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Abstract

As Neuroscience progresses, there is an increasing amount of research that endorses predictions
and reducing of prediction errors as one of the main functions of the brain. active inference
is a brain-inspired, mathematical framework that successfully implements this idea both in
simulations as well as in robotics. The predictive nature of active inference might make
current artificial intelligence agents more adaptive. However, the motives of these agents are
often still hardwired as attractor dynamics or learnt using over-engineered rewards. Nature
has come up with a different way of providing intelligent beings with drives for their actions:
affect, more commonly known as emotions.

Although various models integrate affect into active inference , none have yet applied Mark
Solms’ definition within a continuous active inference framework. According to Solms’ inter-
pretation, affect acts as an evaluative monitoring mechanism of an organism’s homeostatic
states and guides it through unpredictable environments. This active monitoring of home-
ostatic states is what according to Solms stands on the basis of consciousness. Key here is
the prioritization of different homeostatic needs, where deviations in the most salient cate-
gory of need come to the organism’s affective(conscious) awareness. Mark Solms proposes
that computationally, affect is constituted by the inference of changes in precision. Where
increases in precision are positively- and decreases in precision are negatively valenced. This
change in precision is obtained by performing a gradient descent on free energy with respect
to precision, which results in an incremental precision updating scheme that determines the
salience of prediction errors. This offers an adaptable mechanism that allows context, through
precision modulation, to determine the relative influence of prediction errors.

This in turn allows an agent to prioritize homeostatic needs i.e. letting certain needs come to
conscious awareness. "Context" in the light of Solms’ research is defined as either: the relation
of needs with respect to other needs or the relation of needs with respect to external oppor-
tunities. This research supports Solms’ theory on affect and consciousness by successfully
providing a computational implementation that can, through precision optimization, perform
the prioritization of needs directed by "context" as just defined. By doing this successfully,
this research shows that the principles used could potentially be useful in continuous active
inference implementations, improving their adaptability.
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Chapter 1

Introduction

1-1 Introduction
Artificial intelligence is becoming more relevant. While developing these artificial intelligence
techniques, neuroscience can be of great value. In neuroscience, there is increasing evidence
that prediction is one of the core functions of the brain. Neuroscientist Karl Friston has devel-
oped a sophisticated framework that potentially explains the brain’s prediction mechanisms
[1]. Furthermore, this framework has been applied successfully in simulations [2], as well as in
robotics [3]. However, in most of these implementations, motives and goals are pre-determined
and fixed using rewards or preferred observations. When looking at ourselves, it is not hard
to see that our intelligence or consciousness does not only depend on pre-determined rewards.

One proposition about what drives our behaviour and helps us to maintain our bodily func-
tions by fulfilling its needs, is described in [4] and [5]. In these works, Mark Solms proposes
that these behavioural drives are constituted by affect, or more generally known: feelings.
Affect is what helps us make good choices, in order to maintain our bodily functions. For
example, feeling hungry is an indication that one is deviating from their biological goal. A
very important thing to note here is, that affect can even determine behavioural drives, in
situations that one has never encountered before. In short, according to Mark Solms, affect
is a fundamental signal that evaluates how well we are doing with respect to our biological
goals, by measuring how far we are deviating from them and organizing this information in
such a way that these deviations will be corrected. Solms even states that affective feelings
might be the fundamental source of consciousness [4].

Implementing affective feelings into a model or robot might result in an improvement in their
adaptability to novel situations, just like humans. There are already implementations of affect
in active inference . However, none of these implements Mark Solms’ definition of affect in a
continuous active inference model. This research aims to provide a proof of concept for such
an implementation. The first part of this research is a deep dive into Mark Solms’ research,
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2 Introduction

the second part implements Mark Solms’ definition of affect in a continuous active inference
model.

1-2 Research Question
As mentioned in the introduction, affect is a mechanism that provides organisms with an
adaptative advantage. It might therefore be of interest to implement this in an active infer-
ence framework. Mark Solms’ proposals [4, 5, 6], provide a basis for the research. According
to Solms (see Chapter 3), affect is closely related to changes in free energy, caused by changes
in the precision of prediction error.

This research focuses on answering the following research question:

• Can Solms’ theory on affect be implemented in a continuous active inference Model?

A series of 5 sub-questions has been established to obtain an answer to this question. The
process of answering these 5 questions will provide an answer to the main question:

1. What is affect in both a neurological and computational sense?

2. What is the function of affect in both a neurological and computational sense?

3. What simulation results are needed to prove the model works according to Solms defi-
nition?

4. What design specifications does the model need to demonstrate affect successfully?

5. Can this be showcased in a simulation

1-3 Summary of the research
By answering the first sub-question it will be highlighted that affect can be summarised as
an evaluative monitoring mechanism of an organism’s homeostatic states. Here, deviations
from a homeostatically preferred state (increasing prediction error) are evaluated as negative
affect. Returning towards its homeostatic preference (decreasing prediction error) is regarded
as positive affect. However, the mere presence of affect does not instantly give rise to the
feeling of them. Feelings do arise through the inference of changes in expected free energy, or
more simply inferences about the uncertainty of the experienced external world and internal
body. Computationally, this inference is done by precision estimation. Here decreasing preci-
sion (increasing uncertainty) is registered as unpleasure and increasing precision (decreasing
uncertainty) is registered as pleasure. It will be shown that the inferences of precisions are
done by performing a gradient descent of free energy with respect to precision. The inference
of this precision in interoceptive context is what gives rise to felt uncertainty, or ’affective con-
sciousness. The same mechanism in the exteroceptive world is what gives rise to ’perceptual
consciousness’ or attention.
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1-3 Summary of the research 3

In Section 3-3, it will follow that precision (and thus affect) plays a crucial role in the pri-
oritization of homeostatic needs, by acting as a gain modulator on prediction errors. This
addresses the second sub-question. Prioritization of need adds adaptive value to the organism
as it gives the ability to take context into account. This prioritization according to context
happens in two ways:

1. Precision (and thus affect) contextualises and prioritises needs in relation to other needs.

2. Precision contextualises needs in relation to external opportunities.

For a model to comply with Solms definition of affect, it needs to include an implementation
of precision optimization. On top of this it needs to be able to perform need prioritization
in the two ways as described above. This addresses the third sub-question and is discussed
in Section 3-4. Chapter 4 will then look more into the specific model design requirements
for it to successfully perform the two prioritization tasks. A simulation for a microscopic
animal called ’Hydar’ is constructed. The goal of Hydar is to use affective active inference to
prioritize either his need for food or his preferred temperature by modulating the precisions
of signals. For this to work, the precision optimization formula, as described in Chapter 3,
needs to be implemented. This is an important requirement as this is a key aspect of affect.

On top of this, there are 4 concrete characteristics in the model architecture that need to be
present:

1. Hydar needs multiple interoceptive needs that can compete.

2. Hydar needs an interoceptive system that can measure and prioritize interoceptive
prediction errors.

3. Hydar needs exteroception to prioritize these needs according to context.

4. Hydar needs action

Together these model characteristics provide an insight into the fourth sub-question. Chapter
5-2 provides two simulations that illustrate Hydar performing the two prioritization tasks
using precision optimization addressing the final sub-questions.

Altogether, this research storyline provides support for Mark Solms’ description of affect in an
active inference context. This is namely because the results show that using the computational
definition of affect as described by Solms, it can successfully perform the prioritization tasks
that are, according to Solms, the reason affect exists in the first place.

This then relates to the main research question. The research shows that indeed that affect as
described by Solms can be successfully implemented in a continuous active inference model.
This provides support to Solms’ definition of affect. The implementation of this research
serves as a proof of concept, rather than a full affective active inference model. That is, the
model is of simple structure and behaves in a heavily simplified environment. Nonetheless,
it provides promising results and sets up the potential for further research, using possibly
extended models. Examples of this would be the implementation of a more extensive hierarchy
or more complex order relations in the model dynamics. This is discussed in Chapter 6.
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Chapter 2

Active inference

2-1 What is active inference ?
Before starting the discussion about how affect can be implemented in active inference , it
needs to be clarified what active inference is and how it works. This chapter will mostly
be devoted to explaining active inference in a more mathematical context. Firstly, a short,
high-level, general description.

2-1-1 Introduction to active inference

Active inference is about the minimization of a quantity called free energy. Free energy is
the information-theoretic analogue of entropy in thermodynamics. Free energy describes the
amount of disorder in the internal and external states of an organism (or an artificial in-
telligence agent). States of an organism are sensed by the sensory system. Sensory states
are comprised of all the different ways that an organism can infer the "hidden states of the
world". For example, eyesight is a representation of the real world in your mind, based on
information caused by photons hitting your retina. In other words, what you see is not the
"real world", it is merely the representation that you can perceive of a hidden state (note
that an organism’s internal states can also be hidden from the brain, e.g body temperature
can only be inferred through a signal provided by thermoreceptors in one’s body). The or-
ganism also has an internal "generative model", which is based on earlier experiences. This
generative model can make predictions about the states that the organism wants to infer.
This prediction is continuously compared to the sensory information in order to make an as
good as possible estimation about the "real world’s" hidden states. The difference between
the generative models’ prediction and sensory states is called the prediction error. The better
the model’s representation of the real world, the better the predictions and thus the lower the
free energy. In order to survive, the organism wants to minimize free energy, by minimizing
this prediction error. It does so in different ways. The first way of minimizing free energy is
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6 Active inference

by optimizing predictions such that they match sensory input. The second way of minimizing
free energy is through action. In other words: manipulating the environment in such a way
that it matches expectation.

In its full form, active inference is not limited to just one level that is minimizing free energy.
Instead, it is set up in a hierarchical way, inspired by the brain [7]. The idea behind this hi-
erarchical structure is that higher layers, dealing with more abstract information send down
prior predictions to lower levels that are concerned with more concrete sensory information.
The lower levels use these priors to compute prediction errors, which are then sent up the
hierarchy again. This prediction error is then used as information to update the generative
model of the layer above. This hierarchical layering is inspired by the way neurons in the
human cortex are wired.

Active inference frameworks can be represented in the continuous domain, as well as the dis-
crete domain. While they are both centered around the minimization of free energy, they do
encompass two different worlds. Continuous active inference has now been introduced. This
is what will be used in this research. The following sections provide a more in-depth view
into Continuous active inference . For more details about the mathematics involved one can
consult [8].

2-2 active inference
2-2-1 Free Energy

Active inference revolves around the minimization of free energy. Free energy can be seen as
a bound on surprise, which is inherent in sensory data [1]. The free energy equation can be
derived using the Kullback-Leibler (KL) divergence which results in the following definition
[7]:

F = − ln p(y) +DKL(q(ϑ;λ)∥p(ϑ | y)) (2-1)

Here p(ϑ | y) corresponds to the posterior that the agent needs to approximate with q(ϑ;λ).
Furthermore, p(y) denotes the surprise. The equation can be rewritten into:

F = −
∫
q(ϑ;λ) ln p(y, ϑ)

q(ϑ;λ)dϑ (2-2)

The key concept of the free energy formula is that it contains an arbitrary distribution, with a
chosen mean and variance, such that it approximates the intractable posterior p(ϑ|y). Here, ϑ
denotes the hidden states that the agent wants to estimate and y denotes the sensory evidence
that the agent has access to, in order to do so. This approximation for p(ϑ|y), is denoted
in equation 2-1 as q(ϑ;λ) and is called the recognition density. It is used to estimate the
system’s hidden states, which are described by ϑ, parameterized by the arbitrarily chosen
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2-2 active inference 7

mean and variance, denoted as λ. As can be seen in the second term of Equation 2-1, these
two distributions are being used in a KL-divergence, which quantifies the difference between
them. The first term in Equation 2-1, denotes the surprise over the sensory input [7]. This
part can be minimized through action u.

So, in short, the KL-divergence is used to estimate a distribution that can approximate
the posterior and thus can estimate the hidden states, given sensory input ỹ. However as
mentioned above, this posterior is often intractable and thus, to use this principle the free
energy equation needs to be rewritten such that the arbitrary estimate can be ’fitted’ to a
distribution that can be quantified. To do so, Equation 2-1 can be rewritten into Equation
2-2. This equation consists of the aforementioned recognition density and also p(ỹ, ϑ), which
is called the generative density. This generative density, or generative model is the brains
representation of the real world and is something that can be quantified. Using the product
rule, it can be divided into two terms:

p(ỹ, ϑ) = p(y|ϑ) ∗ p(ϑ) (2-3)

Here,p(ϑ), represents the state dynamics over time and p(ỹ, ϑ) provides a probabilistic map-
ping from the states to the sensory input. This will later be explained in more detail.

What is for now important, is that the free energy Equation 2-2, measures the difference
between the recognition density and the brain’s generative model. The main goal of active
inference is the minimization of this free energy. This can be done in two different ways:

1. Improving the system’s internal model and perception

2. Acting upon the environment in such a way that it lowers surprise.

Knowing ow what all the elements of Equation 2-2 and 2-1 represent, it can be simplified
under the Laplace assumption. The full mathematical description can be found in [8], but
goes beyond the purpose of this text. The crux of this assumption is however that Gaussian
densities that are sharply peaked around its mean: µ. Thus the the estimation of the recog-
nition density is reduced to finding the proper mean µ.

The recognition density and free energy respectively can be simplified to:

q(ϑ;λ) ≈ q(ϑ;µ) = µ (2-4)

F ≈ F (y, µ) = − ln p(y, µ) (2-5)

One thing that that needs to be noted now, is that by using the Laplace assumption, variance
is not gotten rid of altogether. Under this assumption, estimating the mean µ of the hidden
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8 Active inference

states θ will provide enough information to accurately compute free energy. There will however
still be variance when this mean is compared to prior expectations, by calculating prediction
error. This will become more clear in the next paragraphs

For now, it suffices to say that free energy minimization is now reduced to iteratively finding
a µ, that produces the lowest free energy, where the exact metric that is used for this scheme
is the prediction error. This will be explained in the next subsection.

2-2-2 Prediction Error Minimization

Equation 2-5 can be split up into two components:

F (y, µ) = − ln p(y|µ) − ln p(µ) (2-6)

Equation 2-6, shows that there is a density for sensory mapping and a density for the state
dynamics just as described in Equation 2-3. Another way to describe these generative models
is by using a state-space representation.

µ = µ+ w

y = g(µ) + z
(2-7)

Here, the first equation describes how the agent believes that hidden states, as described by
µ, are generated. Here µ is a prior estimation of the hidden states and w is random noise
with zero mean and variance σ2

w. So in other words, the agent believes that the mean µ of the
actual hidden states θ fluctuates around its prior belief µ. The second equation describes how
the agent’s internal model prediction of the sensory input using g(µ) compares to the actual
sensory input y, where again the sensory states fluctuate around an estimate that relates y
with µ. This fluctuation is again described with a noise term z with zero mean and variance σ2

z .

Now, coming back to the earlier note on variance and the Laplace Assumption, note needs
to be taken that σw and σz differ from the variance that is neglected under the Laplace
Assumption. Variance under Laplace Assumption refers to the arbitrary statistics of the
recognition density, whereas σw and σz refer to the variability of estimations of µ compared
to the prior on the mean µ and the variability between sensory states y and predicted sensory
states by the internal model g(µ). As the noise terms are assumed to be Gaussian, the
equations can be written in the following way:

p(µ) = 1√
2πσ2

w

e{−(µ−µ̄)2/(2σ2
w)}

p(y | µ) = 1√
2πσ2

z

e{−(y−g(µ))2/(2σ2
z)}

(2-8)

Filling these two results into Equation 2-6 obtains:

F (y, µ) = 1
2

( 1
σ2

z

ε2
y + ln

(
σ2

z

))
+ 1

2

( 1
σ2

w

ε2
x + ln

(
σ2

w

))
(2-9)
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2-2 active inference 9

with

µ = µ+ w

y = g(µ) + z
(2-10)

Thus the prediction errors are defined as:

εx = µ− µ

εy = y − g(µ)
(2-11)

Now, looking at Equations 2-9 and 2-11, it is evident that the minimization of free energy
comes down to the minimization of two prediction errors: εy error measures the difference
between the sensory data and the part of the generative model that accounts for sensory map-
ping. The other error εx measures the difference between some sort of "belief of the hidden
states" and the function of motion that is incorporated in the brain’s generative model.

In order to be able to describe this in a computational model, the concept: "belief of the
hidden states" or "prior" needs some further explanation, which will be done in the following
subsection.

2-2-3 Hierarchical message passing

As of today, the cortex is regarded as a hierarchical system [7]. It consists of billions of neu-
rons and their interconnections add up into trillions. One key aspect of active inference is how
these connections are structured. The cortex consists of multiple specialized areas, that can
be subdivided into new areas up until one reaches the so-called "Micro-Columns". Cognitive
processes are the product of these areas working together. Each area is specialized and has
to deal with its own type of information. As a result, some areas will be closer to concrete
sensory information, whereas others will be more associated with more abstract information.
According to many researchers [7], it is believed that bottom-up and top-down connections
are structured in such a way, that sensory information obtained in lower levels can be sent
upwards in the form of prediction errors, whereas more abstract information generated in the
higher levels can be sent downwards in the form of prior beliefs.

In [8] a simple hierarchical scheme would look like this:

y =g(1)
(
µ(1)

)
+ z(0)

µ(1) =g(2)
(
µ(2)

)
+ z(1)

µ(2) = · · ·
...

µ(M) =z(M)

(2-12)
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10 Active inference

or more compactly as:
µ(i−1) = g(i)

(
µ(i)

)
+ z(i) (2-13)

The key point about the hierarchical structure is that a state estimation µ on a layer will be
used as "sensory" information in the layer above. The alert reader would now see that this
structure is simply Equation 2-7 with more layers on top of each other. In other words, it can
be seen as a split version of Equation 2-9 that is stacked on top of each other (without the
sigma terms). It is important for the reader to keep this hierarchical structure in the back of
his head as it will be used in the final model.
When incorporating this form of hierarchical scheme in a dynamic model, it can be expanded
into:

Dµ̃(i)
x = f̃

(
µ̃(i)

x , µ̃(i)
v

)
+ w̃(i)

µ̃(i−1)
v = g̃

(
µ̃(i)

x , µ̃(i)
v

)
+ z̃(i)

ỹ = µ̃(0)
v

(2-14)

This hierarchical structure will also be used in the final model and thus needs some more
elaboration:
As can be seen, there are multiple things added to the original state space 2-7. First of all,
all the variables contain a"˜" operator which is short for a vector containing derivatives until
order n. With this also comes the D operator, which indicates that all the derivatives in the
vector are moved one place upwards. This results in a form Dµ̃x = f̃(µ̃x) + w̃, where the
derivatives of µx are coupled with some function: f̃(µ̃(i)

x ). This creates a dynamic coupling
over time.

The two major differences however are the introduction of µ̃v and the (i) index. The index
represents the specific layer that the generative model belongs to. Each layer provides a prior
µ̃v, to the layer that is one step down in the hierarchy. This prior can then be used in the
generative model of that next layer and so on. Likewise, sensory information can be sent
upwards in these layers in the form of prediction errors. Using this scheme, Equation 2-11
can be expanded creating the following prediction error equations:

ε̃(i)
x = Dµ̃(i)

x − f(µ̃(i)
x , µ̃(i)

v )
ε̃(i)

v = µ̃(i−1)
v − g(µ̃(i)

x , µ̃(i)
v )

(2-15)

Figure 2-1, shows a scheme that illustrates these top-down and bottom-up pathways for the
priors and prediction errors.

Using the new hierarchical structure, the free energy equation can be rewritten as follows:

F (i)(ỹ, µ) = 1
2
(
ε̃(i)T

x

∏̃ (i)

w
ε̃(i)

x + ε̃(i)T
v

∏̃ (i)

z
ε̃(i)

v − ln
∣∣∏̃ (i)

w

∣∣− ln
∣∣∏̃ (i)

z

∣∣) (2-16)

Where
∏̃

, which is called the precision matrix, denotes the inverse of the covariance matrix.
For exact derivation, [8] can be consulted.
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2-2 active inference 11

Figure 2-1: A visual representation of the hierarchical structure in active inference . Pre-
dictions are sent down the hierarchy and prediction errors are sent up the hierarchy. Source:
https://www.kaggle.com/code/charel/learn-by-example-active-inference-in-the-brain-3

2-2-4 Gradient Descent

As mentioned earlier, active inference revolves around the minimization of free energy. The
first two variables that can be optimized over are the beliefs of the hidden states and the
priors:

µ̃(i)
x = Argmin

µ̃
(i)
x

F (ỹ, µ)

µ̃(i)
v = Argmin

µ̃
(i)
v

F (ỹ, µ)
(2-17)

This process is done through the process of gradient descent. Gradient descent allows the
agent to optimize over the different variables that make up the free energy equation.

˙̃µ(i)
x = µ̃′(i)

x − ∂F (ỹ, µ)
∂µ̃

(i)
x

= Dµ̃(i)
x − ∂F (ỹ, µ)

∂µ̃
(i)
x

˙̃µ(i)
v = µ̃′(i)

v − ∂F (ỹ, µ)
∂µ̃

(i)
v

= Dµ̃(i)
v − ∂F (ỹ, µ)

∂µ̃
(i)
v

(2-18)

When filling in Equation 2-16 and applying some differentiation the following two equations
are obtained:

˙̃µ(i)
x = Dµ̃(i)

x − ∂ε̃(i)⊤

∂µ̃
(i)
x

ξ̃(i) (2-19a)

˙̃µ(i)
v = Dµ̃(i)

v − ∂ε̃(i)⊤

∂µ̃
(i)
v

ξ̃(i) − ξ̃(i+1)
v (2-19b)
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12 Active inference

Where the precision weighted prediction error (ξ̃(i) = Π̃(i)ε̃(i)), or the so called precision
weighted prediction error, this term is relevant as it is used in the bottom-up pathway of the
prediction error (see Figure 2-1). These two gradient descent functions are used in active
inference to update the belief of the hidden states as well as the prior, such that the free
energy is minimized.

2-2-5 active inference

Aside from updating the hidden representations, active inference also involves action u, in
order to minimize free energy.

u = Argmin
u

F (ỹ, µ) (2-20)

This, again, is done by gradient descent, this time with a derivative with respect to u:

u̇ = −∂F (ỹ, µ)
∂u

= −∂ỹ⊤

∂u

∂F (ỹ, µ)
∂ỹ

(2-21)

Important to note here, is that the free energy Equation 2-16 does not depend directly on u,
which is why Equation 2-21 has to be split in the two partial derivatives. The last of these
can be derived into:

∂F (ỹ, µ)
∂ỹ

= ∂F (ỹ, µ)(1)

∂ỹ
= ∂ε̃

(1)
v

∂ỹ

⊤

Π̃(1)
z ε̃(1)

v = Π̃(1)
z ε̃(1)

v = ξ̃(1)
v (2-22)

u̇ can then be written as:

u̇ = −∂ỹ

∂u

⊤
ξ̃(1)

v (2-23)

Analogously to the gradient descent in sub section 2-2-4, Equation 2-21, optimizes the action
variable u, so that free energy is minimized. The real life representation of this process,
would be that the organism uses action to manipulate the environment in such a way, such
that uncertainty minimized. For example, an organism that expects to maintain a certain
body temperature by moving from a cold to a warmer place in order to keep that temperature.
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Chapter 3

Affect as defined by Solms

3-1 Introduction
With active inference and the free energy principle covered, the next step is defining affect.
The entirety of this chapter is based on the interpretation and function of affect that is
proposed by Mark Solms. In his scientific collaborations with Friston [4, 5] and the book [6],
Solms describes what affect is, how it is linked to consciousness and how it fits in the active
inference context.

There are already various implementations of affect in active inference , such as [9, 10, 11],
but these do not focus on Solms’ definition of affect in a continuous active inference domain.
The goal of this research, as clearly described by the main research question, is to provide a
computational scheme that successfully implements an affective mechanism as described by
Solms in [4, 5, 6] in a continuous active inference framework. This computational scheme
can then be used to provide simulation results, which can support Solms’ theory on affect.
Furthermore, it can provide a basis for using precision optimization for the benefit of adapt-
ability in an active inference framework. Before this is done, it needs to be clear how affect is
defined both neurologically as well as computationally, what its function is and lastly what a
simulation needs to be able to do to work conform to Mark Solms’ definition of affect. Doing
this, this chapter focuses on answering the first three research sub-questions:

1. What is affect in both a neurological and computational sense?

2. What is the function of affect?

3. What simulation results are needed to prove the model works according to Solms defi-
nition?

The first two sub-questions highlight two crucial aspects of Mark Solms’ definition of affect.
The third question is aimed at synthesising these aspects to form a complete definition of
affect. This will be regarded as the requirement for the simulation:
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14 Affect as defined by Solms

1. Affect comes forth from the inference of uncertainty about an organism’s ability to
comply with its own homeostatic needs. This inference determines the valence of the
affective feelings that an organism experiences. Here deviations from a homeostatic
equilibrium (increasing uncertainty) is registered as negative affect. Moving towards a
homeostatic equilibrium (decreasing uncertainty) is registered as positive affect. Com-
putationally uncertainty is inferred by precision estimation, which is done by performing
a gradient descent of free energy with respect to precision.

2. The function of affect is the prioritization of different homeostatic needs. This is where
the gain modulation property of precision in active inference comes into play, as it
influences the magnitude of the error signal. In other words, it influences ’arousal’.
Here deviations from a desired state in the most salient category of need, that is, the
category with the highest precision come to affective awareness. In other words these
become conscious. The prioritization of each category is determined by context. This
contextualization can take two forms:

(A) The prioritization of needs in relation to other needs.
(B) The prioritization of needs in relation to external opportunities and restrictions.

Precision plays a crucial role in both these mechanisms. First of all, needs with a
high afforded precision are prioritized over precisions with low afforded precision. Sec-
ondly, precision plays a role as exteroceptive information with higher precision will be
prioritized over exteroceptive information with lower precision.

These two key aspects of affect are summarized in Figure 3-1. In [5], Pfaff’s analogy of affect
with a vector is mentioned. Here valence is analogous to the angle of the vector. Arousal is
analogous to the magnitude of the vector.

Figure 3-1: Affect as described by Solms and has two crucial components. 1. Precision opti-
mization 2. Need prioritization. The second aspect takes form in two ways: A: The prioritization
of needs in relation to other needs. B: The prioritization of needs in relation to external opportu-
nities (and restrictions).

This chapter dives deeper into these two aspects. Each section covers one aspect and provides
an answer to one of the first two sub-questions. The following section focuses on the synthesis.
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3-2 Affect and precision optimization 15

After this, it should be clear which requirements are needed to successfully demonstrate affect
in an active inference simulation.

3-2 Affect and precision optimization
3-2-1 Section overview

Addressing the first research sub-question, it will become clear in this chapter that affect
can be summarised as an evaluative monitoring mechanism of an organism’s homeostatic
states. Here, deviations from a homeostatically preferred state (increasing prediction error)
are evaluated as negative affect. Returning towards its homeostatic preference (decreasing
prediction error) is regarded as positive affect. These deviations do not instantly give rise to
the feeling of affect. Feelings do arise through the inference of changes in free energy, or more
precisely, inferences about the uncertainty of the experienced external world and internal
body. Computationally, this inference is done by precision estimation. Here decreasing preci-
sion (increasing uncertainty) is registered as unpleasure and increasing precision (decreasing
uncertainty) is registered as pleasure. In other words, the inference of changes in precision
determines whether an organsism experiences positively or negatively valenced affect (Figure
3-2). This section will show that the inferences of precisions are done by performing a gra-
dient descent of free energy with respect to precision and will therefore be mainly focused
on the first part of Figure 3-2, which associated with valence (the angle of the vector [12]).
The inference of this precision in interoceptive context is what gives rise to "affective con-
sciousness". The same mechanism in the exteroceptive world is what gives rise to "perceptual
consciousness" or attention.

Figure 3-2: The focus of this section will be on the first aspect of affect: the inference of
uncertainty through precision optimization. This part of affect is associated with valence (whether
the affect is positive or negative)

The section afterwards will focus more on the second part of the story is that this inferred
precision dictates the extent to which different prediction errors are weighted among one
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16 Affect as defined by Solms

another. In other words, to what extent certain prediction errors, which represent (uncertainty
in) an organism’s homeostatic needs [6], are felt. In short this can be defined as arousal
(analogous to the magnitude of the vector ([12]). This weighting of prediction errors fulfils
the function of prioritization of internal needs and external opportunities, which will be also
be elaborated on in Section 3-3.

3-2-2 How do we feel?

Introduction

The works of Solms that are considered for this thesis are all centered around the "Hard prob-
lem of consciousness" as formulated by Chalmers [13]. The problem can be described in one
sentence like this: If experience (consciousness) arises from physical processes (i.e. electrical
signals in neurons), how and why does it?

In the texts [4] and [6], Solms describes that various experiments showed that when the brain-
stem is ablated from the central nervous system, consciousness is completely lost. Conversely,
other experiments have shown that when damage is done to parts of the cortex this is not
so much the case. Even when the subject shows signs of cognitive decline, a sense of con-
sciousness is maintained. This leads us to believe that, as the brainstem is the organ that is
the source of our affective feelings, consciousness is an affective process. Or more explicitly
formulated: the arousal process that produces what we call consciousness, is constituted by
affect or feeling . Furthermore, [5] states that "the arousal of consciousness and homeostatic
regulations are effected by the same parts of the brain".

This relationship between affect and consciousness stands central in Solms’ research:

"If core brainstem consciousness is the primary type, then consciousness is fun-
damentally affective. The arousal processes that produce what is conventionally
called “wakefulness” constitute the experiencing subject. In other words, the expe-
riencing subject is constituted by affect." [4]

As for the practical implementation of this extension of Solms’ research, affect, and thereby
consciousness have yet to be concretely defined. At the basis, all 3 reviewed works pivot
around the concept of affect coming forth from the maintenance of homeostasis.

Homeostasis and affect

As described in Chapter 2 the ultimate goal of active inference is for an organism to keep
existing. To do so, the organism needs to work against the world’s natural tendency to-
wards disorder or entropy. This tendency to disorder is commonly known as "the second
rule of thermodynamics". The biological mechanism for resisting this rule is by maintaining
homeostasis.

Organism’s receive information about their likely survival by asking questions (i.e. taking
measurements) of their biological state in relation to unfolding events. The more uncertain
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3-2 Affect and precision optimization 17

the answers are (i.e. the higher the entropy) the worse for the organism; it means it is failing
in its homeostatic obligation to occupy limited states (its expected states)[6].
By putting effort into trying to remain at its homeostatic values, the organism resists entropy
as it reduces the probability of being dispersed over multiple states which the natural law
of entropy tries to dictate. The other way around, deviating from a homeostatic preference
indicates a dispersion of possible states and thus an adherence to the natural entropic forces.
An organism needs to resist these forces to survive. An alert reader should now recognize
that this is a general summary of active inference as specified earlier.
Using this idea, it can be argued that from an existential point of view, deviating away from
homeostasis (increasing uncertainty), is objectively "bad" and moving towards its homeostatic
preferences (increasing uncertainty) is objectively "good". In his works [4, 6, 5] Solms bases
his definition of affects, or feelings on this rule. Here deviations away from homeostasis are
registered as negative affect and moving towards it is registered as positive affect. In other
words, according to Solms, affect comes forth from the active inference principle and its
properties of resisting natural disorder by minimizing free energy. It is the means whereby
organisms register their own states [5].
The big question of the Hard Problem [13] however still remains as this explanation does
not cover why these deviations and movements towards homeostatic preferences give rise to
conscious feelings in the way we experience them. Coming from the arguments just explained,
these homeostatic mechanisms could be exerted without any form of consciousness ([4] and
[5] refer to this as "philosophical zombies") and still work. Even more so, innumerable home-
ostatic regulations happen within our bodies, without us noticing. Yet, we (and most likely
other organisms) do experience what we call consciousness. Thus the question remains as to
how consciousness arises. How is it exactly that we consciously experience these (quantita-
tive) homeostatic deviations as (qualitative) feelings? The answer that Solms proposes to this
question is: "through inferring the changes in uncertainty about the homeostatic predictions".

3-2-3 Consciousness and affect

The inference of uncertainty

Incoming homeostatic prediction errors are indications of uncertainty around the state of
affairs. Inferences about the fluctuations in these errors, thus provide information for the
organism as to whether it is doing well with respect to that homeostatic modality. On top of
this, in different situations, different modalities are of importance. That is, in some situations
the organism can afford a higher uncertainty on a homeostatic need than in other situations.
Therefore the organism needs a way to not only infer changes in uncertainty but also to
prioritize which needs it cannot afford to risk increasing uncertainty.

Precision optimization

The formal implementation that addresses these issues in an active inference context is for-
mulated by Solms as precision optimization. As already touched upon in Chapter 2, the
precisions are the inverses of variance and represent the agent’s confidence afforded proba-
bilistic beliefs about states of the outside world [4]. They play a crucial role in the free energy
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18 Affect as defined by Solms

minimization scheme as they act as a gain modulator on the prediction errors. Precision
optimization (or precision estimation) fits well in this free energy minimization scheme as will
be elaborated on below.

Homeostasis as described above arises through active inference and free energy minimization
as covered in Chapter 2. Here, emphasis lies on two ways by which this could be done. Firstly,
an organism can act upon its environment to change its sensations so they match predictions.
Secondly, one can change internal representations, to produce a better prediction. As men-
tioned earlier in Chapter 2, these two quantities that are to be minimized, are modulated
with the use of their respective precisions.

The crux of Solms’ work lies in the proposition of a third way of minimizing free energy.
This third way has been formulated in [5] as: "Adjusting the precision to optimally match the
amplitude of prediction errors". This can be done by performing a gradient descent of free
energy with respect to precision. This gradient descent, along with the gradient descents on
action and Perception as defined in Chapter 2 are formulated in [4, 6, 5] as below in Figure
3-3 and Equations 3-1:

Figure 3-3: In this image, one can see the three gradient descent equations alongside a diagram
of a self-organising system using active inference . Crucial is the third equation that highlights the
optimization of precision ω which is the process that is associated with affect and consciousness
in Solms’ works.

The notations of the works [4, 5, 6] have been used here (which are originally derived from
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3-2 Affect and precision optimization 19

notations by Freud [14]). These notations differ from the notations in Chapter 2. For com-
parison one can consult Table 3-1 and Figure 3-3.

Figure 3-3, shows a schematic illustration of an active inference agent. Here the sensory
information φ, informed by an external hidden state Q′ which is influenced by action M , gets
compared to a generative model’s ψ(Q) representation. Here Q denotes the estimate of the
external hidden state Q′ and ψ(Q) is the internal models ψ expectation of the sensory signal
that Q would generate. This comparison between these two variables, results in a prediction
error e, which is used to update the internal representation Q, the active states M (which
influences the external or vegetative internal world Q′) and most importantly for this research
in the updating of precision ω.

The gradient descent functions that are used to perform these three updates are listed in
Equation 3-1. Here, Equation 3-1a describes the gradient descent function of free energy F
with respect to actions M , where φ denotes the sensory states. Equation 3-1b describes the
gradient descent of free energy with respect to the internal expectations Q about the external
states and ψ is a prediction of the sensory inputs that would have been encountered if the
external (hidden) states would have been equal to Q. Equation 3-1 denotes a gradient descent
of F with respect to precision ω. It is this equation that Solms associates with affect and
consciousness [5].

∂

∂t
M = − ∂F

∂M
= −∂F

∂e

∂e

∂M
= ∂φ

∂M
· ω · e (3-1a)

∂

∂t
Q = −∂F

∂Q
= −∂F

∂e

∂e

∂Q
= − ∂ψ

∂Q
· ω · e (3-1b)

∂

∂t
ω = −∂F

∂ω
= 1

2 ·
(
ω−1 − e · e

)
(3-1c)

Free Energy and prediction error can be described as:

F = 1
2 · (e · ω · e− log(ω)) (3-2a)

e = φ(M) − ψ(Q) (3-2b)

The definition of free energy mentioned here is a simplified version of-, but could theoretically
be expanded to Equation 2-9 or 2-16. The prediction error as depicted here is comparable to
Equation 2-11 or 2-15. As already explained, Equation 3-2 depicts e as the difference between
the sensory states φ as a function of action M (where action influences external states and
external states influence the sensory states, see Figure 3-3) and the expectation of a sensory
signal using ψ(Q).

When looking at Equation 3-1c, one can see that it is dependent on the difference between
the inverse of precision ω−1 (which is the same as average uncertainty or variance σ2) and the
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20 Affect as defined by Solms

Variable meaning Variable Solms Variable Chapter 2
action M u

Prediction error e εx & εy

Sensory input φ y

Precision ω 1/σ2
z & 1/σ2

w

Hidden state estimate Q µ

Generative model ψ f(µ) & g(µ)

Table 3-1: Variables used by Solms vs. variables in Chapter 2

square of the prediction error e2. When taking into account that variance can be described
as the average of all prediction errors we can rewrite Equation 3-1c into:

∂

∂t
ω = −∂F

∂ω
= 1

2 ·
(∑

(µ− µ)2

N
− e2

)
(3-3)

Here we can see that the change in precision is dependent on the difference between variance
( 1

ω ), which is average prediction error, and the prediction error at a specific instance of
measurement. When these are equal, we get ∂

∂tω = 0. In other words, when the measured
prediction error is equal to its average, the average does not need to be changed. However,
when there is a difference between the prediction error and its average, the agent needs to
account for this by updating the variance through ∂

∂tω. Whenever the prediction error is
larger than its average it leads to a negative ∂

∂tω (negatively valenced affect). Using this
in a numerical updating scheme would result in a decrease in estimated precision ω. The
opposite would happen when the measured prediction error would be smaller than its average
(ω−1) (positively valenced affect). One should be able to see now how Equation 3-1c allows an
agent to infer changes in precision and thus infer whether it is deviating or moving towards its
homeostatic preferences. That is, when e2 is larger than the variance it indicates a deviation,
when it is smaller than it’s average, it indicates moving towards the homeostatic preference.
Take note that this can be the result of either prediction errors induced by predictions not
matching sensory values or predictions not matching prior expectations (see equation 2-11.
It could also be due to sensory or process noise. Take note that the first might be solvable
through prediction updates or action, whereas the second is not solvable through this.

One can now see that equation 3-1 determines valence by comparing the measured prediction
error to it’s average. It is also illustrated in Figure 3-4.

It is essential to note is that every prediction error throughout a hierarchical model is equipped
with a precision that can be optimized [5]. The optimization of all these precisions together
is what gives rise to affect for the organism.

Take note that everything so far discussed can be assigned "affective consciousness" when it
encompasses changes in uncertainty occuring the organisms interoceptive world. The same
process in the exteroceptive domain is what Solms would call "perceptual consciousness" or
attention.
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Figure 3-4: Here an illustration on how the precision estimation equation

For obvious biological imperatives, interoceptive "affective consciousness" is prioritised. per-
ceptual consciousness in that sense is subordinate to affect [4]. It can be seen as a contextu-
alisation of affect, where its function is to help maintain the interoceptive homeostatic needs,
by appropriately manipulating the external world. It is not just I feel like this, but rather I
feel like this about that [6]. This contextualisation is an essential part of the affective story
and will be elaborated on in the next sections as well as in the final model.

3-2-4 Answer to sub-question 1

The process of affect and consciousness revolves around the inference of changes in precision,
where increases are registered as positive affect and decreases as negative affect. Here, the
crux of Solms’ theory on affect as well as of this research lies in Equation 3-1c. It describes
the gradient descent with respect to the precision variable ω. This equation optimizes ω, to
minimize free energy. This is the part of free energy minimization that Solms associates with
affect and consciousness.

The main focus of this research is the computational implementation of this equation in an
active inference model, to determine whether it can perform the same functions that affect has
in a real organism. This function revolves around the prioritization of different homeostatic
needs. This will be further discussed in Section 3-3 and 3-4.
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3-3 The function of affect
3-3-1 Introduction and overview

The last section unveiled that affect revolves around the estimation or optimization of preci-
sion ω. Here it highlighted that this inference of precision serves as a monitoring mechanism
of an organism’s ability to maintain its homeostatic preferred equilibria. This determines
whether an organsim experiences negatively or positively valenced affect. However, on top of
this, precision also functions as a gain modulator determining the influence of prediction er-
rors by regulating the magnitude of the error signal. This underwrites the concept of arousal
(magnitude in the vectory analogy). It is an essential property of precision in active inference
and plays a key role in the function of affect: the prioritization of needs. This section will
highlight this aspect of affect. Doing so, it will provide an answer to the second research
sub-question:

• What is the function of affect in both a neurological and computational sense?

It will show that this section will provide a completion upon last section in providing a final
definition of affect. This complete definition can then be used to answer the third research
sub-question.

Figure 3-5: The second aspect of affect: Need prioritization. Priortized needs come to affective
awareness to the organism as arousal.

The main function of affect as highlighted by Solms in [4, 6, 5] is that it allows the organism to
prioritize needs in unpredictable contexts. Which gives the organism an adaptable advantage
over non affective types of homeostasis. Computationally, needs are prioritized using precision
modulation. This is done in two ways:

(A) The prioritization of needs in relation to other needs.
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(B) The prioritization of needs in relation to contextual opportunities and restrictions.

Furthermore, this prioritization using the precisions is defined in [6] using two steps:

1. Needs are prioritized initially by recognizing a specific context and adjusting precisions
accordingly.

2. The precisions are then continuously optimised when events unfold.

3-3-2 Why do we feel?

As the generation and experience of affect have been covered in the last section, the question
follows as to why this mechanism is beneficial for an organism to have. The answer to this
question lies in the improvement of adaptability, especially in unpredictable contexts. In [4]
Solms highlights:

Feeling enables complex organisms to register—and thereby to regulate and prior-
itize through thinking and voluntary action—deviations from homeostatic settling
points in unpredicted contexts.

This statement stands central in this research and will be the main focus of this section. As
explained in the previous section, affect is not a single variable. Complex biological beings
have numerous homeostatic (affective ) demands that all need to be satisfied in their own right.
This categorization of needs is necessary, as different needs can have different implications for
the organism in different contexts. However, this categorization can induce conflict as there
are sometimes certain needs that cannot be fulfilled simultaneously. After all, one cannot eat
and sleep at the same time. The organism thus needs some way to prioritize its homeostatic
needs. Just looking at which prediction error is the largest is not enough, as in some situations
a certain need (i.e. prediction error) might be crucial whereas in other situations it is of no
importance. [4] And [6] mention that it would in theory be possible for evolution to devise
an algorithm that could compute relative survival demands in all predictable situations and
thus automatically prioritise actions on this basis. However, this would be a slow model
requiring a lot of processing power which is not ideal in life-and-death situations. Even more
importantly, such an algorithm would also pose problems when a situation has unpredictable
outcomes. As the majority of contexts are however unpredictable to some extent, organisms
need a way to conduct themselves appropriately in order to survive.

This is where the role of affect comes in. Affect allows an organism to "feel" its way through the
problem. From Section 3-2, it has become clear that deviations from homeostasis are negative
and moving towards homeostasis is positive i.e. increasing uncertainty is felt as unpleasure
and increasing certainty is felt as pleasure. However, precision does not only determine the
valence within a category. It also determines the arousal of a category, which underwrites pri-
oritization of different categories amongst one another. In other words, precision optimization
determines which need is felt most saliently at each exact time.
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Precision and need prioritization

Taking into account the findings of Section 3-2, the computational implementation of opti-
mizing ω connects well to the need prioritization mechanism as just described. This works
as follows: whenever (the square of) the prediction error e of certain modality is larger than
expected (ω−1), indicating that the agent is moving into a more uncertain (or less precise)
state concerning that modality, it down-regulates the influence of that prediction error as it
lowers the precision weighting. At the same time, this would be registered as negatively va-
lenced affect. Whenever the prediction error is smaller than the expected average, the agent
is moving into a state of decreasing uncertainty, up-regulating the influence of its prediction
errors. This would be registered as positively valenced affect.

As already mentioned there are innumerable homeostatic needs, each with its associated
prediction error. It was highlighted that precision acts as a gain modulator on prediction
errors meaning precisions determine the weight of the prediction errors in state updates. The
prediction error with the highest precision comes forward as arousal. In other words, precision
determines which prediction error becomes conscious as felt affect. In short, the changes of
precision in the most salient category of need, being the category with the highest expected
precision ω in the first place, is what comes on top to the organism as affective awareness (i.e.
as arousal) [4] & [5].

Taking in mind the findings of Sections 3-2 and this section. One can thus see how the initial
magnitude of ω has a crucial impact in relation to prediction error in two ways: Firstly it
determines whether incoming prediction errors induce negatively or positively valenced affect
as it sets the threshold for whether precision is increasing or decreasing (see equation 3-1c).
Secondly, it also acts as a gain modulator, determining the influence of each prediction error.

Affect is constituted by both these mechanisms. In [4] the following is mentioned:

"It is important to note that felt affects typically incorporate both the selected
error signal and the ensuing adjustment of cortical (and over longer time frames,
subcortical) precisions".

This summarizes the findings as explained above and reflects figure 3-1.

Two stages of prioritization In [6] there are two stages to the determination of precision and
ensuing need prioritzation. First of all, precisions are set by recognizing a specific context and
using that to pre-determine which homeostatic affects should be prioritized. The confidence
levels and associated baseline precisions here are learnt through experience and set by the
brain’s memory systems throughout the predictive hierarchy. Neurologically, the prioritization
informed by these expected precisions will be performed by a cloud of neuromodulators that
are spread throughout the forebrain. This encourages certain channels in the brain whereas
others are discouraged. This determines the weight given to current predictions and their
errors. In chapters 4 and 5 this process will just be represented by setting the initial precisions
of the model.

More interesting in the light of this research, is the second stage of precision optimization. An
organism will never be able to perfectly predict precisions, even more so, uncertainties can
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also change as events unfold. An organism therefore needs to be able to "adjust its precisions
on the hoof" [6]. This is where Equation 3-1c comes in. Precisions are recurrently assessed
and optimized according to the incoming prediction errors.
From [5, 4] can be quoted : "changes in subjective quality arise when the amplitude of predic-
tion error changes". In other words, the organism "feels" changes in prediction error and thus
uncertainty. It adapts the precisions accordingly and thus moves through the environment
continuously tailoring the feeling of needs to what is on offer exteroceptively as well as needed
interoceptively. This research will mostly be focusing on this continuous adaptation, but it
will also slightly touch upon the the effects of setting initial precisions. This will all become
more clear in Chapter 5.

3-3-3 Needs vs needs & Needs vs opportunities

Looking further into the prioritization of needs, Solms argues in [4] that an organism deter-
mines this prioritization according to a given context:

"The prioritization of needs—i.e., the determination as to which need will be
felt—must obviously depend crucially upon context (i.e., needs in relation
to other needs, and needs in relation to opportunities). Feeling is there-
fore extended onto exteroception (i.e., it is contextualized: “I feel like this about
that”) and transformed into cognitive consciousness"

"This in turn gives rise to voluntary action—and what we loosely call think-
ing—and, over longer time scales, to learning from experience"

The first quote is crucial, as it summarizes part of the central requirements of the model that
will be explored in the next chapters. It highlights that an organism’s prioritization of needs
depends on context, where context is a broad term that can manifest in two ways. Firstly
context can denote needs in relation to other needs. This basically implies that needs are
compared to other needs and thus prioritised in accordance with an organism’s interoceptive
preferences. That is, which homeostatic need is the most important at a certain time point.
This way of going about prioritization of needs is purely focused on interception and thus
encompasses "affective consciousness".
Secondly, context can denote needs in relation to opportunities. An organism is very likely to
live in a dynamic and unpredictable environment. As a result it might be the case that in some
situations the prioritization of a certain need allows for a good opportunity for the organism
to reduce it’s free energy. However in another situation, prioritization of a different need al-
lows for effective free energy minimization. Solms argues, that because of this, organisms also
prioritise needs in accordance with exteroceptive context. As followed from the quote, this
way of prioritization requires a connection between intero- and exteroception. This extension
of feeling onto exteroception (see quote previous page) thus asks for a combination of inte-
roceptive "affective consciousness" and exteroceptive "perceptual consciousness" or attention.
According to [4], in almost every situation exteroception is subordinate to interception, for
obvious biological imperatives.
Both of these ways of prioritisation should be included in an affective model.

Master of Science Thesis S.J. Timmer
4498151



26 Affect as defined by Solms

3-3-4 Adaptive advantage example

Last subsections elaborate on the idea on how "prioritization of needs" offers an adaptative
advantage to organisms as opposed to simpler forms of homeostasis. That is, an organism
that can adaptively prioritize its needs according to what is available or demanded by the
external context.

In the book [6] this is illustrated with a beautiful example:

Here is an example I noticed today. When I went for my jog at 7 a.m. it was
dark, and when I returned an hour later it was light. (It is winter and I am
staying in rural Sussex, writing this book.) Leaving, I passed a field adjacent to
the farmhouse where a flock of sheep noticed me and they almost fell over each
other to get away. Passing the same field on my return, the same sheep, lying in
the same place, barely looked at me. Their startlement in the context of darkness
was replaced by boredom in daylight. In short, the context altered the significance
of the event ‘human running towards me’. At night, this event is prioritised, which
snaps the sheep into FEAR mode; by day it is not, and they remain in default-mode
SEEKING.

The crux of this example lies in that the sheep change their affective state and thus behaviour
changes as the availability of sensory information provided by the world changes. In other
words, the interoceptive needs that are felt by the sheep change upon change of context.
This kind of ability can provide an organism with enormous adaptive advantage. By equip-
ping the model that will be presented in the next chapter with the ability to perform the
two aforementioned tasks, the model that will be described will demonstrate this improved
adaptability.

3-3-5 Answer to sub-question 2

To summarize, by optimizing precisions, the organism can determine which prediction error
i.e. which homeostatic need, is prioritized. In more psychological terms, this can be described
as an organism "feeling" its deviations from homeostasis by inferring the associated precisions
and using this precision to make the prediction error come forward as arousal.

Here, increases in precision will be registered as positive and decreases will be registered as
negative. This in turn leads to a series of unfolding choices in an expected context, guided
by expected precisions [6]. Crucial here is the distinction between prioritization of needs
amongst one another versus the prioritization of needs in relation to exteroceptive context
This answers the second sub-question.
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3-4 Conclusion and final model requirements
It has been explained in Section 3-2 that affects arise through deviations from homeostatic
equilibria. The feeling of these affects arises from the inference of the uncertainty about
the deviations. Computationally this is represented by precision optimization. Section 3-
3 then elaborated on this by explaining the function of affect in prioritising needs. This
is formally represented by modulation through precision ω. Section 3-3 elaborated on this
need prioritization, by highlighting the two ways an organism can go about this prioritization
according to the affective story: 1. needs in relation to other needs. 2. The relation of needs
with respect to opportunities as represented by the exterior.

• What simulation results are needed to prove the model works according to Solms defi-
nition?

To accommodate for a model and simulation that applies to Solms’ description of affect, as
presented in sections 3-2 and 3-3, there are two major points and concepts that need to be
present in the model. First and foremost, as affect is computationally defined by Solms as
the precision updating scheme as presented in Equation 3-1c, this needs to be included in
the model. This is one of the two crucial aspects of affect. However, to assess whether this
precision updating scheme is working in a manner that complies with Solms definition not
only of affect itself but also with Solms definition of the function of affect, the prioritization of
needs, the model needs to be constructed in such a way that it can experimentally demonstrate
this. As concluded from the previous chapter, this prioritization is done by using the precision
ω as a gain on prediction errors. Furthermore, it has been clarified that there are two ways
in which an organism can go about this. This is all again illustrated in Figure 3-6.

Figure 3-6: Definition of affect

Thus the final requirements of simulation results of an affective model need to include the
following points:

1. Inference of uncertainty through precision optimization.
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2. Need prioritization, as follows:

(A) The prioritization of needs in relation to other needs.
(B) The prioritization of needs in relation to contextual opportunities and restrictions.

These points set up the requirements for the implementation of affect in active inference that
is used in this research. Chapter 4 will elaborate on the specific model design that is going to
be used to achieve this. Chapter 5 will provide two simulational experiments that successfully
implement this model and illustrate that these two prioritisations can be performed. This list
and Figure 3-6 will be used as a reference in the next chapters to assist in the explanation of
the affective parts of the model and simulation results that will follow from the next chapters.
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Chapter 4

Affective active inference model

4-1 Introduction
This chapter is aimed at providing an affective active inference model, accompanied by a
thorough mathematical explanation, but more importantly an explanation of model choices
and how they relate to Solms’ insights that were discussed in Chapter 3. The model provides
a possible implementation of Mark Solms’ notion of affect in active inference.

4-1-1 Introduction to Hydar

The model that is going to be illustrated in this chapter is a simplification of Hydra vulgaris
[15]. Hydra is a small freshwater animal that belongs to the group of Cnidarians, which are
contemporary representatives of some of the earliest animals in evolution to have a nervous
system. In [16], it is highlighted that this nervous system is a precursor of what today
would be the brainstem. Taking this into account, a computational simulation representing
Hydra would be suitable for performing the experiments on affect in active inference. This
implementation is going to be called Hydar.

The simplicity of Hydra’s neural system allowed the exploration of structural and functional
design principles of neural circuits. In [15], it was found that Hydra contained multiple,
anatomically non-overlapping functional neural networks. Each of those is associated with
specific behaviours (see figures 4-1 and 4-2). This compartmentalization of networks provides
an inspiration that is very suitable for this experiment. As has already been touched upon,
the simulations provided in this research are to prove that by using affect and precision
optimization it is possible to prioritize homeostatic needs.

As will be shown in this and the following chapter, this prioritization mechanism consists of
two separate modules that dictate two different behaviours. These two modules, combined
with an action module could represent a structure similar to the separation of neural networks
and associated behaviours as depicted in [15] and Figure 4-1 and 4-2. Note however that the
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Figure 4-1: The nervous system of Hy-
dra is traditionally described as made of
two nerve nets. By using calcium imaging,
Dupre and Yuste demonstrate the existence
of multiple circuits within these nerve nets
and show with which behaviour they are
associated

Figure 4-2: Topographical distribution of
neurons in Hydra (same dataset as Figure
1D), grouped into five categories: rhythmic
potential 1 (RP1; green), rhythmic poten-
tial 2 (RP2; red), longitudinal CBs (dark
and light blue), and other neurons (others;
yellow). CB0 indicates neurons of the ten-
tacles that did not fire during the two CB
events of this time window but fired during
another CB event

simulation will be merely inspired by Hydra and its separation of networks and not contain the
different networks as depicted in figures 4-1 and 4-2 (these images and captions are directly
taken from [15]). The two types of behaviour that are going to be performed by the model
moving towards the surface (0m) or moving towards a depth of (2m). These two behaviours
are dictated by Hydar’s temperature and food preferences respectively. The computational
representation of Hydra vulgaris will be done in Python. Before diving more deeply into the
model design, it should be acknowledged that the inspiration for using the Hydar simulation
is taken from [17].

4-1-2 Model requirements

Having introduced Hydar, this section will look more closely into its overall structure. The
goal of the Hydar simulation is to show that through the optimization of precision, need
prioritization within an agent can take place. As concluded from Section 3-4 the requirements
for what the model needs to be able to perform are as follows:

1. Inference of uncertainty through precision optimization.

2. Need prioritization, as follows:

(A) The prioritization of needs in relation to other needs.
(B) The prioritization of needs in relation to contextual opportunities and restrictions.
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Whereas Chapter 5 will illustrate how the devised model successfully performs these two tasks,
the focus of this chapter lies more in explaining the model choices in relation to these two
ways of prioritisation. To properly account for and thus illustrate both of these mechanisms,
four major design requirements need to be included in the model architecture.

First of all, to be able to prioritize needs (whether it is in relation to other needs or in rela-
tion to context), the model has to include multiple needs in the first place. Secondly, as
homeostatic needs are inherently about selfhood, Hydar needs a way to monitor its own inter-
nal states using an interoceptive system. Thirdly, as the model needs to prioritize needs
through contextualization (more specifically contextual opportunities), the system needs a
way to infer its external world using an exteroceptive system. Lastly, Hydar needs action
in order to fulfil its prioritised needs.

For clarity, these four requirements are again listed below:

1. Hydar needs multiple interoceptive needs that can compete.

2. Hydar needs an Interoceptive system that can measure and prioritize interoceptive
prediction errors.

3. Hydar needs Exteroception to prioritize these needs according to context.

4. Hydar needs action to perform according to this prioritization.

To address these requisites, Hydar is equipped with two interoceptive sensors. One of these
sensors gauges internal temperature, while the other assesses hunger levels. To satisfy its
homeostatic demands, Hydar can manoeuvre both upward and downward in varying depths.
Additionally, Hydar features two exteroceptive sensors: one for temperature and the other
for detecting food. Utilizing these sensors, Hydar can deduce its positioning in relation to
these external variables. Given that one of the specifications for Hydar’s model involves
contextualizing interoception with exteroception, it necessitates a mechanism to connect the
two. This integration is achieved through a hierarchical layer that communicates with and
receives input from both its interoceptive and exteroceptive modules. The hierarchical layer
encompasses priors for both temperature and food modalities. These priors establish Hydar’s
desired values for each modality. Hydar can be divided into two modules that try to regulate
their specific modality: food and temperature. Each of the two modules has an interoceptive
sub-module, an exteroceptive part and a hierarchical part, where each of those sub-modules
has its own prediction error and each of those sub-modules has its own precision. The extero-
ceptive parts of each modality have a shared influence on action. The scheme just described
is illustrated in a simple manner in Figure 4-3
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Figure 4-3: Overview of Hydar’s structure. In green the temperature module and in orange the
food module. Each module contains 3 sub-modules. The interoceptive sensor and hierarchical
prior are both associated with the estimation of the interoceptie state and therefore associated
with "affective consciousness". The exteroceptive modules are associated with "perceptual con-
sciousness".

4-1-3 What is affect in this model?

As has been thoroughly explained in Chapter 3, affect is associated with two concepts: preci-
sion optimization and need prioritization, which is, as in Chapter 3, illustrated in the figure
below:

Figure 4-4: First part of affect: The inference of precision
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1. Inference of precision For hydar to survive, it needs to ensure the homeostatic needs of
its internal temperature and food. Both are measured by its interoceptive system. Deviations
from the homeostatic need are valanced positive if the precision increases (less variance, less
uncertainty) and negative if the precision decreases (more variance, more uncertainty).

Note that, as defined by Solms, ’affective consciousness’ is associated with the inference of
interoceptive precision and "perceptual consciousness" or attention is associated with extero-
ceptive precision.

In the case of the model described in Figure 4-3, the precisions that are associated with
interoception are the precision of the interoceptive sensors, as well as the precision of the
hierarchical priors. As will become more clear in the coming sections, these precisions all
influence the internal state estimations in both the food and the temperature modalities.
Affect as a whole is thus represented by the inference of precision in the internal sensory
sub-modules as well as the hierarchical sub-modules. Precision estimation of these modules
determine whether the prediction errors are registered as positively or negatively valenced
affect.

The same mechanism is included in the exteroceptive sub-modules. These are however meant
to infer exteroceptive precision (sensory noise). They have the function to modulate which
sensors should be used and which ones shouldn’t. This is called "perceptual consciousness"
or attention. The model can use this to asses and thus act upon external opportunities and
restrictions. See Figure 4-5 for illustration.

Figure 4-5: This figure illustrates that every sub-module with a precision that can be estimated
using a prediction error. Thus every sub-module has the ability to infer changes in precision and
thus reflect valence in its own specific category. Here the interoceptive sensors and hierarchical
priors are associated with interoceptive state estimation and thus affect. The exteroceptive mod-
ules are associated with attention
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2. Prediction error prioritization Secondly affect includes the feeling of prioritized predic-
tion errors (which are an indication of uncertainty). This part of affect is depicted in the
second part of Figure 4-4. Need prioritization determines which need (or prediction error)
is felt. It is determined by either comparing needs to other needs or comparing needs to
exteroceptive context, as shown in Figure 4-4. The prioritized need drives the behaviour of
the active inference system. E.g. when hunger is the prioritized need, Hydar will want to go
to the ideal food depth. The prioritized need is the result of the dynamical active inference
calculations and not a single parameter that can be pointed out in the system.

In more technical terms, the prioritised prediction errors, i.e. prediction errors with a higher
precision are going to come forward to Hydars affective awareness. Note that this holds
true for both affect in the interoceptive and hierarchical sub-modules and attention in the
exteroceptive sub-modules. The crux of this idea is that Hydar will act upon the prediction
errors with the highest precisions as if it is "consciously aware" of or "aroused" by these errors.

Crucial to take into account is that in a more sophisticated model, that could more realistically
simulate a real organism there would be a much deeper hierarchy with many more layers,
each with their own fluctuating, optimizable precisions and thus affective values. The totality
of these fluctuating precisions would represent the activity of affective consciousness. Here
prediction errors in this hierarchy with the highest afforded precision would come to "affective
awareness" to the agent and thus become present as "conscious thought".

The next sections will be devoted to highlighting the model in more detail. The end of Section
4-4, will conclude by getting back to the ideas presented above, using the detailed description
of the model. See Figure 4-6 for illustration.

Figure 4-6: Need prioritization illustrated in the Hydar model. As every sub-module is equipped
with a precision it can be subject to need prioritization.
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4-2 Generative process and Generative model
Firstly the Generative process and the Generative Model of the Hydar simulation will be
described. This will then be followed by a detailed summary of the hidden state estimations
through gradient descent. Lastly, the precision updating schemes will be discussed.

4-2-1 Model equations

Hydar’s external and internal world simplifications

Hydar lives in a world where a number of characteristics are simplified. This has been done
to make sure that the results can portray Hydar’s need prioritization as clearly as possible.

To start with, Hydar lives in a world where temperature and foodvalues are identical to the
value of the depth x. In other words, there will be a 1 to 1 mapping between the depth,
temperature and Food. This means that at a depth of 1, Hydar’s exteroceptive temperature
sensor should be giving a temperature reading of 1 temperature unit and Hydar’s interoceptive
temperature sensor should be giving a reading of 1 foodunit. Take note that these readings
can potentially vary due to added noise. Also be aware that even though they have the same
mapping from x, the foodand temperature readings are two separate signals, originating from
their own sensors.

This 1 to 1 mapping is also applied to the interoceptive sensors. These do not receive any
noise. In other words, Hydar’s internal temperature reading and his internal foodreading are
equal to its depth.

As will be shown shortly, the preferred values as specified by the priors, also conform to this 1
to 1 mapping. That is, Hydar’s prior preferences represent and specify its preferred foodand
temperature reading, however, due to the mapping this will also be translated to a preferred
depth that is equal to those values.

All of this should become more clear in the following paragraphs.

Generative Process

The generative process is shown in the equations below:

x = depth

ẋ = fgp(x) = u

g̃gp(x̃)food = x̃ =
[
x
ẋ

]

g̃gp(x̃)temp = x̃ =
[
x
ẋ

] (4-1)

Here ẋ is the time derivative of the depth and is equated to the action variable u. This simply
means that Hydar can set its own speed. Furthermore, ggp(x)temp = x and ggp(x)temp = x
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denote that in this world, the depth value directly determines the value for temperature
and foodand thus will always be equal. This is due to the 1 to 1 mapping as highlighted
above. Take note that when sampling these variables using its sensors, there might still be a
discrepancy between the sensory value and the real depth due to additional noise:

ỹtemp = g̃gp(x̃)temp + z̃temp

ỹfood = g̃gp(x̃)food + z̃food

(4-2)

In other words, when noise is added to the process, Hydar’s sensory values will fluctuate
around the real depth x (and thus the real foodand real temperature values).

For the purpose of this model, the internal sensory states φ do not contain any noise and
are, due to the 1 to 1 mapping, also identical to the actual depth x. What this means is that
Hydar’s internal temperature will change immediately with the change of position. The same
goes for its interoceptive food(or hunger):

φtemp = x

φfood = x
(4-3)

Hydar’s priors are defined as follows:

µPtemp = 0
µPfood

= 2
(4-4)

Remember that these values denote preferred interoceptive states and not depth directly. The
associated preferred depths will however be valuated the same due to the 1 to 1 mapping.

Generative Model

As mentioned in Section 4-1 the model needs an interoceptive as well as an exteroceptive
part.

Exteroceptive For the exteroceptive part a dynamic model is used.

Dµ̃xtemp = f̃gm(µ̃xtemp , µtemp) + w̃temp

ỹtemp = g̃gm(µ̃xtemp) + z̃temp

Dµ̃xfood
= f̃gm(µ̃xfood

, µ̃food) + w̃food

ỹfood = g̃gm(µ̃xfood
) + z̃food

(4-5)

Here the ”g” functions (see Chapter 2) are defined according to the 1 to 1 mapping and the
”f” functions are defined as a simple attractor state dynamic:
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f̃(µ̃xtemp , µtemp) = −µ̃xtemp + µ̃temp =
[
−µxtemp + µtemp

−µ̇xtemp

]

g̃gm(µ̃xtemp) = µ̃xtemp =
[
µxtemp

µ̇xtemp

]

f̃(µ̃xfood
, µ̃food) = −µ̃xfood

+ µ̃food =
[
−µxfood

+ µfood

−µ̇xfood

]

g̃gm(µ̃xfood
) = µ̃xfood

=
[
µxfood

µ̇xfood

]
(4-6)

Here µ̃xtemp describes Hydar’s estimate of the external temperature and µ̃xfood
describes Hy-

dar’s estimate of the external Food.

µfood And µtemp are the estimates of the internal temperature and foodstates. These are
special as they have two roles. They first of all act as an estimate of the internal foodand
temperature values, this will become clear shortly. Secondly, as shown above, they act as
an attractor state (or causal state in [8])in the ”f” functions. In other words, µfood and
µtemp determine where Hydar wants to go using its exteroceptive modules. Hydar only takes
into account the 0th order internal estimates. In other words, it does not use generalised
coördiates. Thus they are defined as follows:

µ̃temp =
[
µtemp

0

]

µ̃food =
[
µfood

0

] (4-7)

Note that this vector notation is used such that Equation 4-7 can be fitted in Equation 4-6

Estimating the dynamics of this variable is done using the following prediction errors:

ẽxtemp = Dµ̃xtemp − f̃
(
µ̃xtemp , µ̃temp

)
ẽxfood

= Dµ̃xfood
− f̃

(
µ̃xfood

, µ̃food

) (4-8)

Furthermore, the estimates of the external µ̃x states are compared to the sensory states ỹ
leading to the exteroceptive prediction errors. The noise terms z̃temp and z̃food in Equation
4-5 make up for these prediction errors, evaluated as discrepancies between the sensory signals
ỹ and the prediction made by the model with the g function. These discrepancies can consist
of a mismatch between a predicted value and a measured value due to a wrong prediction, as
well as noise that had been added to the sensor.

ẽytemp = ỹtemp − µ̃xtemp

ẽyfood
= ỹfood − µ̃xfood

(4-9)

For the sake of readability, the collection of both external states estimates µxtemp and µxfood

state estimates can be written as µx (or µ̃x in the generalized notation).
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Interoceptive The interoceptive part only consists of the sensory readings φfood and φtemp

as described in Equation 4-3. These readings are compared to the internal state estimates
µtemp and µfood resulting in interoceptive prediction errors.

ε1 = φtemp − µtemp

ε2 = φfood − µfood

(4-10)

Note that for the sake of readability, in some cases the collection of both internal state
estimates can be written as µ. In this case, µ refers to the internal state estimates in their own
modality. Similarly, the external state estimates from the previous paragraph will occasionally
be compactly denoted as µx

Hierarchical layer As just mentioned, the interoceptive and exteroceptive parts are con-
nected through a hierarchical layer. This hierarchical layer compares internal states µ̃temp

and µ̃food to a prior value.

ε3 = µtemp − µPtemp

ε4 = µfood − µPfood

(4-11)

The value of this prior determines the preferred internal state of the Hydar. This hierarchical
layer is connected to the interoceptive sensory modules similarly to Equation 2-12:

µfood = µPfood
+ zε4 µtemp = µPtemp + zε3

φfood = µfood + zε2 φtemp = µtemp + zε1

(4-12)

Note that, even though there is no noise added to the internal sensors as mentioned above
(and illustrated in Equation 4-3), there is still a z term in every equation. These terms,
account for the prediction errors ε from Equations 4-10 and 4-11 which are a result of the
discrepancies between the internal state µ and the prior µP and between internal state µ and
the internal sensory value φ.

It can be seen how the internal state µ connects the interoceptive layer with the layer above.
On top of this, as µ is used in the exteroceptive state dynamics as an attractor state, Hy-
dar’s interoception is connected to its exteroception. We can use equation a combination of
Equations 2-12 and 2-14 to form a scheme like below:

µfood = µPfood
+ zε4 µtemp = µPtemp + zε3

Dµ̃xfood
= f̃(µ̃xfood

, µ̃food) + w̃food Dµ̃xtemp = f̃(µ̃xtemp , µ̃temp) + w̃temp

ỹfood = g̃gm(µ̃xfood
) + z̃food ỹtemp = g̃gm(µ̃xtemp) + ˜ztemp

(4-13)

4-2-2 Back to Hydar’s model architecture

Figure 4-7 illustrates how Equation 4-13 fits into the overall architecture of the model. Here
each block contains its respective part of the Generative Model as well as the prediction error
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4-2 Generative process and Generative model 39

Figure 4-7: This figure shows Hydar’s generative model slotted into the model’s architecture.
Take note of µfood and µtemp being highlighted in red to illustrate connections between the two
hierarchical layers. The variables highlighted in blue are the sensory states and are all directly
influenced by action.

that belongs to that part of the model, as described in Equations 4-5- 4-12. There are a few
things that should be taken note of.

First of all, take into account that the temperature and foodmodules themselves are com-
pletely separate and independently influence action.

Secondly, note that the internal state estimates µfood and µtemp (together µ) are highlighted
in red all across the figure. This is to emphasise their role in connecting the three different
blocks in each module. Or more precisely, the interoceptive submodules and hierarchical
submodules together make an evaluation of µ. This µ is then used as an attractor state in
the exteroceptive sub-modules.

Comprehending this structure is essential to understanding Hydar’s behaviour and later ex-
periments. Central in this argument is that when estimating this internal state µ (through a
gradient descent, as will be clarified in the next subsection), the information, or more precisely
the prediction errors, provided by all three blocks is taken into account. As Hydar will be
looking to minimize free energy, the estimation of µ will be some sort of precision-weighted
average of the information processed in the three blocks, with ideally the smallest prediction
error possible. Here µ is compared to the interoceptive sensory states φ (ε1 and ε2) as well
as to the prior preferences µP (ε3 and ε4). Furthermore, the µ’s are also used in the external
state dynamics errors ex. The gradient descent is to update µ such that these prediction
errors are minimized.

Regarding the exteroceptive state dynamics, µ can be seen as an attractor state (or differently
called causal state) in the f functions of the exteroceptive blocks. Hydar performing a gradient
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descent on µ̃x defines its movement towards this attractor state µ which in turn, determines
action, which is Hydar’s second tool to minimize prediction error. Action in turn closes
the loop and influences the sensory states which are then used again to estimate the state
estimations. This will all be further elaborated on in the next sections after state estimation
and precision estimation with gradient descent are covered. As for now, it can be of value to
keep this in mind.

Lastly, all sensory variables are highlighted in blue to indicate that they are directly influenced
by the action Input.
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4-3 Gradient descents
4-3-1 Introduction

The last section describes Hydar’s world or generative process, its internal generative model
that he uses to make predictions about this world and the last section illustrates how different
parts of his model are organised, which parts are connected and what parts are separate. This
section will cover the gradient descents used to determine the values of the variables µxfood

and µxtemp , µfood and µtemp and the action input u. As explained in Chapter 2, the variables
can be determined by taking a gradient descent of free energy with respect to that variable.
This section will define the free energy equation followed by the derivations that are needed
to determine the required variables.

4-3-2 Free Energy equation and gradient descent derivations

Free Energy equation Having defined the generative model in the last section, it is possible
to set up the free energy Equation as follows:

F = 1
2
(
ẽT

xfood

∏̃
w
ẽxfood

+ ẽT
xtemp

∏̃
w
ẽxtemp + ẽT

yfood

∏̃
zfood

ẽyfood
+ ẽT

ytemp

∏̃
ztemp

ẽytemp

+ε1ω1ε1 + ε2ω2ε2 + ε3ω3ε3 + ε4ω4ε4

−2ln
∏̃

w
− ln

∏̃
zfood

− ln
∏̃

ztemp
− ln(ω1) − ln(ω2) − ln(ω3) − ln(ω4)

)
(4-14)

To reduce the free energy, it is necessary to compute the derivatives with respect to the
mentioned variables. The following paragraphs will outline these derivative calculations. The
prediction errors, as defined by Equations 4-8, 4-9, 4-10, and 4-11, play a pivotal role in this
process. Because of the quadratic terms present in the free energy equation, the variables
included in each prediction error determine which of those terms are considered in each
derivative. This can be seen in the following derivations.

Gradient Descent on µ

The estimates of the internal states µfood and µtemp play a crucial role in Hydar’s functioning.
Figure4-7 shows that they are used in all three parts of both modules. As explained the µ’s
is a weighted average of their respective blocks. To determine the optimal values, Hydar will
be looking to minimize free energy by minimizing the prediction errors associated with µfood

and µtemp. This will be clarified by inspecting the gradient descent equations below:

∂F

∂µfood
=
∂ẽxfood

∂µfood

T∏̃
w
ẽxfood

+ ∂ε2
∂µfood

ω2ε2 + ∂ε4
∂µfood

ω4ε4

∂F

∂µ temp

=
∂ẽxtemp

∂µtemp

T∏̃
w
ẽxtemp + ∂ε1

∂µ̃temp
ω1ε1 + ∂ε3

∂µ̃temp
ω3ε3

(4-15)
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Taking into account and filling in Equations 4-6, 4-8, 4-9, 4-10, and 4-11 into Equation 4-15,
where Equation 4-8, comprises of vectors of p = 2 such that:

ẽxfood =
[
µ̇xfood

0

]
−
[
−µxfood + µfood

−µ̇xfood

]

ẽxtemp =
[
µ̇xtemp

0

]
−
[
−µxtemp + µtemp

−µ̇xtemp

] (4-16)

Equation 4-15 leads to Equation 4-17.

∂F

∂µfood
=
[
−1 0

] ∏̃
w
ẽxfood

− ω2ε2 + ω4ε4

∂F

∂µtemp
=
[
−1 0

] ∏̃
w
ẽxtemp − ω1ε1 + ω3ε3

(4-17)

These derivatives can finally be formulated like below such that they can be used in a Gradiënt
descent:

µ̇food = − ∂F

∂µfood

µ̇temp = − ∂F

∂µtemp

(4-18)

To sum up, Equations 4-15- 4-18 are used by Hydar to determine the estimates of the internal
states µfood and µtemp.

Gradient descent on µ̃x

The second set of variables that Hydar will perform a Gradiënt Descent on is the estimates
of the external states. As explained in the section above, µ̃x is pulled towards the internal
state µ.

∂F

∂µ̃xfood

=
∂ẽxfood

∂µ̃xfood

T∏̃
w
ẽxfood

+
∂ẽyfood

∂µ̃xfood

∏̃
zfood

ẽyfood

∂F

∂µ̃xtemp

=
∂ẽxtemp

∂µ̃xtemp

T∏̃
w
ẽxtemp +

∂ẽytemp

∂µ̃xtemp

∏̃
ztemp

ẽytemp

(4-19)

Which can, again using Equation 4-16 as well as:

ẽyfood
=
[
yfood

ẏfood

]
−
[
µxfood

µ̇xfood

]

ẽytemp =
[
ytemp

ẏtemp

]
−
[
µxtemp

µ̇xtemp

] (4-20)

S.J. Timmer
4498151

Master of Science Thesis



4-3 Gradient descents 43

be simplified to:

∂F

∂µ̃xfood
=
[
1 1
0 1

]∏̃
w
ẽxfood

+
[
1 0
0 1

]∏̃
w
ẽyfood

∂F

∂µ̃xtemp
=
[
1 1
0 1

]∏̃
w
ẽxtemp +

[
1 0
0 1

]∏̃
zfood

ẽyfood

(4-21)

Which can then be formulated as:

µ̇xfood
= − ∂F

∂µxfood

µ̇xtemp = − ∂F

∂µxtemp

(4-22)

Gradient Descent on action

Having defined the gradient descents on the state estimates. The next step that can be taken,
is the determination of action. As explained before, action is what determines the sensory
states and is thus what closes the loops in Hydar’s model architecture. From Chapter 2, 2-21
,and 2-22 can be used to determine the gradient descent functions on action:

u̇ = −∂F

∂u
= −∂ỹfood

∂u

⊤ ∂F

∂ỹfood
− ∂ỹfood

∂u

⊤ ∂F

∂ỹfood
(4-23)

∂F
∂ỹfood

And ∂F
∂ỹfood

can be written as below, again using prediction errors from Equation 4-20,
but this time deriving with respect to ỹ:

∂F

∂ỹfood
=
[
1 0
0 1

]∏
zfood

ẽyfood

∂F

∂ỹtemp
=
[
1 0
0 1

]∏
ztemp

ẽytemp

(4-24)

Then, taking into account the relations between ẋ and u as specified by Equation 4-1, together
with Equation 4-2, ỹ can be formulated as:

ỹ =
[
y
ẏ

]
=
[
ggp(x)
g′

gp(x) · ẋ

]
=
[
x
ẋ

]
=
[
x
u

]
(4-25)

Using this relation, our derivative of ỹ with respect to action u can be formulated as:
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∂ỹfood

∂u

⊤
=
[
0 1

]
∂ỹtemp

∂u

⊤
=
[
0 1

] (4-26)

Equation 4-26 can be combined with 4-24 to reformulate Equation 4-23 into:

u̇ = −∂F

∂u
= −∂ỹfood

∂u

⊤ ∂F

∂ỹfood
− ∂ỹfood

∂u

⊤ ∂F

∂ỹfood

= −
[
0 1

]∏
zfood

ẽyfood
−
[
0 1

]∏
ztemp

ẽytemp

(4-27)

Using this formulation Hydar determines and updates its action input for every timestep. Im-
portant to mention is that for deriving the gradient descent on action, only the exteroceptive
parts are used. The relation between ẏ and u, through ẋ as described in Equation 4-26, is
not applicable for the interoceptive sensors, as they have only encompass 0th order relations
and do not contain the time derivative relation ẋ = u. More simply:

∂φfood

∂u
= 0

∂φtemp

∂u
= 0

(4-28)

This is why, for this implementation, only the exteroceptive sensory signals are included in
Equation 4-23 and are thus not taken into account in the determination of the action variable.

4-3-3 Back to Hydars model architecture

Having now covered the gradient descents for the hidden state estimates as well as action it
can again be slotted in the model architecture as shown in Figure4-8. Taking into account
what has been discussed in Section 4-2-2, and looking especially at the blocks containing the
derivatives for the gradient descents, it becomes more clear how the estimates of the states
are determined and what is meant by the "weighted average" of different prediction errors
as has been discussed in that section. Marked with different colours, the figure shows which
prediction errors are used to determine which variables (µfood, µtemp, µxfood

and µxtemp).
Inspecting the gradient descent derivative equations, one can see that µfood and µtemp are
determined using the ε’s and the ex’s of their respective modality (food or Temp) and will
thus be evaluated somewhere between the priors µP and the sensory signals φ (and indirectly
and thus less prominently y).
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The idea behind this, construction is that µ is going either going to be pulled more towards
its prior µP or towards its respective interoceptive sensory signal φ. As will be clarified in the
next section this will be determined by their associated precisions. The crux here is that this
interoceptive state estimation of µ can be viewed in two ways. First of all, it can be viewed as
an estimate of the interoceptive state predominantly using φ. Another interpretation can in
line with the Fristonian idea in active inference that predictions are used to drive action [18].
Here instead of µ being an estimate of the interoceptive states, it is used as a state where
Hydar wants to be or move towards, rather than where it thinks it is. The precisions of the
priors µP versus the precisions of the interoceptive sensory states φ is what determines which
of these two ways is emphasised. More simply put, the stronger the precision on the priors,
the stronger the urge to fulfil those priors and the more (by contextualising interoceptive
beliefs to the external, which initiates action) Hydar will move towards this prior.

Figure 4-8: Here the gradient descent equations are slotted in at the appropriate place in the
model. The colours are used to help clarify which prediction errors are used in what gradient
descent equations.

Crucial in this model, is that there are two modalities, food and temperature, which will have
a different prior preference (0 vs 2). Hydar is going to try to make µfood move towards µPfood

and µtemp towards µPtemp and consequently try to make the sensors match through action.
However, as both priors have their optimum at a different depth, this poses an unsolvable
discrepancy. It cannot be at both a depth of 0m and 2m at the same time. The prioritization
of these two modalities is done by setting the values for the precisions. This is the final part
of the model as well as what connects it to Solms’ story. It will be discussed in the next
chapter.
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4-4 Prior precisions and Sensory precision es-
timation

4-4-1 Introduction

As described in Chapter 4, Solms associates affect with the estimation of precision ω, by
taking a gradient descent of free energy with respect to this ω. This has been described by
Equation 3-1c. As clarified in Chapter 2, precision acts as a gain control over the prediction
errors. Chapter 3 points out that Equation 3-1c determines this precision by comparing its
inverse (the variance) to the incoming prediction errors. Thus using this equation, an agent
adjusts precision such that it conforms to the magnitude of the incoming prediction errors.
Consequently, using Equation 3-1c, an agent can determine the gain control over a prediction
error, according to the expected precision of the corresponding value, i.e. how high it expects
the prediction error to be.

As highlighted in Chapter 3, this precision updating scheme is the third mechanism used to
minimize free energy, next to 1. adjusting predictions such that they match sensory signals
and 2. optimizing action such that the sensory signals match predictions.

For Hydar the addition of this precision optimization means that it can estimate the precision
of prediction errors and prioritise them accordingly. Section 4-4-3 will elaborate on the
specifics. However, firstly the precision estimations need to be defined.

4-4-2 Precision estimation equations

Hydar has two sets of sensors. One exteroceptive set and one interception set. Hydar is
equipped with sensory precision estimations for both sensors:

Interoceptive The interoceptive sensors are of order p=0, meaning that they only contain
the sensory information that is associated with position x. Using Equation 3-1c, the precision
estimation function can be written as:

ω̇1 = − ∂F

∂ω1
= 1

2 ·
(
ω−1

1 − ε1 · ε1
)

ω̇2 = − ∂F

∂ω2
= 1

2 ·
(
ω−1

2 − ε2 · ε2
) (4-29)

As mentioned in Section 4-2-1, no noise is added to the interoceptive sensors, which means that
the estimate precisions ω1 and ω2 purely consist of the discrepancies between the interoceptive
sensors φ and the internal state estimates µ.
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Exteroceptive The exteroceptive sensors also have a 1st order term:

ẽyfood
=
[
eyfood

ėyfood

]
=
[
yfood − µfood

ẏfood − µ̇food

]

ẽytemp =
[
eytemp

ėytemp

]
=
[
ytemp − µtemp

ẏtemp − µ̇temp

] (4-30)

This means that ẽy needs to be accompanied by a 2x2 precision matrix
∏

z. Active inferencein
its fullest form, allows for such a matrix to be constructed, by using the variance of the 0th-
order variable. The higher-order entries of the precision matrix are then determined by
multiplying the variance with a constant that is determined by the smoothness parameter of
the noise. A full explanation of this process including the derivation of a correct precision
matrix can be found in [19].

This research does not focus on noise smoothness. Therefore the assumption has been made
that the constant for the first-order term is 0.1. This term has been chosen, to ensure that
first-order information is conveyed through the model to some degree, which is necessary as
the action variable is dependent only on first-order terms (Equation 4-27). This constant
of 0.1 has been derived through a trial and error process and does not correspond to the
smoothness of the added white noise. Looking into this would be a topic for future research.
The precision estimation and corresponding matrix can thus be formulated as:

∂

∂t
ωzfood

= − ∂F

∂ωzfood

= 1
2 ·
(
ω−1

zfood
− eyfood

· eyfood

)
∂

∂t
ωztemp = − ∂F

∂ωztemp

= 1
2 ·
(
ω−1

ztemp
− eytemp · eytemp

) (4-31)

Where the precision matrices are formulated as:

∏
zfood

=
[
ωzfood

0
0 0.1 · ωzfood

]
∏

ztemp =
[
ωztemp 0

0 0.1 · ωztemp

] (4-32)

Unlike the interoceptive sensors, the exteroceptive sensors are fed with noise (this will only
be the case in the second experiment in the next chapter, as the first. The ωz’s that are
estimated thus consist of both the delta between y and µx as well as added noise.

Priors The precisions corresponding to the prior preferences are either optimized using the
formula or hard-coded depending on which of the two experiments (needs vs needs or needs
vs opportunity). When hard-coded, the precision can be either encoded as a constant or a
function of time
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ω̇3 = − ∂F

∂ω1
= 1

2 ·
(
ω−1

3 − ε3 · ε3
)

ω̇4 = − ∂F

∂ω2
= 1

2 ·
(
ω−1

4 − ε4 · ε4
) (4-33)

or

ω3 = hard− coded

ω4 = hard− coded
(4-34)

Hidden state Dynamics Lastly, the precision matrices associated with the dynamics of µx

are fixed beforehand and defined like below. In theory, this could also be specified using a
gradient descent. This goes beyond the purpose of this research.

∏
wfood

=
[
ωwfood

0
0 0.1 · ωwfood

]
∏

wtemp =
[
ωwtemp 0

0 0.1 · ωwtemp

] (4-35)

Where ωwfood
and ωwtemp are hard-coded and constant.

Even though this section has been short compared to the earlier sections describing Hydar’s
model, the functions described here are crucial as they provide an implementation of Solms’
story. The exteroceptive precision updating scheme is what Solms associates with "perceptual
consciousness" and the interoceptive updates are associated with "Affective consciousness".
To get a better grasp on how Hydar demonstrates these two concepts, the precisions are
slotted in Hydar’s model as a final addition.

4-4-3 Back to Hydar’s model architecture

With the precision optimization functions defined, they can be slotted in the model archi-
tecture. Before doing this, one can take a look again at the two components that constitute
affect.
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Figure 4-9: Definition of affect

As determined in Chapter 3 affect as described by Solms consists of two main parts:

1. Inference of uncertainty through precision optimization, which determines the valence
of affect (positive or negative).

2. Need prioritization, as a result of precision modulation on prediction error, determining
the strength of the affective signal. As highlighted this happens in two ways:

(A) The prioritization of needs in relation to other needs.
(B) The prioritization of needs in relation to contextual opportunities and restrictions.

Together with these definitions, the precision optimization equations can be slotted in the
model architecture and affect can be highlighted in the model.

Final affective model

Figure 4-10, shows where the estimated precisions are determined and used in the model.
This time, the colours indicate wich prediction errors and their associated precisions are used
where. Section 4-8 ended by stating the precision estimations enable Hydar to prioritize one
modality over the other. Two main mechanisms at play cause this prioritization. Firstly the
prior precisions ω4 and ω3 have a large influence on which modality is prioritized. As explained
earlier in sections 4-2-2 and 4-3-3, µfood and µtemp are determined through a gradient descent
using their respective ε’s (and ẽy through ẽx). µ Will then be evaluated somewhere in between
the sensory signals and the prior. Manipulation of the prior precision ω4 and ω3 determines
how much µfood and µtemp are going to be pulled towards it. In other words, the prior
precision determines how much Hydar is going to set its internal estimate to where it wants
to be, as opposed to where it currently is according to its sensors.

Now taking Figure 4-9 in mind, there are two ways where the precisions ω3 and ω4 are a
representation of the definition of affect. First of all the estimation of the precisions (in the
case they are not hard-coded) using ε3 and ε4 reflect the first characteristic of affect. Here
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the initial values of the precisions determine whether the prediction errors are registered as
positively or negatively valenced affect. The precisions also act as a gain modulator on the
prediction errors, regulating their potential for arousal and thereby play a crucial role in the
need prioritization. Since ε3 and ε4 are associated with the estimation of the interoceptive
states, µfood and µtemp it represents "Affective consciousness". Furthermore, the specific need
prioritization represented here is A: needs vs needs.

"Affective consciousness" is also represented by the interoceptive sensory signals φfood and
varphitemp and their precisions ω1 and ω2. Like the priors the estimation of these precisions
determine valence and the gain modulation on the prediction errors ε1 and ε2 reflects arousal
and thus need prioritisation.

The second mechanism where precision determines action, resides in the exteroceptive sen-
sory precision updates ωz. The crux here has everything to do with the addition of noise
to the exteroceptive sensory signals yfood and ytemp. When noise is fed to one of the sen-
sors, the precision updating formulas pick this up and decrease precision. This will then
decrease the impact this sensor has on action. Hydar will be moving towards the prior in
the modality where its exteroceptive sensors provide the clearest information. Taking Figure
4-9 into account, again the two aspects of affect are clearly represented in this part of the
model. Precision optimization plays a big role as it is used to estimate ωzfood

and ωztemp .
These are the used in the modulation on their respective prediction errors eyfood

and eytemp ,
which comes back to their role in need prioritization, where this time B: needs vs oppor-
tunities is represented. As this revolves around exteroception this part reflects "perceptual
consciousness".

Figure 4-10: Here the precision optimization functions are slotted in at appropriate places in
the model. The colours indicate which prediction errors are associated with gradient descent
equations, this time including the gradient descents on precision.
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Take note of how, in this implementation, action is only directly connected to the extero-
ceptive sensory signals. These are thus the only direct influences on action. The role of the
interoceptive sensors are however: 1. To play a role in the determination of the µ’s together
with the priors, (and to a small extent the intero- and exteroceptive sensors), which has an
indirect influence on eventual action. 2. Its second role is to report interoceptive changes in
precision.

4-5 Answer to sub-question 4
This chapter answers the fourth sub-question by providing the 4 parts that the model, in-
troduced as Hydar needs in order to correctly demonstrate affective active inference. That
is:

1. Hydar needs multiple interoceptive needs that can compete.

2. Hydar needs an Interoceptive system that can measure and prioritize interoceptive
prediction errors.

3. Hydar needs Exteroception to prioritize these needs according to context.

4. Hydar needs action to perform according to this prioritization.

The implementation of these 4 requirements can be found in Figure 4-3, with a more detailed
account in Figures 4-7, 4-8 and 4-10. With the model in place, one can go on to the following
chapter, which dives into a practical implementation of the model.
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Chapter 5

Experiments and Results

5-1 Introduction
Chapter 4 shows that the four model design requirements for Hydar that were introduced in
Section 4-1, are fulfilled with the final model. This chapter focuses on the model behaviour
and contains 2 core experiments that are each designed to illustrate specific characteristics of
the model behaviour as specified in Section 3-4. The two characteristics are:

1. Inference of uncertainty through precision optimization

2. Need prioritization, including:

(A) The prioritization of needs in relation to other needs.

(B) The prioritization of needs in relation to contextual opportunities and restrictions.

The results will show that Hydar can perform all of this successfully. This will be illustrated
with graphs that depict Hydar’s position alongside the state estimates µfood & µtemp and
µxfood

& µxtemp . Furthermore, the estimated variances are depicted accompanied by the
precision, which are their inverses.

Aside from presenting these results in the form of graphs accompanied by an in-depth expla-
nation this chapter will also link these simulation results back to the established definition of
affect and consciousness.

The next two paragraphs will provide an introduction to the two experiments. Followed by
Section 5-2 which focuses on illustration of the results and an in-depth analysis. By the end
of this chapter, it will be clear that Hydar is indeed able to perform precision optimization
and prioritization through both mechanisms A and B.
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1. Conflicting prior preferences

As shown in Section 3-4, needs are partly prioritized in relation to other needs and partly in
relation to context. This experiment focuses on the first of the two. It is designed to illustrate
the importance of the hierarchical priors. More specifically, it focuses on the effect of the
precisions of the priors on Hydar’s behaviour. The value of this precision, or more precisely,
the relative values of the precisions, determines which modality (food or temperature) is
prioritized. Or in Solms terms: which affect is going to be felt more strongly? In the case
of this experiment, the food precision will increase linearly, while the temperature prior will
stay constant. This could be interpreted as a representation of Hydar’s increasing hunger over
time. For the purpose of illustration, this experiment uses a simplification with a pre-defined
increase in precision on the food prior. That is, the precisions of the priors are not determined
using Equation 3-1c. Nonetheless, the result, which is discussed in the next section, will show
that Hydar adapts its depth according to the afforded precision on the priors. In a more
sophisticated affective model, that could represent a more realistic organism, this increasing
food precision might not be hard coded, but rather a result of the precision optimisation that
is driven by a much larger and more complete hierarchical structure. In contrast with the
priors, the precisions of the interception (and exteroceptive) sensors are not predefined but
determined with the precision update formula. This is done to monitor valence with respect
to interoceptive sensors.

2. The difference in sensory reliability

This experiment illustrates precision estimation of exteroceptive signals and how the needs
are prioritized with respect to opportunities and how this influences Hydar’s behaviour. As
highlighted in Section 3-4, Solms argues that the prioritization of needs (through affect)
depends crucially on unfolding context and its opportunities. In the case of this simulation,
opportunities are represented by the amount of noise that the exteroceptive sensors pick up.
Hydar’s goal is to minimize its free energy using the information that gives it the best ability
to do so. A noisy sensor provides a less clear representation of the outside world, which leaves
Hydar with a weaker capability of reducing its free energy. To account for this, Hydar needs
to be able to emphasize the sensory signals that provide the clearest information.
Imagine that the temperature sensor could give a blurry reading due to turbulence in the
water, with rapid temperature fluctuations. The food sensor on the other hand could give
a blurry reading when visibility in the water goes down and Hydar cannot spot the bottom
(where the food is located) anymore. Turbulent water and a noisy temperature reading, will
result in Hydar downregulating the precision of this sensor and thus reducing its influence.
In other words, Hydar will be directing his attention to his food sensor. Consequently it
will move down towards the bottom at 2m to comply with its food needs. The opposite will
happen if the food sensory gives a noisy reading. That is, Hydar is not able to see very well
and will reduce its sensory precision and prioritize its temperature reading and thus move
towards its preferred temperature depth. This is demonstrated in the second experiment and
concerns the attention part of the model.
Simultaneously with attention, the experiment shows precision updates of the interoceptive
sensory signals and slightly with the priors. These updates are associated with the affective
part of the model. This will all be illustrated and clarified in the next section.
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5-2 Results
In this section, the model results of the previously explained implementations are shown
accompanied by an in-depth analysis.

5-2-1 Conflicting prior preferences

This experiment is mostly focused on showcasing the first way of need prioritization: Prior-
itizing needs in relation to other needs. As mentioned earlier, note that the increase of the
prior precision in this simulation is hard-coded. This means that, concerning the priors, the
precision optimization of Equation 3-1c is not used. For this reason, this experiment does
not fully showcase the first characteristic of affect, precision optimization. Nonetheless, this
function is still used in the interoceptive sensors φfood and φtemp. So it still showcases this
formula to some extent in the results.

Figure 5-1: The first experiment focuses slightly on the precision optimization formula. It focuses
mostly on prioritising needs in relation to other needs.

As explained in sections 4-2-2 and 4-3-3 accompanied by the figures 4-8 and 4-10, µfood and
µtemp are determined as a weighted average between their respective sensors (interoceptive
and exteroceptive) and their respective priors. Prior precision influences how tightly the µ’s
are pulled towards their prior. In turn, the µ′s are used as a causal state in the Attractor
Dynamics functions f , which ultimately determines where Hydars action input wants to steer
towards. Action uses exteroceptive prediction error for this.

This means that the precisions on the priors (ω4 on µPfood
and ω3 on µPtemp) dictate how

strongly their respective µ’s are pulled towards their preferred value. Thus, a prior with a
stronger precision has a stronger pull on its respective µ, allowing for less deviation. As the
µ’s are used as causal states (or attractor states), the prior precision has an influence on
action. In this experiment, this means that the increasing precision of µPfood

results in a
stronger pull on µfood, resulting in decreasing allowance for discrepancy between µPfood

and
µfood.
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The simulation results, as shown in Figure 5-2, clearly confirm the behaviour just charac-
terised. As a reminder, in this simulation (as well as the next experiment) the ideal food
value is 2 and the ideal temperature value is 0 (note that the value of the variable is equal to
its depth so ideal depths are 0m and 2m respectively).
To keep it simple, no noise is added to this simulation. The precision of the temperature prior
is set at a value of 3 throughout the whole simulation. The food precision starts at 0.3 (factor
10 lower), from t=250, the precision starts rising linearly up until 30 (factor 10 higher). After
t = 750, the precision is instantly decreased to 3 (equal to Temp precision), which is done for
illustrative purposes of the model behaviour. Nevertheless, it could symbolise Hydar having
obtained enough food and thus deciding that Hunger is not to be prioritised anymore.

food
prior

Temp
prior

Internal
food
sensor

Internal
Temp
sensor

External
food
sensor

External
Temp
sensor

Variable
symbol µPfood

µPtemp φfood φtemp yfood ytemp

Associated
precision ω4 ω3 ω2 ω1 ωzfood

ωztemp

(starting)
value

1. 0.3-30
2. 3 3 5 5 5 5

∂ω
∂t / hard-
coded

hard-
coded

hard-
coded

∂ω
∂t

∂ω
∂t

∂ω
∂t

∂ω
∂t

Table 5-1: Precision values for experiment 1

The increasing food precision is illustrated by the red line in figures: 5-2a and 5-2b. Figure
5-2c, shows Hydar’s position over time (red line) and the external estimates µxfood

and µxtemp

which drive action.
As expected, Figure 5-2c shows that initially, when the precision on the food prior is low,
Hydar moves towards its preferred temperature prior, indicating that prior precision deter-
mines the depth that Hydar wants to and will go to. After t = 250, the precision on the food
prior starts rising. As a result, Hydar starts moving downwards, closer to its food prior. Due
to the food prior precision exceeding the precision of the temperature prior, Hydar moves
downwards beyond the middle (1m), which again demonstrates that indeed a larger prior
precision influences the behaviour. Then when the priors are set equal, Hydar moves towards
an equilibrium that is right in the middle at a depth of 1m.
Figure 5-2d, shows the internal measurements that are a result of Hydar’s depth, in red
and blue, as well as the internal estimates µfood in orange and µtemp in green. This figure
particularly shows the importance of the prior precision. In the first section (until t=250), the
temperature prior has a higher precision than the food prior, meaning that µtemp is pulled
towards µPtemp more strongly than µfood is pulled towards µPfood

. That is, the green line
is pulled towards its preferred depth of 0m, whereas the orange line is not tightly bound
to its prior, and thus allowed to move away from its preferred depth. This, through the
exteroceptive parts of the model, results in Hydar’s movement as seen in the graph. After
t=250, the food prior precision increases, making it less and less forgiving, resulting in the
orange line being pulled more towards a depth of 2m.
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(a) The red line shows the hard-coded in-
creasing hunger prior precision ω4. The blue
line shows the temperature prior precision ω3,
which remains constant.

(b) This shows the inverses of the variables as
Figure a. In other words, it shows the intero-
ceptive variances.

(c) The red line shows the position x of Hy-
dar in the water as a function of time. The
green and orange line represent the exterocep-
tive state estimates µxfood and µxtemp

(d) This figure shows the interoceptive sen-
sory states φ and the internal state estimates
µ

Figure 5-2: The results of the first experiment. Here (a) shows the precisions over time, (b)
shows the variances over time, (c) shows the position x over time as well as the exteroceptive
state estimates and (d) shows the interoceptive measurements and estimations.

Note in a more fully worked out representation, with a deeper hierarchy, the prior precisions
could possibly be optimised using Equation 3-1c. However, changing the precisions manually
shows proof of behaviour that is very well in accordance with Solms’ definition of the functions
of affect. That is, "prioritising needs in relation to other needs". The experiment shows very
clearly that differences in prior precisions allow Hydar to prioritize one type of behaviour over
another. From a line of reasoning more in line with the "Affective" story of this research, the
increase of the precision of µPfood

influences how the discrepancy (or prediction error) between
µfood and µPfood

is perceived. That is, the higher the precision on the prior, the more salient
prediction errors on its respective variable are and the lower the prediction error needs to be
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for it to be registered as negatively valenced affect. Thus, the increase of precision, makes the
prediction error ε4 come increasingly forwards as arousal, ensuring Hydars need to comply to
its food preference of being at a depth of 2m arises to its affective awareness.

It could perhaps be conceivable that in a more complete affective active inference model, with
a deeper hierarchy, these prior precisions could be manipulated such that the same rise in
Hunger-precision over time is achieved using Equation 3-1c at every level of the hierarchy.
Another interpretation could be that organisms have the ability to infer precisions, but also
to direct them according to necessity. More of this is discussed in the next chapter as this
could prove an interesting topic for future research.

Note that even though it is not the central point made in this experiment. The precisions
of the interoceptive sensors are estimated in this experiment, which relates back to the first
aspect of affect in the Figure 5-1. The rise in this interoceptive precision indicates that Hydar
is able to increasingly match it’s predictions µ to their respective sensory signals φ, producing
positive valence.
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5-2-2 Difference in sensory reliability

This experiment is about demonstrating a working precision estimation mechanism, as well as
demonstrating the second way in which interoceptive needs are prioritized: The prioritization
of needs in relation to opportunities and restrictions posed by the environment.

"Opportunities and restrictions" in this simulation are represented by noise in the sensory
signals. Here a signal with less noise represents more opportunity and vice versa. The
key concept at play in this experiment is that Hydar can properly make an estimate of the
external sensor variance, adjust its exteroceptive sensor precision and use this information to
both correctly adjust its interoceptive precisions (affect) and move through the environment
correctly.

Thus, this experiment highlights two aspects within the definition of affect (Figure) 5-3. First
of all it highlights whether Hydar can correctly infer exteroceptive uncertainty in the form
of noise. Using this process, Hydar demonstrates the second characteristic by prioritizing its
interoceptive needs accordingly, using exteroceptive information.

Figure 5-3: The focus of the second experiment is very much on the precision optimization
formula and the estimation of exteroceptive noise. Furthermore, it highlights the prioritization of
needs with respect to opportunities

To test this, Hydar, again, has two conflicting prior preferences. Its ideal food measurement
is set at 2, whereas its ideal temperature measurement is set at 0 (note again that the value
of the variable is equal to its depth so ideal depths are 0m and 2m respectively). This time,
the priors as well as the internal and external signals are all equipped with an optimizable
precision. The starting values for the precisions can be found below corresponding to Figure
4-10:

Master of Science Thesis S.J. Timmer
4498151



60 Experiments and Results

food
prior

Temp
prior

Internal
food
sensor

Internal
Temp
sensor

External
food
sensor

External
Temp
sensor

Variable
symbol µPfood

µPtemp φfood φtemp yfood ytemp

Associated
precision ω4 ω3 ω2 ω1 ωzfood

ωztemp

Starting
value 10 10 5 5 5 5
∂ω
∂t / hard-
coded

∂ω
∂t

∂ω
∂t

∂ω
∂t

∂ω
∂t

∂ω
∂t

∂ω
∂t

Table 5-2: Starting values of the precisions of experiment 2

As can be seen, the prior start with a higher value to make sure that Hydar’s beliefs µfood and
µtemp are indeed pulled towards their preferred values. That is, the µ’s are mostly determined
by comparing them to the measured interoceptive values φfood and φtemp and the prior values
µPfood

and µPtemp (i.e. the resulting prediction errors are used in the state updates). As the
priors have a high initial precision, the µ’s will be pulled towards the prior values more
strongly. In other words, by giving the priors a high expected precision, it allows for less
deviation i.e. the threshold for deviations to be registered as negative affect is lower. This is
important, as µfood and µtemp are the attractor states for the exteroceptive dynamic updates,
which will be shown in the next paragraph which will cover "perceptual consciousness" or
"attention. This will then be followed by a deeper dive into "Affective consciousness"

The simulation results are illustrated in Figure 5-4. The experiment has three stages. In the
first stage, Hydar will start at an equilibrium depth of 1m. At t = 200, Hydar’s external
temperature sensor is fed noise with a variance of 0.25. This results in the two proceedings
that are explained in the introduction of this experiment. The first one being: The extero-
ceptive precision estimation and resulting action input, which is associated with "perceptual
consciousness" or attention.

Exteroceptive precision optimization/attention

Due to estimation of the added noise, Hydar updates the precision of the exteroceptive tem-
perature sensor (figures 5-4c and 5-4e), this results in a relatively stronger impact of the food
sensor on action, which makes Hydar tend to move towards his preferred food depth (2m).
This can be observed by inspecting the red line in Figure 5-4a. Without the added noise,
more specifically the estimation of it, Hydar would not have made this deviation from the
middle. However, as the temperature sensor now produces noisy (and thus more incoherent)
information, Hydar chooses to prioritise the clearer information provided by its food sensor
and moves downwards. This could represent Hydar experiencing temperature fluctuations
due to turbulent water. As this restricts Hydar from staying at the right temperature level,
Hydar diverts its attention towards its food sensor and moves downwards. Taking in mind
Figure 5-3, it can be easily deduced that both precision optimization and need prioritization
are represented here. Hydar experiences negative affect due to the increasing uncertainty
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(a) This image shows the actual position
of Hydar (red), accompanied by its external
temperature (green) and food (red) estima-
tions µxtemp and µxfood , note how its position
changes when adding noise to one of the two
sensors.

(b) This image shows Hydar’s internal mea-
surements. This corresponds with its real posi-
tion. The orange and green lines denote the es-
timates of the internal states µfood and µtemp

(c) This image shows the external variance
estimation. Note that the estimation itself is
also noisy, as it uses a noisy prediction error as
input, a high variance means a low precision
and thus down-modulation of that sensor (at-
tention)

(d) this image shows the variances associated
with the interoceptive sensors. A high vari-
ance means a low precision and thus down-
modulation of that sensor (affect)

Figure 5-4
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(e) This figure shows the external sensor pre-
cisions, which is the inverse of figure c

(f) This figure provides the precisions which
is the inverse of figure d

Figure 5-4: These figures show the results of the second experiment. It demonstrates Hydar’s
behaviour when noise is added to each of the exteroceptive sensors one after the other. The blue
lines indicate when the injection of noise starts and when it switches to the other sensor

induced by the noise. As a result, it reduces the salience of the sensor and focuses in prioritiz-
ing it’s food related needs, where it is able to increase precision and thus experience positive
affect in the category that is now most salient.
It should be noted that movement towards the food prior and away from the temperature prior
in turn increases the sensory prediction errors (intero- & exteroceptive), of the temperature
module. Additionally to the depth x, Figure 5-4a shows the estimations of the external states
µxfood

and µxfood
, depicted by the green and orange lines.

As in Hydars world, the sensory values are equal to its actual depth plus the noise, the
discrepancies between those two lines and the red line together with the added noise from the
exteroceptive prediction errors as described in Equations 4-5 and 4-9 which results in:

ỹtemp = g̃gm(µ̃xtemp) + z̃

ỹfood = g̃gm(µ̃xfood
) + z̃

ẽytemp = ỹtemp − µ̃xtemp

ẽyfood
= ỹfood − µ̃xfood

These discrepancies are then again represented in Figure 5-4c, where the green graph goes up
as it accounts for the combination of the square of the prediction error eytemp and the variance
of the added noise. Figure 5-4e shows the inverse of this graph, the precisions, where it can be
seen that the green line drops as precision decreases. The inference of this precision/variance
shows negative affect in the temperature category. From this figure, it also becomes more
clear that the precision of the external food estimation increases, due to Hydar adhering to
its food prior. This represents positively valenced affect. Here food is now the most salient
category of need with the highest arousal.
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The estimations of the variance in Figure 5-4c comprise both the difference between the real
depth x and the external estimate µx in addition to the injected noise of variance 0.25. To
validate, the sum of the mean and variances of the prediction errors eyfood

and eytemp from t
= 430 to t = 500 (the steady state plateau in Figure 5-4), are compared to their respective
inverse precision ω−1

z .

Measured variance
and prediction error: Value Average estimated inverse

precision: Value

var(eytemp [430 : 500]) +
mean(eytemp [430 : 500]) 1.5419 mean(ωztemp [430 : 500])−1 1.5389

var(eyfood
[430 : 500]) +

mean(eyfood
[430 : 500]) 5.206e-6 mean(ωzfood

[430 : 500])−1 0.0381

Table 5-3: Result validation of exteroceptive precisions. Here it shows that the sum of prediction
error and the variance of the added noises are closely estimated by their respective ωz

As can be seen from the table. The estimated inverse precisions (or variance) indeed corre-
spond to the sum of the prediction errors and added variances. Note that the small difference
in the second row is due to the precision estimation of ωzfood converging towards but not
reaching 0.

From t = 500, the noise is switched from the sensory signal ytemp to yfood. This could
represent visibility in the water decreasing, with the result that Hydar is not able to locate
where it should be to gather food. Looking at the aforementioned figures, it can be seen
that the same process happens again, this time re-evaluating the exteroceptive precisions
and thus upregulating the temperature sensory signals and downregulating the food sensory
signals. So now, precision in food is decreased (negative affect) and precision in temperature
is increased (positive affect). Temperature is now becoming the main source of arousal. As
a result, Hydar moves upwards, towards its preferred temperature value. The variances (and
associated precisions) are also updated accordingly as can be seen in the aforementioned
figures as well as the table below.

Measured variance
and prediction error: Value Average estimated inverse

precision: Value

var(eytemp [800 : 1000]) +
mean(eytemp [800 : 1000]) 6.222e-6 mean(ωztemp [800 : 1000])−1 0.04266

var(eyfood
[800 : 1000]) +

mean(eyfood
[800 : 1000]) 1.5991 mean(ωzfood

[800 : 1000])−1 1.5990

Table 5-4: Result validation of the exteroceptive precisions. Here it shows that the sum of
prediction error and variance of the added noise are closely estimated by their respective ωz

Again the estimated inverse precisions correspond to the measured variances and prediction
errors.

The process that has just been described, where Hydar infers exteroceptive precision and
modulates the "arousal" coming forth from two different sensory signals represents "perceptual
consciousness" or attention. Here it is clear that regarding Figure 5-3, the inference of precision
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is demonstrated, representing the valence induced by the two sensory signals. Simultaneously,
this precision optimization regulates the arousal of exteroceptive prediction errors eyfood

and
eytemp, inducing the need prioritization where the two interoceptive needs are prioritized using
exteroceptive contextual information.

This experiment also highlights the interoceptive precision estimation, which Solms associates
with "Affective consciousness" or Feeling.

Interoceptive precision optimization/Affect

The results associated with the "Affective consciousness" part of the experiment are depicted
in figures 5-4b, 5-4d and 5-4f. These represent the interoceptive, states, variances and pre-
cisions respectively. Interoception is performed by estimating the states µfood and µtemp.
As explained in Chapter 4 and mentioned above this is mostly done by comparing them to
the measured interoceptive sensory values φfood and φtemp and the prior values µPfood

and
µPtemp . Again, as the priors have a high initial precision, the µ’s will be pulled towards the
prior values more strongly. In other words, by giving the priors a high expected precision, it
allows for less deviation i.e. the arousal of ε3 and ε4 is higher and the threshold for deviations
to be registered as negative affect is lower as compared to ε1 and ε2.

Figure 5-4b, shows the internal sensory states, note that these signals are identical to the
position x in Figure 5-4a due to the relation provided by Equation 4-3, which denotes that
in Hydars world, the interoceptive signals are equal to the depth. Furthermore, this figure
shows the internal state estimates µfood and µtemp in orange and green. Similarly, as in the
exteroceptive sub-modules, the discrepancies between the sensory lines and the state estimate
lines illustrate prediction errors as in Equation 4-10:

ε1 = φtemp − µtemp

ε2 = φfood − µfood

Furthermore the distance from µfood and µtemp and their respective priors µPfood
and µPtemp

(2m and 0m) can also be interpreted from this figure and contributes to the prediction errors
that are defined in Equation 4-11:

ε3 = µtemp − µPtemp

ε4 = µfood − µPfood

Note that these discrepancies are small as a result of the high afforded initial values for ω3
and ω4.

In Figure 5-4e, the internal variances are shown. Take note, that as there is no noise added
to the interoceptive sensors, this estimated variance only comprises the square of the inte-
roceptive prediction errors just described. (more precisely there will be a little bit of noise
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that propagated from the exteroceptive sensors to the real depth x and thus also through the
interoceptive sensors.)

Measured variance
and prediction error: Value Average estimated inverse

precision: Value

var(ε1[430 : 500]) +
mean(ε1[430 : 500]) 3.53275 mean(ω1[430 : 500])−1 3.53259

var(ε2[430 : 500]) +
mean(ε2[430 : 500]) 0.0036 mean(ω2[430 : 500])−1 0.09751

Table 5-5: Result validation of the interoceptive precisions. Here it shows that the sum of
prediction error and variance of the noise that propagates through the model are closely estimated
by their respective ω

Measured variance
and prediction error: Value Average estimated inverse

precision: Value

var(ε1[800 : 1000]) +
mean(ε1[800 : 1000]) 0.003515 mean(ω1[800 : 1000])−1 0.07725

var(ε2[800 : 1000]) +
mean(ε2[800 : 1000]) 3.575360 mean(ω2[800 : 1000])−1 3.575294

Table 5-6: Result validation of the interoceptive precisions. Here it shows that the sum of
prediction error and variance of the noise that propagates through the model are closely estimated
by their respective ω

Again the tables show that the precision estimations match the measured variances and
prediction errors.

Section 3-2 noted that every hierarchical abstraction contains an optimizable precision. Affect
as registered by the agent is constituted by unexpected uncertainty in the category with
the highest afforded precision within this hierarchy. From that point of view, it would be
reasonable to assign all the precision optimizations in the hierarchy that are associated with
interoception of ω1, ω2, ω3 and ω4 to "Affective consciousness". That is, deviations in the
form of prediction errors using prediction errors ε1, ε2, ε3 and ε4 all have the potential to be
felt as affect (or arousal) by Hydar. The prioritized and thus felt deviation depends on the
balance of the afforded precisions. In the case of this simulation, ω3 and ω4 are afforded a high
initial precision. Therefore, deviations from the priors, are given large weight and are thus
used in the optimization and will be corrected. In other words, they come to Hydar’s affective
awareness and through exteroception Hydar solves this by moving towards the preferred prior.
So in short, when the precisions are high at first, they tend to stay high as there is more weight
given to deviations to the concerning variable. This can be seen by looking at the blue and
red lines in figures 5-4d and 5-4f.

The interoceptive sensory signals φ have a lower initial precision, meaning that they are af-
forded less weight in the optimization. This lower initial precision results in a looser tolerance
towards deviations. Concomitantly, the lower precisions give a smaller weight to their predic-
tion errors, resulting in less influence in the optimization of µ (see Equation 4-15), which in
turn results in that deviations are more likely. This then results in the updating of the green
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and orange lines in figures 5-4d and 5-4f. Note that the exteroceptive precisions estimations
have a large influence on this. Before any noise is added, the internal states µfood and µtemp

cause a constant conflict as they both tend to move towards their own prior, which in turn,
through the exteroceptive module, makes Hydar want to move to both 0m and 2m depth.
As both priors have the same precision to start with as well, this results in Hydar staying
at a depth of 1m. This in turn results in that both modalities (food and temperature), will
provide Hydar with an unsolvable interoceptive prediction error. To accommodate for this,
Hydar increases its expected variance (and thus lowers its expected precision), which can be
seen in Figure 5-4e, where the internal variances match the square of the prediction errors
that can be deduced by looking at Figure 5-4b (i.e. the discrepancy between the blue and
the green line and between the orange and the red line).

When at t = 200 the noise is added to the exteroceptive food sensor, this balance is disturbed
and as Hydar starts moving, resulting in ε1 to increase and ε2 to decrease. This movement
is dictated by exteroceptive opportunity (noise). Thus Hydar updates its interoceptive pre-
cisions. In other words, Hydar reduces the precision ω1 of the sensor φ1. This decrease in
precision would result in negatively valenced affect. However, due to the external conditions,
Hydar has "decided" that the category where uncertainty cannot prevail is food. This can also
be seen in the figures as the variance of the food sensor decreases and the precision increases.
So in short, Hydar opted for an increase in precision and thus positive affect in the most
salient category which happens to be food. After t=500, this whole process is reversed as can
be seen in the figures.

5-3 Conclusion
The main goal of this chapter was to show in a simulation that using the precision optimization
formula from equation 3 − 1c, it is possible to implement a model that can perform the two
tasks that were presented in Section 3-4:

1. Inference of uncertainty through precision optimization

2. Need prioritization, including:

(A) The prioritization of needs in relation to other needs.
(B) The prioritization of needs in relation to contextual opportunities and restrictions.

The simulation presented in this chapter has successfully implemented this and thus proven
that it is indeed possible to perform these two tasks. It shows how top-down modulation of the
precisions can induce certain actions. Furthermore, this model gives some insight as to what
the implementation of both "Affective " as well as "perceptual" consciousness could look like in
an active inference model. It is very important to realise that this is a heavily simplified model
and should not be considered affective to the extent real life organisms are. For the same
reasons it can also not be called conscious. Nonetheless, this implementation and its outcomes
give some insight into how the mechanisms that according to Solms are the foundation of affect
and consciousness work. Furthermore, it could be used in more sophisticated models in an
effort to create an agent that could potentially simulate real affective processes.
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On account of adaptability, this model proves that the optimization of precisions and thus
affect can indeed provide an agent with advantages. First of all the tuning of the prior
precisions allows the agent to prioritize its homeostatic needs and act upon that prioritization.
Furthermore, the simulation shows adaptable behaviour towards exteroceptive noise to some
degree. Here Hydar moves towards the prior of the sensory modality that receives the least
amount of noise. The results thus provide an answer to sub-question 5.
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Chapter 6

Conclusion and discussion

6-1 Introduction
Having provided a detailed account of the implementation of affect in an active inference
model. This research will be finalized with a discussion, conclusion and ideas that could be
implemented as a follow-up to this research.

6-2 Discussion
The first and foremost point that should be highlighted, is that the final implementation was
successful in:

1. Inference of uncertainty through precision optimization

2. Need prioritization, including:

(A) The prioritization of needs in relation to other needs.
(B) The prioritization of needs in relation to contextual opportunities and restrictions.

The modulation of precision here steals the show. Especially in the second task it lines up
neatly with Solms’ definition as it simply uses Equation 3-1c to estimate the exteroceptive
noise and base its behaviour on this.

For the first task, the precisions of the priors were determined by hardcoding and not using
the precision optimization equation. As mentioned in the Chapter 5 this could be explained
in two ways. The first is that in order to be able to have an implementation that can use the
equation for making the food precision rise, a more complex hierarchical structure needs to be
devised. The challenge here that needs to be overcome is that due to the way this precision
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optimization equation is set up it computes precision as a result of incoming prediction error
rather than it can enforce a desired precision. In other words, it could be that the function
is more useful to estimate sensory noise, than it is to "enforce a desired precision". This is a
suitable topic for future research

Another way of thinking about this is that the brain is able to set precisions in two different
ways: Either by inferring uncertainty (as is done in the exteroceptive modules) or by just
setting the precisions to a desired value, such that associated prediction errors will be sub-
ordinate to the precision rather than the other way around. From a biological standpoint
this could make sense. The brain is after all able to modulate the influence of neurons by
spreading neuromodulators through the forebrain as explained in sections 3-2 and 3-3. This
neuromodulatory mechanism could be a biological argument for setting precision according to
wishes instead of letting them be subordinate to incoming noise or prediction errors. [20] May
provide some insight into this as it discusses the difference between "utility" and "uncertainty"
with respect to decision-making. Here utility could relate to manually setting precision to
wishes, whereas "uncertainty" could relate to deriving precision values using the formula. For
the purpose of this research, it would suffice to conclude that by making use of either hard-
coding precisions or using the estimation formula it is possible to make the model prioritize
its needs. The way these precisions are in the end devised in a biologically plausible manner
is a suitable topic for future research.

Another point for discussion is that this research has not looked at the optimization close
enough to conclude that the minimal free energy has been reached every time. That is,

6-3 Final conclusion
Using the research sub-questions as a backbone, this research has now completed a storyline
that can answer the main research question. For answering the main research question, it
was first necessary to clarify two key characteristics of affect, each relating to their own
research sub-question. The first is to provide a definition of affect based on Mark Solms’
work. Therefore, the first sub-question was formulated as follows:

1. What is affect in both a neurological and computational sense?

There are two characteristics that together define the affective process. First of all, the
definition as provided in Section 3-2 could be summarised concisely in the following way:
affective feelings are constituted by the constant inference of uncertainty. Computationally
this is done by precision optimization. This inference of precision serves as a monitoring
mechanism on how well an organism is maintaining its homeostatic preferences. The process
of precision optimization determines the registered valence (positive or negative) of affect
by the organism. Here increasing prediction error indicates increasing uncertainty and is
registered as negative affect. Decreasing prediction error is registered as positive affect.

Secondly, precision plays a crucial role in the prioritization of homeostatic needs. That is, as
there are uncountable homeostatic states that all need to be given their due, organisms need
a way to prioritize certain needs over others. This is the second crucial aspect of affect and
is associated with the second sub-question:
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2. What is the function of affect in both a neurological and computational sense?

The key concept here is that in active inference precisions are used as a gain modulator on
prediction error. Errors that are afforded a high precision have a larger impact on estimates
than precisions with a lower precision. Within the affective theory of this research, it means
that deviations from homeostasis, or (changes in) the prediction error with the highest af-
forded precision come on top as affective awareness to the organism. In other words, through
precision determines tho what extent an organism is aroused by a prediction error. The an-
swer to the second sub-question is thus that the affective mechanism as defined by Solms
gives the organism the ability to prioritize needs. This form of organisation adds adaptive
value concerning the organism’s survival.

Prioritization has to be mandated by something. This can be specified in two ways. What
determines that one specific homeostatic need is prioritized over another? This is where the
term "context" comes into play. Context as defined by Solms’can be described in two ways:
1. needs in relation to other needs and 2. needs in relation to opportunity. The finding s
above lead to the required simulation results and thus answering the third sub-question:

3. What simulation results are needed to prove the model works according to Solms defi-
nition

Here it can concluded that these requirements are:

1. Inference of uncertainty through precision optimization

2. Need prioritization, including:

(A) The prioritization of needs in relation to other needs.
(B) The prioritization of needs in relation to contextual opportunities and restrictions.

With the 2 key aspects of affect in place and the first three research questions are answered.
Chapter 4 dove more into a concrete implementation of the model. Doing so, this chapter
provided an answer to the fourth sub-question:

4. What design specifications does the model need to demonstrate affect successfully

Here it became clear that the model needed to adhere to 4 specific design requirements in its
structure:

1. Hydar needs multiple interoceptive needs that can compete.

2. Hydar needs an Interoceptive system that can measure and prioritize interoceptive
prediction errors.

3. Hydar needs Exteroception to prioritize these needs according to context.

4. Hydar needs action
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This provides a theoretical overview of a potential affective active inference model. Chapter
4 proceeds by providing a detailed, computational implementation, which answers the fourth
research sub-question.

5. Can this be showcased in a simulation?

After completion of the model description, Chapter 5 addresses the final sub-question by
showcasing an implementation of all described above. Here the model, which can be regarded
as an "Affective active inference" model under the assumptions posed by sub-question 1,
proved to be able to perform the two prioritization tasks as defined and thus adhere to the
criteria posed by sub-questions 2 and 3. This finally provides a set-up for an answer to the
final research question:

• Can Solms’ theory on affect be implemented in a continuous active inference Model?

Concerning this research question, it should first of all be stressed that regardless of the results,
it is might still be a long shot to say whether affect in its fullest form can be implemented
in an active inference model. After all, affect in real-life organisms is unimaginably more
complex than the simulation provided in this research. It would therefore be unreasonable
to state that this model is really "Affective", in the sense that humans and other complex
organisms are.

However, what can be concluded from this research is that using the most fundamental
definitions of affect as provided by Solms, with a key aspect being the inference of uncertainty
using the precision optimization equation as provided in Chapter 3, it can be shown that an
active inference model can indeed prioritize needs in relation to one another as well as in
relation to context. Hydar’s ability to do so indicates that these mechanisms can indeed
be used for an agent to steer its own incentives appropriately to what it internally wants to
dictate (needs vs needs) as well as on what is on offer exteroceptively (needs vs opportunities).
Thus, the results provide support to the feasibility of Mark Solms’ hypothesis on affect. This
could imply that it might prove fruitful to look further into these principles when it comes to
developing more adaptive active inference models.

Taking it one step further, it could be argued that it might be worth it to look further into
these principles to create an "Affective active inference" model that could simulate our own
affective mechanisms in a more detailed way. In a broader perspective, as far-fetched as it
may sound, this could then be seen as an effort to create Artificial Intelligence agents with
conscious mechanisms that are similar to our own.
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Appendix A

1 import numpy as np
2 import matplotlib . pyplot as plt
3 from scipy . linalg import toeplitz , cholesky , sqrtm , inv
4 import math as m
5
6 # Define time settings
7 T = 1000
8 dt = 0.005
9 t = np . arange (0 , T , dt )

10 N = t . size
11
12 F = np . zeros ( N )
13 x = np . zeros ( N )
14 x_dot = np . zeros ( N )
15 y_temp = np . zeros ( N )
16 y_temp_dot = np . zeros ( N )
17 y_food = np . zeros ( N )
18 y_food_dot = np . zeros ( N )
19 mu_temp= np . zeros ( N )
20 mu_food = np . zeros ( N )
21 phi_temp = np . zeros ( N )
22 phi_food = np . zeros ( N )
23 mu_xtemp = np . zeros ( N )
24 mu_xtemp_dot = np . zeros ( N )
25 mu_xfood = np . zeros ( N )
26 mu_xfood_dot = np . zeros ( N )
27 u = np . zeros ( N )
28 mu_v = np . zeros ( N )
29 mu_v_dot = np . zeros ( N )
30 x_int = np . zeros ( N )
31
32
33 # precisions
34 #sensor 1
35 omega_temp_z0 = np . ones ( N ) ∗5
36 omega_temp_z1 = np . ones ( N ) ∗5
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37
38 #sensor 2
39 omega_food_z0 = np . ones ( N ) ∗5
40 omega_food_z1 = np . ones ( N ) ∗5
41
42 #for experiment 1
43 # omega = np . ones ( N ) ∗5
44 # omega_2 = np . ones ( N ) ∗5
45 # omega_3= np . ones ( N ) ∗3
46
47 # start = 0.25
48 # end = 0.75
49 # omega_4 =np . concatenate ( ( np . ones ( round ( start∗N ) ) ∗0 . 3 , np . linspace ( 0 . 3 ,

30 , round ((1−start−(1−end ) ) ∗N ) ) , np . ones ( round ((1−end ) ∗N ) ) ∗3) )
50 # PI_w = np . diag ( [ 1 0 , 1 ] ) # experiment 1
51
52
53 # # experiment 2
54 omega = np . ones ( N ) ∗5
55 omega_2 = np . ones ( N ) ∗5
56 omega_3= np . ones ( N ) ∗10
57 omega_4 = np . ones ( N ) ∗10
58 PI_w = np . diag ( [ 1 , 0 . 1 ] )
59
60
61 #learning rates
62 alpha = 1
63 alpha_u = 1
64
65
66
67 #initiazation
68 mu_temp [ 0 ] = 1
69 mu_xtemp [ 0 ] = 1
70 mu_food [ 0 ] = 1
71 mu_xfood [ 0 ] = 1
72 x [0 ]= 1
73
74 v_exa = np . zeros ( N )
75 v_exb = np . zeros ( N )
76 v_ey_temp = np . zeros ( N )
77 v_ey_food = np . zeros ( N )
78
79 v_eps_1 = np . zeros ( N )
80 v_eps_2 = np . zeros ( N )
81 v_eps_3 = np . zeros ( N )
82 v_eps_4 = np . zeros ( N )
83
84
85
86 for i in np . arange (0 , N−1) :
87 #generative process of external position
88 x_dot [ i ] = u [ i ]
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89 x [ i+1] = x [ i ] + dt∗x_dot [ i ]
90
91
92
93 #generative process of internal states
94 x_int = x [ i+1]
95 x_hung = x [ i+1]
96
97
98 #sensory states
99 y_temp [ i ] = x [ i ]

100 y_temp_dot [ i ] = x_dot [ i ]
101 y_food [ i ] = x [ i ]
102 y_food_dot [ i ] = x_dot [ i ]
103
104 # if i>0.6∗N :
105 # omega_4 [ i ] = 5
106
107 #COMMENT NOISE FOR EXP 1
108 #UNCOMMENT NOISE FOR EXP 2
109 if i >0.01∗N :
110 y_temp [ i ] = x [ i]# + np . random . randn (1 ) ∗0.2#∗ np . sin ( m . pi/N∗i )
111 y_food [ i ] = x [ i]# + np . random . randn (1 ) ∗0 .2
112
113
114 if i > 0.2∗ N :
115 y_temp [ i ] = x [ i ] + np . random . randn (1 ) ∗0 .5
116 y_food [ i ] = x [ i ] #+ np . random . randn (1 ) ∗0.5#∗ np . sin ( m . pi/N∗i )
117
118 if i >0.5∗N :
119 y_temp [ i ] = x [ i ] #+ np . random . randn (1 ) ∗0 .5
120 y_food [ i ] = x [ i ] + np . random . randn (1 ) ∗0 .5
121
122 # set precisioon matrices for iteration
123 PIa_z = np . diag ( [ omega_temp_z0 [ i ] , 0 . 1 ∗ omega_temp_z0 [ i ] ] )
124 PIb_z = np . diag ( [ omega_food_z0 [ i ] , 0 . 1 ∗ omega_food_z0 [ i ] ] )
125 # PI_wa= np . diag ( [ 1 , 1 ] )
126 # PI_wb= np . diag ( [ 1 , 1 ] )
127
128
129
130 #internal temperature estimation
131 phi_temp [ i ] = x_int# + np . random . rand (1 ) ∗0 .1
132 eps_1 = phi_temp [ i ] − mu_temp [ i ]
133 temp_prior = 0
134 eps_3 = mu_temp [ i ] − temp_prior
135
136
137 #hunger estimation
138 phi_food [ i ] = x_hung
139 eps_2 = phi_food [ i ] − mu_food [ i ]
140 hunger_prior = 2
141 eps_4 = mu_food [ i ] − hunger_prior

Master of Science Thesis S.J. Timmer
4498151



76

142
143
144
145 #external prediction errors
146 e_xtemp = np . array ( [ [ mu_xtemp_dot [ i ] ] , [ 0 ] ] ) − ( np . array ( [ [ − mu_xtemp [

i ] ] , [ − mu_xtemp_dot [ i ] ] ] ) + np . array ( [ [ mu_temp [ i ] ] , [ 0 ] ] ) )
147 e_xfood = np . array ( [ [ mu_xfood_dot [ i ] ] , [ 0 ] ] ) − ( np . array ( [ [ − mu_xfood [

i ] ] , [ − mu_xfood_dot [ i ] ] ] ) + np . array ( [ [ mu_food [ i ] ] , [ 0 ] ] ) )
148 e_ytemp = np . array ( [ [ y_temp [ i ] ] , [ y_temp_dot [ i ] ] ] ) − np . array ( [ [

mu_xtemp [ i ] ] , [ mu_xtemp_dot [ i ] ] ] )
149 e_yfood = np . array ( [ [ y_food [ i ] ] , [ y_food_dot [ i ] ] ] ) − np . array ( [ [

mu_xfood [ i ] ] , [ mu_xfood_dot [ i ] ] ] )
150
151 #make vectors with prediction error for controlling
152 v_exa [ i ] = e_xtemp [ 0 ]
153 v_exb [ i ] = e_xfood [ 0 ]
154 v_ey_temp [ i ] = e_ytemp [ 0 ]
155 v_ey_food [ i ] = e_yfood [ 0 ]
156
157 v_eps_1 [ i ] = eps_1
158 v_eps_2 [ i ] = eps_2
159 v_eps_3 [ i ] = eps_3
160 v_eps_4 [ i ] = eps_4
161
162 #external depth estimation update
163 dFdmu_xtemp = np . array ( [ [ 1 , 1 ] , [ 0 , 1 ] ] ) . T . dot ( np . dot ( PI_w , e_xtemp ) ) −

np . dot ( np . identity (2 ) , np . dot ( PIa_z , e_ytemp ) )
164 dmu_xtemp = np . array ( [ [ mu_xtemp_dot [ i ] ] , [ 0 ] ] ) − alpha∗dFdmu_xtemp
165 mu_xtemp [ i+1] = mu_xtemp [ i ] + dt∗dmu_xtemp [ 0 ]
166 mu_xtemp_dot [ i+1] = mu_xtemp_dot [ i ] +dt∗dmu_xtemp [ 1 ]
167
168
169
170 #external depth estimation update
171 dFdmu_xfood = np . array ( [ [ 1 , 1 ] , [ 0 , 1 ] ] ) . T . dot ( np . dot ( PI_w , e_xfood ) ) −

np . dot ( np . identity (2 ) , np . dot ( PIb_z , e_yfood ) )
172 dmu_xfood = np . array ( [ [ mu_xfood_dot [ i ] ] , [ 0 ] ] ) − alpha∗dFdmu_xfood
173 mu_xfood [ i+1] = mu_xfood [ i ] + dt∗dmu_xfood [ 0 ]
174 mu_xfood_dot [ i+1] = mu_xfood_dot [ i ] +dt∗dmu_xfood [ 1 ]
175
176
177 #Free Energy MOET NOG WORDEN VERBETERD ! ! ! ! ! ! ! !
178 #F [ i ] = 0 . 5∗ ( e_xfood . T . dot ( PI_w . dot ( e_xfood ) ) ) + 0 . 5∗ ( e_xtemp . T . dot

( PI_w . dot ( e_xtemp ) ) + e_yfood . T . dot ( PIb_z ) . dot ( e_yfood ) +
e_ytemp . T . dot ( PIa_z ) . dot ( e_ytemp ) + eps_1∗omega [ i ] ∗ eps_1 + eps_2∗
omega_2 [ i ] ∗ eps_2 + eps_3∗omega_3 [ i ] ∗ eps_3 + eps_4∗omega_4 [ i ] ∗ eps_4
− np . log ( np . linalg . det ( PI_w ) ) − np . log ( np . linalg . det ( PIa_z ) ) − np

. log ( np . linalg . det ( PIb_z ) ) )
179
180 #causal temp state update
181 dFdmu_temp= np . array ( [ [ − 1 , 0 ] , [ 0 , 0 ] ] ) . T . dot ( np . dot ( PI_w , e_xtemp ) ) + np

. array ( [ [ omega_3 [ i ] ∗ eps_3 ] , [ 0 ] ] ) − np . array ( [ [ omega [ i ] ∗ eps_1
] , [ 0 ] ] )
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182 dmu_temp= −alpha∗dFdmu_temp [ 0 ]
183 mu_temp [ i+1] = mu_temp [ i ] + dt∗dmu_temp [ 0 ]
184
185
186
187 #causal hunger state update
188 dFdmu_food = np . array ( [ [ − 1 , 0 ] , [ 0 , 0 ] ] ) . T . dot ( np . dot ( PI_w , e_xfood ) ) +

np . array ( [ [ omega_4 [ i ] ∗ eps_4 ] , [ 0 ] ] ) − np . array ( [ [ omega_2 [ i ] ∗ eps_2
] , [ 0 ] ] )

189 dmu_food = −alpha∗dFdmu_food [ 0 ]
190 mu_food [ i+1] = mu_food [ i ] + dt∗dmu_food [ 0 ]
191
192
193
194 #Action updating
195 u_dot = −np . array ( [ 0 , 1 ] ) . dot ( PIa_z ) . dot ( e_ytemp ) −np . array ( [ 0 , 1 ] ) . dot

( PIb_z ) . dot ( e_yfood )
196 u [ i+1] = u [ i ] + alpha_u∗dt∗u_dot
197
198
199 alpha_1 = 1
200 alpha_2 = 1
201 alpha_3 = 1
202 alpha_4 = 1
203 alpha_za = 1.5
204 alpha_zb = 1.5
205 alpha_w = 1
206
207 # precision updating
208 # dPI_wa = alpha_w ∗0 . 5∗ ( inv ( PI_wa ) − np . diag ( e_xtemp . flatten ( ) ) ∗∗2)
209 # PI_wa = PI_wa + dt∗dPI_wa
210 # dPI_wb = alpha_w ∗0 . 5∗ ( inv ( PI_wb ) − np . diag ( e_xfood . flatten ( ) ) ∗∗2)
211 # PI_wb = PI_wb + dt∗dPI_wb
212
213 domega = alpha_1 ∗0 .5∗(1/ omega [ i ] − eps_1 ∗∗2)
214 omega [ i+1] = omega [ i ] + dt∗domega
215
216 domega_2 = alpha_2 ∗0 .5∗(1/ omega_2 [ i]− eps_2 ∗∗2)
217 omega_2 [ i+1] = omega_2 [ i ] + dt∗domega_2
218
219
220 #COMMENT OMEGA 3 AND 4 FOR EXPERIMENT 1
221 domega_3 = alpha_3 ∗0 .5∗(1/ omega_3 [ i ] − eps_3 ∗∗2)
222 omega_3 [ i+1] = omega_3 [ i ] + dt∗domega_3
223
224 domega_4 = alpha_4 ∗0 .5∗(1/ omega_4 [ i]− eps_4 ∗∗2)
225 omega_4 [ i+1] = omega_4 [ i ] + dt∗domega_4
226
227 domega_temp_z0 = alpha_za ∗0 .5∗(1/ omega_temp_z0 [ i ] − e_ytemp [ 0 ] ∗ ∗ 2 )
228 omega_temp_z0 [ i+1] = omega_temp_z0 [ i ] +dt∗domega_temp_z0
229
230 domega_food_z0 = alpha_zb ∗0 .5∗(1/ omega_food_z0 [ i ] − e_yfood [ 0 ] ∗ ∗ 2 )
231 omega_food_z0 [ i+1] = omega_food_z0 [ i ] +dt∗domega_food_z0
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232
233 #just so the graph wont show zero at the end
234 phi_temp [ i+1] = x [ i+1]
235 phi_food [ i+1] = x [ i+1]
236
237 #water line drawing
238 water_space = np . linspace (0 ,50 , N )
239 water_line = 0.045∗ np . sin ( water_space )
240
241 bottom = np . ones ( N ) ∗2
242
243
244 #plot 3
245
246 plt . figure ( )
247 # plt . plot (t , ya , label = " measurement of outside temp ya " )
248 # plt . plot (t , yb , label = " measurement of outside food yb " )
249 plt . plot (t , mu_xtemp , label = " estimate of outside temp mu_x_temp " , color

= " limegreen " )
250 plt . plot (t , mu_xfood , label = " estimate of outside food mu_x_food " , color

= " orange " )
251 plt . plot (t , x , label = " real depth x (=real food/temp ) " , linewidth = " 2 " ,

color = " r " )
252 plt . plot (t , water_line )
253 plt . plot (t , bottom , color = " brown " , linestyle = ’ : ’ )
254 plt . axvline ( x = 0.2∗ T , color = ’b ’ , linestyle = ’−−’ )
255 plt . axvline ( x = 0.5∗ T , color = ’b ’ , linestyle = ’−−’ )
256 plt . gca ( ) . invert_yaxis ( )
257 plt . xlabel ( " Time " )
258 plt . ylabel ( " Hydar Depth ( m ) " )
259 plt . title ( " External states " )
260 #plt . legend ( loc = ’ lower right ’ )
261 plt . legend ( loc = ’ center right ’ , bbox_to_anchor = ( 0 . 6 5 , 0 . 8 ) )
262
263
264 plt . figure ( )
265 plt . plot (t , mu_temp , label = " internal temp estimate mu_temp " , color = "

limegreen " )
266 plt . plot (t , phi_temp , label = " internal temp measurement phi_temp " , color

= ’b ’ )
267 plt . plot (t , mu_food , label = " internal hunger estimate mu_food " , color =

" orange " )
268 plt . plot (t , phi_food , label = " internal hunger measurement phi_food " ,

color = " r " , linestyle = ’−−’ )
269 plt . axvline ( x = 0.2∗ T , color = ’b ’ , linestyle = ’−−’ )
270 plt . axvline ( x = 0.5∗ T , color = ’b ’ , linestyle = ’−−’ )
271 plt . gca ( ) . invert_yaxis ( )
272 plt . xlabel ( " Time " )
273 plt . ylabel ( " Interoceptive state value " )
274 plt . title ( " Interoceptive states " )
275 plt . legend ( loc = ’ center right ’ , bbox_to_anchor = ( 0 . 6 5 , 0 . 7 ) )
276 # plt . plot ( mu_dot )
277
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278 plt . figure ( )
279 plt . plot (t , 1/ omega_temp_z0 , label = " external y_temp " , color = "

limegreen " )
280 plt . plot (t , 1/ omega_food_z0 , label = " external y_food " , color = " orange

" )
281 plt . axvline ( x = 0.2∗ T , color = ’b ’ , linestyle = ’−−’ )
282 plt . axvline ( x = 0.5∗ T , color = ’b ’ , linestyle = ’−−’ )
283 plt . legend ( )
284 plt . title ( " Exteroceptive variances ( Attention ) " )
285 plt . xlabel ( " Time " )
286 plt . ylabel ( " Estimated variance " )
287
288
289 plt . figure ( )
290 plt . plot (t , omega_temp_z0 , label = " external y_temp " , color = " limegreen

" )
291 plt . plot (t , omega_food_z0 , label = " external y_food " , color = " orange " )
292 plt . axvline ( x = 0.2∗ T , color = ’b ’ , linestyle = ’−−’ )
293 plt . axvline ( x = 0.5∗ T , color = ’b ’ , linestyle = ’−−’ )
294 plt . legend ( )
295 plt . title ( " Exteroceptive precisions ( Attention ) " )
296 plt . xlabel ( " Time " )
297 plt . ylabel ( " Estimated precision " )
298
299
300 plt . figure ( )
301 plt . plot (t , 1/omega , label = " internal temp sensor " , color = " limegreen

" )
302 plt . plot (t , 1/omega_3 , label = " internal temp prior " )
303 plt . plot (t , 1/omega_2 , label = " hunger sensor " , color = " orange " )
304 plt . plot (t , 1/omega_4 , label = " hunger prior " , color = " r " )
305 plt . axvline ( x = 0.2∗ T , color = ’b ’ , linestyle = ’−−’ )
306 plt . axvline ( x = 0.5∗ T , color = ’b ’ , linestyle = ’−−’ )
307 plt . xlabel ( " Time " )
308 plt . ylabel ( " Estimated variance " )
309 plt . title ( " Interoceptive variances ( Affect ) " )
310 plt . legend ( )
311
312
313 plt . figure ( )
314 plt . plot (t , omega , label = " internal temp sensor " , color = " limegreen " )
315 plt . plot (t , omega_3 , label = " internal temp prior " )
316 plt . plot (t , omega_2 , label = " hunger sensor " , color = " orange " )
317 plt . plot (t , omega_4 , label = " hunger prior " , color = " r " )
318 plt . axvline ( x = 0.2∗ T , color = ’b ’ , linestyle = ’−−’ )
319 plt . axvline ( x = 0.5∗ T , color = ’b ’ , linestyle = ’−−’ )
320 plt . xlabel ( " Time " )
321 plt . ylabel ( " Estimated precision " )
322 plt . title ( " Interoceptive precisions ( Affect ) " )
323 plt . legend ( )
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