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ABSTRACT

Wave energy holds substantial promise as a renewable resource, but its
commercial deployment remains limited. Research primarily focuses on
individual wave energy converter (WEC) devices, while the interactions
within WEC arrays have received less attention. Optimizing these inter-
actions is essential for maximizing energy capture and minimizing op-
erational costs. However, due to the variability of wave conditions, it
is unlikely that a single WEC configuration will be effective across all
scenarios. Therefore, to optimize performance, a large number of simu-
lations are required, which is computationally expensive with traditional
high-fidelity numerical methods. This paper addresses this challenge by
utilizing a surrogate model based on polynomial chaos expansion (PCE),
which efficiently captures the behavior of a WEC array over a 30-year
probabilistic based on a high-fidelity wave dataset. The surrogate model
is compared to a frequency domain model, demonstrating a high effi-
ciency. The surrogate model is used to simulate the performance of
an array of five point absorber WECs under varying wave conditions.
The study highlights the following requirements for optimal array per-
formance: the spatial configuration of WECs must consistently produce
optimal power throughout the operational period and must adapt to the
high variability of wave parameters. The results reveal that the fixed ar-
ray configuration under study, produces power that is inconsistent over
varying sea conditions, showing suboptimal energy production under
most wave conditions, and higher power output only under less probable
wave scenarios. These findings provide insights into the physical interac-
tions influencing WEC array performance and can inform future design
methodologies for wave energy farms. The proposed surrogate modeling
framework offers a highly efficient tool for conducting large-scale prob-
abilistic analyses of WEC arrays, significantly reducing computational
effort while enabling more accurate performance predictions.

KEY WORDS: wave energy converters; surrogate models; frequency
domain model; ECHOWAVE dataset; optimization.

INTRODUCTION

Wave energy has immense potential (Guo & Ringwood, 2021; Khojasteh
et al., 2023) as a renewable resource, yet it remains significantly under-
utilized . Advanced research is essential for the efficient commercial
deployment of wave energy converter (WEC) devices as integrating
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wave energy farms with existing wind and solar farms can enhance
energy production while minimizing installation and operational costs
(Babarit et al., 2012). Current research predominantly focuses on
individual WEC performance and design, with limited investigation into
the interactions within WEC arrays. Present practices aim to position
WEC:s to avoid mutual interference, thereby restricting the optimal use
of the available resources. A comprehensive understanding of how
different WEC configurations influence energy capture can lead to
optimum power production with minimal costs. However, it is unlikely
that one particular configuration of wave energy converters can produce
high power at all wave conditions. Therefore, there is a need for faster
models (Stavropoulou et al., 2023, 2025) that can run a high number of
simulations in a reasonable duration of time to study the performance
of WEC arrays over a long period of time ensuring consistent power
generation for a wide range of wave parameters.

The objective of efficient harvesting of ocean wave energy presents a
significant challenge due to the complex hydrodynamic interactions
between wave energy converters (WECs) in an array. The power
output of an array is mainly affected by two factors. Firstly, the spatial
configuration of individual WECs, making optimization a critical aspect
of array design. Secondly, high stohasticity and variability in the wave
parameters over the expected period of operation. In order to study
the influence of both the factors mentioned above, a large number of
simulations are needed. Traditional high-fidelity numerical simulations
are computationally expensive, making it difficult to conduct large-scale
probabilistic studies necessary for optimizing performance of WEC
arrays under realistic wave conditions. To address this challenge, this
study employs a surrogate model based on polynomial chaos expansion
(PCE). This surrogate efficiently captures the behaviour of a WEC
array over a probabilistic wave dataset spanning 30 years, based on the
ECHOWAVE hindcast (Alday & Lavidas, 2024).

The methodology presented can be used to train the surrogate models
for any wave dataset. The paper demonstrates the efficiency of the
surrogate compared to the hydrodynamic frequency domain model by
(Tan & Lavidas, 2024). This model will be used in future works for
the spatial layout optimisation of arrays in varying wave conditions. A
simple point absorber type WEC is used for the purpose of this paper
which is discussed in detail in the following sections.
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Fig.1 Flowchart showing steps for creating a surrogate model for evaluation of wave energy converter arrays.

METHODS

The frequency domain model is used to compute the power capture
of individual WECs and the total power output of various array
configurations. A Latin hypercube sampling technique is employed to
generate 100 samples of wave parameters. The generated dataset is
used to construct a surrogate model using data-driven PCE, allowing
us to approximate the power response of the array for a wide range of
wave conditions. By running the surrogate model for all significant
wave height (H,) and peak period (T),) combinations, we evaluate a
total of 10° cases, enabling a comprehensive probabilistic analysis.
Figure 1 Shows the methodology to create a surrogate model using
polynomial chaos expansion to evaluate the performance of an array of
a configuration of five wave energy converters (WECs). In the following
section, each step of Figure 1 will be discussed in detail.

Probabilistic input

The probabilistic input for wave parameters used in this work has been
adopted from ECHOWAVE 30-years hindcast dataset. Figure 2 shows
the workflow of processed data to sampling for the surrogates. In the
first step, 30 years of raw data was transformed into contour showing the
number of occurrences associated with different H; and T, combination.
This contour was used to fit a surface to the joint probability distribution
of H, and T, using a gaussian copula which was then used to sample
input variables for the simulations.

The ECHOWAVE 30-years hindcast provides spatial (~ 2.3 km) and
temporal (1 hr) resolution of wave fields and spectral data within the
European coastal shelf. One of the main characteristics of this dataset is
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the use of the TUD-165 parameterisation and wind intensities correction
proposed by (Alday & Lavidas, 2024). The use of TUD-165, together
with the selected forcing fields, helped to reduce the overall wave
heights’ biases in the North-East Atlantic. Adjustments that led to the
proposed parametrisation were extensively verified (and then validated)
with measurements from the ESA Sea State CCI V3 altimeter product
(Pioll¢é et al., 2022). The resolution and accuracy of ECHOWAVE is an
excellent tool for a detailed estimation of the energy flux within areas of
interest for the development of wave energy projects (typically in depths
below 200m).

Frequency domain model

The frequency domain (FD) modelling approach is extended from the
framework of the frequency domain (FD) modelling, and the flowchart
of implementing the FD modelling is illustrated in Figure 3. The
coeflicients are derived based on the stochastic linearization method and
the details of the FD model can be found in (Tan & Lavidas, 2024), the
model is fully validated. The frequency domain model was developed
for a single wave energy converter and was extended to an array of five
WEC:s for this work as shown in Figure 4. The geometric details of the
WEC are discussed below.

Geometric details Figure 4b shows the geometry of the WEC used in
this study and Figure 4a shows the co-ordinates (x,y) of each WEC in
the array studied in this work. The WEC used in this work is a floating
heaving point absorber, which is illustrated in Figure 4b. The geometry
of the floating buoy is considered as a sphere with a radius of 2.5 m.
The mass of the buoy is assumed to be the same as that of the displaced
water by the buoy. The details regarding the WEC can be found in (Tan
& Lavidas, 2024)
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surrogate  from

Model Response:

The power produced by each WEC in the array is computed in addition
to the total power produced by the WEC array configuration under study
for each of the combinations of H, and T,. In the end, a probability
density function of the total power output of the configuration was
obtained to evaluate the performance of the array over a span of 30 years
of operation.

Polynomial Chaos Expansion

The advantages of Polynomial Chaos Expansion (PCE) models as
opposed to other surrogate model approaches are several. Firstly, these
models are non-intrusive and do not require any modification to the
underlying FD simulations. Secondly, PCE models are transparent in
terms of the theoretical underpinnings of their performance. Lastly,
the post-processing of PCE model coefficients provides analytically
computed Sobol indices, which can be used for global sensitivity
analysis.

The PCE model in this work is built using UQlab, a framework developed
at ETH Zurich (Marelli & Sudret, 2014; Sudret, 2008). This framework
provides a high-level implementation of Uncertainty Quantification anal-
ysis. A hyperbolic (¢g-norm) polynomial degree truncation scheme (Blat-
man & Sudret, 2011) with g = 0.75 was chosen in the search of optimal
basis. The other details regarding PCE parameters can be found in (Jain
et al., 2024).
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Fig. 3 The steps involved in the formulation of the frequency do-
main model (Tan & Lavidas, 2024) for training the surro-
gates.

RESULTS AND DISCUSSION

This section presents some results to show the efficiency of the surrogate
model developed in this study and the power produced by the array of 5
WEC:s for varying wave parameters over a period of 30 years.

Comparison of frequency domain and surrogate model results

Table shows the comparison of the power computed for each WEC
in the configuration and the total power produced by the array using
the frequency domain model and the surrogate model. The values
presented in the table are computed for H, and 7, around the mean of
the input variables shown in Figure 5(a) and 5(b) for both the models
under comparison. It can be seen that the surrogate model shows
great efficiency (error percent = 3.8) in computing total power with
as little as 20 iterations of FD model. However, when considering the
efficiency of surrogate model to compute the power produced by each
WEC, increasing the number of iterations improves the effectiveness
of surrogate model. Nevertheless, it is shown that the surrogate model
shows a close resemblance to the FD model used to train it. In terms of
computational efficiency, 100 evaluations using FD model takes 8400s
compared to 2s for 1 million iterations using the PCE surrogate model.

The surrogate model developed can be used for different locations (dif-
ferent wave conditions) to evaluate the efficiency of the given WEC array.

(Psd - Ppce) * 100
Ppce

Y% Error = (D)
The error percentage has been calculated using the equation 1, where P,
is the power computed using FD model and P, is the power computed
using the surrogate model.
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Number of iterations 9% Error
Surrogate model | FD model P P, P3 Py Ps Pt
10° 20 2.0% | 14.5% | 2.0% | -0.5% | -0.5% | 3.8%
10° 50 -6.3% | -14% | -6.3% | -2.0% | -2.1% | -3.8%
10° 100 05% | -0.7% | 0.5% | -1.2% | -1.2% | -0.3%

Table 1 Comparison of the Frequency domain model and the surrogate model.

Probability density function of input and output

Figure 5 shows the distribution of samples used for input variables H;
and T, and the output (total power) of the WEC array configuration
under study. The distribution of total power generated for 1 million
samples of input variables shows the consistency of power produced by
the particular configuration under evaluation over a period of 30 years.
It can be clearly seen that the configuration under study is not optimum
for the dataset used as it produces suboptimal power for most of the
time of operations. This can be suggestive of sub-optimal power take-off
damping, non-optimal geometry or spatial configuration for the given
wave conditions. This needs a further investigation before the model can
be used for optimization purposes.

CONCLUSIONS

This paper presents the efficiency of the surrogate model developed using
polynomial chaos expansion against the frequency domain model used to
train it. The surrogate model was then used to evaluate the performance
of an array of five wave energy convertors (point absorbers) over a prob-
abilistic wave dataset of 30 years. The PCE surrogate was shown to
be very efficient (0.3% error) in capturing the behaviour of FD model.
Moreover, the power produced by the array over the operational period
of 30 years was found to be inconsistent as it produced suboptimal power
for most of the wave height and wave period combinations and produced
high power for only certain (less probable) wave parameter combina-
tions. The results provide insights into the physical interactions govern-
ing WEC array performance and inform design methodologies for future
deployments. The proposed framework demonstrates the effectiveness of
using surrogate modelling techniques to perform large-scale probabilis-
tic analyses of wave energy converter arrays with significantly reduced
computational effort.
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