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Abstract

This paper introduces two models. First, it introduces a model for geometric pressure loss in horizontal
pipe junctions with arbitrary amounts of in-/outlets, under assumption of steady-state, incompressible,
single phase flow and no wall friction. The model is shown to be in agreement with experimental data
via another model.

Second, the junction model is incorporated in a pipe flow network model under the same assumptions
as the junction model. The resulting pipe flow network model is compared to a pipe flow network model
in which pressure loss due to junctions is neglected. The results show that for long pipes L � 600
m the addition of junction pressure has negligible influence on the total static pressure drop in the
network. However, for L < 600 m the influence is bigger than 10%.



1 Introduction

Between 1983 and 2013 the oil consumption worldwide has increased by 44%, which resulted in a total
oil consumption of 4.5 · 109 liter oil per day[1]. The distribution of these huge amounts of oil is done
by vast pipe flow networks, large networks of pipes used for distribution of fluids between different
points of interest. Other examples of flow networks are the water distribution network in a city, the
gas distribution system in a car or the networks used for transport of chemicals in factories.

The development and construction of such a pipe flow network is a very time consuming and costly
endeavor. Therefore it is paramount to be able to calculate critical properties, such as mass flow rates
through pipes and static pressures at nodes in the pipe flow network, beforehand. To calculate these
properties mathematical models have been developed. These models find their origin in underlying
physical principles such as the laws of fluid dynamics.

In 1936 Hardy Cross published his article “Analysis of Flow in Networks of Conduits or Conductors”
in which he describes an at that point revolutionary method for solving pipe flow networks[7]. The
method is based on the two observations that both the sum of the mass flow through a node, for an
incompressible fluid, and the sum of pressure difference along a loop amount to zero. Furthermore it
assumes that all ingoing and outgoing characteristics are known, and then it uses the linearization of
the Darcy-Weisbach equation1 to iteratively solve for the internal characteristics. Though this method
was first developed in the pre-computer era, due to its iterative nature the method was well suited
for a computer implementation. In 1957, Hoag and Weinberg implemented an adapted version of the
Hardy Cross method in a computer application and applied it to the water distribution network of the
city Palo Alto, California[12].

The limitations of the Hardy Cross method, such as slow convergence and the limitation to closed loop
systems, ignited the spark to research algorithms which were better suited for large networks. In 1963,
Martin and Peters were the first researchers ensuing the present day form of pipe flow network analysis
algorithms, namely producing a system of equations which characterize the network and solving that
system of equations using Newton-Rhapson or some other root finding algorithm[12].

One of the returning aspects in most, if not all, of the pipe flow network models published up until
now is the assumption that pressure differences at the nodes due to geometric effects of the junctions
are negligible. Now if the pipes in the network are long enough this is undoubtedly true as the pressure
differences due to the long pipes will dominate the characteristics of the network. But what happens
in a network with short pipes, and at what pipe length will the influences of the junctions play a
significant role in a network? In this paper a model is derived to determine the static pressure loss
as a result of fluid flowing through a junction. This junction pressure loss model is constructed in
such a way that it can be used in a pipe flow network model, such that the mass flow rate and the
static pressure distribution of a pipe flow network may be calculated without neglecting the junction
pressure loss. Points of special interest concerning the resulting pipe flow network model are the
increase in numerical complexity, increment of accuracy of the model, in what situations the model is
more accurate than the current model and the difference in information needed for both models.

Because the flow direction of the inner pipes of a network are, in most cases, not directly evident, the
junction model has to be flow-direction independent. More specifically the model should still work
even if the direction of flow in all branches of the junction are chosen at random, provided that the
mass continuity equation2 is satisfied. Furthermore, the model should not influence the well-posedness,
in the sense of Hadamard, of the pipe flow network model. To keep the model as general as possible it

1The Darcy-Weisbach equation is a phenomenological equation relating the pressure drop over a pipe containing
flowing fluid to the characteristics of the pipe such as length, friction factor and diameter.

2The mass continuity equation simply states that for incompressible flow the mass in a certain volume should always
be constant. Thus there should be equal inflow as outflow.

1



should be valid for arbitrary cross sectional areas and for subsonic laminar- and turbulent flow. The
model shall furthermore assume a steady-state situation with an incompressible single-phase fluid.

The subsequent chapter gives an introduction into pipe flow networks with a general description of
such networks and the model which is currently used to solve pipe flow networks. The second chapter
elaborates on junctions, with emphasis on finding a general pressure loss model and the derived model
is compared to experimental data via an existing model. In the third chapter the general pressure
loss model is incorporated in a pipe flow network model, and some characteristics of this model are
derived. Thereafter, an implementation of the pipe flow network model with the general pressure loss
model is presented in python. And lastly, the newly derived model is compared to a pipe flow network
model neglecting pressure loss due to junctions, and some recommendations for a follow-up study are
conferred.
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2 Introduction to pipe flow networks

This section gives an introduction to pipe flow networks with first a short general description, and
after that a mathematical description of such networks. The section continues with the introduction of
two laws of fluid mechanics, mass continuity and the Darcy-Weisbach equation. The Darcy-Weisbach
equation is derived merely to introduce the reader to the general approach of derivations in fluid
mechanics. Lastly the physical laws will be used to derive a simple model to solve pipe flow networks.

But first a short description. Pipe flow networks range from simple systems, such as a watering system
of a garden, to vast complex networks, such as the water distribution network of a city. In our case a
pipe flow network is a network of pipes interconnected by junctions and filled with an incompressible
fluid. A pipe flow network can have points of external inflow as well as points of external outflow. The
aim of this text is to derive a method to calculate the mass flow and static pressure distribution of any
arbitrary network given a set of boundary conditions, which could be either ingoing or outgoing mass
flow rates, predefined static pressures or combinations of the two. To be able to calculate characteristics
of such networks a mathematical analysis of the problem is needed.

2.1 Mathematical description

To allow for mathematical analysis of a pipe flow network, it is convenient to represent the network in
a more abstract mathematical form. A convenient form for any network is a mathematical graph, as
it already contains the characteristics of a network. However because the flow through the pipes of a
network have a direction a directed graph is needed. Therefore consider a directed graph G = (V,E)
where the nodes i ∈ V represent junctions, points where two or more pipes are joined together, and
points of external in-/outflow, where mass flow is added or removed from the network. The arrows of
the graph (i, j) ∈ E depict the pipes of the network, where the direction of the arrow may be arbitrarily
chosen. It is very important to note that the direction of the edge does not correlate in any way with
the direction of the flow through the pipe it represents. This can be formally summarised as

Definition 2.1: Graph representation of a pipe flow network

A pipe flow network can be represented as directed graph G = (V,E), where the nodes i ∈ V
represent the junctions or external in-/outflows and arrows (i, j) ∈ E represent the pipes.

Now to fully describe a network using the graph representation, it has to account for the geometric
characteristics of the network. As a graph, per definition, has no geometrical properties, the properties
have to be added externally. Therefore we have to define the cross sectional area, Ai,j ∈ R, and length,
Li,j ∈ R, for each pipe (i, j) ∈ E. As the angles between the branches of a junction do not play any
role in this section, they are left unconsidered for the moment. Therefore formally the network can be
described by defining

Ai,j := The cross sectional area of pipe (i, j) in
[
m2
]

∀(i, j) ∈ E (2.1)

and
Li,j := The length of pipe (i, j) in [m] ∀(i, j) ∈ E. (2.2)

Do note however that to get a graph which fully describes the network, the angles between pipes as
well as many more characteristics should be accounted for.

As previously stated the main objective is to describe the flow through the network. To that end
characteristics of the flow have to be defined on the graph representation of the network. Firstly, the
characteristics of the fluid flowing through the network, such as the density ρ and the dynamic viscosity
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µ have to be defined3. In addition, variables describing the flow itself have to be incorporated. Two
important quantities concerning the flow through a network are mass flow rate, ṁ, and static pressure,
P . As we will later discover due to the assumptions we make in this text ṁ is constant throughout a
pipe, therefore it is convenient to define it as a variable on the pipes of the graph. Which can formally
be defined as

ṁi,j :=

The mass flow rate through pipe (i, j) in
[
kg
s

]
which is positive if the

fluid flows from i to j and negative if the fluid flows in the opposite
direction.

 ∀(i, j) ∈ E

(2.3)

However, static pressure can vary throughout the pipe and is only constant in a point of of the network.
As we, for now, take nodes to be infinitisimally small points, it is convenient to define static pressure
as a variable on the nodes of the graph. Which can formally be defined as

Pi := The static pressure at node i in

[
kg

m · s2

]
∀i ∈ V (2.4)

Lastly we must not forget external in-/outflow, otherwise there would be no flow at all4. To incorporate
this in the description external in-/outflow variables, s, are defined on the nodes5. Formally defined
by

si := The fluid in-/outflow to the whole system at node i in

[
kg

s

]
∀i ∈ V (2.5)

Now, if all these distributions were known our mathematical description of the pipe flow network would
be finalized. But in most real-life scenarios not all distributions consist of solely known variables, they
can be a combination of both known and unknown variables. If this is the case we speak of a partial
distribution, which only consists of numerical values for the known variables and maintains symbolic
variables for unknown quantities.

To better illustrate this subsection example 2.1 drafts a mathematical description for a network of
three pipes connected to a junction.

3We assume incompressible fluid in this text and therefore these fluid characteristics are constant throughout a
network.

4Note that pumps are not considered in this text, and therefore friction would make the steady-state the trivial one.
5Note that one could simply introduce a node to create an in-/outlet and therefore this does not narrow the applica-

bility of the description.
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Example 2.1: Three pipe junction

Consider the pipe flow network in figure 2.1 filled with water at 25◦C which implies density
997.08 kg

m3 and dynamic viscosity 9.00 · 10−4 Pa s.[9]

500 kg
s200 kg

s

1 · 105 Pa

2 m2

1 m21 m2

100 m

400 m

100 m

1 2

3

4

Figure 2.1: Schematic and graph representation of the example network. Note the density is
997.08 kg

m3 and the dynamic viscosity 9.00 · 10−4 kg
m·s

Using the notation introduced in section 2.1, we can deduce

V = {1, 2, 3, 4},
E = {(1, 3), (2, 3), (4, 3)},
A = (A1,3 : 1, A2,3 : 1, A4,3 : 2),

L = (L1,3 : 400, L2,3 : 100, L4,3 : 100),

ρ = 997.08,

µ = 9.00 · 10−4,

such that the mathematical description of the pipe flow network is given by G = (V,E).
Furthermore, the initial conditions of the flow are described by

sk = (s1 : 200, s2 : 500, s3 : 0),

P = (P4 : 1 · 105),

ṁ = (),

which in totality describes the situation. The unknowns of this network are

{s4, P1, P2, P3, ṁ1,3, ṁ2,3, ṁ4,3}

and our aim is to solve these.

To solve the unknowns in a given network we need a model that describes the physical phenomena in
the scenario. But in order to arrive at such a model a thorough understanding of the physical laws
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involved with pipe flow networks and pipe flow itself are a prerequisite. These will be addressed in the
following subsection.

2.2 Physical laws

To solve the mass flow and pressure distribution of a pipe flow network, the behaviour in such a network
has to be described by physical laws. In this section two such laws will be described, one fundamental
law of fluid mechanics, mass continuity, and a law called the Darcy-Weisbach equation which relates
the static pressure difference over a pipe to the mass flow rate through the pipe.

2.2.1 Mass continuity in a steady-state system

In fluid mechanics there are three fundamental conservation laws, mass continuity, conservation of
momentum and conservation of energy. These laws describe the behaviour of quantities inside a
control volume. A control volume is a, possibly time-dependent, volume in 3-dimensional space. Its
closed boundary is referred to as the control surface. In this text both mass continuity as well as
conservation of momentum will be encountered. The formal definition of mass continuity is

Definition 2.2: Mass continuity [2]

Given a control volume the law of mass continuity states that the rate of change of mass
inside the control volume is exactly equal to the total mass transfer through the control surface.
In mathematical form this yields

dM

dt
= ṁin − ṁout, (2.6)

where M is the total mass of the control volume in [kg], t is time in [s], ṁin is the total ingoing

mass flow rate crossing the control surface in
[
kg
s

]
and ṁout is the total outgoing mass flow

rate crossing the control surface in
[
kg
s

]
Note: The law of mass continuity holds to good approximation when the control volume does
not contain a chemical reaction. However, the law does not hold when the control volume
contains a nuclear reaction.

This is, in itself, a very intuitive physical phenomenon. Consider a bottle of water, the mass in that
bottle of water will not change unless you pour some water out via the hole on the top. In this case
the control volume is the bottle. When the bottle is closed the water mass in the bottle stays the same
as no water goes out of the bottle or crosses the control surface. But when water is poured out of the
bottle the mass of the water in the bottle is decreased by precisely the amount of water poured out of
the bottle, which by going out of the bottle crossed the control surface.

In case of the bottle the mass in the bottle changes over time. This is a perfect example of a time
dependent, or transient, system. In the case of pipe flow networks we are more interested in time
independent solutions, which are more commonly called steady-state solutions. Therefore we can
assume
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Assumption 2.1: Steady-state

A steady-state situation is a time invariant situation. In other words it does not change in
time. This mathematically manifests itself as

d•
dt

= 0 (2.7)

where • can substituted with any situation defining quantity and t is time.

Now equation (2.6) in combination with equation (2.7) leaves us with

ṁin = ṁout, (2.8)

which is true for all control volumes in steady-state, given the law of mass continuity holds.

Now the questions remains how this can be applied in a pipe flow network. As discussed above, a
network consists of pipes and junctions. Therefore, first consider a pipe along the x-axis with a control
volume from x = a to x = b such as schematically drawn in figure 2.2a. Consider a fluid flowing
through the pipe along in the positive x-direction. The control surface consists of three parts, the
circular surface at x = a and x = b, respectively Aa and Ab, and the remaining cylindrical surface
situated along the wall, Awall. Now, obviously, there is no flow though Awall. However there is flow
through Aa and Ab, call these mass flow rates ṁa and ṁb respectively. Then as the fluid flows in the
positive x-direction, we have inflow at x = a and outflow at x = b, thus considering equation (2.8) we
can conclude that

ṁa = ṁb.

But as a and b are arbitrarily chosen, this means that the mass flow rate is constant throughout the
pipe if it is in steady-state.

In the same fashion a somewhat similar expression can be derived for a junction. Therefore consider
a junction with an arbitrary amount of N ≥ 2 branches. Now consider a spherical control volume
such that the junction is contained in the control volume and the control surface only intersects the
branches of the junction. This control volume is schematically drawn for a four branch junction in
figure 2.2b. Now fluid can only enter or exit at the surfaces where the control surface intersect with
one of the branches, call these surfaces A1, . . . , AN . The rest of the control surface does by definition
not intersect with anything else.

Now we can divide the branches into two sets, one containing all branches with ingoing flow and one
containing the rest of the branches. Call the set with ingoing flow I and the other set O. Formally

I = {i : Branch 1 ≤ i ≤ N has a flow going into the junction}

and
O = {j : Branch 1 ≤ j ≤ N has either a flow out of the junction or no flow at all}.

Furthermore consider the external in-/outflow of the network at the junction, s, in
[
kg
s

]
where s is

positive with inflow and negative with outflow.

Then using equation (2.8) we get

s+
∑
i∈I

ṁi =
∑
j∈O

ṁj (2.9)

which is a very convenient equation when solving the mass flow distribution of a pipe flow network.
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a b
x̂

ṁbṁb

(a) A schematic representation of a cylindrical pipe
with its axis along the x-axis, and a control volume
along the pipe from pipe x = a to x = b.

(b) A schematic representation of a junction with 4
branches with a spherical control volume such that the
junction is contained in the control volume and the
control surface only intersects the branches of the junc-
tion.

Figure 2.2

2.2.2 Darcy-Weisbach equation

Just like the mass continuity equation, we can also use the law of conservation of momentum, which
is defined as

Definition 2.3: Law of conservation of momentum

Given a control volume the law of conservation of momentum states that the rate of change
of momentum in a control volume is exactly equal to the sum of the momentum transfer through
the control surface and the forces applied to the control volume. The mathematical form yields

d
(
M~U

)
dt

= ṁin~uin − ṁout~uout +
∑

~F (2.10)

where ~U is the total velocity of the fluid in the control volume in
[
m
s

]
, ~uin and ~uout are the

average velocities respectively in and out of the control volume in
[
m
s

]
, weighted by mass flow

rate, and
∑ ~F the sum of all forces working on the control volume in [N ] =

[
kg·m
s2

]
.

Notice that the law of conservation of momentum is a vector equation, which in 3-dimensional space
would produce three separate equations. In most cases we will only use one of those. Furthermore, by
definition a control volume is required to obey the law of conservation of momentum.

Again, consider a pipe segment along the x-axis but this time of length L and constant diameter D,
thereby making the segment cylindrical. Let a fluid flow through the segment with in-/outgoing speed
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respectively uin(r) and uout(r) in the positive x-direction, where r is the radial coordinate. The static
pressures at the in- and outlet of the segment are respectively pin and pout and the pipe is completely
filled with fluid. This situation is schematically drawn in figure 2.3. Furthermore, let the situation

x0 x0 + L
x̂

uout(r)uin(r)

L

Pin Pout

D

Figure 2.3: Schematic representation of a cylindrical pipe segment of length L and diameter D with
in-/outgoing flow velocity respectively uin(r) and uout(r) and in- and outlet pressure respectively Pin
and Pout.

be steady-state. Then according to section 2.2.1 the mass flow rate is constant throughout the pipe
segment. Now because

ṁ = A · ρ · u, (2.11)

where A is the cross sectional area in
[
m2
]
, ρ is the density of the fluid in

[
kg
m3

]
and u is the average

speed in
[
m
s

]
, this results in

[A · ρ · u]in = [A · ρ · u]out . (2.12)

As the diameter of the pipe was assumed constant and thereby cylindrical pipes as well we get

Ain = Aout =
1

4
D2π.

Additionally, assume that the fluid is incompressible, which is formally defined as

Assumption 2.2: Incompressible fluid

An incompressible fluid is a fluid with constant density. Which is mathematically described
as

ρ = constant (2.13)

where ρ is density in
[
kg
m3

]
.

Then it follows that
ρin = ρout := ρ,

which, together with equation (2.12), results in

uin = uout := u. (2.14)

Now the law of conservation of momentum, equation (2.10), in the x-direction in combination with
steady-state and equation (2.14) yields

Aρ(u2 − u2) +
∑

Fx = 0,

thus ∑
Fx = 0, (2.15)
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where
∑
Fx is the sum of all x-components of forces working on the control volume.

To solve this equation a listing of the forces working on the control volume is needed. Fluid dynamics
and general mechanics tells us there are three forces working on the control volume

Static pressure force The force as a result of static pressure p working on a surface A (FP = A ·P )

Shear stress force The force as a result of shear stress between the wall and the fluid (Fτ = Awet ·τ)

Gravitational force The force as a result of a height difference (Fg = g ·M)

where Awet is the area of the wall that is in contact with the fluid in
[
m2
]
, τ is the shear stress in[

N
m2

]
and g is the gravitational constant in

[
m
s2

]
. As the aim of this derivation is to find the static

pressure difference as a result of the frictional forces due to the pipe wall we assume a horizontal pipe
and therefore

[Fg]x = 0, (2.16)

as there can be no gravitational pull in the x-direction if the x-axis is perpendicular to the “downward”
direction.

To find the shear stress force a development of the shear stress, τ , is needed to complete the research
into the forces acting on the control volume. In theory, if we assume the fluid to be newtonian it
follows[2] that

τ = −µ∂ux
∂r

,

in which r is the radial direction orthogonal to the x-axis and µ is the dynamic viscosity of the fluid.
However, for this to be useful the full flow velocity profile in the r-direction should be known, which
it is not. Therefore we are left with dimension analysis. For that purpose assume

Assumption 2.3: Dimension analysis of shear stress

Assume that the shear stress τ in
[
kg
m·s2

]
is a function of ρ in

[
kg
m3

]
, D in [m], u in

[
m
s

]
and µ

in
[
kg
m·s

]
, such that

τ ∝ ρα ·Dβ · uγ · µδ (2.17)

Dimensional analysis reveals

m: −3α+ β + γ − δ = −1
kg: α = 1− δ
s: γ = 2− δ

β = −δ

and thus

τ ∝ ρ · u2 ·
(

µ

ρ ·D · u

)δ
= ρ · u2 · (Re)

−δ
(2.18)

where Re is the Reynolds number, one of the various dimensionless quantities in fluid mechanics.

To complete the derivation all parts have to be substituted into equation (2.15), which leaves

A · Pin −A · Pout −Awet · ρ · u2 · f (Re) = 0 (2.19)

where the flow in the positive x-direction results in the shear stress force being negative and

f(Re) = k · (Re)
−δ

with k, δ ∈ R dependent on the situation, this f(Re) is called the Darcy friction factor.
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Lastly, because the whole pipe is filled with water

Awet
A

=
L ·D · π
1
4 ·D2 · π

=
4 · L
D

.

Which leads us to the Darcy-Weisbach equation,

Pin − Pout =
L

D
· f(Re) · 1

2
· ρ · u2 (2.20)

where a factor 8 is absorbed into f(Re) for historical reasons, which concludes the derivation and gives
us an expression for pressure loss in a pipe due to wall friction.
Note: It is possible to analytically derive f(Re) = 64

Re for laminar flow, however for turbulent flow
f(Re) cannot be explicitly expressed.

2.3 Elementary pipe flow model

Using the physical laws in the previous subsection, an elementary pipe flow model can be derived.
Though in order to use these laws they have to be rewritten in the variables of the mathematical
description of a pipe flow network.

2.3.1 Mass continuity

The first law was mass continuity for which equation (2.9) yields the useful result. At every junction

s+
∑
i∈I

ṁi =
∑
j∈O

ṁj

holds6, where s is the in-/outflow of the total network at the junction in
[
kg
s

]
, I and O are the sets

of branches with in- and outgoing flow respectively and ṁi is the mass flow rate through branch i in[
kg
s

]
.

Now consider an arbitrary pipe flow network G = (V,E) and an arbitrary node k ∈ V . Then sk is
defined, by equation (2.5), as the in- or outflow at node k. Furthermore, define Ik ⊂ V as the set of
nodes i ∈ V such that there is an arrow in the graph from i to k, in graph notation

Ik = {i ∈ V : (i, k) ∈ E}. (2.21)

In much the same way Ok ⊂ V can be defined as the set of nodes j ∈ V such that there is an arrow
in the graph from k to j, again in graph notation

Ok = {j ∈ V : (k, j) ∈ E}. (2.22)

It is very important to note that Ik and Ok are not the equivalent of I and O in the flow network, Ik
and Ok are only dependent on the direction of edges in the graph and do not depend on the direction
of flow of their elements in any way.

The direction of flow can be recovered using equation (2.3),

ṁi,j :=

The mass flow rate through pipe (i, j) in
[
kg
s

]
which is positive if the

fluid flows from i to j and negative if the fluid flows in the opposite
direction.

 ∀(i, j) ∈ E

6This is only true if the fluid in the network is incompressible and the situation is steady-state but for the rest of this
section we consider these assumptions to be assumed.
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implying that for each i ∈ Ik there exists a ṁi,k such that ṁi,k is positive when the flow through (i, k)
is towards k and negative when the fluid flow through (i, k) is away from k.

In the same fashion, for each j ∈ Ok there exists a ṁk,j such that ṁk,j is positive when the flow
through (k, j) is away from k and negative when the fluid flow through (k, j) is towards k.

From this analysis can be concluded that, if I, O and ṁl are defined as in equation (2.9),∑
i∈I

ṁi −
∑
j∈O

ṁj =
∑
i∈Ik

ṁi,k −
∑
j∈Ok

ṁk,j .

and obviously s = sk. Therefore, equation (2.9) is equivalent to

sk +
∑
i∈Ik

ṁi,k −
∑
j∈Ok

ṁk,j = 0 ∀k ∈ V. (2.23)

2.3.2 Darcy-Weisbach

The second physical law is the Darcy-Weisbach equation, equation (2.20), for every pipe

Pin − Pout =
L

D
· f(Re) · 1

2
· ρ · u2

holds, where P is the static pressure, the subscripts in and out refer to the in- and outlet respectively,
L is the length of the pipe in [m], D is the diameter of the pipe in [m], f(Re) is the Darcy friction

factor which is dimensionless, ρ is the density of the fluid in
[
kg
m3

]
and u is the mean flow velocity in[

m
s

]
which is constant throughout the pipe by equation (2.14).

Again, consider an arbitrary pipe flow network G = (V,E) and in that network an arbitrary pipe
(i, j) ∈ E. For clarity, the selected pipe is directed from node i ∈ V to node j ∈ V but the flow can
also be from j to i if ṁi,j , as defined in (2.3), is negative. Therefore, define

∆Pi,j =

{
Pi − Pj if ṁi,j ≥ 0

Pj − Pi if ṁi,j < 0
(2.24)

where Pi and Pj are defined by equation (2.4).

For the pipe itself the cross sectional area Ai,j , length Li,j are defined by definition 2.1 and ρ and µ
are the density and dynamic viscosity respectively. To rewrite the left hand side of equation (2.20),
some elementary relations have to be derived. Firstly the diameter D can easily be expressed in terms
of Ai,j by

D = 2

√
Ai,j
π
.

Furthermore, using equation (2.11) simple algebra shows

u =
ṁi,j

Ai,j · ρ
.

Now by definition of the Reynolds number[2] in combination with the previous two conversions

Re =
ρ · u ·D

µ
= 2

|ṁi,j |
µ ·
√
Ai,j · π

where |ṁi,j | is absolute because the Reynolds number is independent of flow direction.
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Note that there is no closed form for f(Re), and the approximation of this factor is outside the scope
of this section.

However, as an example, for linear flow there exists an analytica solution to f(Re),[2]

f(Re) =
64

Re
= 32

µ ·
√
Ai,j · π
ṁi,j

. (2.25)

Using all the expressions derived above in combination with equation (2.20), we can derive

∆Pi,j − 8 · µ · π
ρ
· Li,j · |ṁi,j |

A2
i,j

= 0

Notice ∆Pi,j ∝ |ṁi,j |, but the definition of ∆Pi,j is dependent on the sign of ṁi,j . Therefore we can
rewrite the expression to

Pi − Pj − 8 · µ · π
ρ
· Li,j · ṁi,j

A2
i,j

= 0 (2.26)

which is the Darcy-Weisbach equation for laminar flow.

2.3.3 Final model

In conclusion, any pipe flow network G = (V,E) with (partial) mass flow rate distribution ṁ, (partial)
static pressure distribution P , (partial) in-/outflow distribution s and laminar flow can be solved using
algorithm 1. Do note, the function call Solve(S) simply denotes that the system of equations, S, is
solved, this can be done using a multitude of methods. Most often this is done using a numerical
root-finding algorithm which approximates the distributions.

Algorithm 1 Algorithm to solve the mass flow rate, static pressure and in-/outflow distribution of a
pipe flow network.

S := ∅
for k ∈ V do

Ik := {i ∈ V : (i, k) ∈ E}
Ok := {j ∈ O : (k, j) ∈ E}

S := S ∪

{
sk +

∑
i∈Ik

ṁi,k −
∑
j∈Ok

ṁk,j = 0

}
end for
for (i, j) ∈ E do

S := S ∪
{
Pi − Pj − 8 · µ·πρ ·

Li,j ·ṁi,j

A2
i,j

= 0
}

end for
return Solve(S)

Notice that in this model there are #V +#E equations7, which suggests it can solve a system with the
same amount of unknowns. However, the three distributions, ṁ, P and s, without any prior knowledge
about any of the distributions have a total amount of 2 ·#V + #E unknowns. Therefore, to be able to
solve the distributions using the presented model, a total of #V variables in the distributions should be
known. Lastly, notice that the static pressures Pi ∈ P are only encountered in the system of equations
in relative form, thus Pi − Pj , therefore to get an absolute distribution at least one static pressure
should be known. Concluding, to solve the three distributions in a pipe flow network, a total of #V

7Here the # set-operator signifies the cardinality operator, thus #A is equal to the amount of elements in set A.
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weights in those distributions should be known beforehand one of which has to be a static pressure
weight.

Lastly, to illustrate its usage the model described in this section is applied to the three pipe junction
of example 2.1 in example 2.2

Example 2.2: Three pipe junction (continued)

Consider the situation from example 2.1. We can use the simple model to calculate the total
distribution.
As node 3 ∈ V is most illustrative for the algorithm we will give a full account of the algorithm
for that node. So first I3 and O3 have to be generated. As (1, 3), (2, 3) and (3, 4) are the pipes
in E of the form (i, 3),

I3 = {1, 2, 4}.

There are no pipes in E of the form (3, i), thus

O3 = ∅.

Now equation (2.23) gives us

s3 + ṁ1,3 + ṁ2,3 + ṁ4,3 = 0 (2.27)

where bold font signifies the weight is known. The same method for the other nodes result in

s1 − ṁ1,3 = 0, (2.28)

s2 − ṁ2,3 = 0, (2.29)

s4 − ṁ4,3 = 0, (2.30)

which concludes the analysis of the nodes.
Next up in the algorithm the pipes of the network are concerned. Consider (1, 3) ∈ E, then
equation (2.26) gives us

P1 − P3 − 8 · µ · π
ρ

L1,3

A2
1,3

ṁ1,3 = 0 (2.31)

The same method for the other pipes result in

P2 − P3 − 8 · µ · π
ρ

L2,3

A2
2,3

ṁ2,3 = 0 (2.32)

P4 − P3 − 8 · µ · π
ρ

L4,3

A2
4,3

ṁ4,3 = 0 (2.33)

Now our system of equations, S in the algorithm, are equations (2.27) to (2.33). The last step
of the algorithm is to solve this system, as it is a linear system, solving this system is left as an
exercise for the reader.
The solution is

s = (s1 : 200, s2 : 500, s3 : 0, s4 : −700)

P = (P1 : 100049.31, P2 : 100033.17, P3 : 100031.37, P4 : 10000.00)

ṁ = (ṁ1,3 : 200, ṁ2,3 : 500, ṁ4,3 : −700)

Note the negative ṁ4,3, it is negative because the graph edge and the flow have opposite
directions.
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3 Pressure loss model for pipe junctions with n-branches

In the previous section a pipe flow network model was developed, however it neglects pressure loss
due to junctions. To accomodate for that, this section will concentrate on pressure loss models for
junctions, nodes in a pipe flow network where multiple pipes meet. In the first subsection multiple
possible types of junction models are considered, and their advantages and disadvantages discussed.
The second subsection will dive deeper into one of those types, the pressure coefficient model, a popular
model in fluid mechanics. The subsection thereafter contains the derivation of a new model, based
on a model published by Basset[3]. The section is concluded by a summary of the new model and its
domain of validity.

3.1 Possible models

Throughout the years several models have been used to get a more thorough understanding of junctions
in a pipe flow network. This subsection will list a variety of common or interesting models, to get a
better understanding of what is important in a junction model.

3.1.1 No friction model

In the no friction model only pressure losses due to the pipe segments in the junction are considered,
thereby neglecting all geometrical effects of the junction. The mass flow rates through the in-/outlets
are related to eachother using mass continuity, equation (2.9).

By neglecting the geometrical effect of the junction an inaccuracy is introduced into the model, which
is its main disadvantage. This neglection is justified if the network on which it is used has very long
pipes. In that case the frictional losses due to the pipes will dominate the pressure losses in the
network.

In addition, by completely neglecting the geometrical effects of the junction, there is no need for
knowledge about the geometry of the junction. This is not its main advantage. The main advantage
is that this model is computationally cheap, it introduces far fewer calculation steps than any other
junction model.

3.1.2 Balance method

The balance method is a very general method to analyse fluid mechanical problems. When using this
method on a junction, one would consider the volume of the junction to be a control volume. By using
the conservation laws, conservation of mass, momentum and energy, the pressure drop over different
in-/outlets of the junctions can be calculated.

The biggest disadvantage of this method is that every junction has to be analysed separately, and the
analysis of a junction is hard to automate. The method however is physically completely sound, and
it allows for very good management of assumptions made in the analysis of a junction.

3.1.3 CFD

Computational fluid dynamics, is a very popular branch of fluid mechanics that uses numerical analysis
to solve problems that involve fluid flow. As already discussed with the Balance method, fluid me-
chanics is governed by conservation laws. These laws produce systems of partial differential equations.
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Using numerical schemes the solution of these systems can be approximated[8]. This approach can
also be used for pipe junctions.

Using this approach gives very detailed solution of the problem, it is the virtual equivalent of doing an
experiment. It is however very computationally expensive, calculating the pressure loss over a single
T-junction could easily take a few minutes using this approach. Furthermore, just like the Balance
method every junction in a network would have to be analysed separately, making the approach simply
impractical for use in a pipe flow network.

3.1.4 Pressure coefficient

A very popular model in the field of pipe flow networks is the pressure coefficient model, the model
assumes that the pressure loss due to a component in the network can be given by

∆P = C · ρu2,

where C is a dimensionless, component dependent factor called the pressure coefficient and ρ and u
are the density and flow velocity of the fluid through the component.

The pressure coefficients are generally quite hard to obtain in closed form, therefore most coefficients are
empirically obtained. Moreover in the case of closed form pressure coefficients, they are often subject
to a myriad of assumptions. However, when a sufficiently general closed form pressure coefficient
can be derived this approach is computationally inexpensive. However, the solution is probably less
accurate than the balance method or CFD. We would like to generalize this model for use in case of
a junction. Mainly because, this is the only one of the four models which does consider pressure loss
due to junction, but does not involve very junction specific computations.

3.2 Pressure coefficient model

From the models examined in the previous subsection the pressure coefficient model is the only one
showing potential for use with pipe flow networks. Therefore this subsection is dedicated to get a
thorough understanding of that model.

First of all the model seems to find its origin in the Darcy-Weisbach equation, as derived in section
2.2.2. Although the derivation of the Darcy-Weisbach equation is specifically for flow through a pipe,
it is not that much of a leap to say an equivalent derivation is possible along a streamline8 in a different
type of component.

Another point of view is considering the ρu2 factor, this is the momentum flux9 through the com-
ponent, and one could argue that due to frictional losses momentum should be reduced by passing
the component. To counter these effects the pressure downstream has to decrease, and as this is a
countering effect it makes sense that the amount of difference should be proportional to the momentum
flux.

However, these arguments are mere interpretations of the pressure coefficient model. The actual
rationale for using this model is that it seems to be the standard in pipe flow network models, and in
most texts about this subject, such as [3, 10, 13], the relation is posited without any real reasons as
to why this is justified.

8A streamline is a line that follows the direction of the fluid flow, just like following a single particle along its path
from one end of the component to the other.

9The flux of a quantity, simply means the quantity per unit area.
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3.2.1 Coefficients in literature

Before deriving a pressure coefficient it is important to get a feeling for what variables influence such
a pressure coefficient. This insight is most amply acquired by a brief chronological account of pressure
coefficients for pipe junctions in literature.

In 1963, Blaisdell and Manson[5] published a paper with a comprehensive account of the research in
the field before 1963. According to that publication the research of pipe junctions was limited to
T-junctions, a junction consisting of a straight main pipe and a branch at variable angles. Moreover
the research up until and including the work of Blaisdell and Manson consisted of mostly empirical
data, and in the case of a theoretical analysis only the general form of the coefficient is derived and
then fitted to experimental data. Although not supplying a purely theoretical pressure coefficient, the
works described in [5] do lend some insight into possible influential quantities such as the ratio of mass
flow rate, angle and ratio of cross sectional area between two in-/outlets.

In 1971 a book was published by Miller[10] titled “Internal flow systems: A guide to losses in pipe
and duct systems”, which is viewed as “the reference” for losses in pipe systems by many people in
the field of pipe flow networks. Though Miller proposes a purely theoretical derivation of a pressure
coefficient for T-junctions, he concludes that the resulting model does not confer with experimental
data and subsides to an empirically determined relation. In the book he does however make interesting
notions about negligible geometric quantities. For example, he states “The cross-sectional shape of
the pipes forming a tee has only a secondary effect compared to the flow and area ratios.”[10] as well
as “If the components are separated by a spacer of more than 30 diameters, interaction effects are not
important”[10].

In 2001, Bassett et al. proposed a closed form pressure coefficient for flow through a T-junction[4],
based on balance model analyses of a general T-junction with a variable angle between the main
pipe and the branch and a variable cross sectional area ratio between the main pipe and the branch.
The general junctions are analysed separately for all possible flow direction configurations, which for a
junction with three in-/outlets are 6 possible configurations. For each of these, two pressure coefficients
are derived, one for each streamline10. Resulting in a total of 12 different pressure coefficients. The
generalisation of this model to a junction with an arbitrary amount of in-/outlets would lead to an
exponential increase of pressure coefficients, which is simply impractical. However, the model proposed
by Bassett et al. is supported by experimental data, and therefore it makes for a good reference model
to check validity of any other model in the case of T-junctions.

Lastly in 2003, Bassett et al. proposed a generalisation of the model published in 2001[3]. The new
model can be used to calculate the pressure loss for flow through a junction with an arbitrary amount
of in-/outlets. It is based on a single closed form pressure coefficient for pressure loss from the inlet
with highest mass flow to an arbitrary outlet. The pressure coefficient is a function of the mass flow
ratio, cross sectional area ratio and angle between the inlet and the outlet. Furthermore the model
assumes the pressures at all inlets to be equal, which finalises the model. Do note that this model does
have its drawbacks. For one, it completely ignores any incoming flows other than that of the most
significant inlet11. Furthermore, the assumption that the pressure is equal at all inlets is not supported
by experimental data, such as the cross junction data of Sharp[15]. The model can however function
as a good basis for a more advanced model.

3.3 The new junction model

In this section a new junction model will be developed. This junction model is heavily based on the
model proposed by Bassett et al. in 2003. The first subsection will aim to derive a more general

10In this case a streamline is a flow from an inlet to an outlet
11The inlet with the highest mass flow rate
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version of the pressure coefficient first derived by Bassett et al.[3] After the derivation additions to the
model will be proposed to improve the model. After that the newly derived model will be compared
to the model Bassett et al. published in 2001, which shows agreement with experiment.

3.3.1 Derivation of pressure coefficient

Consider an arbitrary junction with n ∈ N inlets and m ∈ N outlets. Then two sets can be defined
I the set of inlets and O the set of outlets, where in the special case of no flow we speak of an inlet.
Now for any combination of an inlet and outlet, (i, j) ∈ I ×O, a stagnation pressure coefficient, Ki,j ,
is introduced, defined by

Ki,j =
(po)i − (po)j

1
2ρiu

2
i

=
Pi + 1

2ρiu
2
i −

(
Pj + 1

2ρju
2
j

)
1
2ρiu

2
i

, (3.1)

where po is stagnation pressure in
[
kg
m·s2

]
, ρ is the density of the fluid in

[
kg
m3

]
, u is the flow velocity

in
[
m
s

]
and P is the static pressure in

[
kg
m·s2

]
.

To continue the derivation, the fluid is assumed to be incompressible. Specifically

Assumption 3.1: Incompressible fluid

An incompressible fluid is a fluid with constant density. Which is mathematically described
as

ρ = constant (3.2)

where ρ is density in
[
kg
m3

]
.

Now (3.1) can be rewritten as follows

Ki,j =
Pi + 1

2ρu
2
i −

(
Pj + 1

2ρ, u
2
j

)
1
2ρu

2
i

,

Ki,j =
Pi − Pj
1
2ρu

2
i

+ 1−
u2j
u2i
,

Pi − Pj =
1

2
ρu2i

(
Ki,j − 1 +

u2j
u2i

)
, (3.3)

which leaves an expression for the pressure difference between the in- and outlets. Due to practicalities
it is more convenient to rewrite the expression in terms of mass flow ratio defined as

qi,j =
ṁj

ṁi
, (3.4)

and cross-sectional area ratio defined as

ψi,j =
Ai
Aj
, (3.5)

where ṁ is the mass flow rate in
[
kg
s

]
and A the cross-sectional area in

[
m3
]
. Now using the relation

between mass flow rate and flow velocity[2]

ṁ = ρAu, (3.6)
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and using equation (3.2) we can express uj in terms of ui,

uj =
ṁj

ρ ·Aj
ui
ui
,

=
Ai
Aj

ṁj

ṁi
ui,

uj = qi,jψi,jui, (3.7)

which leaves us with
uj
ui

= qi,jψi,j , (3.8)

with this (3.3) results in

Pi − Pj =
1

2
ρ

u2j
q2i,jψ

2
i,j

(
Ki,j − 1 + q2i,jψ

2
i,j

)
,

Pi − Pj =
1

2
ρu2j

(
Ki,j

q2i,jψ
2
i,j

− 1

q2i,jψ
2
i,j

+ 1

)
.

Now, the pressure coefficient Ci,j is defined as

Ci,j =
Pi − Pj
ρu2j

=
1

2

(
Ki,j

q2i,jψ
2
i,j

− 1

q2i,jψ
2
i,j

+ 1

)
, (3.9)

which leaves us with an expression for the pressure coefficient between an inlet and an outlet of a
junction given the stagnation pressure coefficient, Ki,j .

Now we are left with the task of finding the stagnation pressure coefficient. Therefore, take a random
combination of an inlet and an outlet, (i, j) ∈ I × O, then our goal is to find the stagnation pressure
difference between the inlet, i, and the outlet, j. Both i and j are schematically drawn in figure 3.1,
where subscript ”others” signifies all in-/outlets of the junction other than i and j. Note that the angle
between i and j is 0 < θi,j ≤ π, because of this angle and the momentum of the fluid a recirculation
area is induced, which is depicted by D-R-P in figure 3.1. Furthermore qi,j is defined as in (3.4), and
0 < ξ < 1 is the ratio between the minimal free flow area, the cross-sectional area of flow where the
pipe is most restricted by the recirculation area, ARR′ , and the total pipe area, Aj , thus

ξ =
ARR′

Aj
. (3.10)

Now to calculate the stagnation pressure coefficient, Ki,j , as defined by (3.1), we consider two control
volumes D-D’-R’-R and R-R’-P’-P separately.

3.3.2 Control volume: D-D’-R’-R

Consider the control volume D-D’-R’-R, note that D’-R’ is a wall and D-R is a boundary to the
recirculation area which imply there is no mass transfer through these areas. Therefore there can only
be mass flow through D-D’ and R-R’ and mass continuity (2.8) states that ṁRR′ and ṁDD′ are equal
in size. To be precise this only holds in a steady-state which we will assume
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Figure 3.1: Schematic representation of a junction of N-pipes

Assumption 3.2: Steady-state

A steady-state situation is a time invariant situation, in other words it does not change in
time. This mathematically manifests itself as

d•
dt

= 0, (3.11)

where • can substituted with any situation definining quantity and t is time.

Now again using equation (2.8) we can deduce

ṁRR′ = ṁDD′ = ṁj . (3.12)

Furthermore, because D-D’-R’-R is a closed control volume the law of conservation of momentum
should hold, which is defined in definition 2.10. The law of conservation of momentum is a vector
equation, which in our 2-dimensional representation12 leads to two equations. Only one of them is
needed to find Ki,j . In the rest of this subsection we will consider the law of momentum conservation

in the direction of mass flow through outlet j, ˆ̇mj , which in combination with a steady-state and
equation (3.12) yields (

ṁj~uDD′ − ṁj~uRR′ +
(∑

~F
)
DD′R′R

)
· ˆ̇mj = 0, (3.13)

where ~uDD′ and ~uRR′ are the velocity vectors of the flow through D-D’ and R-R’ respectively and
(
∑ ~F )DD′R′R represents the sum of the forces acting on the control volume. Do note the only way

mass can enter or exit the control volume is via D-D’ and R-R’ and the dot-product at the end of the
left hand side of the equation ensures only the components in the ˆ̇mj direction are taken into account.

12Note that we can use a 2-dimensional representation because according to Miller the effect of cross sectional shape
is negligible[10]
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To solve this equation the magnitude and the direction of the flow velocities crossing D-D’ and R-
R’ have to be known. Bassett et al. state that experimental observations made using T-junctions
suggest that the velocity magnitude of the flow entering j from i, thereby crossing D-D’, is equal to
ui[3]. Furthermore, Bassett et al. suggest that the direction of ~uDD′ makes an angle of π−θ

4 with the

“horizontal”[3], meaning ˆ̇mi. Thus assume

Assumption 3.3: Magnitude and direction of ~uDD′

The magnitude of ~uDD′ is equal to |ui| and the direction of ~uDD′ makes an angle of π−θ
4 with

ˆ̇mi. The approximate direction is drawn in figure 3.1.

which implies

~uDD′ · ˆ̇mj = ui cos

(
3

4
(π − θ)

)
. (3.14)

To determine the direction of ~uRR′ note that the at R-R’ there is no compression or expansion of free
flow area, therefore the flow direction is parallel to the outlet axis, thus

~uRR′ · ˆ̇mj = uR, (3.15)

where uR represents the magnitude of ~uRR′ .

Now to solve equation (3.13) we need to analyse the forces acting on the control volume. To significantly
simplify the derivation we make four assumptions

Assumption 3.4: Horizontal junctions

The junction is assumed to lie in a horizontal plane, thereby neglecting any gravitational influ-
ences.

Assumption 3.5: No wall friction

The junction is assumed to have no wall friction, the model only accounts for geometrical effects
of the junction.

Assumption 3.6: Static pressure in recirculation area D-R-P

The static pressure in D-R-P is assumed to be constant and equal the pressure along R-R’, PR.
Rationale: As there is no mass transfer through D-R-P, the pressure has to be constant. A
pressure difference would lead to flow towards the point of lower pressure implying mass transfer
through D-R-P. Furthermore, as R-R’ is the point of smallest free flow area, PDRP = PR. If not
R-R’ would either become smaller or larger as the pressure difference would move the position
of R.
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Assumption 3.7: Static pressure at D-D’

The static pressure at D is equal to the pressure at the inlet,

PD = Pi.

Furthermore, the static pressure at D’ is equal to the stagnation pressure at the inlet. Thus

PD′ = (po)i = Pi +
1

2
ρu2i

where Pi is the static pressure at i and ui is the flow speed at i. Lastly, the mean static pressure
over D-D’ is equal to the mean of the static pressure at D and at D’. Thus

PDD′ =
PD + PD′

2
= Pi +

1

4
ρu2i (3.16)

Rationale: As there is no frictional loss and no hindrance to the flow there is no energy
conversion from or to potential energy between the inlet and D, furthermore all gravitational
influences are neglected thus there can be no pressure difference between those points.
At point D’ all flow from the inlet is halted, Bernoulli’s principle then states that the kinetic
energy is transformed to potential energy. As we are talking about a horizontal system the
potential can only be stored in static pressure.
Considering the first two parts of this rationale it is not a leap to assume the amount of
conversion of kinetic energy to potential energy goes linearly between point D and D’ which
would account for the choice of PDD′ .

Due to the first two assumptions gravitational and frictional forces are neglected, leaving only the
pressure terms to contribute to the sum of forces. As D-R’ is parallel to ˆ̇mj the pressure force due to

D-R’ is perpendicular to ˆ̇mj and therefore the inner product is zero. Now note that D-R and R-R’
have the same static pressure by the third assumption. Furthermore, considering figure 3.1 a rather
straight forward geometrical argument implies

PR ~ADR · ˆ̇mj = −PR(1− ξ)Aj , (3.17)

where ~ADR has a direction perpendicular to D-R and magnitude ADR. Therefore, because R-R’ is
perpendicular to ˆ̇mj combining the pressure forces due to D-R and R-R’ yields

PR

(
~ADR + ~ARR′

)
· ˆ̇mj = −PRAj ((1− ξ) + ξ) = −PRAj . (3.18)

Revisiting figure 3.1 in combination with the fourth assumption results in

PDD′ ~ADD′ · m̂j =

(
Pi +

1

4
ρu2i

)
Aj . (3.19)

Note the subtle geometrical argument that ~ADD′ · m̂j = Aj , which is best understood by closely
inspecting figure 3.1.

To finalize the analysis of forces equations (3.18) and (3.19) are used to form(∑
~F
)
DD′R′R

· ˆ̇mj =

(
Pi +

1

4
ρu2i − PR

)
Aj . (3.20)

Using equations (3.14), (3.15) and (3.20) we are able to fill in (3.13), resulting in

ṁj

(
ui cos

(
3

4
(π − θ)

)
− uR

)
+

(
Pi +

1

4
ρu2i − PR

)
Aj = 0. (3.21)
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To further solve this equation we need another assumption. Bassett et al. proposes that, “as flow
converges (in the region D-D’-R’-R), the stagnation pressure remains almost constant”[3] and thereby
that the overall stagnation pressure loss occurs as the flow diverges, in R-R’-P’-P. Therefore assume

Assumption 3.8: No stagnation pressure loss in D-D’-R’-R

There is no stagnation pressure loss in D-D’-R’-R, thus

(po)DD′ = (po)RR′ ⇒ Pi +
3

4
ρu2i = PR +

1

2
ρu2R, (3.22)

where the 3
4 factor on the right hand side is a consequence of equation (3.16).

Using equation (3.22) we can derive an expression for PR

PR = Pi +
3

4
ρu2i −

1

2
ρu2R. (3.23)

Substitution in equation (3.21) yields

ṁj

(
ui cos

(
3

4
(π − θ)

)
− uR

)
+

(
Pi +

1

4
ρu2i − Pi −

3

4
ρu2i +

1

2
ρu2R

)
Aj = 0,

Ajρuj

(
ui cos

(
3

4
(π − θ)

)
− uR

)
+

(
−1

2
u2i +

1

2
u2R

)
Ajρ = 0,

uj

(
ui cos

(
3

4
(π − θ)

)
− uR

)
− 1

2
u2i +

1

2
u2R = 0. (3.24)

To further analyse this expression, two conversions have to be considered. The first one was already
used in the derivation, namely equation (3.8) or

ui =
uj

ψi,jqi,j
. (3.25)

The other conversion is derived using equation (3.12) as follows

uR =
ṁR

ξAjρ
,

=
Ajρuj
ξAjρ

,

uR =
uj
ξ
. (3.26)

Substitution of these relations into equation (3.24) yields

uj

(
uj

ψi,jqi,j
cos

(
3

4
(π − θ)

)
− uj

ξ

)
− 1

2

u2j
ψ2
i,jq

2
i,j

+
1

2

u2j
ξ2

= 0,

1

2
u2j

(
2

ψi,jqi,j
cos

(
3

4
(π − θ)

)
− 2

ξ
− 1

ψ2
i,jq

2
i,j

+
1

ξ2

)
= 0,

1

ξ2
− 2

ξ
+

2

ψi,jqi,j
cos

(
3

4
(π − θ)

)
− 1

ψ2
i,jq

2
i,j

= 0,(
1− 1

ξ

)2

− 1 +
2

ψi,jqi,j
cos

(
3

4
(π − θ)

)
− 1

ψ2
i,jq

2
i,j

= 0
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which leads us to the end result of our endeavour with this control volume(
1− 1

ξ

)2

= 1 +
1

ψ2
i,jq

2
i,j

− 2

ψi,jqi,j
cos

(
3

4
(π − θ)

)
. (3.27)

3.3.3 Control volume: R-R’-P’-P

Now that we have an expression for
(

1− 1
ξ

)2
we can use this to derive an expression for the stagna-

tion pressure loss, and with that an expression for Ki,j . First of all, again consider conservation of

momentum in the ˆ̇mj direction. In much the same way as equation (3.13) for R-R’-P’-P this yields,(
ṁj~uRR′ − ṁj~uPP ′ +

(∑
~F
)
RR′P ′P

)
· ˆ̇mj = 0. (3.28)

Using equation (3.15)
ṁj~uRR′ · ˆ̇mj = ṁjuR, (3.29)

and as P-P’ is perpendicular to ˆ̇mj , and there are no expansion effects at P-P’, the flow speed is parallel

to ˆ̇mj . Therefore

ṁj~uPP ′ · ˆ̇mj = ṁjuj . (3.30)

Which leaves the task of finding
(∑ ~F

)
RR′P ′P

. Due to assumptions 3.4 and 3.5, again only pressure

forces are taken into account. As in this case R’-P’ is parallel with the ˆ̇mj direction, there is no force
component due to R’-P’.

Now using the same geometrical argument for R-P as used for D-R results in

PR ~ARP · ˆ̇mj = PR(1− ξ)Aj , (3.31)

and using the same argument for R-R’ as used in the previous subsection results in

PR ~ARR′ · ˆ̇mj = PRξAj . (3.32)

Do note that ~ARR′ in this control volume has its direction exactly opposite to its direction in the
D-D’-R’-R control volume, this is because area vectors are chosen to be directed inward in case of a
control volume. All in all this leads to(

PR ~ARP + PR ~ARR′

)
· ˆ̇mj = PR(1− ξ)Aj + PRξAj = AjPR, (3.33)

just like in the D-D’-R’-R control volume.

Furthermore, the fact that D-D’ is perpendicular to the ˆ̇mj direction and situated at the outlet results
in

Pj ~ADD′ · ˆ̇mj = −PjAj . (3.34)

Using the last two equations and the fact that R’-P’ does not supply a pressure force term, we can
conclude that (∑

~F
)
RR′P ′P

· ˆ̇mj = Aj(PR − Pj). (3.35)

Substitution of this expression and equations (3.29) and (3.30) in equation (3.28) yields

ṁj(uR − uj) +Aj(PR − Pj) = 0,

PR − Pj = ρuj(uj − uR),
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where to make the step the definition of ṁj = Ajρuj is used.

To retrieve the stagnation pressure coefficient, consider its definition (3.1).

Ki,j =
Pi + 1

2ρu
2
i − Pj − 1

2ρu
2
j

1
2ρu

2
i

. (3.36)

Now, as a result of assumption 3.8, that all stagnation pressure loss between i and j is the stagnation
pressure loss in R-R-P’-P, we can rewrite

Ki,j =
PR + 1

2ρu
2
R − Pj − 1

2ρu
2
j

1
2ρu

2
i

,

Ki,j =
ρuj(uj − uR) + 1

2ρu
2
R − 1

2ρu
2
j

1
2ρu

2
i

.

Combining the conversions of the previous subsection, equations (3.25) and (3.26), results in

Ki,j =
ρuj(uj − uj

ξ ) + 1
2ρ

u2
j

ξ2 −
1
2ρu

2
j

1
2ρ

u2
j

ψ2
i,jq

2
i,j

,

= 2ψ2
i,jq

2
i,j

(
1− 1

ξ + 1
2

1
ξ2 −

1
2

)
ρu2j

ρu2j
,

= ψ2
i,jq

2
i,j

(
1− 2

ξ
+

1

ξ2

)
,

Ki,j = ψ2
i,jq

2
i,j

(
1− 1

ξ

)2

.

Note the (1− 1
ξ )2 factor, substituting equation (3.27) yields

Ki,j = ψ2
i,jq

2
i,j

(
1 +

1

ψ2
i,jq

2
i,j

− 2

ψi,jqi,j
cos

(
3

4
(π − θ)

))
, (3.37)

which concludes our encounter with this last control volume.

Now that we have an expression for Ki,j we can easily find an expression for the pressure coefficient
using equation (3.9)

Ci,j =
1

2

(
Ki,j

q2i,jψ
2
i,j

− 1

q2i,jψ
2
i,j

+ 1

)
,

Ci,j =
1

2

ψ2
i,jq

2
i,j

(
1 + 1

ψ2
i,jq

2
i,j
− 2

ψi,jqi,j
cos
(
3
4 (π − θ)

))
q2i,jψ

2
i,j

− 1

q2i,jψ
2
i,j

+ 1

 ,

Ci,j =
1

2

(
1 +

1

ψ2
i,jq

2
i,j

− 2

ψi,jqi,j
cos

(
3

4
(π − θ)

)
− 1

q2i,jψ
2
i,j

+ 1

)
,

Ci,j = 1− 1

ψi,jqi,j
cos

(
3

4
(π − θ)

)
. (3.38)

Which finally gives us an expression for the pressure coefficient and concludes the derivation based on
the work of Bassett et al.[3].
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3.3.4 Flow independent generalization

Now that we have an expression, we can analyse it to see when it is valid. First of all taking a close
look at figure 3.1 tells us immediately that by choice of control volume there is no room in the outlet
for any other inflow than that of the observed inlet. However, in a pipe flow network it is quite common
to have combining flow. Thus, it is critical to account for multiple inflows into one outlet.

Therefore, consider the control volume in figure 3.2. In the figure we look solely at i and j again,
where i is an inlet and j is an outlet. But we assume that all flow from i goes to j. Thereby, it follows
that

ṁj ≥ ṁi,

which, by equation (3.4), implies that
qi,j > 1.

Ai

A′j

ṁ′j

ṁi

ṁothers

θ

Aj

Figure 3.2: A schematic representation of an inlet i and outlet j of a junction. A control volume,
represented by dashed lines, is drawn which accounts for multiple inflows.

Now, the derivation above does not account for this kind of flow. However, we can pretend the outlet
has a different cross-sectional area A′j . By choosing A′j such that

ṁ′j = ṁi, (3.39)
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we are able to apply the result of the derivation above. Note that equation (3.4) and (3.6) imply

qi,j =
ṁj

ṁi
,

=
ṁj

ṁ′j
,

=
ρAjuj
ρA′juj

,

qi,j =
Aj
A′j ,

A′j =
Aj
qi,j

. (3.40)

Therefore, by equation (3.5)

ψ′i,j =
Ai
A′j

=
Ai
Aj
qi,j = ψi,jqi,j , (3.41)

where the accent means in our pretence that j has cross-sectional area A′j . Furthermore, equation
(3.4) in combination with (3.39) results in

q′i,j =
ṁ′j
ṁi

= 1. (3.42)

Now substitution of ψi,j and qi,j by ψ′i,j and q′i,j in 3.38 yields

C ′i,j = 1− 1

ψ′i,jq
′
i,j

cos

(
3

4
(π − θ)

)
,

= 1− 1

ψi,jqi,j · 1
cos

(
3

4
(π − θ)

)
,

C ′i,j = Ci,j . (3.43)

So, we can conclude that equation (3.38) is valid for all qi,j > 0. Note that qi,j ≤ 0 do not exist as
ṁi ≥ 0 and ṁj > 0 by definition of O, or more accurately I “where in the special case of no flow we
speak of an inlet.” Therefore, we can finally conclude that we have found a pressure coefficient between
an arbitrary combination of inlet and outlet which is defined for all possible flow configurations.

A similar derivation as above is presented in appendix A to show that the expression of Ci,j holds for
junctions with n inlets and m outlets. However, this derivation assumes that any inlet can flow to any
outlet, which in practice does not have to hold.

Now that we have such a pressure coefficient it is time to consider how we can put them together
to create a junction model. First, it is important to consider what is needed from a junction model.
Remember that to allow for pressure loss between inlets and outlets, additional pressure variables at
those in-/outlets have been introduced. Specifically, if a junctions consists of n inlets and m outlets,
n+m− 1 additional pressure points have been introduced13. In general, for the mathematical model
to be consistent it should introduce the same amount of equations as variables. Therefore, the pressure
coefficients should be manipulated in such a way that n+m-1 independent equations remain.

In the current state the model has n ·m equations, namely

Pi − Pj = Ci,jρu
2
j ∀(i, j) ∈ I ×O. (3.44)

13The −1 is due to the pressure point which would be already present in a no-friction model.
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Because,
n ·m ≥ n+m− 1 ∀n,m ≥ 1

usage of the “raw” equations, given by equation (3.44), would lead to an overdetermined system
which in general means that it does not , with certainty, yield a solution. However, in some cases
an overdetermined system can be transformed to a linearly independent system by making linear
combinations of the system of equations. Therefore, for all i ∈ I consider ai ∈ R and equally for all
j ∈ O, bj ∈ R such that ∑

i∈I
ai = 1 and

∑
j∈O

bj = 1. (3.45)

Then we can define a linear combination of equations (3.44) by∑
i∈I

∑
j∈O

aibj (Pi − Pj) =
∑
i∈I

∑
j∈O

aibjCi,jρu
2
j ,∑

i∈I
aiPi −

∑
j∈O

bjPj =
∑
i∈I

∑
j∈O

aibjCi,jρu
2
j . (3.46)

Now consider an arbitrary i ∈ I then by setting ai = 1 and thereby ak = 0 for all k ∈ I \ {i}. Then
(3.46) becomes

Pi −
∑
j∈O

bjPj =
∑
j∈O

bjCi,jρu
2
j . (3.47)

This equation can be interpreted by noting that∑
j∈O

bjPj

is a weighted average pressure of the outlets. Now consider two outlets with equal mass flow, it makes
sense that these two should add equally to this average pressure. However, when considering two
outlets where one has far more mass flow than the other, it is natural to make the one with more mass
flow contribute more to the weighted average then the one with less flow. To incorporate this insight
define

M =
∑
j∈O

ṁj =
∑
k∈I

ṁk, (3.48)

where the second equality is a direct consequence of the mass continuity, equation (2.9). Then by
specifying

bj =
ṁj

M
, (3.49)

equation (3.47) becomes

Pi −
∑
j∈O

ṁj

M
Pj =

∑
j∈O

ṁj

M
Ci,jρu

2
j , (3.50)

which is the mass flow rate weighted average of equation (3.44), concerning an arbitrary i ∈ I.

Equivalently, for an arbitrary j ∈ O we can deduce the mass flow rate weighted average, which results
in ∑

i∈I

ṁi

M
Pi − Pj =

∑
i∈I

ṁi

M
Ci,jρu

2
j . (3.51)

Do note however that this method generates n+m equations, which is still one too many.
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To reduce the size of the system, matrix analysis is used. The system of equations (3.50) and (3.51)
gives rise to the following system matrix

1 0 . . . 0 − ṁj1

M . . . − ṁjm

M Bi1
0 1 . . . 0 − ṁj1

M . . . − ṁjm

M Bi2
...

...
. . .

...
...

. . .
...

...

0 0 . . . 1 − ṁj1

M . . . − ṁjm

M Bin
ṁj1

M

ṁj2

M . . .
ṁjm

M −1 . . . 0 Bj1
...

...
. . .

...
...

. . .
...

...
ṁj1

M

ṁj2

M . . .
ṁjm

M 0 . . . −1 Bjm


, (3.52)

where

Bik =
∑
j∈O

ṁj

M
Cik,jρu

2
j and Bjk =

∑
i∈I

ṁi

M
Ci,jkρu

2
jk
,

and which after Gaussian elimination14 gives the equivalent matrix

0 0 . . . 0 0 . . . 0 0
−1 1 . . . 0 0 . . . 0 Bi2 −Bi1
...

...
. . .

...
...

. . .
...

...
−1 0 . . . 1 0 . . . 0 Bin −Bi1
1 0 . . . 0 −1 . . . 0 Bj1 −

∑
i∈I\i1

ṁi

M (Bi −Bi1)
...

...
. . .

...
...

. . .
...

...
1 0 . . . 0 0 . . . −1 Bjm −

∑
i∈I\i1

ṁi

M (Bi −Bi1)


. (3.53)

Note that the system matrix has rank n+m− 1 which is precisely what we need, and that there are
no restrictions to which inlet is i1 therefore i1 can be chosen arbitrarily in I.

Now pick ref ∈ I arbitrarily, then using equation (3.53) we get the following system

Pi − Pref =
∑
j∈O

ṁj

M
(Ci,j − Cref,j) ρu

2
j ∀i ∈ I \ {ref}

(3.54)

Pref − Pj =
∑
i∈I

ṁi

M
Ci,jρu

2
j −

∑
i∈I\{ref}

mi

M

∑
k∈O

ṁk

M
(Ci,k − Cref,k) ρu2k = Cref,jρu

2
j ∀j ∈ O

(3.55)

where the last equality is a result of equation (3.44). This system is linearly independent as shown in
equation (3.53) and has n + m − 1 equations. Therefore this system constitutes a model conforming
to all requirements.

3.3.5 Validity

Now that we have a model, it is time to confirm its validity. This is normally done by comparing it
to experimental results. However, due to lack of experimental results this cannot be done. Therefore,
the model is compared to the T-junction model published by Bassett et al. in 2001[4], which shows
agreement with experimental data.

14This is simply using elementary row operations to get an equivalent matrix in row echelon form. (NL: “matrix
vegen”)
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Consider a T-junction consisting of a main pipe and a branch attached at an angle θ to the main pipe.
Now call the two in-/outlets of the main pipe a and c and the branch b. Furthermore, consider the
cross sectional area of the main pipe to be constant thus

Aa = Ac

This situation is schematically drawn in figure 3.3.

θ

Aa Ac

Ab

ṁa ṁc

ṁb

Pa Pc

Pb

Figure 3.3: Schematic representation of a T-junction, consisting of a main pipe and a branch which
makes an angle of θ with the main branch.

In 2001, Bassett et al. published a model which can describe the pressure coefficient, Ci,j between
an inlet, i, and outlet, j, for arbitrary flow conditions with good agreement to experimental results.
Therefore, it is informative to compare that model to the new model derived here. However, due to
symmetry only two flow types have to be examined, namely flow from a to b and flow from b to a.
In figure 3.4a the pressure coefficient Ca,b is plotted against the mass flow ratio qa,b for both Bassets
model and the new model derived here. The same is done for Cb,a and qb,a in figure 3.4b. Thus, in
figure 3.4a the flow from a to b is observed, and in figure 3.4b the flow from b to a is observed.
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Basset 2001 (θ=30 ◦ )
New model (θ=30 ◦ )
Basset 2001 (θ=60 ◦ )
New model (θ=60 ◦ )
Basset 2001 (θ=90 ◦ )
New model (θ=90 ◦ )
Basset 2001 (θ=120 ◦ )
New model (θ=120 ◦ )

(a) Plot of Ca,b against qa,b from the model proposed by
Bassett et al.[4] and the new model for various angles
θ. Note the logarithmic scale.
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New model (θ=30 ◦ )
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New model (θ=60 ◦ )
Basset 2001 (θ=90 ◦ )
New model (θ=90 ◦ )
Basset 2001 (θ=120 ◦ )
New model (θ=120 ◦ )

(b) Plot of Cb,a against qb,a from the model proposed by
Bassett et al.[4] and the new model for various angles
θ. Note the logarithmic scale.

Figure 3.4: Plots to compare the new model to the model of Bassett et al.[4].
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Both figures seem to follow the same pattern, for q < 1 the two models seem to match perfectly. Note
that in for q < 1 there is only one inlet due to mass continuity. However, for q > 1 the new model does
not seem to agree with the old model, this would imply that the new model does not hold for multiple
inlets. But it should, after all we have specifically looked into that case. No, the difference finds its
nature in an assumption of Bassett et al, namely “it will be assumed that the static pressures in the
inflow branches are equal”[4]. This assumption is a fundamental difference between the new model
and that derived by Bassett et al. In addition, Bassets model seems to deviate from experimental
data as q > 1 increases. A possible explanation for this phenomenon could be the assumption of equal
static pressure.

To further compare the models the assumption by Bassett et al. can be emulated in the new model
by considering equation (3.51) ∑

i∈I

ṁi

M
Pi − Pj =

∑
i∈I

ṁi

M
Ci,jρu

2
j . (3.56)

By considering
∑
i∈I

ṁi

M Pi to be the static pressure for all inlets the assumption of equal static pressure
for inlets is incorporated. In figures 3.5a and 3.5b, the pressure coefficients are again plotted against
the mass flow ratio but with the assumption of equal static pressure at the inlets.
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(a) Plot of Ca,b against qa,b from the model proposed
by Bassett et al.[4] and the new model with equal static
inlet pressure for various angles θ. Note the logarith-
mic scale.
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Basset 2001 (θ=120 ◦ )
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(b) Plot of Cb,a against qb,a from the model proposed
by Bassett et al.[4] and the new model with equal static
inlet pressure for various angles θ. Note the logarith-
mic scale.

Figure 3.5: Plots to compare the new model with the assumption of equal static pressure for all inlets
to the model of Bassett et al.[4].

The figures show that both models follow exactly the same curves for both flow types. An argument
showing that this equivalency is analytical can be made rigorous by equating the expressions of the
pressure coefficients. From this analysis can be concluded that the difference between both models is
purely due to the assumption of equal static pressures at the inlets.
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To understand what this means a specific configuration is examined. Consider the situation where

θ = 90◦,

Aa = Ab = Ac = 1 m2,

Pa = 105 Pa,

I = {b, c},
O = {a},

ṁa = ṁc = 100
kg

s
,

ṁb = 0
kg

s
,

ρ = 1000
kg

m3
.

Note that
ṁa + ṁb − ṁc = 100− 100 = 0

thus the situation satisfies mass continuity. Now the newly introduced junction model equations (3.54)
and (3.55) imply

Pc − Pb = (Cc,a − Cb,a) ρu2a,

Pb − Pa = Cb,aρu
2
a,

where according to equation (3.38),

Cc,a = 1− 1

ψc,aqc,a
cos

(
3

4
(π − θc,a)

)
,

Cc,a = 1− 1

ψc,aqc,a
= 1− 1 = 0.

where we can make the step because by definition θc,a = 180◦. Furthermore, equation (3.38) implies
that

Cb,a = 1− 1

ψb,aqb,a
cos

(
3

4
(π − θb,a)

)
,

Cb,a = 1− ṁb

ψb,aṁa
cos

(
3

4
(π − θb,a)

)
,

Cb,a = 1− 0 = 1.

In addition note that according to equation (2.11)

ρu2a = ρ

(
ṁa

ρ ·Aa

)2

,

ρu2a = 1000

(
100

1000

)2

,

ρu2a = 10.
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Therefore, the new model gives us

Pc − Pb = −ρu2a,
Pb − Pa = ρu2a,

Pc − Pa = 0.

By following Bassett et al. [3], where equal inlet pressure is assumed we get

Pc − Pb = 0,

Pb − Pa = ρu2a,

Pc − Pa = ρu2a,

where Pc − Pb = 0 follows from the assumption of equal inlet pressure.

Consider figure 3.6a and 3.6b which were taken from Bassett et al. 2001[4]. In 3.6a q = ṁb

ṁa
and in

3.6b q = ṁc

ṁa
. Therefore for 3.6a q = 0 is of interest and for 3.6b q = 1 is of interest in this situation.

(a) Plot of the total pressure coefficient K7 as de-
fined in Bassett. 2001.

(b) Plot of the total pressure coefficient K8 as defined
in Bassett. 2001.

Figure 3.6: Plots of Bassett et al. showing experimental data.[4].

Now as K7 is the total pressure normalized by ρu2a we get for both models that K7= −1 which is
conform figure 3.6a, however for Basset 2003 we get that K8 is 1 where the new model is 0 and
only the new model conforms to figure 3.6b. Therefore we can conclude that by allowing for pressure
difference between the inlets the model has better agreement with experimental results in this situation
than the model with equal static pressure for all inlets. However, more experimental data is required
to generalize this statement.

3.4 Summary of the model

To conclude this section, a short summary of the model and its domain of validity is given. This
section describes that in case of

Single phase flow The fluid is in a single phase
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Incompressible fluid A fluid with constant density

Steady-state The system is time invariant.

Horizontal junction The junction does not encounter gravitational effects

No wall friction There are no losses due to wall friction

and some more derivation specific assumptions, the pressure differences in a junction with inlets I and
outlets O are described by

Pi − Pref =
∑
j∈O

ṁj

M
(Ci,j − Cref,j) ρu

2
j ∀i ∈ I \ {ref} (3.57)

Pref − Pj = Cref,jρu
2
j ∀j ∈ O (3.58)

where

Pk the static pressure at in-/outlet k in
[
kg
m·s2

]
ṁk the mass flow rate through in-/outlet k in

[
kg
s

]
M the total mass flow through the junction defined by M =

∑
i∈I ṁi =

∑
j∈O ṁj

ρ the density of the fluid in
[
kg
m3

]
uk the flow velocity at in-/outlet k in

[
m
s

]
Furthermore ref ∈ I can be arbitrarily chosen and

Ci,j = 1− 1

ψi,jqi,j
cos

(
3

4
(π − θi,j)

)
(3.59)

where

ψi,j the cross sectional area ratio between inlet i and outlet j defined by ψi,j = Ai

Aj

Ak the cross sectional area of in-/outlet k in
[
m2
]

qi,j the mass flow rate between inlet i and outlet j defined by qi,j = ṁi

ṁj

θi,j the angle between inlet i and outlet j.
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4 Pipe flow network model with incorporation of junction
model

In this section the junction model introduced in section 3 will be incorporated in a pipe flow network
model, which was introduced in section 2. Thereafter, the section will be concluded with a short
digression to numerical methods which can be used to solve the pipe flow network model.

4.1 Addition of junction model

To incorporate the junction model in a pipe flow network model some changes to the mathematical
description as proposed in section 2.1 have to be made. Namely, the junction model introduces n+m−1
new pressure variables to the network for a junction with n inlets and m outlets. In other words, every
pipe (i, j) ∈ E in the network now has an ingoing pressure, (Pin)i,j , and an outgoing pressure, (Pout)i,j .
Where (Pin)i,j represents the static pressure of pipe (i, j) at node i, and (Pout)i,j represents the static
pressure of pipe (i, j) at node j. Thus the in and out refer to the direction of the pipe in the graph,
not the direction of flow. Formally,

(Pin)i,j = The static pressure of pipe (i, j) ∈ E at node i ∈ V ∀(i, j) ∈ E, (4.1)

(Pout)i,j = The static pressure of pipe (i, j) ∈ E at node j ∈ V ∀(i, j) ∈ E. (4.2)

Furthermore, to calculate the pressure coefficient between an inlet i and an outlet j the angle θi,j
between i and j has to be known. Therefore it has to be added to the mathematical description. This
is in no way an easy task as it links two pipes in a junction to each other. On first sight this would lead
to something awkward like θ(a,b),(c,d) which would represent the angle between pipes (a, b), (c, d) ∈ E.
However, by giving every node a predetermined axis we can specify an angle (θin)i,j which represents

the angle between pipe (i, j) ∈ E and the reference axis of node i.15 In an equivalent manner (θout)i,j
can be defined. Thus, formally

(θin)i,j = The angle between (i, j) ∈ E and the predetermined axis of node i ∀(i, j) ∈ E, (4.3)

(θout)i,j = The angle between (i, j) ∈ E and the predetermined axis of node j ∀(i, j) ∈ E. (4.4)

For good measure, note that the axis of a node is solely there to create a reference axis on which the
angles can be based and the angles should be measured counter-clockwise16.

Now that the necessary variables are added to the mathematical description the new pipe flow network
model can be introduced. To be rigorous, consider an arbitrary pipe flow network. Using section 2.1
an equivalent graph, G = (V,E), can be generated where by equations (2.1) to (2.3) and (2.5) the
variables for pipe cross sectional area, Ai,j , pipe length, Li,j , mass flow rate through a pipe, ṁi,j , and
external in-/outflow at a node, si, are defined. Furthermore using equations (4.1) to (4.4) the static
pressures at both ends of a pipe, (Pin)i,j and (Pout)i,j , and the angles (θin)i,j and (θout)i,j with respect
to the reference axis of the node at each respective end are defined. Note that all variable distributions
are presumed known, except for ṁ, s, (Pin) and (Pout) which are presumed to be partial distributions
as defined in section 2.1.

To complete the model we need equations to govern the unknown variables in the partial distributions.
By assuming steady-state, equation (2.23) gives us

sk +
∑
i∈Ik

ṁi,k −
∑
j∈Ok

ṁk,j = 0 ∀k ∈ V, (4.5)

15Note that the assumption that the network lies in a single flat plane has been made here. A 3-dimensional network
would lead to the introduction of two angles the polar and azimuth angle as in the spherical coordinate system.

16The choice of direction does not matter, it only matters that the same convention is used for the whole network.
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where Ik and Ok are defined as in equations (2.21) and (2.22),

Ik = {i ∈ V : (i, k) ∈ E}, (4.6)

Ok = {j ∈ V : (k, j) ∈ E}. (4.7)

If we assume cylindrical pipes with constant diameter and incompressible fluid, equation (2.20) gives
us

(Pinflow)i,j − (Poutflow)i,j =
Li,j
Di,j

· f((Re)i,j) ·
1

2
· ρ · u2i,j ∀(i, j) ∈ E, (4.8)

where Pinflow and Poutflow are the static pressure at the side of inflow and outflow respectively, Di,j

is the diameter of pipe (i, j), f((Re)i,j) is the Darcy friction factor which is depend on the Reynolds

number17 which is defined as

(Re)i,j =
ρ · ui,j ·Di,j

µ
, (4.9)

and u is the average flow velocity through pipe (i, j). To use this in the model the equation has to
be rewritten in quantities defined in the mathematical description. First of all, as (Pinflow)i,j and

(Poutflow)i,j are static pressures at both ends of the pipe then can be related to (Pin)i,j and (Pout)i,j .

Do note that (Pin)i,j and (Pout)i,j are related to the direction of (i, j) in the graph and not to the flow
direction. However, ṁi,j relates the flow direction to the direction of (i, j) in the graph by its sign.
Therefore, we can deduce

(Pinflow)i,j − (Poutflow)i,j =

{
(Pin)i,j − (Pout)i,j if ṁi,j ≥ 0

(Pout)i,j − (Pin)i,j if ṁi,j < 0
. (4.10)

The next undefined quantity is Di,j , but as we have already assumed the pipes to be cylindrical we
can simply use the area of a circle to rewrite Di,j in terms of Ai,j resulting in

Di,j = 2

√
Ai,j
π
. (4.11)

Lastly, we have to rewrite ui,j which can easily be done using equation (2.11), resulting in

ui,j =
ṁi,j

ρ ·Ai,j
. (4.12)

By substituting all conversions found above into equation (4.8) we get{
(Pin)i,j − (Pout)i,j if ṁi,j ≥ 0

(Pout)i,j − (Pin)i,j if ṁi,j < 0

}
= f(Re) ·

Li,j · ṁ2
i,j

ρ ·A2
i,j

·
√

π

Ai,j
∀(i, j) ∈ E. (4.13)

Note that f(Re) is still present in the equation even though it is not specified in the mathematical
description. That is done because the conversion of f(Re) is more complex than the other conversions,
and therefore deserves special attention.

Many a paper has been written about the Darcy friction factor. The problem with this friction factor
is that it is dependent on the flow regime, so whether the fluid flow is laminar or turbulent. This is
a problem because in the transition area between laminar and turbulent, 2000 < Re < 4000, the flow
regime is undefined. But apart from this hiccup, the factor for commercial pipes in turbulent flow is
governed by the Colebrook-White equation[16]. The main problem with this equation is that it is an
implicit equation. Therefore, there exist many papers that approximate the Colebrook-White equation

17The Reynolds number is a dimensionless quantity indicating the regime of the flow.
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in explicit form, whose analysis is outside the scope of this text. One of those approximations is the
Blasius correlation[17],

f(Re) =
0.079

Re
1
4

for turbulent flow (Re > 4000), (4.14)

which we will use in this paper because of its simplicity. The friction factor is much simpler for laminar
flow, it can be derived that

f(Re) =
64

Re
for laminar flow (Re < 2000). (4.15)

To accommodate for the undetermined transition area, 2000 < Re < 4000, the sigmoid function18

defined by

Sig(x) =
1

1 + e−x
, (4.16)

will be used to stitch the turbulent and laminar approximations together to one function yielding

f(Re) = Sig

(
−4.5 · Re− 3000

1000

)
· 64

Re
+ Sig

(
4.5 · Re− 3000

1000

)
· 0.079

Re
1
4

, (4.17)

where the factor 4.5 inside the sigmoid function comes from the fact that Sig(4.5) ≈ 0.99. It is very
important to note that this definition of f(Re) is merely chosen for its favourable properties, such
as continuity. Readers interested in explicit approximations of the Darcy friction factor are urged to
read a paper specifically about this topic, such as “Review of explicit approximations to the Colebrook
relation for flow friction” by Dejan Brkić[6], as such approximations are out of the scope of this text.

Using the prior conversions and equation (4.9) yields

Re = 2
|ṁi,j |

µ ·
√
Ai,j · π

, (4.18)

where the absolute of ṁi,j is taken because Re is per definition always positive. And with this the
analysis of the Darcy-Weisbach equation for this model is concluded. For good measure, the procedure
to generate a Darcy-Weisbach equation for an arbitrary pipe (i, j) ∈ E is provided in algorithm 2.

Algorithm 2 Procedure to generate a Darcy-Weisbach equation for an arbitrary pipe (i, j) ∈ E.

Re := 2
|ṁi,j |

µ·
√
Ai,j ·π

f = Sig
(
−4.5 · Re−3000

1000

)
· 64
Re + Sig

(
4.5 · Re−3000

1000

)
· 0.079

Re
1
4

∆P = (Pout)i,j − (Pin)i,j
if ṁi,j ≥ 0 then ∆P = (Pin)i,j − (Pout)i,j
end if

return ∆P − f · Li,j ·ṁ2
i,j

ρ·A2
i,j
·
√

π
Ai,j

= 0

The one thing that remains is incorporating a junction model. Note that up until this point the deriva-
tion is independent of junction model and the above equations make up the basis of the Frictionless
model. Such a Frictionless model would be finalized by introducing, for all k ∈ V , equations

(Pout)ref,k − (Pout)i,k = 0 ∀i ∈ Ik \ {i}, (4.19)

(Pout)ref,k − (Pin)k,j = 0 ∀j ∈ Ok, (4.20)

18The sigmoid function is a continuous approximation of the Heaviside function with the property that Sig(x) +
Sig(−x) = 1)
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for an arbitrarily chosen ref ∈ Ik where Ik and Ok are again defined by equations (2.21) and(2.22)

Ik = {i ∈ V : (i, k) ∈ E}, (4.21)

Ok = {j ∈ V : (k, j) ∈ E}. (4.22)

However, section 3 introduces a new junction model and this derivation has been working towards
implementing that model. So, without further ado, for each node k ∈ V consider Ik and Ok as defined
by equations (4.21) and(4.22). To adhere to the notation used in section 3.4 define the set of inlets, I
as

I = {i ∈ Ik : ṁi,k ≥ 0} ∪ {j ∈ Ok : ṁk,j ≤ 0}. (4.23)

Equivalently the set of outflows, O as

O = {i ∈ Ik : ṁi,k < 0} ∪ {j ∈ Ok : ṁk,j > 0}. (4.24)

Note that I and O are disjunct sets and I ∪O = Ik ∪Ok. Moreover, it is very important to note that
where Ik and Ok are defined by graph direction, I and O are defined by flow direction.

To further convert the notation used here to the notation used in section 3.4 consider an arbitrary
inlet i ∈ I. We can define the mass flow rate, ṁi, cross sectional area, Ai, static pressure, Pi, and
angle to the reference axis of the junction θi of the inlet by

ṁi =

{
ṁi,k if i ∈ Ik
−ṁk,i if i ∈ Ok

, (4.25)

Ai =

{
Ai,k if i ∈ Ik
Ak,i if i ∈ Ok

, (4.26)

Pi =

{
(Pout)i,k if i ∈ Ik
(Pin)k,i if i ∈ Ok

, (4.27)

and

θi =

{
(θout)i,k if i ∈ Ik
(θin)k,i if i ∈ Ok

. (4.28)

Equivalently, for an outlet, j ∈ O, ṁj , Aj , Pj and θj are defined by

ṁj =

{
−ṁj,k if j ∈ Ik
ṁk,j if j ∈ Ok

, (4.29)

Aj =

{
Aj,k if j ∈ Ik
Ak,j if j ∈ Ok

, (4.30)

Pj =

{
(Pout)j,k if j ∈ Ik
(Pin)k,j if j ∈ Ok

, (4.31)

and

θj =

{
(θout)j,k if j ∈ Ik
(θin)k,j if j ∈ Ok

. (4.32)

Note that ṁi, ṁj ≥ 0 just like in section 3.4.
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Now pick ref ∈ I at random, then according to section 3.4 the pressure distribution of the junction is
governed by equations (3.57) and (3.58),

Pi − Pref =
∑
j∈O

ṁj

M
(Ci,j − Cref,j) ρu

2
j ∀i ∈ I \ {ref}, (4.33)

Pref − Pj = Cref,jρu
2
j ∀j ∈ O, (4.34)

where M is the total mass through the junction defined by

M =
∑
i∈I

ṁi =
∑
j∈O

ṁj , (4.35)

and uj is the flow speed in outlet j ∈ O defined by

uj =
ṁj

ρ ·Aj
. (4.36)

Furthermore, Ci,j is the pressure coefficient for flow between inlet i and outlet j defined by equation
(3.59),

Ci,j = 1− 1

ψi,jqi,j
cos

(
3

4
(π − θi,j)

)
, (4.37)

where ψi,j is the cross sectional area ratio defined by

ψi,j =
Ai
Aj
, (4.38)

and qi,j is the mass flow rate ratio defined by

qi,j =
ṁj

ṁi
. (4.39)

In addition, the angle between an in- and outlet, θi,j , is defined as

θi,j ≡ θi − θj mod π, (4.40)

where the modulo π is to ensure that 0 ≤ θi,j < π, which is necessary for use in the model of section
3.4.19

Consideration of all equations, mass continuity, Darcy-Weisbach and the equations as a result of
the junction model, results in a system of equations governing the variables. Solving this system of
equations yields the end result where all unknowns have been solved. However this model cannot
be used on an arbitrary set of unknowns, for example if all variables are unknown it is obvious that
the network can not be solved. For a network to be solvable by this model, it should have an equal
amount of unknowns and independent equations in the model. We start by counting the total amount
of equations. Looking at pipes, the Darcy-Weisbach equation supplies one equation for each pipe thus
in total #E equations. For the nodes it is a little more complex. Equations on the nodes are the mass
continuity equation which supplies one equation per node and the junction model which supplies the
nk − 1 equations for each node k ∈ V where nk is the amount of pipes connected to k. Thus in total
each node k ∈ V supplies nk equations. By noting that each pipe is by definition connected to two
nodes, we can deduce that ∑

k∈V

nk = 2 ·#E (4.41)

19In layman’s terms 0 ≤ θi,j < π is defined such that θi − θj = k · π + θi,j with k an integer, it can be proven that
such a θi,j always exists.
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which brings the total amount of equations to 3 ·#E.

To count the variables consider that only the ṁ, (Pin), (Pout) and s distributions are allowed to be
partial and therefore contain unknowns. As ṁ, (Pin) and (Pout) are defined on the pipes they amount
to 3 ·#E variables. The s distribution is defined on the nodes and therefore introduces #V variables.
This brings the total to #V +3 ·#E variables. As we have #V +3 ·#E variables and 3 ·#E equations,
the model becomes solvable if #V + 3 ·#E − 3 ·#E = #V variables are known.

Hereby, we have completed the pipe flow network model with incorporated junction model. For clarity,
the whole model is summarized in algorithm 3.

Algorithm 3 Pipe flow network model with junction model incorporated

Require: The mathematical description of a pipe flow network consisting of a graph G = (V,E),
variables for each pipe (i, j) ∈ E for cross sectional area Ai,j , pipe length Li,j , mass flow rate through
pipe ṁi,j , static pressure at in- and outflow (Pin)i,j , (Pout)i,j respectively and angles with respect to
the reference axis at the nodes of the in- and outflow (θin)i,j and (θout)i,j respectively. In addition,
the external in-/outflow variable si for i ∈ V has te be given, and the fluid density ρ and dynamic
viscosity µ. Note that the mass flow rate, static pressure and external in-/outflow distributions can
be partial distributions as long as these partial distributions combined have precisely #V knowns
and atleast one static pressure is known.
S = ∅
for k ∈ V do

Ik := {i ∈ V : (i, k) ∈ E}
Ok := {j ∈ V : (k, j) ∈ E}
S := S ∪

{
sk +

∑
i∈Ik ṁi,k −

∑
j∈Ok

ṁk,j = 0
}

I := {i ∈ Ik : ṁi,k ≥ 0} ∪ {j ∈ Ok : ṁk,j ≤ 0}
O := {i ∈ Ik : ṁi,k < 0} ∪ {j ∈ Ok : ṁk,j > 0}
for i ∈ I ∪O do

Ai :=

{
Ai,k if i ∈ Ik
Ak,i if i ∈ Ok

Pi :=

{
(Pout)i,k if i ∈ Ik
(Pin)k,i if i ∈ Ok

θi :=

{
(θout)i,k if i ∈ Ik
(θin)k,i if i ∈ Ok

ṁi =


ṁi,k if i ∈ Ik and i ∈ I
−ṁk,i if i ∈ Ok and i ∈ I
−ṁi,k if i ∈ Ik and i ∈ O
ṁk,i if i ∈ Ok and i ∈ O

end for
Take ref ∈ I randomly
for j ∈ O do

ψref,j = Aref

Aj

qref,j =
ṁj

ṁref

θref,j ≡ θref−θj
π mod 1

Cref,j = 1− 1
ψref,jqi,j

cos
(
3
4 (π − θref,j)

)
uj =

ṁj

ρ·Aj

S := S ∪
{
Pref − Pj − Cref,jρu

2
j

}
end for
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Algorithm 3 Pipe flow network model with junction model incorporated (continued)

M =
∑
j∈O ṁj

for i ∈ I \ {ref} do
for j ∈ O do

ψi,j = Ai

Aj

qi,j =
ṁj

ṁi

θi,j ≡ θi−θj
π mod 1

Ci,j = 1− 1
ψi,jqi,j

cos
(
3
4 (π − θi,j)

)
end for
S := S ∪

{
Pi − Pref −

∑
j∈O

ṁj

M (Ci,j − Cref,j) ρu
2
j

}
end for

end for
for (i, j) ∈ E do

Re := 2
|ṁi,j |

µ·
√
Ai,j ·π

f = Sig
(
−4.5 · Re−3000

1000

)
· 64
Re + Sig

(
4.5 · Re−3000

1000

)
· 0.079

Re
1
4

∆P = (Pout)i,j − (Pin)i,j
if ṁi,j ≥ 0 then

∆P = (Pin)i,j − (Pout)i,j
end if

S := S ∪
{

∆P − f · Li,j ·ṁ2
i,j

ρ·A2
i,j
·
√

π
Ai,j

= 0

}
end for
return Solve(S)

4.2 Numerical methods

To solve the system of equations which results from the model numerical root-finding algorithms can,
and most often will, be used. These algorithms come in a lot of flavours, probably the most intuitive
algorithm is the bisection method which will be discussed first. However the bisection method can
only be used for univariate equations, equations with one variable. The model consists of a system of
multivariate equations. Therefore, we have to look for an algorithm for multivariate equations. The
Newton method is such an algorithm, probably the most well known of its sort, and will be discussed
next. After that the subsection will be concluded with a notion about pre-implemented algorithms.

4.2.1 Bisection method

As already said the bisection method is an algorithm to find the root20 of a univariate continuous real
function f . It is a very robust method, meaning that it will always find a root, x ∈ R if it exists. It
does however request an interval [a, b] ⊆ R from the user in which the root is situated, or more precisely

such that f(a) · f(b) < 0. Then the iterative step is pretty straight forward, consider c = a + (b−a)
2 ,

which is just the middle of a and b, then if f(c) = 0 stop iterating, else if f(c) has the same sign as
f(a), a = c and otherwise b = c. This approach is summarized in algorithm 4. The general idea is
that the width of the interval is halved with each iteration, while keeping the root in the interval and
thereby approximating the root with the centre of the interval.

20In mathematics a root of a real function, f : R→ R, is an x ∈ R such that f(x) = 0.
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Algorithm 4 The Bisection method.

Require: A univariate continuous real function f : R→ R, an interval (a, b) ⊂ R such that f(a)·f(b) ≤
0 and a threshold value ε > 0.
while b− a > ε do

c = a+ (b−a)
2

if f(c) = 0 then
a := c
b := c

else if f(c) · f(a) > 0 then
a := c

else
b := c

end if
end while

4.2.2 Newton method

Another method, more appropriate to the model, is the multivariate Newton method. Consider a
vector of real multivariate differentiable functions ~f : Rk → Rm. The aim is to derive a method to
approximate an ~x ∈ Rk such that ~f(~x) = ~0 given an initial guess ~x0 ∈ Rk. Consider the first order

Taylor expansion of fi ∈ ~f ,

fi(~x+ δ~x) = fi(~x) +
∑
xn∈~x

∂fi
∂xn

(~x) · δ~x+O(δ~x2), (4.42)

which in vector form yields
~f(~x+ δ~x) ≈ ~f(~x) + ~Jf (~x)δ~x, (4.43)

where Jf is the Jacobian of ~f defined as

~Jf =


∂f1
∂x1

. . . ∂f1
∂xk

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xk

 . (4.44)

Consider the situation where we have an approximation of the root ~xn and we want a better approxi-
mation ~xn+1 such that

~f(~xn+1) = 0, (4.45)

then using equation (4.43) we get

~f(~xn+1) ≈ ~f(~xn) + ~Jf (~xn)(~xn+1 − ~xn),

0 ≈ ~f(~xn) + ~Jf (~xn)~xn+1 − ~Jf (~xn)~xn,

~Jf (~xn)~xn+1 ≈ ~Jf (~xn)~xn − ~f(~xn).

Thus we get an approximation of ~xn+1 by solving

~Jf (~xn)~xn+1 = ~Jf (~xn)~xn − ~f(~xn), (4.46)

which is a linear equation and therefore can easily be solved using linear algebra. So using this as
iterative step, we can deduce algorithm 5. It is important to note that this method is not robust
like the bisection method, meaning it can diverge and not find the root. Therefore it is important to
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specify a maximum amount of iterations N ∈ N. For a more extensive account of the Newton method
and other numerical root-finding algorithms the reader is recommended to have a look at chapter 9
of the book “Numerical recipes in C: The art of scientific computing” by Saul Teukolsky and William
H. Press [14].

Algorithm 5 Newton method

Require: A real multivariate differentiable functions ~f : Rk → Rm, the Jacobian matrix of ~f , ~Jf , an
initial guess of the root ~x0 and N ∈ N the amount of iterations.
for i ∈ {1, . . . , N} do

Solve( ~Jf (~xi−1)~xi = ~Jf (~xi−1)~xi−1 − ~f(~xi−1))
end for

4.2.3 Pre-implemented algorithms

Nowadays, most programming languages have libraries for scientific work. Which most often include
a wide range of implemented root-finding algorithms. Using one of these implementations has the
big advantage that the implementation is generally highly optimized and therefore runs very fast. In
addition, a big advantage over implementing a root-finding algorithm yourself is that it is less prone
to bugs, as the code is checked by many more people than just yourself. In the rest of this text a pre-
implemented root-finding algorithm will be used, the next section will elaborate on the implementation
of the model and the algorithm used.
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5 Implementation

The model described in section 4 is implemented in a programming language called Python. This
chapter gives a short introduction to Python, after that two libraries used in the implementation are
discussed. The section concludes with a description of the actual implementation.

5.1 Python

Python is one of the most popular programming languages in the world[11]. The language was de-
veloped in the 1980s at the Centrum voor Wiskunde en Informatica in Amsterdam (Netherlands) by
Guido van Rossum. Nowadays it is used by big companies such as Google, large open-source projects
such as Blender21 and well known research institutions like CERN.

The main advantage of Python is the relative ease of use when compared to languages such as C and
Rust due to higher-level data structures and the fact that it is can be used as interpreted language.
Because of this ease of use it is an ideal language for fast prototyping and proof-of-concept programs.
Furthermore, because of the popularity of Python in combination with being open-source, many func-
tionalities not readily built in into the standard Python library are implemented in external libraries
such as the scientific ecosystem SciPy.

5.1.1 SciPy suite

According to SciPy.org “SciPy (pronounced ‘Sigh Pie’) is a Python-based ecosystem of open-source
software for mathematics, science, and engineering.” It consists of multiple open-source Python li-
braries and is widely accepted as the golden standard for computational- and scientific work in the
Python community. It can be viewed as the pythonic equivalent of Matlab, but combined with the
powerful constructs inherent to the Python language. Its features range from simple linear algebra to
signal processing to symbolic integration, and it also contains a comprehensive plot library.

5.1.2 NetworkX

According to NetworkX.github.io “NetworkX is a Python language software package for the creation,
manipulation, and study of the structure, dynamics, and functions of complex networks.” It is an
open-source Python library implementing data structures for graphs, directed graphs and even multi
graphs. Its data structures are very general purpose, any node and any edge can hold any type of
data, from single weights to large XML records. Though in this text only the data structures are of
interest, the package also allows for advanced analysis of graphs.

5.2 Pipe flow model implementation

In appendix B the source code of the implementation discussed here is given along with a usage
example. To make the implementation applicable for different pipe flow networks it is written as a
framework. Meaning the program is not written to solve one specific network, but rather to solve a
user specified network. This framework was implemented in the FlowNetwork class, so to create a new
network a new instance of this class has to be made. During initialization the fluid properties, density
(float) rho and dynamic viscosity (float) mu, can be supplied, they default to the properties of
water at 25◦C and can later on be changed using their respective set methods.

21Blender is a very popular open-source 3D content creation suite. Link: www.blender.org
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The initializer returns a FlowNetwork instance which has methods such as addnodes and addcomponents

to add nodes and pipes to the network. A node can have two variables the external in- or outflow on

the node, (float) s in
[
kg
s

]
, and whether or not the node is a junction, (bool) junction. Note that

for each node one has to specifically state that it is a junction, this is done because the junction model
requires the angles of the pipes connected to this junction to be specified. Therefore, by introducing
the junction variable the user can choose to use the friction or no-friction model on a per junction
basis.

A component (or pipe) should have at least two variables, the cross sectional area of the pipe (float) A

in
[
m2
]

and the length (float) L in [m]. A component can however have up to 5 additional variables,

the in- and outgoing pressure (float) pin and (float) pout respectively in
[
kg
m·s2

]
, the in- and

outgoing angle with the node reference axis, (float) thetain and (float) thetaout respectively in

[◦], and lastly the mass flow rate through the pipe (float) m in
[
kg
s

]
. The variables of a component

can all be easily correlated with the variables in section 4.

After the network has been input properly in the FlowNetwork instance the network can be prepared
for numerical solving. This is done using the getunknowns method, this method takes the network
and checks for any missing variables. If any are found an initial value is added to the initials list and
their place in the graph in combination with their index in the initials list is saved to a dictionary
object22. The method returns the dictionary object and the initials list.

The initials list is used to solve the network using a numerical solver such as scipy.optimize.root

of the SciPy suite. Such a solver needs a residue function to find the root of, for the FlowNetwork

instance this residue function is given by the residue method. This method is an implementation of
algorithm 3 with some additional functionalities such as falling back to a no-friction model when the
junction is not specified or the reference inlet cannot be established.

After the numerical solver is done, the getresult method returns a new FlowNetwork instance con-
taining the numerically determined values. The info method of the resulting FlowNetwork instance
can then be used to get the info from the nodes or the pipes or both. Which concludes the elaboration
on a typical usage of the implementation.

To conclude this section an implementation choice of the framework has to be highlighted. Namely,
both the pipe model as the junction model have been implemented using static functions. This implies
that they can be interchanged with other models by calling their respective set methods setPipeModel
and setJunctionModel. This functionality allows for testing of other pipe flow- or junction models
with this framework.

22In layman’s terms a dictionary object is a list which relates specific indices to data, just like an ordinary dictionary.
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6 Comparison of the simple model and the model with junc-
tion integration

In this section the pipe flow network model with junction model, introduced in section 3.4, will be
compared to the pipe flow network model without junction model, or more precisely with the no
friction model. This is important because from the comparison the added value of incorporating the
junction model can be determined. And even more important, using the data presented here a feeling
can be developed for which situations lead to a significant difference to use the junction model. For
the comparison the implementation as described in section 5 will be used.

6.1 Results

To obtain results consider a T-junction with a straight horizontal main pipe from a to c with a constant
cross sectional area of 1 m2. In the middle of the main pipe a branch pipe is connected making an
angle of θ with the side of a, and implicitly an angle π− θ with the side of c. The cross sectional area
of b is A in

[
m2
]
. The centre of the junction which arises is called j. The lengths of the pipes are all

L in [m], thus,
La,j = Lb,j = Lc,j = L (6.1)

Now that the structure of the network is set, we can focus our attention on the fluid flow inside
the network. The network is filled with water at 25◦C from which we can derive that the density
ρ = 997.08 kg

m3 and dynamic viscosity µ = 9.00 · 10−4 Pa s where we assume to work in the order of 1
atmospheric pressure[9]. We also assume the external in-/outflow to be known at a and b thus sa and
sb are known and we assume the static pressure at the entrance of pipe (a, j) to be (Pin)a,j = 105 Pa.

Lastly, we assume that there is no external in-/outflow at the junction so sj = 0 kg
s . This situation is

summarized in figure 6.1.

Using this network we can get an insight in when the incorporation of a junction model into a pipe
flow network model yields substantial differences in the result. This is done by solving the network
using the implementation in section 5. On first sight the most influential factor will probably be the
length of the pipes in the network L because the total static pressure loss in the network is made up
out of the pressure loss due to junctions and due the pipe friction which is proportional to the pipe
length. In figure 6.2a the pressure loss ∆P = (Pin)a,j − (Pout)b,j is plotted against the length of the
pipes in the network L for different values of the external in-/outflow at b, sb. In the figure sa = 10
kg
s , A = 1 m2 and θ = 90◦.

Figure 6.2a clearly shows that, at least for higher values of sb, there is a significant difference in pressure
loss between the two models. The junction model increases the pressure loss over the network, which
is to be expected as the fluid loses energy due to geometric friction in the junction. On the other hand,
the pipe length, L, seems to have no influence on the absolute pressure loss difference between the
two models. However, as the total static pressure loss increases linearly with the pipe length and the
pressure loss difference is constant throughout, the pipe length should have an impact on the relative
pressure loss difference.

To further investigate this the relative pressure loss difference, defined by

∆Pfriction −∆Pno−friction
∆Pno−friction

, (6.2)

is plotted against L in figure 6.2b. Note that the lines of this figure start at L = 20 m because the
relative pressure loss difference becomes very big as L goes to zero because the pipe friction goes to
zero. Figure 6.2b clearly shows what was expected, namely that the relative difference goes to zero as
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Figure 6.1: A schematic representation of the network used for the comparison between the pipe flow
network model with junction model and without.
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Figure 6.2

L becomes large. However, especially for large sb, the relative pressure difference is very significant,
more than 10%, for L < 600 m and even longer than that.

Apart from the pipe length, other quantities are believed to play a role in the pressure loss difference.
For example, for smaller angles between a and b, θ, the fluid has to make a sharper bend and therefore

47



the pressure loss would intuitively become bigger. To illustrate these effects the relative pressure loss
difference is plotted against the angle between a and b, θ, in figure 6.3a for various values of sb. In
the figure sa = 10 kg

s , A = 1 m2 and L = 200 m. The aforementioned effect is clearly visible in the

figure, especially for sb = −10 kg
s where the junction model adds approximately 30% extra pressure

loss to the system for small angles. Another thing to note is that for sb = −10 kg
s , where there is only

flow from a to b, the relative pressure loss difference goes to 0 as θ approaches 180◦. Thismplies that
the junction model does not impose any geometrical effects which is intuitive because the ”junction”,
geometrically, approaches a pipe. However, note that for sb 6= −10 kg

s this is not the case which is
probably due to the interaction of the flow from a to b with the flow between a and c or b and c. Lastly,
another interesting result is the negative relative pressure loss for sb = −1 kg

s at large angles. Which
could be due to a pressure applied by the 9 times bigger flow from a to c which has to be countered or
it could be an artefact in the model, further comparison with experiments, which is out of the scope
of this text, should bring closure in this matter.

Another quantity of interest is the cross sectional area ratio between pipe a and pipe b,

ψa,b =
1

A
, (6.3)

because a pipe flow network can be made up of a lot of different sized pipes. Therefore, the relative
pressure loss difference is plotted against the cross sectional area of pipe b, A, in figure 6.3b, again
for different values of sb. The figure shows that the relative pressure loss difference has a peak cross
sectional area which is dependent on sb. This can be explained by considering that, according to the
Darcy-Weisbach, the pressure loss over a pipe is proportional to u2, where u is the average flow velocity
through a the pipe. Now because

u =
ṁ

A · ρ
(6.4)

the pressure loss due to pipes for A� 1 is approximately proportional23 to A−2. Now by considering
the junction to be a contraction for A� 1 literature [9] states that the pressure coefficient is propor-
tional to A. Therefore, the pressure loss due to the junction is more in the order of A−1. This implies
that the pressure loss due to the pipes will dominate the pressure loss of the system, and therefore
the relative pressure loss difference will go to 0 for A � 1. For A � 1 the junction functions as an
enlargement. Then according to literature[9] the pressure coefficient is approximately proportional to
(1− 1

A )2 which implies that the pressure loss due to the junction is approximately proportional to A−2

and goes to zero for A � 0. This inherently means that the relative pressure loss difference goes to
zero for A� 0.

We conclude this section by observing one last quantity. From the plots above we observe that sb has a
large influence on the relative pressure loss difference. Therefore, figure 6.4 shows a plot of the relative
pressure loss difference over a and b versus the external mass outflow in b, sb. In the figure sa = 10 kg

s ,
A = 1 m2 and θ = 90◦. From the figure it is clearly observed that the relative pressure loss difference
increases with the decrease of sb

24. This can be explained by considering that the mass that flows out
of the network at sb has to go through the junction. In the junction it changes direction, by 90◦ to be
exact, and in that process energy is lost in the form of a pressure loss. The higher the mass flow rate
the more momentum the fluid has in the junction and the more force has to be exerted by the junction
to “bend” the flow. Thus the more energy in the form of pressure is dissipated in the junction.

Figure 6.4 also shows negative relative pressure loss difference for sb > −5. Note that because sa = 10,
sb > −5 implies that sc < −5 thus the flow in the junction from a towards c is bigger than the flow
from a to b. Then it could be that additional pressure has to be applied at b to keep the fluid from
flowing towards it. Note that this is only an interpretation and experiments should establish whether
this kind of this negative relative pressure loss difference even occurs in practice.

23Note that this is a mere approximation and in most cases the Darcy friction factor is also a function of A.
24Note that sb is negative in the plot.
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7 Conclusion

This text introduces a steady-state pressure loss model for flat horizontal junctions with arbitrary
amounts of in-/outlets and incompressible single phase flow. From the literary research concerning
junction models can be concluded that the quantities with most influence on the pressure loss due to a
junction are the mass flow rate ratios, cross sectional area ratios and angles between inlets and outlets
in the junction. The model that was derived using this information shows agreement with an existing
model that is verified with experimental data. Furthermore the model shows promise of improving the
existing model, this however should be verified with experimental data.

Using the aforementioned junction model, the mass continuity equation and the Darcy-Weisbach equa-
tion a pipe flow network model is derived. This model can solve the flow in an arbitrary pipe flow
network if the geometric properties of the network, the fluid properties and enough data about the
flow are provided.

Using a Python implementation of the pipe flow network model the model is compared to a model
for pipe flow networks where the pressure loss due to junctions is neglected. The comparison shows
that using the new pipe flow network model yields different results when pipe lengths in the network
average to less than 600 meters, and the difference becomes greater with smaller angles and a higher
mass flow rate. It should however be noted that the pipe flow network model is not compared to
experimental results, and therefore it is hard to say whether the new model yields an improvement
over the model without junction friction.

For future research it is highly recommended to compare the here proposed model to experimental
results. This would help to verify the model and could lead to more insight in multi pipe junctions
and their influence on flow in a pipe flow network. In addition, mathematical properties such as the
well-posedness of the model should be determined to form rigorous notion about how well the model
behaves under all circumstances. Lastly, the model could be used to solve large networks again to
observe its behaviour in a more complex setting.
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A Junction model extension for n inlets and m outlets

In section 3 a pressure loss model for junctions with arbitrary amounts of in-/outlets is derived.
However, the derivation only accounts for either one inlet and multiple outlets, or one outlet and
multiple inlets. This appendix will give an extension to n inlets and m outlets. Note that during the
derivation it will be assumed that any inlet can flow to any outlet, in reality this does not have to be
true as flows can not cross each other.

Consider a junction with n inlets and m outlets, call the set of inlets I and the set of outlets O conform
section 3. Then we can define the total mass flow to be

M =
∑
i∈I

ṁi =
∑
j∈O

ṁj , (A.1)

where ṁi is the mass flow rate in in-/outlet i and the last equality is a result of mass continuity in
combination with an incompressible fluid.

Now consider an outlet j ∈ O. We can assume that every inlet i ∈ I of the junction has a flow towards
j proportional to its total mass flow rate. Thus an inlet with a large mass flow rate supplies more
mass to i then an inlet with a small mass flow rate. Mathematically this can be formulated as

ṁi,j = α · ṁi, (A.2)

where ṁi,j is the flow from inlet i to outlet j and α ∈ R is the proportionality factor. Note that the
sum of the mass flow rates toward j has to be equal to the mass flow rate of j, thus

ṁj =
∑
i∈I

α · ṁi,

ṁj = α ·
∑
i∈I

ṁi,

ṁj = α ·M,

α =
ṁj

M
.

Therefore,

ṁi,j =
ṁi · ṁj

M
∀(i, j) ∈ I ×O. (A.3)

Note that ṁi ≤M , which implies ṁi,j ≤ ṁj and similarly ṁj ≤M implies ṁi,j ≤ ṁi.

Now consider an arbitrary combination of inlet and outlet, (i, j) ∈ I ×O. Then the flow from i to j is
given by equation (A.3). But as ṁi,j ≤ ṁj there must exist a part A′j of the cross section Aj such that
all flow from i goes through that cross sectional area A′j . Similarly, there must exist and A′i ≤ Ai such
that all flow going towards j must go through that. This situation is schematically drawn in figure
A.1. Note that we assume A′i consists of one part and is as close to j as possible, and the same for A′j
and i. Then by assuming radially uniform flow velocity we get

mi,j =
ṁi · ṁj

M
,

A′i · ρ · ui = Ai · ρ · ui
ṁj

M
,

A′i = AiṁjM, (A.4)
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Figure A.1: A schematic representation of an inlet i and outlet j of a junction with n-inlets and
m-outlets.

and using an equivalent manner we get

A′j = Aj
ṁi

M
. (A.5)

Using the definition of the area ratio we get

ψ′i,j =
A′i
A′j
,

=
Ai

ṁj

M

Aj
ṁi

M

,

=
Aiṁj

Ajṁi
,

ψ′i,j = ψi,jqi,j .

Now by considering the surface A′i to be an inlet and A′j to be an outlet of a junction with only
combining or separating flow, which we can do because q′i,j = 1 in that case, we can use the model of
section 3. From which it follows that

C ′i,j = 1− 1

ψ′i,jq
′
i,j

cos

(
3

4
(π − θ)

)
,

= 1− 1

ψi,jqi,j · 1
cos

(
3

4
(π − θ)

)
,

C ′i,j = Ci,j , (A.6)

and therefore the model as derived in section 3 can be used for a junction with n-inlets and m-outlets,
given that the crossing of flows is neglected.
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B Implementation source-code

The pipe flow junction model with the junction model of section 3.4 incorporated has been implemented
in Python. The implementation has been built as a framework allowing for easy solving of arbitrary
networks. An example setup for a three pipe junction network is given in source-code 1. The framework
itself is printed in source-code 2.

The code is also available at: https://github.com/realtwister/FlowNetworkLibrary

Source-code 1: Use case for the pipe flow junction model with junction model incorporation. Consisting
of a three pipe junction network.

from FlowNetworkOnEdge import * # Import the framework
from scipy.optimize import root # Import the numerical solver

N = FlowNetwork() # Create the class instance

N.addnodes([('a',{'s' : 1}), ('b',{}), ('c',{})]) # Create three nodes a,b,c with node c
# having inflow 1 kg/s

N.setJunction('j') # Create a new node j and set it to be a
# junction, this implies that the inflow
# on this node is 0 kg/s

N.addcomponents([('a', 'j', {'A':1, 'pin':0,'thetaout': 0}),
('c', 'j',{'A': 1,'thetaout': 180}),
('b','j', {'A':1,'pin':0,'thetaout': 90})]) # Add the components with their

# respective angles

(dict, vec) = N.getunknowns(True) # Get the initials list

sol = root(N.residue, vec,method='krylov') # Solve the system using the Newton-
# Krylov algorithm

result = N.getresult() # Get the results network

print result.info(True,True) # Print the final network.

Source-code 2: Implementation of the pipe flow network model with junction model incorporation as
described in algorithm3

import networkx as nx
import collections
import numpy as np
from scipy.special import expit as sig
from collections import defaultdict
from copy import deepcopy

class FlowNetwork:
"""Base class for flow networks"""

def init (self, rho=998.0, mu=8.9 * 10 ** -4, nodes=None):
"""Initialize a flowNetwork by creating a graph from the nodes and setting rho and mu.

Args:
rho (float): Density
mu (float): Dynamic viscosity
nodes (Nodes datatype): Nodes to add directly

"""
self.rho = rho # Density of the fluid
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self.mu = mu # Dynamic viscosity of the fluid
self.graph = nx.DiGraph(nodes)
self.junctionmodel = self.standard junctionmodel
self.pipemodel = self.standard pipemodel
# Specify standard variables for nodes and components
self.nodeVariables = {'s': 0}
self.componentVariables = {'A': 1.0, 'm': 1.0, 'pin': 1.0*10**5, 'pout': 2.0*10**5}
self.translation = {}
self.vec=[]

def addnodes(self, nodes):
"""Add nodes to the flowNetwork.
:param nodes: the nodes to add
"""
if not isinstance(nodes, collections.Iterable):

# Add single node
self.graph.add node(nodes)

elif isinstance(nodes, tuple):
# Add nodes with data
if not isinstance(nodes[0], collections.Iterable):

# Single node with data
self.graph.add node(*nodes)

else:
# List of nodes with same date
self.graph.add nodes from(nodes[0], **nodes[1])

else:
# Add any list of nodes
self.graph.add nodes from(nodes)

def addcomponents(self, edges):
"""Add components to the flowNetwork.

Args:
edges (multiple): the components to add

"""
if isinstance(edges, tuple):

if isinstance(edges[0], list):
# Add multiple edges with same data
self.graph.add edges from(edges[0], **edges[1])

else:
# Add single edge
self.graph.add edge(*edges)

else:
# Add multiple edges with or without own data
self.graph.add edges from(edges)

def setJunction(self, nodes):
"""Set a specific node to be a junction

Args:
nodes (String):

"""
for node in list(nodes):

self.addnodes((node, {'junction': True, 's': 0}))

def setJunctionModel(self, func):
"""Set the junction model to use

Args:
func (reference): reference to the function to use.

"""
self.junctionmodel=func

def setPipeModel(self, func):
"""Set the junction model to use
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Args:
func (reference): reference to the function to use.

"""
self.pipemodel=func

def getJunction(self, node, vec):
""" Get the junction type as used by the junction model for the given node.

Args:
node (node type): The node to get the junction for
vec (object): The variable vector

"""
junction = {'in': [], 'out': []}
for component in self.graph.in edges iter(node[0],data=True):

direction = 'in'
m = self.getval((component[0], component[1]), vec, 'm')
if m < 0:

direction = 'out'
m *= -1

junction[direction].append({'theta': (component[2]['thetaout'] if 'thetaout' in component[2] else 0 ),
'p': self.getval((component[0], component[1]), vec, 'pout'),
'm': m,
'A': self.getval((component[0], component[1]), vec, 'A')})

for component in self.graph.out edges iter(node[0], data=True):
direction = 'out'
m = self.getval((component[0], component[1]), vec, 'm')
if m < 0:

direction = 'in'
m *= -1

junction[direction].append({'theta': (component[2]['thetain'] if 'thetain' in component[2] else 0 ),
'p': self.getval((component[0], component[1]), vec, 'pin'),
'm': m,
'A': self.getval((component[0], component[1]), vec, 'A')})

return junction

def getunknowns(self, vector=False):
"""Find the unknowns of the network and create a vector with initial values
:return: unknown dict, (solution vector)

Args:
vector (bool): should the initial value vector be returned?

"""
unknown = {'nodes': defaultdict(dict), 'components': defaultdict(dict)}
vec = []
i = 0
for key, value in self.nodeVariables.iteritems():

n=0;
sum=0;
for node in self.getnodes(True):

if key in node[1]:
sum+=np.abs(node[1][key])
n+=1;

if n>0:
self.nodeVariables[key] = sum/n;

#print self.nodeVariables
for node in self.getnodes(True):

# For every node check if all keys have a value, if not create a
# vector entry
for key, value in self.nodeVariables.iteritems():

if key not in node[1]:
unknown['nodes'][node[0]][key] = i
vec.append(value)
i += 1
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for key, value in self.componentVariables.iteritems():
n=0
sum=0
for component in self.getcomponents(True):
# For every component check if all keys have a value, if not create a
# vector entry

if key in component[2]:
sum+=np.abs(component[2][key])
n+=1;

if n>0:
self.componentVariables[key] = sum/n;

elif key is 'm':
self.componentVariables[key] = self.nodeVariables['s'];

#print self.componentVariables
for component in self.getcomponents(True):

# For every component check if all keys have a value, if not create a
# vector entry
for key, value in self.componentVariables.iteritems():

if key not in component[2]:
unknown['components'][(component[0], component[1])][key] = i
vec.append(value)
i += 1

self.translation = unknown
self.vec = vec
if vector:

return unknown, vec
return unknown

def getresult(self, vec):
result = deepcopy(self)
if self.translation is {}:

print 'Error: network unknowns are unknown.'
return False

for node in self.translation['nodes']:
for (k,v) in self.translation['nodes'][node].iteritems():

#print node
#print k
result.addnodes((node,{k:self.getval(node, vec, k)}))

for component in self.translation['components']:
for (k,v) in self.translation['components'][component].iteritems():

result.addcomponents([(component[0],component[1],{k:self.getval((component[0], component[1]), vec, k)})])
return result

def setrho(self, rho):
""" Set the fluid density

Args:
rho (float): fluid density

"""
self.rho = rho

def setmu(self, mu):
""" Set the fluid dynamic viscosity

Args:
mu (float): Fluid dynamic viscosity

"""
self.mu = mu

""" Cost Functions"""

def residue(self, vec=None):
"""
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The root function of the flowNetwork.

Args:
vec (list): the solution vector

"""
cost = []
self.vec = vec
for node in self.getnodes(True):

# Conservation of mass for every node.
# add source
masseq = self.getval(node[0], vec, 's')
if 'junction' in node[1]:

junceq = self.callJunctionModel(node, vec)
else:

junceq = self.callJunctionModel(node, vec, junction= False)
for component in self.graph.in edges iter(node[0]):

# add incoming mass flows
masseq += self.getval((component[0], component[1]), vec, 'm')

for component in self.graph.out edges iter(node[0]):
# subtract outgoing mass flows
masseq -= self.getval((component[0], component[1]), vec, 'm')

#print 'continuity:'+str(masseq)
cost.append(masseq)
cost.extend(junceq)

for component in self.getcomponents(True, False):
# Pressuredrop over every component
# calculate pressure drop (k*( m/A)ˆ2)
l = 1.0 if 'l' not in component[2] else component[2]['l']
cost.append(self.pipemodel(

pin=self.getval((component[0], component[1]), vec, 'pin'),
pout=self.getval((component[0], component[1]), vec, 'pout'),
m=self.getval((component[0], component[1]), vec, 'm'),
A=self.getval((component[0], component[1]), vec, 'A'),
l=l,
rho=self.rho,
mu=self.mu))

return cost

def noJunctionResidueModel(self, node, vec):
""" Calculate the residue in case of no junction, all pressures should be the same.

Args:
node (node type): The junction node
vec (list): The solution vector

"""
ps = []
for component in self.graph.in edges iter(node[0]):

# add incoming mass flows
ps.append(self.getval((component[0], component[1]), vec, 'pout'))

for component in self.graph.out edges iter(node[0]):
# subtract outgoing mass flows
ps.append(self.getval((component[0], component[1]), vec, 'pin'))

eq = []
for i in range(len(ps) - 1):

eq.append(ps[i] - ps[i + 1])
return eq

def callJunctionModel(self, node, vec, junction=True):
""" Call the set junction model and return residue

Args:
node (node type): The junction node
vec (list): The solution vector
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"""
if junction:

return self.junctionmodel(self.getJunction(node, vec), self.rho)
return FlowNetwork.nofriction junctionmodel(self.getJunction(node, vec), self.rho)

@staticmethod
def nofriction junctionmodel(junction, rho):

""" Calculate the residue of the function according to the no friction model.

Args:
junction (junction type): The junction
rho (float): Fluid density

"""
eqs = []
if len(junction['in'])>0:

ref = junction['in'][0]
junction['in'].pop(0)

else:
ref = junction['out'][0];
junction['out'].pop(0)

for i in junction['in']:
eqs.append(ref['p']-i['p'])

for j in junction['out']:
eqs.append(ref['p']-j['p'])

return eqs

@staticmethod
def standard junctionmodel(junction, rho):

""" Calculate the residue of the function according to the new model.

Args:
junction (junction type): The junction
rho (float): Fluid density

"""
junction = junction.copy()
eqs = []
if len(junction['in'])<1:

#print 'no ref'
return FlowNetwork.nofriction junctionmodel(junction,rho)

ref = junction['in'][0];
junction['in'].pop(0)
for j in junction['out']:

uj = j['m'] / (j['A'] * rho)
q = j['m'] / ref['m'] #TODO: Deling door nul
psi = ref['A'] / j['A']
theta = np.abs((180-np.abs(ref['theta'] - j['theta']) % 360)-180) * np.pi / 180.0
#print 'theta:'+str(theta/np.pi*180)
eqs.append(ref['p']-j['p']-FlowNetwork.C(uj, q, psi, rho, theta) * rho * uj ** 2)

M = 0
for j in junction['out']:

M += j['m'] #TODO: kan nul worden

for i in junction['in']:
sol = i['p']-ref['p']
for j in junction['out']:

uj = j['m'] / (j['A'] * rho)
q = j['m'] / i['m']
psi = i['A'] / j['A']
theta = np.abs((180-np.abs(i['theta'] - j['theta']) % 360)-180) * np.pi / 180.0
# print 'theta:'+str(theta/np.pi*180)
qref = j['m'] / ref['m']
psiref = ref['A'] / j['A']
thetaref = np.abs((180-np.abs(ref['theta'] - j['theta']) % 360)-180) * np.pi / 180.0

59



sol -= j['m'] / M * (FlowNetwork.C(uj, q, psi, rho, theta)-
FlowNetwork.C(uj, qref, psiref, rho, thetaref)) * rho * uj ** 2

eqs.append(sol)

# return the equations
return eqs

@staticmethod
def C(uj, q, psi, rho, theta):

""" Calculate the pressure difference in a junction

Args:
uj (float): flow speed of fluid in outgoing pipe
m (float): massflow ratio
psi (float): area ratio between pipes
rho (float): density of the fluid
theta (float): the angle between the pipes

"""
return 1.0-np.cos(3.0/4.0*(np.pi-theta))/(psi*q)

@staticmethod
def standard pipemodel(pin, pout, m, A, l, rho, mu):

""" Calculate the pressure difference in a pipe

Args:
pin (float): pressure at ingoing pipe
pout (float): pressure at outgoing pipe
m (float): massflow through pipe
A (float): crossectional area of pipe
l (float): length of pipe
rho (float): density of the fluid
mu (float): dynamic viscosity of fluid

"""
Re = 2.0*np.abs(m)/(mu*np.sqrt(A*np.pi))
#print Re
f = sig(-4.5*(Re/1000.0-3.0))*64.0/Re+sig(4.5*(Re/1000.0-3.0))*0.079/Re**0.25
f = 64.0/Re
dp = pin - pout
if m < 0:

dp *= -1.0
return dp - f*l*m**2/(rho*A**2)*np.sqrt(np.pi/A)

""" HELPER FUNCTIONS """

def getnodes(self, data=False):
return self.graph.nodes(data=data)

def getcomponents(self, data=False, node data=False):
"""
get all components of the network
:param data: Need data from components
:param node data: Need data from nodes
:return: Components (with data)
"""
components = self.graph.edges(data=data)
if node data:

for n, component in enumerate(components):
components[n] = ((component[0], self.graph.node[component[0]]),

(component[1], self.graph.node[component[1]]), component[2])
return components

def getval(self, obj, vec, key):
"""
Get value if in graph otherwise get from solution
:return: the data asked for
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Args:
obj (object type): either the node or the component
vec (list): Solution vector
key (string): variable key

"""
if not isinstance(obj, tuple):

if key in self.graph.node[obj]:
return self.graph.node[obj][key]

return vec[self.translation['nodes'][obj][key]]

(a, b) = obj
if key in self.graph[a][b]:

return self.graph[a][b][key]
return vec[self.translation['components'][obj][key]]

def info(self, nodes=False, edges=False):
""" Print some general info about the network.

Args:
edges (bool): print edges
nodes (bool): print nodes

"""
# print(nx.info(self.graph))
if edges and nodes:

return (self.graph.edges(data=True),self.graph.nodes(data=True))
if nodes:

return {node[0]:node[1] for node in self.graph.nodes(data=True)}
if edges:

return {(comp[0],comp[1]):comp[2] for comp in self.graph.edges(data=True)}

print(nx.info(self.graph))
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