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A Multichannel Cross-modal Fusion Framework for
Electron Tomography

Yan Guo, Student Member, IEEE, Richard Aveyard, and Bernd Rieger

Abstract—In this paper, we present a multichannel cross-
modal fusion algorithm to combine two complementary modal-
ities in electron tomography: X-ray spectroscopy and scanning
transmission electron microscopy (STEM). The former reveals
compositions with high elemental specificity but low signal-to-
noise ratio (SNR), while the latter characterizes structure with
high SNR but little chemical information. We use multivariate
regression to build a cross-modal fusion framework for these two
modalities to simultaneously achieve high elemental specificity
and high SNR for a target element chosen from the sample
under study. Specifically, we first compute three-dimensional
tomograms from tilt-series datasets of X-ray and STEM using
different reconstruction algorithms. Then, we generate many
feature images from each tomogram. Lastly, we adopt partial
least squares regression to assess the connection between these
feature images and the reconstruction of the target element.
Based on simulated and experimental datasets of semiconduc-
tor devices, we demonstrate that our algorithm cannot only
produce continuous edges, homogeneous foreground and clean
background in its element-specific reconstructions, but also can
more accurately preserve fine structures than state-of-the-art
tomography techniques. Moreover, we show that it can deliver
results with high fidelity even for X-ray datasets with limited
tilts or low counts. This property is highly desired in the semi-
conductor industry where acquisition time and sample damage
are essential.

Index Terms—Multimodal image fusion, electron tomography,
HAADF-STEM, X-ray spectroscopy, EDS, nanomaterials

I. INTRODUCTION

ELECTRON tomography is a powerful tool in materials
science to characterize the complex three-dimensional

(3D) structure of inorganic specimens on the nanoscale [1].
In transmission electron microscopy (TEM), the sample under
study is exposed to an electron beam and tilted to obtain
two-dimensional (2D) projection images at different angles.
Several imaging modalities exist, e.g., bright-field TEM [2]
and high-angle annular dark-field scanning transmission elec-
tron microscopy (HAADF-STEM) [3]. In tomography, these
projections are called a tilt-series, from which we can recon-
struct a volume representing the sample [1]. Since the intensity
of HAADF-STEM scales with the atomic number Z of the
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element (∼ Zn, n = 1.6 − 1.9, depending on the inner and
outer detector angles [4]), it can also indirectly reveal the
compositional information of the sample. However, when the
sample has elements with close atomic numbers, HAADF-
STEM images may no longer be distinctive for these elements.
To better understand more complex compositions, spectral
imaging techniques like energy dispersive X-ray spectroscopy
(EDS) [4] must be pursued.

Tomographic reconstruction is an ill-posed inverse problem
because of the inevitable noise in the measurements such as
Poisson noise and readout noise [5]; reconstruction becomes
even more problematic for electron tomography where the
number of projections is much smaller than the 3D volume
[6]. Consequently, its solution might not be stable and unique.
So far, dozens of reconstruction techniques have been pro-
posed, and the classical filtered backprojection (FBP) is still
frequently applied in practice thanks to its simplicity and speed
[7]. Alternatively, iterative algorithms (e.g., simultaneous it-
erative reconstruction technique (SIRT) and its variants [8])
have also attracted large attention as they produce less artifacts
for noisy datasets [1]. Moreover, prior knowledge has been
incorporated to further enhance the reconstruction quality [6],
[9]–[12]. For instance, assuming that the sample of interest
has piecewise constant structures, Goris et al. incorporated
total variation regularization into SIRT and effectively reduced
missing wedge artifacts in the reconstruction [6]. While con-
ventionally only a single modality and/or tilt-series is used
in a reconstruction algorithm, advanced approaches tend to
combine two (or more) datasets from multiple modalities
for integrating complementary information [13]–[15]. Bimodal
tomography [14], for example, links HAADF-STEM and EDS
projections into a joint reconstruction scheme. The former
modality is at atomic resolution with high signal-to-noise
ratio (SNR) but not intrinsically element-specific, and the
latter, conversely, is rich in chemical information but suffers
from low SNR. Although great efforts have been dedicated
to improving reconstruction techniques, directly combining
reconstruction volumes at hand has still not been widely
considered, to the best of our knowledge.

To generate a composite image benefiting from different
modalities and/or reconstruction algorithms, one can employ
various statistical approaches that project high-dimensional
inputs onto low-dimensional outputs. With the capability of
reducing redundancies yet highlighting similarities and differ-
ences, statistical methods have been broadly investigated and
applied in multimodal image fusion, that is, multiple input
images of different modalities are fused into a single output.
For example, many infrared and visible image fusion frame-
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works have incorporated principal component analysis (PCA)
for decorrelation [16]. As part of these methods, regression
techniques cannot only decompose two sets of input images
into lower dimensions but also assess their connections. For
instance, with partial least squares (PLS) regression, van de
Plas et al. built a linear model to fuse data obtained from mass
spectrometry and optical microscopy for studying protein,
peptide, lipid, and drug distributions in tissues [17].

Recently, we extended the concept of multimodal fusion
to electron tomography [18]. Specifically, we adopted and
modified the regression-based cross-modality modeling of van
de Plas [17] to fuse X-ray and electron tomograms for re-
constructing bi-elemental nanomaterials. We demonstrated our
method on an experimental dataset of a core-shell nanoparticle
(consisting of gold and silver with distinct atomic numbers
of 79 and 47, respectively), and showed that it enabled
reconstructions with sharper edges and smoother fore- and
background than bimodal tomography [14]. However, the
extension to more complex multi-elemental nanostructures has
still been lacking thus far. Therefore, in this paper, we first
present a 3D multichannel cross-modal fusion algorithm based
on our preliminary work in 2D [18]. Then, we validate it on
simulated and experimental datasets of semiconductor devices.
In particular, we investigate the fusion quality for a small
number of EDS acquisition angles and low-dose EDS maps.
EDS maps with high SNR are currently hampered by the slow
acquisition time in practice, and hence algorithms that can deal
with lower SNR are desired.

The rest of this paper is organized as follows. In Section
II, we briefly review the classical and state-of-the-art electron
tomography along with statistical methods that have been
employed in multimodal image fusion. Section III introduces
our six-step cross-modal fusion framework and Section IV
the experimental setup, including simulation and experimental
datasets, and quantitative assessment procedures. Our results
are presented in Section V and discussed in Section VI.
Finally, we draw the conclusion in Section VII.

II. CONTEXT AND PRIOR ART

A. Electron Tomography

In this section, we refer to algorithms that jointly reconstruct
a volume from multiple modalities as “multichannel”, and
“single-channel” otherwise [19].

1) Single-channel: Single-channel approaches are either
analytical or iterative. Analytical algorithms are based on the
Fourier slice theorem, and directly calculate the reconstruction
in a single step. While FBP is the most commonly employed,
it aggravates thin streaks in the reconstruction if the number
of projections is low. To alleviate such artifacts yet preserve
desirable fine structures, Jin et al. trained a convolutional neu-
ral network to regress the FBP results towards a ground truth
image [20]. Although the authors demonstrated the proposed
FBPConvNet on sparse-view X-ray projections, they stressed
that it could be generalized to other modalities. Iterative
algorithms, however, formulate the reconstruction problem as
a large under-determined linear system and solve it itera-
tively [5]. Common methods include algebraic reconstruction

technique (ART), simultaneous iterative reconstruction tech-
nique (SIRT), simultaneous algebraic reconstruction technique
(SART), and maximum likelihood expectation-maximization
(ML-EM) [8]. With the capability of incorporating various
types of prior knowledge, iterative methods are more robust to
deal with ill-posed inverse problems. For instance, assuming
that the sample under study only consists of a few elements,
that is, the reconstruction only has a few discrete intensity
levels, Batenburg and Sijbers developed discrete algebraic
reconstruction technique (DART) to achieve a more accurate
reconstruction from limited and/or noisy projections [9]. Fur-
thermore, inspired by l1 regularization in compressive sensing,
Goris et al. combined the popular total variation regularization
(TVR) with SIRT and proposed total variation minimization
(TVM) reconstruction to compensate for the missing wedge in
electron tomography [6]. TVR was also combined with DART,
such that the TVR-DART would require less tuning parameters
[10]. Alternative l1 regularization approaches, such as higher
order total variation (HOTV) [11] [12], have also been in-
vestigated. Since the solution of HOTV-based reconstruction
algorithm is not limited to a piecewise constant function, it
could more effectively recover fine features than the common
TV [11].

2) Multichannel: In general, multichannel algorithms that
simultaneously couple datasets from multiple sources are
applied either in multispectral or multimodality reconstruction.
In electron tomography, most methods combine the comple-
mentary information of HAADF-STEM and EDS projections.
For example, Zanaga et al. used HAADF-STEM to supplement
EDS for improving its shadowing effects and lower spatial
resolution, thereby enabling a more reliable EDS quantification
[13]. Zhong et al. introduced a manual parameter to weigh
the HAADF-STEM and EDS channels in bimodal tomography
for effectively suppressing noise and enhancing contrast [14].
Regularizations, such as total nuclear variation (TNV) derived
from TV, have also been considered [15]. Different from TV
that only promotes sparse gradients in the EDS reconstruc-
tions, TNV further incorporates HAADF-STEM to encourage
anti-/parallel gradients for enforcing common edges in the
joint reconstructions [15].

Compared with zero- and single-parameter algorithms (e.g.,
FBP and SIRT), advanced techniques may yield a more
accurate result using a limited set of noisy projections. Many
of them, however, involve extra parameters that need to
be carefully tuned. For instance, the weighting factor α in
bimodal tomography [14] is currently chosen by comparing
reconstructions over the whole range of α ∈ (0, 1) to a hand-
segmented ground truth, which is very impractical.

B. Statistical Methods Applied to Multimodal Image Fusion

According to Sui et al., statistical approaches applied to
multimodal image fusion are either driven by data or by
hypotheses [21].

1) Data-driven Methods: Data-driven statistical methods
include, but are not limited to, principal component analysis
(PCA), independent component analysis (ICA), and nonneg-
ative matrix factorization (NMF). PCA has been a common
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initializer for fusion algorithms in brain imaging to effectively
remove redundancies [21]. It was also improved to robust
PCA [22], and adopted to suppress noise yet retain useful
information for infrared and visible image fusion [16]. As an
extension of PCA, ICA can separate correlated input images
into independent components. ICA-aided fusion algorithms
usually involve other techniques like multiscale transforms.
For instance, Ghahremani and Ghassemian chose ICA and
curvelet transform to reduce the spectral distortion of pan-
sharpened multispectral bands [23]. Moreover, incorporating
ICA into training-based algorithms is also popular, in which
a set of ICA bases are trained from patches with similar
contents as the source images [16]. Different from PCA, NMF
only allows additive, not subtractive, combinations due to its
nonnegativity constraints [24]. As a result, it represents parts
of the objects and corresponds better to the human perception
mechanism. Wang et al. further extended the traditional NMF
to a nonnegative sparse representation (NNSR) model for
fusing infrared and visible images [25]. As the NNSR not
only emphasizes the nonnegativity but also sparsity of the
coefficients, it can achieve a rational (only with nonnegative
intensities) and convenient (with just a few sparse components)
image interpretation.

2) Hypotheses-driven Methods: Hypotheses-driven statisti-
cal methods, such as regression, can characterize the relation-
ship among source images. In remote sensing, for instance,
multivariate regression has been a powerful tool to merge
multispectral (MS) and panchromatic (PAN) images. The
former captures visible light in a small number of spectral
bands at low resolution, and the latter is sensitive to all
wavelengths of the light at high resolution. In this case,
regression is adopted to estimate the weights between the MS
channels and PAN image at both the reduced [26] and full
scale [27] for pansharpening. As a well-studied member in
the regression family, partial least squares (PLS) establishes a
linear multivariate model to relate the inputs [28]. It was first
applied to multimodal fusion in neuroimaging by Martı́nez-
Montes et al. to concurrently analyze electroencephalography
(EEG) and functional magnetic resonance imaging (fMRI)
data [29]. Since then, PLS has been broadly employed for
multimodal fusion not only in brain imaging [21] but also in
biomedical [17] and chemical imaging [30]. For instance, van
de Plas et al. [17] chose this multivariate regression technique
to fuse mass spectrometric and microscopic images. With a
series of case studies, they showed that the proposed modeling
could maintain both the high chemical specificity and high
spatial resolution.

III. METHOD

Let us assume that a sample has a number of E different
chemical elements that make up the element set E , and that
its HAADF-STEM projections are acquired at a number of PH

angles. Meanwhile, X-ray spectral projections are recorded at
a number of PE angles, and deconvolved into a number of E
EDS maps; each corresponds to one chemical element e ∈ E .
Note that the spectral images usually have fewer tilts than the
HAADF projections (PE < PH) and suffer from much lower

SNR. Binning may effectively increase the number of X-ray
counts collected in EDS maps but also degrade their spatial
resolution [31].

The proposed fusion algorithm has six steps, where the first
five are illustrated in Fig. 1:

1. compute multiple tomograms from HAADF and each
EDS tilt-series using a number of N different reconstruc-
tion algorithms;

2. i) check visibility of all elements and select a target
element e? for fusion;
ii) denoise the EDS reconstructions of e?;

3. generate a number of M feature images for each HAADF
reconstruction, and each EDS reconstruction of ĕ : e ∈
E \ e?;

4. (optional) upsample all EDS-related images if the X-ray
spectral images have been binned;

5. build a cross-modality model between the feature images
and the denoised EDS reconstruction of e?, and apply it
for fusion;

6. evaluate the reliability of the fusion result.

A. Step 1: Computing Tomograms
Our fusion framework starts with tomographic reconstruc-

tion. To date, a range of software packages have been issued
for electron tomography, such as the open source ASTRA
toolbox [32]. Given a HAADF tilt-series and a number of
N available reconstruction algorithms, we can compute N
volumetric images xH

n ∈ RVH×1, n = 1, · · · , N where VH is
the total number of voxels being reconstructed. Similarly, for
each element e ∈ E , we can also reconstruct x

(e)
n ∈ RVE×1

with n = 1, · · · , N . Note that VE 6= VH if the original X-ray
spectral images have been binned.

B. Step 2: Checking Visibility and Denoising
In principle, one can choose any element e ∈ E as the fusion

target e?; in practice, however, e? should be visible in the
HAADF reconstructions for building a representative cross-
modality model. Our approach to measuring the visibility of
x
(e)
n in xH

n is taken from [26]. First, we upsample x
(e)
n to

x̃
(e)
n ∈ RVH×1 if VE 6= VH using trilinear interpolation. Then,

we calculate visibility weights we, ∀e ∈ E as

xH
n = w0 + w1x̃

(1)
n + · · ·+ wEx̃

(E)
n (1)

with ordinary least squares regression. Note that this only
needs to be done once for any reconstruction algorithm. Since
the intensity of HAADF-STEM scales with the atomic number
of the element, we suggest that the weight of the chosen e?

should be at least three times as high as the light ones (e.g.,
N, O, etc.)

Once we select e?, we have N volumes x
(e?)
n at hand.

Although they are computed by N different reconstruction
algorithms, they share common patterns. To capture the most
dominant structure among these reconstructions and reduce
their pixel-specific variations, one can choose any dimension
reduction technique mentioned in Section II-B1. Since all
intensity values in the output image are inherently nonnegative,
we perform NMF over all the reconstructions of e? to obtain
one denoised image x

(e?)
d .
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Fig. 1: The first five steps of fusion algorithm. Assume the sample of interest is composed of a set of chemical elements E .
Denote the target element chosen for fusion as e?, and the rest ĕ : e ∈ E \ e?. H symbolizes HAADF and E EDS. Details in
Section III.
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C. Step 3: Generating Feature Images
The third step aims to generate more information for

building the model. In particular, feature images of the N
HAADF and N(E − 1) EDS reconstructions (with e? being
excluded) are generated with several texture filters. In our case,
we use the entropy, range, standard deviation and Gaussian
gradient magnitude filters; Table I lists the filter parameters.
More filters could be included and provide the model with
more feature images, namely higher degrees of freedom, to
describe the denoised EDS reconstruction; however, they may
simultaneously introduce unwanted patterns. For example,
an orientation filter may reproduce undesirable star-shaped
streaks in the fusion result. One can also extend the filtering
operation to various scale spaces, and we choose a two-level
Gaussian scale space. Note that more filters and deeper scale
spaces would lead to higher computational costs both in time
and memory.

TABLE I: Filters and related parameters in step (3)

Name of filter Parameter

Local entropy 3× 3× 3 neighborhood

Local range 3× 3× 3 neighborhood

Local standard deviation 3× 3× 3 neighborhood

Gaussian gradient magnitude Standard deviation σ = 1

D. Step 4: Resampling
EDS reconstruction of e? denoised in step (2) and feature

images generated in step (3) should be of the same size
for establishing the final model. Similarly, if the spectral
images have been binned, we use the trilinear interpolation
to upsample all EDS-related images at this stage.

E. Step 5: Building Cross-modality Model
We formulate the cross-modality modeling as a linear re-

gression task
y = Xb + b0 + δ (2)

where X = [x1, · · · ,xP ] and b = (b1, · · · , bP )T with
P = M · N · E. Each predictor variable xp denotes one
(vectorized) feature image, and the response y is the denoised
EDS reconstruction of e?. bp, p = 0, · · · , P are the scalar
regression coefficients to be found, and δ is the mismatch
term. We employ partial least squares (PLS) regression, which
is different from the ordinary least squares that directly es-
tablishes a linear model in the original data space. By first
performing PCA to project both the predictor and response
variables to Ncomp components in another space [28], PLS can
produce stable results with low variability even if the cor-
relation among predictor variables is high. Since the variance
explained in the response variable y increases with the number
of PLS components Ncomp, we set Ncomp to its maximum
value Ncomp = P − 1 and solve this regression problem by
plsregress() in MATLAB. Once we find all coefficients bp,
we fuse the image for e? as x

(e?)
f = b0 + b1x1 + · · ·+ bPxP ,

which is guaranteed to be the closest to the denoised EDS
reconstruction x

(e?)
d .

F. Step 6: Evaluating Reliability

Lastly, we evaluate the reliability of the fusion result,
considering that PLS will always build a model regardless
of whether there is a linear relationship, and that the PLS
output is actually a prediction only. Specifically, we quantify
the correspondence between the fused image x

(e?)
f and the

denoised x
(e?)
d using the proportion of variance explained and

the (Pearson) correlation coefficient. The former is returned by
plsregress(), which is the ratio between the sum of squares
of y explained by the Ncomp PLS components and the total
sum of squares of y [33]. The latter is calculated as

CC =

∑
i(xf,i − xf)(xd,i − xd)√∑

i(xf,i − xf)2
∑

i(xd,i − xd)2
, (3)

which measures how well the relative intensity distribution of
xf matches xd [17]. xf,i and xd,i are the intensity values of
the i-th voxel, xf and xd the average intensities over all voxels
in xf and xd, respectively.

IV. EXPERIMENTS

Based on simulated and experimental datasets, we investi-
gated the performance of our method, and compared it to other
state-of-the-art reconstruction techniques.

A. Simulation and Experimental Datasets

We start with two noise-free multislice simulation datasets
that were generated from two semiconductor models. The first

Ta
Hf

xy

z

(a) Atomic design

5 nm

(b) HAADF-STEM (c) EDS maps

Fig. 2: (a) Atomic design of a defective finFET structure.
Tantalum (Ta, cyan) layer and hafnium (Hf, magenta) in HfO2
layer are shown for clarity. (b) HAADF-STEM projection
and (c) superposed EDS maps at 2◦. Since the intensity of
HAADF-STEM scales with the atomic number Z, only Ta
(ZTa = 73) and Hf (ZHf = 72) are visible but O (ZO = 8) is
not. Details in Section IV-A.

is a defective finFET structure with a size of 25 nm×25 nm×
25 nm [34]. It has crystalline silicon (Si) as its source-drain
fin, on top of which are oxygen (O), hafnium dioxide (HfO2),
tantalum (Ta), and titanium aluminum nitride (TiAlN2). A few
defects have been introduced, such as three pinholes in the
HfO2 layer with diameters of 1, 2 and 3 nm allowing Ta to
contact the fin. Moreover, a 7 nm ellipsoid carbon contaminant
is trapped between the HfO2 and Ta layers. The atomic design
of Ta and Hf is shown in Fig. 2(a). HAADF-STEM images
were simulated with an accelerating voltage of 200 kV, a
focused electron probe normalized to a total intensity of 1,
a convergence angle of 10 mrad, and a detector with an inner
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angle of 90 mrad and outer angle 230 mrad. For details of the
simulation see [34]. X-ray maps were generated by summing
up the probability of characteristic emission. The raw tilt-series
of this finFET structure consists of 180 projections, ranging
from 0◦ to 358◦ with an increment of 2◦ between consecutive
projections. We only used the first 90 (unique) projections
for reconstruction; each contains one HAADF-STEM image
with a size of 128 pixel × 128 pixel (≈ 2Å/pixel) and eight
elemental EDS maps of the same size and resolution. The
second model is a larger region of PMOS with a size of
70 nm× 70 nm× 70 nm. Besides two Si fins, Ta metal gate
and HfO2 layer, a tungsten (W) contact was also added, see
Fig. 3(a). Projections of this PMOS device were simulated
over [0◦, 180◦) in every 2.5◦ with the same parameters set for
the previous case. At each angle, one HAADF-STEM image
with a size of 256 pixel × 256 pixel (≈ 3.8Å/pixel) and the
equi-sized EDS maps of all chemical elements were recorded.

x

y

z

Ta
Hf
W

(a) Atomic design

15 nm

(b) HAADF-STEM (c) EDS maps

Fig. 3: (a) Atomic design of a PMOS model where tantalum
(Ta, cyan), hafnium (Hf, magenta) and tungsten (W, yellow)
are shown. (b) HAADF-STEM projection and (c) superposed
EDS maps at 2.5◦. Ta (ZTa = 73), Hf (ZHf = 72) and W
(ZW = 74) are clearly visible in the HAADF-STEM image.
Details in Section IV-A.

To produce projections that are more comparable to real
experimental data, we performed some post-processing steps
on the simulated tilt-series. For HAADF-STEM images, we
first applied Gaussian smoothing (σ = 1.0 pixel) to simulate
a less focused lens system. Then, we added Poisson noise
with a mean value of the HAADF intensity, and Gaussian
noise with a standard deviation of 0.2 to corrupt the noiseless
dataset. Finally, we excluded zone-axis projections (0◦ and
90◦) because of the significant channeling effect present, as is
custom in practice [35]. Compared to HAADF-STEM images,
X-ray counts collected in the spectral images are usually fewer
(max. 30 per pixel [4]), resulting in much noisier EDS maps.
Therefore, we employed a Gaussian filter (σ = 1.0 pixel) for
denoising. Moreover, since the number of EDS projections is
always smaller than the STEM projections (due to time) in
real experiments [31], we subsampled the two EDS tilt-series
by factors of 3 and 2, respectively, assuming that they were
recorded in every 6◦ and 5◦ over [0◦, 180◦). Post-processed
projections of the defective finFET structure and PMOS model
are shown in Fig. 2 and Fig. 3.

Our experimental dataset is a pillar-shaped semiconductor
device comprised of eight chemical elements: N, O, Al, Si,
Ti, Hf, Ta and Co [36]. It was placed on a Fischione on-

75 nm

(a) HAADF-STEM

Ta

Hf

(b) Superposed EDS maps of Ta and Hf

Fig. 4: Experimental (a) HAADF-STEM projections and (b)
EDS maps of a pillar-shaped semiconductor device at 0◦ (left)
and 90◦ (right). Titanium with an atomic number of ZTi =
22 is surrounded by tantalum (cyan, ZTa = 73) and hafnium
(magenta, ZHf = 72). Details in Section IV-A.

axis rotation tomography holder allowing a 360◦ projection
acquisition, and scanned in a FEI Titan electron microscope
equipped with four Super-X energy dispersive silicon drift
detectors. The microscope was operated at an accelerating
voltage of 120 kV with a beam current of 280 pA and a
convergence angle of 10 mrad. HAADF-STEM projection
images were acquired at 221 angles uniformly distributed
between 0◦ and 220◦. In addition, 47 full spectral images
were recorded from 0◦ to 216◦ in approximately every 5◦;
each had a constant acquisition time of 270 s. They were later
deconvolved into eight EDS maps corresponding to the eight
aforementioned components in the sample. An example of the
experimental tilt-series is given in Fig. 4.

B. Fusion Framework

Besides the widely used reconstructions via FBP and SIRT,
we also added SART and ML-EM to our fusion framework.
The former combines the best of ray-by-ray ART and all-
inclusive SIRT, and can yield reconstructions of good quality
along with high numerical accuracy in only a few iterations;
the latter assumes the Poisson nature of electron/photon noise
(rather than Gaussian) and inherently includes the nonneg-
ativity constraint. For the EDS datasets, we chose Hanning
window (rather than Ram-Lak filter) for FBP to deempha-
size high frequencies, and 50 iterations for SIRT to avoid
reconstructions overfitting to the noise. Moreover, we set 5
and 50 iterations for SART and ML-EM, respectively. For
the less-noisy HAADF datasets, the number of iterations used
for all iterative algorithms were doubled. Although we only
incorporated four reconstruction techniques, we stress that our
framework is general, and algorithms can be easily added
(or removed) if necessary. Throughout this paper, visibility
weights were calculated using the SIRT reconstructions of
EDS and HAADF.
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C. Tilt and X-ray Count Settings

We used the simulated datasets to study the fusion accuracy
of our method for two cases: “limited-tilt” and “low-count”.
Compared to HAADF-STEM images, EDS spectra usually
require much longer acquisition time at each tilt angle to
achieve an acceptable SNR. Consequently, either case can
effectively reduce the amount of time for nanomaterials being
exposed to the electron beam and hence limit the sample
damage. For the “limited-tilt” case, we reduced the number
of EDS elemental maps in the two datasets from 30 and
36 to 8 and 9, respectively, guaranteeing that the remaining
angles were uniformly distributed between [0◦, 180◦). For the
“low-count” case, we fixed the number of tilt angles for both
EDS datasets to 30 and 36, and lowered their elemental X-ray
counts by decreasing the maximal counts per pixel by three
quarters. For the experimental dataset, we only considered the
“limited-tilt” case by subsampling the original EDS tilt-series
with 47 projections to 25 and 14, respectively.

D. Benchmark Algorithms and Evaluation Metrics

We compared our proposed scheme to the classical FBP
(with Hanning window) and SIRT (50 iterations), and two
more advanced regularized approaches: TV and TNV, for
which we set 200 and 400 iterations to guarantee convergence
[15]. Moreover, since reconstruction qualities of TV and TNV
highly depend on the regularization coefficient, we manually
tuned their inputs for reasonable outputs, following the guide-
lines in [15].

We chose the structural similarity index (SSIM) and corre-
lation coefficient to evaluate the reconstruction quality. SSIM
is defined as

SSIM(f, g) = l(f, g)× c(f, g)× s(f, g) (4)

where

l(f, g) =
2µfµg + C1

µ2
f + µ2

g + C1

c(f, g) =
2σfσg + C2

σ2
f + σ2

g + C2

s(f, g) =
σfg + C3

σfσg + C3

which measures the similarity between the reconstructed im-
age f and ground truth g in three aspects: luminance (l),
contrast (c) and structure (s) [37]. A higher SSIM value cor-
responds to a better reconstruction. µf and µg are the average
intensity of f and g; σf and σg are the standard deviation;
σfg is the covariance between f and g. Moreover, C1, C2 and
C3 are the constants introduced to avoid denominators being
close to zero. By default, C1 = (0.01L)2, C2 = (0.03L)2 and
C3 = C2/2 with L denoting the dynamic range of f and g
[37]. Note that s(f, g) reduces to the correlation coefficient
in Eq. (3) if C3 = 0. For the simulation datasets, the ground
truth g was computed by SIRT with 100 iterations given the
full-view noiseless (element-wise) EDS maps. We did not use
the mask generated from the atoms’ coordinates as reference
image because it does not involve the interaction between the
atoms and the incident electron beam.

V. RESULTS

A. Simulated FinFET Dataset

1

3

2

x

y

z

(a) 3D visualization of Ta
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x

10 nm

(b) EDS-Ta

(c) HAADF

Fig. 5: (a) Volume rendering of the noiseless Ta (tantalum)
reconstruction for the simulated finFET dataset; SIRT with
100 iterations using 90 elemental maps between [0◦, 180◦).
Three arrows point to the Ta penetration caused by the pinhole
defects in the inner HfO2 layer. (b) and (c) are the Ta and
HAADF reconstruction xy-slices at z = 37, corresponding to
the first arrow in (a). Red rectangles indicate the defect.

For the first simulated dataset, we select Ta as the target
e?, which has the highest visibility weight wTa = 0.84. Fig.
5(a) shows a volume rendering of its noiseless reconstruction,
in which penetrations (indicated by red arrows) result from
pinhole defects in the inner HfO2 layer. We consider this 3D
volume as the ground truth. Fig. 5(b) shows an orthoslice at
location 1 and the red rectangle highlights an 1 nm defect.
Since the atomic numbers of Ta and Hf are close (ZTa =
73, ZHf = 72), they yield similar Z-contrast in the HAADF
reconstruction and make discrimination difficult, see Fig. 5(c).

Fig. 6 depicts the xy-slices of Ta reconstructions at z = 37,
which are generated by FBP, SIRT, TV, TNV and our fusion
algorithm. Images in the last column are the (NMF denoised)
response variable y in Eq. (2). In the first row, the number
of used projections and the maximal X-ray counts per pixel
in the EDS datasets are 30 and 20, respectively. We refer to
this as the “normal” case for brevity because it is comparable
to a typical experiment. Moreover, the second and third rows
show the “limited-tilt” and “low-count” cases, in which either
the number of projections or X-ray counts is reduced by three
quarters.

Although FBP successfully reproduces the penetration de-
fect in the normal case (Fig. 6(a), top row), it also introduces
visible line artifacts in the background. This can be largely
suppressed by SIRT (Fig. 6(b)). Tomograms from regularized
TV and TNV are visually indistinguishable regarding the con-
tinuity of edges and smoothness of foreground. Our algorithm
cannot only get rid of background noise as TV and TNV, but
also keep the structural details of the Ta layer (e.g., rectangular
ends) that are somewhat smeared by the other two techniques.
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Fig. 6: Ta xy-slices of (a) FBP, (b) SIRT, (c) TV, (d) TNV, (e) fusion and (f) NMF denoising for the simulated finFET at z =
37 (the height of the first defect in Fig. 5(a)). The top row is the “normal” case where the number of EDS projections and
the maximal X-ray counts per pixel are 30 and 20. Middle and bottom rows are the limited-tilt case (with 8 projections) and
low-count case (max. 5 X-ray counts). For better visualization, we perform percentile contrast stretching from 0 to 99%.

When the number of projections is reduced from 30 to 8 (Fig.
6, middle row), FBP, SIRT and NMF deform the curved Ta
layer because of the limited tilts. Regularized TV and TNV
manage to retain its shape but simultaneously introduce jaggy
edges and paintbrush artifacts as both encourage piecewise
constant structures [15]. However, TNV better preserves the
rectangular ends of the Ta layer thanks to the augmentation
from HAADF-STEM projections. The image computed by
our algorithm is visually pleasing due to its continuous edges
and homogeneous foreground. Additionally, it maintains the
curved Ta layer to some extent even though it highly relies
on the NMF denoised reconstruction. The tiny defect can be
seen in TV, TNV, NMF and our fusion results, whereas it is
distorted from a tip to a bulb in the former two reconstructions
and contaminated by streak artifacts in the third. For the low-
count case (Fig. 6, bottom row), classical FBP and SIRT, and
the resulting NMF create a lot of undesirable lines in their
fore- and background due to the low signal. To significantly
restrain such artifacts, we set high regularization coefficients
λ for TV (λTV = 0.045) and TNV (λTNV = 0.1), but inevitably
distort the shape of the Ta layer and fail to satisfactorily
reconstruct the defect. Although the penetration in our fused
image is mixed with noise along the edges, one can still see
it thanks to its relatively high intensity (at least three times
higher than the noise). From top to bottom conditions in
Fig. 6, the corresponding proportion of variance explained and
correlation of the fusion to the denoised image are (0.95, 0.98),
(0.91, 0.96) and (0.83, 0.91), respectively.

Table II summarizes the SSIM and correlation coefficient
(CC) values of the five aforementioned algorithms on the three

settings in Fig. 6. Different noise realizations do not change the
values in Table II to the shown digits. Our scheme ranks the
best in all three cases. FBP falls far behind in SSIM due to the
line artifacts visible in Fig. 6. The two regularized techniques
achieve similar quantitative performance, but are surpassed by
SIRT in terms of CC because regularizations may oversmooth
the underlying structure and make reconstructions less accu-
rate. Note that our fusion algorithm can produce stable results
regardless of limited or noisy datasets, as demonstrated in Fig.
6 and Table II.

TABLE II: Comparison of SSIM and correlation coefficient
(CC) for Ta reconstruction of simulated finFET dataset

(#tilts, counts) Metrics FBP SIRT TV TNV Fusion

(30, 20)
SSIM 0.33 0.81 0.87 0.88 0.96

CC 0.95 0.97 0.90 0.90 0.98

(8, 20)
SSIM 0.29 0.79 0.85 0.86 0.95

CC 0.80 0.95 0.88 0.89 0.98

(30, 5)
SSIM 0.22 0.70 0.80 0.80 0.95

CC 0.86 0.93 0.90 0.91 0.98

B. Simulated PMOS Dataset

The noiseless Ta reconstruction of the simulated PMOS
dataset is rendered in 3D in Fig. 7(a), and its xy-slice at
z = 94 depicted in Fig. 7(b). This uniformly distributed
element ranks second in the visibility check, surpassed by
W (wTa = 0.42 and wW = 0.85). Fig. 7(c) is the associated
HAADF reconstruction where thin Ta/Hf layers, and two Si
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Fig. 7: (a) Volume rendering of the noiseless Ta reconstruction
for the simulated PMOS dataset; SIRT with 100 iterations
using 72 elemental maps between [0◦, 180◦). (b) and (c) are
the Ta and HAADF reconstruction xy-slices at z = 94, in
which red rectangles encompass a fine structure indicated by
the arrow in (a).

fins are visible. Red rectangles encompass a fine structure that
is pointed out by the red arrow in Fig. 7(a).

Fig. 8 shows the corresponding xy-slices reconstructed by
all techniques. As before, the top row is the normal case where
the number of projections and the maximal X-ray counts per
pixel in the EDS tilt-series are 36 and 20, respectively; the
middle row is the limited-tilt case using only 9 projections,
and the bottom the low-count case with no more than 5 X-
ray counts per pixel. As illustrated in Fig. 8(a), background
of FBP reconstructions are severely contaminated by lines if
the sample of interest contains laminate. SIRT can suppress
such artifacts but fails to deliver clear edges. Despite that TV
and TNV achieve cleaner background than FBP and SIRT, they
also noticeably smear the Ta layer especially for the limited-tilt
and low-count cases: rectangular corners are rounded; laminate
becomes thicker; line segments on the left are much shorter
than they are supposed to be (see Fig. 7(b)). In general,
such smearing effects are more pronounced in TV than TNV
because the latter can incorporate the edge information from
HAADF-STEM. Our fusion algorithm can generate a volume
that is qualitatively comparable to the ground truth for the
normal case (see Fig. 7(b) and Fig. 8(e)). In the other two
cases, fine structures are still kept intact even though they
are corrupted by noise in the regression targets; however,
line artifacts in the background (with intensities no more
than 15% of the foreground) show up. Quantitative results
in Table III confirm this, in which our algorithm is in the
top rank except for SSIM in the limited-tilt case. Outputs of
the reliability validation for the aforementioned three cases
are (variance explained, correlation): (0.86, 0.94), (0.74, 0.88)
and (0.61, 0.8), respectively. The low variance explained for
the low-count case is due to the noisy NMF, but our fusion
remains relatively smooth and clear.

TABLE III: Comparison of SSIM and correlation coefficient
(CC) for Ta reconstruction of simulated PMOS dataset

(#tilts, counts) Metrics FBP SIRT TV TNV Fusion

(36, 20)
SSIM 0.48 0.86 0.91 0.91 0.90

CC 0.92 0.97 0.94 0.94 0.98

(9, 20)
SSIM 0.37 0.80 0.90 0.90 0.83

CC 0.68 0.92 0.90 0.92 0.93

(36, 5)
SSIM 0.25 0.76 0.86 0.85 0.88

CC 0.80 0.92 0.90 0.91 0.96

C. Experimental Dataset

Fig. 9 depicts an orthoslice of the HAADF reconstruction
for the experimental dataset, which clearly reveals the struc-
tural information of this pillar-shaped semiconductor device.
For example, the dark contrast highlighted by the second red
arrow possibly results from a defect (void inside the laminate).
However, since the innermost Ta layer and the outermost
Hf yield similar Z-contrast, directly discerning them from
the HAADF reconstruction without any chemical information
would be challenging.

Fig. 10 illustrates the Ta (cyan) and Hf (magenta) recon-
structions generated by FBP, SIRT, TV, TNV and our fusion
algorithm using 47, 25 and 14 EDS projections; the last
column shows the response variable y in Eq. (2). Visibility
weights of Ta and Hf are 0.2 and 0.25, respectively, ranking
behind Si with wSi = 0.41. From top to bottom, the variance
explained and the correlation to y are (0.88, 0.92), (0.84, 0.91)
and (0.82, 0.90) for Ta, and (0.89, 0.93), (0.84, 0.91) and
(0.82, 0.90) for Hf. When the number of projections is decreas-
ing, thin streaks in FBP drastically degrade its reconstruction
quality, because the structure under study aligns with the
projection direction, see Fig. 10(a); moreover, the background
of SIRT reconstructions is also obviously getting noisier. Note
that such noise is much lower in the resulting NMF. TV
and TNV are also able to suppress the background noise;
however, they simultaneously smear the Ta and Hf layers and
make their boundary almost indistinguishable, especially for
the 14-tilt case. Despite the spotty foreground in NMF, our
fusion algorithm still achieves the best performance in noise
suppression and structure preservation (e.g., the squeezing
pattern indicated by the first arrow in Fig. 9) regardless of the
number of projections. Moreover, it also maintains the void
observed in the HAADF reconstruction to some extent, which
is almost unrecognizable in the other five reconstructions.
Therefore, our method can enable easier and more accurate
fault analysis in the subsequent process. As no ground truth
is available for this experimental dataset, we cannot compute
the SSIM and correlation coefficient.

VI. DISCUSSION

In the previous section, we demonstrated that our fusion
algorithm is more robust for the limited and noisy datasets
than other state-of-the-art tomography techniques. For the
simulated datasets, we reduced either the number of EDS
elemental maps or the maximal X-ray counts per pixel to
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Fig. 8: Ta xy-slices of (a) FBP, (b) SIRT, (c) TV, (d) TNV, (e) fusion and (f) NMF denoising for the simulated PMOS at
z = 94 (the height of the arrow in Fig. 7(a)). The top row is the “normal” case where the number of EDS projections and
the maximal X-ray counts per pixel are 36 and 20. Middle and bottom rows are the limited-tilt case (with 9 projections) and
low-count case (max. 5 X-ray counts), respectively.

1
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75 nm

Fig. 9: An orthoslice of HAADF reconstruction for the ex-
perimental dataset. The first red arrow indicates a squeezing
feature, and the second a dark contrast possibly results from
some void inside the laminate.

one quarter of the initial values, and showed that our method
could deliver stable outputs which were visually consistent
with the ground truth of the Ta layer. We also fused Hf (for
both finFET and PMOS) and W (only for PMOS), and found
that the homogeneously distributed W resulted in visually
better fusion. Because Hf was mixed with the light element O
(ZO = 8), its signals in the HAADF-STEM projections were
weaker (wHf = 0.42 for finFET and wHf = 0.18 for PMOS).
Consequently, fused Hf images were less smooth in the
foreground and contaminated by the heavier Ta (and W) in the

background; such contamination could also be inferred from
the low correlation to the denoised Hf (e.g., only 0.68 in the
low-count case for PMOS) because this metric focuses on the
relative pattern similarity [17]. For the experimental dataset,
we subsampled the EDS tilt-series to simulate the “limited-
tilt” scenario. Our method could reproduce fine structures and
maintain clear boundaries between the Hf and Ta layers even
if only 14 tilts were available.

Since both TV and TNV noticeably distort fine details in
their reconstructions, we further tested HOTV [11] (online
available [38]) on the simulated finFET dataset for reconstruct-
ing Ta. We found that the performance of HOTV (second- or
third-order with regularization parameters as Eq. (15) in [11])
lies between SIRT and TV. That is, it could better recover
the penetration defect in Fig. 5(b) but could not adequately
suppress noise especially in the foreground. Consequently,
desired fine features were mixed with (undesired) noise and
hence did not stand out.

All datasets we used have no missing wedge (sample
rotation was not limited within a certain range in the electron
microscope due to mechanical constraints, e.g., ±70◦ [31]);
these pillar-shaped samples and rotation holders will even-
tually replace the traditional tomography holders. However,
we tested the robustness of the precedent 2D version [18]
on the missing wedge artifact using an experimental dataset
of a core-shell nanoparticle consisting of gold (Au) and
silver (Ag), which only contained 31 tilts ranging from −75◦

to +75◦ with an increment of 5◦ between the consecutive
projections. Qualitatively, our method outperformed HAADF-
EDS bimodal tomography [14] in terms of the sharpness of
edges and smoothness of fore- and background. Quantitatively,
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Fig. 10: Superposed xy-slices of Ta (cyan) and Hf (magenta) reconstructions computed by (a) FBP, (b) SIRT, (c) TV, (d) TNV,
(e) fusion and (f) NMF denoising for the experimental dataset using 47 (top), 25 (middle) and 14 (bottom) EDS projections.

it achieved higher correlation coefficient between the recon-
struction and the hand-segmented ground truth both for Au
and Ag.

One prerequisite for our cross-modality framework to work
is that chemical element chosen for fusion should be visible in
the HAADF-STEM images; this is quantified by the visibility
weight we in Eq. (2). Since light elements such as N and
O never show up in the HAADF, we set the threshold for
the target e? three times as high as the weights of the light
ones (e.g., O, 3 × wO = 0.15 for finFET). This limitation
may be overcome by incorporating other imaging modalities,
such as bright-field or dark-field STEM with different detector
geometries.

In addition, we also validated whether the resulting model
is representative (i.e., whether fused images can be relied
upon) through the proportion of variance explained and the
correlation to the denoised image. For instance, if we try
to fuse the carbon contaminant from Fig. 2 whose visibility
weight is almost zero (even though its structure is clearly
sketched by the surrounding HfO2 and Ta layers, see Fig.
2(b)), the corresponding variance explained is only 0.17 and
correlation coefficient 0.5. As a rule of thumb, these two
metrics should be above 0.6 and 0.8, respectively, to achieve
a reliable fusion.

We further investigated how the choice of three popular 3D
upsampling techniques: nearest-neighbor, trilinear and tricu-
bic, influences the fusion quality. Since the resolution of EDS
reconstructions decreases rapidly with an increased binning ra-
tio r, we only considered r = 2 with VE = 1/8VH. The nearest-
neighbor interpolation produced the least favorable result;
therefore, we left it out even though it has the highest speed.
Moreover, we found that the trilinear and tricubic interpolation
are comparable in terms of their visually indistinguishable

fusion results, and similar SSIM and CC values. We chose the
trilinear because it is slightly faster than tricubic interpolation.

Computational time of our fusion algorithm is mainly spent
on computing tomograms (step 1), generating feature images
(step 2) and building cross-modality model (step 5). In our
case, for instance, it took 300 s for tomographic reconstruction,
25 s for feature image generation, and another 300 s for
cross-modal modeling for Ta in the simulated finFET structure
using MATLAB 2017a on a desktop equipped with eight
Intel Xeon X5550 CPU cores (24 GB memory) and NVIDIA
GeForce GTX670 GPU (4 GB memory). Note that only the
last 300 s (for building the model) are required to fuse any
other element in this sample. Throughout this paper, FBP,
SIRT, SART and ML-EM reconstructions were computed
with the ASTRA toolbox [32]; regularized TV and TNV
algorithms were realized by the Douglas-Rachford primal-dual
splitting algorithm with the operator discretization library [39].
Although our method is slower than FBP (3 s), SIRT (12 s)
and TV (273 s), it is still much faster than TNV (∼80 mins);
manually tuning regularization coefficients for TV and TNV to
suppress noise yet avoiding over-regularization also consumes
a lot of time. Moreover, considering that the acquisition time
for each spectral image varies from 236 s to 895 s [31], our
algorithm is still quite appealing.

VII. CONCLUSION

In this paper, we have presented a regression-based cross-
modal fusion framework for electron tomography, which does
not require any fine-tuning parameter. We have adopted it
to combine the EDS and HAADF reconstructions, and in-
vestigated its performance using simulated and experimental
datasets of semiconductor devices that contain chemical ele-
ments with close atomic numbers. Results have shown that
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our fusion algorithm can consistently yield more accurate
reconstructions than the conventional yet widely employed
FBP and SIRT, and the advanced regularization-based TV
and TNV. Furthermore, it can still restore fine structures and
achieve a high reconstruction quality even for limited and
noisy EDS datasets. Such properties are highly desired in the
semiconductor industry where the number of EDS maps is
limited aiming for a shorter acquisition time, and the incident
electron dose is usually low to minimize the sample damage.
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