
Technical University of Delft
Faculty of Electrical Engineering, Mathematics and Computer Sciences

Delft Institute of Applied Mathematics

Analysis of Microscopic Images: A Morphological
Approach

(Nederlandse titel: Analyse van Microscopische
Beelden: Een Morfologische Aanpak)

Thesis submitted to the
Delft Institute of Applied Mathematics

as part of the acquisition of

the degree of

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by

MYRTE VAN BELKOM

Delft, Netherlands
June 2018

Copyright c© 2018 by Myrte van Belkom. All rights reserved.

BSc thesis Applied Mathematics

“Analysis of Microscopic Images: A Morphological Approach’

(Nederlandse titel: “Analyse van Microscopische Beelden: Een Morfologische
Aanpak”

MYRTE VAN BELKOM

Technical University of Delft

Supervisor

Dr. N. V . Budko

Other committee members

Drs. E. van Elderen Dr. Ir. D. den Ouden-van der Horst

Mathematical Physics Numerical Analysis

June, 2018 Delft

Analysis of Microscopic Images:

A Morphological Approach

Myrte van Belkom,
Technical University of Delft

June 27, 2018

Supervisor
Dr. N.V. Budko, Numerical Analysis

Committee members
Dr. Ir. D. den Ouden-van der Horst, Numerical Analysis
Drs. E. M. van Elderen, Mathematical Physics

Abstract

In this thesis we apply the numerical method of Morphological Geometric Active
Contours as proposed by Alvarez, Baumela and Marquez-Neila [3] to microscopic
images of plant cells. The goal is to find all plant cells in the images, and then to
find their cell walls. This is done in order to calculate certain properties of these
cells automatically, such as area, perimeter and ellipticity. As the name sug-
gests, mathematical morphology plays a big part in morphological GAC. This
thesis describes the theory behind morphological GAC, mathematical morphol-
ogy and the implementation in Python of the actual algorithm. We made two
adaptations compared to the original model. These are a change in the condi-
tions of the balloon force, and an extra step at the end of each iteration. The
change in the balloon force was made to keep edges stronger. The extra step was
added to improve smoothness of the contours, since the smoothing parameter
had no effect.

In dit verslag passen we de numerieke methode van morfologische Geometrische
Actieve Contours toe, zoals beschreven door Alvarez, Baumela en Marquez-
Neila [3], op microscopische afbeeldingen van plantencellen. Het doel is om alle
plantencellen te lokaliseren in de afbeeldingen en vervolgens om de celwanden te
vinden. Dit doen we om bepaalde eigenschappen van de cellen te achterhalen,
zoals oppervlak, omtrek en maximale diameter. Zoals de naam impliceert speelt
morfologie een belangrijke rol bij morfologische GAC. Dit verslag beschrijft de
theorie achter morfologische GAC, morfologie en de implementatie van het al-
goritme in Python. We hebben twee aanpassingen gemaakt aan het bestaande
algoritme. Dit zijn een extra stap aan het eind van elke iteratie en een ve-
randering van de ballonkracht stap. De ballonkracht is aangepast om randen
sterker te houden. De extra stap is toegevoegd om de gladheid van de contours
te verbeteren, aangezien de gladheidsparameter verhogen geen invloed had.

Contents

1 Introduction 1

2 Background 2

3 Mathematical morphology 5
3.1 Structuring element . 5
3.2 Dilation and erosion . 6
3.3 Opening and closing . 7
3.4 Grayscale morphology . 8

4 Morphological GAC 9
4.1 Attraction force . 10
4.2 Balloon force . 11
4.3 Smoothing force . 11

5 Implementation 12
5.1 Locating cell centres . 12
5.2 Function g(I) . 13
5.3 Determining threshold θ . 15
5.4 Determining contour from level set 17
5.5 Properties of cells . 17
5.6 Bigger images . 19

6 Adaptations 23
6.1 Balloon Force Term . 23
6.2 Extra step in each iteration . 23

7 Conclusions 27

8 References 29

A Python code 31

1 Introduction

The company HZPC is a global market leader in not only potato breeding,
but also seed potato trade and product development[1]. One of their focuses is
quality control and breeding research. They develop breeds of potato to match a
certain local environment as best as possible. To see how a certain type of potato
is growing, the tuber is sliced very thinly. Then the starch is rinsed out carefully,
and these extremely thin slices are placed under a microscope. This way, only
one layer of cells should be visible and can be studied extensively. Unfortunately,
the cells from different layers may overlap in some places. Decisions have to
be made with regard to the goal of the problem. Should every part of a cell
excluding overlap get its own contour, or do we want a contour to include all
overlapping parts?

These microscopic images have been provided to us
to research how the cells can be detected. No informa-
tion has been provided about the conditions in which the
tuber has been growing in order to remain unbiased. The
following properties are considered: number of cells per
image, area and perimeter of cells, ellipticity, isopara-
metric ratio and quotient, maximum diameter and its
direction.

An average picture contains 2000 to 4000 cells. Since this is too large of a
quantity to count by hand, this must be processed by a computer. The goal is
to automate retrieving all the previously mentioned parameters of the cells in
one microscopic image. The first step is to find out where the cells are located,
next to find their cell walls, and lastly to compute all previously mentioned
properties.

HZPC recently acquired a new microscope which can produce images with a
higher resolution. These images have an average size of 50 megabytes instead of
the previous 1.5 megabytes of the other images. The bigger images still contain
about 2000 to 3000 cells on average. These require some new techniques to
process, but should have less noise and more details in the cells.

In Section 2 we introduce geometric active contours, and after some theory
about mathematical morphology in Section 3, we show how this can be rewritten
into morphological GAC. Then we give some details about the implementation
of this algorithm and show results in Section 5. And lastly we describe the
adaptations that were made in Section 6 and our conclusions in Section 7.

1

2 Background

Humans find it very easy to not only detect objects in an image, but also to
identify these objects immediately. For a computer, this task is exceptionally
difficult. One method in image analysis that can be used to detect object
outlines, are active contours or snakes. These are two-dimensional contours that
are generated and moved by a computer algorithm. It is driven by minimizing
the energy functional:

Esnake = Einternal + Eexternal

Here, Einternal maintains the smoothness and continuity of the contour. Eexternal
is a function of the image, usually to highlight the interesting areas. This is of-
ten a Gaussian filter to smooth out noise, a gradient filter to highlight edges, or
a combination of the two.

The main focus of the paper by Alvarez, Bauma and Marquez-Neila [3] lies
on the derivation of a morphological version of the geometric active contour
framework using a level set implementation. We will show how the GAC for-
mulation is rewritten with morphological operations in the Subsections 4.1 to
4.3. But we will show the GAC framework using the level set method to begin
with.

The evolution of a contour using GAC with an added balloon force is de-
scribed by:

Ct = (g(I)K + g(I)ν −∇g(I) · N)N (1)

Here, C is a parameterisation of the contour over time:

C : R+ × [0, 1]→ R2 : (t, p)→ C(t, p).

And the evolution of this contour is given by Ct. The g(I) is a certain function
g applied to the image I and K is the Euclidean curvature of the contour. N is
the normal to the contour and ν is the balloon force parameter, which will be
explained in Section 2.

In general Ct can be written as Ct = L(C) with a differential operator L.
Every L can be written as a product of the normal to the contour and a scalar
field, F , which might depend on the contour and describes the speed of the
curve evolution. We can see that this is also true in our case with: F =
g(I)K + g(I)ν −∇g(I) · N .

We can rewrite this equation using the Osher-Sethian level set method [2].
Define a function u : R+ ×R2 → R which is 1 inside the contour and 0 outside,
so that it embeds C as its 1

2 level set. First we look at a simple example of F
equal to one or minus one. Then L is just the normal to the contour (or the
negative of this). This means that the contour moves with constant speed in the
direction of the normal to the contour. Using the level set method, this results
in the following PDE for the evolution of u:

∂u

∂t
= ±|∇u|. (2)

2

Another example is when F is the Euclidean cur-
vature of the contour. Then L is called the curvature
flow, which evolves any closed curves that do not in-
tersect into convex curves. Hence this can be seen
as a type of smoothing operation. Application of the
level set method to this equation leads to:

∂u

∂t
= div

(
∇u
|∇u|

)
|∇u| (3)

Equation (3) is called the mean curvature motion in general. With these results
we can begin to rewrite equation (1). The equation consists of three distinct
terms which will be discussed separately in the following Subsections.

Attraction force

The last term (∇g(I) · N)N in equation (1) represents the attraction force.
This is an external force which pulls the contour in the direction of interesting
parts of the image. Depending on the choice of g(I) we are able to select which
parts of an image we are interested in. It is known that when Ct is equal to
the normal, the level set method yields equation (2). The difference in this
equation, is that the normal is not multiplied by 1 or -1, but with ∇g(I) ·N . So
the evolution no longer moves with constant speed, but with a speed depending
on the gradient of g(I). ∇g(I) · N may no longer be a constant, but it is still a
scalar-valued function. Hence this term can be rewritten as: ∂u

∂t = ∇g(I) · ∇u.

Balloon force

The second term g(I)νN represents the balloon force [7]. Similarly to the
attraction force, we use equation (2) to rewrite it. ∂u

∂t = g(I)|∇u|ν. This
extra balloon force is added because sometimes the attraction force itself is not
strong enough to pull the contour in the right direction. Since a curve can only
evolve inward or outward, the balloon force has a parameter ν which determines
direction and strength of the balloon force.

Smoothing force

The first term g(I)KN represents the smoothing force. The smoothing force is
an internal force which maintains the smoothness and continuity of the contour.
Since we just showed how the g(I)N could be rewritten into g(I)|∇u| in Sec-
tion 2, all that is left is the Euclidean curvature. We saw in equation (3) that
the Euclidean curvature multiplied with the normal became the PDE (3) after
application of the level set method, we can use this result. Therefore the first

term g(I) KN becomes ∂u
∂t = g(I)|∇u| div

(
∇u
|∇u|

)
.

When we combine the last three results, we get an expression for the entire

3

equation:

∂u

∂t
= g(I)|∇u| div

(
∇u
|∇u|

)
+ g(I)|∇u|ν +∇g(I) · ∇u. (4)

A very useful property of the level-set implementation of GAC is that the con-
tours can split and merge when necessary. Now that we have a level set formu-
lation of the GAC, all that is left is to rewrite it into a morphological GAC. But
first, some theory about mathematical morphology.

4

3 Mathematical morphology

Mathematical morphology is an image analysis and processing technique in-
vented in 1964 [9]. It was originally developed for binary images, but has since
been extended to grayscale images and was even generalised to complete lattices.
All theory will be explained for binary images first, and then we will explain
the difference with grayscale morphology.

A binary image is a digital image which consists of only two different values,
usually ones and zeros. Because of this, a binary image can be represented as
a set. This fact is employed in mathematical morphology. A few concepts from
set theory are used in mathematical morphology: intersection (∩), union (∪)
and complements (Ac). And also concepts from topology and geometry such
as distance, size, convexity and connectivity. In the following Subsections, the
basics of mathematical morphology will be explained.

To begin, some terms and notation are introduced that will be used in the
following Sections. Since only binary digital images are considered, each pixel
is given a value of 1 or 0. Where a 1 means that a pixel is active, part of the
object, or in the foreground of an image. And conversely a 0 means that a pixel
is inactive, part of the background, or not part of the object. Active pixels are
displayed in white and inactive pixels in black.

3.1 Structuring element

The first ingredient needed for mathematical morphology, is a structuring ele-
ment. This is used as a type of probe to study a specific image and is nearly
always smaller than the image or object being studied. This structuring element
is adapted to fit the geometrical properties of an image. It is defined in terms
of a center pixel or anchor point and which pixels are considered to be in its
neighbourhood. Two of the most widely used structuring elements are depicted
in Figure 1.

Figure 1: Two neighbourhoods (green) [12].

The red pixels are the anchor points of these structuring elements. The
Von Neumann neighbourhood is defined as all pixels with distance 1 to the
red pixel using the Manhattan Metric: (|x1 − x2| + |y1 − y2|). And the Moore
neighbourhood is defined as all pixels with distance 1 using the Chebyshev
metric: max(|x1 − x2|, |y1 − y2|). The x1 and x2 represent the x-coordinates

5

of two different pixels and y1 and y2 the y-coordinates. Since we measure this
in entire pixels x and y can only take integer values, and the distances too.
The Moore neighbourhood is often referred to as 8-connected (N8) and the Von
Neumann as 4-connected (N4). These abbreviations will be used throughout
the rest of this thesis.

A third widely used structuring element is a circle with radius r around
a center pixel. In the binary case, a perfect circle is not possible, although
approximations can be used. But theoretically this circular structuring element
can be very useful as will be demonstrated in Section 4.

3.2 Dilation and erosion

Erosion of an object A with structuring element B in an image I is denoted
with 	 and defined as:

A	B = {z ∈ I|Bz ∈ A} =
⋂
b∈B

Ab (5)

Where Ab = {a+b|a ∈ A} or the translation of A by the vector b and Bz denotes
the translation of B by z. In the case of Bz this can be pictured as all pixels
in the neighbourhood of z when using B as structuring element. And Bz ∈ A
means that the entire translated Bz falls within A. So even when a single pixel of
Bz does not lie within A, this means that Bz /∈ A. A more intuitive explanation
is one where a structuring element is seen as the neighbourhood of a pixel. If a
pixel has any neighbours (including itself) that are not part of the object, it is
removed. Erosion of an object always leaves a smaller or equal object, since it
can only remove pixels and cannot add them. A morphological operation that
can add pixels is dilation.

Dilation of an object A with a structuring element B is denoted by A⊕B. It
does not matter in which order these elements are, since dilation is commutative
(A⊕B = B⊕A) and associative ((A⊕B)⊕C = A⊕ (B⊕C)). The definition
of binary dilation is as follows:

A⊕B = {z ∈ I|(B∗)z ∩A = ∅} =
⋃
b∈B

Ab

With B∗ = {z ∈ I| − z ∈ B} and Ab as defined above. If a structuring element
is again considered as a neighbourhood, dilation can simply be described as
follows. Any pixel that has a neighbour within the object, is added to the
object. It can easily be seen that erosion can only change the value of active
pixels and dilation only of inactive pixels. This is because the anchor pixels
themselves are also part of the structuring element. In the case of dilation
the operator checks whether any part of the structuring element is active, and
this is already true for the pixel itself and it will remain active. Simply put:
erosion can only deactivate pixels and dilation can only activate them. Dilation
is not the inverse operation to erosion, but they are each others’ dual operation
:A⊕B = (Ac	B∗)c. This is easily shown with an example of a five by five grid

6

with a single pixel in the middle in Figure 2. If it is dilated first, then all nine
middle pixels will become active. If an erosion is applied next, then precisely
those pixels that were just added will vanish, and only the original pixel is left.
But look at what happens if these operations are reversed. When the erosion
applied to a single pixel, it removes the pixel. And subsequent dilation of the
image will lead to the same empty image. If the operations were each others’
inverse, the original picture should have remained in the last window. What is
true is that dilation of the foreground is equal to erosion of the background of an
image and vice versa. This follows directly from the definitions of dilation and
erosion. Adding all neighbours of the foreground pixels (making them active) is
the same as removing all pixels from the background which have a neighbour in
the foreground. Because in binary images, removing a pixel from the background
is the same as adding it to the foreground.

Figure 2: Example of morphological operations

3.3 Opening and closing

Opening and closing are the next most important morphological operations.
They both consist of successive applications of dilation and erosion. Opening
and closing are defined as follows, where an opening is denoted by ◦ and a

7

closing by •.

A ◦B = (A	B)⊕B, (6)

A •B = (A⊕B)	B. (7)

Note that the structuring element is the same for the erosion as the dilation in
a single opening or closing. From these definitions, it is quickly visible what the
operations do. As the name implies, an opening can open up an object, remove
speckle noise, remove thin lines or small protrusions and disconnect objects.
Because the erosion is applied first, all single pixels are removed. When the
image is dilated, the speckle noise is gone, and not affected by the dilation. A
closing does exactly what its name suggests: It closes objects and it is the dual
operation to opening. Closing of an image can remove small holes from objects,
connect objects that are close together and also connect lines that are broken
up because of noise. When an object has a hole of a single pixel in it, dilation
will add this to the object. When erosion is applied, this once inactive pixel,
will now remain active because all its neighbours are. Opening and closing also
have a few things in common. One very important example is that they both
smooth the contour of an object. This fact will be used later in this paper in
Section 6. Both opening and closing can be applied more than once. Then an
opening consists of multiple erosions followed by the same amount of dilations,
and not n times one erosion followed by one dilation. Then larger noise than
speckle noise of single pixels can be removed by opening, and also larger holes
within objects can be filled by closing.

3.4 Grayscale morphology

In grayscale morphology, the main difference is that images are seen as functions
mapping a grid in R2 to the compactification of the real numbers R. The image
pixels can now have values of not only 1 and 0 but also every value in between.
The grayscale definitions of dilation and erosion when using a flat structuring
element are given below.

(a⊕ b)(x) = sup
z∈B∗

a(x− z),

(a	 b)(x) = inf
z∈B

a(x− z).

Where a denotes the image and b the structuring element. A structuring element
does not need to be flat. Weights can be added to certain pixels, but we will not
discuss this. One example of a flat structuring element is a circle with radius h,
the third structuring element mentioned in Section 3.1. The theory covered for
binary morphology holds for grayscale morphology. So opening and closing are
still defined as the application of successive dilations and erosions and do not
need to be defined again.

One interesting result in grayscale morphology, is that every morphological

8

operation T can be written as one of the following two sup-inf formulations:

(Tha)(x) = sup
B∈B

inf
y∈x+hB

a(y) (8)

(Tha)(x) = inf
B∈B

sup
y∈x+hB

a(y) (9)

Where B is not one structuring element, but a set of structuring elements and
h is a scalar. Dilation and erosion are a simple example, where the set of
structuring elements consists of only one.

4 Morphological GAC

With the theory covered in Sections 2 and 3 we can describe the change from
equation (4),

∂u

∂t
= g(I)|∇u| div

(
∇u
|∇u|

)
+ g(I)|∇u|ν +∇g(I)∇u,

to a morphological variant. One of the ideas employed to achieve this, is to find
the relationship between morphological operations and PDEs [6]. If we denote
a dilation of u with the circle of radius h around its center by Dhu. And an
erosion of u with the same structuring element by Ehu. It holds that:

lim
h→0+

Dhu− u
h

= |∇u|, (10)

lim
h→0+

Ehu− u
h

= −|∇u|. (11)

So if we keep dilating the level set u by this structuring element with very small
radius, it approximates the steady state solution of the PDE ∂u

∂t = |∇u|. And

the same goes for erosion, except that it approximates ∂u
∂t = −|∇u|. As we can

see, this term occurs multiple times in the PDE we want to rewrite in terms
of morphological operations. This is a very useful result, but there is still one

factor we need to rewrite, div
(
∇u
|∇u|

)
, also know as the curvature operator.

This is precisely what Alvarez, Baumela and Marquez-Neila introduced in their
paper [3]: The curvature morphological operator. This is an operator which
mimics the behaviour of the PDE:

∂u

∂t
= div

(
∇u
|∇u|

)
. (12)

They did not only derive this for the two-dimensional case, but also for the
n-dimensional case and they apply it to two- and three-dimensional images.

Catté, Dibos and Koepfler [5] developed a discrete scheme for mean curva-
ture motion also using morphology and proved that applying the mean oper-
ator F√h successively to u with h small is equivalent to the solution of (12).

9

Alvarez, Baumela and Marquez-Neila used this result and derived its morpho-
logical equivalent which consists of the composition of supremum and infimum
operations denoted by: SI ◦ IS using base B = {[−1, 1]θ ⊂ R2 : θ ∈ [0, π)}.
This gives us a morphological expression we can use to rewrite the PDE. In
practice u is discretised, and so the morphological operators must be discretised
too. This is achieved by using a discrete basis instead of B, consisting of the
following structuring elements: The discrete versions of dilation and erosion in

Figure 3: Structuring elements for discrete SI ◦ IS operator (yellow)

this PDE are achieved the same way. Instead of the circular base, the Moore
neighbourhood is used as structuring element. Now that we have everything we
need to rewrite the equation (4) into a morphological one, we will do so for each
term. For easier reading, here is the equation one last time:

∂u

∂t
= g(I)|∇u| div

(
∇u
|∇u|

)
+ g(I)|∇u|ν +∇g(I) · ∇u.

4.1 Attraction force

The attraction force term ∇g(I)∇u can be replaced very simply, since this is
almost discrete already. When the ∇g(I) · ∇u is positive, it adds to the level
set. And when it is negative, it takes pixels out of the level set. All that is left
is to discretise the gradients. We approximate this by a central difference and
denote the result by ∇d:

un+1(x) =

1 if ∇dun · ∇dg(I)(x) > 0

0 if ∇dun · ∇dg(I)(x) < 0

un+1 if ∇dun · ∇dg(I)(x) = 0

(13)

Here un+1 is the level set in the next iteration of the morphological GAC algo-
rithm. In each iteration, the result of the previous iteration is used. We also
need to select a g(I) for the algorithm. For us the edges of the cells are the
regions of interest. The image itself would pose a relatively good g(I), since its
values are low in cell walls (dark or black) and high in the centres of the cell
(bright or white). We decide to smooth the image with a Gaussian filter for
reasons which will be explained in Section 5.2.

10

4.2 Balloon force

The balloon force term g(I)ν|∇u| can be rewritten using the results in equations
(10) and (11). Binarization of the g(I)ν is handled similarly to the attraction
force:

un+1(x) =

(Dun)(x) if g(I)(x) > θ and ν > 0

(Eun)(x) if g(I)(x) > θ and ν < 0

un(x) otherwise

(14)

The balloon parameter’s strength no longer matters, since we take h to be very
small. Only the sign of ν is of importance now, as is visible in the rewritten
PDE.

4.3 Smoothing force

For the smoothing force, g(I) could be rewritten in the same way, but Alvarez,
Bauma and Marquez-Neila showed that this was unnecessary. Applying results
from the first part of Section 4 his leaves us with only the following binarization:

un+1(x) = ((SI ◦ IS)µun) (x). (15)

Here, the µ is a smoothness parameter: for larger values of µ, the contour be-
comes smoother. Note that µ should be an integer, since applying fractions of
morphological operations does not exist.

After combining results from each term, the complete morphological GAC al-
gorithm is given by:

un+
1
3 (x) =

(Dun)(x) if g(I)(x) > θ and ν > 0

(Eun)(x) if g(I)(x) > θ and ν < 0

un(x) otherwise

(16)

un+
2
3 (x) =

1 if ∇dun+

1
3 · ∇dg(I)(x) > 0

0 if ∇dun+
1
3 · ∇dg(I)(x) < 0

un+
1
3 if ∇dun+

1
3 · ∇dg(I)(x) = 0

(17)

un+1(x) =
(

(SI ◦ IS)µun+
2
3

)
(x) (18)

We denote intermediate results by un+
2
3 and un+

1
3 , but these are not a one third

iteration and two thirds iteration on their own. The iteration is only done when
the smoothing force is applied (18) and this is denoted by un+1.

11

5 Implementation

Using the derived algorithm (16), we implemented this level set evolution in
Python. The Python code can be found in Appendix A. The images used are
grayscale images of plant cells, specifically the cross-sections of potato tubers.
These are implemented as two-dimensional NumPy arrays filled with float values
ranging from 0 to 1, and so are the level sets but with values of only 0 and 1.
In every iteration, the different terms have to be applied instantaneously to all
pixels of the image. We therefore copy the original level set to store all new
calculated values. This is done three times in every iteration, once for each
term. A single iteration is defined in one function. This function is then used
in a different function which initializes the level set and starts the iterations.
Also, new functions were written for dilation and erosion, since the dilation
and erosion within Python work on an entire image. In the algorithm we need
to determine whether a certain statement is true before we decide to either
erode or dilate that specific pixel. We will discuss some specific parts of the
implementation in the Sections 5.1 to 5.6. All images used in these Sections are
of the smaller type, we will discuss the images made by the new microscope in
Section 5.6.

5.1 Locating cell centres

The very first thing we need to do, is locate all the cell centres. We use the
fact that the cell interiors have a light colour, and thus very high gray values.
And the cell walls are very dark, and have low gray values. We can use this
fact to find the cell centres, which are local maxima in terms of gray values.
However, these images have high amounts of detail and also noise, which leads
to more local maxima being found than there are cell centres. To solve this, first
a Gaussian filter is applied with standard deviation σ. For Gaussian filters with
very small σ, still too many maxima will be found. But when we increase the
value of σ, these details and noise are smoothed out and the amount of maxima
found decreases. Of course, this σ can also become too big and eventually only
one maximum will be found when the image is completely blurred. In Figure 4
the influence of σ with regard to the detection of cell centres is shown.

This Figure shows a range of σ from 2 to 30. The σ between 0 and 2 are not
shown, because these values are very high and would lead to details in the rest
of the curve not being visible. We can see that for small σ between 0 and 4, too
many cells are detected. And for a σ larger than 15, the amount of cells found
is approaching one. Because excessive smoothing will eventually lead to only
a single maximum in the entire image. What we are looking for, is precisely
in between. In the Figure there is a very noticeable bend in the curve around
σ equal to 5. And when we look at the amount of cell centres found, this is
very close to what we would expect. As mentioned in the Introduction, most
pictures have between 2000 and 4000 cells. From this bend in the curve, the
amount of cells found stops decreasing as fast. Another slightly less noticeable
bend occurs around a σ of 15. From this value, the decrease slows down even

12

Figure 4: Cell centres found for different σ.

more and far too little cell centres are found. So the σ we are looking for must
be somewhere between 5 and 15. When we look very closely at the curve for σ
between 10 and 15, we see that it is decreasing a little bit faster than below 10.
We also know that the amount of cell centres should lie above 2000, so values
from 10 to 15 for σ are also not the best choice. This leads us to the conclusion
that σ should have a value larger than 5 and smaller than 10. We decided on
a value of 7 for σ, since this corresponds to the expected value. Also, since the
level sets have the ability to merge, we would rather have a few cell centres too
many than too little.

5.2 Function g(I)

The goal of the g(I) function is that it highlights the interesting parts of the
images. This means that the values of g(I) should be low in the interesting
areas, since active contours are energy minimizing. When the algorithm was
derived, we wrote that a Gaussian filter was used for g(I). To show why this
was chosen, a few options have been plotted. In Figure 5 the original image is
plotted with three different Gaussian filters applied to it. We will describe in
Section 5.4 how the contours are extracted from level sets.

The only difference between the three Gaussian filters is which σ was used.
In Figure 6 it is shown to which contours each of these options leads after 20
iterations of the algorithm. This is more than enough iterations for the contours
to reach the cell walls and adapt according to influences of the cell walls. It is
immediately visible that using the image itself is a bad choice for g(I). The
contours are very sensitive to the noise in the image.

13

Figure 5: Different σ.

Figure 6: Contours for different σ

It is common to use some type of smoothing applied to the image for g(I) as
an edge detection. This smoothes out the unimportant noise and only leaves the
more notable properties in an image, in this case cell walls. The only downside
of using smoothing, is that the cell walls themselves become less sharp. We
can see in Figure 6 that the evolution is quite accurate. But the contours do
stop a few pixels before the actual walls are reached. Based on these results, we
selected a Gaussian filter with σ 3.

Another option mentioned in the paper by Alvarez, Baumela and Marquez-
Neila, uses not only a Gaussian filter, but also the gradient of the image. Using
gradients is the second most common option to detect edges. A gradient be-
comes very high when nearing a change in image or an edge, and is almost zero
on the edge itself. The function used is:

g(I) =
1√

1 + α|∇Gσ ∗ I|
.

Some examples of this function for different values of α are shown in image 7.
To be used in this application, the function is 1 divided by the gradient. This

means that values close to the edges are very small, and the edges themselves
have larger values and stay sharp. This sharpness is the reason that it is such
an attractive choice for g(I) Now the contour is attracted to values close to the
edges, but not to the edges themselves. Also, the value of α has to be relatively
big for these edges to be visible.

Again it is shown in Figure 8 to which contours these different varieties of
the g(I) lead for each value of α. It is obvious that this function is not a good

14

Figure 7: Different α.

Figure 8: Contours for different α.

choice in itself. Even for an α of 100, there are still some bulges in the contour
that we would not expect. And for any lower values, the edges are not strong
enough to keep each contour separate and they merge together. Another option
that was considered, was combining the previous two functions. However, this
always lead to the sharp edges of the second function being blurred by the
Gaussian. This was attempted for many different parameters but to no avail.
None of these options performed better than a Gaussian filter with σ of 3.

5.3 Determining threshold θ

Figure 9: Two Gaussian distributions and their sum (green)

We need to determine an appropriate threshold θ which splits an image into
cell walls and cell interiors. This is similar to extracting foreground and back-
ground from an image. And since extracting foreground objects from images

15

is an important problem, a lot of theory has been developed for it. The fore-
ground objects’ pixels are distributed as a Gaussian, as are the background’s
pixels, known as a mixture of Gaussians [10]. An example of pixel distributions
is depicted in Figure 9, as well as their sum. In a perfect image, this sum is what
the histogram of all occurring gray values would look like. It is not immediately
visible which Gaussian represents the foreground and which the background,
but this can easily be derived. The height of a peak represents the relative
amount of either foreground or background. And the location of the peak in
terms of gray value represent an average color of that object: either dark or
bright.

Figure 10: Histograms of 16 different images

In Figure 10 the histograms of sixteen of the smaller tuber cell images are
plotted. As we can see, this does appear to take the shape of a sum of two
Gaussians for each image. Some images have lower peaks, because they have
less pixels in total. We want to pick a threshold which will fit any image.
The contour will continue to grow until this threshold in reached, because of
the balloon force. Based on this image of randomly selected images, a value
somewhere between 0.5 and 0.7 could be a good fit. Because the balloon force
can be quite strong, we would rather choose a larger value to be safe. We
implemented this by calculating the histogram of an image and then looking
up when 40 percent of the gray values have been passed, starting from the left
hand side. The 40 percent boundary was taken from the paper by Alvarez,
Baumela and Marquez-Neila [3]. We experimented with many different θ, but
chosen values did not outperform the automatically calculated threshold.

16

5.4 Determining contour from level set

When the iterations are done, we are left with a level set whose edges determine
the contours. Multiple options are considered and we start out by determining
a single contour. The difficulty lies in the fact that sets are unordered and
the contour is only represented implicitly. One option that was considered, is
tracking which pixels are added in each iteration and always ordering them in
a given direction. Unfortunately, this did not work out. Partly because of the
amount of time and memory needed for this option. We would need to keep
a list for each of the pixels in any contour. And for every operation done, we
would need to figure out a way to always connect it to a unique origin pixel.
Eventually we decided on a different approach which is faster and takes up no
extra memory.

First, the unordered contour is extracted from the level set by eroding the
level set with a N4 structuring element and then calculating the difference with
the original. We then have a set of all pixels that are part of the contour in ran-
dom order. And as long as the contour is smooth, this gives us an 8-connected
contour. Then we start by picking a random pixel that is part of the contour and
go around it. This is done by finding both neighbouring pixels and then adding
one that has not been added yet. Since we know the contour is 8-connected
for sufficiently smooth contours, this should always work. Unfortunately, some
problems arose because the contour was not smooth enough. And when a con-
tour splits, or is about to split, the edge of the level set at that moment is also
not smooth. We made some adaptations to the model in order to solve this
problem. This will be further discussed in Section 6.2. The reason that this
method is preferable over the other option, is that we only need to do all these
calculations once instead of in each iteration. This will save us a lot of time
throughout the processing of the images.

5.5 Properties of cells

Using this implementation, it is very easy to determine certain properties of all
cells. For example, the area of cells in pixels can be calculated by adding up
all values in the level set. The level set consists of only ones and zeros, and
the area of a one by one square is also one. And determining the number of
cells can already be done after the initialisation described in Section 5.1. Once
we have extracted the contour using the method described above, we can easily
calculate the perimeter. In the function we designed to find the contour, we
also add all lengths together. When two pixel are connected directly, one is
added, and when they are connected by their corners, the square root of two is
added. This gives us a good approximation of the perimeter of a cell. When we
have the area and perimeter of a cell, the isoparametric ratio and quotient can
be determined using simple calculus. The maximum diameter and its direction
are only slightly harder to calculate. We write a loop to iterate over each two
elements in the contour and determine their Euclidean distance. When this
distance is larger than any distance previously found, it is updated. In this loop

17

we also keep track of the location the pixels with the biggest distance, so that we
can determine their angle with respect to the horizontal axis. This shows that
using the morphological GAC framework is definitely a solution to determine
all mentioned properties.

18

5.6 Bigger images

The new microscope from HZPC can make pictures with a higher resolution
than the other microscope. The images are then 50 megabytes, instead of the
usual 1.5 to 2. Before processing of these images, they are first resized to be 5
times smaller in each direction, thereby making it about the same size as the
other images. The values in the smaller image are calculated as the average of
gray values in each 5 by 5 block in the original image. This operation does not
only make the images smaller, but also smoother. Therefore we tried to use
the image itself as g(I), the result of this is shown for four different images in
Figure 11.

Figure 11: Four images using g(I) = I

These bigger images may be smoother, but the image itself is still not smooth
enough to pose as a good choice of g(I). Some other options were considered
for g(I), but none performed better than g(I) = I. We tried the option that

19

worked very well on the smaller images: a Gaussian with σ of 3. The result
of this is shown in Figure 12 in three different iterations. It is apparent that
the contours all flow out of their cells and merge together. After this, we tried
Gaussians with a smaller standard deviation, but the results were the same.

Figure 12: Four images using Gaussian with σ = 3 as g(I)

In Figure 13 it is shown what the histogram of 20 different high-resolution
images looks like. In some of the images, the gray value of the cell walls are
very light, and are indistinguishable from the larger peak for cell interiors. In
other images we can no longer distinguish where the cell wall peak is, because
it is too small. From inspecting the bigger images, we know this peak should be
around 0.2 to 0.3. We therefore choose to use a fixed threshold of 0.4 instead of
the one from Subsection 5.3.

Because the edges are simply too thin or lightly coloured to stop the contours,
even after preprocessing, we choose to use the original smaller images only. Even

20

Figure 13: Histogram of bigger pictures

21

though they are noisier, they have more significant details in them.

22

6 Adaptations

In this Section all adaptations that were made to the algorithm are discussed.

6.1 Balloon Force Term

The balloon force term should have been implemented as:

un+1(x) =

(Dun)(x) if g(I)(x) > θ and ν > 0

(Eun)(x) if g(I)(x) > θ and ν < 0

un(x) otherwise

,

but we decided to implement it as:

un+1(x) =

(Dun)(x) if g(I)(x) > θ

(Eun)(x) if g(I)(x) < θ

un(x) otherwise

, (19)

because the balloon force parameter ν no longer has a strength and only its sign
matters. The parameter was set to 1 when following the original algorithm,
and then the balloon force was very difficult to stop. Most contours flowed out
of their cell walls and merged with others. An example of this can be seen in
Figure 14. And the same evolution, but now with an adapted balloon force, can
be seen in Figure 15.

Figure 14: Original balloon force

6.2 Extra step in each iteration

In order to keep the contour smoother, some options were evaluated. The goal
was to keep the contour from flowing out of the cells which were damaged or had
a torn cell wall. In some cases the contour evolved very precisely around cell
walls in 180 degree turns and became a lot less smooth. And when the contour
does remain smooth, we can keep using the method described in Section 5.4 to

23

Figure 15: Adapted balloon force

determine contours.

The first and most logical option was to increase the smoothness parameter
µ and apply multiple successive SI ◦ IS operations in every iteration. The re-
sults are seen in Figure 16. What becomes very clear from these images, is that
extra operations did not have much effect on the overall smoothness.

Next, the addition of an extra
step to the algorithm was consid-
ered. It seemed that an opening
of the entire level set would be a
good candidate because of the qual-
ities discussed in Section 3.3. An
opening is not only a smoothing
operator, but also has the prop-
erty that it can remove small pro-
trusions. To test this, we first
applied it to the same picture as
seen in the image on the right.
To study the extra step in more
detail, we created a very simple
cell with only black and white val-
ues. In Figure 17a it is shown
what effect an opening with struc-
turing element N4 had on a con-
tour which was flowing out of the
cell.

This extra step does partly improve the smoothness, but did not stop the
contour from flowing outward. In the next picture 17b it is depicted what an
added opening step resulted in, only now with an N8 structuring element. It not
only smooths the contour, but also stops the contours from moving outside of

24

Figure 16: Contour for different µ.

25

(a) N4 (b) N8

Figure 17: Previous contours (blue) compared to new contours (orange)

Figure 18: The original contours compared to the new ones.

the cells. On a simplified picture with very thick cell walls, this extra operation
has precisely the desired effect.

As far as we tested this on actual cell images, the operation behaved as we
wanted it to. We show an example of this adapted algorithm on multiple cells
in Figure 18. We have chosen this example to be as non-smooth as possible on
purpose to highlight the function of the added step. The original image is an
example of choosing g(I) to be equal to the image itself. As we described in
Section 5.2 this is a bad choice of g(I), because the contours are very sensitive
to noise. However, we also see that the extra step can prevent almost all of
the excessive merging. In the original image there are dozens of tiny contours
around each noisy pixel which we do not want. Whereas in the new image, we
can count the amount of tiny and wrong contours on one hand. This makes it
very probable that the extra step can be a good adaptation to the algorithm.
But of course there is no guarantee for the behaviour of this operation on every
image we may encounter. It was not part of the original algorithm and has only
been tested on our images of plant cells.

26

7 Conclusions

Our goal was to use the method of morphological geometric active contours to
detect cells in microscopic images. The objects studied are the cells in cross-
sections of potato tubers. These images were provided to us by the company
HZPC to determine certain properties of the cells. We succeeded in implement-
ing morphological GAC and were able to determine these properties quite easily
as described in Section 5.5. It was shown that this method produces good results
in Section 5.

Locating cell centres using Gaussian smoothing and local maxima detection
proved to be a fast and efficient solution. The function g(I) from the morpho-
logical GAC is a very important factor in the algorithm and determines almost
entirely how well the contour evolves. As discussed in Section 5.2, for this spe-
cific application choosing a Gaussian with small σ was optimal. Using any type
of gradient filter for detection of cell walls performed poorly compared to the
Gaussian filter. More research could be done into designing a new function for
the detection of cell walls. The sharpness of the edges of the gradient based g(I)
has some very attractive properties and could potentially be employed more ef-
fectively. We did not look into functions that were neither based on Gaussian
nor on gradient filters, because these are the most conventional options. Per-
haps there is a more suitable, more unconventional function that could be used
or designed.

Determining a contour from an implicit representation proved to be fairly
difficult. Our solution to this problem only works in certain cases. When a
contour intersects or is simply not smooth, this solution fails. But in cases where
the contour remains simple and smooth, it performed well. This smoothness
should be preserved because of the smoothness step in every iteration. But
even after increasing the parameter µ, we did not observe any change in the
smoothness of the contours or in fact any change at all.

For this reason, we decided to adapt the existing algorithm. We added an
extra step to be performed at the end of each iteration. This step consists of
a single opening operation applied to the entire image. We showed that this
performed better than the original algorithm in specific problem cases. These
include ruptured cell walls and unexpected non-smooth contours. However,
there is no mathematical basis for this addition. So adding this step might
have unexpected consequences. Therefore, any contours produced using this
new method must always be compared to the original method. More research
should be done into the addition of this extra morphological operation.

An advantage, but possibly also a disadvantage, of morphological GAC is
the ability to merge and split contours. We saw in Section 5.6 that the higher-
resolution images behaved very differently and got worse results than the original
ones. This is the opposite of what we expected. In the introduction we noted
that these images should have less noise and are generally smoother. We would
expect this to result in better edge detection. Unfortunately, the cell walls were
too thin or too light to be detected by the algorithm and any type of smoothing
only made them harder to detect. Perhaps more research could be done into

27

choosing better parameters for specifically the high-resolution images made by
the new microscope.

The method of morphological GAC proved useful in the images with well
defined cell walls. Some problems arose for broken cells, because the original
algorithm did not keep the contour smooth enough. We therefore introduced
an extra step to be executed at the end of each iteration. The first option with
an N4 structuring element opening hardly had any impact, but the opening
with an N8 structuring element did. Even when the cells had tears in them,
the additional step could handle this. The adaptations made to the algorithm
were necessary and provided good results. The change in implementation of the
balloon force described in Section 2 was very natural. It also helped to stop
the contours from flowing out of their designated cells. Again this outflow was
partly a result of the contours’ ability to merge. This merging and splitting
of the contours can be useful in certain applications. For us this proved to be
both a difficulty, but also an advantage. Keeping the contours smooth enough
required some extra work, but the sensitivity we gained turned out to be very
useful.

All in all there are many factors which influence the evolution of the morpho-
logical GAC. It can be concluded that this algorithm is very sensitive to each
parameter. Not only the threshold θ, but especially the g(I) function appeared
to have a big impact on the contour evolution. A poor choice of g(I) imme-
diately resulted in contours either overlapping or never reaching the cell walls.
And unexpectedly, the balloon parameter ν and smoothing force parameter µ
appeared to have little to no influence at all. These results need to be consid-
ered carefully when applying morphological GAC and especially the choice of
parameters such as g(I) and θ.

28

8 References

[1] Retrieved 13-06-2018 from https://www.hzpc.com/.

[2] Osher, S., & Sethian, J. A. (1988). Fronts propagating with
curvature-dependent speed. Journal of Computational Physics, 79(1).
doi:10.1016/0021-9991(88)90002-2

[3] Marquez-Neila, P., Baumela, L., & Alvarez, L. (2014). A Morpholog-
ical Approach to Curvature-Based Evolution of Curves and Surfaces.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(1).
doi:10.1109/tpami.2013.106a

[4] Chenyang, X., Yezzi, A., & Prince, J. (2000). On the relationship be-
tween parametric and geometric active contours. Conference Record of the
Thirty-Fourth Asilomar Conference on Signals, Systems and Computers
(Cat. No.00CH37154). doi:10.1109/acssc.2000.911003

[5] Catte, F., Dibos, F., & Koepfler, G. (1994). A morphological scheme for
mean curvature motion and applications to anisotropic diffusion and mo-
tion of level sets. Proceedings of 1st International Conference on Image
Processing. doi:10.1109/icip.1994.413268

[6] Alvarez, L., Guichard, F., Lions, P., & Morel, J. (1993). Axioms and fun-
damental equations of image processing. Archive for Rational Mechanics
and Analysis, 123(3), 199-257. doi:10.1007/bf00375127

[7] Cohen, L. D. (1991). On active contour models and balloons. CVGIP: Im-
age Understanding, 53(2). doi:10.1016/1049-9660(91)90028-n

[8] Sternberg, S. R. (1986). Grayscale morphology. Computer Vision,
Graphics, and Image Processing, 35(3). 333-355. doi:10.1016/0734-
189x(86)90004-6

[9] Matherson, G., & Serra, J. The Birth of Mathematical Morphology. Re-
trieved from http://cmm.ensmp.fr/~serra/pdf/birth_of_mm.pdf

[10] Kulkarni, M. (2010). Histogram-based foreground object extraction
for indoor and outdoor scenes. Proceedings of the Seventh Indian
Conference on Computer Vision, Graphics and Image Processing.
doi:10.1145/1924559.1924579

[11] Figure in introduction was taken from: https://porcelainfacespa.com/
blog/quick-fix-it/

[12] Retrieved from https://www.quora.com/What-is-neighbors-of-a-pixel

[13] Alvarez, L., Baumela, L., Mrquez-Neila, P., & Henrquez, P. (2012). A
Real Time Morphological Snakes Algorithm. Image Processing On Line, 2.
doi:10.5201/ipol.2012.abmh-rtmsa

29

[14] Caselles, V., Kimmel, R., & Sapiro, G. (1995). Geodesic active con-
tours. Proceedings of IEEE International Conference on Computer Vision.
doi:10.1109/iccv.1995.466871

[15] Alvarez, L., Baumela, L., Henriquez, P., & Marquez-Neila, P. (2010). Mor-
phological snakes. IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition. doi:10.1109/cvpr.2010.5539900

[16] Sapiro, G. (2001). Geometric Partial Differential Equations and Image
Analysis. doi:10.1017/cbo9780511626319

[17] Morphological Image Processing. (2013). Retrieved from
https://www.slideshare.net/Johnrebel999/morphological-image-

processing-22899372

[18] Mathematical morphology - Encyclopedia of Mathematics. Retrieved from
https://www.encyclopediaofmath.org/index.php/Mathematical_

morphology

[19] Image on title page was retrieved from
https://www.med.muni.cz/biofyz/Image/analyza.html

30

A Python code

from scipy import ndimage

import matplotlib.pyplot as plt

import numpy as np

from skimage import io , color , feature , transform

import copy

from skimage import morphology as m

Some often used structures to reduce runtime

struct = np.ones((3,3)).astype(dtype=int)

structure = np.zeros((21,21)).astype(dtype=int)

structure[10][10] = 1

for i in range(7):

structure = m.binary_dilation(structure)

##

def ready_image(name):

""" Load image , convert to b&w and return it."""

res = io.imread(str(name)+".jpg")

res = color.rgb2gray(res)

return res

def ready_image2(name):

""" Same as ready_image , but makes image 5 times smaller."""

img = io.imread(str(name)+".jpg")

img = color.rgb2gray(img)

res = transform.rescale(img ,1/5,anti_aliasing = False)

return res

def levelset_initial(image ,sigma):

""" Finds cell centres given an image and sigma and initialises

level set."""

gaus = ndimage.gaussian_filter(image , sigma)

points = feature.peak_local_max(gaus)

level_set = np.zeros([len(image),len(image[0])])

for elt in points:

level_set[elt[0]][elt[1]] = 1

return m.binary_dilation(level_set ,structure).astype(dtype =

int)

def dilatie(u,row ,col):

""" Dilation of a single pixel without changing u, only

determines new value."""

if u[row][col]:

return 1

else:

if row > 0:

if u[row-1][col]:

return 1

if col > 0:

if u[row-1][col-1]:

return 1

if col < u.shape[1]-1:

if u[row-1][col+1]:

return 1

31

if row < u.shape[0]-1:

if u[row+1][col]:

return 1

if col > 0:

if u[row+1][col-1]:

return 1

if col < u.shape[1]-1:

if u[row+1][col+1]:

return 1

if col > 0:

if u[row][col-1]:

return 1

if col < u.shape[1]-1:

if u[row][col+1]:

return 1

return 0

def erosie(u,row ,col):

""" Erosion of a single pixel without changing u, only

determines new value."""

if not u[row][col]:

return 0

else:

if row != 0:

if not u[row-1][col]:

return 0

if col != 0:

if not u[row-1][col-1]:

return 0

if col != u.shape[1]-1:

if not u[row-1][col+1]:

return 0

if row != u.shape[0]-1:

if not u[row+1][col]:

return 0

if col != 0:

if not u[row+1][col-1]:

return 0

if col != u.shape[1]-1:

if not u[row+1][col+1]:

return 0

if col != 0:

if not u[row][col-1]:

return 0

if col != u.shape[1]-1:

if not u[row][col+1]:

return 0

return 1

def central(field , row , col):

""" Calculate central difference of first derivative , one -sided

difference \

on edges of image. Then returns it as a numpy array. """

if row == 0:

dy = field[row][col] - field[row+1][col]

32

elif row == field.shape[0] - 1:

dy = field[row-1][col] - field[row][col]

else:

dy = (field[row-1][col] - field[row+1][col])/2.

if col == 0:

dx = field[row][col+1] - field[row][col]

elif col == field.shape[1] - 1:

dx = field[row][col] - field[row][col-1]

else:

dx = (field[row][col+1] - field[row][col-1])/2.

return np.array([dx,dy])

def SI1(u,row ,col ,mid):

""" SI operator on a single pixel."""

if u[row][col] == 0:

return 0

if row == 0 or row == u.shape[0]-1 or col == 0 or col == u.

shape[1]-1:

return mid

else:

if u[row][col+1] and u[row][col-1] and mid:

return 1

if u[row+1][col+1] and u[row-1][col-1] and mid:

return 1

if u[row+1][col] and u[row-1][col] and mid:

return 1

if u[row-1][col+1] and u[row+1][col-1] and mid:

return 1

return 0

def IS1(u,row ,col ,mid):

""" IS operator on a single pixel."""

if u[row][col]:

return 1

if row == 0 or row == u.shape[0]-1 or col == 0 or col == u.

shape[1]-1:

return mid

else:

if u[row][col+1] == 0 and u[row][col-1] == 0 and mid == 0:

return 0

if u[row+1][col+1] == 0 and u[row-1][col-1] == 0 and mid ==

0:

return 0

if u[row+1][col] == 0 and u[row-1][col] == 0 and mid == 0:

return 0

if not u[row-1][col+1] and not u[row+1][col-1] and not mid:

return 0

return 1

def find_contour(level_set):

""" Finds contours given level set using morphological

operations , \

return coordinates ."""

eroded = ndimage.binary_erosion(level_set).astype(dtype = int)

difference = level_set - eroded

coords = np.where(difference == 1)

return coords

33

def plot_contour_8(f):

""" Orders given sets of coordinates so that a contour can be

plotted. \

Only works on a single contour. Also returns length of

contour. Assumes\

contour is 8-connected."""

x0 = f[1][0]

y0 = f[0][0]

xarray = np.array([x0])

yarray = np.array([y0])

lengte = 0

while len(xarray) != len(f[0]):

if not set(np.where(f[1]==x0)[0]).isdisjoint(set(np.where(f

[0]==y0+1)[0]))\

and set(np.where(xarray==x0)[0]).isdisjoint(set(np.where

(yarray==y0+1)[0])):

#and x0 not in xarray and y0+1 not in yarray:

xarray = np.append(xarray ,x0)

yarray = np.append(yarray ,y0+1)

y0 = y0+1

lengte += 1

elif not set(np.where(f[1]==x0)[0]).isdisjoint(set(np.where

(f[0]==y0-1)[0]))\

and set(np.where(xarray==x0)[0]).isdisjoint(set(np.

where(yarray==y0-1)[

0])):

#and x0 not in xarray and y0 -1 not in yarray:

xarray = np.append(xarray ,x0)

yarray = np.append(yarray ,y0-1)

y0=y0-1

lengte += 1

elif not set(np.where(f[1]==x0+1)[0]).isdisjoint(set(np.

where(f[0]==y0)[0]))\

and set(np.where(xarray==x0+1)[0]).isdisjoint(set(np.

where(yarray==y0)[0]

)):

#and x0+1 not in xarray and y0 not in yarray:

xarray = np.append(xarray ,x0+1)

yarray = np.append(yarray ,y0)

x0=x0+1

lengte += 1

elif not set(np.where(f[1]==x0-1)[0]).isdisjoint(set(np.

where(f[0]==y0)[0]))\

and set(np.where(xarray==x0-1)[0]).isdisjoint(set(np.

where(yarray==y0)[0]

)):

#and y0 not in xarray and x0 -1 not in yarray:

xarray = np.append(xarray ,x0-1)

yarray = np.append(yarray ,y0)

x0=x0-1

lengte += 1

elif not set(np.where(f[1]==x0-1)[0]).isdisjoint(set(np.

where(f[0]==y0-1)[0]))\

and set(np.where(xarray==x0-1)[0]).isdisjoint(set(np.

where(yarray==y0-1)[

34

0])):

#and y0 not in xarray and x0 -1 not in yarray:

xarray = np.append(xarray ,x0-1)

yarray = np.append(yarray ,y0-1)

x0=x0-1

y0=y0-1

lengte += np.sqrt(2)

elif not set(np.where(f[1]==x0-1)[0]).isdisjoint(set(np.

where(f[0]==y0+1)[0]))\

and set(np.where(xarray==x0-1)[0]).isdisjoint(set(np.

where(yarray==y0+1)[

0])):

#and y0 not in xarray and x0 -1 not in yarray:

xarray = np.append(xarray ,x0-1)

yarray = np.append(yarray ,y0+1)

x0=x0-1

y0=y0+1

lengte += np.sqrt(2)

elif not set(np.where(f[1]==x0+1)[0]).isdisjoint(set(np.

where(f[0]==y0+1)[0]))\

and set(np.where(xarray==x0+1)[0]).isdisjoint(set(np.

where(yarray==y0+1)[

0])):

#and y0 not in xarray and x0 -1 not in yarray:

xarray = np.append(xarray ,x0+1)

yarray = np.append(yarray ,y0+1)

x0=x0+1

y0=y0+1

lengte += np.sqrt(2)

elif not set(np.where(f[1]==x0+1)[0]).isdisjoint(set(np.

where(f[0]==y0-1)[0]))\

and set(np.where(xarray==x0+1)[0]).isdisjoint(set(np.

where(yarray==y0-1)[

0])):

#and y0 not in xarray and x0 -1 not in yarray:

xarray = np.append(xarray ,x0+1)

yarray = np.append(yarray ,y0-1)

x0=x0+1

y0=y0-1

lengte += np.sqrt(2)

else:

print("Geen buur")

xarray = np.append(xarray ,f[1][0])

yarray = np.append(yarray ,f[0][0])

return xarray ,yarray ,lengte

def balloon(level_set ,info ,row ,col ,threshold):

""" Returns result of balloon operator on a single pixel , \

does not change level_set."""

if info[row][col] > threshold:

return dilatie(level_set ,row ,col)

elif info[row][col] < threshold:

return erosie(level_set ,row ,col)

else:

return level_set[row][col]

def attraction(level_set , gI, row , col):

35

""" Returns result of attraction operator on a single pixel , \

does not change level_set."""

var = np.dot(central(level_set ,row ,col),gI[row][col])

if var > 0:

return 1

elif var < 0:

return 0

else:

return level_set[row][col]

def evolve(u,gI,deriv ,t):

""" Computes one iteration of evolution algorithm on entire

image \

with u level set , and deriv contains central differences in

each pixel , \

and t is threshold for balloon force."""

u_b = u.copy()

for row in range(u.shape[0]):

for col in range(u.shape[1]):

u_b[row][col] = balloon(u,gI,row ,col ,t)

u_a = u_b.copy()

for row in range(u.shape[0]):

for col in range(u.shape[1]):

u_a[row][col] = attraction(u_b ,deriv ,row ,col)

u_b = u_a.copy()

for row in range(u.shape[0]):

for col in range(u.shape[1]):

val = IS1(u_a ,row ,col ,u_a[row][col])

u_b[row][col] = SI1(u_a ,row ,col ,val)

#Optional fourth step:

#u_b = m. binary_opening (u_b ,struct).astype(dtype=int)

return u_b

def run(image ,gI,steps):

""" Calculates steps*4 iterations of morphGAC of image using gI

as g(I). \

Returns result after each _steps_ steps."""

Determine threshold for balloon force.

hist ,bins = np.histogram(image ,bins = 100)

num = 0

j = 0

grootte = (image.shape[0]*image.shape[1])

while num < 0.4:

num += hist[j]/grootte

j += 1

t = bins[j]

Calculate central differences in each pixel.

diffs = np.zeros((image.shape[0],image.shape[1],2))

for x in range(image.shape[0]):

for y in range(image.shape[1]):

gradi = central(gI,x,y)

diffs[x][y] = gradi

36

h1 = levelset_initial(image ,7)

for i in range(steps):

h1 = evolve(h1,gI ,diffs ,t)

h2 = h1.copy()

for i in range(steps):

h2 = evolve(h2,gI ,diffs ,t)

h3 = h2.copy()

for i in range(steps):

h3 = evolve(h3,gI ,diffs ,t)

h4 = h3.copy()

for i in range(steps):

h4 = evolve(h4,gI ,diffs ,t)

return h1,h2,h3 ,h4

if __name__ == "__main__":

Insert name of image in place of "HERE" without .jpg (should

be jpg type)

Select part of image (row1 < row2 and col1 < col2).

image = ready_image (" HERE ")[row1:row2][col1:col2]

It is advised to use a maximum of a 200x200 size part of an

image.

An example is given below for an image stored under "image1.

jpg ".

image = ready_image("image11")[700:800 ,1050:1150]

gI = ndimage.gaussian_filter(image , 3)

steps = 3

h1,h2,h3 ,h4 = run(image ,gI,steps)

g1 = find_contour(h1)

g2 = find_contour(h2)

g3 = find_contour(h3)

g4 = find_contour(h4)

plt.subplot(221)

plt.axis("off")

plt.imshow(image , cmap = ’gray’)

plt.plot(g1[1],g1[0],".")

#Optional to plot initial contours

#plt.plot(r[1],r[0] ,".")

plt.title("After "+str(steps)+" iterations")

plt.subplot(222)

plt.axis("off")

plt.imshow(image ,cmap = "gray")

plt.plot(g2[1],g2[0],".")

plt.title("After "+str(2*steps)+" iterations")

plt.subplot(223)

plt.axis("off")

plt.imshow(image ,cmap = "gray")

plt.plot(g3[1],g3[0],".")

plt.title("After "+str(3*steps)+" iterations")

plt.subplot(224)

plt.axis("off")

plt.imshow(image ,cmap = "gray")

37

plt.plot(g4[1],g4[0],".")

plt.title("After "+str(4*steps)+" iterations")

#Optional: save figure.

#plt.savefig (" name.jpg ")

plt.show()

38

