulfilled. This research was possible due to the program Virtual Green
Environment (VGE) and the education-innovation of the ministry of Agriculture, nature and food quality
(project STUWWAL) (Lammeren et al., 2003).

SALIX-2 is thus a virtual environment application of simulations of geo-objects (plantation objects)
with a map of a park as basis. Therefore it can be seen as an interactive spatial planning application. Still a
lot of improvements are possible for SALIX-2 to make it more realistic. Examples of possible
improvements concern (Lammeren et al., 2003):
- levels of detail: representation of plants and trees is very abstract in SALIX-2 (more realistic

representation of geo-objects);
- constrained geo-objects: plantation objects can be put on locations that are not logical, such as in the

water or on a road (more realistic actions within the application).
This research concentrates on constrained geo-objects. More specifically, the objective of this research is:

Defining a way to specify and implement constraints in a geo-information model

SALIX-2 will serve as a case study to implement a representative selection of constraints. This
implementation is a test of the suggested solution Some examples of constraints could be:
- Determine a minimum density for objects in an area;
- Some objects are not allowed to be placed on some surfaces (like trees on water);
- Determine a certain distance of the edge of a surface (for example: a tree can only be placed in a river

if it lies within a distance of 1 meter of the bank).

To reach the objective, the next questions should be answered:
1. Is there already been a research on this area?
2. What are constrained objects and what types of constraints exist (e.g. geometrical, temporal, thematic,

topological)?
3. What is the current application structure of SALIX-2 (Virtual Reality Modelling Language (VRML),

Java, External Authoring Interface (EAI), connection to the database and agent technology)?
4. Which 2D constraints can be implemented in SALIX-2 as a good example?
5. What is the best way to implement these constraints (storage in database or VRML environment,

accessibility of constraints, interactivity to change the constraints). The plantation objects can be
constrained but also some areas of the ground surface can be constrained.

6. How and when can the user of the application be informed about the constraints? (Show the user a
list of defined constraints and a good and detailed feedback is necessary).

Within this research some restrictions are made. First of all only constraints for geo-VR applications are
looked at, but these can also be applied to other geo-information models. Furthermore there are a lot of
constraints one can think of, but within this research only constraints between point objects and polygon
objects are considered. Furthermore SALIX-2 is mentioned very often in this report and every time it
serves as an example to make the contents of this report more clear. Eventually some constraints are

12 constraints in geo-VR

implemented in SALIX-2 to serve as an example for an implementation in a geo-VR application. The
application with constraints is called SALIX-2c (where c stands for constraint).

Chapter 1 is the introduction of this thesis. In this chapter the objective of the thesis and questions to
reach this objective are formulated. In chapter 2 some background information is given with respect to
literature in the field of constraints in geo-VR applications. Chapter 3 discusses the different relations
between objects. All different types of relations and corresponding constraints are listed in this chapter.
In chapter 4 the constraints for geo-VR applications are applied to SALIX-2 and some example
constraints for an implementation in SALIX-2 are formulated. The possible implementation approaches
for constraints in geo-VR applications are described in chapter 5. A distinction is made between the
implementation in the digital visualization model and the digital landscape model of the application. The
implementation of some example constraints in SALIX-2 is a kind of test for the theoretical solutions.
Chapter 6 discusses the conceptual model of SALIX-2c. In chapter 7 the implementation of constraints
in SALIX-2c is discussed with all its remarks. Chapter 8 gives the conclusions and recommendations for
future research.

13

2. Background information

Geo-VR application can vary in many ways; in their application structure, in the used spatial data as well
as in their final purposes. All geo-VR applications contain models that represent real world objects and
can be seen as visualization models of the accompanying landscape models. Van der Schans introduced
the WGDM model (Figure 2-1), which represents the relations between the real world (W), the graphical
representation (G), the mental model (M) and the digital model (D) of this world (Schans, 1997). The idea
behind this WGDM model is the capacity of humans to describe the real world in a model (MLM) and to
visualize this model in the human’s brain (MVM). Graphical visualizations of these MVM’s could in
history only have an analogues form, like maps, drawings and text. In the recent digital world also digital
models exist. The digital landscape models (DLM) consist of digital data describing the landscape and the
digital visualization model (DVM) is the visualization of this data. The structure of each geo-VR
application (including constraints) can be related to the digital part (DLM/DVM) of the WGDM
framework, which is described in more detail in the next section.

Within this research also a lot of terms are
used. The first is a geo-VR application; within
this research it has the meaning of an
application concerning spatial data with 3D
visualization and interaction possibilities.

The definition of constraints within
such geo-VR applications can vary, but in this
research the meaning of a constraint is a
restriction of the interaction possibilities
within the application to make these
interaction possibilities more similar to the
real world possibilities (for example no
placement of trees on water surfaces are
allowed).

After the DLM/DVM framework in section
2.1, some examples of existing geo-VR
applications with their structure related to the
DLM/DVM framework and with their
constraints (if implemented) are described.
SALIX-2 is an application where a database,
geographic information, VRML and Java are
combined and where interaction with the 3D model is possible. The VR examples given in this chapter
are mostly selected because of the relation of the application structure to the structure of SALIX-2. In the
last section the structure of SALIX-2 is described in more detail and is also related to the DLM/DVM
framework.

2.1 Geo-data framework

The structure of a geo-VR application can be compared with the
DLM/DVM framework illustrated in Figure 2-2. The VR
applications have a database for storing the data that provide
information about the landscape in real world (the DLM) and a VR
representation for the visualization of this data (the DVM). All geo-
VR applications contain:
- objects representing the world;
- functions of these objects and/or of the application.
The objects (and their functions) are stored in the database on the
DLM side of the framework and are represented in the
visualization of the application on the DVM side of the framework.

Figure 2-1: WGDM model
(from Schans, 1997)

DLM DVM

Geo-database:
2D
2½D
3D

VRML scene:
2D

2½D
3D

 Objects
Functions

User actions

Figure 2-2: DLM/DVM framework
for a geo-VR application

14 constraints in geo-VR

Each geo-VR application has its own structure of DLM and DVM and also the relations between the
DLM and DVM are different per application. Users are able to interact with the application. These
actions concern the objects and are actually not part of the DLM or DVM.

This research is about applications (with constraints) and tools to build/adapt the applications (which can
also be used for implementing constraints). To build an application, base tools exist and some of them are
even standardised, like C++, Java, SQL, UML, OCL, XML/GML, VRML and X3D. Also in the
application domain tools exist to make the building process of an application (or model) easier, like 3D
studio Max. And eventually the application itself exists. The system structures of Geo-VR applications
discussed in this research vary, but the tools for making the applications are mostly: a GIS, database and
VRML + Java for visualization over Internet or other VR environment.

A GIS is a computer-based information system that enables capture, modelling, manipulation,
retrieval, analysis and presentation of geographically referenced data (Worboys, 1998). An existing
commercial GIS or some other application concerning geographic information can be used for geo-VR
applications.

A data set is a unified computer-based collection of data, shared by authorized users, with the
capability for controlled definition, access, retrieval, manipulation and presentation of data within it. A
Database management system (DBMS) is a software system that manages the data set. The DBMS
handles data definition, manipulation and retrieval, transaction management, performance monitoring,
back up and recovery. (Worboys, 1998) A data set for an application can be a DBMS or files stored on a
server.

For visualization of the data, VRML can be used and additional Java programming make more
(inter-)actions possible within the visualization. For the visualization of a VRML file an Internet browser
with an additional software package is necessary. That’s why VRML is a visualization language for
distribution over the Internet. Also other VR environments can be used for the visualization (like
geoVRML, X3D, 3D extensions in existing software packages or gaming environments).

The different approaches of interaction between the DLM and DVM of the example applications are
discussed in the next section of this chapter. For each example the following aspects are discussed:
- Which tools are used for the application and how does the application structure look like? (GIS,

DBMS, VRML + Java or other VR environment)
- Where is the data stored and how does this data flow through the application?
- In what way is the visualization of the data organized (usage of VRML, on the fly visualization, or

other visualisation engine)?
- Are user (inter-)actions possible and if yes, are they constraint?
The last geo-VR application discussed in this chapter is Salix-2. Also for this application the above-
mentioned aspects are described.

2.2 Examples of geo-VR applications

In this section some example applications are looked at in more detail to find out if already applications
exist with some constraints in it, and if not to get an idea of the different system structures where
constraints can be implemented in. There are many VR applications, but the examples given in this
section give a good overview of the diversity of applications and of application structures consisting of a
GIS or DBMS and visualization over the internet. The first application is a combination of GIS and
VRML, the second of GIS, DBMS and another VR environment, the third application is a combination
of a DB and VRML the fourth is an integration of a DB, GIS and VRML and the last one is SALIX-2 as
combination of DB and VRML.

Integration of GIS and VRML
B. Huang et al. (2001) described the advantages of the combination of GIS and VRML (distribution via
Internet) for setting up a platform for distributed spatial decision-making. In such an integration GIS
provides quite rich spatial data, VRML helps to visualize the data with quite a realistic approach and the
Internet facilitates information dissemination. A prototype toolkit, the GeoV&A (Visualization and
analysis), is designed to serve as a testbed for this approach. Its implementation is on the basis of the
desktop GIS ArcView (more info on URL 14) together with Internet techniques such as Java, Common
Gateway Interface and HTML programming. The architecture of GeoV&A consists of a:

2. Background information 15

- java-based client on the web browser;
- web server with an ESRIMap extension in ArcIMS [URL 14];
- 3D V&A server, i.e. an application server using ArcView and its 3D extension via Avenue

programming [URL 14].
It is obvious that this application has a client-server structure and that this structure is also the distinction
to the DLM and the DVM. The server side of the application contains the data of the DLM and a VRML
file is produced to send to the client as the DVM of this DLM.

The final 3D VRML model is created using ArcScene [URL 14]. Interaction with the VRML scene
generated by the 3D V&A module is realized by the combination of Java scripting with VRML and the
External Authoring Interface (EAI) method. EAI is an interface for the communication between Java and
VRML and is described in more detail in section 2.4. The interaction possibilities of the user consist of
querying the world by clicking on a button and specify the query. This query is send to the server, which
generates an answer using the DLM and the answer is send back to the user to be visualized in the DVM.

The interaction possibilities only consist of querying the model. Direct manipulation of the VRML scene
is not (yet) possible. Constraints as defined in this research (restricted interactions) are not implemented
in this application.

Integration of GIS, DBMS and VR environment
E. Verbree et al. (1999) developed a 3D GIS&VR system (Karma VI) based on existing GIS and VR
technology that uses three views to support design, development and presentation of large infrastructure
plans. The three views (types of visualization) are: plan view, model view and world view. The plan view
visualizes the data as a conventional map. The model view provides a 3D bird-eye’s view on a partly
symbolic and simplified 3D representation of the data. The world view gives a full immersive and photo-
realistic 3D display. These views can be used simultaneously or intermittently and each provides
interaction possibilities that are appropriate to that view. Through this interaction across views it is
avoided that VR is used only as a presentation technique.

Karma is further developed and now it is called Key to virtual Inside (K2vI) (van Maren, 2003).
K2vI is a VR interface on spatial data that supports visualisation, manipulation and editing of the spatial
data from within a VR environment. The architecture of the multi-view approach of this system consists
of an ArcSDE server [URL 14] as central GIS/DBMS, a WorldToolKit from Sense8 [URL 15] as central
VR-system and the three views as user interface. Each view uses its own geometric model representation
(the DVM) of the data stored in the GIS database (the DLM). With the views all using the same DLM
(the same GIS data), consistency between the views is maintained. Using the multi-view approach, the
design, decision-making and communication in the process of infrastructure design (or spatial planning)
can be supported by an abstract map, a 3D scale model as well as by a very realistic 3D VR scene.

Manipulate your spatial data:
• Select by object, layer or polygon.
• Move and rotate the selected objects use the mouse or Spacemouse.
• Undo changes.
• Save the changes in the GIS database. Changes can be saved directly to the original data in SDE or ArcView

(coming soon).
• Collision Detection. Before the actual saving of the changes, K2Vi carries out a collision detection in the K2Vi

scene as well as in the GIS database.
• Delete individual or groups of GIS objects in the K2Vi scene.
• Delete individual or groups of GIS objects in GIS database.
• Create new 2D GIS objects from 3D CAD models (footprints).
• Save these new GIS objects to the GIS database.
• Scale and rotate CAD model to fit the GIS object boundaries (footprint).
• Save CAD model file location, position and scaling parameters with the associated GIS object.
• Save linked texture bitmaps parameters (filename, bitmap offset, UV tiling, angle, transparency, shading) with the

associated GIS object.

Figure 2-3: manipulation possibilities within K2vI systems
(from [URL 12])

16 constraints in geo-VR

Within K2vI manipulation of the 3D model is possible. The list of possible manipulations can be seen in
Figure 2-3. Also basic GIS functionalities (identify, 2D buffering by selecting objects and setting
parameters, and 3D measuring by pointing and dragging a 3D line) are possible. Objects and interaction
possibilities are not restricted in this application, so also this application gives no information about
constraints in a geo-VR application. However, the interaction possibilities are great for this application!

Integration of a DBMS and VRML (extended with Java code)
Xiang LI et al. (2002) discussed a participatory comprehensive plan-making process based on virtual
geographical environment. The system structure can be divided into three levels: the input level, the
server level and the data level. The input and server level communicate through the Internet. In the input
level, citizens can explore the virtual city, discuss and participate in the planning process (by leaving
comments). This is the DVM of the application. The major functions of the server level are defining and
maintaining virtual meetings, analysing and managing the meetings’ result or the comments. Geo-
referenced data, user information and participating results (comments) are saved and managed by the
DBMS in the DLM of the application. VRML is used to create and maintain the models, Java is used to
do the rest things and also here (like the first example) EAI is used for the communication between Java
and VRML.

The structure of this application is relative simple. In this application it is not possible for citizens to
adapt the virtual city but only discuss about it. The architecture of this application doesn’t contain a GIS
package so also analysing possibilities of the virtual world is limited. Because of the limited possibilities of
interaction (discuss and leave comments), constraints are not implemented in this application.

Integration of a database, GIS and VRML
Andrew Lovett et al. (2002) described a visualization of sustainable
agricultural landscapes. The case study area is situated on the
boundary of Oxfordshire, Gloucestershire and Wiltshire. Drawing
upon information obtained during ecological fieldwork and
surveying farmers, as well as discussions with a range of stakeholder
organisations, four scenarios for the future landscape of the study
area were devised. For each future scenario a scenario map was
created. Because 3D visualizations are helpful for getting a full sense
of implications, the scenario maps were supplemented with 3D
visualizations for key regions within the study area. These 3D
visualizations were made using the Pavan virtual reality toolkit that
operates within MapInfo [URL 13]. Comprehensive VRML
authoring tools were available in the Pavan software. The main
stages in the production of the VRML landscape models can be seen
in Figure 2-4. In the stage ‘add features to be modelled and set
properties’ trees and bushes were added to the model using the
Pavan vegetation modelling tools. First the characteristics of the
required feature were specified and subsequently the feature was
positioned by a mouse click.

Arc/info database
(2D geometry and attributes)

Select features and assign
symbolisation

MapInfo database
(2D geometry and attributes)

Add features to be modelled and set
properties

Compile VRML code

Create VRML project framework in
Pavan

Transfer data files

E

View VRML model with browser
software

xternal VRML files (3D geometry and
attributes)

Editing the VRML model was not possible for the participants
and stakeholders of the study area. Experience with GIS would be
necessary as well as some patience to construct a new VRML model.
The Pavan software is suitable for placing vegetation on specified
locations in the 2D map and constructs a full 3D model of the entire
environment afterwards. But adding, deleting or changing the
position of vegetation is only possible in the 2D map and a new 3D
model has to be constructed afterwards again. Figure 2-4: The main stages in the

production of the VRML
landscape models using Pavan.
(from Andrew Lovett et al. 2002)

The DLM is thus the 2D Arc/Info database (see Figure 2-4),
which is a GIS package and not a DBMS. The DVM is the VRML
model constructed after each adaptation in the DLM. This system
structure is less suitable for interactive spatial planning, because
experience is necessary to adapt the DLM.

2. Background information 17

2.3 Structure SALIX-2 as integration of DBMS, VRML and Java

SALIX-2 is an application designed for students of landscape architecture to design a park environment
with trees and bushes (plantation layout) and to visualize this design on different moments in time (trees
and bushes can grow in SALIX-2). The user can load and make new plantation layouts. Within a
plantation layout the user can also add, delete and replace trees and bushes by clicking buttons in the java
panel in combination with mouse clicks in the VRML scene.

In SALIX-2 a DLM and a DVM can be indicated like all other applications described before. The DLM
consist of a database (MSAccess) filled with tables. For each separate plantation layout a separate table
exists in the DBMS filled with all plantation objects and their locations in that layout. A separate table
exist for the plantation object types and their behaviour including the appearance in VRML. An image
serves as ground surface for the study area. This image doesn’t contain information about the geometry
of the study area and is therefore not stored in the database.

The plantation layout with all plantation objects and the ground surface are visualized in a VRML
browser, which is the DVM. Java is used to add some interaction buttons to the DVM for more
interaction possibilities. The connection between VRML and Java is also here done by the EAI (see next
section). Java connects the DVM and the DLM.

When loading a plantation layout, all objects are selected from the DBMS and are temporary stored as
separate rows in the DBObjects vector. This vector contains all id’s and x, y and z coordinates of all
objects of the plantation layout. This vector is changed when the VRML model is changed (by the user).
These changes are not immediately stored in the DBMS, but only when the plantation layout is saved. A
plantation layout is saved after the ‘save’ button is clicked by the user. The only restriction that exists for
manipulation possibilities of the 3D scene is that objects can only be placed on the ground plane image,
not beside or floating over the ground plane.

2.4 External authoring interface

Java and VRML communicate with each other through EAI. The following text comes from [URL 3] and
[URL 11] and starts with an example that illustrates what the EAI does.

For instance, if Java wants to change the colour of a sphere in the VRML world, it would make a call
to find the sphere by asking for it by name. Then it would make a call to find the colour field of the
sphere. Then it would make a call to change the colour of that field. In VRML, you can name any
node. That is the name the Java applet is asking for. Most nodes can sent events. When the Java
applet finds the colour field and changes the colour of that field, the VRML world receives an event
to change the colour, processes that event, and voila, the sphere changes colour. [URL 3]

To receive notification when an eventOut is generated from the VRML scene, the Java applet must
first implement the callback() method of the EventOutObserver. Next the advise() method of
EventOut is passed to the EventOutObserver. Then whenever an event is generated for that
eventOut the callback() method is executed and passed the value and timestamp of the event. This
value is passed to the callback() method and can be used by the applet author to pass user defined
data to the callback. [URL 11]

Everything you can do within a script node (e.g. by using Java/VRMLScript) you can do with the
EAI. However, in many situations it is better to use the Script Interface. Here are a few typical
situations where the EAI is needed or should be used:
- Control of interactive multimedia presentations involving more than VRML;
- Visualization needing a 2D interface applet that controls the VRML scene in real time (e.g. users

slides a button and something grows/shrinks/moves in the scene);
- Custom VRML navigation;
- Multi-user worlds with chat windows and other networking applications that need a user

interface applet. [URL 3]

18 constraints in geo-VR

The previous text only describes the communication between VRML and the Java applets used for the
more complex interaction possibilities of the application. Besides this communication also
communication between Java and the DBMS is necessary. This can be done in different ways. For
SALIX-2 java applets are used for this communication, but also an intelligent way of handling this
communication can be done using agents. A short description of agents is given in Appendix C, but
within this research the agent technology was not investigated..

2.5 Conclusion

Literature about the described geo-VR applications does not mention constraints in these applications.
Also a definition of a constraint in a geo-VR context and the implementation possibilities are not
mentioned. The different system structures of the described applications can serve as starting point for
the discussion about the possible implementation approaches, but for the definition of constraints in geo-
VR more general information technology (IT) literature must be used.

19

3. Constraints

In literature about geo-VR applications, hardly anything is said about constraints in such applications.
Therefore it is necessary to find additional literature about constraints in general and different types of
constraints. CAD/CAM literature mention constraints but this is a different field of research and
therefore not taken into account here.

Constraints within this research are integrity constraints concerning actions and responses within the
application model. They should (almost) be similar to the real world actions and responses. Also the
ability to formulate constraints to get a 3D model answering predefined conditions (e.g. the area in the
middle of the scene must stay empty) must be presented.

First of all a definition of the term constraint used in
this research is necessary. A dictionary gives a definition
of a constraint (in the context of programming and
mathematics) as a relation, often equality or inequality
relation, between the values of one or more variables
(often two), for example x>3 is a constraint on x. In the
field of geo-information Molenaar (1998) defines
consistency or integrity constraints as conditions that
must always be true for data items in a database.
Adapting these definitions to make it suitable for this
research, the definition can be formulated as:

DLM DVM

Geo-database:
2D
2½D
3D

VRML scene:
2D

2½D
3D

Constraints
concern …

Objects
…
…

Figure 3-1: Constraints concern objects in
the DLM/DVM framework.

a condition that must always be true for objects in a
3D model

In this definition the objects play an important role. A detailed description of objects is therefore
desirable to define constraints for geo-VR applications. This description is given in the following section.
Constraints can be formulated after the description of objects, this is done in section 3.2. Constraints for
SALIX-2 are given in the next chapter.

3.1 Description of objects

Objects in the digital geo-information framework are objects stored in the DLM and visualized in the
DVM. Constraints are conditions concerning objects, so constraints can also be implemented in the DLM
or DVM, see also Figure 3-1. Objects can be described by their (Zlatanova, 2000):
- attributes;
- behaviour;
- relations.

The attributes used for the object description can be divided into thematic and geometric characteristics.
The thematic characteristics specify the meaning, usage, etc. of objects in the real world. The geometric
characteristics refer to position (and orientation), shape and size of objects in the real world. The
attributes are mostly defined on instance level (attributes are different for each object).and not on class
level (for all objects of the same type).
The behaviour represents the characteristics of objects and can concern:
- operations on geometry (e.g. the possibility of deleting, updating or adding that object)
- reactions of objects to events (e.g. reactions to a mouse click)
- reactions to interactions with other objects (e.g. defines what is going to happen when a car touches a

building in the virtual world)
- degree of immersion (e.g. the ability to enter a building and explore the object in detail in the virtual

world).
An example is the ability of a door to be open or to be closed. The behaviour is mostly on class level and
not on instance level.

The relations of an object are the relaions to other objects. The relations can concern spatial
information (spatial relations) and non-spatial information, like time (temporal relations), an amount

20 constraints in geo-VR

(quantity relations) and thematic attributes (thematic relations). Relations can be defined both on class
level (e.g. all bushes never stand in the water), but also on instance level (the tree with id 21 must be in
the water).

The detailed object description (attributes, behaviour and relations) can for example be applied on the
SALIX-2 plantation objects. The attributes of the plantation objects are specified in the DLM tables
(position, VRML description, etc.). The behaviour is specified in the DVM using Java and VRML
(Touchsensors and delete/add/replace possibilities). The relations of the objects are missing for the
plantation objects in SALIX-2.

Defining conditions that concern attributes, behaviour and relations of objects can constraint the
geo-VR application. Constraints concerning the attributes or behaviour of an object are unary constraints
(concern only one object). Constraints that concern relations of objects are binary (concern two objects)
or set constraints (concern a set of objects).

SALIX-2 gave rise to this research to constraints in geo-VR applications and especially the
(constrainted) relations between objects are of interest for this application. With relations between objects
some patterns and complex constraints can be formulated (this in comparison to rather simple constraints
concerning the attributes and behaviour of one object). Furthermore many different kinds of object
relations exist. So a closer look to object relations is necessary. In this research the object relations are
limited to binary relations. Conditions concerning the behaviour and attributes of objects are not further
discussed in this research.

3.2 Object relations

Relations between objects A and B can be formulated as one relation but also as part of the description of
both object A and object B. Look for example to the relation ‘object A must be inside object B’. A part of
object A’s description is ‘must be inside B’ and a part of object B’s description is ‘must contain object A’.
The object relations can therefore be derived from the relation between objects (which is formulated as one
sentence).

The possible binary relations are described in this section and these relations are formulated as
relations between objects (and not as separate object relations). The geometric or spatial relations are
described first, followed by temporal, thematic and quantity relations. With these four relations many
constraints can be formulated, which is done in section 3.3. In this section also object relations are
derived from these relations between objects.

3.2.1 Spatial relations
The spatial relationships of objects specify the connections or interrelations between real objects in the
geometric domain. Topology and metric relations are mentioned by Egenhofer (1989) and Zlatanova
(2000) as different approaches of spatial relationships.

Topological relations – concern the neighbourhoods of objects and are invariant under topological
transformations, such as translation, scaling and rotation. Examples are terms like neighbour and disjoint.

Metric relationships – exploit the existence of measurements, such as distances and directions. For
instance, ‘within 5 miles from the interstate highway I 95’ describes a corridor based upon a specific
distance. Both topological as metric relationships are described in more detail below.

Topological relations
A topology model in geo-information models use the topological primitives interior, exterior and
boundary to find relations between two objects. The interior, exterior and boundary of an object A are
denoted as A°, A¯ and ∂A respectively. With this definition of objects, relations between two objects
R(A,B) can be found by intersecting the topological primitives of the objects. The possible intersections
are among others described by Egenhofer (1989) and Zlatanova (2000) and a shortened description is
given below.

Intersection of objects can be done with only the interior and boundaries of the objects, which lead
to 4-intersection model, or with the interior, exterior and boundaries of objects, which leads to the
9-intersection model. The intersections of the 4-intersection model are: ∂A∩∂B, A°∩B°, ∂A∩B°,
A°∩∂B and the intersections of the 9-intersection model are: A°∩B°, ∂A∩B°, A¯∩B°, A°∩∂B,
∂A∩∂B, A¯∩∂B, A°∩B¯, ∂A∩B¯, A¯∩B¯. These intersections of topological primitives of two

3. Constraints 21

objects can be empty (∅) or non-empty (≠∅). For example, if two objects have a common
boundary, the intersection between the boundaries is non-empty, i.e. ∂A∩∂B ≠ ∅. So each pair of
objects has it’s own empty and non-empty intersections.

Topological relations can be constructed using references between objects and express the concepts of
inclusion and neighbourhood between objects. M.J. Egenhofer distinguishes the following minimal set of
topological relations among intervals in a one-dimensional space described by the intersection of
boundaries and interiors of objects (4-intersection model):
• Disjoint, meets, overlap, inside, contains, covers, covered_by, equals
This set of topological relationships can also be found in table 3.1 and it can be generalized for objects of
higher dimensions than only one-dimensional intervals.

Clementini et al. (1993) prove that only five
separate topological relationships are needed to
describe all possible relationships between any
combination of two objects from the point, line
and area types. These five relationships are
touch, in, cross, overlap and disjoint. Van
Oosterom et al. (1994) extend this set of
relationships with the equal relationship and the
definitions of the six relationships is slightly
changed to cover also the 3D situation. The
minimal set of topological relationships
becomes:

Table 3-1: minimal set of topological relationships.
Relations are among intervals described by the intersection
of boundaries (∂ ∩ ∂), interiors (° ∩ °), boundary with
interior (∂ ∩ °), and interior with boundary (° ∩ ∂).
(from Egenhofer, 1989)

• Disjoint, touch, overlap, in, cross, equal.
The relationship names are slightly changed in
comparison to the names Egenhofer uses. This
is because these names have a reasonable intuitive
al., 1993). In the 9-intersection model many mor
model, but these additional relations are hard t
described here.

b b

b

a

a

a

a

touch (a,b)

disjoint (a,b)

Examples of the six topological relationships of th
all relations can be applied to all object types (po
applied to every situation. Touch relationships can b
The overlap relationship can be applied to A./A and
Cross relationships can be applied to L/L and L/
situation. The definitions of five relationships b
Egenhofer (1989):

Figure 3-2: topological rela

1. If all four intersections among all object parts
2. If the intersection among the boundaries is n

then the two objects touch.
3. Two objects overlap if they have common in

opposite interior.
4. An object A is in another object B if (1) A and

has boundaries which are interior of B, and
interior.

(i1, i2) ∂ ∩ ∂ ° ∩ ° ∂ ∩ ° ° ∩ ∂
disjoint ∅ ∅ ∅ ∅
meet ≠ ∅ ∅ ∅ ∅
overlap ∅ ≠ ∅ ≠ ∅ ≠ ∅
inside ∅ ≠ ∅ ≠ ∅ ∅
contains ∅ ≠ ∅ ∅ ≠ ∅
covers ≠ ∅ ≠ ∅ ∅ ≠ ∅
coveredBy ≠ ∅ ≠ ∅ ≠ ∅ ∅
equal ≠ ∅ ≠ ∅ ∅ ∅
meaning for users of spatial applications (Clementini et
e combinations are possible than in the 4-intersection
o understand for the end users and is therefore not

b b

a

a

in (b,a)

overlap (a,b) equal (a,b)

b

cross (a,b)

e 4-intersection model are given for two objects. Not
int P, line L, area A). The disjoint relationship can be
e applied to A/A, L/L, L/A, P/A and P/L situations.
 L/L. In relationships can be applied to every situation.
A. The equal relationship can also be applied to every
etween two area objects are given according to M.J.

tions between two objects a and b

are empty, then the two objects are disjoint.
ot empty, whereas all other 3 intersections are empty,

terior and the boundaries have common parts with the

 B share their interiors, but not their boundaries, (2) A
(3) none of B’s boundaries coincides with any of A’s

22 constraints in geo-VR

5. Two objects are equal if both intersections of boundary and interior are not empty while the two
boundary-interior intersections are empty.

The cross relationship can only be applied to line/line and line/area situations:
6. Two objects cross if they have common interior and the intersection of the boundaries is empty.
The graphical representation of these relations can be seen in Figure 3-2.

The mentioned topological relations can be applied in 2D and also for 3D topology object relations. This
is for example shown in the 3D-GEO++. 3D-GEO++ is a geographic front-end that can be used in
addition to a DBMS and is described in Van Oosterom et al. (1994).

Metric relations
Metric relations exploit an existence of measurement, like directions and distances. These relations can’t
be defined without a reference system with a zero and scale. So a ratio scale is necessary, because this is
the only scale with a zero (the other scales are nominal, ordinal, binary and ratio).

For the directional relations an origin and an azimuth are necessary. The directional relations are defined as
the position of an object in comparison to another object. For point objects it is clear what the direction
between two point objects is. The easiest way for non-point objects is to formulate the relation for
centroids of objects. Directions can be given in degrees in the range of [0°, 360°], but can also be
distinguished in (Papadias et al., 1999):
• Northeast, North, Northwest, West, Southwest, South, Southeast, East
Each of these eight directions (see also Figure 3-3) stands for an interval of
degrees. However, the interval boundaries can only be seen as fuzzy numbers
and not as exact numbers. E.g. an object is almost never exactly east of another
object, but can be positioned east, east-northeast or east-southeast of that object.
Algorithms are developed to assign the right direction to an object, which isn’t
exactly positioned according to these eight directions. However, it is not
necessary for this research to apply such algorithms, because the plantation
objects in SALIX-2 are point objects. So here the subdivision of these eight
directions is good enough.

Figure 3-3: possible
directions for directional
constraints

Distance relations specify a distance between objects and therefore also a ratio scale is necessary. This
distance should be respected between objects and can be:
• a closer than, a farther than or an interval distance
All these distances can be computed by buffer operations in GIS’s. These buffers can be computed
around points, lines and/or polygons (in 2D plane). The interval distance can also be used to specify an
exact distance between objects by making the interval infinite small (the boundaries are the same at both
ends and this number specifies the exact distance). In GIS’s
other distance operations (besides the buffer operation) exist
for computing these distances.

3.2.2 Temporal relations
Kwon et al. (1999) described the temporal relations between
two time intervals. Given two time-intervals, there are seven
distinct ways in which these time-intervals can be related.
These relations (known as Allen’s relations) are:
• Before, Meets, Overlaps, Finishes, During, Starts, Equals
Figure 3-4 illustrates the temporal relations supported by this
model for intervals a and b. Finished-by and during-by are the
inverse relations of finished and during.

The relations mentioned above concern two time intervals (bi-
temporal), but can also be seen as relations between two
objects with some time interval as existence time (with start
and end time of existence as the boundaries of the time

Figure 3-4: tempor
time

(from Kw
NW N NE
W ● E
SW S SE
al relations between two
 intervals
on et al., 1999)

3. Constraints 23

interval). These relations can be used to define temporal constraints. Temporal constraints are the same
for 2D and 3D, because they are not spatial. E.g. the time doesn’t change when a representation is
changed from 2D to 3D.

Geo-VR applications can represent a static situation, but more often dynamic representations are
created. Intelligent objects are placed in the environment that changes in time. Also SALIX-2 has
plantation objects that grow over the years (this was the initial idea for developing the application!). An
example of a temporal constraint can be that trees of type 1 die earlier than trees of type 2 or that some
trees are planted later or earlier than other trees. So in geo-VR environments, the order of events or the
order of existence of objects can be defined using temporal relations.

3.2.3 Quantity relations
Specifying a certain density of objects in a certain area is not based on a spatial or temporal relation, but
on a quantity of object, therefore here the name ‘quantity relation’ is used. This relation can be divided
into:
• a minimum, exact or maximum number of objects (related to an area surface (density) or not);
Examples of density constraints can be a maximum number of houses in a residential area or the
minimum number of trees in that area. Examples concerning exact number of objects can be: ‘there is
only one tower in the model’, ‘there are three benches in the model’ or ‘one statue must be placed in the
model’. This exact number of certain objects can be seen as a special case of a density constraint, because
it can be defined as an exact number of certain objects for the whole area (that is, the area in the 3D
model).

3.2.4 Thematic relations
Thematic information about objects can be found in the attributes (e.g. house, road, grass). Some objects
of the same type have relations to objects of another type, e.g. all objects that are houses have a
relationship with all objects that are roads. Real world thematic relations between objects and object
attributes can thus be used to formulate constraints to make the virtual world more look like the real
world, e.g. ‘every house has an address’, ‘the name of the road (where the house is geometrically
connected to) is part of the address of the house’ and ‘every house has an owner’.

3.2.5 Conclusion object relations
The relations described in this section should all be binary relations. This is true for the spatial and
temporal relations, so not all possible relations are described here. To give a complete list of possible
relations, these relations have to be extended to relations also concerning a set of objects. Examples of set
relations can be
- ‘the whole domain must be covered by parcels and the parcels do not overlap’ (spatial);
- ‘the average age of trees in the model is less than 20 years’ (temporal);
- ‘object b exists after object a and before object c’ (temporal).
The quantity relations described already concern a set of objects (e.g. a minimum number of 5 trees must
be placed on a field of grass) and are not limited to binary relations. The thematic relations can be unary
(e.g. the house is red), binary (e.g. the house has an owner, where owner is also a specific object in the
form of a person) or can be a set relation (all houses have an address). A complete list of all unary, binary
and set object relations can be defined in future research.

3.3 Typology of constraints

The objects and in detail the relations between two objects are discussed in the previous sections and the
constraints can be formulated using these relations between objects. To get a list of different types of
constraints, some distinctions can be made to categorize them. First of all the different kinds of relations
can be used to categorize the constraints. Secondly a distinction can be made in the formulation of a
constraint. A constraint can be formulated in a forced or a restricted way, while the meaning stays the
same. Furthermore a distinction can be made in constraints only using one condition, the so-called simple
constraints, or constraints that are a composition of two or more simple constraints, the so-called
complex constraints. The distinctions concerning the restricted or forced formulation and the simple and
complex constraints are discussed below.

24 constraints in geo-VR

3.3.1 Forced and restricted relations
Constraints can be formulated in the forced way (always have to) and in the restricted way (never to do).
The different formulation of the same constraint can in some cases lead to a complicated formulation.
For example ‘grass always has to be green’ has the same meaning as ‘grass can never be red, orange,
yellow, blue, purple, black, white etc. The last (restricted) formulation is much more complicated and it’s
more likely that a part of the constraint is forgotten (e.g. orange), which can lead to a very different
meaning of the constraint.

Table 3-2 gives examples of constraints and the difference between the forced and restricted
formulation becomes clear from the examples 1, 3, 4 and 5. In the formulation of these examples all
possibilities have to be mentioned, either in the restricted or the forced formulation. If not all possibilities
are mentioned the formulation is not according to the initial meaning of the user. For example, in the
restricted formulation of example 4 an infinite number of values must be given, if e.g. the number 4 is
omitted in the formulation of this constraint, the number of trees is permitted to be 3 or 4, instead of
only 3. This problem doesn’t appear if the corresponding positive constraint definition is used, because
then only one value has to be specified.

It becomes clear from the given examples in Table 3-2, that there are formulations where:
- only one value is specified;
- many (but limited) values are specified;
- infinite number of values are specified.
There is only a difference between the forced or restricted formulation for examples where n or ∞ values
are mentioned. When a minimum/maximum defined time or distance (e.g. example 2) must be specified,
it doesn’t matter if the constraint is formulated in the forced or the restricted way. This distance and time
constraint can be seen as a ‘threshold’ constraint with only one value and for this threshold relation. This
is also true for other relationship constraints concerning only one value.

For all constraints the best formulation must be used. This is the formulation with a minimum
number of values. If one really wants to use a forced or a restricted formulation for a constraint, the
formulations with n or ∞ values can be rewritten. This can be done using negations (by adding the word
‘NOT’) to the constraints formulated in the other way. After all, ‘always not’ is the same as ‘never’ and
‘never not’ is the same as ‘always’. Look for example to the spatial topology constraints in Table 3-2. The
restricted formulation of this example is the best formulation (‘houses are never inside water’). If one
wants to formulate this constraint in a forced way, this can (besides the example ‘houses always have to
disjoint, touch or overlap water objects’) be done using a negation. The forced constraint will become:
‘houses are always NOT inside water’. Also in this formulation the number of values necessary for the
constraint formulation is limited.

Table 3-2: examples of simple relationship constraints formulated in the forced and restricted way.
The examples are followed by the number of values that are used in that example, where n stands for a limited
number of values and ∞ stands for an infinite number of values.

Type of relation Constraints based on forced relations
(always have to)

Constraints based on restricted relations
(never to do)

1. spatial topology Houses always have to disjoint, touch or
overlap water objects. (n values)

Houses are never inside water (1 value)

2. spatial metric Houses always lie more than 5 meters away
from other houses (1 value)

Houses never lie within a distance of 5
meters of other houses (1 value)

3. temporal The building process of house a is always
before the building process of house b.
(1 value)

The building process of house a never
meets, overlaps, finished_by, during_by,
starts or equals the building process of
house b (n values)

4. quantity There must always be three trees around a
house (1 value)

There must never stand 0, 1, 2, 4, 5, 6 etc.
trees around a house (∞ values)

5. thematic Houses always have to be placed on Houses must never be placed on roads, in

3.
B
ex

cadastral parcels (1 value) water, in forest etc. (n values)

3.2 Simple and complex relations
esides a different formulation, constraints can be divided in simple and complex constraints. All
amples in table 3-2 are simple constraints. These constraints are based on one condition. In this

3. Constraints 25

condition it is however possible to define more relations, e.g. the combination of disjoint, meet and
overlap can be used in one simple constraint (see spatial topology relation in table 3-2). However, these
relations are of the same type. Simple constraints can thus be categorized in spatial, temporal, quantity or
thematic constraints.

Complex constraints are combinations of simple constraints, e.g. the distance between houses always is
more than 5 meter AND there must always be three trees around each house. The word AND is a
keyword for complex constraints. Complex constraints cannot be categorized in spatial, temporal,
quantity or thematic constraints because combinations of these types can exist (there are 4x4=16
possibilities when a combination of only two simple constraints is used). Also the restricted and forced
formulation can be used several times in one complex constraint. This means that all complex constraints
cannot be categorized; they are just complex constraints.

In some cases it is desirable to use patterns for the design process. Complex constraints have the ability to
formulate patterns, e.g. by specifying distances and directions between objects. An example of a pattern
constraint could be: trees of type 1 always have to be placed west of trees of type 2 AND the distance
between trees of type 1 and trees of type 2 must always be 7 meters. A table with all possible examples of
complex constraints, like table 3-2 for the simple constraints, would become too extensive and isn’t added
to this report.

3.3.3 Constraints as object relations
The different types of constraints are formulated as ‘relations between objects’ and not as ‘object
relations’. However, the constraints can be written as part of the object descriptions (besides the
attributes and behaviour). Doing this, a check can take place if the constraints are not conflicting. Table
3-3 shows a so-called (that is, in this report) cross relation table, with some object relations in the object
description. The implemented example constraints between object instances are:
1. Object A is always inside object D;
2. Object B is never > 3 meter from object D AND

Object B always meets object E;
3. Object D always contains object A;
4. Object E is always < 5 meters from object A AND

Object E is always > 4 meter from object B.
The object relations are implemented in the triangle belonging to that object. That is, object A’s
description contains the relation ‘always inside object D’ that is implemented in the upper triangle. Object
A’s description does not contain the relation ‘is always <5m from object E’ (example 3). This relation is
implemented in the lower triangle as description of object E. If all constraints were implemented in all
object descriptions the table would become too full.

Table 3-3: implementation of some example constraints in a cross relation table as object relations.
The object instances are described by their attributes, behaviour (not of interest for this research) and their relations
(to other objects).

 Object A Object B
 (attributes) (behaviour) (attributes) (behaviour)

Object C …

(attributes)
Object D

(behaviour)

always inside

always contain

never > 3 m

-

…

(attributes)
Object E

(behaviour)

 -

always < 5 m

always meets

always > 4 m

…

Object F …

…

…

…

A check can take place if the constraints do not conflict each other when all constraints are implemented
as part of the object descriptions. E.g. the relation between object A and object D is valid for both the
description of object A as for the description of object D (‘object A always inside object D’ doesn’t
conflict ‘object D always contain object A’). But the relations of object B and object E conflict with each

26 constraints in geo-VR

other (object B always meets object E AND object E always > 4 m from object B) so they can’t be both
valid.

If many (complex) constraints are formulated, the change of invalid constructions becomes greater, but
on the other hand also some valid patterns can be created. However, this cross relation table is not
sufficient to guarantee that a set of constraints do not conflict each other. There are combinations one
can think of that do conflict, but this conflict is not detected from the cross relation table. For example
the combination of ‘object A is always inside object B’, ‘object B is always inside object C’ and object C is
always inside object A’ are conflicting, but this conflict is not detected in the cross relation table.

The moment of the consistency check must be before the constraints are implemented and when
constraints are changed. It is preferred that this check should take place automatically. However, even
existing tools to implement integrity rules, e.g. topology rules in ArcSDE (see section 5.2.5 for more
details about ArcSDE) haven’t a consistency check for all defined rules. Neither beforehand nor after the
list of rules is modified. So it’s outside the scope of this thesis to implement an automatic consistency
check in the application. For this research only a manual check beforehand is done. The actual
implementation of the constraints is done with constraints between objects.

27

4. Constraints in SALIX-2

In this chapter example constraints are defined for SALIX-2. Before defining suitable constaints it is
necessary to look to the object model of SALIX-2 (including the table structure in the DBMS). After all,
the objects are the central part of a constraint. The object model is described in section 4.1. In section 4.2
the example constraints are formulated. A selection of these constraints for implementing in SALIX-2 is
also made in this section. Object relations can be derived from these selected constraints and can be filled
in in the cross relation table. This is done in section 4.3.

4.1 Object model of SALIX-2

The objects that are presented in the plantation layouts of SALIX-2 can describe the object model of
SALIX-2. Plantation layouts are filled with plantation objects, which can be divided into trees and bushes
and are represented as point objects. Each plantation layout is stored as a separate table in the DBMS.
Table 4-1 is an example of a plantation layout table (only containing 5 plantation objects). All plantation
objects (both trees and bushes) are stored in this plantation layout table. Each row is filled with the
attributes of one plantation object, which can be different for all plantation objects. The number of
different plantation objects in SALIX-2 is limited to five. The attributes that are the same for all objects
of the same type are stored in the object type table (see Table 4-2).

Table 4-1: Example of a plantation layout table
This plantation layout only consists of 5 plantation objects. The attributes of the objects are the type, the location
(X, Y, Z) and the age. These attributes can be different for all objects.

TreeID TreeType TreePosX TreePosY TreePosZ TreeAge
0 CorMas 0 0 0 20
1 CorAve 5 0 5 20
2 RosCan 10 0 10 20
3 QueRob 15 0 15 12
4 FraxExc 20 0 20 15

Table 4-2: The object type table in SALIX-2.
This table is filled with all available different object types. The attributes of the different object types are the same
for all objects of that type (this in comparison to the attributes stored in the plantation layout table).

TreeTypeID TreeType Kind Definition ProtoFile LatinName
1 CorAve Bush EXTERNPROTO CorAve […] corave3_p.wrl Corylus avellana
2 CorMas Bush EXTERNPROTO CorMas […] cormas3_p.wrl Cornus mas
3 FraxExc Tree EXTERNPROTO FraxExc […] fraxexc7_p.wrl Fraxinus excelsior
4 QueRob Tree EXTERNPROTO FraxExc […] querob3_p.wrl Quercus robur
5 RosCan Bush EXTERNPROTO FraxExc […] roscan3_p.wrl Rosa canina

Besides the plantation objects also the ground surface is presented in the plantation layout. This ground
surface image can be divided into grass, paving, water and bridge areas (polygons). These areas all have
their unique colour and can be seen as the ground surface objects.

4.2 Example constraints for implemting in SALIX-2

The different kind of relations and the objects of SALIX-2 can be used for the constraint definition.
Many constraints can be formulated, however, only one example per constraint type is enough to get an
idea of the possible constraints for SALIX-2. The example constraints can be found in Table 4-3. A
distinction is made between the forced and restricted formulations.

For the implementation in SALIX-2, all mentioned constraints in Table 4-3 can be used. The intention of
the implementation is a kind of benchmark for one implementation approach for constraints in an
application consisting of a GIS/DBMS and VRML. The selected constraints must be a representative set
of constraints and therefore it is preferable to implement an example of each constraint type. However, a
number of issues concerning the objects must be considered before implementing different types of
constraints.

28 constraints in geo-VR

The first issue concerns the objects of SALIX-2. The plantation objects are stored in the DLM as point
objects and are represented in the DVM as 3D objects. Topological relations to point objects are limited
to ‘inside’, ‘touch’ and ‘disjoint’. Furthermore, the ground surface is only stored in the DVM as an image.
For the constraint checking it is desirable to use the objects from the DLM. So first of all, the ground
surface has to be converted from an image to a geodataset. The objects in this geodataset are the surfaces
of the same type, e.g. a grass surface becomes a grass object with a certain id. The conversion process is
described in Appendix D. The geodataset of the ground surface stored in the DLM.

The second issue concerns the types of relations. The temporal constraints are not selected for the
implementation. This is because there’s not much change over time in SALIX-2. Only the event of
growing plantation objects exist as temporal aspect.

Table 4-3: example constraints for SALIX-2, formulated in a forced and restricted way.

Relation Constraints formulated in the forced way Constraints formulated in the restricted way
Spatial topology
*

1. bushes always have to disjoin or touch
water (2 values)

2. A bush always has to touch or disjoint
paved areas (also thematic constraint) (2
values)

1. bushes never lie inside water (1 value)
2. A bush never is inside paved areas (6

values)

Spatial metric Directional constraints:
3. A bush always has to be placed south of a

tree (1 value)
Distance constraints:
4. Trees always have to be positioned > 1

meter from paving (1 value)

Directional constraints
3. Bushes are never placed northeast, east,

southeast, south, southwest, west or
northwest of a tree (7 values)

Distance constraints:
4. Trees never be located < 1 meter from

paving (1 value)
Temporal 5. An oak always grows for 70 years (1

value)
5. An oak never not grows for 70 years (1

value)
Quantity 6. There must always be at least 10 trees on

the specified ground surface (1 value)
6. A specified ground surface can never have

< 10 trees on it (1 value)
Thematic 7. A tree is always of the type QueRob or

FraxExc (2 values)
8. A bush always has to touch or disjoint

paved areas (also topological constraint)
(2 values)

7. A tree is never not of the type QueRob or
FraxExc (2 values)

8. A bush never is inside paved areas (also
topological constraint) (2 values)

Complex 9. The distance between two trees inside water always is > 8 m AND the distance between the
tree and the edge of the water always has to be < 0,5 meter AND the species must be a
QueRob;

10. Trees of type 1 always have to be placed west of trees of type 2 AND the distance between
trees of type 1 and trees of type 2 must always be 7 meters (pattern).

* note: bushes and trees are point objects. The topological relations of points are limited to inside, touch or disjoint.

The selected set of constraints to implement in SALIX-2 is listed in Table 4-4. This is a selection of the
example constraints considering the above-mentioned issues. Also the best formulation is used (forced or
restricted).

Table 4-4: Example constraints to implement in SALIX-2

Type of relation Constraints to implement in SALIX
Spatial topology 1. Bushes never lie inside water
Spatial metric 2. A bush always has to be placed south of a tree
 3. Trees always have to be positioned > 1 meter from paving
Quantity 4. There must always be at least 10 trees on the specified ground surface
Thematic 5. A bush always has to meet or disjoint paved areas
Complex 6. The distance between two trees inside water always is > 8 m AND the distance between

the tree and the edge of the water always has to be < 0,5 meter AND the species must be a
QueRob

4. Constraints in SALIX-2 29

4.3 Constraints as object relations in SALIX-2

The constraints mentioned in Table 4-4 can be inserted in the cross relation table to check if the
constraints do not conflict each other. The objects involved in the constraint definition of Table 4-4 do
not always concern object instances (specific objects), but mostly object classes (e.g. all trees, all water
areas). If we want to implement these constraints in a cross relation table, it is better to take an object
class as column or row instead of an object instance.

The selected constraint in Table 4-4 do not concern two or more ground surface objects, so these
objects can be put in the cross relation table once (either in separate rows or separate columns). The
plantation objects (trees and bushes) however, can have relations between themselves and with ground
surface objects. So the plantation objects have to be placed in the table in a way that relations to ground
surfaces and other plantation objects are possible. Table 4-5 can now be created and all selected example
constraints are implemented as object relations.

Table 4-5: cross relation check for example constraints to be implemented in SALIX-2

 Tree Bush

Tree
Always > 8 m if both are

(always > 8 m if inside water
both are inside water)

Always has to be south of

Bush

(Always has to be south of)

Water
If inside water, always < 0,5

from edge

Never inside

Paving

(including
soft_paving)

Always > 1 m

Always meet or disjoint

Specified
ground
surface

Always has at least 10 inside

The object relations in Table 4-5 do not conflict each other, so it looks like the set of constraints can be
implemented without consistentcy problems. But again, this cross relation table is not sufficient to
guarantee that there are no conflicts between the constraints (as is described in 3.3.3).

After this (first sight) check the constraints have to be implemented in the application. When and how the
constraints should be checked can vary per application, because each application has a different structure.
For each implementation it is desirable to look closer to the application structure and the flowcharts of
actions within the application. With this the implementation story for constraints in SALIX-2 (or another
comparable geo-VR environment) is started. A check beforehand is necessary to find out if the
constraints are valid for the current 3D model. After that all changes made in the 3D model of a geo-VR
application have to be checked. So a constraint checking should follow on each modification in the 3D
model.

The possible position for the constraints checking in SALIX-2 can be
seen in Figure 4-1. The plantation layout can be edited and the changed
plantation layout can only be saved after the changes are checked for validity.
Then the plantation layout can be edited again. Note that in this figure the
check whether the constraints are valid for the existing plantation layouts is
not visualized. For SALIX-2 this beforehand check is only done manually for
one plantation layout (used for the example implementation). All other
existing layouts have to be constructed again (or also checked manually) if one
wants to know if these layouts also fulfull the constraints.

Edit plantation layout

Save new
configuration

Check
modification
for validity

Not
valid

Valid

With the abstract structure of Figure 4-1 the constraint checking (check for
validity) is still a black box. The discussion how the constraint checking
should take place is therefore started in the next chapter.

Figure 4-1: The position of
the constraint checking in
SALIX-2.

31

5. Approaches for implementing constraints in a geo-VR
environment

After defining the different kinds of constraints, one can think about the implementation of the
constraints in an application. The most suitable implementation approach can vary per application,
because each application has it’s own structure. This research aims to find a way to implement constraints
in a geo-VR application consisting of a DLM and DVM. These two components can also be used to
distinguish two implementation approaches:
1. implementing constraints in the DLM;
2. implementing constraints in the DVM.
The DVM can be compared to the client side of a client-server application. It is the VRML code (and
possible additional Java programming) that is distributed over the Internet, while the DLM can be
compared to the server side of a client-server application. This server side consists of the DBMS of the
application. This can also be seen in Figure 5-1.

If constraints are implemented in the DVM, there is no
connection to the database necessary for the constraint
checking. This means that the constraint checking could
be rather quickly. However, when implementing the
constraints in the application code on the DVM side, the
constraints are not stored on a central place. The
application structure becomes less orderly and it is not
easy to change the constraints.

DLM DVM

Client

VRML + Java:
2D

2½D
3D

Objects

… and can be implemented …

 … in DBMS … in VRML code

Constraints
concern …

Internet

Server

DBMS:
2D

2½D
3D

If constraints are stored in the DLM, they are stored
in a central place. However, for each constraint checking
a connection to the database is necessary and some VR
applications do not connect to the database after each
modification made by the user (e.g. there’s only a
connection to the database in SALIX-2 when saving or
loading a plantation layout). Besides the option of
connecting to the database after each modification, one
can also think of a ‘save’ button in the graphical user
interface (GUI). With this button the user can decide
when he/she wants to save the changes and also when to
check the modifications for validity. Feedback to the user
about the validity of the modifications is only given after
the connetion to the database is made. Fast feedback is
thus not guaranteed.

Figure 5-1: Implementation possibilities of
constraints in the DLM/DVM framework.
The constraints can be implemented in the visual
environment. This is the right side of the
framework and can be compared with the client
side of a client-server application with
distribution over the internet. The constraints can
also be implemented in the database. This is the
left side of the framework and can be compared
with the server side of a client-server application..

Besides the discussion how to implement constraints also a discussion about the interactivity of
constraint definitions is necessary. For some constraints it can be desirable that they are editable by the
user or that it is possible to let the users define constraints by themselves (e.g. to implement some policy
rules in an application). On the other hand it can be desirable that some constraints are not editable (e.g.
‘natural’ constraints, like ‘a tree never stands upside down’). This editable or non-editable classification of
constraints can for example be implemented as extra attribute per constraint. This discussion is important
for the final decision about how to implement constraints and how to structure the application. In this
and the next chapters this subject is taken into account when discussing the implementation possibilities.

The implementation options (DVM or DLM) for implementing constraints in a geo-VR application have
advantages and disadvantages. For both implementation approaches a more detailed exploration is made.
The next section describes the implementation approach for the DVM followed by the section describing
the DLM possibilities. Within these sections also the editable/non-editable distinction of constraints is
taken into account. In section 5.3 a consideration follows about using freeware or commercial software.

32 constraints in geo-VR

This can be very dependent on the final purposes of the application. Eventually a list of criteria is given in
section 5.4 for deciding which implementation approach is best for which geo-VR application.

5.1 Implementing constraints in the DVM

Implementing constraints in the DVM means implementing constraints in the VRML code of the
application (and/or in the possibly additional Java code). To know the possibilities within VRML that
could be of help for the constraints checking, an introduction in VRML is necessary. This introduction is
followed by a more detailed explanation of the different possibilities for the constraints checking.
Furthermore it is useful to look to the state diagrams in SALIX-2c when changing the plantation layout
(by placing or dragging a plantation object). These changes can be the starting point of the constraitns
checking in SALIX-2c and can give an idea of the implementation possibilities. These implementation
possibilities are maybe also applicable for other geo-VR applications.

In the next subsection state diagrams are given, that represent one of the possible moments of the
constraint checking in SALIX-2c. They are followed by a general introduction in VRML. The collision
node and touch sensor node of VRML are described after the general introduction in VRML. With the
(rather complex) script node there is even more possible, therefore a description of this node with its
possibilities can be found in subsection 5.1.5.

5.1.1 Possible moment of constraint checking in the DVM of SALIX-2c
In this section state diagrams are made with an indication of the place of constraint checking in the DVM
and can be seen in Figure 5-2 and Figure 5-3. The constraint checking can be done in the VRML (Figure
5-2) or Java part (Figure 5-3) of the application. In these figures also a box is present with the text ‘give
feedback…’. More information about the feedback can be found in section 6.5.

During the actions of dragging or adding an object in the VRML scene of SALIX-2, no connection
to the database is made. The text ‘check for constraints’ in Figure 5-2 and Figure 5-3 can be approached
as a black box, which has to be filled in (by own hand written code). A connection to a DBMS is
necessary in this ‘black box’ if constraints are stored in a table in the DBMS. This is not necessary if
VRML (or Java) offers the opportunity of constraint checking in the DVM and when constraints are also
stored in this side of the application. The possibilities VRML offers for constraint checking are
investigated in this section.

Figure 5-2: possible postion of constraint checking in DVM by dragging an object in SALIX-2c.
This state diagram contains an indication of the position of the ‘constraint check’ in the VRML Browser of the
DVM. When the constraints are not violated, the following actions are exactly according to the acctions in SALIX-2.
When the constraints are violated feedback must be given to the user and the changes should not be saved. A
connection to the database is not necessary with this constraint implementation approach.

5 Approaches for implementing constraints in a geo-VR environment 33

Figure 5-3: possible postion of constraint checking in DVM by adding an object in SALIX-2c.
This state diagram contains an indication of the position of the ‘constraint check’ in the Java code of the DVM.
When the constraints are not violated, the following actions are exactly according to the acctions in SALIX-2.
When the constraints are violated feedback must be given to the user and the changes should not be saved. A
connection to the database is not necessary with this constraint implementation approach.

5.1.2 Introduction VRML
VRML allows one to describe 3D objects and combine them into scenes or worlds. One can use VRML
to create interactive simulations that incorporate animation, motion physics, and real-time, multi-user
participation. Virtual landscapes that are created using VRML can be distributed using the World Wide
Web, displayed on another user’s computer screen, and explored interactively by remote users. (Hartman
et al., 1996).

VRML is not a programming language, like C or Java, but a modelling language, which means you
use it to describe 3D scenes. With a VRML file, one can view a scene from an infinite number of
viewpoints, this in comparison to some photo’s of the same area which only represent the area of one
single viewpoint. The browser has navigation tools that make travelling through the scenes possible,
taking as many different paths as the user desires. (Hartman et al., 1996).

VRML is also the basis for other visualization languages, like GeoVRML and X3D. These are both very
close related to VRML. GeoVRML is a specification for representing various geographic data using
VRML [URL 6]. GeoVRML is a set of Nodes implemented as VRML PROTOs [URL 7]. An example of
such a GeoVRML node is the GeoCoordinate. In this node one can build geometry using geographic
coordinates. The syntax of a GeoCoordinate node is [URL 6]:

EXTERNPROTO GeoCoordinate [
 field SFNode geoOrigin # NULL
 field MFString geoSystem # ["GD", "WE"]
 field MFString point # []
] ["urn:web3d.org:vrml97:node:GeoCoordinate"
 "file:///C:/Program%20Files/GeoVRML/1.1/protos/GeoCoordinate.wrl"
 "http://www.geovrml.org/1.1/protos/GeoCoordinate.wrl"]

Furthermore the development of VRML has stopped since the Web3D Consortium started to work on a
XML version of VRML, in order to integrate with other web technologies and tools. This successor of
VRML was X3D (eXtensible 3D). The specifications of X3D have only recently become available (May,
2003) (Vries et al., 2003). Both GeoVRML as X3D are not further discussed in this report, but can be
very interesting for future research.

The VRML world is composed of nodes, which are objects or groups of objects in the scene. The nodes
may have routes between them, above and beyond the scene graph hierarchy, which define the possible
interactions of one node with another. Nodes have fields, which define what actual values the node has,
like the geometry or colour of the node [URL 2].

34 constraints in geo-VR

For the approach of implementing constraints only in the VRML code, the touch sensors or the collision
detection in VRML seem to be the best entries for implementing spatial constraints. The collision node
can detect collisions between the ‘user’ and other objects and the touch sensor node can detect whether
the pointing device touches the touch sensor node or not. So if a user for example places a tree on a
water surface, the collision detection or the touch sensor can detect a touching between objects. But with
only detecting a touching between objects no constraint checking can be done, because the information is
not sufficient enough for determining which objects are involved and if this touching is valid or not. If all
this necessary information can be extracted with the collision detection or the touch sensor node, is
investigated in the next subsections.

5.1.3 Collision detection in VRML
To make a realistic virtual environment, it is
necessary to define certain objects as solid and
make sure that one can’t walk through these
objects. Collision detection is the method to
realise this and can be used to make sure that a
person stays on the ground in a virtual
environment or that this person can’t walk
through walls.

Collision {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFBool collide TRUE
 field SFVec3f bboxCenter 0 0 0
 field SFVec3f bboxSize -1 -1 -1
 field SFNode proxy NULL
 eventOut SFTime collideTime
}

For a proper constraint checking, geometric
information about objects touching surfaces
or other objects is necessary as well as informatio
can for example be placed on grass, but can’t be p

F
T

Collision detection between objects is easy
default node of the VRML language. In Figur
following text comes from [URL 1] and gives a go

The Collision node is a grouping node t
children (and their descendants), specifies su
detection, and sends events signaling that
Collision node's geometry or surrogate (
walks through the scene). By default, all geo
except IndexedLineSet, PointSet, and Text.
avatar and the scene's geometry and prevent

The Collision node's collide field enables an
the children and all descendants of the C
though they are drawn. This includes any d
(i.e., setting collide to FALSE turns collision o

Collision nodes with the collide field set to T
geometry (or proxies). When the nearest co
time of the collision through its collideT
descendant, or proxy that is a Collision no
occurred, both send a collideTime event at th
avatar is colliding with collidable geometry
inserted into the transformation hierarchy.

From the above text and from the syntax of the
the only information going out if collision take
information about which objects are involved in
point for the constraints checking, additional scrip

Furthermore the collision detection only gi
and the geometries of the objects in the 3D m
Collision detection within VRML is therefore not
consisting of a DBMS and VRML.

n about which objects and surfaces are involved. A tree
laced on water or on a road.

igure 5-4: syntax of the Collision node in VRML.
he only EventOut is the collide Time

 to implement in VRML, because a collision node is a
e 5-4 the syntax of the collision node is shown. The
od description of the collision node and its properties.

hat specifies the collision detection properties for its
rrogate objects that replace its children during collision

a collision has occurred between the avatar and the
where the avatar is the representation of the person who
metric nodes in the scene are collidable with the viewer
 Browsers shall detect geometric collisions between the
 the avatar from 'entering' the geometry.

d disables collision detection. If collide is set to FALSE,
ollision node shall not be checked for collision, even
escendent Collision nodes that have collide set to TRUE
ff for every node below it).

RUE detect the nearest collision with their descendent
llision is detected, the collided Collision node sends the
ime eventOut. If a Collision node contains a child,
de, and both Collision nodes detect that a collision has
e same time. A collideTime event shall be generated if the
 when the Collision node is read from a VRML file or

collision node (see Figure 5-4) it can be concluded that
s place is the collideTime. A certain time doesn’t give
the collision. So if the collision node is used as starting
ting is necessary within the application.

ves information about the collisions between the avatar
odel, support for inter-object collision is not specified.
 a solution for the constraints checking in an application

5 Approaches for implementing constraints in a geo-VR environment 35

5.1.4 Touch sensors in VRML
From [URL 1] the following information about the TouchSensor node is given.

A TouchSensor node tracks the location and state of the pointing device and detects when the user
points at geometry contained by the TouchSensor node's parent group. A TouchSensor node can be
enabled or disabled by sending it an enabled event with a value of TRUE or FALSE (see Figure 5-5).
If the TouchSensor node is disabled, it does not track user input or send events.

The isOver eventOut reflects the state of the
pointing device with regard to whether it is
pointing towards the TouchSensor node's
geometry or not. When the bearing of the
pointing device intersects geometry belonging
to a TouchSensor, an isOver TRUE event is
generated. When the pointing device moves to
a position where it no longer intersects the

a
m
m

F

h
s
h
c
h

g
d
e

T

If obj
action
mous
down
butto

A
hitPo
of the

The n
the ‘t
the ap
of th
availa

script
prope
There

TouchSensor {
 exposedField SFBool enabled TRUE
 eventOut SFVec3f hitNormal_changed
 eventOut SFVec3f hitPoint_changed
 eventOut SFVec2f hitTexCoord_changed
 eventOut SFBool isActive
 eventOut SFBool isOver
 eventOut SFTime touchTime
}
geometry, or some other geometry is
obstructing the TouchSensor node's geometry,

n isOver FALSE event is generated. These events are generated only when the pointing device has
oved and changed ‘over’ state. Events are not generated if the geometry itself is animating and
oving underneath the pointing device.

igure 5-5: syntax of the TouchSensor node in VRML

Each movement of the pointing device, while isOver is TRUE, generates hitPoint_changed,
itNormal_changed and hitTexCoord_changed events. hitPoint_changed events contain the 3D point on the
urface of the underlying geometry, given in the TouchSensor node's coordinate system.
itNormal_changed events contain the surface normal vector at the hitPoint. hitTexCoord_changed events
ontain the texture coordinates of that surface at the hitPoint. The values of hitTexCoord_changed and
itNormal_changed events are computed as appropriate for the associated shape.

If isOver is TRUE, the user may activate the pointing device to cause the TouchSensor node to
enerate isActive events (e.g., by pressing the primary mouse button if a mouse is the pointing
evice). When the TouchSensor node generates an isActive TRUE event, it grabs all further motion
vents from the pointing device until it is released and generates an isActive FALSE event.

he eventOut field touchTime is generated when all three of the following conditions are true:
a. The pointing device was pointing towards the geometry when it was initially activated (isActive is

TRUE).
b. The pointing device is currently pointing towards the geometry (isOver is TRUE).
c. The pointing device is deactivated (isActive FALSE event is also generated).

ects in the VRML scene are implemented as children of the TouchSensor node, the movements and
s done with the pointing device (in most cases a mouse) are followed. When the bearing of the
e touches an object an isOver TRUE event is generated and when the user holds a mouse button
 while pointing to an object an isActive TRUE event is generated. When the user releases the mouse
n the touchTime EventOut is generated with the current time.

lso the hitPoint_changed, hitNormal_changed and hitTexCoord_changed are generated where the
int_changed is of interest here, because this is a 3D vector. This 3D point is located on the surface
 object and could be used as input coordinates for the constraint checking.

ecessary geometric information and information about which objects and surfaces are involved in
ouch’ cannot be substracted using the TouchSensor node. The geometric information is available in
pearance of the hitPoint_changed. However, the 3D vector lays arbitrarily on the object that is part

e TouchSensor. Also information about which objects and ground surfaces are involved isn’t
ble with this approach.
In other words, the TouchTime generated by the TouchSensor can only serve as starting point for a
 that should check for constraints, but the TouchSensor doesn’t provide enough information for a
r constraint checking. This information can for example be gathered while running the script.
fore the scripting possibilities are described next.

36 constraints in geo-VR

5.1.5 VRML Script and routing

Some nodes can produce output events and/or can receive input events. In Figure 5-4 and Figure 5-5
some EventIn and EventOuts belonging to the collision and touch sensor nodes can be found. The
incoming events are messages sent by other
nodes to change some state (field) within the
receiving node and outgoing events are used to
send messages (events) to destination nodes. In
order to connect a node generating a message
(event) with another node receiving a message
you must use a ‘ROUTE’ statement. A node that
produces events of a given type can be routed to
a node that receives events of the same type (e.g.
string, boolean, float, vector) with the following
syntax [URL 3]:

Node 1
ROUTE 2

Node 3
ROUTE 1

EventOut

EventIn

EventOut

EventIn

Node 2

Figure 5-6: Route/event model in VRML.
Node 1 is for example a sensor and produces an eventOut
which is routed to the EventIn of node 2, for example a
script. Node 2 sends an EventOut to the EventIn of Node
3, that is for example an object.

ROUTE NodeName.eventOutName TO NodeName.eventInName

Figure 5-6 shows this route/event model in VRML. If the route/event model of Figure 5-6 would be the
initial structure of the constraint checking after some actions concerning an object took place, node 1 can
for example be a TouchSensor where the objects of the 3D model are all in the group of the
TouchsSensor, node 2 can be some scripting and node 3 can be some feedback about the validity of the
actions.

In VRML a Script node enables
scripting. The syntax of the script node
can be seen in Figure 5-7. The URL in this
script node can be a reference to a
JavaScript or the script can directly be
implemented in the Script node. Within
the JavaScript programming code can be
generated to implement the constraint
checking. With programming a lot is
possible, but all code has to be created,
tested and debugged by the designer (in GIS
that can be used, see section 5.2) Moreove
implementing them somewhere in the progra
therefore be difficult. So in some cases it c
database. This will be discussed in the next se

F

5.1.6 Conclusion of implementation po
The possibilities of VRML for implementing
of VRML is not suitable for implementing co
avatar and other geometric objects can be d
collisions are not supported. The TouchSens
can be based on the programming language
must be created, tested and debugged by the
constraints cannot be guaranteed when usi
constraints in the DLM are discussed next.

5.2 Implementing constraints in

Implementing constraints in an application m
that a good connection exists between
Implementing constraints in the DLM me
application (DBMS) and make a connection
communication and computation aspects are
integrity constraints and standard operations
all types of constraints can be managed by
programming should be considerably less tha

Script {
 exposedField MFString url []
 field SFBool directOutput FALSE
 field SFBool mustEvaluate FALSE
And any number of:
 eventIn eventTypeName eventName
 field fieldTypeName fieldName initialValue
 eventOut eventTypeName eventName
’s or DBMSs some standard functions and operations exist
r, the constraints are not stored on a central place when
mming code. Adding, removing or changing constraints can
an be more efficient implementation the constraints in the
ction.

}

igure 5-7: syntax of script node

ssibilities in DVM
 constraints are discussed in this section. The collision node
nstraints. This is mostly because only collisions between the
etected with this standard node of VRML and inter-object
or can serve as starting point for a script node. The scripting
Java. With Java programming a lot is possible, but all code
designer. Also central storage and a good accessibility of the
ng script nodes. Therefore the possibilities to implement

 DLM

eans storing the constraints in a proper way and make sure
the stored constraints and the rest of the application.
ans therefore storing constraints in the server side of an
to the DVM. Besides storing constraints in the DBMS also
 very important for a good implementation. A closer look to
 and functions of existing DBMSs is desirable to find out if
 these standard possibilities. If this is true, the amount of
n implementing constraints by programming them in Java.

5 Approaches for implementing constraints in a geo-VR environment 37

Many DBMSs exist, but within this research the geo component of the application is of interest.
Therefore geo-DBMSs should be used. The benefits of geo-DBMSs are:
1. Geo-DBMSs can manage geometric data;
2. In ArcGIS 8.3 for example, there are many conversion tools;
3. The data can be used for other (geo-) analyses and applications;
4. Some geo-databases, like Oracle, are object oriented.

There are many different geo-DBMSs, among others IBM DB2, MySQL with MapInfo’s SpatialWare,
Informix, Ingres, PostgreSQL (with PostGIS) and Oracle. Each of these geo-DBMSs have standard
functions and operations to adapt or query geometric data and these possibilities are more or less the
same for all geo-DBMSs. Investigating only one of the geo-DBMSs is sufficient to get an overview of the
standard functions and operations. MySQL and Oracle (Spatial) are both available at WUR.

MySQL is an open source DBMS. MySQL is multithreaded and runs on many platforms. On the
client side, the primary API is written in C (for greater portability), and most application and scripting
languages use this library under the hood. The MySQL client/server protocol is public. (Lentz, 2003)

Oracle Spatial is commercial DBMS that provides a SQL schema and functions that facilitate the
storage, retrieval, update and query of collections of spatial features in an Oracle database. Oracle Spatial
consists of the following components (Oracle, 2002c):
- A schema (MDSYS) that prescribes the storage, syntax, and semantics of supported geometric data

types;
- A spatial indexing mechanism;
- A set of operators and functions for performing area-of-interest queries, spatial join queries, and

other spatial analysis operations;
- Administrative utilities.

For this research Oracle (Spatial) is used (also for the implementation of some example constraints in
SALIX-2), because:
- Oracle is a widely used commercial DBMS;
- experience exists with Oracle (at WUR and TUDelft);
- Oracle has good geo-functionality;
- Oracle has orderly tutorials.

Aspects of interest for implementing constraints in the DBMS are:
- communication between the DBMS and the rest of the application;
- communication within the DBMS;
- standard functions and operations (of Oracle);
- additional programming possibilities (PL/SQL, Java, SQL).

In the next subsection, first an introduction to the Structured Query Language (SQL) is made. This
language allows querying, which can be seen as filter operations, and all (if not almost all) geo-DBMSs
have the possibility of using SQL. This section is followed by a discussion in 5.2.2 about integrity
constraints in DBMSs in general. Integrity constraints are available in almost all DBMSs. In section 5.2.3
Oracle Spatial and its functionality is looked at in more detail, followed by a short description of CDM
RuleFrame in section 5.2.4 and ArcSDE in section 5.2.5.

5.2.1 Structured Query Language
Database query languages exist to request or get responses from databases. SQL is the best-known query
language for relational databases and almost all geo-DBMSs support SQL. SQL is not only a query
language but can also be used for storage, retrieval or updating of simple geospatial feature collections
(having spatial and non-spatial attributes). The following text comes from (ESRI, 2002):

SQL provides an interface to relational tables that allows you to select rows based on the values
contained in the fields. An SQL statement can range from very simple to very complex, allowing you
to compose virtually any type of query from basic column types.

The result of a query is a set of rows meeting the criteria established by the SQL statement. A list of SQL
data manipulations (DML) and queries and SQL operators can be found in Appendix B. The SQL

38 constraints in geo-VR

SELECT command can be used to obtain information from (a combination of) tables in the database and
is useful for this research to check whether the stored constraints are violated or not. The syntax of the
SELECT command can be found in Table 5-1.

Table 5-1: The syntax of the SQL SELECT statement

Syntax select statement
(from Haan, 1993)

Types of conditions for the where component
(from [URL 4])

SELECT [DISTINCT] select_expr[,…]
FROM table_expr[,…]
[WHERE cond]
[GROUP BY expr[,…] [HAVING cond]]
[{UNION [ALL]|INTERSECT|MINUS} query]
[ORDER BY {expr|pos} [ASC|DESC][,…]]

{ simple_comparison_condition
| group_comparison_condition
| membership_condition
| range_condition
| null_condition
| exists_condition
| like_condition
| compound_condition
}

Note that a select statement only concerns existing tables. This means that querying the data for the
constraint checking can only be done after the table is adapted and filled with the new information. If the
data does not satisfy the constraints a rollback has to take place to make the updating of the table undone
(or just before the final commit).

The SELECT and FROM clause select statement are compulsory and specify where the data must come
from. The WHERE, GROUP BY, query and ORDER BY clauses are optional. The WHERE
component is used for restricting the selection and this restriction is realized by a SQL condition. A
SQL condition is the optional logical condition that restricts the selected set of rows to those for which
the condition is true. There are nine different types of conditions and they are listed in Table 5-1.

In this section the central question is whether the standard spatial GIS functions and operations are
sufficient for implementing all different constraints or not. SQL is a way of interacting with databases and
is actually part of a database, therefore a closer look to the possibilities of Oracle concerning SQL is
necessary and this is done in section 5.2.3.

5.2.2 Integrity constraints in DBMSs
All DBMSs have the possibility to implement integrity constraints. A constraint in this context is more
comprehensive than only the constraints for geo-VR, which are defined in chapter 3. Date and Darwen
(1997) divide the integrity constraints of DBMSs into the following broad categories:
1. domain constraints – are associated with specific domain, and apply to every column (in every base

table) that is defined on that domain.
2. general constraints (or assertions) – apply to arbitrary combinations of columns in arbitrary

combinations of base tables.
3. base table constraints (including ‘column constraints’) – are associated with some specific base

table ‘column constraints’.

Domain constraints are constraints concerning (in this context) the value domain of the attributes. These
constraints are not of interest for implementing the constraints that are defined for geo-VR applications.

General constraints have the following syntax: CREATE ASSERTION (assertion_name) CHECK
(constraint_body). General constraitns are often referred to as assertions. An assertion is an expression,
which never can be result in false, and the constraint_body in the asserton is a boolean SQL expression.
An example assertion for SALIX-2 can be seen in Figure 5-8.

Base table constraints can refer not only to one base table, which could be concluded from the name,
but can refer to many base table columns. There are three kinds of base table constraints:
1. candidate key definition – {PRIMARY KEY | UNIQUE} (column-commalist);
2. foreign key definition – FOREIGN KEY (column-commalist) references-definition;
3. check constraint definition – CHECK (conditional-expression).

5 Approaches for implementing constraints in a geo-VR environment 39

CREATE ASSERTION constraint_1 CHECK
(NOT EXISTS (SELECT * FROM prcv_treesrd_point t, prcv_gvkrd_poly g

WHERE t.treetype in (‘CorAve’, ‘CorMas’, ‘RosCan’)
AND g.descript = ‘water’
AND SDO_RELATE (g.geom., t.geom., ‘mask=INSIDE, querytype=WINDOW’)=’TRUE’))

)

Figure 5-8: Example of a general constraint (assertion).
The assertion represents the constraint: ‘Bushes never lie inside water’. Constraint_1 is the assertion_name and
all text after CHECK is the constraint_body.

The general definition of integrity constraints for databases can be used to search for implementation
possibilities of constraints for geo-VR applications in databases. The general constraints and base table
constraints are able to define the same contents, so for the constraint implementation the general
constraint can be used as well as the check base table constraint. In both integrity constraints an
expression must be given that specifies the content of the constraint. To find out if the different types of
constraints for geo-VR applications can be implemented using these expressions, a real database (Oracle)
with its possibilities is looked at. This is done in the next subsection.

5.2.3 Integrity constraints in Oracle Spatial
In Oracle Spatial querying the data can be done using SQL. Furthermore Oracle Spatial provides some
integrity constraints, they are (Oracle, 2002a):
- not null – a domain constraint that requires a column of a table contain no null values;
- unique – a base table constraint that requires that every value in a column is unique;
- primary key – a base table constraint, where the values in the group of one or more columns

subject to this constraint constitute the unique identifier of the row;
- foreign key – a base table constraint, where the column or set of columns included in the definition

of the referential integrity constraint reference a referenced key. The referenced key is the unique
key or primary key of the same or different table that is referenced by a foreign key.

- check – a base table constraint requiring the specified condition to be true or unknown for every
row of the table.

These are all base table or domain constraints and no general constraints appear. This is correct, because
Oracle doesn’t provide general constraints. The outcome of further investigation to other databases
(Informix, Ingres, MySQL, PostgreSQL (PostGIS), IBM DB2) is that general constraints neither exist in
these databases. This implies that general constraints only exist in theory! However, a general constraint
can be reformulated in a base table constraint. So first an integrity rule can be formulated as a general
constraint and than rewritten as a base table constraint. The advantage of general constraints is that the
constraint doesn’t have to refer to a table.

The check constraint of the base table constraints is the only constraint with the ability to formulate a
specified condition. However, in Oracle this condition cannot contain any subqueries (same is true for
other environments). This implies that the possibilities of the check constraint within Oracle are restricted
to rather simple conditions.

For the more complicated integrity constraints, Oracle provides database triggers (and stored
procedures) as integrity rules with a non-declarative approach. So Oracle provides not null, unique,
primary key, foreign key and check constraints for ‘simple’ integrity rules and for complicated integrity
constraints triggers and procedures can be used.

For geo-VR applications, mostly complicated constraints are defined, so it is worth looking at the
possibilities for defining complicated constraints using database triggers. In Oracle a trigger definition
consists of the components described in Table 5-2.

Within a database trigger the trigger event must be specified. In the trigger event the concerning table is
specified and also the actions that make the trigger run. E.g. when the trigger event is of the type ‘insert
or update on <table>’, then the trigger will be run when an insert or update on the table takes place.

The trigger time point specifies whether the trigger must be run before or after the trigger event. If
the time point is ‘before’, the table is only mutated after the trigger is run and the mutation satisfies the

40 constraints in geo-VR

trigger body. If the time point is ‘after’, the table is first
mutated and afterwards the trigger is run to check if the
trigger body is satisfied. If not, an implicit rollback takes place
to undo the mutation of the table.

The trigger type specifies if the trigger must be run for
each row in the insert or update statement or not. If ‘for each
row’ is not specified, the trigger runs only once for each
statement.
When a for each row trigger is created a restriction can be
specified in the form of a when condition. The trigger is only
running for the rows in the statement that satisfy the when
condition.

F
d

The trigger body is a PL/SQL block where the actual cons
of a PL/SQL block can be found in Figure 5-9. SQL and spatial
Oracle can be used inside the trigger body. The spatial operations

Table 5-2: Components of the database triggers in Oracle
Component syntax
trigger name create [or r
trigger time point before | af
trigger event(s) insert or up
trigger type (optional) for each ro
trigger restriction (only for for each row triggesr) when (cond
trigger body <PL/SQL b

The possibilities for implementing the constraints that are form
triggers are listed below:
- The spatial topology constraints can be implemented with the

operation provides all topological relationships.
- The spatial metric constraints are divided in distance and d

implemented with the SDO_WITHIN_DISTANCE o
trigonometry operations (like sine, cosine and tangent) can
trigonometry operations have to be implemented in th
programming is necessary.

- The temporal constraints can be implemented using some
compared with each other in Oracle. This comparison o
PL/SQL block.

- The quantity constraints can be implemented with the cou
FROM <table_name>).

- The thematic constraints can be implemented with the standa
and specifying the right thematic attributes in the WHERE c

All different types of constraints for geo-VR applications can b
triggers and for most types of constraints existing operations and
body. For implementing the directional and temporal constraint
to check the constraints.

Besides using integrity constraints for simple constraints and
constraints in Oracle, also additional software can be used to im
given in the next sections.

5.2.4 Implementing constraints using Oracle’s CDM Rule
Oracle provides a development tool called Custom Developmen
the DBMS. The CDM RuleFrame is the business rules imp
components of the CDM RuleFrame can be seen in the Business

When an insert statement is done, the Table API (TAPI) is
integrity rules/constraints, like domain checks. However, for th
calls the Custom API (CAPI).

declare
<constants>
<variables>
<cursor>
<user defined exceptions>

begin
<PL/SQL statements>

exception

en

<exception handling>
d;
igure 5-9: syntax of PL/SQL body in
atabase trigger

traint checking takes place. The structure
operations and functions available within
 and functions are listed in Appendix B.

eplace] trigger < trigger name>
ter
date [of <column(s)] or delete on <table>

w
ition)
lock>

ulated for this research using database

 SDO_RELATE operation, because this

irections. Distance constraints can be
peration. For direction constraints
 be used in the PL/SQL block. These
e PL/SQL block, so a little extra

 timestamps and dates. Dates can be
f dates must be programmed in the

nt function of SQL (SELECT count(*)

rd SELECT-FROM-WHERE statement
lause.
e implemented in Oracle using database
 functions can be used inside the trigger
s a little extra programming is necessary

database triggers for the more complex
plement constraints. Some examples are

Frame
t Method (CDM) for generating code for
lementation framework of CDM. The
 Logic Layer of Figure 5-10.
called. This TAPI can handle the ‘simple’
e more complex constraints, the TAPI

5 Approaches for implementing constraints in a geo-VR environment 41

The CAPI con
that Oracle D
CAPI have a p
- a function
- a function
- a handling

CDM Ru
delete stateme
in the CAPI)
business rule e

The CAPI off
2000):
- Get char/n

when anot
- Exists Row
- Display lab

label of a
type of an

- Aggregate v
rows satisf

Look for exam
get char value
constraint_ok
The syntax he
than using a SQ
not further dis
(Muller, 2000)

5.2.5 Imple
Besides or ac
implementatio
a DBMS whe
information ca

ArcSDE
DBMS (

Figure 5-10: The structure of CDM RuleFrame.
The components of the CDM RuleFrame can be seen in the Rule Layer.

(from Muller, 2000)

sists of one package per table for all custom rules. In other words, a container for all rules
esigner does not generate. All business rules (comparable to complex constraints) in the
redefined structure. The rules consist of three parts (Muller, 2000):
 that indicates when the rule should be validated;
 that performs the actual validation, when the previous function indicates the need;
 procedure, that manages the communication with the outside world.
leFrame does not check business rules at the moment the user performs insert, update or
nts. Rather, CDM RuleFrame stacks the rules that have to be enforced (which is indicated
and checks them only at the moment of commit. This stack of the rules and the eventual
nforcement is done in the Transaction Management component.

ers some standard services to support the enforcement of rules. These services are (Muller,

um/date value. These statements return the value of any column of the CAPI’s table, to use
her CAPI needs the value;
. This statement determines whether a row exists with the properties provided;
el. This statement returns a meaningful identification of a row. For example, the display
row in the plantation layout table of SALIX-2c could be a concatenation of the kind and
 object: ‘tree, FraxExc’. This can for example be used in error messages;
alue. This statement performs calculation services (max, min, count, avg, sum) for a set of
ying given conditions.
ple to the constraint: ‘the tree must be of type ‘FraxExc’ ’. For this constraint the service

can be used. The code of the constraint becomes:
:= plantation_layout_capi.get_char_value(treetype=’FraxExc’);
re is: constraint_name := table.get_char_value(condition). This code is shorter and easier

L select statement (with the select, from, where syntax). However, the CDM RuleFrame is
cussed here because it’s too complex for this research. More information can be found in

 or (Boyd, 2000).

mentation constraints using ArcSDE
tually on top of a DBMS also other software can be used for a smoothly constraint
n, for example ArcSDE, part of the ArcGIS product. ArcSDE is an abstract layer on top of
re defining integrity rules is possible (see Figure 5-11). On [URL 8] the following
n be found:

is a middleware that allows you to store and manage spatial data in your chosen relational
RDBMS). ArcSDE works with IBM DB2, Informix, Microsoft SQL Server and Oracle.

42 constraints in geo-VR

ArcSDE (also) works as an application server, delivering spatial data to many kinds of applications
and serving spatial data across the Internet.

ArcSDE manages the integrity of the point, line, and polygon information
added to the database and won’t allow ill-formed feature geometry to be
inserted (for example, polygon boundaries must be closed). In addition, you
can use the ArcSDE gateway with ArcInfo and ArcEditor to implement
additional integrity constraints on the data model that aren’t practical to
implement in the DBMS itself. For example, you can add connectivity rules
for utility networks.

ArcSDE

GUI
(VRML/Java)

DBMS
The integrity constraints that can be implemented in ArcSDE are: Figure 5-11:

Possibilities for the
implementation
architecture of a geo-
VR application.

- attribute validation rules;
- network connectivity rules;
- relationship rules (based on topology).

The attribute validation rules check the validity of the attributes, e.g. ‘polygons should not have a point
with the same co-ordinates in the description’ so the same point is not stored twice. These rules can also
constrain the values allowed in any particular attribute for a table, feature class or subtype (ESRI, 2002b).
This kind of integrity constraints is not of interest for this research.

Topology is the mechanism to find whether the network connectivity rules and the relationship rules
are correct. The available topology rules in ArcSDE are listed in Appendix B. These rules can be
implemented with a graphical user interface wizard and the user does not need SQL knowledge.

A network connectivity rule constrain the type of network features that may be connected to one
another and the number of features of any particular type that can be connected to features of another
type (ESRI, 2002b). If for example in SALIX-2 the roads and bridges were line features, a network
connectivity rule could be that the roads should always be connected through bridges to reach the other
side of water areas.

Relationship rules control which object subtypes from the origin class, can be related to which object
subtypes in the destination class (ESRI, 2002b). An example of a relationship rule for SALIX-2 could be:
a tree (point object) must be properly inside a grass area.

However, with the ability of defining topology rules, only a limited number of the spatial constraints can
be implemented. The rest of the constraints (spatial metric, temporal, quantity and thematic constraints)
cannot be implemented by defining topology rules between features or feature classes. This is not only a
disadvantage for the ArcGIS software, but for all implementation approaches using only topology rules.

For the non-topological constraints the SQL possibilities within ArcSDE could help for the
implementation. One can also use standard SQL in the ArcSDE software’s API to perform attribute-only
queries. So in addition to the topology rules, which are easy to implement in ArcSDE, SQL can be used
for the thematic (attribute) queries. However, this can also be done in Oracle without ArcSDE so this
software tool is not of further interest for this research.

5.2.6 Conclusion of implementation possibilities in DLM
The DLM provides enough possibilities to implement integrity constraints. However, the assertions
(which are most suitable for the constraint implementation) are not available in existing DBMSs. DBMSs
provide their own solutions for maintaining integrity.

Oracle Spatial provides domain and base table constraints for the simple constraints. For the more
complicated constraints database triggers can be used in Oracle Spatial. Within the PL/SQL trigger body
standard operations and functions, which are available in Oracle Spatial, can be used as well as SQL
statements. Not all constraints for geo-VR applications can be implemented using the standard spatial
functions and operations. For these constraints (temporal and directional) a little additional programming
is necessary in the PL/SQL block of the triggers.

Other software packages exist to implement integrity constraints in a more user-friendly way, e.g. Oracle’s
CDM RuleFrame and topology rules in ArcSDE. In Oracle CDM RuleFrame the code for some
constraints can be generated automatically (based on high level specification, like OCL) and in ArcSDE

5 Approaches for implementing constraints in a geo-VR environment 43

topology rules can be defined with a graphical user interface wizard and programming is not necessary for
these topology rules. This could be an advantage for implementing constraints in the DLM.

However, Oracle’s CDM RuleFrame is beyond the scope of this research and ArcSDE is not
sufficient enough for implementing all constraints, so programming is still necessary. Moreover,
additional software packages are necessary for the geo-VR application. More complex system structures
exist (and probably more expensive) and the question arises if this counterbalances the benefits the extra
software provides. This question has to be answered for each geo-VR application separately, because the
final purposes for each geo-VR application are different. With this also the discussion starts about using
freeware or commercial software. This discussion continues in the next section.

5.3 Freeware or commercial software?

Before starting with the development (or modification) of an application, it should be clear who the end
users of the application are and what the available budget for the application is. This information is
necessary to decide what the final application structure should be. The question ‘which software should
be implemented on the client side and which software on the server side’ is of importance. If an
application is developed for interactive spatial planning for ‘normal’ citizens, the software and hardware
requirements on the client side cannot be very high, because then hardly anyone can use the application.
So in such cases one should rather choose for a simple client side, which can be constructed using
freeware or possibly some additional standard hardware and software.

Looking for example to SALIX-2, the conclusion can be drawn, that only some plugins (freeware)
are necessary on the client side and MSAcces is the used database, which is part of MS Office and a rather
simple DBMS.

When implementing the constraints in the DLM of a geo-VR application, using Oracle Spatial and
possibly ArcSDE on top of Oracle Spatial, the application will not be a simple application (anymore).
Licenses for commercial software are expensive. However, using existing commercial software can have
advantages in the field of the expectation of already implemented functions that are needed, the ability of
getting more support and the reliability of existing software. Furthermore, the commercial software
packages only have to be installed once on the server-side of the application and the client side of the
application can still use freeware.

So for each application the structure, the budget and the final purposes must be determined. After that
the software can be chosen that fits the conceptual model of the application. Geo-DBMSs are available as
commercial geo-DBMSs, but also as free geo-DBMSs. The commercial geo-DBMSs are for example
Oracle, IBM DB2, Informix, Ingres etc. and the free geo-DBMSs are MySQL and PostgreSQL/PostGIS.
Within all these DBMSs the integrity constraints described in section 5.2.2 and database triggers (or
similar solutions) are available. Which geo-DBMS eventually must be used for which application is,
besides the budget and the final purposes, also dependent of the experience of the organisation
developing the application.

5.4 Criteria for best implementation approach of constraints

In this chapter many implementation possibilities are described. There’s not a best implementation
approach for all applications. A list of criteria can help to decide which implementation approach is most
desirable for an application. The most important criteria concern:
- end users (final purpose);
- budget;
- usage of the application;
- freeware / commercial software;
- expertise within organisation developing the application;
- interaction with constraints.

These criteria can be used as basis for a kind of decision table, as can be seen in Table 5-3. The
combination of the decisions can give a good indication of the side where the constraints have to be
implemented. A broad distinction can be made in:
1. implementing constraints in the DLM using freeware (e.g. MySQL);

44 constraints in geo-VR

2. implementing constraints in the DLM using a commercial software (e.g. existing DBMSs like Oracle
or existing GIS software like ArcSDE);

3. implementing constraints in the DVM with a rather simple GUI and using freeware (e.g. VRML or
Java);

4. implementing constraints in the DVM with a more complex GUI, based on commercial software
(like the 3D Analyst extension of the ArcGIS package).

Each of these four possibilities is represented by a separate column in Table 5-3. The explanation of how
this table works is done with an example.

Table 5-3: decision table for place of constraint implementation.
When a criterium does not fullfill the requirements of the application,

DVM
Client side implementation

DLM
Serverside implementation

Four impl.
approaches

Criteria

1
freeware
DBMS

2
Commercial

DBMS

 3
Simple GUI

Freeware
(e.g. VRML and Java)

4
More complex GUI

Com. software
(e.g. 3D Analyst)

Budget
 low high low high

Experienced
GIS users yes or no yes or no no yes

Wide usage of
application yes or no yes or no yes no

Expertise of
developers If yes anywhere, use this expertise as much as possible

Interaction with
constraints yes yes no yes or no

The example concerns an application that has to be made:
- with low budget (columns 1 and 3);
- where the end users do not have experience with GIS (columns 1, 2 and 3);
- which should be widely used (columns 1, 2 and 3);
- by developers who have no experience with DBMSs, but with Java (column 3);
- where interaction with constraints is not necessary (columns 3 and 4).
After each application requirement, the column number is given which fulfils these requirements. For the
described application, only column 3 fulfils all application requirements. This is an indication that the
constraints can probably best be implemented in the DVM (or client side) of the application with
freeware and a simple GUI, based on Java.

A comment can be made to the decision table. The table can only give an indication for the most suitable
implementation approach, the other solutions are not excluded from being good implementation
possibilities. Moreover, the applications of interest are geo-applications. It is desirable to use geo-DBMSs
for the storage when working with geo-appliations. When using already a geo-DBMS for an application,
the most suitable implementation approach for constraints is in almost all cases on the DLM side of the
application. Expertise already exists and DBMSs offer existing operations and functions that can be of
help for the constraints implementation.

5.5 Conclusion

Implementing constraints in an application can be done in the DVM and the DLM. VRML and Java can
be used for the constraints implementation in the DVM. However, VRML offers not the right
functionality for constraints. In Java a lot is possible with programming, but everything has to be
designed, tested and debugged by hand.

In the DLM existing DBMSs offer standard functions and operations that can be of help for the
constraint implementation. For geo-VR applications geo-DBMSs should be used for the storage of all
data. Within Geo-DBMSs database integrity is available. However, these standard integrity possibilities
are mostly not sufficient for the constraints for geo-VR applications. Other functionality, such as database
triggers, also exist for the more complicated constraints.

5 Approaches for implementing constraints in a geo-VR environment 45

Additional software, like CDM RuleFrame and ArcSDE, can be used for the implementation of
constraints. The advantages are:
- orderly implementation possibilities for complex constraints with CDM RuleFrame
- easy implementation of topological constraints with ArcSDE
The disadvantages are:
- additional software is necessary, so the application becomes more complex
- with ArcSDE still programming is necessary for implementing all non-topological constraints.
For this research they are not used, because the advantages do not counterbalance the disadvantages and
CDM RuleFrame is too complex for this research.

The best implementation approach for constraints in an application cannot be given, because each
application has its onwn requirements. To get an indication of the most suitable implementation
approach for an application, the requirements for each application have to be filled in in the decision
table (Table 5-3). Also other solutions are possible, because they are not excluded from being good
implementation approaches.

47

6. Conceptual model of SALIX-2c

SALIX-2 is used as example application to implement some constraints. For this constraint
implementation, the most suitable approach is followed, which is found by filling in the decision table.
This is described in section 6.1. Furthermore the conceptual model of SALIX-2 with constraints (SALIX-
2c) is described in this chapter, preceded by an introduction of the Unified Modelling Language (UML) in
section 6.2 and the Object Constraint Language (OCL) in section 6.3. UML can be used to model an
application and OCL can be used to model the constraints. After these introductions the static system
structures of SALIX-2 and SALIX-2c are given in 6.4. In section 6.5 the communication between the
application and the user is discussed. This communication is part of the dynamic system structures, which
can be found in 6.6. After designing the system structure of SALIX-2c is also the constraints must be
designed, this is done in section 6.7.

6.1 Most suitable implementation approach

The most suitable implementation approach can be found by filling in the application requirements in the
decision table (Table 6-1). The application requirements for SALIX-2 are:
- the budget is very low, but the DBMS Oracle is already available;
- the users are mostly students with some experience with GIS;
- the application is ment for wide usage and distribution over the internet;
- there is experience with Oracle and MySQL;
- interaction with the constraints is desirable.

Table 6-1: decision table with requirements for SALIX-2

DVM
Client side implementation

DLM
Serverside implementation

Four impl.
approaches

Criteria

1
Freeware
DBMS

2
Commercial

DBMS

 3
Simple GUI

Freeware
(e.g. VRML and Java)

4
More complex GUI

Com. software
(e.g. 3D Analyst)

Budget
 Low Low

Experienced
GIS users Yes Yes Yes

Wide usage of
application Yes Yes Yes

Expertise of
developers

Yes
(MySQL)

Yes
(Oracle) Yes

Interaction with
constraints Yes Yes Yes

The low budget criterium is very hard. So it is necessary to use as much as possible existing expertise,
already available (also commercial) software and the existing program code. Furthermore, the DVM
implementation is less suitable than the DLM implementation (more crosses in the decision table).

So a DLM implementation with usage of existing expertise, software and program code is most
suitable. Existing geo-DBMSs within Alterra and WUR are Oracle and MySQL and also expertise with
both DBMSs is available. Oracle is used for this research (widely used DBMS and orderly tutorials).
Although Oracle is an expensive commercial DBMS, this DBMS is already available and can act as a
server. So the low budget criterium is not violated. The client side of the application will stay simple to
fulfil the low budget and wide usage criterium.

6.2 Unified Modelling Language

UML is a standard used for object oriented system development. It offers some diagrams that together
form the model of the system. The available diagrams within UML are (Warmer, 2001):
- use-case diagrams – shows how the system can be used by external entities such as human users;

48 constraints in geo-VR

- class diagram – the static structure of a software system as classes and their relations;
- object diagram – the static structure of the software system as objects and their relations;
- sequence diagram – the order in time of messages send and received in the system;
- collaboration diagram – shows how objects collaborate to reach a goal;
- state diagram – shows the possible states of the objects during it´s lifetime;
- activity diagrams – shows activities executed by the different parts of the system;
- component diagram – shows the system components and their relations;
- deployment diagram – shows the usage of the software components.
The possible diagrams can be used to conceptualise, analyse, design and implement the system. All
objects, components and relations can be outlined. In this report the class diagrams are used to model the
static system structures of SALIX-2 and SALIX-2c. The state diagrams are used to model the dynamic
system structures.

UML class diagrams show the classes of the system, their inter-relationships, and the
operations and attributes of the classes [URL 10]. A class is a collection of objects with
similar properties. The class description gives the name of the class and the description of
the properties and instances. These properties are divided into attributes and operations.
The design of a class can be found in Figure 6-1. F

deBetween classes some associations and relations (e.g. composition) can exist. Also
some notes can be added to the diagram to give additional information. These notes can
be related to a specific class.

State diagrams are used to describe the behavior of a system. State diagrams describe all of
states of an object as events occur. Each diagram usually represents objects of a single class a
different states of its objects through the system. [URL 9]

6.3 Object Constraints Language

OCL is a notational language for analysis and design of software systems and is part of
enables one to describe expressions and constraints on object-oriented models and other ob
artifacts. In this context an expression is an indication or specification of a value and a
restriction on one or more values of (part of) an object-oriented model or system [URL 5].

The following types of constraints exist in OCL [URL 5]:
- An invariant is a constraint that states a condition that must always be met by all instance

type or interface. An invariant is described using an expression that evaluates to true if th
met. Invariants must be true all the time. (these constraints are used for SALIX-2c).

- A precondition to an operation is a restriction that must be true at the moment that the
going to be executed.

- A postcondition to an operation is a restriction that must be true at the moment that the
just ended its execution.

- A guard is a constraint that must be true before a state transition fires.

Each OCL expression has a context definition, which specifies the model entity for wh
expression is defined. Usually this is a class, interface, data type or component. Sometim
entity is an operation or attribute, and rarely it is an instance. It is always a specific element
usually defined in a UML diagram. This element is called the context of the expression. An ex
attribute constraint ‘a QueRob (one of the treetypes in SALIX-2) can never become older t
is:

context QueRob inv:
self.age <= 35

The context of the constraint is the QueRob, the constraint type is invariant and the constra
is age. The word ´self´ is used to specify the context and is left out in many cases, because
what is meant by the constraint without this word.

Class name
Attributes
Operations

igure 6-1:
sign of a class

 the possible
nd tracks the

 UML. OCL
ject modeling
constraint is a

s of the class,
e invariant is

 operation is

operation has

ich the OCL
es the model
of the model,
ample of the
han 35 years’

ined attribute
 it is obvious

6. Conceptual model of SALIX-2c 49

In OCL the standard operation types are integer, real, string and Boolean. These operations include the
standard operations, like +, -, *, and, =, <>, but also the Booleans implies and if-then-else-operators. With
these operators, more complex constraints can be formulated.

Figure 6-2: UML class diagram representing the objects in the DLM of SALIX-2c.
The constraints are visualized as restricted associations between object classes.

50 constraints in geo-VR

6.4 Static system structure of SALIX-2c

Besides formulating constraints using OCL, the constraints can also be visualized in a UML class diagram.
This is done for SALIX-2c. A class diagram representing the static system structure of SALIX-2 is given
in Appendix A. This class diagram is rewritten to a class diagram representing the objects of the
application in the DLM. These object classes including the constraints can be seen in
Figure 6-2. The constraints are visualized as restricted associations between object classes. Note that this
is only the DLM part of SALIX-2c.

The plantation objects in Figure 6-2 are categorized in trees and bushes, the trees and bushes are in turn
also categorized in sub-classes (FraxExc, QueRob, RosCan, CorAve, CorMas). In this way the relations
between specific object classes can be visualized more clearly. The associations between object classes can
have directions, visualized by arrows at the association ends, and can also represent specific relations,
which are visualized by text in the middle of the association. With these notations a complex system
structure with constraints can be visualized in a class diagram.

6.5 Communication between application and user

The constraints that are visualized in the UML class diagram in Figure 6-2 can be implemented in the
application. If constraints are implemented, the user has to know which constraints exist. When the user
edits the 3D model (for SALIX-2c this would be modifying the VRML plantation layout) the user also
needs some feedback about the validity of the modifications he/she made. A picture is more than
thousand words, so a visual feedback is desirable. However, the detail of the feedback information can be
limited when using visual feedback. Furthermore, it can be more complicated to implement visual
feedback (instead of textual feedback). Therefore a list of constraints (textual) should be presented when
the application is started in combination with textual feedback when a constraint is violated.

So feedback to the user can be given on several moments:
- before any changes are made, for example show transparent red areas where plantation objects are

not allowed to be placed (by adding an additional layer) or show a list of all implemented constraints;
- after changes are made, for example colour the plantation objects red or give textual error message;
- a combination of these two.

The multi-view approach described by E.Verbree et al. (1999, described in section 2.2) would be a very
nice solution for displaying the constraints on a 2D map and simultaneously in the 3D model. If also
additional textual feedback is given, the user knows exactly what can be done and what not. This solution
is however too extensive for the example implementation of SALIX-2. For this implementation only
textual feedback is given to the user in the textbox of the Java console. This is also implemented in the
flowcharts of actions in the next section.

6.6 Dynamic system structure of SALIX-2c

The dynamic structures of SALIX-2 and SALIX-2c are discussed in this section. For each interaction in
the application a state diagram can be made. The possible interactions are:
- starting the application;
- loading a plantation layout;
- making a new plantation layout;
- adding an object;
- deleting an object;
- dragging an object to another position;
- saving the plantation layout.
The state diagrams are given for both SALIX-2 as SALIX-2c. When the state diagrams of SALIX-2c are
not different from the state diagrams of SALIX-2, only one state diagram is given.

The most remarkable changes in SALIX-2c are:

6. Conceptual model of SALIX-2c 51

- MSAccess is replaced by the geo-DBMS Oracle Spatial;
- Database triggers are used to implement the constraints in the database;
- The ground surface is stored in Oracle Spatial as a set of geo-objects, but for the visualization still an

image is used in the VRML scene;
- All data is stored as geodata in RD coordinates in Oracle Spatial. VRML becomes very slow (too

slow) when working with the large RD coordinates, so within the VRML browser the application
works with local VRML coordinates. A transformation must take place when loading the geodata
from the DBMS and also when saving the plantation layouts in the DBMS.

6.6.1 Starting the application
The start of the application is the same for SALIX-2 as for SALIX-2c. The order of the actions that take
place while the application is being opened, is described below and these actions can be seen in Figure
6-3.
1. SALIX-2/SALIX-2c has to be started with index.htm.
2. A VRML browser is started and loaded with the base scene (land, sky, ground surface) and the java

panel with interaction possibilities appears (buttons, scroll down menus).
3. A connection is made between the java panel and the VRML browser.
4. A connection to the database is made to add the available treetypes and plantation layouts to the

scroll down menus in the java panel.
The database in SALIX-2 is MSAccess and the database in SALIX-2c is Oracle Spatial.

Now SALIX-2/SALIX-2c is ready for use. A choice can be made to load an existing plantation layout or
make a new one. After a plantation layout is loaded and the objects are displayed in the new VRML scene
or after a plantation layout is created, interaction is possible in SALIX-2/SALIX-2c.

6.6.2 Making a new plantation layout
Making a new plantation layout in SALIX-2 and SALIX-2c is actually making a new table in the database
with the specified name (CREATE TABLE ‘table_name’ (TreeID NUMBER PRIMARY KEY,
TreeType STRING, TreePosX DOUBLE, TreePosY DOUBLE, TreePosZ DOUBLE, TreeAge
DOUBLE, Solitair BIT). The accompanying state diagram can be seen in Figure 6-4.

Figure 6-3: state diagram when starting SALIX-2 and SALIX-2c

Figure 6-4: state diagram of creating a new plantation layout in SALIX-2

52 constraints in geo-VR

For SALIX-2c it is also necessary to assign the triggers to the correct plantation layout table. Furthermore
the constraints for that plantation layout must be listed in the textbox of the Java console, so the user
knows which constraints exist. The state diagram for SALIX-2c can be seen in Figure 6-5.

Figure 6-5: state diagram of actions when making a new plantation layout in SALIX-2c.

6.6.3 Loading a plantation layout
Loading a plantation layout in SALIX-2/SALIX-2c is actually getting the object attributes from a
plantation layout table and storing these attributes in the vector DBObjects. This vector is used to store
the object attributes (objectid, type, x, y, z, age, solitair) temporarely, so the frequency of connecting to
the database is limited. For SALIX-2 the object attributes are acquired with the SELECT * FROM
‘table_name’ statement. The object attributes are used to import the objects in the VRML scene (create
VRML from string). For SALIX-2 the ‘load’ operation is finished. The state diagram of these actions can
be seen in Figure 6-6.

Figure 6-6: state diagram when loading a plantation layout in SALIX-2

For SALIX-2c the location of the plantation objects is stored as sdo_geometry in RD coordinates. These
coordinates have to be selected separately (xrd, yrd and zrd), because it is necessary to transform the RD
coordinates to local VRML coordinates. When all attributes are available, including the local VRML
coordinates, a ‘VRML from string’ creation can be done and the objects can be imported in the VRML
scene. Then the constraints for this plantation layout must be listed in the textbox of the Java panel to
inform the user about the constraints. The flowcharts of all these actions can be seen in Figure 6-7.

When a plantation layout is visualized in VRML (after making a new one or loading an existing one) the
user can add, delete or replace objects. In SALIX-2 these changes are temporarily stored to the vector
with all object attributes (including the local VRML coordinates). Only when the plantation layout is
saved this vector is used to insert all data in the database (with local VRML coordinates).

Maintaining this structure within SALIX–2c, the constraints are only checked when the plantation
layout is saved, that is when the user clicks the ‘save’ button. It can be desirable to check every change
separately, so the ‘save’ button must be clicked after each change. However, also constraints can exist that
can only be true when more than one change is made (e.g. the grass surface with id 20 must have 3 trees
placed on it). The user has to wait with clicking the ‘save’ button till all necessary plantaion objects are
placed. Feedback is only given when the ‘save’ button is clicked. So the user has to know that it is
desirable to click the ‘save’ button regularly to get feedback. This information can be given in the users

6. Conceptual model of SALIX-2c 53

guide of the application. The state diagram when the plantation layout is changed (add, delete, replace
objects) are the same for SALIX-2 and SALIX-2c and are shown in Figure 6-8 till Figure 6-12.

6.6.4 Adding a new object
One of the interaction possibilities is adding a new object to the VRML scene. The button ‘create’ has to
be clicked after selecting the type and behaviour of the new object from the scroll down menus. For
SALIX-2 and SALIX-2c the actions that follow are:
3. the Vrml.ToggleLocationSelection is set to true (in the program code). This activates the callback

method and the VRML browser. The text on the ‘create’ button is changed in ‘click place’.
4. When a location is clicked in the VRML Scene, the callback method is invoked. This method enables

Java to catch information (location) from the VRML browser.
5. the object is added to the DBObjects vector. For this the selected type, behaviour and the clicked

location in the VRML browser is necessary.
6. the action addNode is invoked to create the object in the VRML world. The browser creates a VRML

from the string and adds the object to the scene.

Figure 6-7: state diagram when loading a plantation layout in SALIX-2c

Figure 6-8: state diagram when making a new object in the plantation layout

54 constraints in geo-VR

6.6.5 Drag object to another position
Another interaction with the plantation plan is dragging an object to another position. Actions that take
place in SALIX-2 and SALIX-2c are:
1. the object is dragged to another position, is visualized in the VRML Scene and an eventOutSFVec3f

translation is generated
2. This translation is sent to the callback method of the Java code and the position in the VRML scene

is acquired. This is necessary to save the new tree position in the DBObjects vector (only set new
position (x,y,z) of the right object in the vector).

3. if the object is not the last moved object, the Architectural object where this tree is involved in, is
removed and the tree is given the right colour. If the object is not the last moved object, all necessary
actions are done.

During these actions, there is neither a connection to the database. The state diagram of these actions can
be seen in Figure 6-9.

Figure 6-9: state diagram of actions when dragging an object in SALIX-2/SALIX-2c

6.6.6 Deleting an object
An object can be deleted from the plantation layout of SALIX-2 and SALIX-2c by clicking the button
‘delete’ and after that clicking an object in the VRML Scene. The object disappears from the VRML scene
but not from the DBObjects vector. The object will only be set to invisible. This is done to overcome
problems with the object id’s of the objects. When all objects are still in the vector, a new object can get a
new unique object id, directly following on the highest object id existing in the vector. In the VRML
Scene all architectural objects are removed where the deleted object was involved in. Figure 6-10 shows
the state diagram of actions when deleting an object from the plantation layout.

Figure 6-10: state diagram when deleting an object from the plantation layout in SALIX-2/SalIX-2c

6.6.7 Saving a plantation plan
The actions when saving the plantation layout in SALIX-2c is very different from the actions when saving
in SALIX-2. When the user wants to save the plantation layout in SALIX-2, the ‘save’ button must be
clicked. The actions that follow can be seen in Figure 6-11 and are:

1. First of all the selected plantation layout name is set as table name
2. the user is notified that some actions are taking place by the message: ‘saving file…’
3. In the DBMS everything in the plantation layout table is deleted (delete * from <table_name>)

6. Conceptual model of SALIX-2c 55

4. In the Java code the DBObjects vector is organised: all the objects that are set to invisible during
interaction with the VRML scene, are now deleted from the DBObjects vector and the id’s of the
remaining objects are replaced by new (continuous) id’s.

5. The new DBObjects vector is used to insert the necessary data in the plantation layout table in
the DBMS.

6. The user is notified that the ‘save’ operation is finished by the message ‘done’.

For SALIX-2c some additional actions are necessary, because this is the moment of the constraint
checking. However, the first part is the same. The actions in SALIX-2c are:

1. the table_name is set to the selected plantation layout name
2. all objects are deleted from the plantation layout table in the DBMS
3. the message ‘saving file...’ appears in the textbox
4. the DBObjects vector is organized.
From here the actions are different for SALIX-2c:
5. The local VRML coordinates in the DBOBjects vector have to be transformed to RD

coordinates. These RD coordinates are used to store the geometry of the objects (as
sdo_geometry)

6. the objects are inserted in the plantation layout table. This is all done by separate insert
statements. For each insert statement the triggers are checked. Note that constraints that can only
be true when more than one change is made at the same time, cannot be implied in SALIX-2c.

7. when all triggers are satisfied for all insert statements, the message ‘done’ appears
8. when a trigger is not satisfied, that insert statement is made undone and the remaining objects are

inserted. When in the end all insert statements are finished, error messages appear in the textbox
output.

Figure 6-11: state diagram of actions when saving a plantation layout in the DMBS for SALIX-2

Figure 6-12: state diagram when saving a plantation layout in SALIX-2c

56 constraints in geo-VR

6.7 Conceptual Design of triggers to implement constraints

Besides designing the dynamic system structure for SALIX-2c, also the real constraint checking must be
designed. The possibilities for the constraint implementation in the database are already described
(section 5.2). In Oracle database triggers can be created for the implementation of the more complex
constraints. The PL/SQL statement that forms the trigger body can contain spatial operations and
geometry functions of Oracle, so the topological relationships can be tested, buffers can be made and
distances can be computed. With these options and some if-then-else statements, the example constraints
can be implemented in SALIX-2c. When stored procedures are used for the constraint checking, the same
functionality (e.g. check direction of an object) can be re-used.

Before the triggers are created it is recommended to first formulate the constraints as general constraints
(assertions). Although general constraints are not available in Oracle Spatial, the assertions have the
advantage of only referring to just one database table. However, select statements can be used in the
expressions of the assertion and select statements always concern database tables, so then one or more of
the involved tables must be defined. After the constraints are formulated as general constraints, they can
be rewritten as database triggers. Database triggers can be created (some (semi-) automatic with CDM
RuleFrame) in Oracle Spatial.

6.7.1 The example constraints as assertions
In this subsection the example constraints for the implementation are formulated as assertions. The tables
of SALIX-2 that are used in the assertions are:
- prcv_treesrd_point: a certain plantation layout of plantation objects;
- prcv_gvkrd_poly: the ground surface;
- involved_object: a temporary table filled with the attributes of the object that is inserted. (For the real

implementation of database triggers in Oracle, this table is not needed anymore, because a package is
used to store attributes of the involved object.)

For each example constraint a separate assertion is formulated.

1. Bushes never lie inside water

Create assertion constraint_1 check
(not exists (select * from prcv_treesrd_point t, prcv_gvkrd_poly g

where t.treetype in (‘CorAve’, ‘CorMas’, ‘RosCan’)
AND g.descript = ‘water’
AND sdo_relate (g.geom., t.geom., ‘mask=inside,
querytype=window’)=’TRUE’))

2. A bush always has to be placed directly south of a tree
For this assertion a geometry that represents the restricted area is necessary, this geometry must first be
created and this can be done with a function. Here the name fu_restricted_area is used and the inputs of
the function are two angles that represent the direction and a maximum distance to restrict the search
area. The function returns a geometry which has it’s basis in the location of the involved bush (this
location comes from the table involved_object) and can be used in the assertion.

create assertion constraint_2 check
(exists (SELECT * FROM prcv_treesrd_point t, involved_object i

WHERE t.treetype IN ('FraxExc', 'QueRob')
AND sdo_relate (t.geom, fu_restricted_area(first_angle, second_angle, distance,
i.geom), 'mask=ANYINTERACT, querytype=window')='TRUE'))

3. trees always have to be positioned > 1 meter from paving

Create assertion constraint_3 check
(not exists (SELECT * FROM prcv_treesrd_point t, prcv_gvkrd_poly g

WHERE t.treetype IN (‘FraxExc’, ‘QueRob’)
AND g.descript IN (‘paving’, ‘soft_paving’)
AND sdo_within_distance (g.geom., t.geom., ‘distance=1’) =’TRUE’))

4. there must always be at least 3 trees on a specified ground surface

6. Conceptual model of SALIX-2c 57

for this constraint the grass polygon with id 20 is used.
Create assertion constraint_4 check
((SELECT count(t.treeid) FROM prcv_treesrd_point t, prcv_gvkrd_poly g
WHERE t.treetype IN (‘FraxExc’, ‘QueRob’)
AND g.id=20
AND sdo_relate (t.geom, g.geom, ‘mask=ANYINTERACT, querytype=window’)=’TRUE’)
>=3)

5. A bush always has to meet or disjoint paved areas
The opposite of meet or disjoint is for point objects inside. This relation is used in the assertion below.

create assertion constrain_5 check
(not exists (SELECT * FROM prcv_treesrd_point t, prcv_gvkrd_poly g

WHERE t.treetype IN (‘CorAve’, ‘CorMas’, ‘RosCan’)
AND g.descript IN (‘paving’, ‘soft_paving’)
AND sdo_relate (t.geom., g.geom., ‘mask=INSIDE,
querytype=window’)=’TRUE’))

6. a) the distances between trees inside water is > 8 meter AND
 b) the distance between the tree and the edge of the water always is < 0,5 meter AND
 c) the only treetypes that are allowed in the water are QueRobs (trees of type Quercus)
This complex constraint concerns all objects in the water. For constraint 6 b) the geometry of water is
necessary for checking whether the QueRobs are in the water. But the grass and paving geometries are
also necessary to check whether the QueRob in water is not >0,5m from the water edge. This is necessary
because a negative buffer of water areas is not possible, so all other areas except the water (and the
bridges) are used for this constraint checking.

create assertion constraint_6 check
(not exists (SELECT * FROM prcv_treesrd_point t, prcv_gvkrd_poly g, involved_object i

WHERE t.treetype = 'QueRob'
AND g.descript='water'
AND i.treetype = ‘QueRob’
AND t.treeid != i.treeid
AND sdo_relate (t.geom, g.geom, 'mask=INSIDE,
querytype=window')='TRUE'
AND sdo_relate (i.geom, g.geom, 'mask=INSIDE,
querytype=window')='TRUE'
AND sdo_within_distance (t.geom, i.geom, 'distance=8’)='TRUE')

AND
not exists (SELECT * FROM prcv_gvkrd_poly g, involved_object i

WHERE i.treetype = ‘QueRob’
AND g.descript='water'
AND sdo_relate (i.geom, g.geom, 'mask=INSIDE,
querytype=window')='TRUE'
AND
exists (SELECT * FROM prcv_gvkrd_poly g, involved_object i

WHERE sdo_relate (i.geom, sdo_geom.sdo_buffer(g.geom, 0.5, 0.005),
'mask=disjoint, querytype=window’)='TRUE'
AND g.descript IN ('paving', 'soft_paving', 'grass')))

AND
not exists (SELECT * FROM prcv_treesrd_point t, prcv_gvkrd_poly g

WHERE t.treetype != 'QueRob'
AND g.descript=’water’
AND sdo_relate(g.geom, t.geom, 'mask=CONTAINS,
querytype=window')='TRUE'))

58 constraints in geo-VR

6.7.2 The example constraints as database triggers
The assertions listed in the previous subsection are all general constraints and can’t be implemented in
Oracle (or other DBMS) because the DBMSs do not support general constraints. The assertions have to
be converted to PL/SQL code to use inside database triggers and this conversion must be done by hand
(although CDM Ruleframe has automatic conversion possibilities for some assertions).

Within assertions it is not specified whether the check has to take place before any mutation on a
table takes place or after a mutation took place. Database triggers on the other hand, can be before
triggers or after triggers, which is described in section 5.2.3. Also a difference is made in for each row
triggers and statement triggers.

Before the conversion takes place from an assertion to a database trigger, it must be clear whether the
database trigger will become a before or after and a for each row or a statement trigger. If more than one
trigger is created in an Oracle database, the order of execution of the triggers is (ORACLE, 2002a):
1. all before statement triggers;
2. all before row triggers;
3. all after row triggers;
4. all after statement triggers.
When there are two or more triggers of the same type the order of execution of these triggers is
arbitrarily. For the example constraints it doesn’t matter in which order they are checked, because they do
not influence each other.

Besides the order of execution also other aspects influence the decision of making before or after for each
row or statement triggers. Inside the assertions and triggers data about the plantation layout and the
ground surface is necessary to check the constraints. This data is acquired by querying the plantation
layout table and the ground surface table. The constraint checking must be done for the new plantation
layout, so the triggers should be after triggers. Triggers are also created for one plantation layout table and
(in Oracle) this table can only be queried inside the trigger body of after statement triggers. This implies
that all triggers that query the plantation layout table have to be after statement triggers or the constraint
check must be done inside stored procedures.

So first the table is updated and secondly the database triggers on the plantation layout
(prcv_treesrd_point) table are run and all necessary data is acquired from the plantation layout table and
the ground surface table. When in SALIX-2c the plantation layout is saved, the objects are inserted into
the database table one by one. This implies that it doesn’t matter if the after triggers are row triggers or
statement triggers. When the triggers are violated, an implicit rollback takes place to undo the changes of
the table.

In the above the assumptions is made to use one trigger per constraint. In Oracle it is possible to enable
and disable database triggers, so when creating separate triggers for each constraint the interaction
possibilities of the constraints by the user can be extended.

A description of the technical implementation of creating the database triggers and al lot of remarks and
changes to this initial conceptual design of the database triggers is given in the next chapter.

59

7. Constraint implementation in SALIX-2c

After the conceptual design of the constraint implementation using database triggers, the implementation
of this conceptual design must be done. Before the database triggers are implemented, some required
modifications must be made, which are described in Appendix D. Section 7.1 describes the
implementation of the conceptual model. When the database triggers are created in the database, the
visual environment of SALIX-2c must also be changed slightly. A description of the implemented
adaptations is given in section 7.2.

7.1 Constraint implementation in DLM

In the conceptual design for the constraint implementation the decision was made to use separate after
statement triggers. Inside the trigger body the already modified plantation layout table is used to acquire
information that is necessary for the computations and comparisons for the constraint checking. The
plantation objects are inserted one by one in the plantation layout table and the id’s of the involved
objects must be known for the constraint checking. The new attribute values (including the id) of the
object in the insert statement can only be invoked in a before each row trigger. This implies that a before
each row trigger is required to get the id of the involved object beforehand, then the table is updated
followed by the constraint checking in the after statement triggers.

The new object id and object type of the involved object are stored as variables in a package. These
variables can be queried in all other triggers and also in stored procedures and functions. The stored
procedures and functions in turn, can be invoked (more than once) inside e.g. trigger bodies. The stored
procedures and functions can also be stored in packages. One package can be used to combine all
procedures, functions and variables belonging to each other. The re-usage and the organized way of
storing the functions, procedures and variables make structured programming of the database triggers
possible.

Finally one before each row trigger is used to store the new object id and an after statement trigger is
used to invoke the procedures and functions that do the actual constraint checking. For each constraint
checking a separate stored procedure is used. The disadvantage of using only one trigger for the
constraint implementation is that the possibility to enable or disable separate constraints (as database
triggers) by the user disappears. This implies that the constraint interaction possibilities are rather limited.
However, using only one trigger is less complex. So the eventual constraint checking is organized as
follows:
- For each insert statement1 of one object on the plantation layout table, a before each row trigger is

invoked. This trigger first stores all new attribute values of the involved object as variables in a
package, called pck_salix. These attributes are easily accessible and can be used in all procedures and
functions.

- All procedures and functions are also stored in the package pck_salix, so they are stored in an
organized way.

- all constraints that cannot have the involved object as starting point are checked in the after
statement trigger (for this research this will be the quantity constraint that concerns a specific ground
surface polygon).

- In the next part of the after statement trigger a check takes place if the involved object is a bush and
then all constraints concerning bushes must be checked (using functions and procedures). If the
involved object is a tree, the constraints concerning bushes are out of interest and all constraints
concerning trees must be checked (also using functions and procedures).

The codes of all triggers, packages, procedures and functions are described in Appendix D.

The eventual objects for the constraint checking are:
- Table prcv_treesrd_point with one plantation layout (the test plantation layout)

1 delete and update are left out, because in SALIX-2/SALIX-2c first all objects are deleted, followed by insert
statements

60 constraints in geo-VR

- Table prcv_gvkrd_poly with ground surface
- Table treetype with all possible object types in SALIX-2/SALIX-2c and their description
- Pck_salix is the package with definition of variables, procedures and functions
- Pck_body_salix is the package body with the source of the procedures and functions, used for the

constraint checking.
- Brt_all_salix is a before row trigger that gives the predefined variables (id and type) the values of the

new involved object.
- Ast_salix is an after statement trigger where all procedures and functions are invoked to check

constraints.

After the trigger, functions, procedures and packages are created, some insert statements were done to
test the database trigger. Below the results of two insert statements can be found. The textual feedback
that is generated by the trigger and the elapsed time for the constraint checking are also given.

SQL> @ c6-insert_tree1_in_water.sql;
SQL> -- try to insert tree too close to paving.
SQL>
SQL> INSERT INTO prcv_treesrd_point
 2 (treeid, TreeType, TreeAge, Solitair, Kind,
 3 geom)
 4 VALUES
 5 (236, 'QueRob', 12, 1, 'tree',
 6 MDSYS.SDO_GEOMETRY(2001, NULL, MDSYS.SDO_POINT_TYPE(105094.12, 482778.40, N
ULL), NULL, NULL));
4: there are enough trees (>= 3)
 on polygon 20
the involved_object is a tree
3: the tree is placed >1m from the paving
6a: the tree of type QueRob is placed far enough from other QueRobs inside the
water.
6b: the object is placed <0.5m from the wateredge

1 row created.

Elapsed: 00:00:02.05
SQL>
SQL> @ c6-insert_tree2_in_water.sql;
SQL> -- try to insert tree too far from water edge
SQL>
SQL> INSERT INTO prcv_treesrd_point
 2 (treeid, TreeType, TreeAge, Solitair, Kind,
 3 geom)
 4 VALUES
 5 (237, 'QueRob', 12, 1, 'tree',
 6 MDSYS.SDO_GEOMETRY(2001, NULL, MDSYS.SDO_POINT_TYPE(105097.02, 482777.40, N
ULL), NULL, NULL));
INSERT INTO prcv_treesrd_point
*
ERROR at line 1:
ORA-20061: 6a: The tree of type QueRob and with x= 105097.02 and y= 482777.4,
is placed too close to another QueRob inside water.
ORA-06512: at "ORAGIS02.PCK_SALIX", line 358
ORA-06512: at "ORAGIS02.AST_SALIX", line 84
ORA-04088: error during execution of trigger 'ORAGIS02.AST_SALIX'

Elapsed: 00:00:02.02

In Figure 7-1 and Figure 7-2 the map representations are given of the locations of both trees. Figure 7-1
shows the location of the first tree (most right tree) that is inserted in the plantation layout. This tree is
placed inside the water, but not too close to other trees in the water and within a distance of 0,5m of the
edge of the water. Figure 7-2 shows the location of the first and the second tree that is inserted. This
second tree is also placed in the water, and also within a distance of 0,5m from the water edge. However,
the distance to the first inserted tree is less than 8 meters, so they are too close to each other. That’s why
the database trigger generates an error message followed by an implicit rollback.

7. Constraint implementation 61

Figure 7-1: position of first tree (c6-
insert_tree1_in_water.sql)
The first insert can be done, because the tree is a
QueRob in the water, but within a distance of 0,5m
from the water edge.
(This 2D image is created in GeoMedia Professional)

Figure 7-2: position of first and second tree (c6-
insert_tree2_in_water.sql)
The second insert cannot be done, because the second
tree (QueRob in water) lies within a distance of 8 meters
from the first QueRob.
(This 2D image is created in GeoMedia Professional)

The question whether a before trigger is faster then an after trigger for the constraint checking arose,
because when using before triggers the table is not modified and a rollback is not necessary when the
triggers are not satisfied. To check if before triggers are indeed faster than after triggers, the example
constraints are besides using only one before each row trigger, also implemented as a combination of one
before each row trigger (for updating the temporary table) and an after statement trigger (for the
constraint checking). For both solutions some insert statement were done (like the above described
statements) and the computation time was registered, both for a valid insert statement as for an invalid
insert statement. The computation time using only the before each row trigger just exceeede one second
and the computation time for the after statement trigger just exceeded two seconds in a ‘hot’ situation.
The before each row trigger was a little bit faster, but in this trigger, a separate table (involved_object) was
used for the constraint checking, while for the after statement trigger the plantation layout table
(prcv_treesrd_point) was used to acquire all necessary attributes of the involved object. So the choice can
be made to use only a before each row trigger with an additional table, or an after statement trigger
without using an additional table. The last choice is made here..

7.2 Post constraint implementation

After creating the database triggers and necessary package, procedures and functions in the database, also
some other adaptation are necessary. The flowcharts of SALIX-2c have some adaptations in comparison
with SALIX-2. For this research only the minimum required adaptations are made to test SALIX-2c on
the constraint checking. These minimum adaptations are:
1. change the database connection;
2. the local VRML coordinates were previously stored as separate numbers stored in separate columns

(TreePosX, TreePosY, TreePosZ), but in SALIX-2c these coordinates have to be derived from the
geometry (sdo_geometry) stored in the plantation layout tables in the geo-DBMS;

3. When saving a plantation layout the local VRML coordinates (TreePosX, TreePosY, TreePosZ) have
to be transformed to a point in RD coordinates before saving this geometry (sdo_geometry) in the
plantation layout table;

4. the textual feedback generated by the database triggers and procedures must be send to the textbox in
the Java panel, so it reaches the user.

Changes 2 and 3 are necessary to guarantee consistency; both the visual environment and the database
use the same RD coordinates as basis for all actions and computations.

The mentioned minimum adaptations all concern the communication between the database and the
rest of the application. The only java class that maintains the communication between the application and
the database is the DBHandler class. The changes in the DBHandler class are described below in
chronological order. The eventual DBHandler java file can be seen in Appendix F.

62 constraints in geo-VR

Change database connection in DBHandler
First of all the connection to the MSAccess database in the DBHanler class must be changed in a
connection to the Oracle database. In Oracle 9i JDBC Developer’s Guide and Reference information can
be found about connecting to an Oracle database. The next text comes from this manual (Oracle, 2002b).

Connecting to an Oracle database can on different ways. The Java Database Connectivity (JDBC) is
a standard Java interface for connecting from Java to relational databases. Oracle has two JDBC
drivers; the thin driver and the Oracle Call Interface (oci) driver.

The JDBC thin driver is written entirely in Java. It does not require additional Oracle software
on the client side. The Thin driver communicates with the server using TTC, a protocol developed
by Oracle to access the Oracle RDBMS.

The JDBC OCI driver is for use with client-server Java applications. This driver is quicker than
the thin driver, but requires an Oracle client installation. Therefore it is Oracle platform-specific and
not suitable for applets.

The Java code of SALIX-2/SALIX-2c consist of Java applets. Furthermore, SALIX-2c must be a
‘portable’ application, because it’s going to be used widely. This implies that an oci connection with an
Oralce client installation on the client side is not desirable. The JDBC connection is thus a thin
connection.

Converting coordinates from stored RD to local VRML for visualization
The location of the plantation objects in the VRML scene must be derived from the geometry stored in
the DBMS. This in comparison to the old situation where the x,y,z coordinates were stored as numbers in
separate columns. The RD coordinates are stored in the DBMS, but they cannot be used in the VRML
visualization, because these coordinates are too large. So the separate RD coordinates of the plantation
objects must be selected from the database and these coordinates have to be transformed to local VRML
coordinates. The transformation consists of a translation and a reflection. The reflection is necessary to
go from the x,y plan in RD to the x,z plane in VRML, which are both the base planes for visualization.
For the translation the coordinates of the centre point of the ground surface are used (so the plantation
layout is concentrated around the y-ax of VRML). For the reflection xVRML is xRD (minus xmRD) and
zVRML is the opposite of yRD (plus ymRD). The coordinate axis of both systems can be seen in Figure
7-3. The text belonging to this figure also illustrates the tranformation.

Figure 7-3: The VRML and RD coordinate systems.
Necessary transformations from RD to VRML in SALIX-2c:
zVRML = – (yRD – ymRD)
yVRML = zRD (yVRML is always 0 for SALIX)
xVRML = xRD – xmRD
where xmRD and ymRD are the coordinates of the centre point of
the ground surface.

x

y z

VRML RD z

y

x

Also in the other way, when saving a plantation layout, the local VRML coordinates where the visual
environment of the new SALIX application works with, have to be transformed to the RD coordinates
and after that, the plantation layout table can be updated with the adapted or new plantation layout.

Retrieving error information for feedback
You can retrieve basic error information with the SQLException method getMessage(). For errors
originating in the JDBC driver, this method returns the error message with no prefix. For errors
originating in the RDBMS, it returns the error message prefixed with the corresponding ORA number.
The database triggers generate error messages and they are part of the RDBMS. So the output is an error
message prefixed with the ORA number. The following example prints output from a getMessage() call
(ORACLE, 2002b).

catch(SQLException e)
{
System.out.println("exception: " + e.getMessage());
}

7. Constraint implementation 63

Other desirable changes to the system structure
When in SALIX-2c a plantation layout is saved by the user, first all objects are deleted from the
plantation layout table and then all objects of the new plantation layout are inserted separately. The
constraint checking is not very fast (2 seconds for each object), so for a plantation layout with many
objects, the save plantation layout operation will become very slow. It would be more efficient only
deleting those objects that are removed or replaced in the plantation layout followed by insert statements
of the replaced and added objects in the plantation layout. Less objects have to be inserted and the
number of constraint checking is reduced. However, SALIX-2 is only used to implement some example
constraints and the intention was not to change this application rigorously. That is why this is not
changed for SALIX-2c, but this should be improved in the future.

7.3 Conclusion

The technical implementation of the example constraints for SALIX-2 started with creating database
triggers (one before each row and one after statement) in the Oracle database. The before each row
trigger stores the new object id and object type of the involved object as variables in the package
pck_salix. These variables in combination with the changed plantation layout table (here
prcv_treesrd_point) and the ground surface table (here prcv_gvkrd_poly) are used to get the necessary
information for all computations and comparisons for the constraint checking. These computations and
comparisons are done by the stored procedures and functions that are created and are also stored in the
package. The procedures and functions in the package are invoked from the after statement trigger. The
code of the triggers and procedures can be found in Appendix E. The constraints are implemented in an
orderly way using triggers, procedures and functions, but the user is not able to interact with the
constraints somehow. Even enabling and disabling constraints is impossible because all constraints are
implemented in one trigger.

After creating the database trigger in Oracle for the constraint checking, SALIX-2c had to be
modified. All changes in the plantation layout have to be checked for constraints and feedback to the user
about the validity of the changes must be given. For this constraint checking the database connection had
to be changed to an Oracle DBMS connection. The geometry of the plantation objects in the plantation
layout tables had to be used for both the constraint checking by the database trigger as well as for the
visualization in the VRML scene. The error messages, generated by the database trigger and stored
procedures, had to be send to the textbox of the Java panel to give feedback to the user. All these
changes concern only the DBHandler class of the application and this class with its adaptations can be
found in Appendix F.

65

8. Conclusions and recommendations

In the previous chapters the research to constraints in geo-VR applications is described. All findings and
remarks of this research are discussed in this chapter. Conclusions and recommendations are therefore
listed in sections 8.1 and 8.3.

8.1 Conclusions

The object of this research was to define a way to specify and implement constraints in a geo-
information model. To reach this objective, some questions are answered. These questions including the
answers are summarized below.

1. Is there already been a research on this area?
None of the investigated geo-VR applications had constraints to restrict the virtual world in a way that it
looks more like the real world (with all it’s natural rules). So a general definition of constraints (Molenaar,
1998) was converted to a definition of constraints for geo-VR applications. This definition is: a condition
that must always be true for objects in a 3D model

2. What are constrained objects and what types of constraints exist (e.g. geometrical, temporal, thematic, topological)?
Objects can be described by their attributes, behaviour and relations. Constraints can be formulated in
the description of an object class as a relation to another object class. The different types of constraints
are:
- spatial topology;
- spatial metric;
- temporal;
- quantity;
- thematic.
When an object class has two or more restricted relations as a part of its description, a check is necessary
if the constraints of all object classes do not conflict each other. This check is manually done in the
conceptual phase. Besides constraints between object classes also constraints between object instances are
possible.

3. What is the current application structure of SALIX-2?
SALIX-2 consist of an html page with on the left side the VRML world for visualization and on the right
side a Java applet. The Java applet has a box for textual output and a Java console for more complex
interaction possibilities with buttons and scroll down menus. All data is stored in a DBMS; for SALIX-2
MSAccess is used. The communication between VRML and Java is done with EAI and the
communication with the DBMS is done in a separate class of the Java code (DBHandler).

4. Which 2D constraints can be implemented in SALIX-2 as a good example?
For the implementation a representative set of constraints should be implemented. A representative set of
constraints can be obtained by defining an example for each type of constraint. However, the temporal
example is of less interest for SALIX-2c, because there’s not much change over time in SALIX-2c. So for
the example implementation only spatial topological, spatial metric, quantity, thematic and complex
constraints are used.

5. What is the best way to implement these constraints (storage in database or VRML environment, accessibility of

constraints, interactivity to change the constraints).
Geo-VR applications consisting of VRML, Java and a DBMS have two implementation approaches:
1. the DVM (VMRL and Java), which can be compared to the client side of a client-server architecture
2. the DLM (DBMS), which can be compared to the serverside of a client-server architecture.
The question ‘what is the best way to implement constraints’ cannot be answered for all geo-VR
applications, because each application is unique

66 constraints in geo-VR

Constraints can only be implemented in the Java code of the DVM. VRML doesn’t offer the right
possibilities for the constraint implementation and because Java is a programming language, a lot is
possible. However, for the constraint checking everything has to be designed and programmed from
scratch and the constraints are not stored on a central place.

All types of constraints can be implemented in the DBMS of the DLM. Literature about DBMSs all
mention the possibilities of implementing integrity constraints, but these possibilities are also limited to
rather simple constraints. General constraints (assertions) and base table constraints should be able to
implement the more complex constraints. However, general constraints only exist in theory and no
DBMS has implementation possibilities for general constraints and the base table constraints cannot
contain subselects in the check. The only solution of implementing complex constraints in the DBMS is
by triggers and procedures.

To decide which implementation approach (DVM/DLM) is most suitable for which application, a list of
criteria has to be taken into account.

6. How and when can the user of the application be informed about the constraints? (Show the user a list of defined

constraints and a good and detailed feedback is necessary)
The user can best be informed about the constraints when the application is started. A combination of
visual and textual feedback is the best solution. Visual feedback is desirable, because a picture is more
than thousands words and textual feedback is desirable because this can give more detailed information.
Also when the user violates a constraint, a direct feedback in textual and visual form should be given.

8.2 Discussion

The objective of this research was to define a way to specify and implement constraints in a geo-
information models. It appeared that two implementation approaches exist for geo-VR applications: the
DVM and DLM. To decide which implementation approach is most suitable for which application, the
next decision criteria should be taken into account:
- who are the end users? (how much computer experience do they have, what computers do they have)
- What is the final purpose of the application? (wide usage of application?)
- what is the available budget to create/adapt the application? (freeware/commercial software)
- what expertise exists already within the organisation developing the application?
- Is interactive constraint definition desirable?
These criteria can be placed in a decision table (Table 5-3) to find the most suitable approach. The
outcome is not the only possible solution, so the developers can deviate from this outcome when some
criteria have a higher weight then others.

When the most suitable implementation approach is found, the constraint can be implementation.
First a conceptual model is necessary; the constraint and the way of implementing them are defined. Then
this model can be formalized; the code for the constraints can be generated. When the code is generated,
the constraints can be implemented in either the DLM or DVM (according to the most suitable
implementation approach). Points of interest in this conceptualization – formalization – implementation
process are the system structure, the constraint definition and the feedback to the user.

For SALIX-2c the most suitable implementation approach was the DLM implementation, using already
available software (Oracle). The constraints were defined in the conceptual model. It is desirable to
change the constraint definitions when working with the application, but in SALIX-2c the constraint
definitions cannot be changed. Even enabling and disabling constraints separately is not possible for the
example implementation, because the group of constraints is implemented as one trigger (a trigger can be
enabled/disabled in Oracle) in combination with stored procedures and functions. This should be
improved somehow in the future.

Furthermore the constraints are implemented by using triggers and procedures in Oracle. The code
for the triggers/procedures is generated by hand. Of course automatic generation of
triggers/procedures would be much more efficient. Maybe OCL or assertions can be used to define the
constraints and then a tool can be used to generate triggers/procedures automatically from these defined
constraints.

The last point of discussion concerns the feedback to the user. A combination of before, after,
visual and textual feedback is the best, however not easy to implement. Red areas can for example be

8. Conclusions and recommendations 67

used for the visual feedback beforehand, but the geometry of this area must actually be constructed in the
DBMS and then a conversion to a VRML node with a certain appearance is necessary. The construction
of a VRML node in Oracle is difficult so for the implementation in SALIX-2c only textual feedback is
implemented. Constructing VRML nodes from geometry is probably possible in software with 3D
extensions, but this is not investigated in this research.

8.3 Recommendations

This thesis to constraints in geo-VR applications is only the beginning of the search to solutions for
constraints in geo-VR. A lot of further research can be done to find out more about this subject:

1. This research can be extended to geo-VR application structures different from the structure used for

this research (VRML, Java and Oracle). Maybe geoVRML, gaming environments or existing geo
software with 3D extensions have more suitable implementation possibilities for constraints in geo-
VR applications.

2. Other geo-DBMSs can be investigated, for example MySQL. The question why general constraints

are not implemented in DBMSs can be investigated. Oracle has for example an implementation tool
(CDM) to implement constraints (which are called business ruels). Maybe also UML and OCL can be
used to implement triggers/procedures. An investigation to the ability of using such tools for
constraints implementation is desirable. These tools offer probably better opportunities for constraint
implementation then only database triggers and procedures.

3. The types of constraints in this research concern binary relations. The list of different types of

constraints should be extended with unary and set relations to get a complete overview.

4. Define a good check whether the defined constraints (as part of the object descriptions) conflict each

other or not. In this research only a check beforehand (in the conceptual phase) is done. When users
can change the constraint definitions when the application is already created, also a conflict check
should take place when constraints are changed. This aspect is also of interest for existing software.
E.g. topology constraints can be implemented in the ESRI software, but there is no check whether
the constraints conflict each other or not (not beforehand and not while running the software). This
can result in an infinite loop.

5. This visual feedback for VRML visualization has to be a VRML node (like red or green areas) and

this VRML node should be derived from geometry in a DBMS. An investigation should take place if
these nodes can be created inside the DBMS or with GIS software (like 3D Analyst of ArcGIS).

6. An investigation should take place if the nodes for the feedback (e.g. red/green areas) can be derived

from the given set of constraints/assertions in case the user wants to insert objects. This is an
extension of the previous recommendation.

7. An investigation should take place how a list of constraints automatically can be generated from the

triggers in the DBMS to guarantee consistency in the application. Maybe some implementation tools
(like CMD for Oracle), SQL assertions or OCL can be expanded to be of help for generating this list.

8. For real interactive applications a user must be able to change, delete or make new constraints, so

finding a possibility to make constraint definitions interactive is desirable. This is closely related to
modelling. Look for example to the UML class diagram with all releveant object classes and their
(restricted) relationships.

9. This research can be extended to 2½D or 3D. This extension concerns the objects of interest and the

constraints. The objects of interst in SALIX-2c are limited to point objects (plantation objects) and
polygon objects (ground surfaces). Functions and operations for 2½D and 3D geometry are
necessary in DBMSs for implementing 2½D and 3D constraints concerning 2½D or 3D objects.

68 constraints in geo-VR

10. The last recommendation concerns the ‘save’ operation of SALIX-2/SALIX-2c. When saving a
plantation layout in the DBMS, all objects are deleted from the plantation layout table. Then all
objects are inserted. This can be done more efficient by only deleting those objects that are deleted
from or moved to another position in the plantation layout. Then only the objects that are added or
moved in the plantation layout have to be inserted.

69

Literature

URL’s

[URL 1] http://www.web3d.org/x3d/specifications/vrml/ISO_IEC_14772-All/index.html
Title: VRML 97. ISO/IEC 14772
Subject: VRML Part 1 (ISO/IEC 14772-1) defines the base functionality and text encoding for
VRML (including node references). VRML Part 2 (ISO/IEC 14772-2) defines the base
functionality and all bindings for the VRML External Authoring Interface.

[URL 2] http://deslab.mit.edu/DesignLab/courses/13.016/visualization/second/
Title: Introduction to VRML
Subject: description of Concepts, Geometry, Positioning objects and Building a larger world

[URL 3] http://tecfa.unige.ch/guides/vrml/vrmlman (consulted on 16-10-03)
Title: VRML Primer and Tutorial
Subject: Introduction to VRML (including EAI)

[URL 4] http://www.cit.uws.edu.au/docs/oracle/sqlref/expressi.htm#1002893
Title: Oracle8i SQL Reference Release 8.1.5. Chapter 5: Expressions, Conditions, and Queries
Subject: description of expressions, conditions and queries possible in Oracle 8i.

[URL 5] http://www.klasse.nl/ocl/inde.html (consulted on 29-02-04)
Title: Welcome to the OCL Center
Subject: A short introduction to the OCL, including examples that show how and when OCL
is useful

[URL 6] www.geovrml.org
Title: About GeoVRML
Subject: explanation and specifications concerning GeoVRML

[URL 7] http://3dgraphics.about.com/library/weekly/aa011001a.htm
Title: GeoVRML an Overview
Subject: short explanation of GeoVRML including description of nodes

[URL 8] http://ArcSDEOnline.esri.com
Title: ArcSDE devoloper help guide
Subject: All about ArcSDE Client API for C programmers and ArcSDE Client API for Java
programmers.

[URL 9] http://unicoi.kennesaw.edu/~jbamford/csis4650/uml/UML_tutorial/state.htm
Title: State Diagrams
Subject: How to construct and use UML State Diagrams

[URL 10] http://www.agilemodeling.com/style/classDiagram.htm\
Title: UML Class Diagram Guidelines
Subject: guidelines about how to construct a UML class diagram

[URL 11] http://eureka.lucia.it/vrml/tutorial/eai/sgi/ExternalInterface.html#EventOutObserver
Title: Cosmo Player Developer Tools & Docs
Subject: Reference for the External Authoring Interface

 [URL 12] www.k2vi.com
Title: Key to virtual insight – interactive virtual reality software platform
Subject: information about the K2Vi product

URL 13] http://www.tec.army.mil/TD/tvd/survey/Pavan.html
Title: Commercial terrain visualization software product information
Subject: information about the Pavan software

 [URL 14] http://www.esri.com/software/arcgis/index.html
[Title: ESRI GIS and Mapping Software – ArcGIS
Subject: information about the ArcGIS package

70 constraints in geo-VR

URL 15] www.sense8.com
Title: Sense8
Subject: information about the application development tools WorldToolKit, World Up and
World2World.

Books and articles

ArcNews Vol.24 No.2: ArcGIS 8.3 Brings topology to the geodatabase.

ArcNews Vol.24 No.4: ArcGIS 8.3 focuses on topology and editing

Baars, Marco. 2003. A comparison between ESRI Geodatabase topology and Laserscan Radius Topology. Delft, 2003.

Boyd, Lauri L. 2000. CDM RuleFrame – the business rule implementation framework that saves you work. Oracle
Corporation, iDevelopment Center of Excellence. From: www.odtug.com

Clementini, E., P. Di Felice, P.van Oosterom. 1993. A small set of formal topological relationships suitable for end-
user interaction. In SSD’93: the third international symposium on large spatial databases, Singapore,
(LNCS nr. 692), pp. 277-295. Berlin. Springer-Verlag.

Date, C.J. and Hugh Darwen. 1997. A guide to the SQL standard, 4th edition. Addison-Wesley. ISBN
0201964260. Chapter 14 (p197-218).

Egenhofer, M.J. 1989. A formal definition of binary topological relationships. Lecture notes in computer science,
Vol. 367, pp. 457-472.

ESRI, 2002. Understanding ArcSDE (pdf file from www.esri.com)

ESRI, 2002b. Working with the geomdatabase: powerful multiuser editing and sophisticated data integrity. An ESRI
white paper, February 2002.

Haan, Lex de. 1993. Leerboek Oracle-SQL. Academic Service, Schoonhoven. ISBN 90-6233-939-5.

Hartman, Jed and Josie Wernecke. 1996. The VRML 2.0 Handbook: building moving worlds on the web. Silicon
Graphics, Inc.

Haung B., Jiang B. and Hui L. 2001. An integration of GIS, virtual reality and the Internet for visualization, analysis
and exploration of spatial data. International Journal of Geographical Information Science, 2001, Vol.
15, No. 5, pp. 439-456.

Kwon Y-M, Ferrari E., Bertino E. 1999. Modelling spatio-temporal constraints for multimedia objects. In Data &
Knowledge engineering 30. p. 217-238.

Lammeren, R. van, V. Clerc (SERC), H. Kramer. 2003. SALIX-2. Simulatie Agenten voor
Landschapsarchitectonisch Design in virtual reality (x). Wageningen, Alterra, Research Instituut voor de
Groene Ruimte. Alterra-rappport 715, ISSN 1566-7197.

Lentz, Arjen. 2003. MySQL® RoadMap, What we have now & where we are heading. MySQL AB.

Lovett, Andrew. et al. 2002. Visualizing sustainable agricultural landscapes. Chapter 9 (p.102-130) of Virtual
reality in geography, P. Fisher and D. Unwin. Taylor & Francis, London. ISBN 0-7484-0905-X.

Maren, Gert van. 2003. H11: Key to virtual insight: a 3D GIS an Virtual reality system. In: Planning support
systems in practice, by Geertman and Stillwell. ISBN 3540437193.

Molenaar, Martien. 1998. An introduction to the theory of spatial object modelling for GIS. Taylor & Francis,
London. ISBN 0-7484-0774-X.

Morelli, Ralph. 2000. Java, Java, Java, Object-Oriented Problem Solving. Prentice-Hall, Inc. New Jersy. ISBN 0-
13-011332-8.

Muller, Sandra. 2000. CDM RuleFrame Overview: 6 reasons to get framed! Oracle Corporation, iDevelopment
Center of Excellence. (http://otn.oracle.com/consulting/idelivery/cdma/pdf/rf6reasons.pdf)

Oosterom, P. van, W. Vertegaal, M. van Hekken, T. Vijlbrief. 1994. Integrated 3D modelling within a GIS.
Presented at the International GIS workshop AGDM'94 (Advanced Geographic Data Modelling),
Delft, The Netherlands, 12-14 September 1994, pages 80-95.

Literature 71

ORACLE. March 2002a. Oracle 9i Database concepts, release 2 (9.2), Part No. A96524-01. (Chapter 17 –
Triggers, Chapter 21 – Data Integrity).

ORACLE. March 2002b. Oracle 9i JDBC Developer’s Guide and Reference, release 2 (9.2), Part No. A96654-01.
(Chapter 3 – basic features, chapter 7 - Accessing and Manipulating Oracle Data).

ORACLE. March 2002c. Oracle Spatial - User's Guide and Reference, release 9.2, Part No. A96630-01.

Papadias D., Karacapilidis N. and Arkoumanis D. 1999. Processing fuzzy spatial queries: a configuration similarity
approach. In International Journal of geographical information science. Vol. 13, No. 2, 93-118.

Schans, René van der. 1997. A quest for optimal expression of objects and actions in GIS. In Proceedings Best-
GIS Workshop “GIS-Interfaces for environmental Control”, Utrecht, 19-20 February 1997. (p. 11-
20)

Verbree E., Maren G. van, Germs R., Jansen F. and Kraak M-J. 1999. Interaction in virtual world views –
linking 3D GIS with VR. In International Journal of geographical information science, 1999, Vol. 13,
No. 4, 385-396.

Vries, M.E. de and J.E. Stoter. 2003. Accessing a 3D geo-DBMS using Web technology. ISPRS Joint Workshop
on "Spatial, Temporal and Multi-Dimensional Data Modelling and Analysis", Qu\351bec, Canada,
October 2003.

Wachowicz, M., Vullings, L.A.E., Broek, M. van den, Ligtenberg, A. 2002. Games for interactive spatial
planning: SPLASH a prototype strategy game about water management. Wageningen, Alterra, Research
Instituut voor de Groene Ruimte. Alterra-rapport 667.

Warner, Jos en Anneke Kleppe. 2001. Praktisch UML 2de editie. Addison Wesley. ISBN 90-430-0494-4.

Worboys, Micheal F. 1998. GIS: A computing perspective. Taylor&Francis, London. ISBN 0-7484-0064-6.

Xiang L. and Hui L. 2002. Participatory comprehensive plan based on virtual geographical environment. Asian
Conference on Remote Sensing (session GIS, GPS and data integration).

Zlatanova S. 2000. 3D GIS for urban development. Thesis ICGV, GrazUT, Austria and ITC, The
Netherlands. ISBN 90-6164-178-0.

73

Abbreviations

CDM Custom Development Method
CGI Centre for geo-information
DBMS Database Management System
DLM Digital Landscape Model
DVM Digital Visualization Model
GUI graphical user interface
JDBC Java DataBase Connection
OCL Object Constraint Language
OCI Oracle Connection Interface
PL Procedural Language
RDBMS Relational Database Management System
SALIX Simulation Agents for Landscape architectural design In virtual reality (x)
SQL Structured Query Language
UML Unified Modelling Language
VGE Virtual Green Environment
VRML Virtual Reality Modelling Language
WGDM model Model of real world (W), graphical representation (G), digital model (D), ant the mental

model (M)
WUR Wageningen University and Research centre

75

List of figures
Figure 2-1: WGDM model ... 13
Figure 2-2: DLM/DVM framework for a geo-VR application.. 13
Figure 2-3: manipulation possibilities within K2vI systems ... 15
Figure 2-4: The main stages in the production of the VRML landscape models using Pavan. 16
Figure 3-1: Constraints concern objects in the DLM/DVM framework. .. 19
Figure 3-2: topological relations between two objects a and b... 21
Figure 3-3: possible directions for directional constraints .. 22
Figure 3-4: temporal relations between two time intervals ... 22
Figure 4-1: The position of the constraint checking in SALIX-2. ... 29
Figure 5-1: Implementation possibilities of constraints in the DLM/DVM framework............................... 31
Figure 5-2: possible postion of constraint checking in DVM by dragging an object in SALIX-2c. 32
Figure 5-3: possible postion of constraint checking in DVM by adding an object in SALIX-2c................. 33
Figure 5-4: syntax of the Collision node in VRML. ... 34
Figure 5-5: syntax of the TouchSensor node in VRML .. 35
Figure 5-6: Route/event model in VRML. .. 36
Figure 5-7: syntax of script node... 36
Figure 5-8: Example of a general constraint (assertion). ... 39
Figure 5-9: syntax of PL/SQL body in database trigger.. 40
Figure 5-10: The structure of CDM RuleFrame. .. 41
Figure 5-11: Possibilities for the implementation architecture of a geo-VR application. 42
Figure 6-1: design of a class.. 48
Figure 6-2: UML class diagram representing the objects in the DLM of SALIX-2c...................................... 49
Figure 6-3: state diagram when starting SALIX-2 and SALIX-2c ... 51
Figure 6-4: state diagram of creating a new plantation layout in SALIX-2 .. 51
Figure 6-5: state diagram of actions when making a new plantation layout in SALIX-2c............................. 52
Figure 6-6: state diagram when loading a plantation layout in SALIX-2.. 52
Figure 6-7: state diagram when loading a plantation layout in SALIX-2c .. 53
Figure 6-8: state diagram when making a new object in the plantation layout .. 53
Figure 6-9: state diagram of actions when dragging an object in SALIX-2/SALIX-2c 54
Figure 6-10: state diagram when deleting an object from the plantation layout in SALIX-2/SalIX-2c...... 54
Figure 6-11: state diagram of actions when saving a plantation layout in the DMBS for SALIX-2 55
Figure 6-12: state diagram when saving a plantation layout in SALIX-2c.. 55
Figure 7-1: position of first tree (c6-insert_tree1_in_water.sql)... 61
Figure 7-2: position of first and second tree (c6-insert_tree2_in_water.sql).. 61
Figure 7-3: The VRML and RD coordinate systems. .. 62
Figure A - 1: the appearance of SALIX-2.. 77
Figure A - 2: class diagram of the static system structure of SALIX-2... 78
Figure A - 3: The html code of the index.htm file, which is the starting file of the SALIX-2 application .79

76 constraints in geo-VR

List of tables
Table 3-1: minimal set of topological relationships.. 21
Table 3-2: examples of simple relationship constraints formulated in the forced and restricted way. 24
Table 3-3: implementation of some example constraints in a cross relation table as object relations........ 25
Table 4-1: Example of a plantation layout table ... 27
Table 4-2: The object type table in SALIX-2. ... 27
Table 4-3: example constraints for SALIX-2, formulated in a forced and restricted way. 28
Table 4-4: Example constraints to implement in SALIX-2 .. 28
Table 4-5: cross relation check for example constraints to be implemented in SALIX-2 29
Table 5-1: The syntax of the SQL SELECT statement... 38
Table 5-2: Components of the database triggers in Oracle... 40
Table 5-3: decision table for place of constraint implementation.. 44
Table 6-1: decision table with requirements for SALIX-2 .. 47
Table A - 1: all VRML files and Java classes of the SALIX-2 application.. 79
Table B - 1: geometry functions available in Oracle .. 82
Table B - 2: spatial operation available in Oracle ... 83
Table B - 3: Topology rules in ArcGIS 8.3.. 83

77

Appendix A. Static structure SALIX-2

SALIX-2 will serve as case study for the implementation of some constraints. Therefore it is necessary to
know what the application structure of SALIX-2 looks like, to decide which constraints can be
implemented and how they can be implemented.

As can be seen in figure A-1 SALIX-2 consists of a VRML representation of the world on the
left and a Java applet on the right side of the window. When SALIX-2 is started (index.htm) the VRML
world is created including the frontpanel (in the upper-left corner of the scene), but without plantation
objects. On the right the java applet is created including a textbox for output messages and an interaction
panel including several buttons, which enable interaction with the VRML world and the database. The
external authoring interface (EAI) realises the link between Java and the VRML model.

Figure A - 1: the appearance of SALIX-2
After SALIX-2 is started, first a plantation layout has to be loaded from the database to import objects to
the VRML scene or a plantation layout has to be created and then objects can be added to the VRML
scene. All plantation layouts are stored as separate tables in the database, as well as a table containing
descriptions of the different types of plantation objects. To get a good overview of all the objects in the
SALIX-2 application and the static system structure, a Unified Modelling Language (UML) class diagram
is made. This class diagram can be seen in figure A-2.

The class diagram of SALIX-2 is a static system structure. When the plantation layout is loaded, the
plantation objects are added to the VRML scene. After they are added, interaction is possible in two ways:
interaction in the VRML scene and interaction through buttons on the Java panel. All possible
interactions in the VRML scene are:
- enlarge/reduce the size of the frontpanel;
- drag the frontpanel to another position;
- change the age of the plantation objects in the scene;
- start an animation (shows the growth of the plantation objects from the age of -37 to 37).

78 constraints in geo-VR

Figure A - 2: class diagram of the static system structure of SALIX-2.
The two basic components of the system are the database and the GUI, consisting of a VRML world and a Java
panel. All plantation layouts are stored as separate tables and each object in the plantation layout is a row of this
table. Two or more objects can also form an architectural object.
The VRML world consists of the ground image and some objects belonging to a plantation layout or an empty
plantation layout. In SALIX-2c, the ground surface image will stay the same, but the image is also digitized and
stored with all necessary data as a separate table in the database.

Appendix A. Static structure SALIX-2 79

All possible interactions through buttons on the java panel are:
- Loading and saving files and making new ones;
- Creating and removing objects;
- Checking for collisions and architectural objects;
- Get the VRML representation of the objects in the scene;
- Go to a location you click in the VRML scene;
- And zoom out (go up above the location you were).
- Remove the architectural objects (so replacement of individual objects, that were a part of an

architectural object, is possible);

Architectural objects are objects consisting of two or more plantation objects. Plantation objects (like
trees and bushes) can be placed very close to each other in the VRML scene, so close that they all
together form a larger object, a so-called architectural object. An architectural object is only constructed
when the original plantation objects have a minimum (specified) overlap. The shape of architectural
objects can vary. In (Lammeren et al., 2003) a summary of the different shapes of architectural objects
can be found:
- Base plane: a solid element, which raises the base. This plane is mostly used to divide an environment

into sections;
- Overhead plane: a solid element, which constructs a roof. This plane is being used to create some

privacy or ‘windows’ in the environment;
- Vertical plane: a solid element, which constructs a wall. This plane is being used to fulfil a spatial

separation.

F

T

<html>
<head>
 <title>SALIX (VRML-Java)</title>
</head>
<body>
 <embed src="vrml/rdbos.wrl" border="0" WIDTH="720" HEIGHT="650">
 <applet archive="salix2.jar" code="java.OutputApplet.class"
 mayscript WIDTH="260" HEIGHT="650">
 </applet>
</body>
</html>
igure A - 3: The html code of the index.htm file, which is the starting file of the SALIX-2 application

The index.htm file is the start of the application and the code of this file can be seen in figure 3.2. The
structure of SALIX-2 doesn’t become clear from this code. For that, a closer look to the application
code is necessary. The VRML file rdbos.wrl has various links to other VRML files and the java class
OutputApplet has also many links to other java classes. A complete list of all VRML files and java
classes is shown in Table A - 1.

able A - 1: all VRML files and Java classes of the SALIX-2 application

Besides th
‘myTrees’,

David
Halo
HudPane
Land
Rdbos
sky

- Tree –
- TreeO
- TreeR
- TreeS
- TreeT

All VRML files in SALIX-2 are:
(with *.wrl extension)

All java classes in SALIX-2 are:
(with *.java extension)

Slider_p ArchitecturalObject SalixObject
corave3_p Behaviour SalixObjectType

l_p cormas4_p DBHandler VRMLHandler
fraxexc7_p Orientation VRMLTypes
querob3_p OutputApplet
roscan3_p SalixException
ese files of VRML and Java code, also a database exists. This database, with the name
 contains the following tables:
 a plantation layout;
rg – a plantation layout;
otateAge – a plantation layout;
mall – a plantation layout;
ype –the descriptions of the five plantation objects.

80 constraints in geo-VR

Each plantation plan table contains the rows TreeID, TreeType, TreePosX, TreePosY, TreePosZ,
TreeAge and Solitair. The table TreeType contains the rows TreeTypeID, Type, Kind, Definition,
ProtoFile, LatinName.

Still nothing is said about the links between the files and the database and the order of execution of the
actions in SALIX-2. This will be described in the following sections.

81

Appendix B. Querying databases

Many different queries exist to get information from a database. The Structured Query Language (SQL) is
the most common used query language. Databases have their own query possibilities, mostly including
SQL possibilities. An overview of the diversity of querying databases is given in this appendix.

B.1 SQL

SQL data manipulations (DML) and queries (from Haan, 1993)

COMMIT
DELETE FROM table_name [WHERE cond]
INSERT INTO table_name [(column,…)]

{VALUES(value,…)|query}
ROLLBACK [TO SAVEPOINT sp_name]
SAVEPOINT sp_name
SELECT [DISTINCT] select_expr[,…]

FROM table_expr[,…]
[WHERE cond]
[GROUP BY expr[,…] [HAVING cond]]
[{UNIOIN[ALL]|INTERSECDT|MINUS} query]
[ORDER BY {expr|pos} [ASC|DESC] [,…]

TRUNCATE table_name
UPDATE table_name [alias]

SET {col=expr[,…]|(col[,…])=(subquery)}
[WHERE cond]

SQL operators (from Haan, 1993)
equation operators:
=
!= ^= <>
> >=
< <=
IN
NOT IN
ANY
ALL
BETWEEN x AND y
EXISTS
LIKE
[ESCAPE ‘X’]
IS NULL

Mathematical operators
+ - (positive or negative expression)
* /
+ - (plus or minus)

alphanumeric operators
||

Logical operators:
NOT
AND
OR

Set operators:
UNION [ALL]
INTERSECT
MINUS

Other operators:
(+)
*
DISTINCT

B.2 MSAccess
Types of queries you can create in MSAccess
Action queries:
- delete
- Update
- Append
- Make-table

SQL queries:
- Union
- Pass-through
- Data-definition
- Subquery

Select
Parameter
Crosstab

B.3 Oracle Spatial 9i:
Geometry functions in Oracle Spatial 9i
Geometry functions can be used for:
- determining relationships between geometries
- finding information about single geometries
- changing geometries
- combining geometries.

82 constraints in geo-VR

These functions all take into account two dimensions of source data. If the output value of these
functions is a geometry, the resulting geometry will have the same dimensionality as the input geometry,
but only the first two dimensions will accurately reflect the result of the operation.

The geometry functions are not discussed in more detail, because the constraints for geo-VR
environments concern mostly (if not always) one geometry comparing to all other geometries. The
geometry functions mentioned in table A.2 all concern relations between two specified geometries.

Table B - 1: geometry functions available in Oracle

Geometry function in Oracle Short description of geometry function
SDO_GEOM.RELATE Determines how two objects interact.
SDO_GEOM.SDO_ARC_DENSIFY Changes each circular arc into an approximation consisting of

straight lines, and each circle into a polygon consisting of a
series of straight lines that approximate the circle.

SDO_GEOM.SDO_AREA Computes the area of a two-dimensional polygon
SDO_GEOM.SDO_BUFFER Generates a buffer polygon around a geometry
SDO_GEOM.SDO_CENTROID Returns the centroid of a polygon
SDO_GEOM.SDO_CONVEXHULL Returns a polygon-type object that represents the convex hull

of a geometry object
SDO_GEOM.SDO_DIFFERENCE Returns a geometry object that is the topological difference

(MINUS operation) of two geometry objects
SDO_GEOM.SDO_DISTANCE Computes the distance between two geometry objects
SDO_GEOM.SDO_INTERSECTION Returns a geometry object that is the topological intersection

(AND operation) of two geometry objects
SDO_GEOM.SDO_LENGTH Computes the length or perimeter of a geometry
SDO_GEOM.SDO_MAX_MBR_
ORDINATE

Returns the maximum value for the specified ordinate
(dimension) of the minimum bounding rectangle of a geometry
object

SDO_GEOM.SDO_MBR Returns the minimum bounding rectangle of a geometry
SDO_GEOM.SDO_MIN_MBR_
ORDINATE

Returns the minimum value for the specified ordinate
(dimension) of the minimum bounding rectangle of a geometry
object

SDO_GEOM.SDO_POINTONSURFACE Returns a point that is guaranteed to be on the surface of a
polygon

SDO_GEOM.SDO_UNION Returns a geometry object that is the topological union (OR
operation) of two geometry objects

SDO_GEOM.SDO_XOR Returns a geometry object that is the topological symmetric
difference (XOR operation) of two geometry objects

SDO_GEOM.VALIDATE_GEOMETRY Determines if a geometry is valid
SDO_GEOM.VALIDATE_LAYER Determines if all the geometries stored in a column are valid
SDO_GEOM.WITHIN_DISTANCE Determines if two geometries are within a specified distance

from one another

Spatial operators for querying in Oracle Spatial
The available spatial operators in Oracle are listed in
Table B - 2 and their syntax is given below.

SDO_FILTER (geometry1, geometry2, params);

With the ‘params’ the querytype (window or join) and the indextables (for the geometries) can be
specified.

SDO_NN(geometry1, geometry2, param[,number]);
The ‘number’ specifies the same number used in the call to SDO_NN_DISTANCE (when
included)

Appendix B Querying databases 83

SDO_NN_DISTANCE(number)
SDO_RELATE(geometry1, geometry2, params);

With the ‘params’ the mask and querytype must be specified and the index tables can be specified.
The mask specifies the topological relation of interest. Valid values are one or more of the following
in the 9-intersection pattern: TOUCH, OVERLAPBYDISJOINT, OVERLAPBYINTERSECT,
EQUAL, INSIDE, COVEREDBY, CONTAINS, COVERS, ANYINTERACT, ON.

SDO_WITHIN_DISTANCE(geomertry1, aGeom, params);
Geometry1 specifies a geometry column in a table and aGeom specifies the object to be checked for
distance against the geometry objects in geomery1. The params specify the distance, index table for
geometry1, querytype (window or join) and unit of measurement.

Table B - 2: spatial operation available in Oracle

Spatial operation in Oracle Short description of spatial operation
SDO_FILTER Specifies which geometries may interact with a given geometry
SDO_NN Determines the nearest neighbor geometries to a geometry
SDO_NN_DISTANCE Returns the distance of an object returned by the SDO_NN operator
SDO_RELATE Determines whether or not two geometries interact in a specified way
SDO_WITHIN_DISTANCE Determines if two geometries are within a specified distance from one another

B.4 ArcGIS 8.3

The topology rules in ArcGIS 8.3 are listed in Table B - 3. (from Baars, 2003). The A, P and L in this
table stand for Area, Point and Line respectively.

Table B - 3: Topology rules in ArcGIS 8.3

Area rules
Must not overlap A
Contains points A:P
Must be covered by feature class of A:A
Must not overlap with A:A
Must not have gaps A
Boundary must be covered by A:L
Must be covered by A:A
Must cover each other A:A
Area boundary must be covered by boundary of A:A

Line rules
Must not have dangles L
Must not overlap L
Must not intersect L
Must not intersect or touch interior L
Must not overlap with L:L
Endpoint must be covered by L:P
Must not have pseudo-nodes L
Must not self-overlap L
Must not self-intersect L
Must be single part L
Must be covered by feature class of L:L
Must be covered by boundary of L:A

Point rules
Must be properly inside polygons P:A
Must by covered by boundary of P:A
Must be covered by endpoint of P:L
Point must be covered by Line P:L

85

Appendix C. Agents

Intelligent agent technology could be used to communicate between Java and the DBMS. Agents can be
seen as management or communication tools between the DBMS and the GUI of the application. In the
current SALIX-2 application a Java applet takes care of this communication between DBMS and the
GUI.

Current agent-based design methodologies extend the object-oriented design approach to intelligent
agents operating in (distributed) environments. An agent is akin to a class of objects along with
appropriate mechanisms for exhibiting intelligent behaviour. Thus, objects can be used to implement
agents. From a practical point of view, such agent-based approaches for system development will enable
effective management and revision control during software evolution. By virtue of the design techniques,
such software systems will be easy to modify and maintain. (from Ramaswamy and Yan)

An agent has a design goal, behaviour, a state and a process. The abbreviation SALIX stands for
‘Simulation Agents for Landscape architectonic design in Virtual Reality (x) and is based on Simulation
Agents. This gives the impression that SALIX-2 is based on agent technology; this is only true for a small
part of the application. In Salix-2 it is possible to form architectonic objects out of plantation objects that
are planted close to each other (see Lammeren et al. for more details). For the transformation of
plantation objects into architectonic objects the concept of agent technology was used.

A theoretical implementation of an agent could look as follows: the agents sensors automatically detect
changes made in the VRML scene and the agent communicates these changes to the DBMS. In the
DBMS a check whether the changes are allowed or not can take place. Another part of the agent detects
that some information is send by the DBMS and sends this to the VRML for feedback and further action.

This is however pure theoretical. The implementation of agents isn’t as simple as it looks like by the
above illustration. It is too complicated for this research and therefore not further discussed here.

87

Appendix D. Required modifications of application before
constraint implementation

Before database triggers can be created, first all tables from the MSAccess database had to be converted
to Oracle Spatial tables. The plantation layouts were converted to Oracle Spatial tables (among others the
prcv_treesrd_point table).

Ground surface image to geodataset conversion
The ground surface was digitised in ArcView. The created shapefile was converted and stored in Oracle
Spatial to create a geodataset of the ground surface (prcv_gvkrd_poly table in Oracle Spatial). This
conversion was done by FME universal translator, but before this conversion the
user_sdo_geom._metadata table was filled with the boundaries of the dataset that has to be created.

During this digitisation process in ArcView to create a shapefile, it appeared that SALIX-2 didn’t
give a good representation of the real world. The ground surface in SALIX-2 should represent a piece of
the Floriade terrain in the Netherlands. However, the ground surface image in SALIX-2 was a rotated
image of the accompanying terrain (the picture was upside down). So the ground surface and all
coordinates of the objects in plantation layouts of SALIX-2 first needed a transformation to give a correct
representation of the real world. After this transformation the representation was still in local VRML
coordinates, but it was a good representation of the real world. Only a translation was necessary to
convert them to RD coordinates.

Create spatial indexes
For the constraint checking the sdo_relate statement is used very often. The sdo_relate statement requires
spatial indexes on the used geometries. These spatial indexes should be the same for both geometries. So
the same spatial indexes should be created on the prcv_treesrd_point table and the prcv_gvkrd_poly table
(these tables are used in SALIX-2c).

Before creating spatial indexes, metadata must be specified. The tolerance specified in the
user_sdo_geom._metadata is used by the index. The sql script to create metadata is:

-- first metadata must be created for all tables
-- involved in SALIX-2c.

DELETE FROM user_sdo_geom_metadata
 WHERE table_name = 'PRCV_TREESRD_POINT'
 AND column_name = 'GEOM';

INSERT INTO user_sdo_geom_metadata
 VALUES(
 'prcv_treesrd_point',
 'geom',
 mdsys.sdo_dim_array(
 mdsys.sdo_dim_element('x', 104500, 106000, 0.002),
 mdsys.sdo_dim_element('y', 482000, 484000, 0.002)),
 NULL
);
commit;

DELETE FROM user_sdo_geom_metadata
 WHERE table_name = 'PRCV_GVKRD_POLY'
 AND column_name = 'GEOM';

INSERT INTO user_sdo_geom_metadata
 VALUES(
 'prcv_gvkrd_poly',
 'geom',
 mdsys.sdo_dim_array(
 mdsys.sdo_dim_element('x', 104500, 106000, 0.002),
 mdsys.sdo_dim_element('y', 482000, 484000, 0.002)),
 NULL
);
commit;

88 constraints in geo-VR

After specifying the metadata, the spatial indexes can be created. First the existing indexes must be
droped. The new spatial index is an r-tree index, which is specified by 'indextype is mdsys.spatial_index'.
The r-tree index is the default in Oracle (from version 8.1.7 and higher). The sql code to drop and create
spatial indexes is:

-- now spatial indexes can be made

DROP INDEX i_treesrd_point FORCE;
DROP INDEX PRCV_TREESRD_P_SG7 FORCE;

CREATE INDEX i_treesrd_point ON PRCV_TREESRD_POINT(GEOM)
INDEXTYPE IS mdsys.spatial_index
PARAMETERS ('sdo_fanout=32 sdo_indx_dims=2');

DROP INDEX i_gvkrd_poly FORCE;
DROP INDEX PRCV_GVKRD_POL_SG4 FORCE;

CREATE INDEX i_gvkrd_poly ON PRCV_GVKRD_POLY(GEOM)
INDEXTYPE IS mdsys.spatial_index
PARAMETERS ('sdo_fanout=32 sdo_indx_dims=2');

89

Appendix E. Trigger codes

Package

CREATE OR REPLACE PACKAGE pck_salix
IS
 -- the treeid and the treetype of the involved object in the insert
 -- statement is saved here. These attributes can be used in the triggers,
 -- procedures and functions. For the constraint checking in SALIX-2c
 -- they are used to determine if the object is a tree or a bush and
 -- only the corresponding constraints are checked

 treeid_io NUMBER;
 treetype_io varchar2(15);

 -- procedure to check constraint 1: a bush can never be placed inside water
 procedure pr_topology_c1;

 -- function to create the restricted area
 -- that is necessary for checking constraint 2
 function fu_restricted_area
 (angle2 number DEFAULT 5.68,
 angle3 number DEFAULT 0.60,
 distance number DEFAULT 20,
 geometry_io mdsys.sdo_geometry
)
 RETURN MDSYS.SDO_GEOMETRY;

 -- procedure to check constraint 2: a bush may not be placed south of a tree
 -- south of can be changed by changing the angles
 -- and a maximum distance is added to reduce the
 -- search area
 PROCEDURE pr_direction_c2
 (first_angle number,
 second_angle number,
 distance number,
 geometry_io mdsys.sdo_geometry);

 -- procedure to check constraint 3:
 -- trees always have to be positioned > 1 meter from paving
 procedure pr_metric_c3;

 -- procedure to check constraint 4:
 -- There must always be at least # trees on surface #.
 -- In this case the default minimum number of trees is 3
 -- and the default surface id = 20 (this is a grass polygon)
 procedure pr_quantity_c4
 (surface_id integer DEFAULT 20,
 min_nr_of_trees integer DEFAULT 3);

 -- procedure to check constraint 5:
 -- A bush always has to meet or disjoint paved areas
 procedure pr_thematic_c5;

 -- procedures to check constraint 6. This is a complex constraint
 -- consisting of three simple constraints.
 -- procedure pr_complex_c6a checks constraint 6a:
 -- the distance between trees inside water is always > 8 meter
 procedure pr_complex_c6a;

 -- procedure pr_complex_c6b checks constraint 6b:
 -- The distance between the tree and the edge of the water
 -- always has to be < 0,5 m
 procedure pr_complex_c6b;

 -- procedure pr_complex_c6c checks constraint 6c:
 -- the species of the trees inside water must be Quercus
 procedure pr_complex_c6c;

END pck_salix;
/

90 constraints in geo-VR

package body

CREATE OR REPLACE PACKAGE BODY pck_salix AS

-- content:
-- procedure pr_topology_c1
-- function fu_restricted_area
-- PROCEDURE pr_direction_c2
-- procedure pr_metric_c3
-- procedure pr_quantity_c4
-- procedure pr_thematic_c5
-- procedure pr_complex_c6a
-- procedure pr_complex_c6b
-- procedure pr_complex_c6c

-- procedure pr_topology_c1

-- constraint 1: a bush can never be placed inside water
-- the existing table has no bushes inside the water, so only
-- after each update or insert a check has to take place if
-- the new location of a bush is inside water. This can be
-- an after statement trigger.

PROCEDURE pr_topology_c1

IS
 description varchar2(15);
 xrd_io number;
 yrd_io number;
 bush_in_water EXCEPTION;

BEGIN
 select g.descript, t.geom.sdo_point.x, t.geom.sdo_point.y INTO description, xrd_io, yrd_io
 from prcv_gvkrd_poly g, prcv_treesrd_point t
 where t.treeid = pck_salix.treeid_io
 AND sdo_relate(g.geom, t.geom, 'mask=anyinteract, querytype=window')='TRUE'
 group by g.descript, t.geom.sdo_point.x, t.geom.sdo_point.y;

 IF description = 'water' THEN
 raise bush_in_water;
 ELSE DBMS_OUTPUT.PUT_LINE('1: the bush is not placed in water');
 END IF;

EXCEPTION
 WHEN bush_in_water THEN
 raise_application_error (-20001,
 '1: The bush (x='||to_char(xrd_io)||', y='||to_char(yrd_io)||') is placed inside water,
 but a bush may never be placed in water. place the bush on another location.');

END pr_topology_c1;

-- function fu_restricted_area

-- This function creates a geometry with the shape of
-- a piece of cake (the restricted area
-- for the direction constraint).
-- point 1 is the basis for this geometry.
-- This is the location of the bush that is to
-- be inserted or updated in the table.
-- Two angles must be given to calculate the
-- coordinates of points 2 and 3.
-- Also a middle point for the arc must be given
-- this middle point is calculated with an angle which
-- is the average of angle2 and angle3.
-- m
-- _._
-- / \
-- 2 . . 3
-- \ /
-- \ /
-- \ /
-- .
-- 1
--

Appendix E. Trigger codes 91

FUNCTION fu_restricted_area(
 -- angle2 is the angle of the line from point 1 to point 2
 angle2 number DEFAULT 5.68, -- when no angle is specified, 2pi-0.6 rad is used.
 -- angle3 is the angle of the line from point 1 to point 3
 angle3 number DEFAULT 0.60, -- when no angle is specified, 0.6 rad is used.
 -- distance is the length of the lines 1-2 and 2-3 (and also 1-m)
 distance number DEFAULT 20, -- when no distance is specified, 20 meter is used.
 -- the geometry of the involved object, which is the reference point for the restricted
areas
 geometry_io mdsys.sdo_geometry)
 RETURN MDSYS.SDO_GEOMETRY
IS

 dx2 number(10,2); -- difference in x coordinates between first and second point
 dy2 number(10,2); -- difference in y coordinates between first and second point
 dx3 number(10,2); -- difference in x coordinates between first and third point
 dy3 number(10,2); -- difference in y coordinates between first and third point
 dxm number(10,2); -- difference in x coord between point 1 and middle point of arc
 dym number(10,2); -- difference in x coord between point 1 and middle point of arc

 anglem number(10,2); -- angle to point m

 x1 number(10,2); -- x coordinate of first point
 y1 number(10,2); -- y coordinate of first point
 x2 number(10,2);
 y2 number(10,2);
 x3 number(10,2);
 y3 number(10,2);
 xm number(10,2);
 ym number(10,2);

BEGIN

 IF angle2>angle3 THEN -- 2pi must be added to angle3
 anglem := angle2 + (((angle3+6.283)-angle2)/2);
 ELSE -- angle2<angle3
 anglem := angle2 + ((angle3-angle2)/2);
 END IF;

 x1 := geometry_io.sdo_point.x;
 y1 := geometry_io.sdo_point.y;
 DBMS_OUTPUT.PUT_LINE('the coordinates of the involved object
 are: x='||to_char(x1)||', y='||to_char(y1));
 -- select i.geom.sdo_point.x, i.geom.sdo_point.y into x1, y1
 -- from involved_object i;

 dx2 := (sin(angle2))*distance;
 dy2 := (cos(angle2))*distance;
 dxm := (sin(anglem))*distance;
 dym := (cos(anglem))*distance;
 dx3 := (sin(angle3))*distance;
 dy3 := (cos(angle3))*distance;

 x2 := x1+dx2;
 y2 := y1+dy2;
 x3 := x1+dx3;
 y3 := y1+dy3;
 xm := x1+dxm;
 ym := y1+dym;

 RETURN MDSYS.SDO_GEOMETRY
 (2003, NULL, NULL,
 MDSYS.SDO_ELEM_INFO_ARRAY(1,1005,2, 1,2,1, 5,2,2), -- compound polygon
 MDSYS.SDO_ORDINATE_ARRAY(x2,y2, x1,y1, x3,y3, xm,ym, x2,y2)
);
END fu_restricted_area;

-- PROCEDURE pr_direction_c2

-- constraint 2: a bush may not be placed south of a tree
-- (or another direction, when specified otherwise in the
-- area_of_interest).

PROCEDURE pr_direction_c2
(first_angle number,
 second_angle number,

92 constraints in geo-VR

 distance number,
 geometry_io mdsys.sdo_geometry
)

IS
 i integer;
 bush_on_wrong_side_of_tree EXCEPTION;

BEGIN
 SELECT COUNT(t.treeid) INTO i FROM prcv_treesrd_point t
 WHERE t.treetype IN ('FraxExc', 'QueRob')
 AND SDO_RELATE(t.geom, fu_restricted_area(first_angle, second_angle, distance,
geometry_io),
 'mask=ANYINTERACT, querytype=window')='TRUE';

 IF i=0 THEN
 raise bush_on_wrong_side_of_tree;
 ELSE
 DBMS_OUTPUT.PUT_LINE
 ('2: the bush is placed in the right direction of '||i||' tree(s).');
 END IF;

EXCEPTION
 WHEN bush_on_wrong_side_of_tree THEN
 raise_application_error
 (-20002,'2: the bush (x='||to_char(geometry_io.sdo_point.x)||',
y='||to_char(geometry_io.sdo_point.y)||')
 is not placed in the right direction of any tree.');

END pr_direction_c2;

-- procedure pr_metric_c3

-- constraint 3: trees always have to be positioned > 1 meter from paving
-- this is metric constraint and should be done with a buffer and overlay operation
-- or with distance measurement with all paving polygons.
-- creating a buffer and then overlay works probably faster.

PROCEDURE pr_metric_c3

IS
 j integer;
 xrd_io number; -- := pck_salix.xrd_io;
 yrd_io number; -- := pck_salix.yrd_io;
 tree_too_close_to_paving EXCEPTION;

BEGIN
 SELECT i.geom.sdo_point.x, i.geom.sdo_point.y INTO xrd_io, yrd_io
 FROM prcv_treesrd_point i
 WHERE i.treeid = pck_salix.treeid_io
 group by i.geom.sdo_point.x, i.geom.sdo_point.y;

 SELECT count(distinct (g.id)) INTO j
 FROM prcv_gvkrd_poly g, prcv_treesrd_point i
 WHERE g.descript IN ('paving', 'soft_paving')
 AND i.treeid = pck_salix.treeid_io
 AND SDO_WITHIN_DISTANCE (g.geom, i.geom, 'distance = 1') = 'TRUE';

 IF j>0 THEN
 raise tree_too_close_to_paving;
 ELSE DBMS_OUTPUT.PUT_LINE('3: the tree is placed >1m from the paving');
 END IF;

EXCEPTION
 WHEN tree_too_close_to_paving THEN
 raise_application_error(-20003,
 '3: The tree (x='||to_char(xrd_io)||', y='||to_char(yrd_io)||') is placed inside or
within
 a distance of 1 meter from '||to_char(j)||' paving or soft paving surface(s).
 A tree must always be placed >1m from paving or soft paving.');
-- WHEN no_data_found then null;
END pr_metric_c3;

Appendix E. Trigger codes 93

-- procedure pr_quantity_c4

-- constraint 4: There must always be at least 10 trees in a piece of grass
-- the id of the involved grass polygon is 20 and the minimum number of trees is
-- changed in 3.
-- this must be an after statement trigger when inserting, updating or deleting.
-- the exceptionhandling must not give a rollback, so only a message with the right
-- information must be shown.

PROCEDURE pr_quantity_c4
 (surface_id integer DEFAULT 20,
 min_nr_of_trees integer DEFAULT 3)

IS
 i integer; -- integer to store the number of trees
 number_of_trees_too_low EXCEPTION;

BEGIN
 -- count the number of trees on the surface polygon with id=surface_id
 SELECT count(t.treeid) INTO i
 FROM prcv_treesrd_point t, prcv_gvkrd_poly g
 WHERE t.TreeType IN ('FraxExc', 'QueRob')
 AND g.id=surface_id
 AND SDO_RELATE(t.geom, g.geom, 'mask = ANYINTERACT, querytype = window') = 'TRUE';

 IF i < min_nr_of_trees THEN
 raise number_of_trees_too_low;
 ELSE DBMS_OUTPUT.PUT_LINE('4: there are enough trees (>= '||to_char(min_nr_of_trees)||')
 on polygon '||to_char(surface_id));
 END IF;

EXCEPTION
 WHEN number_of_trees_too_low THEN -- no application error can be raised, because than a
rollback takes place
 DBMS_OUTPUT.PUT_LINE('4: there are only '||to_char(i)||' trees placed on the grass
polygon with id '
 ||to_char(surface_id)||'. The minimum number of trees on this piece of grass must be
'||to_char(min_nr_of_trees));
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('4:there is no data found about the number of trees inside
 the grass polygon with id '||to_char(surface_id));
END pr_quantity_c4;

-- procedure pr_thematic_c5

-- Constraint 5: A bush always has to meet or disjoint paved areas.
-- Paved areas are ground surfaces with description 'paving' or 'soft_paving'
-- and the opposites of the topological relations meet and disjoint must be used
-- to search for bushes that do satisfy this opposite relationship. If they
-- exist, an application error must occur.
--
-- The opposites of meet and disjoint is contains for point objects.
-- The bushes are points and the paved areas are polygons,
-- so only the relation contains is of interest here!

PROCEDURE pr_thematic_c5

IS
 j integer; -- integer to store the nr of paved areas
 xrd_io number; -- := pck_salix.xrd_io;
 yrd_io number; -- := pck_salix.yrd_io;
 bush_inside_paved_areas EXCEPTION;

BEGIN
 SELECT i.geom.sdo_point.x, i.geom.sdo_point.y INTO xrd_io, yrd_io
 FROM prcv_treesrd_point i
 WHERE i.treeid = pck_salix.treeid_io
 group by i.geom.sdo_point.x, i.geom.sdo_point.y;

 SELECT count(g.id) INTO j
 FROM prcv_gvkrd_poly g, prcv_treesrd_point t
 WHERE g.descript IN ('paving', 'soft_paving')
 AND t.treeid = pck_salix.treeid_io
 AND SDO_RELATE(g.geom, t.geom, 'mask= CONTAINS, querytype=window') = 'TRUE';

 IF j>0 THEN

94 constraints in geo-VR

 raise bush_inside_paved_areas;
 ELSE DBMS_OUTPUT.PUT_LINE('5: the bush is not placed inside the paving');
 END IF;

EXCEPTION
 WHEN bush_inside_paved_areas THEN
 raise_application_error (-20005,
 '5: a paving or soft_paving surface overlaps with the bush (x='||to_char(xrd_io)||',
y='||to_char(yrd_io)||').
 A bush must always meet or disjoint paved areas, so place the bush on another
location.');
END pr_thematic_c5;

-- constraint 6 is a complex constraint, consisting of a combination of
-- three simple constraints

-- procedure pr_complex_c6a

-- constraint 6 (a)
-- the distance between trees inside water is always > 8 meter

PROCEDURE pr_complex_c6a

IS
 k integer;
 xrd_io number; -- := pck_salix.xrd_io;
 yrd_io number; -- := pck_salix.yrd_io;
 trees_too_close EXCEPTION;

BEGIN
 SELECT i.geom.sdo_point.x, i.geom.sdo_point.y INTO xrd_io, yrd_io
 FROM prcv_treesrd_point i
 WHERE i.treeid = pck_salix.treeid_io
 group by i.geom.sdo_point.x, i.geom.sdo_point.y;

 SELECT count(t.treeid) INTO k
 FROM prcv_treesrd_point t, prcv_gvkrd_poly g, prcv_treesrd_point o
 where t.treetype = 'QueRob'
 AND g.descript='water'
 AND t.treeid != pck_salix.treeid_io
 AND o.treeid = pck_salix.treeid_io
 AND SDO_RELATE (t.geom, g.geom, 'mask=anyinteract, querytype=window')='TRUE'
 AND SDO_WITHIN_DISTANCE(t.geom, o.geom, 'distance=8')='TRUE';

 IF k>0 THEN
 Raise trees_too_close;
 ELSE DBMS_OUTPUT.PUT_LINE
 ('6a: the tree of type QueRob is placed far enough from other QueRobs inside the
water.');
 END IF;

EXCEPTION
 WHEN trees_too_close THEN
 raise_application_error(-20061, '6a: The tree of type QueRob and with x=
'||to_char(xrd_io)||' and y= '||to_char(yrd_io)||',
 is placed too close to another QueRob inside water.');
END pr_complex_c6a;

-- pr_complex_c6b

-- constraint 6 (b)
-- The distance between the tree and the edge of the water always has to be < 0,5 m.

PROCEDURE pr_complex_c6b

IS
 l integer;
 n integer;
 xrd_io number; -- := pck_salix.xrd_io;
 yrd_io number; -- := pck_salix.yrd_io;
 tree_too_far_from_edge EXCEPTION;

BEGIN
 SELECT i.geom.sdo_point.x, i.geom.sdo_point.y INTO xrd_io, yrd_io

Appendix E. Trigger codes 95

 FROM prcv_treesrd_point i
 WHERE i.treeid = pck_salix.treeid_io
 group by i.geom.sdo_point.x, i.geom.sdo_point.y;

 SELECT count (g.id) INTO n
 FROM prcv_gvkrd_poly g, prcv_treesrd_point t
 WHERE t.treeid = pck_salix.treeid_io
 AND g.descript IN ('paving', 'soft_paving', 'grass')
 AND SDO_WITHIN_DISTANCE (g.geom, t.geom, 'distance=0.5')='TRUE';

 -- other solution could be:
 --
 -- SELECT count(g.id) INTO n
 -- FROM prcv_gvkrd_poly g, prcv_treesrd_point t
 -- WHERE g.descript IN ('paving', 'soft_paving', 'grass')

-- AND t.treeid=pck_salix.treeid_io
 -- AND sdo_relate(g.geom, sdo_geom.sdo_buffer(t.geom, 0.5, 0.005), 'mask=anyinteract,

 querytype=window')='TRUE';

 IF n=0 THEN -- there are only water surfaces or bridges within
 -- a distance of 0.5m from the object,
 -- so raise application error
 RAISE tree_too_far_from_edge;
 ELSE DBMS_OUTPUT.PUT_LINE('6b: the object is placed <0.5m from the wateredge');
 END IF;

EXCEPTION
 WHEN tree_too_far_from_edge THEN
 raise_application_error(-20062, '6b: there are only water surfaces
 within a distance of 0.5m from the object (x='||to_char(xrd_io)||',
y='||to_char(yrd_io)||'),
 so the object lies too far from the edge of the water. The distance between trees inside
water
 and the edge of the water must be < 0.5 m.');

END pr_complex_c6b;

-- procedure pr_complex_c6c

-- constraint 6 (c) the species of the trees inside water must be Quercus.
-- select all trees and bushes that are not of the type Quercus
-- and are inside water. If they exist, an application error must occur.

PROCEDURE pr_complex_c6c

IS
 description varchar2(10);
 n integer;
 xrd_io number; -- := pck_salix.xrd_io;
 yrd_io number; -- := pck_salix.yrd_io;
 object_not_Quercus EXCEPTION;

BEGIN
 -- if treetype != 'QueRob'THEN
 SELECT g.descript, g.id, t.geom.sdo_point.x, t.geom.sdo_point.y INTO description, n,
xrd_io, yrd_io
 FROM prcv_gvkrd_poly g, prcv_treesrd_point t
 WHERE t.treeid = pck_salix.treeid_io
 AND sdo_relate(g.geom, t.geom, 'mask=CONTAINS, querytype=window')='TRUE'
 group by g.descript, g.id, t.geom.sdo_point.x, t.geom.sdo_point.y;
 IF description = 'water' THEN
 raise object_not_Quercus;
 ELSE DBMS_OUTPUT.PUT_LINE ('6c: There are no other objects than QueRobs placed inside
water');
 END IF;

EXCEPTION
 WHEN object_not_Quercus THEN
 raise_application_error(-20063, '6c: The object is not a QueRob
 and is placed (x='||to_char(xrd_io)||', y='||to_char(yrd_io)||') inside the
 water surface with id '||to_char(n)||'. Only trees of type QueRob can be placed inside
water.');

END pr_complex_c6c;

END pck_salix;
/

96 constraints in geo-VR

Before row trigger

CREATE OR REPLACE TRIGGER brt_all_salix
BEFORE INSERT ON prcv_treesrd_point
FOR EACH ROW

BEGIN
 pck_salix.treeid_io := :new.treeid;
 pck_salix.treetype_io := :new.treetype;
END;
/

After statement trigger

CREATE OR REPLACE TRIGGER ast_salix
AFTER INSERT ON prcv_treesrd_point

DECLARE
 geom_io MDSYS.SDO_GEOMETRY;
 description varchar2(10);

BEGIN
 -- check constraint 4 about number of trees
 -- inside a certain surface polygon.
 -- The syntax is:
 -- pr_quantity_c4
 -- (surface_id integer DEFAULT 20,
 -- min_nr_of_trees integer DEFAULT 3)

 pck_salix.pr_quantity_c4(20,3);

 -- now check whether the involved object is a tree
 -- or a bush and run all constraints that concern
 -- the new object

 IF pck_salix.treetype_io IN ('CorMas', 'RosCan', 'CorAve') THEN
 -- the object is a bush, so all constraints concerning
 -- bushes must be run.
 DBMS_OUTPUT.PUT_LINE('the involved object is a bush');

 pck_salix.pr_topology_c1;

 -- Constraint 2 conscerns a certain direction between
 -- objects and a maximum distance. The direction
 -- range can be specified by 2 angles and the distance
 -- is the maximum distance allowed (actually this
 -- is a complex constraint)
 --
 -- The syntax of this procedure is:
 -- pr_direction_c2
 -- (first_angle number DEFAULT 5.68,
 -- second_angle number DEFAULT 0.6,
 -- distance number DEFAULT 20,
 -- geometry_io mdsys.sdo_geometry)
 --
 -- the geometry of the involved object must first
 -- be selected from the prcv_treesrd_point table.
 -- The geometry cannot be saved as a package variable,
 -- because a spatial indexes are necessary on all geometries
 -- used in the sdo_relate operation.

 select i.geom INTO geom_io
 from prcv_treesrd_point i
 where i.treeid = pck_salix.treeid_io;
 pck_salix.pr_direction_c2(5.41, 0.87, 30, geom_io);

 pck_salix.pr_thematic_c5;

 -- constraint 6 is a complex constraint. The third part
 -- checks if there are no other objects than QueRob
 -- in the water. When the object is a bush, this
 -- bush is not allowed to be placed inside water.
 -- This is checked with the next procedure:
 pck_salix.pr_complex_c6c;

Appendix E. Trigger codes 97

 ELSIF pck_salix.treetype_io IN ('FraxExc', 'QueRob') THEN
 -- the object is a tree, so all constraints concerning
 -- trees must be run.
 DBMS_OUTPUT.PUT_LINE('the involved_object is a tree');

 pck_salix.pr_metric_c3;

 -- if the object is a FraxExc, a check must take place
 -- if this object is not placed inside water
 IF pck_salix.treetype_io = 'FraxExc' THEN
 pck_salix.pr_complex_c6c;
 END IF;

 -- for all QueRobs inside water, the procedures
 -- containing the complex constraints 6a and 6b,
 -- must be run.

 IF pck_salix.treetype_io = 'QueRob' THEN
 SELECT g.descript INTO description
 FROM prcv_gvkrd_poly g, prcv_treesrd_point i
 WHERE i.treeid = pck_salix.treeid_io
 AND SDO_RELATE(g.geom, i.geom,
 'mask=anyinteract, querytype=window')='TRUE';

 IF description = 'water' THEN
 pck_salix.pr_complex_c6a;
 pck_salix.pr_complex_c6b;
 END IF;

 END IF;

 ELSE raise_application_error(-20099,'the object type is not supported by SALIX-2.');

 END IF;

END;
/

99

Appendix F. DBHandler class

The light gray marked areas are the changes in the new DBHandler class. The adaptations concern:
- the connection to Oracle instead of the first used MSAccess database;
- the derivation of local VRML coordinates from the geometry stored in the DBMS instead of using

numbers stored in separate columns for each coordinate;
- the derivation of RD coordinates from the local VRML coordinates (RD coordinates are used to store

the geometry in the DBMS;
- the feedback to the user.

package java;

import java.sql.*;
import java.util.Vector;
import java.lang.*;

/**
 * This class provides the interface to the database containing information
 * on the objects to be visualized.
 * @author Viktor Clerc (SERC)
 * @version Id
 */

public class DBHandler {

 static final String USER_TABLE_PREFIX = "USER_";
 static final String DEFAULT_DATABASE = "@gis";
 static final String DEFAULT_TABLE = "PRCV_TREESRD_POINT";
 static final String CONN_JDBC_ODBC = "jdbc:oracle:oci:";

 private String database;
 private String connType;
 private String table;

 private Connection c;

 /**
 * Create a default database handler
 */
 public DBHandler() {
 this(DEFAULT_DATABASE, CONN_JDBC_ODBC);
 }

 /**
 * Create a database handler with the given parameters
 * @param database The database that should be connected to
 * @param connType The type of connection to be made to the database
 */
 private DBHandler(String database, String connType) {
 this.database = database;
 this.connType = connType;
 table = DEFAULT_TABLE;
 }

 /**
 * Start the database
 * @throws SalixException if no connection could be made
 */
 public void start() throws SalixException {
 loadDBDriver();
 c = getConnection();
 }

 /**
 * Stop the database
 * @throws SalixException if the connection could not be closed
 */
 public void stop() throws SalixException {
 closeConnection(c);
 c = null;
 }

100 constraints in geo-VR

 /**
 * Load the database driver
 * @throws SalixException if the database driver class could not be
 * found
 */
 private void loadDBDriver() throws SalixException {
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");

 /* for the 'old' salix2:
 Class.forName("com.ms.jdbc.odbc.JdbcOdbcDriver").newInstance();*/
 }
 catch(Exception ex) {
 try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver").newInstance();
 }
 catch(Exception e) {
 System.err.println(e.getMessage());
 throw new SalixException("loadDBDriver(): Can't find database driver
 classes:\n" + ex.getMessage() + " and " + e.getMessage());
 }
 }
 }

 /**
 * Get all configurations present in the database
 * @return Vector a vector containing all configurations
 * @throws SalixException if the configurations could not be read
 */

 public Vector getConfigurations() throws SalixException {
 Vector result = new Vector();
 ResultSet rs = null;
 if(c == null)
 c = getConnection();
 try {
 DatabaseMetaData dmd = c.getMetaData();
 rs = dmd.getTables(null, null, "%", null);

 while(rs.next()) {
 String tableName = rs.getString(3);
 String databaseType = rs.getString(4);
 if(databaseType.equals("TABLE")
 && (tableName.startsWith(USER_TABLE_PREFIX))) {
 result.addElement(tableName.substring(
 new String(USER_TABLE_PREFIX).length()));
 }
 //DEBUG testing
 if(tableName.equals(DEFAULT_TABLE)) {
 result.addElement(tableName);
 }
 }
 if(result.isEmpty()) {
 System.err.println("No matching tables found");
 return null;
 }
 }
 catch(Exception e) {
 System.err.println(e.getMessage());
 throw new SalixException("getDatabase(): Could not read configurations from
 database");
 }
 finally {
 //Close any open connections
 try { rs.close(); }
 catch(SQLException e) {}
 }
 return result;
 }

 /**
 * Get all types present in the database
 * @return Vector a vector containing all types
 * @throws SalixException if the types could not be read
 */

 public Vector getTypes() throws SalixException {

Appendix F. DBHandler class 101

 Vector result = new Vector();
 ResultSet rs = null;
 String query = "SELECT * FROM TreeType";
 Statement stmt = null;

 if(c == null)
 c = getConnection();
 try {
 stmt = c.createStatement();
 rs = stmt.executeQuery(query);

 while(rs.next()) {
 result.addElement(new SalixObjectType(rs.getInt("TreeTypeID"),
 rs.getString("Type"),
 rs.getString("Kind"),
 rs.getString("Definition"),
 rs.getString("ProtoFile"),
 rs.getString("LatinName")
)
);
 }
 }
 catch(Exception e) {
 throw new SalixException("DBHandler.getTypes(): Could not read object types from
 database");
 }
 finally {
 try { rs.close(); }
 catch(SQLException e) {}
 }
 return result;
 }

 /**
 * Load the objects from the active configuration
 * @param types A list of all known types
 * @return A vector containing the objects
 * @throws SalixException if the objects could not be read
 */

 public Vector loadObjectsFromConfiguration(Vector types) throws
 SalixException {
 Statement stmt = null;
 String query = "SELECT t.TreeID, t.TreeType, t.geom.sdo_point.x x,
 t.geom.sdo_point.y y, t.TreeAge, t.Solitair FROM " +
 configurationName() + " t ORDER BY t.TreeID";
 ResultSet rs = null;

 Vector nodes = new Vector();

 if(c == null)
 c = getConnection();

 try {
 stmt = c.createStatement();
 rs = stmt.executeQuery(query);

 while (rs.next()) {
 SalixObjectType objectType = null;
 String type = rs.getString("TreeType");
 if(types != null) {
 //We have a Vector with types, so find the
 //type of the current object
 for(int i = 0; i < types.size(); i++) {
 objectType = (SalixObjectType) types.elementAt(i);
 if(objectType.getShortName().equals(type)) break;
 }
 }
 float xrd = rs.getFloat("x");
 float yrd = rs.getFloat("y");
 float xmrd = 105058.32;
 float ymrd = 482698.40;
 float TreePosX = xrd - xmrd;
 int TreePosY = 0;
 float TreePosZ = ymrd - yrd;
 nodes.addElement(new SalixObject(rs.getInt("TreeID"),
 objectType,
 TreePosX,

102 constraints in geo-VR

 TreePosY,
 TreePosZ,
 rs.getInt("TreeAge"),
 false,
 rs.getBoolean("Solitair")
)
);
 }
 }
 catch(SQLException e) {
 System.err.println(e.getMessage());
 throw new SalixException("loadObjectsFromConfiguration(): Could not load the
 database");
 }
 finally {
 try { rs.close(); }
 catch(SQLException e) {}
 }
 return nodes;
 }

 /**
 * Clears the current configuration
 * @throws SalixException if no connection could be made
 */
 public void clearConfiguration() throws SalixException {
 System.out.println("clear configuration");
 Statement stmt = null;
 String query = "DELETE * FROM " + configurationName() ;

 if(c == null)
 c = getConnection();
 try {
 stmt = c.createStatement();
 stmt.execute(query);
 stmt.close();
 }
 catch(SQLException e) {
 System.err.println(e.getMessage());
 }
 }

 /**
 * Insert a collection into the active configuration
 * @param v The vector to be added
 */

 public void insertInConfiguration(Vector v) throws SalixException {
 Statement stmt = null;
 String query = null;

 if(c == null)
 c = getConnection();
 try {
 for(int i = 0; i < v.size(); i++) {

 SalixObject tree = (SalixObject) v.elementAt(i);
 int id = tree.getID();
 float TreePosX = tree.getPosX();
 float TreePosY = tree.getPosY();
 float TreePosZ = tree.getPosZ();
 float xmrd = 105058.32;
 float ymrd = 482698.40;
 float xrd = TreePosX + xmrd;
 float yrd = ymrd - TreePosZ;
 int age = tree.getAge();
 String type = tree.getType().getShortName();
 boolean solitair = tree.isSolitair();

 query = "INSERT INTO "+ configurationName() +" (treeid, TreeType, TreeAge,
 Solitair, geom) VALUES (" + id + ", '" + type + "', " + age + ", " +
 solitair + ", MDSYS.SDO_GEOMETRY(2001, NULL, MDSYS.SDO_POINT_TYPE(" +
 xrd + ", " + yrd + ", NULL), NULL, NULL))";

 stmt = c.createStatement();
 stmt.execute(query);
 stmt.close();
 }

Appendix F. DBHandler class 103

 }catch(SQLException e) {
 System.out.println(e.getMessage());
 throw new SalixException ("DBHandler.insertInDatabase(): Could not insert");
 }
 }

 /**
 * Create a new configuration
 * @param name The name of the new configuration
 * @throws SalixException if the configuration could not be created or
 * if there already exists a configuration with the given name
 */

 public void newConfiguration(String name) throws SalixException {
 System.out.println("making new configuration");
 Statement stmt = null;
 String query = "CREATE TABLE " + USER_TABLE_PREFIX + name +
 " (TreeID NUMBER PRIMARY KEY, TreeType STRING, " +
 "TreeAge NUMBER, Solitair BIT, geom MDSYS.SDO_GEOMETRY)";

 if(c == null)
 c = getConnection();
 try {
 stmt = c.createStatement();
 stmt.execute(query);
 stmt.execute("commit");
 }
 catch(SQLException e) {
 System.err.println(e.getMessage());
 if(e.getMessage().indexOf("already exists") != -1)
 throw new SalixException("newConfiguration(): Database " + name +
 " already exists");

 if(e.getMessage().indexOf("tax error") != -1)
 throw new SalixException("newConfiguration(): Syntax error " +
 "in query or configuration name");
 }
 }

 /**
 * Execute raw SQL on the database
 * @param query The SQL query to be executed
 */

 public void executeSQL(String query) {
 if(query.startsWith("SELECT")) {
 executeQuery(query);
 return;
 }
 System.err.println(query);
 Statement stmt = null;
 if(c == null) {

 try{ c = getConnection();}
 catch(Exception e){}
 }

 try {
 stmt = c.createStatement();
 stmt.executeUpdate(query);
 }
 catch(SQLException e) {
 System.err.println("Failed: " + e.getMessage());
 }
 }

 /**
 * Execute an SQL select query
 * @param query The SQL query to be executed
 */

 public void executeQuery(String query) {
 System.err.println(query);
 ResultSet rs = null;
 Statement stmt = null;
 if(c == null) {

 try{ c = getConnection();}

104 constraints in geo-VR

 catch(Exception e){}
 }
 try {
 stmt = c.createStatement();
 rs = stmt.executeQuery(query);
 }
 catch(SQLException e) {
 System.err.println("Failed: " + e.getMessage());
 }
 try {
 while(rs.next()) {
 double tableName = rs.getDouble(1);
 System.err.println("NUMBER " + tableName);
 }
 }
 catch(SQLException e) {
 System.err.println("Failed: " + e.getMessage());
 }
 }

 /**
 * Set an active configuration
 * @param configuration The name of the configuration to be set active
 */
 public void setConfiguration(String configuration) {
 this.table = configuration;
 }

 /**
 * Get a connection to the database
 * @return The connection
 * @throws SalixException if no connection could be made
 */
 private synchronized Connection getConnection() throws SalixException {
 Connection c = null;
 try {
 c = DriverManager.getConnection(connType+database, "oragis02", "dbms02");
 }
 catch(SQLException e) {
 System.err.println(e.getMessage());
 throw new SalixException("DBHandler.getConnection(): Could not open connection to
 database");
 }
 return c;
 }

 /**
 * Close a connection to the database
 * @param c The connection to be closed
 * @throws SalixException if the connection could not be closed
 */
 private synchronized void closeConnection(Connection c) throws SalixException {
 try {
 c.close();
 }
 catch(NullPointerException e) {
 System.err.println(e.getMessage());
 throw new SalixException("DBHandler.closeConnection(): Connection timed out,
 please reload Salix");
 }
 catch(SQLException e) {
 System.err.println(e.getMessage());
 throw new SalixException("DBHandler.closeConnection(): Could not close connection
 to database");
 }
 }

 /**
 * Get the name of the active configuration
 * @return The name
 */
 private String configurationName() {
 if(table.equals(DEFAULT_TABLE)) return table;
 return USER_TABLE_PREFIX + table;
 }
}

	Preface
	Abstract
	Introduction
	Background information
	Geo-data framework
	Examples of geo-VR applications
	Structure SALIX-2 as integration of DBMS, VRML and Java
	External authoring interface
	Conclusion

	Constraints
	Description of objects
	Object relations
	Spatial relations
	Temporal relations
	Quantity relations
	Thematic relations
	Conclusion object relations

	Typology of constraints
	Forced and restricted relations
	Simple and complex relations
	Constraints as object relations

	Constraints in SALIX-2
	Object model of SALIX-2
	Example constraints for implemting in SALIX-2
	Constraints as object relations in SALIX-2

	Approaches for implementing constraints in a geo-VR environm
	Implementing constraints in the DVM
	Possible moment of constraint checking in the DVM of SALIX-2
	Introduction VRML
	Collision detection in VRML
	Touch sensors in VRML
	VRML Script and routing
	Conclusion of implementation possibilities in DVM

	Implementing constraints in DLM
	Structured Query Language
	Integrity constraints in DBMSs
	Integrity constraints in Oracle Spatial
	Implementing constraints using Oracle’s CDM RuleFrame
	Implementation constraints using ArcSDE
	Conclusion of implementation possibilities in DLM

	Freeware or commercial software?
	Criteria for best implementation approach of constraints
	Conclusion

	Conceptual model of SALIX-2c
	Most suitable implementation approach
	Unified Modelling Language
	Object Constraints Language
	Static system structure of SALIX-2c
	Communication between application and user
	Dynamic system structure of SALIX-2c
	Starting the application
	Making a new plantation layout
	Loading a plantation layout
	Adding a new object
	Drag object to another position
	Deleting an object
	Saving a plantation plan

	Conceptual Design of triggers to implement constraints
	The example constraints as assertions
	The example constraints as database triggers

	Constraint implementation in SALIX-2c
	Constraint implementation in DLM
	Post constraint implementation
	Conclusion

	Conclusions and recommendations
	Conclusions
	Discussion
	Recommendations

	Literature
	Abbreviations
	List of figures
	List of tables
	Static structure SALIX-2
	Querying databases
	SQL
	MSAccess
	Oracle Spatial 9i:
	ArcGIS 8.3

	Agents
	Required modifications of application before constraint impl
	Trigger codes
	DBHandler class

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

