
Type checker for a language with a substructural type system using scope graphs

Jan Knapen1

Supervisor(s): Casper Bach Poulsen1, Aron Zwaan1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Jan Knapen
Final project course: CSE3000 Research Project
Thesis committee: Casper Bach Poulsen, Aron Zwaan, Thomas Durieux

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Substructural typing imposes additional constraints
on variable usage during type checking and re-
quires specialized approaches to ensure type sound-
ness. In this study, we investigate the implemen-
tation of a type checker using scope graphs for
languages with substructural type systems. Scope
graphs, a data structure representing scoping, pro-
vide a foundation for defining type checking al-
gorithms. Our research project extends an ex-
isting Haskell library, incorporating typing rules
for non-substructural, linear, and affine type sys-
tems. Through careful examination and compari-
son of scope graph and calculus implementations,
we evaluate their expressiveness, extensibility, and
readability. While the scope graph implementa-
tion demonstrates promising results, passing all test
cases, the calculus implementation encounters uni-
fication errors in a subset of the tests. We conclude
that the scope graph implementation offers a solid
foundation for substructural typing, with potential
for easy extension and integration with other lan-
guage features. However, further work is needed
to develop a comprehensive test suite and address
the challenges faced by the calculus implementa-
tion. By advancing these areas, we can enhance
the effectiveness of substructural type checking and
enable more reliable and secure programming prac-
tices in languages with substructural type systems.

1 Introduction
1.1 Type Checking
Type checking is a process used in computer programming
to verify the types of variables, expressions, or functions in a
program. In simple terms, it involves ensuring that the data
types used in a program are consistent with the intended us-
age of those data types.

The importance of type checking lies in its ability to catch
errors that may otherwise go unnoticed, resulting in incorrect
program behavior or crashes. For example, if a program tries
to perform arithmetic operations on a string, a type checking
system would flag this as an error and prevent the program
from executing.

1.2 The Problem: Substructural Programming
Languages

Substructural programming languages are a type of program-
ming language that impose additional constraints on the use
of variables and other resources. These constraints are de-
signed to prevent certain kinds of errors and make programs
more reliable and secure.

A good example of this is file handling. With linear typing,
which enforces that variables and resources are used exactly
once, we can ensure that a file is released properly safeguard-
ing against resource leaks.

Some common types of constraints used in substructural
programming languages include linear types, affine types and
relevant types [6]:

• Linear types are types that can only be used once, mean-
ing that a variable of a linear type can be used exactly
once in a program.

• Affine types are similar to linear types, but allow that
variables are not used, meaning that a varibale of a affine
type can be used at most once in a program.

• Relevant types are types that are used at least once. This
ensures that variables are necessary for the program’s
execution.

1.3 Scope Graphs
Scope graphs are a data structure that can represent the lexi-
cal scoping of names in a program. They are a directed graph
that captures the nesting of scopes and the relationships be-
tween them. Each node in a scope graph represents a scope,
which is a region of a program where a name is defined and
can be accessed. Connected with edges to the nodes there
are leaves which represent variable declarations, module im-
ports, etc. Scope graphs give us the possibility to delegate the
challenge of resolving names during type checking to type
checking algorithms we define once and for all [5].

However they can represent non-lexical scoping as well.
While they are commonly used to capture the lexical scoping
of names in a program, scope graphs were designed to handle
various scoping mechanisms, including non-lexical scoping.
The key concept behind scope graphs is to represent the rela-
tionships between scopes and their nesting hierarchy, regard-
less of the specific scoping rules involved. This allows scope
graphs to accomodate different scoping mechanisms, such as
dynamic scoping or other forms of non-lexical scoping.

1.4 Monotonicity
Monotonicity, a fundamental property of scope graphs, plays
a crucial role in ensuring the integrity of edge queries within
a given scope. This property guarantees that once edges have
been queried within a scope, they cannot subsequently be
utilized to establish sinks or dependencies within that same
scope. Monotonicity serves as a vital mechanism for preserv-
ing the consistency and reliability of scope graphs, prevent-
ing the introduction of unexpected sinks or dependencies that
may compromise the integrity of the graph structure.

For example, let’s consider a scope graph representing a
programming language. Each node in the graph represents
a scope, such as a function or a block of code, and edges
represent the relationships between scopes, such as variable
references or function calls.

Now, suppose we have a scope A that contains a variable
declaration and a scope B that references that variable. The
graph would have an edge from B to A, indicating the depen-
dency.

If the monotonicity property is violated, it would mean that
after querying the edges in scope B, additional edges are in-
troduced that establish sinks in scope B, i.e., references to
variables that are not actually present in scope B. This would
lead to an inconsistent graph structure where the dependen-
cies do not accurately reflect the actual scope and visibility of
variables.



1.5 Linear Typing in Rust
”Rust uses a strong type system based on the ideas of own-
ership and borrowing, which statically prohibits the mutation
of shared state” as stated by Jung et al (2021) [3]. This own-
ership system and borrowing rules can be seen as inspired
by substructural types. Rust’s ownership system ensures that
each value has a single owner at any given time, and it en-
forces strict borrowing rules to prevent data races and mem-
ory unsafety.

The concept of ownership in Rust is similar to the idea
of linear types, where a resource can only have one owner,
and ownership can be transferred or borrowed temporarily.
The borrow checker in Rust enforces rules such as exclusive
borrowing (mutable references) and shared borrowing (im-
mutable references) to prevent multiple mutable references
or dangling references.

While Rust’s ownership and borrowing rules provide some
substructural-like guarantees, it does not fully implement all
the features of a pure substructural type system. For example,
Rust does not directly support features like unrestricted dupli-
cation of values or explicit linear types annotations. However
this makes substructural typing a key element to be imple-
mented using scope graphs, because we want to be able to
define type checking algorithms for any language including
programming languages inspired by substructural type sys-
tems.

1.6 Research Question
In this research project, we explore the implementation of a
type checker using scope graphs for languages with a sub-
structural type system, specifically focusing on linear and
affine type disciplines, using the Haskell programming lan-
guage and the phased Haskell library [2]. Rather than focus-
ing on a specific programming language, an abstract syntax is
defined to represent a parsed programming language.

First, we will provide a comprehensive problem descrip-
tion. Next we present the contribution of the research done
highlighting the solutions proposed to tackle the identified
problem. Following the contribution, we proceed to the eval-
uation stage, where we present the results of our research us-
ing designed test cases. Then we dedicate a section to dis-
cussing the ethical considerations of our work. The subse-
quent section is dedicated to the discussion of our findings
and their interpretation. In the last section we present the
conclusion of our paper. Furthemore we outline potential av-
enues for future work in this section, identifying unresolved
questions, new directions, or extensions to our research that
could be explored to advance the field. At last, related work
is mentioned.

2 Problem Description
2.1 Haskell Library
The use of scope graphs for type checking is a topic of ongo-
ing research in the field of programming languages. There is
a Haskell library still in development for writing type check-
ers that construct scope graphs [2]. This library has not been
used yet to write a type checker for substructural program-
ming languages.

In this research project we aim to extend the phased
Haskell library to be able to construct scope graphs for lan-
guages with a substructural type system. The library can be
split into the following phases:

1. ATerms, resulting from parsing the initial programming
language string.

2. Abstract Syntax, resulting from parsing the ATerms.
3. Typechecking program, input conform the Abstract

Syntax and output is the typechecking result.
The first phase is skipped in this research project because

there are programming languages with a pure substructural
type system. The Abstract Syntax used in the second phase
consists of Expressions and Types. It should be extended and
adjusted to facilitate the substructural type systems. The be-
havior of the third phase should also be adjusted accordingly.
A fourth phase needs to be introduced to enable checking for
substructural types, more about this later.

2.2 Methodology
The methodology employed in this research project aimed to
investigate the implementation of typing rules using scope
graphs. The overall approach involed several steps. First we
started by defining the typing rules that would serve as the
foundation for our investigation. As starting point we used
the typing rules as defined by David Walker (2002) [6]. These
rules were carefully (re)formatted to capture the desired be-
havior and constraints of the system under study.

The typing rules were implemented without using scope
graphs, the purpose of this implementation is to evaluate the
later implementation using scope graphs. Both use a similar
Abstract Syntax so that test cases are clearly the same and can
be evaluated easily.

Next, we embarked on a thorough exploration of different
ideas and approaches to incorporate these typing rules into
scope graphs. This step allowed us to gain a comprehensive
understanding of the challenges and opportunities associated
with leveraging scope graphs for enforcing type contraints.

After analyzing the possible solutions, we proceeded to im-
plement the chosen solution into the phased Haskell library.
To assess the proposed approach, we designed test cases for
evaluation. These test cases encompassed various scenarios
and scenarios that would exercise the implemented typing
rules both with and without the integration of scope graphs.
By comparing the results of these experiments, we were able
to qualitatively evaluate the implemantation.

3 Contribution
3.1 Typing Rules
In this subsection we will discuss the defined typing rules that
are the base of this research project. We started from the
typing rules defined by David Walker (2002) [6] and made
adjustments for our specific use. First we define the simply-
typed lambda calculus rules. Then we define the typing rules
for linear types, which are the initial focus of this research
project. Later we define the typing rules for affine types
which are very similar. The typing rules are later used for
the implementation and also combined.



For each type system we define typing rules for each Ex-
pression of the Abstract Syntax. The are respectively Ident x
(Variable Identifier), Plus e1 e2 (Addition), App e1 e2 (Ap-
plication), Abs x t e (Function Abstraction) and Let x t e1 e2
(non-recursive Let-Binding).

Simply-Typed Lambda Calculus Rules
The following equations are straightforward for each Expres-
sion. Since the typechecker is adjusted to also return the
Context along the resulting Type, because the Context may
be changed since we are removing variables in case of lin-
ear/affine, the following typing rules are adjusted to show
how the returned context is used.

We can take typing rule 2 as an example of how to read the
typing rules:

• We first read the upper part of the fraction: given a con-
text Γ in which we can successfully type check expres-
sion e1 to a Num, resulting in an updated context Γ′,
and further, in the updated context Γ′, we can success-
fully type check expression e2 to a Num, resulting in a
final context Γ′′.

• We then read the lower part: the typing rule concludes
that we can type check the Plus expression Plus e1 e2
to type Num in the original context Γ, resulting in the
final context Γ′′.
Other symbols that we use:

– t1 t2: Function type from type t1 to t2.
– Γ ≡ Γ′,Γ′′: Context Γ splitten into the two context
Γ′ & Γ′′.

– Γx: Partial context of context Γ that only binds
variable x.

– Γx: Partial context of context Γ that binds every-
thing except variable x.

– x : t /∈ Γ: Variable x is not binded with type t in
context Γ.

– Γ\1{x : t}: Resulting context Γ without the bind-
ing of variable x with type t.

x : t ∈ Γ

Γ ⊢ x : t
(1)

Γ ⊢ e1 : Num; Γ′ Γ ⊢ e2 : Num; Γ′′

Γ ⊢ Plus e1 e2 : Num; Γ′′ (2)

Γ ⊢ e1 : t1 t2; Γ
′ Γ ⊢ e2 : t1; Γ

′′

Γ ⊢ App e1 e2 : t2; Γ′′ (3)

x : t1,Γ ⊢ e : t2; Γ
′

Γ ⊢ λ(x : t) . e : t1 t2; Γ′ (4)

Γ ⊢ e1 : t1; Γ
′ x : t1,Γ

′ ⊢ e2 : t2; Γ
′′

Γ ⊢ let x : t = e1 in e2 : t2; Γ′′ (5)

Linear Typing Rules
Variables are removed from the context when they are used.

x : t ∈ Γ

Γ ⊢ x : t; Γ\1{x : t}
(6)

Both the Addition and Applicaiton typing rules stay the
same.

Γ ⊢ e1 : Num; Γ′ Γ′ ⊢ e2 : Num; Γ′′

Γ ⊢ Plus e1 e2 : Num; Γ′′ (7)

Γ ⊢ e1 : t1 t2; Γ
′ Γ ⊢ e2 : t1; Γ

′′

Γ ⊢ App e1 e2 : t2; Γ′′ (8)

When type checking a Function Abstraction we split the
context to not contain x-bindings when type checking the
body with the parameter x. We then add the paramter vari-
able and type check the body. At the end after typechecking
the body there should be no x-bindings because linear vari-
ables should be used exactly once. After type checking the
Function Abstraction we add back the x-bindings of the orig-
inal context.

Γ ≡ Γx,Γx x : t1,Γx ⊢ e : t2; Γ
′
x x : t1 /∈ Γ′

x

Γ ⊢ λ(x : t) . e : t1 t2; Γ′
x,Γx

(9)

When type checking a Let-Binding, first we typecheck the
first expression. Then we split the resulting context to not
contain x-bindings. We then add the let variable and type
check the second expression. At the end after typechecking
the second expression there should be no x-bindings. After
type checking the Let-Binding we add back the x-bindings of
the original context.

Γ ⊢ e1 : t1; Γ
′ Γ′ ≡ Γ′

x,Γ
′
x x : t1,Γ

′
x ⊢ e2 : t2; Γ

′′
x x : t1 /∈ Γ′′

x

Γ ⊢ let x : t = e1 in e2 : t2; Γ′′
x,Γ

′
x

(10)
The last two typing rules ensure that there is no variable

shadowing by removing the x-bindings before type checking
the body. This allows us to remove the variable binding in the
first typing rule, else in the second it would use the shadowing
variable.

Affine Typing Rules
Variable Identifier, Addition and Application are the same as
for Linear.

x : t ∈ Γ

Γ ⊢ x : t; Γ\1{x : t}
(11)

Γ ⊢ e1 : Num; Γ′ Γ′ ⊢ e2 : Num; Γ′′

Γ ⊢ Plus e1 e2 : Num; Γ′′ (12)

Γ ⊢ e1 : t1 t2; Γ
′ Γ ⊢ e2 : t1; Γ

′′

Γ ⊢ App e1 e2 : t2; Γ′′ (13)

For type checking Function Abstraction the difference with
linear is that it is possible that the variable x is not used. So
we remove the possible x-binding, which was added due to
the lambda parameter, after type checking the body.



Γ ≡ Γx,Γx Γ′ ≡ x : t1,Γx Γ′ ⊢ e : t2; Γ
′′ Γ′′ ≡ Γ′′

x,Γ
′′
x

Γ ⊢ λ(x : t) . e : t1 t2; Γ′′
x,Γx

(14)
This is also the difference for Let-Bindings, we simply re-

move the x-binding that might be left after type checking the
second expression and add back the x-bindings of the context
that resulted after typechecking the first expression.

Γ ⊢ e1 : t1; Γ
′ Γ′ ≡ Γ′

x,Γ′
x Γ′′ ≡ x : t1,Γ

′
x Γ′′ ⊢ e2 : t2; Γ

′′′ Γ′′′ ≡ Γ′′′
x ,Γ′′′

x

Γ ⊢ let x : t = e1 in e2 : t2; Γ
′′′
x ,Γ′

x
(15)

3.2 Calculus Implementation
The calculus implementation involved utilizing the existing
code in the lang-hm subfolder as a boilerplate and can be
found in the new subfolder ./lang-linear-calculus in
the project’s GitHub repository [4]. This provided a founda-
tion for incorporating the newly defined typing rules into the
system. In the case of the non-substructural typing rules they
closely resembled those already implemented. To accommo-
date substructural types, the syntax was extended by introduc-
ing linearT and affineT as additional layers over the actual
types. These layers were used to indicate the substructural na-
ture of the actual types behind them. Furthermore, the imple-
mentation added support for let-bindings, which were previ-
ously absent. To enforce substructural typing, the AlgJ type-
checking function was adjusted to include the return of the
adjusted context after checking each expression. This modi-
fication was necessary to remove used substructural variables
from the context, thereby ensuring compliance with substruc-
tural typing rules. For instance, the Ident typing rule from
the Linear Typing rules, as defined in equation 6, demon-
strates the removal of a variable from the context after its
usage. Moreover, the AlgJ typechecking function was en-
hanced to enforce linear variable usage in let-bindings and
lambdas, mandating that they are utilized at least once. This
is not necessary for the affine variables as they can also be left
unused.

3.3 Researched Solutions using Scope Graphs
The next step in this research project was translating the typ-
ing rules into scope graphs. The main challenge was keeping
track of total usages of a variable without giving up mono-
tonicity. Some of the considered but not chosen solutions are:

• Delete declaration edge to variable when used. Problem:
this gives up monotonicity since any queries after that
are the same return something different

• Add meta-deta to variable declaration keeping count of
total usages. Problem: Haskell does not have mutable
data, so it’s not possible to edit the variable declaration
to update the count.

3.4 Chosen Solution
To solve this problem without giving up the monotonicity
property, we introduce a new phase after the type checking
phase. In the type checking phase the scope graph is being
constructed and we keep count of the total usages of a lin-
ear/affine variable by adding UsageDecl after each query. In

Figure 1: Example Code corresponding Scope Graph

the next new phase, we check the whole scope graph for lin-
ear/affine variables and check if they have a valid total count
of usages.

We will use listing 1 as an example where we will asume
the let is linear, this code snippet results into the scope graph
shown in figure 1. Given a code snippet we start with scope
0, then the first line declares linear variable x. We thus cre-
ate a LinearDecl where (2) points to a new empty scope
which is used to keep count of total usages. ”x” is the vari-
able name and NumT is the actual underlying type of the
variable. This way we create a layer over variable x, whereas
a normal variable x would simply be a Decl ”x” NumT .
In line two of the example code we use the variable x two
times, so two queries are executed in scope 1. This leads to
the LinearDecl we just declared. For each query we declare
a new UsageDecl in scope 2, using them we can count the
total usages in the later phase where we check all linear/affine
types. The Symbol used by UsageDecl is used to make each
UsageDecl unique, this is necessary because else we will get
an error that the UsageDecl is already declared.

In the last phase we go over all scopes in the constructed
scope graph and check if they contain any Linear Declara-
tions. We then use the scope given bij the LinearDecl to
count the total usages. If this total is not exactly one, then we
throw a Linear error, since all linear variables should be used
exactly once.

1 let x = 4
2 in x + x

Listing 1: Example Code

3.5 Implementation of Chosen Solution
The implementation using scope graphs involved utiliz-
ing the existing code in the lang-mylang subfolder as
a boilerplate and can be found in the new subfolder
./lang-linear-scope-graph in the project’s GitHub
repository [4]. Similar to the calculus implementation, this
process involved extending the syntax to incorporate let-
bindings and the LinearT and AffineT types, which func-
tioned similarly to their counterparts in the calculus imple-
mentation. Furthermore, a new label, namely U , was intro-
duced to serve as an edge for the new UsageDecl in order to
distinguish it from variable declarations. The type checking
function was modified to accommodate the usage of substruc-
tural types and declarations. Finally, the runTC function,
which acts as the central orchestrator, was expanded with an
additional phase. This phase involved checking all substruc-
tural types, as explained in the previous section, thereby com-



pleting the integration with scope graphs and the implemen-
tation of the typing rules.

3.6 Affine Typing
To include affine types, we only need a few adjustments.
A new declaration with the same parameters is introduced,
namely AffineDecl. The behavior for this type is the same
as linear in the penultimate phase. In the last phase we check
the Affine types in a similar way, the only difference is that
the total count of usages should not be one, but either zero or
one since affine types should be used at most once.

4 Evaluation
In this section, we focus on evaluating the calculus and scope
graph implementation by conducting tests and code analy-
sis. Firstly, we compare the results obtained from testing both
implementations with non-substructural type systems, linear
type systems, and affine type systems. Through self-defined
test cases, we aim to assess the effectiveness and accuracy of
both implementations across these different types of systems.
Secondly, we delve into an in-depth analysis of the code be-
hind the scope graph implementation, specifically examining
its extensibility, expressiveness, and readability. By scrutiniz-
ing these aspects, we aim to gain insights into the implemen-
tation’s overall design and potential for future improvements.

4.1 Test Cases
The test cases were designed based on the typing rules and
were categorized into three groups: non-substructural typing
rules, linear typing rules, and affine typing rules. The test
suite began with the non-substructural typing rules, and sub-
sequently, the same tests were performed using only Linear
or Affine types for the other typing rules. Each category of
typing rules included specific test cases for Abs, App, Let,
Complex (combinations of earlier mentioned), and Errors
(tests that should always result in an error). It is important to
note that the expected results for some test cases varied be-
tween the calculus and scope graph implementations. This
discrepancy arises because the calculus implementation en-
forces substructural types during typechecking, whereas the
scope graph enforces them after typechecking the entire ex-
pression.

The complete collection of test cases can be found on the
project’s GitHub repository [4]. For instance, let’s consider a
test case for the Plus typing rule for non-substructural type
systems:

Test Case: Plus Typing Rule
Input: (Plus (Num 0) (Num 1))
Expected Output: NumT

In this example, we test the typing rule for addition. The
test case ensures that the expression is well-typed according
to the Plus rule which states that both expressions should be
of type NumT . Further test cases for App, Let, Complex,
and Error scenarios can be explored in the project’s GitHub
repository [4]:

• Tests for the scope graph implementation can be found
at: ./lang-linear-scope-graph/tests/Main.hs.

• Tests for the calculus implementation can be found at:
./lang-linear-calculus/Test.hs.

4.2 Results
The evaluation of the scope graph and calculus implementa-
tions yielded the following results:

Test Suite Cases Tried Failures
Non-substructural tests 41 41 0
Linear tests 37 37 0
Affine tests 37 37 0

Table 1: Scope Graph Test Results

Test Suite Cases Tried Failures
Non-substructural tests 41 41 0
Linear tests 37 37 6
Affine tests 37 37 6

Table 2: Calculus Test Results

It was expected that all test cases passing for the scope
graph implementation would also pass for the calculus imple-
mentation, given that the calculus implementation served as
the basis for this project. However, the failure of certain test
cases in the calculus implementation is attributed to Unifica-
tion Errors, likely caused by using an Abs (lambda function)
as a parameter for another Abs. Notably, these failing test
cases pass as expected in the scope graph implementation,
which aligns with the project’s ultimate goal.

4.3 Code Analysis
The scope graph implementation exhibits various characteris-
tics in terms of expressiveness, extensibility, readability, and
documentation.

Regarding expressiveness, the implementation provides
clear error messages when types do not match, as exempli-
fied by the ”Let x t e1 e2” construct, which generates an
informative error message if e1 is not of type t. However,
the handling of substructural errors is not as expressive, as it
only displays a generic error message stating ”Substructural
typing error” without indicating which type system (linear or
affine) enforces the error.

Concerning extensibility, the scope graph library offers two
main avenues for extension: the Type and Expr data types.
While adding new substructural types is straightforward and
the added Linear/Affine types are compatible with any new
type, it necessitates modifications in the ‘typecheck‘ function.
Specifically, cases within Let, Abs, Ident, and App need to
be adjusted to account for any new substructural types. Simi-
larly, introducing a new Expr requires considering the exist-
ing substructural types when implementing the ‘typecheck‘
function for that expression, ensuring the proper use of dif-
ferent declarations for each substructural type.

Regarding readability, the implementation demonstrates
consistency in indentation and adheres to standard Haskell
formatting conventions. However, the code lacks compre-
hensive comments which could be beneficial, particularly in



complex sections or algorithms. Additionally, some vari-
able and function names are concise and lack self-explanatory
qualities, making it challenging to understand their purpose
without additional context.

In terms of modularity, the code is organized into sections
such as ”Scope Graph parameters,” ”Type Checker,” and ”Tie
it all together.” This modular structure aids in comprehending
the code’s flow and purpose.

However, a notable aspect that requires improvement is
the documentation. While the code follows some level of
readability and organization, comprehensive documentation
is lacking, further accentuating the need for additional com-
ments to enhance clarity and understanding.

5 Responsible Research
In our research project, the implementation of the type-
checker was conducted with a clear vision for extensibility.
We recognized the importance of creating a framework that
could accommodate the addition of other types and expres-
sions in the future. To ensure research reproducibility, we
have made the project code readily available and easily exe-
cutable using the cabal package. However, we acknowledge
that the evaluation conducted was limited in scope. This lim-
itation raises ethical considerations regarding the validity and
comprehensiveness of our findings. In Chapter 4.3 it was
noted that documentation is currently very limited. We rec-
ognize that this lack of comprehensive documentation is eth-
ically concerning, as it hampers users’ ability to understand
and utilize the typechecker effectively.

6 Discussion
The results indicate that the overall solution has been success-
fully implemented, offering potential for easy extension with
other substructural typing systems. This finding suggests that
the implementations provide a solid framework for handling
substructural typing. Additionally, with limited knowledge,
the implementations can be easily used when extending with
other expressions, showcasing their usability and flexibility.

However, it is important to note that the evaluation was
limited by the absence of a comprehensive test suite. While
the provided test cases covered a range of scenarios, the lack
of a comprehensive test suite hinders a thorough examination
of the implementations’ behavior and the identification of po-
tential edge cases.

7 Conclusion & Future Work
In conclusion, this research project aimed to investigate the
feasibility of implementing a type checker using scope graphs
for languages with substructural type systems. The integra-
tion of substructural typing imposes additional constraints on
variable usage during type checking. Scope graphs, as a data
structure representing scoping, offer a foundation for defin-
ing type checking algorithms. Their fundamental property
of monotonicity ensures the absence of unexpected sinks or
dependencies. While the integration of substructural typing
remains limited, languages like Rust draw inspiration from
linearity with concepts such as ownership.

In this project, we extended the existing Haskell library,
starting with typing rules for non-substructural, linear, and
affine type systems. These were implemented by extend-
ing the existing type checker that can be found in the
folder lang-hm [2]. Then we extended the existing type
checker using scope graphs by using the template folder
lang-mylang. To support substructural types, we intro-
duced the LinearDecl and AffineDecl that serve as a layer
over the actual type. These declarations additionally point
to a seperate scope that keeps count of the total usages of
the actual variable behind it. An additional type checking
phase was implemented to validate the counts of declared lin-
ear/affine variables by checking the scopes for each of them.
The chosen solution prioritized extensibility of types and ex-
pressions. Around 37 test cases were executed to compare
and validate both implementations. Encouragingly, all test
cases passed for the scope graph implementation, while six
of them did not pass for the calculus implementation. These
findings highlight the potential of scope graphs as a promis-
ing approach for implementing type checkers in substructural
type systems.

For future work, several avenues can be explored to fur-
ther enhance the scope graph implementation and extend its
capabilities:

Firstly, developing a more comprehensive test suite would
be beneficial. This entails not only covering additional edge
cases but also considering combinations of non-substructural,
affine, and linear typing scenarios. This broader range of tests
would provide a more thorough evaluation of the implemen-
tation’s robustness and identify any potential areas for im-
provement.

Addressing the unification error that caused the failing test
cases in the calculus implementation is another crucial aspect.
Investigating the root cause of this error and devising a solu-
tion to resolve it would ensure that the calculus implementa-
tion aligns with the expected behavior and performs consis-
tently with the scope graph implementation.

Furthermore, exploring the integration of the chosen solu-
tion with other language features and paradigms, such as type
classes, modules, and objects, would be an interesting avenue
for future research. Assessing the compatibility and deter-
mining the feasibility of combining the scope graph imple-
mentation with these constructs would contribute to a more
comprehensive and versatile type checking framework.

By focusing on these future directions, researchers and
developers can advance the scope graph implementation,
strengthen its reliability and accuracy, and explore its poten-
tial integration with various language features to support a
broader range of programming paradigms.

8 Related Work
Linear type systems have long been a subject of extensive
research, holding great promise for programming languages.
However, their integration into mainstream programming lan-
guages has been limited, as noted by Bernardy et al (2017)
[1]. Interestingly, Rust, as discussed in the introduction and
supported by Bernardy et al. (2017) [1], incorporates a unique
ownership typing system that draws inspiration from linear-



ity. Additionally, Bernardy et al. (2017) [1] have explored the
implementation of linearity in Haskell, with a specific focus
on linearity within the function arrow rather than linearity in
the kinds. In alignment with this research, our project has
also implemented a linear typing rule for lambda functions,
explicitly specifying that lambda arguments must be used ex-
actly once in case of linearity and at most once in case of
affinity. However whereas this research project only has the
type NumT which is a value of atomic base type and is ”con-
sumed” by simply evaluating it, the research of Bernardy et
al. (2017) [1] extends this as following:

• Linear Function: apply it to one argument and consume
its result exactly once.

• Pair: pattern match on it and consume each component
exactly once.

• In general: pattern match on a datatype and consume its
linear components exactly once.

9 Acknowledgements
I would like to express my gratitude to my supervisor, Aron
Zwaan, for his guidance and support throughout this project.
Always ready to help and think along the process.

Additionally, I would like to thank Professor Casper Bach
Poulsen for his consistent presence in all the weekly meet-
ings, going above and beyond the required obligations. I truly
appreciate his dedication and availability for any additional
necessary discussions/meetings.

References
[1] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R.

Newton, Simon Peyton Jones, and Arnaud Spiwack. Lin-
ear haskell: Practical linearity in a higher-order polymor-
phic language. Proc. ACM Program. Lang., 2(POPL),
dec 2017.

[2] Aron Zwaan Casper Bach Poulsen. Haskell li-
brary for writing type checkers using scope
graphs. https://github.com/MetaBorgCube/
scope-graph-scheduling-bsc-template. Accessed:
May 19, 2023.

[3] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers,
and Derek Dreyer. Safe systems programming in rust.
Commun. ACM, 64(4):144–152, mar 2021.

[4] Jan Knapen. Scope graph scheduling bsc substruc-
tural type systems. https://github.com/JanKnapen/
scope-graph-scheduling-bsc-substructural. Accessed:
June 23, 2023.

[5] Casper Bach Poulsen. Building type checkers us-
ing scope graphs. https://projectforum.tudelft.nl/course
editions/60/generic projects/2533. Accessed: June 19,
2023.

[6] David Walker. Substructural type systems. In
https://mitpress-request.mit.edu/sites/default/files/titles
/content/9780262 162289 sch 0001.pdf, page 10, 2002.

https://github.com/MetaBorgCube/scope-graph-scheduling-bsc-template
https://github.com/MetaBorgCube/scope-graph-scheduling-bsc-template
https://github.com/JanKnapen/scope-graph-scheduling-bsc-substructural
https://github.com/JanKnapen/scope-graph-scheduling-bsc-substructural
https://projectforum.tudelft.nl/course_editions/60/generic_projects/2533
https://projectforum.tudelft.nl/course_editions/60/generic_projects/2533

	Introduction
	Type Checking
	The Problem: Substructural Programming Languages
	Scope Graphs
	Monotonicity
	Linear Typing in Rust
	Research Question

	Problem Description
	Haskell Library
	Methodology

	Contribution
	Typing Rules
	Simply-Typed Lambda Calculus Rules
	Linear Typing Rules
	Affine Typing Rules

	Calculus Implementation
	Researched Solutions using Scope Graphs
	Chosen Solution
	Implementation of Chosen Solution
	Affine Typing

	Evaluation
	Test Cases
	Results
	Code Analysis

	Responsible Research
	Discussion
	Conclusion & Future Work
	Related Work
	Acknowledgements

