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Programming Flat-to-Synclastic 
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Abstract
Advances in architectural geometry make free-form architecture explicitly definable and 
economically manufacturable. Enhancing the efficiency of fabrication, this research investigates 
strategies of translating free-form synclastic surfaces to flat pre-programmed reconfigurable 
mechanisms. The presented bi-stable mechanisms are produced by creating voids on flat 
materials. In such mechanisms, the generated blocks are outlined by the voids that are 
connected by the hinges. The position and the orientation of the hinges allow the blocks to rotate 
around each other, and then reconfigure from flat to synclastic. During the reconfiguration 
process, the blocks are temporarily deformed. As the elasticity brings the blocks back to the 
original dimensions, the materials reach the second stable states. Distribution of hinges on the 
flattened surface needs to be designed according to certain geometric constraints. This paper 
demonstrates the workflow of identifying the positions of the hinges. The developed methods 
are validated through prototypes such as a spherical surface and a free-form synclastic surface.

Keywords
bi-stable mechanism; auxetic mechanism; flat-to-curved reconfiguration; programmable 
material; discrete differential geometry
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	 1	 Introduction

The emerging demand for bespoke double-curved surfaces challenges designers and manufactur-
ers. Utilizing sheet materials to produce curved-surfaces is an economical solution, given that such 
materials are easy to be industrially produced and processed. Exploiting economic benefits of sheet 
materials, numerous researchers investigate how to decompose a free-form surface to planar com-
ponents on architecture scale (Pottmann, 2013). Meanwhile, various advanced approaches have 
been proposed to transform sheet material to double-curved surface, and pilot prototypes have 
been produced on laboratory scales, such as paper origami (Tachi, 2013), reconfigurable prestressed 
composite (Aldinger, Margariti and Suzuki, 2018) or deployable auxetic shells (Konakovic-lukovic, 
Konakovic and Pauly, 2018). These approaches make materials reconfigurable, yet leave them vul-
nerable to bending stresses.

This paper proposes an approach that allows the reconfigured double-curved surface to resist 
bending stresses. The synclastic surfaces can be produced by introducing voids or slits on flat sheet 
materials. By either squeezing or expanding the materials, which closes the voids or opens the slits, 
then the sheet materials can be reconfigured into curved states (Figure 1). The voids creates gaps 
between the edges of blocks, while they remain interconnected via the tilted compliant hinges on 
the vertices. Additionally, these hinges allow the bending stresses to transmit across the blocks.

Geometrically, the major challenge lies in how to identify the set of hinges that can allow the blocks 
to be reconfigured from flat to curved state without residual strain or permanent deformation. 
Such hinges enable the material to stably maintain the desired shape instead of resuming its initial 
configuration. Figure 2 illustrates an overview of the methods, which are explained in the following 
sections. 

1.1 Outline
In the following sections, relevant research and mechanisms are reviewed in section two. Sec-
tion three introduces the mechanical principles and the geometrical features of the reconfigurable 
mechanism. With these fundamental insights in mind, section four explains how to employ the 
explored approaches to transform a synclastic surface into its flat configuration. For validation, 
pilot prototypes have been produced, and the production is reported in section five. Consequently, 
features of the current method and future works are summarized in section six.

	 2	 Background

Since the 2000s, the demand for free-form architectures has gradually increased (Pottmann et al., 
2015). The most effective way to build a large free-form surface is considered to be decomposing 
the curved surface into a series of flat panels (Pottmann et al., 2007). Although a considerable 
amount of unique components will be generated in the design process, the numerically controlled 
machinery can economically produce all the components from either 2D sheet materials (e.g., steel 
plates, float glass) or 1D profiles (e.g., steel tubes, extruded aluminum). However, the assembly of 
all the components is still a labor-intensive and challenging task for builders. Introducing bi-stable 
mechanism, the research aim is to develop a fabrication method of flat materials that can be recon-
figured into the target curved states. With this objective, the research is built around the premises 
that such mechanisms can make the assembly process more efficient and less labour-intensive.  
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In recent years, numerous ways have been proposed to deliver flat-to-curved reconfiguration for 
fast deployment. The reconfigurable systems may include embedded actuators or focus on the 
mechanisms to be actuated. In the first category, there are two distinct approaches. Some re-
searchers control the reconfiguration through stacking materials with different expansion rates 
that create a composite system which respond to moisture or temperature changes (Tibbits, 2014; 
Reichert, Menges and Correa, 2015; van Manen, Janbaz and Zadpoor, 2017). During the ambient 
changes, the layered materials expand unevenly, cause curvatures on the composites. Meanwhile, 
some other researchers deposit stiff components on pre-tensioned membranes (Guseinov, Miguel 
and Bickel, 2017; Aldinger, Margariti and Suzuki, 2018). Once the pre-tensioning is removed, the 
contracting membranes actuate the composites to the curved configurations. 

On the other hand, the research in the second category concentrates more on the mechanism to 
be actuated. The researchers investigate how to arrange the flexible joints to permit mechanisms to 
be reconfigured into desired shapes. In the research pursued by Konakovic et al. (2016), the sheet 
materials are homogeneously cut into triangle panels, and the connections between the triangles 
are considered as ball joints. Then, the material can be stretched and bent into various free-form 
shapes. In the cases of origami and kirigami explored by Tachi (2013) and Liu et al. (2018), all the 
components are connected by linear hinges, or the crease lines, laying in the plane of the sheet 
material. The sizes and shapes of the components are informed by the desired curved surface. The 
difference between these two approaches is that origami forbids the designer to cut the sheet ma-
terials while kirigami allows one to do so. In these approaches, the ball joints and the linear hinges 
make the flat materials pliable. This attribute makes the products, in their target configurations, 
incompatible with bending stresses. 

In contrast to arrange linear hinges in the plane, Haghpanah et al. (2016) place the hinges vertically 
and produce another type of mechanism. The mechanism consists of multiple units that can be se-
quentially expended to other configurations and stably maintain the shapes. The features is termed 
bi-stability. Although both the initial shape and the reconfigured shape are confined in the plane, it 
suggests that the shape reconfigurable mechanism can also work on thick materials, which promise 
certain bending resistance. 

A revised bi-stable mechanism is proposed in which the linear hinges are arranged in various orien-
tation in the thickened sheet that allows one of the stable states to be on a plane and the other on 
a double-curved surface (Chiang, Mostafavi and Bier, 2018). However, the actuation of each bi-stable 
unit can happen independently or in sequence, which causes challenges of actuating mechanisms 
with in the multiple units. Figure 3 recapitulates the classification of the state of the art in recon-
figurable mechanisms.

In this research, the approach of tilted hinges on thick materials is adopted. proposing a more 
applicable reconfibration method that avoids sequencial actuation, the approach is integrated into 
the bi-stable auxetic mechanism proposed by Rafsanjani and Pasini (2016).  Auxetic mechanism (i.e., 
a mechanism shrinks in all directions when it is only compressed in one direction) can distribute 
actuating force to the whole system and activate all the reconfigurable units at once. Introducing 
tilted cutting in design and production process, the bi-stable auxetic mechanism can be compatible 
in transforming from flat to double-curved.



ISSN 2309-0103
www.enhsa.net/archidoct
Vol. 6 (2) / February 2019

67 // 

Figure	1.	

Two examples of the proposed programmable material. Both of them can be manufactured in the flat 

configuration (left column). By either compression (top row) or tension (bottom row), the material can be 

mechanically activated and then rests at the curved configuration (right column).

Figure	2.	

The proposed workflow of the design process. a. The quadrilateral conical mesh. b. Unrolled panels. c. 

Restructured panels with connectors. d. The free-form synclastic surface formed by the reconfigurable mechanism.
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Figure	3.

The classification of related reconfigurable mechanisms

Figure	4.	

The reconfiguration process of the idealized bi-stable mechanism with two elements.

Related recon�gurable mechanisms
Actuator embedded

Mechanism focused
Pre-stress removing

Ambient changing

Horisontal

Vertical

Tilted

Ball joints

Linear hinges

(Guseinov, Miguel and Bickel, 2017)
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(Tachi, 2013)
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(Chiang, Mostafavi and Bier, 2018)

(Konaković et al., 2016)
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	 3	 Principles	of	bi-stable	reconfiguration

The bi-stable mechanism is also termed as snap-through buckling (Huang and Vahidi, 1971). The 
term refers to the features that when the mechanism is switched from one stable state to an-
other, the mechanism snaps-though. This section reviews the mechanical features of snap-through 
buckling, and introduces the principles of designing a snap-through mechanism capable of spatial 
reconfiguration.

One of the simplest in-plane bi-stable units is illustrated in Figure 4, which consists of two linear 
structural members (with cross-sectional area A and material elastic modulus E) hinged to each 
other at one ends and pinned to the supports at the other ends.  When an external force   applies at 
the middle hinge, the two members are compressed and inclined. Until the external force exceeds 
the critical load, the reconfigurable unit will suddenly deviate from the critical state to the alterna-
tive state. After the external force is removed, the elasticity of the material brings the mechanisms 
back to the relaxed length, which leads the unit to the final state. The total displacement of the 
middle hinge during the reconfiguration follows
          
	 	 δτ	=	2L	*	sin	α		 	 	 	 	 	 	 (1)
which suggests that the total displacement δτ is proportional to the rotating arm L and the sine of 
the tilting angle α.

Form the energy point of view, the stable states are corresponding to the local minimum points of 
the energy-displacement graph. When the hinges are ideally dissipating and storing no energy, the 
stable states are the mirror images of each other. In this paper, all the hinges are assumed to behave 
ideally, in order to design bi-stable mechanisms with geometric principals. 

To make the mechanisms capable of conducting spatial reconfiguration, the hinges are designed to 
be not parallel to each other. As illustrated in the top row of Figure 5, given that three rigid blocks 
interconnected with ideal hinges and the four anchors are coplanar, the other stable configuration 
would be the mirror image against the plane defined by the four anchors. Between the two con-
figurations, the centre blocks rotate around the dash-dotted line. To physically made a mechanism 
resemble the ideal case, the material must be thickened to approximate the stiff blocks while the 
compliant hinges must be notched to minimize the strain energy it might store.

To be noted that due to the hinges are not parallel to each other, the connecting blocks (i.e., 
side blocks) have different rotating arms at the top and bottom surfaces, which result in different 
displacements at the two surfaces. To be more precisely, the magnitude of the rotating arms are 
proportional to the distances from the rotation axis, so as the displacement. In the case shown in 
Figure 5, there are no residual stresses in the blocks. Only if the hinges are compliant hinges, some 
stresses will occur locally at the compliant hinges.

This section has described the temporary elastic deformation during the reconfiguration. After the 
bi-stable unit sets in the stable states, the deformation dissolves. Nevertheless, given that the hinges 
store negligible stain energy, the two stable states are simply mirror images of each other against 
the plane defined by the corner anchors. The next section introduces the method for applying this 
spatial reconfigurable unit to synclastic surfaces.
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Figure	5.	

The applied spatial bi-stable unit. a. and b. are the two stable states of a conceptual bi-stable unit. They are mirror 

images of each other against the mirror defined by the four anchors. c. and d. are the two stable states of the 

corresponding physically manufacturable bi-stable unit. The dashed lines are the extension of the hinges. They 

intersect at points defining the dash-dotted line which serve as the virtual rotation axis of the center piece. 

Figure	6.	

The reconfigurable material consists of two types of blocks: rotating connectors 

and restructured panels. The blocks are interconnecting each other with hinges.

Programming Flat-to-Synclastic 
Reconfiguration 
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	 4	 Geometrical	design	processes

4.1 Basic elements in the proposed mechanism
As demonstrated by Rafsanjani and Pasini (2016), the bi-stable auxetic mechanism can be achieved 
by arranging rotating quadrilaterals around concave octagons for in-plane reconfiguration. To cre-
ate a flat-to-curve mechanism, this paper revises two approaches of the previous research. The 
homogeneously repeated pattern and the perpendicular cutting are replaced by a heterogeneously 
graded pattern and tilted cutting. In this way, the thick sheet material can be reconfigured from flat 
to doubly curved.

Figure 6 illustrates how to build up the proposed mechanism with the spatial bi-stable units. Basi-
cally, every spatial bi-stable unit defines a hexagonal void in the sheet material, and the void can be 
closed in the other configuration. Between the hexagonal voids, there are the rotating connectors 
and the restructured panels, which are discussed in section 4.3 in more detail. Additionally, the 
rotating connectors were prisms in the case presented by Rafsanjani and Pasini (2016). Here, the 
connectors are rendered as pyramidal frustums. The different lengths at the top and the base cause 
different displacements as suggested by equation (1). In the case depicted in Figure 6, the bottom 
surfaces with larger rotating arms introduce larger displacement during the reconfiguration and 
deliver the desired curvature without troubling bending stresses, which are commonly observed in 
other formative manufacturing processes, e.g. cold forging.

To arrange the hexagonal voids, the designers have to consider the voids as an interrelated system 
rather than multiple independent units. Given the fact that each hinge affiliates to two hexagonal 
voids, the two units have to agree on the position and the orientation of the shared hinges. Further-
more, the rotation angle of the hinge is also shared by the two voids. However, there is an outward 
method to design the interrelated voids, for an arbitrary conical synclastic mesh; in other words, 
no recursive iteration is required. In the following sub-sections, a workflow is proposed to locate 
such solutions of the synclastic surfaces. The process starts with a conical mesh, which guarantees 
that the solution exists.

4.2 Unrolling an arbitrary synclastic conical mesh
This research designs the bi-stable auxetic mechanisms from conical meshes following the rec-
ommendation from Chiang, Mostafavi and Bier (2018). In conical mesh, each node has an axis 
intersected by all the bisector planes of the dihedral angles between surrounding facets. For detail 
concerning the definition and the features of conical mesh, readers are referred to the paper pre-
sented by Liu et al. (2006). 

Here, a method for unrolling a synclastic conical mesh is proposed and demonstrated of flattening 
a mesh to make all the normal vectors of the facets point up. The targeted normal vector can be 
expressed as (1, 0, 1) in Cartesian coordinates or as (1, 0, φ) in spherical coordinates, where the 
vector has a unit length, a zero polar angle, and an azimuth angle φ that can be any real number. Let
        be the normal vectors of panels in the curved mesh (where  P stands for panels and c for 
the curved mesh), which can be expressed as (1, θi  ,φi ) in spherical coordinates. Here, a “Neu-
tral Surface” is proposed, which is defined that all the normal vectors of the mesh panels on the 
neutral surface have half as much polar angles as their corresponding panels have. As a result, the 
corresponding normal vectors           (where N refers to the neutral surface) equal to  (1,θi  /2, φi). 
Regarding the position of the neutral surface, the distance between it and the mesh can be arbi-
trarily decided. Once the distance is set, the vertices of the neutral surface can be determined by 

1 

 
 

 2 sinT L =   
 
 (1) 

which suggests that the total displacement T  is proportional to the rotating arm L  and the 
sine of the tilting angle  . 

 

 
 
 

Here, a method for unrolling a synclastic conical mesh is proposed and demonstrated of 
flattening a mesh to make all the normal vectors of the facets point up. The targeted normal 
vector can be expressed as (0,0,1) in Cartesian coordinates or as (1,0, ) in spherical 
coordinates, where the vector has a unit length, a zero polar angle, and an azimuth angle   
that can be any real number. Let 

 
 ,

c
P in   

 
be the normal vectors of panels in the curved mesh (where P  stands for panels and c  

for the curved mesh), which can be expressed as ( )1, ,i i   in spherical coordinates. Here, a 
“Neutral Surface” is proposed, which is defined that all the normal vectors of the mesh panels 
on the neutral surface have half as much polar angles as their corresponding panels have. As a 
result, the corresponding normal vectors  

 
,

c
N in   

 
(where N refers to the neutral surface) equal to ( )1, / 2,i i  . Regarding the position of 

the neutral surface, the distance between it and the mesh can be arbitrarily decided. Once the 
distance is set, the vertices of the neutral surface can be determined by the extensions of the 
nodes’ axes.  

To unroll the conical mesh, the neutral surface would be turned concave-side convex, or 
be turned inside out (or be mirrored against the horizontal plane). Therefore, the normal 
vector of the flipped neutral surface 

 
 ,

f
N in   

 
(where f  stands for both flipped and flattened) becomes ( )1, / 2,i i − . Before and after 

the unrolling, the facets of the neutral surface are turned i−  in total. Let every mesh panel of 
the curved conical mesh be turned as the corresponding facet on the neutral surface does, 
which means that the inclination of the mesh panel will also be turned i− . Then the normal 
vectors of the unrolled panels will be  

 
( ), 1,0,f

P i in =  

1 

 
 

 2 sinT L =   
 
 (1) 

which suggests that the total displacement T  is proportional to the rotating arm L  and the 
sine of the tilting angle  . 

 

 
 
 

Here, a method for unrolling a synclastic conical mesh is proposed and demonstrated of 
flattening a mesh to make all the normal vectors of the facets point up. The targeted normal 
vector can be expressed as (0,0,1) in Cartesian coordinates or as (1,0, ) in spherical 
coordinates, where the vector has a unit length, a zero polar angle, and an azimuth angle   
that can be any real number. Let 

 
 ,

c
P in   

 
be the normal vectors of panels in the curved mesh (where P  stands for panels and c  

for the curved mesh), which can be expressed as ( )1, ,i i   in spherical coordinates. Here, a 
“Neutral Surface” is proposed, which is defined that all the normal vectors of the mesh panels 
on the neutral surface have half as much polar angles as their corresponding panels have. As a 
result, the corresponding normal vectors  

 
,

c
N in   

 
(where N refers to the neutral surface) equal to ( )1, / 2,i i  . Regarding the position of 

the neutral surface, the distance between it and the mesh can be arbitrarily decided. Once the 
distance is set, the vertices of the neutral surface can be determined by the extensions of the 
nodes’ axes.  

To unroll the conical mesh, the neutral surface would be turned concave-side convex, or 
be turned inside out (or be mirrored against the horizontal plane). Therefore, the normal 
vector of the flipped neutral surface 

 
 ,

f
N in   

 
(where f  stands for both flipped and flattened) becomes ( )1, / 2,i i − . Before and after 

the unrolling, the facets of the neutral surface are turned i−  in total. Let every mesh panel of 
the curved conical mesh be turned as the corresponding facet on the neutral surface does, 
which means that the inclination of the mesh panel will also be turned i− . Then the normal 
vectors of the unrolled panels will be  

 
( ), 1,0,f

P i in =  



ISSN 2309-0103
www.enhsa.net/archidoct
Vol. 6 (2) / February 2019

72// 

Pr
og

ra
m

m
in

g 
Fl

at
-to

-S
yn

cla
st

ic 
Re

co
nfi

gu
ra

tio
n

Yu
-C

ho
u 

C
hi

an
g

the extensions of the nodes’ axes. 

To unroll the conical mesh, the neutral surface would be turned concave-side convex, or be turned 
inside out (or be mirrored against the horizontal plane). Therefore, the normal vector of the flipped 
neutral surface         (where  f stands for both flipped and flattened) becomes (1,-θi  /2, φi) . Before 
and after the unrolling, the facets of the neutral surface are turned -θi    in total. Let every mesh 
panel of the curved conical mesh be turned as the corresponding facet on the neutral surface does, 
which means that the inclination of the mesh panel will also be turned -θi  . Then the normal vectors 
of the unrolled panels will be                         . During the flipping of the neutral surface, the rota-
tion angles make the normal vectors point upright as desired. The unrolling process is illustrated in 
Figure 7. Unrolling a synclastic conical mesh via such a neutral surface guarantees a smooth journey 
to locate the legitimate hinges. The application of the unrolling method is also demonstrated in 
Figures 12 & 13.

The term neutral surface echoes the neutral plane in the conventional bending theory. In the bend-
ing, all the lengths on the neutral plane are preserved, which means that there is no compression 
or tension. While the material in one side of the neutral plane get either compressed or tensioned. 
A similar feature can be observed in the reconfiguration process, as shown in Figure 10. The ma-
terial above or below the neutral surface reconfigures to the curved state by either stretching or 
contracting.

4.3 Connecting panels with rotating pyramidal frustum
The primary task of this section is to locate the legitimate hinges, which dictate how the blocks 
rotate around each other. Ideally, the hinges should bring all scattered nodes in the flat configuration 
back to the same position in the curved configuration. Figure 8 shows a set of functional hinges 
(dashed lines) that merges the panels and closes the gaps. 

There are only three independent degrees of freedom for a node to design the hinges, considering 
the hinges and the rotating have to coordinate with each other. In general, there are five degrees of 
freedom in a rotation in 3D space. Two of them are the position of the rotation axis, two of them 
are the orientation of the axis, and the other one is the rotation angle. For a unrolled node (as 
shown in Figure 8), the rotation axes should pass through the node on the neutral plane which fixes 
two of the degrees of freedom for every panel. If one of the panel is assigned with the three unde-
termined, all the other panels have to rotate dependently to the first panels. Therefore, there are 
only three independent degrees of freedom; two of them can be regarded as the orientation of the 
merged axis (black dotted line in Figure 8), and the other one is the magnitude of the rotation angle.

Once the hinges are determined, the intersection points of the hinges and the mesh panels define 
a polygon. For a four-edge node, the polygon is quadrilateral. When the sheet material has a certain 
thickness, the quadrilateral turns out to be a frustum of a quadrilateral pyramid. The gaps between 
the mesh panels have to be restructured accordingly as shown in Figure 8.

As discussed, for each node, there are three independent degrees of freedom to define the rotating 
connectors. But the nodes on the same edge of the mesh still have to agree on the inclination of 
the gap in the flat configuration. In other words, for a mesh with n  nodes and m edges, there are   
3n-m degrees of freedom to be determined for all the rotating connectors. One way to omit the 
iteration is to determine the rotating connectors node by node. A node that is determined later has 
to align itself to the previously determined nodes. Therefore, only the first node has three degrees 
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sine of the tilting angle  . 

 

 
 
 

Here, a method for unrolling a synclastic conical mesh is proposed and demonstrated of 
flattening a mesh to make all the normal vectors of the facets point up. The targeted normal 
vector can be expressed as (0,0,1) in Cartesian coordinates or as (1,0, ) in spherical 
coordinates, where the vector has a unit length, a zero polar angle, and an azimuth angle   
that can be any real number. Let 

 
 ,

c
P in   

 
be the normal vectors of panels in the curved mesh (where P  stands for panels and c  

for the curved mesh), which can be expressed as ( )1, ,i i   in spherical coordinates. Here, a 
“Neutral Surface” is proposed, which is defined that all the normal vectors of the mesh panels 
on the neutral surface have half as much polar angles as their corresponding panels have. As a 
result, the corresponding normal vectors  

 
,

c
N in   

 
(where N refers to the neutral surface) equal to ( )1, / 2,i i  . Regarding the position of 

the neutral surface, the distance between it and the mesh can be arbitrarily decided. Once the 
distance is set, the vertices of the neutral surface can be determined by the extensions of the 
nodes’ axes.  

To unroll the conical mesh, the neutral surface would be turned concave-side convex, or 
be turned inside out (or be mirrored against the horizontal plane). Therefore, the normal 
vector of the flipped neutral surface 

 
 ,

f
N in   

 
(where f  stands for both flipped and flattened) becomes ( )1, / 2,i i − . Before and after 

the unrolling, the facets of the neutral surface are turned i−  in total. Let every mesh panel of 
the curved conical mesh be turned as the corresponding facet on the neutral surface does, 
which means that the inclination of the mesh panel will also be turned i− . Then the normal 
vectors of the unrolled panels will be  

 
( ), 1,0,f

P i in =  
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Figure	7.	

The axes (dash-dotted lines), which the mesh panels rotate around, form the “Neutral Surface.” The inclination 

of the neutral surface is half of the corresponding mesh panel. During the reconfiguration, the neutral surface is 

turned inside out, which suggest that the inclination angles are opposite to the original. Then the corresponding 

mesh panels will follow the rotation of the neutral surface and turned to be zero inclination in the end.

Figure	8.	

Close up on panels rotated around the hinges (dashed lines). Each panel has its hinge 

(in the same color), while all the panels merge at the same axis (the center black dotted line).
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Figure	9.	

The propagation map of the free-form conical mesh. 

Figure	10.

The focal points of the hinges locate on the neutral surface. The neutral surfaced is mirrored during the reconfiguration, 

which means that all the length on the neutral surface remains constant before and after the reconfiguration. On the 

other hand, above and below the natural surface are expanding the zone and contracting zone respectively.
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of freedom. Other nodes may have two or only one degree of freedom, depending on how the 
determination propagate. Figure 9 shows an example of how the process propagates throughout 
all the nodes of a free-form mesh.  So far, this section has presented the methods to unroll a syn-
clastic conical mesh, to locate the legitimate hinges, and to restructure the mesh panels. Figure 10 
visually recapitulates the relationship between the neutral surface and the legitimate hinges. It is 
noteworthy that if hinges are extended to the other side of the neutral surface, a solution of curved 
by stretching can also be identified.

	 5	 Prototyping	with	5-axis	CNC	waterjet

The previous sections have introduced the mechanical property of the proposed spatial bi-stable 
unit and the method of applying such units to form an auxetic mechanism. In this section, the dis-
cussion is focusing on how to transform the geometrical solution to physically producible cutting 
tool path.

To provide the general idea, Figure 11 shows a glimpse of the process, modifying a geometrical 
solution to a producible solution, which leads to the waterjet cutting path. To make the design phys-
ically producible, the hinges must have physical widths. On the contrary, the hinges are regarded as 
mathematical lines with zero widths, in the previous geometrical analysis. To make the hinges have 
a physical width, the process explained by Figure 5c & 5d is adopted, thickening the bi-stable units 
and notching the compliant hinges. The 200mm-by-200mm prototype shown in Figures 11 & 12 is 
made from 4mm thick polypropylene sheet with 5-axis CNC waterjet machine, and the width of 
the compliant hinges is set to be 0.8 mm after a few trial and error tests. Polypropylene is a flexible 
and resistant to fatigue. These material properties make the prototype repeatedly reconfigurable.

The proposed workflow has been validated on a spherical surface. The design and analysis methods 
have also been applied to a free-form surface (Figure 13). The production with a 5-axis waterjet is 
under the arrangement.

Figure	11.	

The production process and the result of a 25-panel spherical surface. a. The close up of the geometrical solution. b. 

The producible solution. c. The tool path for waterjet cutting. d. The production with a 5-axis CNC waterjet machine.
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Figure	12.

The process of designing the spherical surface. a-b. Unroll the mesh panels 

with the Neutral Surface. c. Physically produced results. 

The video of the flat-to-curved reconfiguration process can be accessed via 

https://youtu.be/KvPXyMupNOA.
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	 6	 Conclusion	and	future	works

This paper has presented a method to translate free-form synclastic conical meshes to cutting pat-
terns on sheet materials. Then, the cutting patterns enable the sheet materials to be transformed 
into the desired shapes when the mechanisms are mechanically activated. The activation can also be 
pre-designed as either stretching or contracting. The design processes of the cutting patterns con-
sist of three steps. In the first step, unrolling the synclastic conical mesh with the proposed neutral 
plane automatically introduces the gaps with appropriate widths. In the second step, the proposed 
frustum connectors can automatically distribute different reconfiguring displacements at top and 
bottom surfaces. With these two steps, there is neither bending stress nor residual strain in the 
blocks. In the third step, the geometrical solution is revised into the producible solution for 5-axis 
waterjet cutting machine. Due to the hinges are compliant hinges in this production method, there 
will be local strains at those hinges.

To investigate the capacity of the proposed mechanisms, some future works have to be continued. 
So far, neither the applicability on larger scales nor the dynamic behavior of the mechanism during 
the reconfiguration has been explored yet. Additionally, the proposed neutral plane are not com-
patible with anticlastic surfaces. Methods to unroll an anticlastic surface are important topics to 
increase the applicability. After these topics are addressed, broader applications may be achieved. I 
believe a pavilion-like shell structure can be erected with this mechanism in the coming years.

Figure	13.	

The case study of a free-form surface. a-b. Unroll the mesh panels with the Neutral Surface. To be noted that, there is a 

six-edge node which is the umbilical point of the curved surface. c. Rendering of the expected result (to be updated with 

the physically produced prototype, waterjet cutting is under arrangement at the moment of manuscript submission).
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