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Preface

Dear reader,

In front of you lies my thesis titled: “Bank Erosion Hotspots in the Msimbazi River, Tanzania”. As a
young boy, I was fascinated by the enormous size of our shared planet. And of course, being from
the generation in which climate and sustainability became hot topics, I was raised with the idea that
we should leave behind a better world for our children than the one we inherited. As I grew older, it
became clear what role I could play in that global challenge.

When I asked myself why I am so privileged to have been born in the Netherlands, with a functioning
education system and plenty of opportunities for personal growth, I realized that the foundation of our
Dutch society is well organized. At home, I had a tap supplying clean drinking water to my family. I
never questioned whether our house might flood or whether we’d be able to evacuate in time. We have
roads, stable buildings, and so many things that seem obvious.

But imagine living in a place on this planet where none of this is guaranteed. Would you be able to
follow a full-time study if you had to walk several miles just to fetch drinking water? Could you create
economic opportunities for your community if everyone had to leave their homes multiple times a year
due to flooding?

With these questions in mind, I discovered the field of Civil Engineering. It is a discipline that not
only encourages reflection on such issues but also provides the tools to take meaningful action and
contribute to the greater good. This path led me to study Hydraulic Engineering, and for my thesis, I
focused on the people living along the highly dynamic Msimbazi River. Not because I have the power to
directly help them, but because I believe that science allows us to understand why these communities
are so vulnerable. It is through this understanding that action becomes possible.

I would like to expressmy gratitude to Kieran Dunne, for his continued support and enthusiasm. Without
your understanding and feedback this experience would not have been possible. The same applies
to Bram Loef (CDR-International) whose practical guidance and local insight grounded the study. I
also mean to thank Astrid Blom and Nick van de Giesen for their valuable guidance, engagement, and
support in improving the scientific quality of this thesis.

I am grateful to the Lamminga Fund and FAST Fund for their generous support, which enabled my
travel to Tanzania and fieldwork along the Msimbazi River, greatly enhancing the research.

During this trip, I received great support from Bas van de Sande and Jenny Pronker (CDR International),
whose guidance and availability made the research trip both meaningful and enjoyable. I also thank
Eng. Mussa Natti (World Bank) for facilitating connections with local stakeholders and providing insights
into institutional efforts addressing changes in the Msimbazi River. Furthermore, I appreciate the contri-
butions of Prof. Joel Norbert and Dr. Augustina Alexander (University of Dar es Salaam), Iddy Chazua,
Amour Nyalusi, and Asha Mustapher (OpenMap Development Tanzania), Eng. Nanai (President’s Of-
fice – Regional Administration and Local Government), Mr. Alfred Mbyopo and Eng. Benjamin Mboya
(Dar es Salaam City Council), Hamisi Msangi and Peterson Olang’u (Tanzania Railway Corporation),
and drivers Frank and Tumain, whose local knowledge was essential for this research.

Last, but certainly not least, I want to thank my family and friends. For all those discussions and
moments of support and laughter. You not only stood by me during this thesis project, but throughout
my whole academic journey. Your encouragement, as well as the moments of joy and distraction you
offered when I needed them most, have meant more than I can express.

Quinten Oostwegel
Amsterdam, May 2025
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Abstract

In rapidly growing urban areas, river dynamics have become major hazards, endangering vulnerable
populations and their environments. The Msimbazi River Basin in Dar es Salaam, Tanzania, demon-
strates these challenges, where unplanned urban expansion, deforestation, and infrastructure devel-
opment have influenced river morphodynamics. Although prior studies have addressed flood risks,
sedimentation, and bank erosion, an understanding of the river’s migration patterns, widening trends,
and key drivers at the full catchment scale has been lacking. This research applies a descriptive ap-
proach combining manual riverbank tracking from satellite imagery, identification of potential morpho-
logical change drivers, and hotspot mapping based on hazard severity and exposure susceptibility.
From 2007 to 2024, the Msimbazi River experienced significant lateral migration and localized widen-
ing, with notable episodes of instability after 2017. These changes are primarily driven by land cover
transformations, such as urbanization and deforestation, which have led to gradual shifts in river mor-
phology, rather than being the result of changing precipitation patterns. In contrast, abrupt and local-
ized changes, particularly after 2017, appear to be associated with infrastructural developments like
the Standard Gauge Railway, as well as the coincidence of the El Niño phase with the cyclone sea-
son, which contributed to elongating the wet seasons. Findings reveal that river migration rates and
widening trends fluctuate considerably, often doubling or tripling during periods of rapid change, with
the highest vulnerability observed in the upper catchment. By identifying zones where hazard severity
and exposure intersect, this study provides a framework for prioritizing mitigation in the Msimbazi Basin
and other urban rivers in rapidly developing regions.

ii



Contents

Preface i

Abstract ii

Nomenclature v

1 Introduction 1
1.1 Research problem and objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Research method 4
2.1 Assessment of river migration and widening patterns . . . . . . . . . . . . . . . . . . . . 4
2.2 Identification and quantification of catchment changes . . . . . . . . . . . . . . . . . . . 6
2.3 Development of erosion hotspot maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 The study area 11

4 River migration and widening 17
4.1 Centerline migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 River width changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Drivers of change 38
5.1 Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1.1 Return periods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Annual total precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.3 Annual maximum precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.1.4 Precipitation durations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.1.5 Precipitation anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2 Landcover changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.1 Population growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.2 Landcover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.3 Urbanization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.4 Deforestation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.5 Runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.6 River width versus runoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.7 Construction of the Standard Gauge Railway (SGR) . . . . . . . . . . . . . . . . 61

6 Hotspot maps 64
6.1 River migration hotspots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 River widening hotspots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7 Discussion 81

8 Conclusion 86

References 89

A Applicability of automated waterbody detection 96
A.1 Applicability of remote sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.2 MNDWI & NDWI method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.3 Sentinel-1 (SAR) image analysis method . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B Time of concentration 106

iii



Contents iv

C Centerline detection 109
C.1 Image acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.2 Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
C.3 Manual river detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
C.4 Riverbank tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
C.5 Centerline generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
C.6 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

D Fieldwork 116
D.1 Fieldwork observations in the Msimbazi basin . . . . . . . . . . . . . . . . . . . . . . . . 116
D.2 Downstream analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

E Digital Shoreline Analysis System (DSAS) 128

F Weighted Linear Regression (WLR) statistics summary 133

G KS-tests for precipitation duration 137

H Detailed hotspot maps 139



Nomenclature

Abbreviations
Abbreviation Definition

ArcGIS Geographic Information System software
CDF Cumulative Distribution Function
CHIRPS Climate Hazards Group InfraRed Precipitation with Station data
DSAS Digital Shoreline Analysis System
ECMWF European Centre for Medium-Range Weather Forecasts
ERA5 Fifth-generation ECMWF atmospheric reanalysis of the global climate
GEE Google Earth Engine
GPM Global Precipitation Measurement Mission
GSMaP Global Satellite Mapping of Precipitation
HEC-HMS Hydrologic Engineering Center – Hydrologic Modeling System
HRU Hydrological Response Unit
IMERG Integrated Multi-satellite Retrievals for GPM
IQR Inter-Quartile Range
ITCZ Intertropical Convergence Zone
KS Kolmogorov-Smirnov (statistical test)
LB Lower Basin
LMB Lower Middle Basin
LRR Linear Regression Rate
LULC Land Use and Land Cover
MNDWI Modified Normalized Difference Water Index
NASA National Aeronautics and Space Administration
NDWI Normalized Difference Water Index
NMR Normalised Migration Rate
POT Peak over Threshold
SAR Synthetic Aperture Radar
SGR Standard Gauge Railway
SWIR Short-Wave Infrared
TAHMO Trans-African Hydro-Meteorological Observatory
ToC Time of Concentration
UB Upper Basin
UMB Upper Middle Basin
WLR Weighted Linear Regression

v



1
Introduction

1.1. Research problem and objective
Flooding in Dar es Salaam, Tanzania’s largest city, has showed the urgent need for enhanced flood
resilience, particularly following an early 2018 disaster that claimed 15 lives and severely damaged
critical infrastructure, including roads, bridges, and public services. Over three million residents, many
living in informal settlements near the Msimbazi River, were left especially vulnerable, prevailing the
government to declare a state of emergency. Jangwani, an unplanned neighbourhood along the Msim-
bazi River, was among the hardest hit areas. In response to the widespread damages, the Tanzanian
government, supported by the World Bank and other development partners, has been working with
local communities to develop a more resilient river basin and better manage future flood risks (UNDRR,
2018).

The Msimbazi River originates in the Pugu Hills and flows into the Indian Ocean. Along its course,
it passes through areas that were formerly agricultural land or forest. These have gradually been
transformed into predominantly informal settlements. Today, an estimated 70% of development within
the basin is unplanned. This leaves large parts of the area highly vulnerable to flood-related hazards
such as riverbank erosion (Izdori et al., 2022; Kazi, 2019; Nabeta, 2022) In fact, over 80% of the
riverbanks in the lower Msimbazi Basin are classified as being at “high” to “critical” risk of erosion,
endangering local populations (Alexander et al., 2024).

Despite ongoing efforts to mitigate these risks, including the provision of alternative land and the en-
forcement of evictions, residents continue to settle in erosion-prone areas (Kironde, 2016). Informal
settlements within the basin, such as those in Jangwani, are directly exposed to frequent flash floods,
heavy sedimentation, and riverbank erosion, all of which are intensified by inadequate disaster risk
management strategies (Kazi, 2019; Machiwa et al., 2021; Mkilima, 2021). These interrelated issues
present significant challenges for managing the highly dynamic Msimbazi River system, where up-
stream erosion contributes to heavy downstream sedimentation, leading to a shifting river course, ob-
served channel widening, and the development of steep, unstable banks, alterations that significantly
increase flood risks (Kazi, 2019). Figure 1.2 shows an example of the impact of the Msimbazi river
dynamics, the river shifted its course, which in this specific case resulted in a meander around the
existing bridge.

Recognizing these threats, local authorities and the World Bank launched the Msimbazi Basin Develop-
ment Program in 2022, aimed at strengthening flood resilience, improving discharge capacity, and pro-
moting integrated urban development within the flood-prone basin. The project focuses on enhancing
critical infrastructure, restoring degraded land, and preventing further encroachment into flood-prone
areas, with erosion control forming a crucial sub-component of this initiative (World Bank Group, 2024)

Despite extensive research on flooding, sedimentation, and bank erosion along the Msimbazi River in
Dar es Salaam, considerable uncertainty persists regarding the primary drivers of its rapid morphody-
namic changes and the river’s likely future trajectory. Fundamental questions remain unresolved: How

1



1.2. Research questions 2

is the river truly evolving over time? What are the underlying causes of these changes? And, when
institutions implement mitigation strategies, how well is information on which areas are most at risk and
where interventions will be most effective in mitigating the risks?

This research aims to provide a deeper understanding of the catchment changes driving the rapid
morphological evolution of the Msimbazi River. To effectively mitigate impacts such as bank erosion,
it is crucial to first understand how and why the river itself is changing. Therefore, this study focuses
on channel migration and potential widening or narrowing of the river. Additionally, based on observed
channel migration patterns, critical areas within the river basin will be identified to guide mitigation
strategies and prioritize intervention efforts.

Given the Msimbazi River’s relatively short length of 32 kilometers and its basin area of approximately
289 square kilometers (Kironde, 2016), this research will cover the entire basin to ensure a compre-
hensive analysis of the river’s dynamics and associated risks. While the river has multiple tributaries,
as shown in Figure 1.3, this study focuses on the main channel.

1.2. Research questions
To achieve the objective of this study, in light of the described scope, the research questions are:

1. How is the Msimbazi River evolving in terms of channel migration and morphological changes?
2. What are the key drivers behind the morphodynamic changes occurring in the Msimbazi River?
3. Where are the critical erosion hotspots along the Msimbazi River?

Figure 1.1: Location of the Msimbazi River Basin within Africa, Tanzania and the city of Dar es
Salaam (van de Sande & Laboyrie, 2021)
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Figure 1.2: The impact of the Msimabazi river dynamics are shown. The river shifted its course,
which in this specific case resulted in a meander around the existing bridge located in the Upper

Middle Basin.

Figure 1.3: Main Msimbazi river and its tributaries



2
Research method

To address the research questions, a stepwise methodology is adopted, focusing on three key compo-
nents: (1) analyzing river migration patterns, (2) quantifying catchment changes, and (3) developing
erosion hotspot maps to guide future mitigation strategies.

2.1. Assessment of river migration and widening patterns
The first step in analyzing river migration is determining the river’s position over time. This is achieved
by detecting the riverbanks and deriving the centerline from satellite imagery obtained from Landsat 4-9
(1982–Present) and Sentinel-2 (2015–Present) within Google Earth Engine (GEE). Landsat imagery
has a resolution of 30×30 meters, while Sentinel-2 provides higher-resolution images at 10×10 meters.
The centerline serves as a representative indicator of the river’s course, allowing for a systematic
comparison of its position across different time periods (Xia et al., 2021).

Ideally, the detection of water bodies and subsequent extraction of riverbanks and centerlines would
be automated using remote sensing techniques such as the Modified Normalized Difference Water In-
dex (MNDWI), Normalized Difference Water Index (NDWI), or Synthetic Aperture Radar (SAR). These
methodologies are detailed in Appendix A. However, the Msimbazi River’s relatively narrow width, rang-
ing from 4-15 meters in the early 2000s to its current 30–70 meters, poses a challenge. The spatial
resolution of available satellite imagery is insufficient for reliable automated extraction, limiting the ap-
plicability of these methods.

Instead, riverbanks are manually delineated by visually interpreting satellite imagery, tracing the river-
banks based on distinguishable reflectance differences between water and land (Figure 2.1). River-
banks were manually delineated at a scale of 1:17,500, providing an optimal balance between detail
and accuracy. The centerline was then derived as the exact midline between the two detected banks,
ensuring a balanced representation of the river’s central flow path. To reduce errors caused by tem-
porary water level fluctuations, only satellite images captured outside the time of concentration (ToC)
period were used (Iowa Organization of Natural Resources, 2023). More details on the ToC the center-
line detection procedure are provided in Appendix B and Appendix C, respectively.

To quantify the uncertainty in the centerline position, the error propagation formula for averaging in-
dependent measurements is applied (Ku, 1966). This formula is used because the river centerline is
derived as the midline between two independently determined bankline positions. Since these posi-
tions are derived from the same satellite image, the error in each measurement contributes evenly to
the overall uncertainty of the centerline. The formula for error propagation allows us to estimate how
these independent errors affect the final result.

In this case, the uncertainty in the centerline position is calculated by considering the standard deviation
(σX ) of the independently digitized bankline positions. The uncertainty (σC) in the centerline is given
by Equation 2.1.

4



2.1. Assessment of river migration and widening patterns 5

(a) Step 1: The river is located somewhere within
the wider catchment area. In this case a small

stretch of the river is considered.

(b) Step 2: A satellite image of the catchment is
obtained from Landsat or Sentinel. In this case the
image is a Sentinel image which has a 10 x 10

meter resolution.

(c) Step 3: Band selection and image
enhancement make the river water surface
identifiable. See Appendix C (Figure C.3) for

further explanation of this process.

(d) Step 4: The edges of the water surface are
delineated, aiding in centerline identification. See

Appendix C for further explanation.

Figure 2.1: Stepwise method for detecting river water cover boundaries using satellite imagery.

Once the banklines and centerlines are delineated, the next step is to assess their migration over time.
River migration refers to the lateral displacement of the river channel over time, while the migration
rate quantifies the speed of this movement, typically expressed in meters per year (m/yr). To calculate
these rates, the Digital Shoreline Analysis System (DSAS) is used, a tool designed to evaluate shoreline
dynamics, which can also be applied to riverbank or centerline analysis. DSAS enables the calculation
of change rates across a series of riverbank or centerline positions over multiple time periods (see
Figure 2.2) (Himmelstoss et al., 2021). Initially, river positions from different years are imported into the
tool. A baseline is then established, with transects created at 15-meter intervals along the Msimbazi
River. The rate of change for each transect is computed using the Weighted Linear Regression (WLR)
technique (Tha et al., 2022).

Along with the detection of the centerlines, the width of the identified channels was also recorded.
Consequently, the temporal variations in channel width and their rates of change will also be analyzed.

σC =
σX√
2

(2.1)

In this study, migration and widening rates are compared across different temporal extents. As de-
scribed by Eggert et al. (2015), shorter time periods tend to emphasize more extreme values, as such
variations are less likely to be averaged out compared to longer observation periods. While de Vries
(1975) defines long-term river morphological change as occurring over several decades to centuries,
this study adopts a more pragmatic distinction between short- and long-term for the sake of analytical
clarity and readability. Here, long-term refers to the full duration for which satellite imagery is avail-
able, spanning from 2007 to 2024. In contrast, short-term refers to sub-periods within that timeframe,
typically ranging from 2 to 5 years, depending on the specific analysis.
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Figure 2.2: The left side of the figure shows river centerlines delineated for multiple dates, alongside
a predefined baseline that follows the river’s general course and consists of known coordinates.
Perpendicular to this baseline, transects are generated at 15-meter intervals. The intersection

between each transect and a centerline provides a distance from the baseline at a specific point in
time. In the right side of the figure these distances are plotted against time. By fitting a regression line
to these points, the slope represents the rate of lateral channel movement, i.e., the migration rate
(Himmelstoss et al., 2021). For a detailed explanation of the DSAS methodology, see Appendix E.

2.2. Identification and quantification of catchment changes
The key factors influencing the morphodynamic changes observed in the Msimbazi River include pre-
cipitation variations, landcover changes, urbanization, deforestation, and infrastructure development.

Changes in precipitation patterns, such as increased rainfall, altered rainfall duration, or more frequent
and intense extreme events, could significantly impact the river’s dynamics (Redolfi et al., 2023). For
this analysis, two years were considered particularly important: 2007 and 2018. The year 2007 is
notable as it marks the first year the Msimbazi River became visible in satellite imagery. The year 2018
was selected because it corresponds with the period when significant changes in the river’s width were
observed, particularly in the early months.

The analysis compared precipitation data from before and after 2007 and 2018 to identify any significant
changes that could explain the river’s morphological shifts. A Kolmogorov-Smirnov (KS) test was used
to assess statistical significance, as it does not assume normality of the data. This non-parametric test
compares the distributions of precipitation data across the two periods to determine if the differences
are statistically significant (Massey Jr, 1951).

In addition to precipitation, landcover changes are an important factor influencing river dynamics, as
they directly affect runoff and river discharge. Changes in the landscape, such as increased urban-
ization or deforestation, can reduce the land’s capacity to absorb water, leading to higher runoff and
potentially increased erosion (U.S. Geological Survey, 2019). Runoff is the portion of precipitation that
does not infiltrate the soil but instead flows over the land surface and eventually reaches rivers and
streams (James & Lecce, 2013; Kayitesi et al., 2022; Tang & Lettenmaier, 2012; Wohl, 2004).

Landcover changes were quantified using data from the Institute of Resource Assessment (IRA) at the
University of Dar es Salaam and the European Space Agency (ESA).
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Urbanization and deforestation are two major landcover changes that significantly influence river mor-
phology. Urbanization, marked by the expansion of built-up areas, increases the total paved surface,
leading to higher runoff and flood risks. Deforestation, on the other hand, reduces the vegetation that
protects the soil. This decreases the area’s ability to absorb water, contributing to increased erosion
and altered water flow in the catchment (Li et al., 2024).

The extent of urbanization was quantified by analyzing landcover change data combined with building
block data fromOpenMapDevelopment Tanzania. This data, which includes detailed information on the
location, shape, and size of individual buildings, allowed for tracking the growth of built-up areas over
time. Deforestation was assessed using similar landcover change data, enabling the identification of
areas where vegetation had been cleared or degraded. Both urbanization and deforestation influence
the catchment’s runoff, which in turn affects the river’s dynamics. Therefore, changes in runoff are also
assessed.

Human interventions, such as infrastructure development, also play a significant role in shaping river
dynamics. A notable example in the Msimbazi catchment is the construction of the Standard Gauge
Railway (SGR) in early 2018, located upstream (TanzaniaInvest, 2024). This development was identi-
fied during fieldwork as a potential influence on river morphology, particularly regarding sedimentation
and water flow. To assess its impact, a combination of satellite image analysis, field observations, and
a review of environmental reports related to the railway construction was conducted.

2.3. Development of erosion hotspot maps
Migration rates of river channels can vary widely, often differing by several orders of magnitude. In
certain regions, these rates may exceed tens or even hundreds of meters annually (Langhorst & Pavel-
sky, 2023). Given that a significant portion of the global population resides near rivers, such high rates
of bank erosion present substantial risks to nearby infrastructure and human settlements (Noh et al.,
2024). The Msimbazi river is no exception.

In this study, riverbank erosion hotspots are defined in terms of vulnerability, which is the result of ex-
posure and hazard. Dilley et al. (2005) define a ”hotspot” as a specific area or region that is at relatively
high risk of loss from one or more natural hazards. However, this study focuses specifically on vulner-
ability, rather than risk, because risk inherently involves the consideration of potential consequences,
such as economic losses or other impacts, which are outside the scope of this research. Vulnerabil-
ity, on the other hand, refers to the degree of susceptibility of people, communities, and assets to the
impacts of hazards. A hazard is any event or process that can cause harm, such as erosion, while ex-
posure refers to the presence of people, infrastructure, or assets in areas prone to such hazards (Dilley
et al., 2005; Stone et al., 2011). Therefore, vulnerability to riverbank erosion is determined by both the
degree of exposure to erosion-prone areas and the severity of the hazard itself (Climate Investment
Funds, 2023).

The first step in identifying a hotspot is to determine both the location and the magnitude of the hazard.
In this study, the hazard is defined as river migration or river widening.

Since a hotspot reflects the vulnerability of a location to future hazardous events, the location of the
hazard is taken as the most recent position of the river, which, based on available data, corresponds
to the location of the Msimbazi River in May 2024.

The magnitude of the hazard is represented by the migration rate or widening rate of the river. To distin-
guish between long-term patterns, which are primarily driven by gradual catchment-scale changes, and
short-term responses of the river system to sudden events (e.g., abrupt landcover changes or extreme
rainfall events), both long-term (2007-2024) and short-term (2020-2024) rates for both migration and
widening are considered in the hotspot analysis (Tha et al., 2022).

This approach produces four distinct hotspot maps: one illustrating vulnerability to long-term hazards
(2007–2024), based on gradual river migration rates; one capturing vulnerability to short-term hazards
(2020–2024), reflecting event-driven river responses; and two additional maps representing vulnerabil-
ity to long-term and short-term river widening rates, respectively.

The hazard will be assigned a severity value value between 1 and 5, where 1 indicates minor severity,



2.3. Development of erosion hotspot maps 8

Figure 2.3: Because both migration rates and widening rates have been calculated at 15 meter
intervals along the river, these values can be stored at corresponding point locations. The rates are
classified by severity using the Natural Breaks (Jenks) method, which groups similar values together
and identifies class boundaries based on natural gaps in the data. Identifying where along the river

certain severity levels occur allows for the assessment of locational vulnerability.

3 corresponds to a moderately severe hazard and 5 represents an extreme severe hazard. In terms
of migration rates, the distribution of migration rates is divided into 5 equal intervals where the smaller
rates correspond to the minor severe hazard and the largest rates to the extremely severe hazard.
Similarly, for river widening, narrowing and stable trends are assigned very low severity and extreme
widening rates correspond to very high severity. As is shown in Figure 2.3.

It is important to note that both hazard severity and, by extension, vulnerability are assessed relative
to the behavior of the specific river system being studied. In this analysis, migration rates, used as an
indicator of hazard severity, are classified using the Natural Breaks (Jenks) method. This classification
technique groups similar values together and places class boundaries where there are relatively large
jumps in the data. The goal is to highlight meaningful patterns by maximizing the similarity within each
class while emphasizing the differences between them (de Smith et al., 2018). This approach helps to
identify the areas experiencing the most severe river migration within the Msimbazi system.

Although the hazard is defined for two different timeframes, Long-term (2007-2024) and short-term
(2020-2024), the exposure remains constant across both analyses. Exposure refers to the objects
within the catchment area that are potentially affected by the hazard (IPCC, 2014). Since the river has
an average width of approximately 50 meters (ranging between 30 and 70 meters), the susceptible
zone is defined as a buffer of roughly 10 times the river width, resulting in a zone of about 500 meters
on either side of the river (Rinaldi et al., 2013). This zone represents the area susceptible to potential
river migration or widening.

The first step in exposure mapping involves identifying what lies within this susceptible area that could
be impacted by river migration, such as residential buildings, critical infrastructure, and other assets
(Stone et al., 2011; UNISDR, 2009). The aim is to spatially quantify where these elements are located.

The second step concerns susceptibility, that is, how sensitive these exposed elements are to harm.
Stone et al. (2011) define susceptibility as “the propensity of the people, property or other receptors to
experience harm.” One intuitive assumption is that proximity to the river plays a key role: the closer
an object (e.g. a house) is to the migrating river, the more susceptible it is to erosion or damage.
Therefore, distance to the river is adopted as a metric to quantify susceptibility within the exposed area.
Elevation, by contrast, was not included as a factor in this analysis. Erosion processes can undermine
high riverbanks irrespective of their elevation relative to the channel. Field observations confirmed
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that even buildings situated more than 12 meters above the river can become destabilized when the
supporting bank material is eroded. This is particularly relevant given that the riverbanks consist of
alluvium which is highly susceptible to planar erosion, as supported by both field evidence and the
findings of Van Camp et al. (2014). Therefore, susceptibility was quantified using distance to the river,
as elevation does not meaningfully reduce the vulnerability of erosion-related damage in this setting.

Figure 2.4 illustrates the susceptibility of buildings, which is also a value between 1 and 5. Where 1
equals minor susceptibility and 5 is equal to extremely susceptible. This same approach is applied to
other objects within the defined exposed zone. As shown in the figure, some objects are situated near
the boundaries of the distance classes. To ensure consistency in the analysis, the centroid (geometric
center) of each object is used to assign it to a specific susceptibility class.

In this study, the objects considered within the exposed area are buildings and infrastructure, such as
roads and railways. Research by Tha et al. (2022) has shown that exposure mapping can be based on
landcover and population density. However, in the case of the Msimbazi River, which flows predomi-
nantly through a densely populated area, this approach may not provide the most informative results.
To distinguish more vulnerable areas from less vulnerable ones within this overall high-populated catch-
ment, buildings and infrastructure are considered as an objective metric.

Once hazard severity and exposure susceptibility have been mapped, spatial hotspots, areas with the
highest vulnerability, can be identified. These vulnerability values are derived using the relationship
defined in Equation 2.2, where vulnerability is a function of both hazard severity (quantified by the
rate of river migration or widening) and exposure susceptibility (measured as the distance of exposed
elements to the river).

Hotspot (Vulnerability) = Hazard (Severity)× Exposure (Susceptibility) (2.2)

Equation 2.2 aligns with established risk assessment frameworks in which risk is defined as the product
of hazard, exposure, and vulnerability (IPCC, 2014; UNDRR, 2017; Wisner et al., 2004). As empha-
sized by Turner et al. (2003), vulnerability depends not only on exposure but also on the sensitivity and
resilience of the affected system. Since resilience is not yet quantified in this study due to data limita-
tions, the resulting vulnerability map should be seen as a proxy, useful for informing initial mitigation
strategies, with further refinement possible as more data becomes available.

The practical implementation of vulnerability mapping involves combining object susceptibility with haz-
ard severity. This is achieved using the Near tool in ArcGIS (Figure 2.5), which calculates the nearest
distance and direction between points (Esri, 2024). In this case, the origin point is a feature within the
exposed area (e.g., a building), and the target point is a location along the river where a migration rate
has been recorded. This method not only identifies the closest hazard source but also attributes its
migration rate to the exposed object. This spatial linkage enables the calculation of vulnerability and,
subsequently, the delineation of hotspot zones.
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Figure 2.4: Susceptibility of objects within the exposed area, quantified by their distance to the river.
This measure of susceptibility is used to determine locational vulnerability.

Figure 2.5: Schematization of ArcGIS’s Near tool. The black dot represents an object located within
the exposed area. The tool calculates the nearest distance from this object to the river, thereby

determining its susceptibility. In addition, the severity of the nearest hazard point along the river is
identified. By assigning this severity value to the object, it is provided with all the necessary

information to compute its vulnerability using Equation 2.2 (Esri, 2024).



3
The study area

The Msimbazi River flows through Dar es Salaam, Tanzania’s commercial capital, where rapid urban-
ization has dramatically reshaped the landscape (Izdori et al., 2022; Kazi, 2019; Shibayama & Esteban,
2022; van de Sande & Laboyrie, 2021). With one of the fastest-growing populations in the world, Dar
es Salaam is experiencing unprecedented urban expansion, contributing to significant environmental
and infrastructural challenges (Kazi, 2019). The Msimbazi Basin is home to 27% of Dar es Salaam’s
population (Kazi, 2019; Kironde, 2016). The most severe flooding occurs in the Lower and Lower Mid-
dle Basins, which is why the World Bank-led Msimbazi Development Program has primarily focused
on mitigation efforts in these areas.

Land use and settlement patterns vary across theMsimbazi Basin, with distinct zones identified through-
out the area (see Figure 3.1). In the Upper Basin, peri-urban expansion is rapidly converting agricultural
land and forests into residential areas. The Upper Middle Basin is more densely populated and highly
urbanized, while the Lower Middle Basin has also seen substantial urban development, with much of its
infrastructure already consolidated (Alexander et al., 2024; Kazi, 2019). The Lower Basin, covering 400
hectares, is characterized by floodplains, mangrove forests in the tidal zone near the river mouth, wet-
lands, and sandy plains formed by sediment deposition after flash floods (Kazi, 2019; Kironde, 2016).
Despite the high flood risk in these areas, unplanned informal settlements continue to spread across
the floodplains, showing the basin’s vulnerability (Kazi, 2019).

This research distinguishes between several sub-basins within the overall catchment to facilitate local-
ized analyses. Figure 3.1 illustrates the spatial subdivision of the catchment area. In general, a river
system evolves from steep upper basins to flatter lower basins. In the upper basins, runoff is generated
from precipitation, and sediment is mobilized through active erosion. Further downstream, sediment is
transported, stored, and eventually deposited in lowland floodplains or deltas. As slope and energy de-
crease, the dominant processes shift accordingly, with each sub-basin playing a distinct role in shaping
the river’s hydrological and morphological characteristics (Charlton, 2008; Leopold et al., 1995; Mackin,
1948).

Satellite imagery, as presented in Figures 3.2 to 3.7, clearly illustrates that the river is undergoing
significant transformation. A longitudinal comparison of these Google Earth images shows the exact
same stretch of the river. The river, once a relatively narrow stream (as shown in Figure 3.2), has
progressively claimed more space over the years.

In addition to this gradual expansion, the river appears to have responded to abrupt events. This is
particularly evident when comparing Figure 3.4 (January 2018) with Figure 3.5 (March 2018). The
extent of change observed within a three-month period, during which the channel width nearly tripled,
suggests a sudden and substantial shift in river morphology. Such rapid changes, occurring over just
three months, go well beyond the gradual alterations typically seen in natural river migration, which
generally unfolds over decades to centuries, particularly in urban alluvial systems (de Vries, 1975).

In response, the Msimbazi Development Program has initiated various projects to mitigate the impacts
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of these dynamics.

One of the biggest problems for research in East Africa is the lack of good, trustworthy data. In many
parts of the continent, poor data quality makes it hard to build useful knowledge and to support decision-
making with solid evidence (Kinyondo & Pelizzo, 2018). This is especially true for climate data, which
is often difficult to access or simply not available (Dinku, 2019). Unfortunately, the Msimbazi catchment
is no exception.

Field observations conducted in February 2025, aimed at gathering data, provided insight into the
current geomorphological and anthropogenic conditions along the river. In the Upper Basin, recent
reforestation efforts were evident, characterized by young vegetation and riverbanks reinforced with
large boulders (see Figure 3.8), indicating a degree of stabilization. Progressing downstream toward
the upper Middle Basin, the morphology of the banks shifted, from gradually sloping, protected banks to
steep, unprotected banks where residential structures are located dangerously close to the river’s edge
(see Figure 3.9a). Elevation does not appear to protect these buildings from erosion, as the dominant
process is clearly bank undermining. This downstream shift coincides with the start of more urbanized
areas, where solid waste begins to appear along the banks.

Further downstream, point bars and cut banks become increasingly distinguishable. The point bars
are characterized by gently sloping profiles, whereas the cut banks show pronounced vertical erosion.
In the Lower Middle Basin, evidence was observed of community-led engineering interventions: local
residents have constructed embankments to mitigate flood risks. The elevation of these manually
constructed banks ranges from approximately 1–3 meters in the Lower Middle Basin to as high as 8–
10 meters in the Lower Basin. The Lower Basin also showed sand mining activities within the channel,
see Figure 3.9

Along the full length of the river, the bank material mainly consists of coarse to very coarse sand. A
downstream trend is observed in which sediment angularity decreases and grain sorting improves,
reflecting typical fluvial sorting processes (Knighton, 2014). Appendix D provides more detailed infor-
mation about the findings during the fieldwork.

Figure 3.1: Map of sub-basins within the Msimbazi River Basin (Kazi, 2019).
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Figure 3.2: Observed river morphology on May 8, 2013. The Msimbazi River appears as a narrow
stream, making it barely distinguishable in the satellite imagery.

Figure 3.3: Observed river morphology on January 27, 2016. The Msimbazi River has slightly
widened, but it remains difficult to clearly identify in the satellite image due to its narrow appearance.
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Figure 3.4: River morphology on January 1, 2018. Continued widening of the Msimbazi River
enhances its visibility due to greater contrast with the surrounding landscape.

Figure 3.5: River morphology on March 17, 2018. Compared to January 2018 (Figure 3.4), the river
appears to have roughly tripled in width, indicating rapid morphological change. The lighter water

surface reflection indicates a higher concentration of dissolved sediment.
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Figure 3.6: Observed river morphology on May 9, 2022. The river remains wide, with substantial
sediment deposits clearly visible within the channel.

Figure 3.7: Observed river morphology on May 3, 2024. The river appears to have widened further,
as shown by houses now located directly along the riverbanks. It should also be noted that the

number of buildings has increased considerably between Figures 3.2 and 3.7.
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Figure 3.8: Photograph from the February 2025 site visit illustrating the protected and re-vegetated
banks in the Upper Basin.

(a) Residential building located on the 5-meter-high
riverbank in the Upper Middle Basin, observed during
the February 2025 site visit as the first house along
the river. Clearly, elevation alone does not guarantee

protection from erosion.

(b) Active sand mining operations observed in the
Lower Basin.

Figure 3.9: Photographs from the February 2025 site visit illustrating key features in the Upper
Middle and Lower Basins of the Msimbazi River.



4
River migration and widening

This chapter describes the movement of the Msimbazi river. It explains how the river is changing in
terms of centerline migration (section 4.1) and river widening (section 4.2). Therefore it gives answer
to the first research question: ”How is the Msimbazi River evolving in terms of channel migration and
morphological changes?”

4.1. Centerline migration
Centerline migration refers to the lateral displacement of the river’s centerline in time. The computa-
tions conducted for all centerlines from 2007 to December 2024 yield the results presented in Table 4.1.
These results represent the overall migration behavior of the entire river system. Although the under-
lying analysis is based on point movements spaced at 15-meter intervals along the river, the reported
outcomes summarize the migration characteristics at the system scale.

Table 4.1: Long-term (2007-2024) centerline Weighted Linear Regression (WLR) summary statistics
according to DSAS (Thieler et al., 2003)

Metric Value
Total number of transects 1851
Average rate (m/yr) -0.46
Average confidence interval 2.76
Reduced number of independent transects (nred) 105.19
Uncertainty of average rate using nred 0.27
Average rate with uncertainty (m/yr) -0.46 ± 0.27
Number of erosional transects 1007
Percent of transects erosional (%) 54.40
Statistically significant erosion (%) 30.90
Maximum erosion rate (m/yr) -18.01
Transect ID (max erosion) 364
Average erosional rate (m/yr) -3.85
Number of accretional transects 844
Percent of transects accretional (%) 45.60
Statistically significant accretion (%) 23.82
Maximum accretion rate (m/yr) 16.50
Transect ID (max accretion) 946
Average accretional rate (m/yr) 3.59

The results in Table 4.1 indicate that 54.4% of all transects exhibit erosion, while 45.6% show accretion.
With an average migration rate of -0.46 m/year (negative value corresponds to erosion thus leftward
directed), the long-term migration rate of the river’s centerline appears relatively stable. According to
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Hooke (2003) and Langhorst and Pavelsky (2023), rivers typically migrate at a rate of 0.1–2% of their
width per year. Given that the Msimbazi River ranges from 30 to 70 meters in width, an expected
migration rate would fall between 0.03 and 1.4 m/year, aligning well with the observed rate.

The short-term Weighted Linear Regression (WLR) results in Appendix F (Table F.1) show fluctuations
in the Msimbazi River’s centerline migration between 2007 and 2024. The proportion of transects expe-
riencing leftward movement (erosion) is consistently higher than those undergoing rightward movement
(accretion). The percentage of erosional transects ranges from 51% to 55%, while accretional transects
vary between 45% and 49%. This indicates a net tendency for the river to shift leftward over time, al-
though rightward migration remains a significant counteracting force. However, this kind of directional
trend is probably not caused by one specific factor, but instead emerges from many local influences
that shape how the river moves (Schwenk et al., 2015).

A key observation from the migration rates is the considerable variation across different periods. While
the long-term migration rate was relatively stable at -0.46 m/year, the short-term rates fluctuate sig-
nificantly. The highest leftward migration occurred between 2021–2023, with an average rate of -1.0
m/year, whereas the 2019–2021 period briefly exhibited a slight rightward shift (+0.15 m/year). The
extreme values at certain points along the river in both directions, such as -138 m/year (2023–2024)
for leftward movement and +140 m/year (2017–2019) for rightward movement, highlight the river’s
instability.

Overall, the results for the entire river system show that the river’s centerline has moved both to the
left and right over time, with a slight dominance of leftward movement, indicating more erosion on that
side. The large variation in migration rates confirms that the river is highly dynamic.

To gain a more detailed understanding of how the river has changed over time and across different
locations, it is valuable to examine the movement of individual points along the river centerline. This
approach enables the detection of local variations in river migration that may not be apparent at a
broader, system-wide scale. The absolute migration rates at these specific points are presented in
Figures 4.1 to 4.9. By using absolute values, the direction of movement is disregarded, allowing the
analysis to focus solely on the magnitude of migration. This is particularly relevant when considering
river movement as a potential hazard for nearby communities, where the impact is determined by the
extent of displacement rather than whether the river shifts to the left or right.

Long-term trends (2007-2024)
As previously explained, the river appears relatively stable over the full 2007–2024 period, as illustrated
in Figure 4.1, with most migration rates ranging between 0 and 4 m/yr. These values exceed the
commonly cited rule of thumb that rivers typically migrate at a rate of 0.1–2% of their width per year
(Hooke, 2003; Langhorst & Pavelsky, 2023). For the Msimbazi River, which had an estimated width of
approximately 30-70 meters (Gorelick et al., 2017), this would correspond to expected migration rates
of roughly 0.03 to 1.4 m/yr. Nevertheless, slightly higher rates are not uncommon in dynamic fluvial
environments, and isolated instances of extreme migration exceeding 10 m/yr are also observed.

According to Table 4.3, the Upper Middle Basin (UMB) shows the highest mean migration rate (4.0
m/yr) and the highest standard deviation (3.97), reflecting its overall higher variability and migration
intensity over time. In contrast, the Lower Basin (LB) remains the most stable, with the lowest mean
migration rate (3.4 m/yr) and one of the lowest standard deviations (3.63).
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Figure 4.1: Migration rates along the Msimbazi River averaged over 2007-2024.

A deeper understanding of the changes in migration trends over time can be achieved by shifting the
focus to short-term migration. Among this analysis the normalized migration values of consecutive
periods are observed. Normalised migration rates are the migration rates of the later period divided
by the migration rates for the previous period, as shown in Equation 4.1. This shows the magnitude of
change of the rates between the two periods. Table 4.2 illustrates the result interpretation: a value of
3 indicates that the migration rate in the observed period (Period 2) is three times higher than in the
baseline period (Period 1), while a value of 0.5 indicates a rate that is half as large.

The temporal segmentation into five distinct periods: 2007–2017, 2017–2019, 2019–2021, 2021–2023,
and 2023–2024, was chosen to reflect data availability and event relevance. The first period spans a
decade due to limited availability of centerlines (approximately one per year), while subsequent periods
are shorter (2–3 years) to provide a more detailed representation of migration dynamics. These inter-
vals were selected to capture key events such as the 2023/2024 El Niño phenomenon and the start of
the Standard Gauge Railway (SGR) construction around 2017–2018.

Normalized Migration Rate =
Migration RatePeriod 2
Migration RatePeriod 1

(4.1)

Table 4.2: Interpretation of the Normalised Migration Rate

Normalised Migration Rate Interpretation

> 1 Faster migration in the second period.

≈ 1 Similar migration rate, same direction

0 < Normalised Migration Rate < 1 Slower migration in the second period.

≈ 0 Very slow migration in the second period
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Short-term changes (2007-2017)
During the 2007–2017 period, migration activity was larger in the Upper Basin and Upper Middle Basin
compared to the long-term rates, although the rates remainedmoderate, as indicated by the dominance
of green values in Figure 4.2 and the small whiskers in Figure 4.11. In contrast, the Lower Middle Basin
appears relatively stable, showing limited channel movement. Interestingly, the Lower Basin exhibited
less activity during this decade compared to the overall 2007–2024 trend, suggesting that more dynamic
changes in that region may have occurred after 2017.

This observation aligns with the findings presented in Table 4.3. The migration rates during this period
were relatively stable across all sub-basins, with the Lower Basin (LB) showing the lowest mean migra-
tion rate at 3.3 m/yr and the Upper Middle Basin (UMB) having the highest at 5.0 m/yr. The standard
deviations were similar across all sub-basins, with the Lower Basin (LB) showing the lowest variability
(3.75), indicating more stable migration behavior in this region. Figure 4.11 shows a visualization of the
rates and variability presented in Table 4.3.

Some river sections are missing in the figure. This is due to cloud cover or low satellite image quality,
which occasionally prevented accurate delineation of the river centerline. To calculate a migration rate,
the centerline must be available for at least two different points in time for a given section of the river.

Figure 4.2: Migration rates along the Msimbazi River averaged over 2007-2017.

2017-2019: Rise in migration rates
A comparison with the 2017–2019 period, a three-year span coinciding with the start of the SGR con-
struction, reveals a clear increase in migration intensity across several parts of the river (Figure 4.3). A
rise in river migration rates indicates that the river channel is migrating faster than during the previous
period, in this case, compared to 2007–2017. Not only have overall migration rates increased, but
the frequency of extreme migration events has also risen. This is particularly evident in the growing
number of locations displaying very high rates, indicated by dark red. The most pronounced changes
are observed in the Upper Middle Basin and the Lower Middle Basin, where the most extreme rates
occur.

This aligns with the data in Table 4.3 and Figure 4.11, where a noticeable increase in migration rates
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is observed during this period. The Upper Middle Basin (UMB) shows the highest mean migration
rate at 10.5 m/yr, while the Lower Basin (LB) also sees a significant increase, with a mean of 6.6 m/yr.
The standard deviations increase significantly, especially in the Lower Middle Basin (LMB) and Upper
Middle Basin (UMB), indicating more extreme migration behavior during this period.

Figure 4.4, which compares the 2017–2019 period to the 2007–2017 baseline, illustrates substantial
shifts in migration dynamics. The color scheme helps to interpret these changes: green areas indicate
a decrease in migration rate, while light green to yellow reflects zones where migration rates remained
relatively stable between the two periods. In contrast, red colors denote a drastic increase in migration
intensity, with dark red highlighting the most extreme cases.

Across the Upper Basin, the map is predominantly orange, indicating that migration rates approximately
doubled. A similar pattern is visible in the Upper Middle Basin, where several areas show rates that
more than doubled. In the Lower Middle Basin, migration rates have also generally more than doubled,
and the spatial extent of extreme increases (dark red) has grown considerably. The Lower Basin ex-
hibits a more moderate response relative to the other sub-basins, where extreme changes are limited.

To evaluate the statistical relevance of the observed changes, a Kolmogorov–Smirnov (KS) test was
performed at a 5% significance level. The KS test was selected due to its non-parametric nature,
which makes it suitable for comparing distributions without assuming normality, unlike the commonly
used t-test. The results, summarised in Table 4.4, demonstrate that several changes in migration rates
between time periods are statistically significant. For instance, the comparison between 2007–2017
and 2017–2019 yields an extremely low p-value (9.59 × 10−31), confirming that the shift in migration
rate distribution is highly significant.

Figure 4.3: Migration rates along the Msimbazi River averaged over 2017-2019.
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2019-2021: Continued increase in extreme migration rates
Figure 4.5 shows the migration rates for the period 2019–2021. Migration rates remains large during
this interval. Notably, the number of locations showing extreme migration rates has further increased
compared to the previous period.

This aligns with the data in Table 4.3 and Figure 4.11, where the period 2019–2021 shows the highest
migration rates across all sub-basins. The Lower Middle Basin (LMB) and Upper Middle Basin (UMB)
show particularly high means of 12.4 m/yr and 12.0 m/yr, respectively. The standard deviations are also
at their peak, particularly in the Upper Middle Basin (UMB), with a standard deviation of 12.7, indicating
fluctuating and extreme migration rates.

Comparing the 2019–2021 period with the 2017–2019 baseline (Figure 4.6) reveals a relatively stable
pattern across the basin, which aligns with the remaining high migration rates. While increased migra-
tion rates are dominant, decreases also occur frequently. In the Upper Basin, changes mostly range
between 0.5 and 2 times the previous migration rate. For the Upper Middle and Lower Middle Basins,
the variation is more pronounced, ranging from 0.06 to 16 times the earlier rate. The Lower Basin
shows a consistent increase, with rates generally ranging from 1 to 4 times those of the preceding
period.

This apparent stabilization is supported by the results of the KS-test (Table 4.4), which yields a p-value
of 0.193. As this exceeds the 0.05 significance threshold, the observed differences between the two
periods are not statistically significant.

Figure 4.5: Migration rates along the Msimbazi River averaged over 2019-2021.
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2021-2023: Decreasing migration rates
Figure 4.7 illustrates the migration rates during the 2021–2023 period. Compared to previous time
intervals, the frequency and magnitude of extreme migration events have noticeably declined. Overall
migration rates are lower, and fewer locations show extremely highmigration rate values. This suggests
a potential return to more stable conditions, aligningmore closely with themigration rates observed over
the 2007–2024 period.

This aligns with the findings in Table 4.3, where the 2021–2023 period shows a clear decline in migration
rates. Notably, the Upper Basin (UB) experiences a sharp drop from 10.8 m/yr to 2.5 m/yr, while the
Lower Basin (LB) shows more moderate decreases, returning from 9 m/yr to a more stable, lower
migration rate of 4.2 m/yr. The standard deviations have also decreased, particularly in the Upper
Basin (UB), suggesting less fluctuation in migration (as can also be seen from teh whiskersizes in
Figure 4.11).

Accordingly, Figure 4.8, examines changes in migration rates between the 2021–2023 and 2019–2021
periods. Overall, a decreasing trend in migration rates is observed. In the Upper Basin, green values
(indicating reduced rates) are predominant. The Upper Middle and Lower Middle Basins show a mix
of increasing and decreasing rates, though decreases are more frequent. In the Lower Basin, the
dominant rate change is around 0.5, suggesting that migration rates have generally halved compared
to the previous period ,which aligns with the data in Table 4.3.

This observed decrease in migration rates is statistically confirmed by the KS-test results shown in
Table 4.4, with a p-value of 4.95× 10−20, indicating that the changes are highly significant.

Figure 4.7: Migration rates along the Msimbazi River averaged over 2021-2023.
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2023-2024: Reemergence of extremes
The final period observed, 2023–2024 (Figure 4.9), coincides with the El Niño phase and Cyclone
Hidaya (further discussed in Chapter 5), and reveals a notable increase in the river’s migration rates.
Extreme migration events are now much more frequent and are observed across nearly all sub-basins.
However, the Lower Basin remains relatively calm in comparison, showing less pronounced migration
activity during this period.

This aligns with the findings in Table 4.3, where migration rates have increased again, particularly in
the Lower Middle Basin (LMB) and Upper Middle Basin (UMB), with very high means of 14.5 m/yr and
15.0 m/yr, respectively. Standard deviations also peak in these basins, indicating a rise in both intensity
and variability of migration. See Figure 4.11 for comparison.

Figure 4.10 illustrates the change in river migration rates between the 2021–2023 and 2023–2024
periods. The figure is predominantly shaded in red, indicating widespread increases in migration rates,
consistent with the observations shown in Figure 4.9.

In the Upper Basin, several areas appear in dark orange, representing increases ranging from 4 to
16 times compared to the previous period. In the Upper Middle Basin, increases are somewhat less
extreme, typically between 2 and 8 times, but remain significant. The Lower Middle Basin shows amore
moderate rise, with rates increasing by approximately 2 to 4 times. In contrast, the Lower Basin exhibits
relatively limited changes, with increases generally falling between 1 and 2 times. These patterns are
supported by Table 4.3.

Table 4.4 confirms that the changes between 2021–2023 and 2023–2024 are statistically significant,
with a p-value of 2.70× 10−23.

Figure 4.9: Migration rates along the Msimbazi River averaged over 2023-2024.
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Table 4.3: Mean and standard deviation of absolute river migration rates per sub-basin and time period (2007–2024) within the Msimbazi catchment
(Thieler et al., 2003).

Period Mean of Absolute River Migration Rate [m/yr] Std of River Migration Rate [m/yr]

LB LMB UMB UB Whole
basin LB LMB UMB UB Whole

basin

2007–2017 3.3 4.0 5.0 4.7 4.2 3.8 4.2 4.5 4.5 4.3

2017–2019 6.6 10.7 10.5 9.2 9.9 9.0 9.5 11.3 5.4 7.4

2019–2021 9.0 12.4 12.0 10.8 11.6 11.8 12.7 12.7 8.0 12.5

2021–2023 4.2 5.1 5.7 2.5 5.1 4.1 4.9 8.1 2.2 6.3

2023–2024 6.6 14.5 15.0 15.3 13.4 10.1 15.0 18.6 10.2 16.0

2007–2024 3.4 3.5 4.0 4.0 3.7 3.6 3.4 4.0 3.5 3.7
LB = Lower Basin, LMB = Lower Middle Basin, UMB = Upper Middle Basin, UB = Upper Basin.
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Figure 4.11: Changes in migration rate along the river’s sub-basins between 2007 and 2024. The
dots show the time- and spatial averaged migration rate. The whiskers denote the variability in
migration rate but are also spatially averaged over the (sub-)basin. The red-dotted trend lines

represent the long-term gradual changes of the river’s migration rate.
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Table 4.4: KS-significance test for Weighted Linear Regression (WLR) rates across different periods
between 2007 and 2024

Compared periods KS-statistic p-value Significance

2007–2017 vs. 2017–2019 0.4405 9.59× 10−31 Yes

2017–2019 vs. 2019–2021 0.0789 0.193 No

2019–2021 vs. 2021–2023 0.3459 4.95× 10−20 Yes

2021–2023 vs. 2023–2024 0.3730 2.70× 10−23 Yes

Over the full 2007–2024 observation period, river migration rates show clear temporal and spatial vari-
ability. Between 2007 and 2017, migration activity was relatively moderate and stable across all sub-
basins, with mean rates generally below 5 m/yr and limited variability. A pronounced shift occurs after
2017: the 2017–2019 period marks a sharp increase in migration intensity, with rates doubling or more
in many areas compared to the 2007–2017 baseline. This intens migration continues into the 2019–
2021 period, particularly in the Upper and Lower Middle Basins, which reach average rates exceeding
12 m/yr and record-high standard deviations, reflecting extreme channel shifts.

Following this peak, a temporary decline is observed during 2021–2023, especially in the Upper Basin.
However, this trend reverses dramatically in the final period (2023–2024), with widespread, and in some
locations extreme, increases in migration rates across the basin.

Spatially, the Upper Middle Basin consistently shows to be the most dynamic segment, recording the
highest mean migration rates in every time interval. It reaches a time averaged peak of 15 m/yr in
2023–2024, along with the highest observed standard deviation (18.6 m/yr), indicating intense and
variable channel migration. In contrast, the Lower Basin remains the most stable sub-basin over time,
with a long-term mean of just 3.4 m/yr, despite brief periods of increased activity.

A downstream gradient in migration behavior is clear: the Upper Basin shows moderate variability, with
increases primarily concentrated in specific intervals (e.g., 2017–2019). The Upper Middle- and Lower
Middle Basins display the most pronounced fluctuations, with substantial rate increases during 2017–
2019, 2021–2023, and 2023–2024. Meanwhile, the Lower Basin generally exhibits more moderate
and consistent changes, with migration rate shifts typically within a 1- to 4-fold range across the entire
study period.

4.2. River width changes
As shown in the satellite imagery presented in Chapter 3), the river is not only migrating laterally but also
undergoing local widening. Accurately tracing these changes requires information on river width over
time. However, the resolution of the available satellite images is too low to reliably delineate riverbanks,
introducing significant uncertainty in their exact position. Nevertheless, water cover could be detected,
allowing for the derivation of the river centerline.

To assess river widening (or narrowing), changes in the extent water cover are used as a proxy for
variations in river width. This method draws on studies that employ automated water body detection
techniques, such as Synthetic Aperture Radar (SAR) or Normalized Difference Water Index (NDWI) to
delineate river widths (Innoter, 2024; O’Leary et al., 2019). For instance, Mengen et al. (2020) devel-
oped continuous time series of river width using high-resolution, weather-independent SAR imaging,
allowing for precise width measurements over time. Similarly, Gao et al. (2024) explored channel struc-
ture characteristics by analyzing water and non-water indices. While water cover is not a direct indicator
of river width, it is generally assumed that an increase in the water-covered area reflects a widening
trend in the river channel. Nevertheless, it is important to recognize the limitations of this approach.

Particularly for smaller rivers, such as the Msimbazi, the resolution of available satellite imagery can hin-
der accurate delineation of riverbanks, introducing uncertainty in the true river width. Narrow channels
are often poorly represented in commonly used water masks, leading to underestimation or omission of
narrower sections (Feng et al., 2022; Yamazaki et al., 2014). In this study, changes in water-covered
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area are therefore used as proxies for relative widening or narrowing trends over time, rather than
as precise measurements of river width. These interpretations provide useful insights but should be
treated with caution.

While water cover width does not always directly reflect changes in the actual positions of the river-
banks, it remains a useful, although imperfect, indicator for understanding the morphological dynamics.
Small variations in water cover may simply represent discharge seasonality, rather than actual lateral
expansion. However, this metric provides value because it consistently captures the deepest and most
persistent part of the channel. Due to ongoing sediment deposition in the Msimbazi River, this deep-
est section is gradually aggregating. As a consequence, the water is forced to spread laterally, which
can result in the widening of the channel. Therefore, significant increases in water cover width may
suggest actual changes in river width. Although water cover width does not perfectly represent morpho-
logical change, consistent trends in widening, especially when the water cover exceeds the established
channel width, can serve as indirect evidence of bank movement. To validate these indications, field
observations or high-resolution satellite imagery are required.

To minimize the influence of individual storm events, care was taken to exclude satellite images cap-
tured within the catchment’s Time of Concentration (ToC). The ToC refers to the time it takes for water
to travel from the most distant point in a catchment to the river outlet following a rainfall event (Iowa
Organization of Natural Resources, 2023; Mehta et al., 2022). See Appendix B, for the computation of
the ToC. By analyzing only satellite imagery captured outside this period, the influence of seasonality
is minimized, as this approach isolates the baseflow component of the river. Additionally, the analy-
sis uses temporally and spatially averaged width values, which further minimize the influence of any
remaining seasonal effects that may have been unintentionally captured, as these variations tend to
cancel out (Eggert et al., 2015). Although the water cover width is a imperfect proxy for channel width,
it is a relevant best option given the data-scarce environment.

The widening trend was analyzed using two complementary approaches. The first involves tracking the
movement of the delineated edges of the water cover. Which is the boundary between land classified
pixels and water classified pixels. A schematic of these water cover boundaries is shown in Figure
4.12. By comparing the displacement of the left and right edges over time, relative changes in width
can be presumed. The second approach focuses directly on the distance between these edges, which
serves as an estimate of the water cover width. This width is stored in themetadata during the centerline
delineation process. Further details on the extraction of water cover edges and centerlines are provided
in Appendix C.

The analysis of the edges between water-classified and land-classified pixels reveals both long-term
(2007–2024) and short-term variations in the river’s width. These changes are driven by the movement
of the left and right edges relative to the baseline located on the right side. According to DSAS (see
Appendix E), movement of the right water cover edge towards the baseline corresponds to erosion,
while movement of the left edge towards the baseline (which is on the right) indicates accretion. Con-
versely, movement away from the baseline signifies accretion for the right edge and erosion for the left
edge. Therefore, the sign of the migration rates must be interpreted differently for each edge: for the
left edge, a positive (+) value means accretion and a negative (−) value means erosion; for the right
edge, the opposite applies, with ’plus’ indicating erosion and ’minus’ indicating accretion (Himmelstoss
et al., 2021). To avoid confusion, the following analysis describes erosion and accretion based on their
actual definitions: movement towards the centerline indicates accretion, while movement away from
the centerline indicates erosion.

Over the long term (2007–2024), the left edge has experienced an average migration rate of -0.22 m/yr,
indicating a mild trend of erosion. In contrast, the right edge shows a slightly greater erosional trend
with an average migration rate of -0.37 m/yr, suggesting that the river as a whole is undergoing a net
narrowing. Despite this, the similar magnitude of these rates for both edges indicates a relatively stable
system over the long term.

In the short term, width changes exhibit more episodic behavior, with alternating periods of narrowing
and widening. Between 2007 and 2017, the left edge experienced mild erosion (-0.48 m/yr), while
the right edge also eroded (0.71 m/yr), resulting in a widening trend. From 2017 to 2019, the left
edge eroded (-1.09 m/yr) and the right edge remained almost stable (0.05 m/yr), suggesting localized
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Figure 4.12: Identified edges of the water cover. The distance between these boundaries is used to
determine the water cover width. See Appendix C for further explanation.

widening. During the 2019 to 2021 period, the left edge exhibited mild accretion (0.12 m/yr), while
the right edge accreted slightly (-0.04 m/yr), signaling stabilization rather than significant narrowing.
Between 2021 and 2023, the left edge remained stable (0.03 m/yr), while the right edge experienced
notable accretion (-1.27 m/yr), marking a period of narrowing. Finally, from 2023 to 2024, the left
edge showed substantial erosion (-1.97 m/yr), while the right edge eroded (1.05 m/yr), indicating a net
widening phase.

These alternating trends highlight the dynamic nature of the river’s width. The most significant widening
occurred between 2023 and 2024, with substantial erosion on the left edge. However, extreme erosion
rates during the 2023–2024 period, with occasions of -140 m/yr on the left bank and occasions of -129
m/yr on the right bank, are likely due to localized hydrodynamic forces, possibly resulting from extreme
weather events or human interventions. The observed variability in erosion and accretion rates further
explains the episodic nature of the river’s width changes.

The Msimbazi River has experienced alternating widening and narrowing phases, with the most sub-
stantial widening occurring between 2021 and 2023. While the long-term trend suggests a mild widen-
ing, short-term variations indicate localized widening and narrowing driven by movement of the water
cover edges.

Table 4.6 presents the median and standard deviation of water cover width for the Lower Basin (LB),
Lower Middle Basin (LMB), Upper Middle Basin (UMB), Upper Basin (UB), and the whole basin over
the period 2007–2024. Overall, the average water cover width for the whole basin increases from 33.7
meters in 2007–2017 to a peak of 37.1 meters in 2021–2023, indicating a general trend of water cover
widening over time.

The Upper Middle Basin shows the most notable increase, with a rise in median width from 30.7 me-
ters to 37.7 meters between 2007–2017 and 2021–2023. The Upper Basin also shows a considerable
widening during the same period, from 36.6 meters to 39.3 meters. However, observations over differ-
ent periods actually reveal a narrowing. The Lower Basin increases more modestly from 31.9 meters
to 35.9 meters, while the Lower Middle Basin experiences a relatively stable width. It is evident that the
Upper Middle Basin experienced the largest increase in width over time, while changes in the Lower
and Lower Middle Basins were more limited.
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The standard deviation of water cover width, which reflects spatial variability within each sub-basin,
also increases during this period. For the whole basin, it rises from 11.1 meters in 2007–2017 to 12.2
meters in 2021–2023, indicating that differences in width between locations along the river became
more pronounced. This increase in variability is especially evident in the Upper Basin, where the
standard deviation grows from 10.9 to 14.6 meters, suggesting that the water cover widened more
unevenly across this region. The Upper Middle Basin similarly sees an increase from 9.9 to 13.1
meters. The Lower Middle Basin maintains relatively high variability around 12 to 13 meters, while the
Lower Basin shows less fluctuation, remaining near 9 meters.

These trends suggest that while the overall water cover showed a general widening, this changewas not
uniform across the entire river; some areas experienced more pronounced local variations in width than
others. Interestingly, these observations contradict the edge migration rate analysis, which indicated
a net narrowing of the river in long-term. This discrepancy arises from the fact that the migration
rate analysis focused on the movement of the river’s edges across the entire system, while the width
measurements were taken at intervals of 15 meters along the river. As such, these more localized
width measurements provide a more detailed and reliable assessment. Based on this, it is concluded
that the river is undergoing a net widening, despite the earlier indication of net narrowing from the edge
migration rates.

According to Table 4.5 the observed changes are all statistically significant.

Table 4.5: KS-significance test for water cover width across different periods between 2007 and 2024

Compared periods KS-statistic p-value Significance

2007–2017 vs. 2017–2019 0.1712 5.22× 10−222 Yes

2017–2019 vs. 2019–2021 0.0436 1.42× 10−24 Yes

2019–2021 vs. 2021–2023 0.0821 5.58× 10−101 Yes

2021–2023 vs. 2023–2024 0.0793 8.00× 10−86 Yes

Plotting the river widths over time (2007–2024) as average values for different observed periods, shown
in Figure 4.13, reveals how the different basins compare to the long-term average. It is assumed that
the red trend line corresponds to a gradual increase in water cover width. Since the plotted values
represent averages, it is expected that they generally follow this long-term trend. This long-term change
is likely due to gradual modifications in the catchment’s morphology. Any significant deviations from
this long-term average would indicate more immediate causes of widening or narrowing.

From Figure 4.13, it is clear that the Lower Basin (LB) follows the long-term trend closely, with the
exception of the 2021–2023 period. The Lower Middle Basin (LMB) shows a drop in width during
the 2017–2019 period, followed by a recovery. The Upper Middle Basin (UMB) clearly shows a steep
slope in its trend, indicating that it is undergoing more significant widening compared to the LMB and LB.
Additionally, it is evident that the width peaks above the average during both the 2017–2019 and 2021–
2023 periods. In contrast, the Upper Basin (UB) demonstrates a decreasing trend in width, indicating
the river is becoming narrower. Moreover, the variability in the width data of the Upper Basin appears
relatively large, particularly after 2021.

When observing the final figure within Figure 4.13, which plots the width along the river from UB to LB,
it is clear that the Upper Middle Basin is the widest part of the river. This is somewhat surprising, as one
might expect the width of a river to increase as it moves downstream, based on flow accumulation. As
Garbrecht (1991) described: ”The drainage network accumulates upstream sub-watershed runoff into
a single downstream response, with runoff accumulating at network junctions.” However, it is important
to note that width is just one metric, and there is no information available on changes in channel depth
or other influencing factors.

Nonetheless, it can be observed that the river’s width is relatively variable in the Upper Middle Basin.

The analysis of river width trends over time suggests that the changes in width are not uniform across
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the basin. While the general long-term trend indicates a gradual increase in water cover width, certain
periods exhibit notable deviations from this trend, implying the presence of more immediate factors
influencing the river’s morphology. In particular, the Upper Middle Basin (UMB) shows more significant
widening, which contrasts with the narrowing trend observed in the Upper Basin (UB). These variations
highlight that while gradual changes in catchment morphology likely drive the long-term trend, short-
term fluctuations in river width may be linked to localized hydrological or geomorphological processes.
The variability in the Upper Basin, particularly after 2021, further suggests that transient or external
factors may be contributing to changes in river width
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Figure 4.13: Changes in water cover width along the river’s sub-basins between 2007 and 2024. The
dots show the time- and spatial averaged water cover width at baseflow. The whiskers denote the
variability in width but are also spatially averaged over the (sub-)basin. The red-dotted trend lines

represent the long-term gradual changes of the river’s width.
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Table 4.6: Mean and standard deviation of water cover width at baseflow per sub-basin and time period (2007–2024) within the Msimbazi catchment.

Period Mean of River Width [m] Std of River Width [m]

LB LMB UMB UB Whole
basin LB LMB UMB UB Whole

basin

2007–2017 31.9 37.3 30.7 36.6 33.7 8.8 12.1 9.9 10.9 11.1

2017–2019 33.0 31.9 36.3 36.4 33.8 8.8 12.2 12.6 8.5 11.9

2019–2021 33.8 37.1 34.3 39.3 35.7 8.7 13.1 12.5 10.2 12.2

2021–2023 35.9 37.5 37.7 35.6 37.1 10.1 12.2 13.1 14.6 12.2

2023–2024 30.8 36.7 37.1 29.5 35.5 10.5 11.0 11.2 12.6 11.3

2007–2024 32.8 33.2 37.4 36.3 34.8 9.0 12.4 12.1 12.5 12.0
LB = Lower Basin, LMB = Lower Middle Basin, UMB = Upper Middle Basin, UB = Upper Basin.



5
Drivers of change

This chapter examines the key drivers behind the morphodynamic changes occurring in the Msimbazi
River. The analysis first investigates whether there is a signature of changing climate patterns influenc-
ing the river’s behavior. The river responds to variations in precipitation, which can manifest in several
ways. One possibility is an increase in extreme rainfall, reflected in a rise in annual total precipitation
(Zwiers et al., 2013). Alternatively, overall precipitation may have increased without a larger number
of extreme events, in which case the annual maximum rainfall would show a change over time, often
referred to as changes in intensity (Zwiers et al., 2013). Another factor could be shifts in the duration
of rainfall events, which could alter the timeframe over which the catchment must manage the water
(Westra et al., 2014).

Following that, this chapter explores the role of land use changes, urbanization, deforestation, and
human interventions such as infrastructure development. These factors collectively shape the river’s
path by influencing sediment dynamics and catchment runoff (James & Lecce, 2013; Kayitesi et al.,
2022; Wohl, 2004). Understanding their interplay is essential in explaining the observed changes.

5.1. Precipitation
Many rivers experience changing characteristics such as discharge, flow velocity, and erosion speed
due to variations in precipitation (Vörösmarty et al., 2000). The goal of this section is to explain how river
morphology is changing as a result of discharge. Discharge is the amount of water that flows through
a river (Chow et al., 1988). However, given the lack of available discharge data for the Msimbazi River
in Tanzania, precipitation is used as a proxy. Precipitation is widely considered a key driver of river
discharge (Fleischmann et al., 2019).

To investigate the role of precipitation in shaping river morphology, we consider four potential ways
in which precipitation patterns could influence the river: 1) total precipitation, 2) precipitation intensity,
3) precipitation duration, and 4) precipitation anomalies. The precipitation data used in this research
comes from the Global Precipitation Measurement (GPM) mission, an international satellite network
operated by NASA. GPM provides global measurements of precipitation and snowfall, serving as a
reference standard by unifying precipitation data from various satellites worldwide (Huffman et al., 2014;
NASA, 2025).

The GPM data has been extracted for the area of interest from the beginning of the mission until 8
October 2024 for every hour. The earliest available precipitation data for the area of interest in the
GPM dataset starts from 3 June 2000. Figure 5.1 shows the precipitation data from 3 June 2000 till 8
October 2024.

38



5.1. Precipitation 39

Figure 5.1: Hourly GPM Precipitation between 3 June 2000 and 8 October 2024 (Huffman et al.,
2014; NASA, 2025)

5.1.1. Return periods
The bankfull discharge is often considered to be the flow that fills the channel to the top of its banks and
occurs, on average, every 1 to 2 years (Rosgen, 1996). This flow is frequently identified as the one that
transports the greatest amount of sediment over time, thereby playing a critical role in shaping the form
and size of alluvial channels (Leopold et al., 1995). Although the recurrence interval of bankfull flow
can vary depending on geomorphological and hydrological conditions, it is generally associated with a
flow event that occurs approximately every two years, reflecting a balance between channel-forming
energy and flow regularity (Ahilan et al., 2013; Leopold et al., 1995; Mirzaee et al., 2018; Rosgen, 1996).
Given its importance in river morphology and sediment transport, the 2-year return period serves as a
key threshold for understanding significant geomorphic changes.

Figure 5.2 shows the cumulative distribution function (CDF) for precipitation events in the Msimbazi
catchment, illustrating the relationship between precipitation intensity and return periods. The CDF
plot shows how the probability of a specific rainfall intensity increases with the return period. As shown
in the figure, the precipitation event corresponding to a 2-year return period in the Msimbazi catchment
is 38.2 mm/hr. The 2-year, 5-year, 10-year, 25-year, and 50-year return periods were chosen to assess
the impact of both frequent, moderate events and rare, extreme events on river morphology, covering a
range of typical and extreme discharge conditions critical for understanding sediment transport, erosion,
and long-term channel evolution (Mirzaee et al., 2018; Ward et al., 2011).
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Figure 5.2: Cumulative Distribution Function (CDF) of annual maximum precipitation. The CDF is
used to estimate precipitation intensities associated with specific return periods.

5.1.2. Annual total precipitation
To identify these changes, two key years have been selected: 2007 and 2018. The year 2007 is
significant because the river was not detectable in satellite imagery before this year but became visible
afterward. Meanwhile, 2018 is relevant because, at the beginning of that year, major changes in river
width and path were observed in satellite imagery.

Figure 5.3 illustrates the distribution of Annual Total Precipitation across different subsets of the GPM
precipitation data. These subsets include: (1) the entire dataset, (2) data collected up to December
31, 2006, (3) data from January 1, 2007, onward, (4) data collected up to December 31, 2017, and (5)
data from January 1, 2018, onward, as depicted in Figure 5.4.

Based on the CDF shown in Figure 5.3a and the boxplots in Figure 5.3b, the total precipitation rates
across the different subsets appear relatively similar. No differences in precipitation rates are observed
a difference between datasets would result in a shift of the curve. The minor deviations between the
distributions reflect variations in the underlying datasets comprising each temporal subset.

To verify these observations, a significance test was conducted at a 5% significance level, with re-
sults presented in Table 5.1. The Kolmogorov-Smirnov (KS) test was chosen to compare total annual
precipitation distributions, as it does not assume normality, unlike the t-test.

Table 5.1: Significance test for distributions of total annual precipitation

Compared subsets KS-statistic p-value Significance

Pre- vs. Post 1 Jan 2007 0.071 0.91 No

Pre- vs. Post 1 Jan 2018 0.17 0.89 No

Since the p-values for both the pre- and post-January 1, 2007, and pre- and post-January 1, 2018, com-
parisons exceed the 0.05 significance threshold, no statistically significant differences in total annual
precipitation are observed between these subsets.
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(a) Cumulative distribution function (CDF) of annual total precipitation across five time periods: the full record,
pre-2007, post-2007, pre-2018, and post-2018. The CDF illustrates the distribution and variability in total yearly

precipitation.

(b) Boxplots of annual total precipitation for the same five time periods. The distributions appear broadly similar,
suggesting limited temporal shifts in total annual precipitation relative to the 2007–2024 (All) mean.

Figure 5.3: Annual total precipitation characteristics. Panel (a) presents the cumulative distribution of
yearly totals across five periods, while panel (b) compares their median and spread. Together, the

plots assess potential temporal changes in annual total precipitation within the study period.
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Figure 5.4: Timeline of precipitation data subsets, used to determine whether precipitation is a
significant driver of the morphological changes observed within the Msimbazi river.

5.1.3. Annual maximum precipitation
An analysis of annual maximum precipitation was conducted to evaluate potential changes in the in-
tensity of precipitation events over time. The results, presented in Figure 5.5, show that there are no
differences in extreme precipitation before and after 2007 and 2018.

This is illustrated by Figure 5.5a, which shows the CDFs of different precipitation subsets. The absence
of noticeable shifts in the curves indicates that extreme precipitation levels have remained stable over
time. Additionally, the boxplots in Figure 5.5b show comparable means and interquartile ranges (IQRs)
across the subsets, further reinforcing this finding.

To statistically verify these findings, a significance test was conducted. As shown in Table 5.2, both
p-values exceed the 5% significance threshold, indicating that the differences between the compared
subsets are not statistically significant. This shows that the intensity of precipitation events has re-
mained consistent over time, with no substantial increase in annual maximum precipitation.

Table 5.2: Significance test for distributions of annual maximum precipitation

Compared subsets KS-statistic p-value Significance

Pre- vs. Post 1 Jan 2007 0.077 0.85 No

Pre- vs. Post 1 Jan 2018 0.14 0.20 No
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(a) Cumulative distribution function (CDF) of annual maximum daily precipitation. This plot illustrates the
distribution of the highest daily precipitation values recorded each year, providing insight into the frequency and

magnitude of extreme precipitation events.

(b) Boxplots of annual maximum precipitation for different time periods. The plot compares the distribution of
annual maximum precipitation relative to the 2007–2024 (All) mean across five temporal subsets: the full record,

pre-2007, post-2007, pre-2018 and post-2018. The distributions appear broadly similar, indicating limited
temporal shifts in annual maximum precipitation patterns over time.

Figure 5.5: Annual maximum daily precipitation characteristics. Panel (a) shows the cumulative
distribution function (CDF) of annual maximum daily precipitation, illustrating the frequency and

intensity of extreme events. Panel (b) compares distributions across five time periods using boxplots,
revealing minimal temporal variation relative to the 2007–2024 mean.
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5.1.4. Precipitation durations
Another factor to consider is the duration of precipitation events, as changes in their duration could
affect river dynamics by altering the timeframe within which the catchment must manage the water
(Westra et al., 2014).

It is possible that either the maximum precipitation events have become longer or that the overall mean
precipitation duration has increased. Both possibilities were evaluated using the Peak over Threshold
(POT) method, with results for maximum and mean durations shown in Figures 5.6 and 5.7. The POT
method was analyzed on how long the precipitation rate remains above the set threshold.

To analyze changes in base precipitation, events with rates between 0 mm/hr and 20 mm/hr were
examined (Figure 5.6). A separate analysis for more extreme events, ranging from 10 mm/hr to 100
mm/hr, was also conducted (Figure 5.7).

Figure 5.6 illustrates variations in the duration of the maximum precipitation event over time. However,
these differences diminish as the threshold value increases. For example, the mean event duration
varies by less than an hour across the observed period. Similarly, Figure 5.7 reveals comparable
trends.

Statistical analysis verifies that for thresholds below 6 mm/hr, the differences in event duration are
statistically significant, with p-values falling below 0.05 (see Appendix G). This indicates meaningful
variations in duration for low precipitation rates. However, for thresholds between 6 and 60 mm/hr, no
significant differences in event duration were observed (p-values > 0.05), except at 9 mm/hr.

Statistical significance (p-value < 0.05) indicates that the differences in precipitation durations between
periods (e.g., before and after 2007 or 2018) are unlikely to have occurred by chance. However, sta-
tistical significance alone does not guarantee that the difference is practically meaningful. Even small
changes in event duration, while statistically significant, may not substantially impact river dynamics or
erosion risks. For example, slight shifts in precipitation duration, such as a few hours (see Figure 5.6),
may not be enough to significantly alter environmental processes.

This is particularly relevant when considering precipitation events corresponding to the determined
2-year return period of 38 mm/hr. At this threshold, no significant differences in event duration were
observed. This suggests that although theremay be statistical variations in duration for low precipitation
rates, such variations are unlikely to have a meaningful impact on river dynamics or erosion risks (Field,
2009). The 2-year return period is important because it typically represents a flow event that occurs
roughly every two years, balancing channel-forming energy with flow regularity (Ahilan et al., 2013;
Leopold et al., 1995; Mirzaee et al., 2018; Rosgen, 1996).
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Figure 5.6: Maximum and mean duration of precipitation events with intensities from 0 to 20 mm/hr,
shown in 1 mm/hr increments across five time periods. The results reveal minor differences over time,
indicating no substantial temporal changes in the duration of low to moderate precipitation events.
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Figure 5.7: Maximum and mean duration of precipitation events with intensities from 10 to 100
mm/hr, shown in 10 mm/hr increments across five time periods. Similar to lower intensities, the
duration of more intense precipitation events shows minimal variation over time, indicating stable

temporal patterns for heavy precipitation durations.

5.1.5. Precipitation anomalies
In analyzing changes in river width and path within the Msimbazi River catchment, no statistically sig-
nificant differences were found between precipitation intensity, frequency, or duration across different
subsets of the data. This indicates that precipitation patterns are unlikely to be the primary drivers of
the observed gradual morphological changes, suggesting that other factors may be influencing these
transformations over time.

For this analysis, a reference year was constructed by averaging daily precipitation across the full
23.5-year GPM record. This average annual cycle (Figure 5.8) serves as the baseline for calculating
daily precipitation anomalies from 2000 to 2024, defined as deviations from this long-term mean. The
anomaly for each day is computed using the Equation 5.1.
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Ai = Pi −AV Gi (5.1)

Where Ai is the anomaly for day i, Pi is the observed precipitation on day i, and AV Gi is the daily
average precipitation based on the 23.5 years of data, as shown in Figure 5.8. The resulting anomalies
are shown in Figure 5.9, with positive anomalies (blue) indicating days with precipitation above the
mean, and negative anomalies (brown) indicating days with precipitation below the mean.

(a) Jan-Dec average precipitation cycle

(b) Jul-Jun average precipitation cycle

Figure 5.8: Annual average precipitation cycles

Table 5.3: Significance test for distributions of precipitation anomalies

Compared subsets KS-statistic p-value Significance

Pre- vs. Post 1 Jan 2007 0.013 0.93 No

Pre- vs. Post 1 Jan 2018 0.056 2.8× 10−5 Yes
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Figure 5.9: Daily precipitation anomalies per year. Anomalies are calculated as the difference
between observed daily precipitation and the long-term mean for that calendar day, based on the

2007–2024 average.

The Kolmogorov-Smirnov (KS) test was performed to assess differences in precipitation anomalies be-
fore and after 2007 and 2018. The results, presented in Table 5.3, confirm that precipitation anomalies
show significant changes after 2018 but not after 2007. The distribution of the anomaly data is given
in Figures 5.10 and 5.11.

Additionally, the standard deviation of daily precipitation anomalies is found to be 25.02 mm/day. The
standard deviation (σ) is calculated as:

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (5.2)

where xi are the observed precipitation values, and µ represents the mean of the dataset (Wackerly et
al., 2008). The large standard deviation suggests considerable variability in daily precipitation values,
implying that fluctuations in precipitation events may be most influential.

As discussed in Chapter 4, the river showed substantial migration between 2023 and 2024. While most
of the available precipitation data shows no significant temporal changes and thus likely does not ex-
plain the observed morphological changes, as noted in Chapter 3, this conclusion must be approached
with caution, as the anomaly analysis clearly shows a significant difference.

Diving deeper into the cause of this, two main factors were identified. The first factor of influence is
the occurrence of Cyclone Hidaya (category 1), which stands out as the most intense tropical storm
ever documented in the area of Tanzania, making landfall on May 4, 2024 (Erickson & Reiter, 2024).
Cyclone Hidaya caused heavy precipitation and powerful winds to East Africa (Igini, 2024). The second
factor of influence is the occurrence of El Niño, which lasted from October 2023 till May 2024 (Evarister,
2023; World Meteorological Organization, 2023).

El Niño is a climate phenomenon characterized by unusually warm sea surface temperatures in the
central and eastern tropical Pacific Ocean. It occurs when the normal east-to-west trade winds weaken
or reverse, leading to significant shifts in atmospheric circulation. These changes disrupt weather
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patterns globally, including variations in rainfall, temperature, and storm activity. El Niño events typically
recur every two to ten years and last for about 9 to 12 months (Evarister, 2023; U.S. Geological Survey,
2024b). In Tanzania, the 2023–2024 El Niño phenomenon contributed to above-average rainfall for
two consecutive rain seasons of October - December 2023 (Vuli rains) and March - May 2024 (Masika
rains) (Food and Agriculture Organization of the United Nations (FAO), 2024; World Bank, 2024; World
Meteorological Organization, 2023).

The anomaly analysis reveals that while precipitation patterns remained largely stable, significant devia-
tions occurred after 2018, with extreme events such as Cyclone Hidaya (May 2024) and the 2023–2024
El Niño phenomenon contributing to increased precipitation.

Figure 5.10: Histogram of precipitation anomalies. This histogram shows the frequency distribution
of daily precipitation anomalies, calculated as the difference between observed precipitation and the

long-term daily mean (2007–2024).

Figure 5.11: Boxplots of daily precipitation anomalies for different time periods. The plot compares
the distribution of precipitation anomalies relative to the 2007–2024 mean across five temporal
subsets: the full record, pre-2007, post-2007, pre-2018 and post-2018. The distributions appear
broadly similar, indicating limited temporal shifts in daily precipitation anomaly patterns over time.
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5.2. Landcover changes
One of the key factors influencing river dynamics is landcover and land use, as these factors directly
affect runoff and sediment transport. Changes in land use, such as urbanization and deforestation,
can alter the catchment’s ability to absorb water, leading to increased surface runoff during rainfall
events. This, in turn, can amplify river discharge, erosion, and sediment transport, even in the absence
of changes to precipitation patterns. When land is cleared or developed, soil permeability decreases,
and impervious surfaces (such as roads and buildings) increase, reducing infiltration and promoting
faster runoff. This altered runoff regime influences river morphology by modifying sediment supply,
flow velocity, and erosion patterns (James & Lecce, 2013; Kayitesi et al., 2022; Wohl, 2004).

This section focuses on quantifying the associated changes. First, population growth is mentioned.
Then landcover changes, urbanization and deforestation are addressed. Third, the connection to runoff
is assessed. Finally, a case study on the impact of the Standard Gauge Railway (SGR) is presented.

5.2.1. Population growth
Dar es Salaam is experiencing significant population growth, with a current annual increase of around
3% (“World Bank Open Data”, 2023). This has led to a catchment population of approximately 1.6
million in 2021, with estimates suggesting this number will rise to 2.5 million by 2030, more than double
the 1.2 million recorded in 2011 (Mkilima, 2021).

Figure 5.12 shows the exponential population growth of Dar es Salaam, together with a future prediction
of this growth according to the United Nations Department of Economic and Social Affairs et al. (2024).

Figure 5.12: Population growth in Dar es Salaam until January 2024 with a prediction till 2035
(United Nations Department of Economic and Social Affairs et al., 2024)

5.2.2. Landcover
Figure 5.13 illustrates the temporal changes in landcover. A comparison between Figures 5.13a and
5.13b shows a noticeable decline in forested areas, particularly in the Upper Basin. These forests have
largely been replaced by built-up areas, bushland, and grasslands. Additionally, all sub-basins show a
significant increase in built-up areas, reflecting the continued expansion of urban development.

Comparing the 2020 landcover (Figure 5.13c) with that of 2021 (Figure 5.13d) also reveals a transition
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from forested areas to built-up areas and grasslands. In addition to the westward expansion of the
built-up area, the city is also undergoing densification, as grasslands and bare land within previously
developed areas are being converted into built-up areas.

The images from 2000 and 2010 (Figures 5.13a and 5.13b, which originate from the Regional Cen-
tre for Mapping of Resources for Development (RCMRD)) have a resolution of 30 × 30 m (RCMRD-
SERVIRESA et al., 2018a, 2018b). In contrast, the images from 2020 and 2021 (Figures 5.13c and
5.13d, from the European Space Agency (ESA)) have a resolution of 10 × 10 m (Zanaga et al., 2021,
2022). Due to these differences in resolution, the datasets are not directly comparable across sources;
however, the 2000 and 2010 images can be compared with each other, as can the 2020 and 2021
images.

(a) Landcover in 2000 (RCMRD-SERVIRESA et al.,
2018a)

(b) Landcover in 2010 (RCMRD-SERVIRESA et al.,
2018b). The white stretch corresponds to missing

data due to cloud cover.

(c) Landcover in 2020 (Zanaga et al., 2021) (d) Landcover in 2021 (Zanaga et al., 2022)

Figure 5.13: Msimbazi Catchment Landcover for the years 2000, 2010, 2020 and 2021. The images
from 2000 and 2010 (RCMRD) have a resolution of 30 × 30 m, while the images from 2020 and 2021
(ESA) have a resolution of 10 × 10 m, making them comparable within their respective timeframes
(2000 and 2010 versus 2020 and 2021) but not across sources. The white stretch in Figure 5.13b

corresponds to missing data due to cloud cover.

5.2.3. Urbanization
The landcover data confirms ongoing urbanization, but questions remain about its spatial distribution
and extent. To address this, building block data from OpenMap Development Tanzania (2025), avail-
able for 2016 and 2025, was analyzed. The catchment was divided into a 1×1 km grid, with each cell
representing the number of buildings (Figure 5.14) and the total built-up area (Figure 5.15).
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A direct comparison of building density (Figure 5.14) suggests an increase from 2016 (Figure 5.14a)
to 2025 (Figure 5.14b). However, this is partly misleading, as the total mapped area expanded over
time, meaning some areas that appear undeveloped in 2016 may have already contained buildings. To
account for this, the data was normalized (Figure 5.16).

The normalized data reveals a general increase in buildings between 2016 and 2025. Some areas
show a decrease, which may result from land clearance, evictions, sales, or demolition for new devel-
opments. Notably, the highest increase in building density occurs at the western edge of the mapped
area, indicating westward city expansion.

Similarly, the analysis of total built-up area (Figures 5.15 and 5.17) reveals a consistent trend. The
built-up area has generally increased, with the most significant expansion occurring towards the west.

(a) Building density (number of buildings per km2) in
the catchment area in 2016.

(b) Building density (number of buildings per km2) in
the catchment area in 2025, showing urban

expansion.

Figure 5.14: Building density (number of buildings per km2) in the catchment area for 2016 and 2025,
illustrating changes in urban expansion (OpenMap Development Tanzania, 2025).

(a) Built-up area (area in km2 per grid cell) in the
catchment area in 2016.

(b) Built-up area (area in km2 per grid cell) in the
catchment area in 2025, showing urban expansion.

Figure 5.15: Built-up area (area in km2 per grid cell) in the catchment area for 2016 and 2025,
illustrating changes in urban expansion (OpenMap Development Tanzania, 2025).



5.2. Landcover changes 53

Figure 5.16: Normalized ratio of building density (number of buildings per km2) between 2025 and
2016 in the catchment area, highlighting spatial patterns of urban expansion and contraction

(OpenMap Development Tanzania, 2025).

Figure 5.17: Normalized ratio of built-up area (area in km2 per grid cell) between 2025 and 2016 in
the catchment area, highlighting spatial patterns of urban expansion and contraction (OpenMap

Development Tanzania, 2025).
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5.2.4. Deforestation
From the landcover changes (Figure 5.13), it is evident that deforestation is occurring alongside urban-
ization in the Msimbazi River catchment. Lupala et al. (2014) highlight that land use changes in Dar
es Salaam and surrounding areas have led to an increase in residential and agricultural land, while
grazing land and open spaces have declined. Rapid population growth, especially since the 1990s,
has driven these shifts, contributing to the degradation of the Pugu and Kazimzumbwi forest reserves,
where ecosystem services such as water quality and availability have diminished. Despite efforts to
restrain illegal settlements, forest loss continues (Lupala et al., 2014).

Research by Boussougou Boussougou et al. (2018) found that the risk of deforestation is highest in the
eastern parts near major urban centers like Pugu and Kisarawe. Vulnerability is particularly pronounced
in areas close to major roads and settlements. This aligns with the westward expansion of the city as
found for the trends in urbanization (Section 5.2.3).

Figure 5.18 illustrates deforestation trends in the Pugu Nature Reserve, based on Kashaigili et al.
(2013). It shows a significant decline in closed forest cover between 1980 and 2010, while open vege-
tation types, such as bushland and grassland, have increased, confirming the findings.

Figure 5.18: Deforestation trends in the Pugu Nature Reserve, located in the upper Msimbazi
catchment, between 1980 and 2010 (Kashaigili et al., 2013).

5.2.5. Runoff
Since landcover changes influence the catchment’s runoff, it is important to understand runoff as the
portion of precipitation that does not infiltrate the soil but instead flows over the land surface and eventu-
ally reaches rivers and streams. These changes directly affect how much water enters the river during
rainfall events. In particular, landcover transformations such as urbanization and deforestation tend to
increase runoff by reducing infiltration capacity and increasing impervious surfaces, leading to greater
and faster surface flow (James & Lecce, 2013; Kayitesi et al., 2022; Tang & Lettenmaier, 2012; Wohl,
2004). To quantify this runoff potential, both the catchment’s slope and landcover are analyzed.

Literature by Kibugu et al. (2022) and Mkilima (2021) (illustrated in Figures 5.19 and 5.20) indicates
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an increase in built-up areas and a decline in forested and vegetated land between 2000 and 2010.
Given this trend, the observed decrease in runoff potential between 2010 and 2020 is likely an artifact
of resolution discrepancies rather than an actual reduction, as shown by Figure 5.13. It is therefore
reasonable to assume that the catchment’s runoff potential has been consistently increasing over time.

Figure 5.19: Landcover changes between 1998 and 2018 within the Msimbazi catchment according
to Mkilima (2021).

Figure 5.20: Landcover changes (1998-2020) within the Lower Basin with a prediction for 2040
according to Kibugu et al. (2022).
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The Ohio Department of Transportation (2020) mentions that impervious surfaces, such as built-up
areas, have high runoff coefficients (0.90) due to limited infiltration, while natural landcovers like forest,
bushland, and grassland have lower coefficients, reflecting their higher ability to absorb rainfall. Addi-
tionally, runoff coefficients increase with slope, as steeper terrains lead to higher flow velocity and runoff
volume. Figure 5.23 illustrates the spatial variation in terrain slopes across the Msimbazi catchment.
The runoff potential of the catchment, defined as the fraction of precipitation that directly contributes
to surface runoff flowing into the river (Tang & Lettenmaier, 2012), is calculated using the following
equation:

Runoff potential =
∑

(Ai · Ci)∑
Ai

(5.3)

where Ai represents the area covered by a specific runoff coefficient, Ci is the corresponding runoff
coefficient (Table 5.4), and

∑
Ai is the total area of the catchment.

The representative runoff for the catchment is determined using the coefficients provided in Table 5.4.
These coefficients are primarily sourced from the drainage design manual by Ohio Department of Trans-
portation (2020). However, to ensure their relevance and accuracy, they have been cross-verified with
the findings of Mdee (2015), who applied various models to estimate spatial runoff patterns across
Tanzanian catchments. Additionally, the coefficients are compared with local studies by Kibugu et al.
(2022) and Igulu and Mshiu (2020), which offer valuable insights into the region’s specific runoff dynam-
ics. The quantitative results for the Msimbazi river catchment runoff are presented in Table 5.5.

Table 5.4: Runoff coefficients (Igulu & Mshiu, 2020; Kibugu et al., 2022; Mdee, 2015; Mkilima, 2021;
Ohio Department of Transportation, 2020)

Landcover Slope

0-2% 2-10% >10%

Built-up area 0.90 0.90 0.90

Forest 0.10 0.15 0.20

Bushland 0.25 0.30 0.35

Grassland 0.50 0.50 0.50

Bare land 0.55 0.60 0.65

As shown in Table 5.5, both the total catchment runoff potential and the mean runoff potential increased
between 2000 and 2010. A similar increase is observed when comparing 2020 with 2021, though it
is less pronounced due to the shorter time span, while the 2000–2010 period covers a decade, the
2020–2021 comparison spans only one year.

Table 5.5: Runoff potential of the catchment

Year Total catchment runoff potential Mean runoff potential per m2

2000 0.42 0.00045

2010 0.69 0.00073

2020 0.53 0.0062

2021 0.55 0.0064

Interestingly, when comparing 2010 with 2020 (also a 10-year period), a decrease in both the total and
mean runoff potential is observed. However, this result is misleading due to differences in data sources
and resolution between 2010 and 2020, as previously discussed.
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To verify whether the observed changes in runoff potential over the entire catchment are statistically
significant, a KS-significance test is performed. Specifically, we compare the collection of runoff po-
tential values per pixel in the runoff maps for the entire catchment, where each pixel is assigned a
runoff coefficient (Figure 5.21). The maps are reclassified to ensure they all share the same resolu-
tion. These collections of runoff potential values are then subjected to statistical testing. The results,
shown in Table 5.8, indicate that the changes are not statistically significant when considering the en-
tire catchment. However, when analyzing individual sub-basins (Figure 5.22), as previously discussed,
significant differences are observed between the periods.

Table 5.6: KS-significance test for Runoff potential

Compared subsets KS-statistic p-value Significance

2000 vs. 2010 0.4375 0.0563 No

2020 vs. 2021 0.2941 0.4654 No

(a) Runoff 2000 (b) Runoff 2010

(c) Runoff 2020 (d) Runoff 2021

Figure 5.21: Spatial distribution of the runoff potential in the Msimbazi catchment for each 100 m²,
over the years 2000, 2010, 2020, and 2021 (Igulu & Mshiu, 2020; Kibugu et al., 2022; Mdee, 2015;

Mkilima, 2021; Ohio Department of Transportation, 2020).
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Figure 5.22: The Msimbazi river catchment
divided into four sub-basins (van de Sande &

Laboyrie, 2021).

Figure 5.23: Terrain slope distribution [%]
across the Msimbazi River basin (U. NASA &

SERVIR-RCMRD, 2018).

The evaluation of runoff potential across the four sub-basins within the catchment reveals statistically
significant differences when comparing the periods 2000 to 2010 and 2020 to 2021. Specifically, the
collections of runoff potential values per pixel in the runoff maps for each sub-basin are analyzed. The
results for runoff potential and significance tests are presented in Tables 5.7 and 5.8, respectively.

Between 2000 and 2010, substantial increases in average runoff potential are observed in the Upper
Basin (UB), Upper Middle Basin (UMB), and Lower Middle Basin (LMB), see Figure 5.22 for the dis-
tinction of these sub-basins. The UB increased from 0.16 to 0.30, while the UMB rose from 0.31 to
0.78. The LMB exhibited a more moderate increase from 0.73 to 0.86. In contrast, the Lower Basin
(LB) remained stable at 0.89, indicating that its runoff potential had likely already reached a maximum.
These patterns are mirrored in the values expressed per square meter.

Between 2020 and 2021, a consistent increase in runoff potential is evident across most sub-basins.
In the UB, the average runoff potential remained unchanged at 0.41, while in the UMB, it increased
slightly from 0.51 to 0.55. The LMB rose from 0.65 to 0.67, while the LB increased from 0.68 to 0.70.
The smaller magnitudes reflect the shorter one-year interval, whereas greater changes are seen over
the ten-year comparison of 2000-2010.

A spatial gradient is visible from Table 5.7, with the downstream sub-basins (LMB and LB) consistently
exhibiting higher average runoff potential than the upstream sub-basins (UB and UMB). This is consis-
tent with hydrological expectations, as downstream areas generally experience cumulative flow, higher
degrees of development, and lower infiltration capacity (Allan, 2004). Figure 5.21 shows the spatial
distribution of the catchment’s runoff potential.

The Kolmogorov–Smirnov (KS) test confirms statistically significant changes in runoff potential for most
sub-basins. Between 2000 and 2010, UB, UMB, and LMB showed significant distributional changes
(KS = 0.28, 0.38, and 0.098 respectively; p< 10−16), indicating differing runoff distributions over time.
The LB showed no significant change (KS = 0.0038, p = 1), consistent with observed stability. From
2020 to 2021, all sub-basins showed statistically significant changes (KS = 0.014–0.088; p < 10−16).

The observed increases in runoff potential, particularly between 2000 and 2010, suggest that land
use changes, such as urbanization and deforestation, have directly influenced catchment morphology.
These changes, reflected in higher runoff in downstream sub-basins, indicate reduced infiltration and in-
creased surface runoff due to altered landcover. The statistical significance of these shifts supports the
conclusion that land use transformations are driving changes in the catchment’s runoff characteristics.

Due to varying spatial resolutions in the runoff maps, reliably assessing general changes in runoff
potential across the entire catchment from 2000 to 2021 is challenging. However, the Upper Basin
offers a clearer signal, as it is free of built-up areas and represents approximately one third of the total
catchment area. This absence of urban development reduces classification noise caused by mixed
pixels that include both built-up and vegetated landcovers. As a result, the runoff potential in the Upper
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Table 5.7: Average runoff potential and per squared meter for different sub-basins and years.

Year Average Runoff Potential for the Catchment Average Runoff Potential per m²

UB UMB LMB LB UB UMB LMB LB

2000 0.16 0.31 0.73 0.89 0.00018 0.00034 0.00078 0.00095

2010 0.30 0.78 0.86 0.89 0.00032 0.00084 0.00092 0.00096

2020 0.41 0.51 0.65 0.68 0.00044 0.00055 0.00069 0.00074

2021 0.41 0.55 0.67 0.70 0.00044 0.00059 0.00072 0.00075
UB = Upper Basin, UMB = Upper Middle Basin, LMB = Lower Middle Basin, LB = Lower Basin.

Table 5.8: KS-significance test for Runoff potential

Compared subsets KS-statistic p-value Significance

UB (2000 vs. 2010) 0.28 < 10−16 Yes

UMB (2000 vs. 2010) 0.38 < 10−16 Yes

LMB (2000 vs. 2010) 0.098 < 10−16 Yes

LB (2000 vs. 2010) 0.0038 1 No

UB (2020 vs. 2021) 0.014 < 10−16 Yes

UMB (2020 vs. 2021) 0.088 < 10−16 Yes

LMB (2020 vs. 2021) 0.070 < 10−16 Yes

LB (2020 vs. 2021) 0.036 < 10−16 Yes

Basin is less affected by landcover heterogeneity, making it a more reliable proxy for assessing broader
trends within the catchment. Figure 5.24 illustrates how runoff potential in the Upper Basin has evolved
over time.
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Figure 5.24: Runoff potential in the Upper Msimbazi Basin, which covers over one-third of the total
catchment area. The runoff potential gradually increased from 2000 to 2020. Between 2020 and

2021, it appears to stabilize. The short time interval between these points may limit the detection of
meaningful changes. Therefore, this stabilization should be interpreted with caution.

Figure 5.24 shows a gradual increase in runoff potential in the Upper Basin from 2000 to 2020. Be-
tween 2020 and 2021, this increase appears to stabilize. However, this apparent stabilization may be
influenced by the short time interval, only one year, between these two observations, which could re-
duce the sensitivity of the data to capture meaningful changes in average runoff potential. As such, the
observed stabilization should be interpreted with caution, as it may reflect short-term variability rather
than a true change in trend.

5.2.6. River width versus runoff
In Chapter 4, the changes in the width of the Msimbazi River were analyzed (see Figure 4.13). To
better understand runoff as a potential driver of these observed changes, an analysis was conducted
to explore the relationship between runoff potential and river width. This analysis focuses on the Upper
Basin, which, as discussed earlier, provides the most reliable data due to minimal noise from built-up
areas. River width was calculated for the years for which runoff potential is known, allowing for a direct
comparison. Figure 5.25 plots runoff potential on the x-axis and river width on the y-axis, offering insight
into how variations in runoff may influence river width.

As illustrated in Figure 5.25, where both axes are spaced linearly, the relationship between water cover
width and runoff potential follows a non-linear trajectory, showing a slope-break around 2010. Over this
period, the runoff potential in the Upper Basin increases gradually, while the width of the Msimbazi River
in this area expands nonlinearly (showing the slope break). Notably, between 2020 and 2021, a sudden
drop in river width occurs despite no corresponding change in runoff potential. This change in width
occurs without any increase in variability, as the coefficient of variation remains relatively unchanged.
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Figure 5.25: Msimbazi River width in the Upper Basin between 2000 and 2021, plotted against
varying runoff potentials. The graph indicates a gradual increase in water cover width from 2000 to
2010, followed by a noticeable change in slope after 2010. Although the runoff potential remains
constant at 0.41 between 2020 and 2021, the water cover width decreases significantly by nearly 2
meters. This change in width occurs without any increase in variability, as the coefficient of variation

remains relatively unchanged.

This indicates that gradual catchment changes, such as urbanization and deforestation, while con-
tributing to the steady increase in runoff potential, do not fully account for the observed morphological
changes in river width. Therefore, additional drivers must be influencing the river’s dynamics during
this period.

5.2.7. Construction of the Standard Gauge Railway (SGR)
Satellite imagery analysis over time revealed an interesting discovery for the Upper Basin. Large
amounts of exposed sediment emerge in satellite imagery between January 2018 and March 2018,
see Figure 5.26. Given the imminent changes that are found to have occurred in the same timeperiod,
it is reasonable to believe the two events are related.

According to TanzaniaInvest (2024), this project is a key component of Tanzania’s railway network
expansion. The Standard Gauge Railway (SGR) is designed to connect Tanzania from the port of Dar
es Salaam on the Indian Ocean to the port of Mwanza on Lake Victoria in the north, with further links to
Rwanda, Burundi, and the Democratic Republic of the Congo. The first phase of the project involves
constructing the 300 km section between Dar es Salaam and Morogoro, which commenced on April
12, 2017. As part of this phase, excavation work was carried out in the hills near Pugu National Park
(TanzaniaInvest, 2024), as can also be identified in Figure 5.26.
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The fieldwork findings (as described in Appendix D) support this observation. Figure D.6 indicates
that grain sizes do not reach medium to fine fractions, and sediment remains quite angular along a
significant stretch of the river. While sorting improves downstream, the lowest observed locations
exhibit poor sorting, likely due to ongoing excavation activities exposing deeper soil layers. These
findings suggest that the river has experienced a substantial sediment load.

(a) Upper Mismbazi Basin in January 2018

(b) Upper Msimbazi Basin in March 2018

Figure 5.26: SGR construction

Analysis of satellite images from both the SGR construction and the river suggests that the observed
sediment flux may be linked to the railway project, as the timing aligns precisely. Additionally, field-
work observations revealed that the riverbanks exhibited steep profiles well before the first settlements
appeared along the river. This rules out increased runoff from urbanization as the sole driver of bank
erosion.

Several factors could contribute to bank steepening upstream of urban areas, such as tributary inflows
or increased runoff from deforestation. However, the SGR construction may have also played a role.
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The project not only exposed large amounts of sediment but also introduced an elevated, dam-like
structure in the Upper Basin (see Figure 5.27), which could alter the basin’s hydrology. Although no
definitive evidence currently supports this, a hydrological assessment of the Upper Basin is recom-
mended to assess the potential influence of the SGR on water flow and sediment dynamics.

Figure 5.27: SGR near Pugu Hills on 20 February 2025, showing protected riverbanks and an
elevated, dam-like structure. A railway viaduct connects the hill on the left to the raised dam-like

structure on the right.

According to ERM (2019), the environmental assessment reveals that extensive land clearance and
excavation during the SGR construction exposed significant sediment. While erosion control measures
were implemented, these focused primarily on surface erosion, with limited attention given to the impact
on river sedimentation. Stockpiled soil was regulated to minimize erosion, but no provisions were made
to assess its effect on sediment influx into the river (ERM, 2019).

While the project adhered to the 60-meter buffer zone regulations around rivers, streams, and water
bodies, construction activities within the broader catchment likely altered hydrology. The railway em-
bankment, for instance, could have influenced surface runoff patterns, contributing to localized erosion
(ERM, 2019).

Therefore, a hydrological assessment is recommended to better understand the extent of sedimentation
impacts and potential changes in riverbank stability due to the SGR project.

Considering the current state of the upstream basin, with protected riverbanks and replanted vegetation,
it is likely that future sudden sediment fluxes will not occur due to exposed sediment.
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Hotspot maps

This chapter evaluates where the Msimbazi River system is most vulnerable. By identifying locations
with very high vulnerability, it provides guidance for future mitigation strategies and highlights where
interventions are urgent. Accordingly, this chapter addresses the third research question: Where are
the critical erosion hotspots along the Msimbazi River?

As previously mentioned (Chapter 2), vulnerability hotspots are identified based on the combination of
hazard in terms of severity and exposure in terms of susceptibility. As shown in Chapter 4, the Msimbazi
River system is subject to two types of changes that pose risks to those within the exposed area. The
first hazard is river migration, and the second is river widening.

Exposure is considered the same for both hazards, as it simply represents what lies within the river’s
exposed area. In this study, exposure is defined as a distance-based metric (see Figure 2.4). Elevation
was excluded from the analysis because erosion can undermine high riverbanks regardless of their
height, making elevation a poor indicator of erosion vulnerability in this alluvial setting (Van Camp et al.,
2014). Figure 6.1 presents the exposure map of the Msimbazi River.

6.1. River migration hotspots
When river migration is considered as a hazard, it is important to distinguish between two temporal
scales: long-term, gradual changes within the system, and short-term, rapid responses to events oc-
curring within the catchment. These two rates are calculated over different periods to assess the mi-
gration hazard in both contexts, as shown in Figure 6.2. The long-term hazard is assessed for the
period 2007–2024, reflecting the gradual shifts in migration, while the short-term hazard is assessed
for 2020–2024, focusing on more immediate responses to events such as extreme precipitation. This
distinction is critical because, as shown in previous cases, the river can respond abruptly to such events
(Izdori et al., 2022; Kazi, 2019; UNDRR, 2018), which is why evaluating vulnerability in response to
short-term migration is necessary. Additionally, the temporal extent used to assess migration rates
and width changes influences the interpretation of results. Shorter time periods tend to highlight more
extreme values, as these are less likely to be averaged out, unlike in longer time frames (Eggert et al.,
2015). For each type of hazard, a corresponding hotspot map has been developed.

With the exposure, the hazard (long- and short-term), and the vulnerability equation (Equation 2.2), the
hotspot maps are created. Figure 6.4 shows the long-term (2007–2024) river migration hotspot map,
and Figure 6.5 shows the short-term (2020–2024) map. In these maps, hotspots are indicated in red,
corresponding to areas with very high vulnerability. More detailed images are given in Appendix H.

Discrepancies between the river centerline and the satellite imagery are due to differing acquisition
dates: the satellite image is from July 2023, while the centerline is from May 2024. Due to ArcGIS
limitations, updating the satellite image is not possible. The centerline was extracted from Sentinel
imagery with a 10 × 10 meter resolution, introducing a positional uncertainty of about 7 meters (see
Appendix C).

64
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(a) Overview of the exposure map

(b) Detailed view of the exposure map

Figure 6.1: Exposure analysis of the Msimbazi River. (a) Overview map showing exposure, based on
building footprint data (Nyalusi et al., 2025) and infrastructure data (Humanitarian OpenStreetMap

Team (HOT) & OpenStreetMap contributors, 2025), within a 500-meter buffer on either side of the river.
(b) Detailed view highlighting a specific section within the Lower Middle Basin of the exposure map.
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(a) Long-term hazard (River migration rates between 2007 and 2024)

(b) Short-term hazard (River migration rates between 2020 and 2024)

Figure 6.2: Mimbazi river Long- and short-term hazard (River migration)
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As described in the methodology, the classification of migration rates into severity levels is based on
the Natural Breaks (Jenks) method, which groups similar values to highlight meaningful differences in
river behavior (de Smith et al., 2018). As a result, the identified hotspots should always be interpreted
in relation to the actual severity values. In river systems with generally low migration rates, some areas
may still be classified as hotspots, even if the absolute migration rates are relatively minor. Therefore,
the classification should always be cross-checked with the underlying severity values to understand
the level of vulnerability in absolute terms.

Given that migration rate is used as a proxy for hazard, the distribution of long-term migration rates is
shown in Figure 6.3a. To classify these rates into categories ranging from very low severity to very high
severity, the Natural Breaks (Jenks) method, described by de Smith et al. (2018), is applied. To ensure
consistency and comparability between hotspot maps based of long-term and short-term migration
rates, the class breaks derived from the long-term data are also applied to the short-term migration
rates (Figure 6.3b).

In the case of the Msimbazi River, the highest severity class corresponds to migration rates ranging
between 12 and 18 meters per year. This is equivalent to approximately 30–50% of the local river width.
According to the rule of thumb proposed by Langhorst and Pavelsky (2023), rivers typically migrate at a
rate of 0.1–2% of their width, which, for the Msimbazi River, would correspond to a rate of approximately
0.05–1 meter per year.

A comparison between the hotspot map subject to the long-term hazard (Figure 6.4) and the hotspot
map subject to the short-term hazard (Figure 6.5) reveals a greater number of very high vulnerability
hotspots in the map resulting from short-term migration. In the map resulting from long-term migration,
areas with very high vulnerability are primarily concentrated in the Upper Middle Basin. By contrast,
the Lower Middle and Lower Basins are predominantly classified as having high, rather than very high,
vulnerability. These patterns are consistent with the findings presented in Chapter 4, which identified
the Upper Middle Basin as showing the highest rates of migration, thereby representing a significant
hazard. The higher number of hotspots observed in the map for the short-term hazard is likely due
to two main factors. First, the increased migration rates recorded between 2023 and 2024, which
coincide with the El Niño phase and Cyclone Hidaya. Second, short-term rates are averaged over a
shorter time period, making them more sensitive to recent changes (Eggert et al., 2015; Pannone &
Vincenzo, 2022).

Closer inspection of the hotspot map based on the long-term hazard reveals evidence of past mean-
dering. This is indicated by the May 2024 riverline intersecting built-up areas that are visible in the
underlying satellite imagery from July 2023, as shown in Figure 6.6. This spatial mismatch suggests
that the river has already migrated through previously developed land. The resulting changes have
likely increased the vulnerability of exposed buildings and infrastructure. This is evident from the clas-
sification of inland structures, previously farther from the river, as now being within zones of very high
vulnerability.

Several locations in the Lower Middle and Lower Basins that were classified as high vulnerability in
the hotspot map subject to the long-term migration have been reclassified as very high vulnerability in
the short-term analysis. This is due to a increase in severity of the hazard for the short-term period
(Pannone & Vincenzo, 2022). The hotspots in the Upper Middle Basin remain largely consistent across
both time periods.

As the hotspot map is derived from historical migration data, it effectively serves as a hindcast of vul-
nerability hotspots. As illustrated in Figure 6.6a, a cutoff has already occurred at this location, likely
resulting from chute channeling processes (Pannone & Vincenzo, 2022). Despite the fact that geo-
morphological changes have already taken place in certain areas, the hotspot mapping remains highly
relevant for forecasting purposes for two key reasons. First, many of the identified hotspots are char-
acterized by gradual, progressive riverbank migration, which increasingly increases the vulnerability of
adjacent infrastructure and buildings. This increased vulnerability as a result of the gradual catchment
changes is dangerous if singular events, like extreme precipitation, occur. Without the implementa-
tion of mitigation strategies, these exposed objects remain at significant vulnerability. Second, the
Msimbazi River shows dynamic behavior, suggesting that morphological adjustments such as cutoff
formation and channel reactivation can recur at previously active locations. This behavior, often in-
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volving the reoccupation of former meander bends or migration corridors, is well-documented in fluvial
geomorphology. For example, Hooke (2003) provides evidence from long-term studies of meandering
rivers that show old meander loops and abandoned channels can be reactivated under changing flow
or sediment conditions (Hooke, 2003).

Figure 6.6b provides an example of a meander bend migrating toward a built-up area. The hotspot
map clearly indicates that the nearby structures are vulnerable to ongoing and future erosion. Figure
6.7 shows that the identified hotspots align with locations that were observed as vulnerable during field
visits.

In conclusion, river migration hotspots are consistently identified in the Upper and Upper Middle Basins
in maps resulting from long-term and short-term hazards. In contrast, the Lower and Lower Middle
Basins show hotspots only in the short-term analysis. Although these hotspots are identified through
a hindcast, they remain highly relevant for future forecasts, as they indicate areas with persistent or
emerging vulnerability.
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(a) Long-term (2007–2024) migration rate classifications.

(b) Short-term (2020–2024) migration rate classifications.

Figure 6.3: Histograms of river migration rates classified by Natural Breaks (Jenks) (de Smith et al.,
2018). The severity of migration increases from left to right in both graphs. Short-term migration rates
are classified according to breaks in long-term migration rate data to facilitate comparability between

the two hotspot maps.
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(a) Instance of a Cut-off in the Upper Middle Basin, which has already appeared.

(b) Detailed view of a meander bend in the Lower Middle Basin

Figure 6.6: Detailed views on the hotspot map as a result of long-term (2007-2024) river migration.
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(a) The identified long-term (2007-2024) migration rate hotspot in the Upper Middle Basin

(b) Photo taken in the Upper Middle Basin at the exact location shown in figure 6.7a, during a field
visit. The image shows the southern bank, where houses are located close to a steep riverbank. A
manually constructed reinforcement is visible in the foreground, built out of loose white sand to

protect against erosion.

Figure 6.7: Validation of identified long-term (2007-2024) migration hotspot location using field
observations. The hotspot identified in the southern section corresponds to exposed houses

observed during field visits, as shown in the accompanying photographs.
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6.2. River widening hotspots
Besides river migration river widening also poses a hazard to the objects within the exposed area as
described in Chapter 4. Now, the rate of change of the river width is used as the metric for the hazard
in terms of severity. Once again, the hazard is determined based on long-term (2007-2024) and short-
term (2020-2024) widening rates. Obviously, river narrowing (corresponding to rates of change below
1) are considered as hazards with very low severity as they do not pose a risk for the exposed objects.
Figure 6.9 shows the hazard of widening in terms of severity.

As with the analysis on the vulnerability of river migration rates, the interpretation of river widening
vulnerability is closely tied to the internal dynamics of the Msimbazi River system. Widening rates are
classified based on their distribution within the study area using Natural Breaks (Jenks) (de Smith et al.,
2018), which allows for the identification of zones that are experiencing relatively severe widening in
the local context. Once again, the breaks computed for the long term changes are also applied to the
short term changes to improve comparability between the hotspot maps. See Figure 6.8.

This relative classification means that some areas may be identified as hotspots even if the absolute
rates of widening are not extreme given the local context. To accurately assess the degree of exposure
and potential vulnerability, it is therefore important to consider the actual widening values alongside the
hotspot classification.

It can be seen from Figures 6.8 and 6.9 that the short-term hazard is more severe compared to the
long-term hazard.

The hotspot maps for river widening are presented in Figures 6.10 and 6.11. See Appendix H for more
detailed images. The hotspot map subject to long-term (2007–2024) widening shows that nearly all
buildings and infrastructure within 100 meters of the river are classified as highly vulnerable. Areas of
very high vulnerability are relatively rare; however, where they do occur, they are predominantly situated
on the left side of the river. This spatial pattern aligns with the observed net tendency of the river to
migrate leftward, as was discovered in Chapter 4. Furthermore, the Upper Basin and Upper Middle
Basin generally show the highest levels of vulnerability, suggesting that these reaches are particularly
dynamic and pose a greater vulnerability to exposed objects.

The increased rates of widening observed during the short-term period (2020–2024) clearly indicate
that objects located within 0–300 meters of the river, corresponding to zones of moderate to very high
susceptibility, are now frequently classified as highly vulnerable (Figure 6.11). In contrast to the long-
term pattern, these highly vulnerable areas are now distributed along the entire length of the river, rather
than being concentrated primarily in the Upper- and Upper Middle Basins. Additionally, areas of very
high vulnerability are no longer confined to one side; they now appear more evenly distributed between
the left and right banks of the river.

Figure 6.12 shows how two locations, one in the Lower Middle Basin and one in the Upper Middle Basin
are influenced by the width changes of the Msimbazi river. Figure 6.13 validates that the identified
widening hotspots correspond to areas that are indeed vulnerable, as confirmed by field observations.

To conclude, long-term width changes primarily affect objects located within 100 meters of the river,
with high vulnerability concentrated in the Upper and Upper Middle Basins. Areas classified as very
highly vulnerable are predominantly situated on the left side of the river. In contrast, short-term width
changes reveal very high vulnerability on both sides of the river. In this case, highly vulnerable objects
are generally located within 300 meters of the river, a pattern observed consistently across all sub-
basins. However, as width was estimated based on water cover, some of these patterns may reflect
short-term fluctuations in surface water rather than truemorphological change (Hooke, 2003; Leopold et
al., 1995). A more accurate delineation of channel banks over time would allow for a better assessment
of actual erosion dynamics and hazard.
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(a) Long-term width change rates (2007–2024).

(b) Short-term width change rates (2020–2024).

Figure 6.8: Histograms of river width change rates classified by Natural Breaks (Jenks) (de Smith
et al., 2018). The severity of width changes increases from left to right in both graphs.
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(a) Long-term hazard (River widening rates between 2007 and 2024)

(b) Short-term hazard (River widening rates between 2020 and 2024)

Figure 6.9: Mimbazi river long- and short-term hazard (River widening)
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(a) Detailed view on short-term (2020-2024) river widening severity and catchment vulnerability in the
Lower Middle Basin.

(b) Detailed view on long-term (2007-2024) river widening severity and catchment vulnerability in the
Upper Middle Basin.

Figure 6.12: Detailed views on vulnerability in the Lower Middle Basin and Upper Middle Basin as a
result of the short-term (2020-2024) widening.
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(a) Hotspot location in the Upper Middle Basin, showing houses close to a steep southern riverbank.

(b) Close-up showing early signs of failure in the installed gabions at the same location.

Figure 6.13: Validation of identified long-term (2007–2024) widening hotspot location using field
observations. The hotspot in the northern section corresponds to exposed houses observed during
field visits, as shown in subfiure (a). Subfigure (b) shows that even recently installed gabions (also
visible on the left of subfigure (a)) are already beginning to fail, indicating ongoing erosion risk.
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Discussion

This chapter reflects on the key findings of this study and their broader implications for understand-
ing river morphodynamics in rapidly urbanizing environments. Between 2007 and 2024, the Msimbazi
River experienced substantial channel widening and increased lateral migration. These changes were
spatially and temporally variable, driven by both long-term and sudden factors. Long-term influences,
such as increased runoff potential due to deforestation in the upper catchment and ongoing urban ex-
pansion, likely contributed to gradual morphodynamic shifts. In contrast, abrupt drivers such as the
construction of the Standard Gauge Railway (SGR) around 2017–2018, the 2023–2024 El Niño phase,
and Cyclone Hidaya triggered rapid, event-based morphological changes. This is evident from the
”Runoff versus Width” analysis. These event-based changes include sedimentation and bank steepen-
ing, which were further confirmed by field observations. Furthermore, the hotspot map produced for
Dar es Salaam highlights how the intersection of morphodynamic hazards, such as river migration and
channel widening, with urban exposure results in spatial patterns of vulnerability.

The results of this study reveal several important implications for how the Msimbazi River may respond
to future climate change. The increasing runoff potential, caused by deforestation and urbanization,
has been quantitatively shown in this study to influence gradual changes in the river system. Histori-
cal events such as Cyclone Hidaya demonstrate that the river is already sensitive to extreme weather
conditions, as such events have triggered sudden and significant changes in river morphology. In
the absence of mitigation strategies targeting river migration and widening, it is reasonable to expect
that the catchment’s vulnerability will increase under worsening climate scenarios. Field observations
suggest erosion in the upstream areas and sedimentation downstream, which may explain the recur-
ring flood events in the lower parts of the basin (World Bank Group, 2024). These patterns highlight
that particularly the Upper Basin and Upper Middle Basin are most vulnerable to future morphological
changes, as confirmed by the quantitative results of this study. Regarding infrastructure, the construc-
tion of the SGR has clearly changed the Upper Basin, introducing a dam-like structure. However, no
hydrological impact assessment of this intervention was performed, and while field observations sug-
gest reforestation practices may reduce sediment input to the river, the influence of the SGR on flow
dynamics and sedimentation remains an open question for future research. Given the ongoing land-
cover changes and the unpredictability of major storm events, it is essential to continuously update the
hotspot map developed in this study. This will ensure that it remains a vital tool for urban planning
and mitigation strategies, particularly as human interventions such as urbanization and deforestation
continue to influence river dynamics.

Despite the valuable insights provided by this study, several limitations need to be considered when
interpreting the results. First, the methodology addresses the spatial variability of the river, as deter-
mining the river’s position over time is a fundamental step in analyzing river migration. In this study,
this was achieved by manually delineating the riverbanks from satellite imagery and deriving the cen-
terline as the midpoint between them. Although automated detection methods using MNDWI, NDWI,
or SAR are commonly used for wider rivers (Xia et al., 2021), the relatively narrow width of the Msim-
bazi River, ranging from 4–15 meters in the early 2000’s to 30–70 meters in recent years, makes such
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methods unreliable due to the limited spatial resolution of available imagery (10–30 m). Consequently,
riverbank delineation was performed manually based on visual interpretation of satellite images. The
resulting centerline was derived from these banklines, with uncertainty in its position quantified using
error propagation principles (Ku, 1966).

While this manual approach enabled the tracking of channel migration and width changes, it also intro-
duces a degree of positional uncertainty due to the image resolutions that may affect the precision of
the results. Should future advancements in remote sensing improve the applicability of automated tech-
niques for narrow rivers, a re-delineation using high-resolution methods is recommended. This would
not only reduce the risk of bias from manual interpretation but also shift the focus from the centerline to
the riverbanks. This approach is more directly useful for risk assessment, because riverbank erosion,
rather than shifts in the centerline, poses the real threat to nearby buildings and infrastructure.

Similarly, the analysis of width changes would benefit from this refinement. In this study, river width
was approximated using the water cover width derived from satellite imagery. However, water cover
can fluctuate within a stable channel without implying morphological change (Hooke, 2003; Leopold et
al., 1995). Seasonality was minimized by excluding imagery within the Time of Concentration, and by
applying both temporal and spatial averaging to river width measurements. However, a more precise
delineation of riverbanks over time would allow for direct measurement of true channel widening or
narrowing, thereby offering a more accurate representation of erosion dynamics and potential hazard.

Given the centerline positions in time, the use of the Digital Shoreline Analysis System (DSAS) was
used to calculate migration rates. The methodology involves the creation of transects along the river,
with a smoothing distance applied to each transect. The smoothing distance of 500meters (correspond-
ing to approximately 10 times the river width in recent years) is applied to prevent overlap between
transects when the baseline curves, ensuring that the transects are more evenly spaced and oriented
across the river (Himmelstoss et al., 2021). However, this smoothing distance causes the migration
rates to be calculated at an angle that is as close as possible to 90 degrees to the centerline, rather
than perfectly perpendicular. This adjustment helps to prevent transect overlap, but it may introduce
slight deviations from the true migration rates.

The study on the Msimbazi River’s morphodynamic drivers faces several limitations that impact the
accuracy of its findings. One key limitation is the absence of discharge data, which restricts the ability
to directly link precipitation and landcover changes to river flow, thus introducing uncertainty in under-
standing their influence on the river’s morphology. Furthermore, the reliance on Global Precipitation
Measurement (GPM) data, with its coarse spatial resolution, may not fully capture localized precipita-
tion variations within the catchment. This could lead to potential errors when assessing the influence of
precipitation on river dynamics (Huffman et al., 2014; NASA, 2025). Despite these limitations, research
by Leopold et al. (1995) and Rosgen (1996) has shown that bankfull discharge, corresponding to a 2-
year precipitation event, is most capable of driving changes in river morphology. Therefore, variability
in precipitation events smaller than the 2-year event has a less significant impact. Additionally, the
long-term precipitation trends focused on in this research are less affected by daily variability.

The development of erosion hotspot maps in this study assesses vulnerability along the Msimbazi
River by combining hazard severity (for both river migration and widening) with exposure, defined as
the susceptibility of nearby infrastructure (Climate Investment Funds, 2023; Dilley et al., 2005; Stone
et al., 2011; Tha et al., 2022). Buildings and infrastructure were chosen as the focus for exposure
mapping due to the river’s densely populated catchment area, allowing for more targeted vulnerability
assessments compared to broader methods based on landcover or population density.

Rather than directly assessing risk, the research focuses on vulnerability, using hazard severity and the
susceptibility of exposed objects as proxies. However, incorporating potential consequences, such as
economic losses or property damage, could provide a more detailed assessment and further enhance
the research. The assumption that consequences are uniform across all observed objects may oversim-
plify the actual impacts. As Turner et al. (2003) points out, vulnerability also depends on sensitivity and
resilience, factors that were not included in this study due to data limitations. Future research should
incorporate these dimensions to provide a more comprehensive understanding of the vulnerabilities
and risks faced by communities along the river, rather than focusing solely on their vulnerability.

The results presented in Chapter 4 discuss the migration and width changes of the river, averaged
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across the entire basin or specific sub-basins (Upper Basin, Upper Middle Basin, Lower Middle Basin,
and Lower Basin). According to Hooke (2003), rivers primarily meander at specific bends rather than
shifting uniformly across the entire system or sub-basins. As such, averaging migration across these
larger areas offers a broad and simplified understanding of the river’s dynamics but fails to capture the
localized movements of individual river bends (Wibig et al., 2014).

In contrast, the centerline position and water cover width data is collected at 15-meter intervals, analyz-
ing historical movement patterns, and providing a more precise and detailed perspective on the river’s
dynamics. This approach ensures that, despite the broader analysis of migration and width changes
at the sub-basin or basin level, the underlying data remains detailed and accurate. Furthermore, the
use of future high-resolution data that reflects historical movements will offer an even more accurate
representation of the river’s behavior, capturing finer details and enabling a deeper, more localized
understanding of the river’s movement.

The temporal extent used to assess migration rates and width changes also plays a critical role in inter-
preting the results. Shorter time periods tend to highlight more extreme values because the extremes
are less likely to be averaged out, unlike in longer time frames (Eggert et al., 2015).

An alternative explanation for the lower migration rates observed over the long-term timeframe (as
provided in Table 4.3) could be the increased frequency of satellite imagery available after 2017. With
satellite images becoming available monthly instead of annually, this higher frequency may introduce
greater variability in the delineated position of the river’s centerline. However, it is important to note that
the DSAS tool, which was used to compute the migration rates, accounts for the time interval when
calculating these rates, thus minimizing the impact of such variability on the results (see Appendix
E). Nevertheless, this variability may still influence the results for river widening. Additionally, future
research could incorporate field measurements of river width collected over multiple months in different
years, which would provide further verification of any widening or narrowing trends observed in the
satellite data.

Furthermore, while gradual changes in migration rates and river width are visible throughout the entire
study period, the results reveal a clear deviation from this trend between 2017–2019 and 2023–2024.
This indicates that the river’s dynamics are not solely shaped by long-term processes. As discussed
in Chapter 5, precipitation has remained relatively stable, while landcover change has gradually in-
creased runoff potential. However, these changes alone do not fully account for the observed shifts.
The pronounced changes during the 2017-2019 and 2023-2024 periods indicate the influence of addi-
tional factors, including extreme rainfall events and human interventions such as the construction of the
Standard Gauge Railway (SGR). These findings highlight the importance of considering both climatic
variability and anthropogenic impacts when interpreting river morphodynamics.

Chapter 5 begins by evaluating the potential climatic impacts on river morphological changes, focus-
ing on factors such as annual total precipitation, maximum precipitation, precipitation durations, and
observed anomalies in precipitation rates. The discussion regarding the effects of averaging extremes
over the observed temporal extent, as mentioned by Eggert et al. (2015), is also relevant to the ob-
served subsets of the precipitation data. The results suggest no significant changes in precipitation,
and therefore, no detectable influence on river morphology. However, in the precipitation anomaly anal-
ysis, statistical significance is observed when comparing the pre- and post-2018 periods. Although it
is assumed that these changes are negligible due to the large standard deviation, which is likely dom-
inant, the change in anomalies does suggest that precipitation could be a potential driver of change.
The post-2018 subset used in this analysis includes the El Niño phase and Cyclone Hidaya, which
elongated the wet season and may help explain the statistically significant shift in precipitation patterns
(Erickson & Reiter, 2024; Evarister, 2023; Igini, 2024; World Meteorological Organization, 2023).

In addition to precipitation, landcover changes are considered as a potential driver of the observed
morphological changes. A connection is made between landcover changes and their influence on runoff
potential. The runoff coefficients used to establish this connection are estimated based on existing
literature rather than directly delineated using methods such as the curve number approach. While
these estimates were thoroughly cross-examined for the local context, they remain less precise. In
addition to the challenges posed by data scarcity and variations in data resolution, this study focuses
on catchment-level changes, where a broad understanding of how runoff potential evolves over time
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provides sufficient insight. However, it is recommended that future research more accurately delineate
runoff potential, especially if discharge data remain unavailable, as runoff is shown to be one of the
main drivers of the river’s morphological changes (Tang & Lettenmaier, 2012).

Given the results of comparisons between river width and runoff changes over time, it is hypothesized
that other drivers, such as the construction of the Standard Gauge Railway (SGR), may also contribute
to the observed changes. It has been noted that since the initiation of the SGR construction, there
seems to have been a change in sediment influx to the river. Furthermore, the SGR appears to act
as a dam-like structure in the Upper Basin, potentially altering the hydrological flow path. To more
accurately assess the impact of these changes, it is recommended to develop a hydrological model.
While the hypothesis that the SGR has influenced river dynamics is supported by the elimination of
other potential drivers, the direct connection between the SGR and the observed increases in river
widening and migration rates remains unproven. Therefore, the conclusion that the SGR has had a
significant impact on river behavior should be viewed as preliminary until further evidence is obtained.

Chapter 6 presents hotspot maps for both river migration and river widening as hazards. To enable
meaningful comparisons, the severity of the hazard are determined based on long-term (2007-2024)
changes in migration and widening rates. The same boundaries for the classification of severity are
applied to short-term (2020-2024) changes. It is likely that long-term changes are overestimated, as
extreme values tend to be averaged out in long-term trends (Eggert et al., 2015).

A potential limitation of the vulnerability mapping is the assumption of uniform floodplain material. Areas
with high clay content, such as old oxbow lake deposits, can limit or prevent river migration in certain
directions, which is not captured in this study. This heterogeneity may lead to an overestimation of
vulnerability hotspots, as zones with more cohesive, erosion-resistant soils may be less vulnerable
despite their proximity to the river (Güneralp & Rhoads, 2011). Another simplification is the exclusion
of elevation as a factor in assessing susceptibility. While elevation might intuitively seem protective,
field observations have shown that even buildings situated over 12 meters above the river channel can
be undermined due to toe erosion and planar collapse. Therefore, distance to the river was considered
amore reliable proxy for susceptibility in this context. Incorporating detailed soil composition data, could
enhance the accuracy of vulnerability assessments, particularly in areas with significant variability in
floodplain material.

The hotspots are identified based on local migration and widening rates, rather than global standards,
ensuring they reflect areas of highest vulnerability within the Msimbazi River system. This prevents the
entire system from being labeled a hotspot due to the river’s dynamic nature.

However, focusing solely on the local context when identifying hotspots introduces limitations in assess-
ing the overall vulnerability of the river system. For instance, areas identified as moderately vulnerable
may still be at risk due to migration rates that are considered high according to global standards (e.g.,
a rate exceeding 2% of the river width per year, as indicated by (Langhorst & Pavelsky, 2023); in our
study, for example, 6m/yr exceeds this 2% rule of thumb). Given that the system shows even higher
migration rates, this specific 6m/yr rate is considered moderately severe. Comparing the hotspot maps
presented in Chapter 6 with those that evaluate hotspots based on global standards for the severity of
migration or widening rates would provide valuable insights, offering a broader perspective on vulner-
ability and helping with a more comprehensive risk assessment.

This research provides a practical method for tracking and understanding themovement of narrow rivers
and their drivers in data-scarce regions. It enables the identification of erosion and migration hotspots
in densely populated catchments, offering valuable insights for risk management. The results reveal
that gradual change, combined with sudden events, creates significant vulnerability for communities
along the river. The Msimbazi case clearly demonstrates the hazards of unregulated development and
highlights the need for coordinated landscape management to reduce exposure to climate-related and
environmental hazards.

In conclusion, this chapter has examined the methodology, limitations, and key findings of the study,
showing both the strengths and challenges in understanding the Msimbazi River’s morphodynamics
and associated vulnerability. The manual delineation of riverbanks, while necessary given the reso-
lution limitations of satellite imagery, introduced some uncertainty in determining the river’s centerline
and width changes, which could be mitigated by advancements in remote sensing techniques. Despite
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this, the approach allowed for a detailed analysis of river migration and widening, providing valuable
insights into the river’s behavior. The application of the DSAS tool was effective in calculating migra-
tion rates, though slight deviations due to the smoothing distance were acknowledged. The absence
of discharge data posed a significant challenge in linking precipitation and landcover changes to mor-
phodynamic changes of the river, with the reliance on GPM data further complicating the analysis of
localized precipitation effects. Nonetheless, long-term trends suggest that precipitation variability may
not significantly affect the river’s morphology, while landcover changes and other factors, such as the
SGR, likely play an important role in shaping the river’s dynamics. The hotspot maps presented in this
study, derived from local migration and widening rates, offer valuable insights into the most vulnerable
areas of the river system. However, the methodology may underestimate the vulnerability of certain
locations due to the local context approach, which may overlook globally recognized standards for haz-
ardous migration or widening rates. By comparing these maps with those based on global standards,
a more comprehensive understanding of the river’s vulnerability could be achieved. Finally, while the
limitations of the current study are acknowledged, the results provide a strong foundation for future re-
search, particularly in refining data resolution, incorporating discharge data, and exploring the potential
impacts of man-made interventions like the SGR on the river’s morphology.
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Conclusion

The study answers the three research questions introduced in Chapter 1. The first of these is: How is
the Msimbazi River evolving in terms of channel migration and morphological changes?

One key aspect of this evolution is the shifting position of the river’s centerline. From 2007 to 2024, the
Msimbazi River showed an overall stable migration pattern, stressed by short-term dynamic episodes.
The centerline shifted both leftward and rightward, with a slight tendency towards leftward movement,
indicating greater erosion on that side. Migration rates varied clearly across space and time, with some
uncertainty due to manual centerline interpretation and varying spatial resolutions.

For sub-periods between 2007 and 2024, the Msimbazi River showed an overall episodic migration
pattern, marked by alternating phases of stability and rapid change. From 2007–2017, migration re-
mained relatively stable, followed by a significant increase between 2017–2019, with basin-wide rates
more than doubling (+136%). These elevated rates persisted in 2019–2021 (+17%), after which mi-
gration sharply declined in 2021–2023 (–56%), before rising again in 2023–2024 (+163%). Spatially,
the Upper Middle Basin (UMB) was consistently the most dynamic, while the Lower Basin remained
relatively stable. The Upper and Lower Middle Basins exhibited episodic peaks in 2017–2019 and
2023–2024.

River width changesmirrored this pattern. The total widening across the basin wasmodest (+5.3%), but
trends differed per sub-basin. The UMB showed the strongest and most consistent widening (+20.8%),
while the Upper Basin experienced marked fluctuations, including a narrowing of nearly 25% in the
most recent period. The Lower Basin remained largely stable, and the Lower Middle Basin fluctuated
around its initial width.

In summary, migration rates and river widths followed a temporal pattern of stable conditions, then a
rise, a period of sustained high values, a decline, and finally a sharp increase. The Upper Middle Basin
was the most dynamic throughout. These fluctuations suggest an interplay of gradual changes and
abrupt, event-driven influences.

The second research question is: What are the key drivers behind the morphodynamic changes occur-
ring in the Msimbazi River?

Precipitation data was analyzed due to the absence of direct discharge measurements for the Msimbazi
River. Four aspects were examined, total precipitation, maximum precipitation, event durations, and
precipitation anomalies, using satellite data from GPM (2000–2024). Across all metrics, no statistically
significant differences were found between key temporal subsets (pre/post 2007 and pre/post 2018).
Consequently, precipitation trends do not appear to explain the observed extreme river migration and
widening. An exception is the increased precipitation linked to the 2023–2024 El Niño phase and
Cyclone Hidaya (May 2024), which may explain the increased channel dynamics observed during that
period.

While changes in precipitation are often considered a driver of river dynamics, this analysis highlights
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that landcover transformations, particularly urbanization and deforestation, play a crucial and likely
dominant role in altering the hydrological and morphological behavior of the Msimbazi River. Between
2000 and 2021, the catchment experienced rapid population growth and extensive urban development,
accompanied by a notable decline in forested areas. These changes have directly impacted runoff
processes by increasing the extent of impervious surfaces, reducing infiltration, and amplifying surface
runoff during rainfall events.

The quantified increase in runoff potential, particularly between 2000 and 2020, aligns with landcover
changes and is statistically significant across multiple sub-basins. In the Upper Basin, which provides
the least disturbed results, the average runoff potential increased by 156% (from 0.16 in 2000 to 0.41
in 2020). Although discrepancies in resolution between datasets limit the comparability of absolute
values over the full study period, the spatial and temporal patterns, especially in the Upper Basin,
provide strong evidence of a systemic shift in runoff dynamics. These hydrological changes are closely
linked to increased river discharge and erosion potential, both of which are known to accelerate river
migration and channel widening, independent of precipitation changes.

In addition to the gradual increase in runoff linked to urbanization and deforestation, this study also
reveals a more complex picture in terms of river behavior. While urbanization and deforestation have
caused a steady increase in discharge, demonstrated by the runoff potential increase, the river itself
does not show only gradual changes in migration or widening. This contradiction leads us to hypothe-
size that other factors may be at play, as illustrated by the ”runoff versus width” analysis. This analysis
shows that, while runoff potential gradually increased between 2000 and 2020, the river width expanded
non-linearly, with a sudden drop in width between 2020 and 2021 despite no change in runoff potential,
suggesting additional drivers influencing the river’s dynamics. Precipitation alone cannot explain the
migration rates and widening observed between 2017 and 2021, as these changes occurred during a
period of relatively stable precipitation patterns. However, it is during the late 2017 and early 2018 pe-
riod that construction of the Standard Gauge Railway (SGR) began, coinciding with increased sediment
deposition in the river. The river’s morphology appears to be reacting to this influx of sediment, which
may exceed its capacity to adapt, leading to the observed accelerated changes in migration and widen-
ing. This hypothesis is based on indirect evidence, consisting mainly of the timing of the observed river
changes following the start of construction, rather than on direct sediment measurements. Although
SGR construction has now been completed, the impacts of the 2023–2024 El Niño phase and Cyclone
Hidaya demonstrate that the river system remains highly sensitive to sudden, extreme events. These
findings highlight that river behavior in rapidly urbanizing catchments like the Msimbazi River is not
only a reflection of natural climatic variability but also a direct response to human-induced landscape
alterations.

Finally, the third research question is: Where are the critical erosion hotspots along theMsimbazi River?

This study defines erosion hotspots as areas of high vulnerability where high levels of the hazard and
exposure coincide. The hazard is defined as either river migration or widening. Exposure is determined
by proximity to the river, specifically not as elevation. Vulnerability is assessed using local rates of
hazardous migration and widening, which may limit direct comparisons with global standards.

Hotspots of river migration are consistently found in the Upper Basin and Upper Middle Basin, where
both long- and short-term migration rates indicate severe morphological activity. In contrast, the Lower
and Lower Middle Basins show fewer hotspots as a result of long-term (2007-2024) migration but show
emerging hotspots as a result of short-term (2020-2024) river migration.

For river widening, the Upper and Upper Middle Basins again stand out in the long-term analysis, with
vulnerability concentrated particularly on the left bank due to the net leftward migration trend. However,
short-term widening has intensified across all sub-basins, leading to hotspots along the full river system,
including previously less affected downstream sections.

This study emphasizes the interplay between climatic changes and landcover transformations in shap-
ing river morphology, particularly in rapidly urbanizing catchments like the Msimbazi River. It shows
that landcover changes alone are capable of driving significant shifts in river dynamics, pointing out
the profound impact of human activities. The first research question revealed that the Msimbazi River
shows dynamic shifts in channel migration, with distinct periods of increased migration rates, especially
from 2017 onward. Regarding the second research question, while precipitation trends alone could not
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explain these changes, urbanization and deforestation were found to play a dominant role in altering
river behavior, with the Standard Gauge Railway construction indicating sediment deposition and likely
accelerating morphological changes. Lastly, the vulnerability assessment identified the Upper and Up-
per Middle Basins as the most vulnerable areas. These findings provide insights into river dynamics in
the Msimbazi river basin and offer a foundation for future management strategies.
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A
Applicability of automated waterbody

detection

To accurately track the river’s position and width, it is essential to detect the waterbody. The boundary
between land and water can then be identified as the riverbank line.

Water detection can be accomplished through various methods. In this research, two Remote Sensing
methods have been evaluated for their applicability. The first method involves the use of the Modified
Normalised Difference Water Index (MNDWI) for better visibility in built-up areas, combined with the
Normalised Difference Water Index (NDWI) for vegetated areas. The second method utilises Synthetic
Aperture Radar (SAR), which has the advantage of being unaffected by cloud cover, thereby ensuring
consistent data availability.

A.1. Applicability of remote sensing
According to Dr. ir. Timmermans (2024), Assistant Professor in Remote Sensing at the Delft University
of Technology, the application of Remote Sensing requires a systematic evaluation of the following
steps.

1. Determine observables, which involves identifying the specific variables to detect. In this research,
the primary observable is the main Msimbazi River. See figure A.1

Figure A.1: Main Msimbazi river and its tributaries.

2. Determine the technical requirements. The technical requirements are as follows:

• Spatial resolution. Spatial resolution refers to the smallest objects or details that a satellite sensor
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can distinguish. In the context of river detection, this determines the level of detail captured on
the ground. A high spatial resolution, such as 10 meters or smaller, is crucial for detecting narrow
rivers or identifying fine-scale features like riverbanks (Frank, 2020). For broader rivers or regional
analyses, medium resolutions, such as 30 meters from Landsat, might suffice (Frank, 2020; Li
et al., 2024). However, low spatial resolutions exceeding 250 meters are typically inadequate
for identifying specific river characteristics but may still serve well for general basin-scale studies
(Hao et al., 2024).

• Spatial extent. Spatial extent represents the total area covered by the satellite imagery. This is
important to ensure the sensor’s coverage aligns with the size of the study area. For a localised
river segment or catchment, sensors with smaller coverage areas are suitable. However, for entire
river basins or transboundary river systems, imagery with broader spatial coverage is required
(Vermote et al., 2016).

• Temporal resolution. Temporal resolution refers to the frequency with which a satellite revisits the
same location on Earth. For rivers subject to dynamic changes, such as seasonal flow variations,
sediment deposition, or flooding, high temporal resolution is vital (Casal, 2022). Satellites like
Sentinel-2, with a revisit time of five days, are well-suited for monitoring rapidly changing condi-
tions. Conversely, for slower, long-term changes, a revisit time of 16 days, as offered by Landsat,
may suffice (Hemati et al., 2021).

• Temporal extent. Temporal extent denotes the time span over which satellite data is available.
This is particularly important for historical analyses or trend studies. For example, if the goal is
to understand past changes in river morphology or flow, data from satellites like Landsat, with
archives dating back to 1972, are invaluable (Hemati et al., 2021). Conversely, for current or
future monitoring, recent missions such as Sentinel-2 provide the necessary data.

• Accuracy. Accuracy refers to how well the satellite data represents real-world conditions. This
includes positional accuracy, which ensures the detected river features align with their actual
geographic locations, and content accuracy, which differentiates between water and surrounding
land (Frank, 2020). For narrow rivers, high spatial resolution is essential to resolve their width
accurately. High accuracy is also critical when detecting riverbanks, as positional errors can
distort analyses of erosion or migration (Duró et al., 2018).

• Timeliness. Timeliness refers to how quickly satellite data becomes available after acquisition.
This is particularly significant in scenarios requiring rapid response, such as during flood events
or extreme rainfall. Near-real-time data availability within hours is crucial for emergency response,
while delays of several days may suffice for long-term research (Wania et al., 2021).

3. Determine the most critical technical requirement, referring to the requirement that imposes the
most significant constraint on the analysis. In this research on the Msimbazi River, spatial resolution is
clearly the main limiting factor.

4. Match with available detection methods. Based on the determined observable(s), technical re-
quirements, and the most critical requirement(s), an appropriate detection method should be selected.
For this research, this selection leads to the MNDWI and NDWI method as well as the SAR method.

A.2. MNDWI & NDWI method
Applying the MNDWI and NDWI methods for water body extraction is conducted using Google Earth
Engine, with the code provided below. Evaluations reveal that spatial resolution is a critical factor. Prior
to 2018, the Msimbazi River reaches a maximum width of approximately 15 meters during extreme
rainfall events, but under typical conditions, it measures around 4 meters wide. With satellite imagery
spatial resolutions ranging from 10 to 30 meters, it becomes impossible to detect the river accurately.
Furthermore, vegetation often obscures parts of the river, making detection even more challenging.

The MNDWI and NDWI methods leverage the reflective properties of water in specific spectral regions.
Using the Normalized Difference Water Index (NDWI) or Modified NDWI (MNDWI), water bodies can
be detected based on differences in reflectance between the Green and Near-Infrared (NIR) bands
or the Green and Short-Wave Infrared (SWIR) bands, respectively (Innoter, 2024). This approach is
particularly suitable for Sentinel-2 imagery (10 m resolution) and Landsat imagery (30 m resolution),
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which provide multi-year coverage and the required spectral bands (Innoter, 2024). The formulas are
defined as follows:

NDWI =
(Green−NIR)

(Green+NIR)
(A.1)

MNDWI =
(Green− SWIR)

(Green+ SWIR)
(A.2)

To reduce work, it is chosen to automate the application of the MNDWI & NDWI method. Below the
code which enables this automation is given. The provided code is written in JavaScript for the Google
Earth Engine (GEE) platform, automating the process of selecting, filtering, processing, and visualizing
satellite imagery. Here’s a detailed breakdown of the script’s functionality:

Setting Criteria and Variables. The code begins by defining a criteria object to filter images based
on a specific date range, cloud cover percentage, and area overlap with the region of interest (AOI).
The start and end dates are extracted from the criteria object, and the AOI is specified as a geometry.

Defining Functions to select the best image:

• filterByOverlap: This function calculates the percentage overlap between an image’s geometry
and the AOI geometry. It computes the intersection of the image and AOI geometries, calculates
their respective areas, and derives the overlap percentage. The overlap percentage is added as
metadata to each image.

• tagLandsat and tagSentinel: These functions tag images with metadata indicating their source
satellite (LANDSAT_X or SENTINEL_2) and ensure the cloud cover value is set (defaulting to -1 if
missing).

• Retrieving Image Collections:

– Landsat Collection: The script merges data from Landsat 4, 5, 7, 8, and 9 collections and
applies the following filters:

* Bounds: Images must intersect the AOI.

* Date: Images must fall within the specified date range.

* Cloud Cover: Images must have less than the specified maximum cloud percentage
and not be null.

Each image is processedwith filterByOverlap to compute overlap percentages and tagLandsat
to assign metadata.

– Sentinel-2 Collection: The Sentinel-2 collection is similarly filtered by AOI, date range, and
cloud cover. Images must also meet a minimum overlap percentage of 50%. Each image is
processed with filterByOverlap and tagSentinel for metadata assignment.

• Combining and Sorting Collections: The Landsat and Sentinel-2 collections are merged into a
single combinedCollection. This collection is sorted by the cloud_cover property in ascending
order to prioritize images with minimal cloud coverage.

• Selecting the Best Image. The first image in the sorted collection (lowest cloud cover) is retrieved.
• addImageToMap: This function visualizes an image based on its source satellite. It selects spe-
cific spectral bands for true-color visualization, calculates their minimum and maximum values,
normalizes the bands, and clips the image to the AOI. Visualization parameters such as color
channels, range, and gamma correction are tailored to each satellite type.

Cloud Masking: The maskClouds function identifies and masks cloud pixels in an image. It differs for
Landsat and Sentinel:

• Landsat, uses the QA_PIXEL band to identify cloud pixels. The cloud bit (4th bit) in this band is
used to generate a binary mask, setting cloud-covered pixels to 0. The cloud pixels are marked
and stored as metadata using image.set('cloudPixels', cloudPixels).
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• Sentinel-2, Utilizes the QA60 band for cloud masking and additionally applies a dynamic cloud
detection using the brightness of visible bands (B2, B3, B4). It combines these two masking
methods to produce a more accurate cloud mask, marking the cloud pixels as metadata similarly.

ShadowMasking: The maskShadows function identifies andmasks shadow pixels in an image. It differs
for Landsat and Sentinel:

• Landsat: It retrieves the cloud pixels from the maskClouds function and uses a focal operation
(focal_max) to identify potential shadow locations within 30 pixels around cloud areas. This is
done to overcome the chance of masking other shadow-like areas that have nothing to do with
a cloud. It applies the QA_PIXEL band’s shadow bit (7th bit) to create a shadow mask, which is
then used to mask shadows. The final mask keeps shadow pixels where shadows are detected
(finalMask).

• Sentinel-2: The process is similar to the Landsat process, it retrieves cloud pixels and identifies
shadow potential using a 30-pixel radius. It uses the SWIR band (B11) for shadow detection and
applies a typical threshold (e.g., less than 2000) to identify shadows. The final mask is created
similarly to the Landsat process, inverting the logic to mask out non-shadow pixels.

Calculating the MNDWI: This is done by the calculateMNDWI function:

• Sentinel-2: The function calculates the MNDWI using the Green (B3) and SWIR1 (B11) bands.
The formula for MNDWI is the normalized difference between the Green and SWIR1 bands (as
given by equation A.2). The resulting index is renamed to 'MNDWI' before being returned.

• Landsat 8 & 9: The function calculates MNDWI using the Green (SR_B3) and SWIR1 (SR_B6 for
Landsat 8 and 9) bands. The normalized difference formula is applied similarly, but using these
different band names specific to Landsat 8 and 9 sensors. The resulting index is also renamed
to 'MNDWI'.

• Landsat 4, 5 & 7: The function uses the same calculation method as for Landsat 8 & 9 but with
different SWIR1 bands (SR_B5 for Landsat 4, 5, and 7). Again, the resulting index is renamed to
'MNDWI'.

Determining the appropriate MNDWI image, the function checks the source metadata of the image
to determine which type it is: If the source starts with 'SENTINEL', it returns the MNDWI for Sentinel-2.
If the source starts with 'LANDSAT_8' or 'LANDSAT_9', it returns the MNDWI for Landsat 8 and 9. For
other types (Landsat 4, 5, 7), it returns the corresponding MNDWI calculation.

Computing the MNDWI:

1. Compute theMNDWI using the appropriate function (calculateMNDWI) on the shadowMaskedImage.
2. Clip the MNDWI image to the area of interest (geometry).
3. Calculate the histogram for MNDWI values within the area of interest using the reduceRegion

method with 100 bins for detailed analysis.
4. Visualize the histogram: A User Interface chart is created to visualize the histogram of MNDWI

values.
5. Adding MNDWI visualization on the map: The mndwiClipped image is added to the map with

specific visualization parameters for Sentinel and Landsat images.

Calculating the NDWI: This is done by the calculateNDWI function:

• Sentinel-2: The function calculates the NDWI using the Green (B3) and NIR (B8) bands. The
formula for NDWI is the normalized difference between the Green and NIR bands (as given by
equation A.1). The resulting index is renamed to 'NDWI' before being returned.

• Landsat 8 & 9: The function calculates NDWI using the Green (SR_B3) and NIR (SR_B5 for
Landsat 8/9 or SR_B4 for older Landsat). The normalized difference formula is applied using
these specific bands. The resulting index is renamed to 'NDWI'.

• Landsat 4, 5 & 7: The function uses the same calculation method as for Landsat 8 & 9 but with
different NIR bands (SR_B4 for Landsat 4, 5, and 7). Again, the resulting index is renamed to
'NDWI'.
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Determining the appropriate NDWI image: The function checks the source metadata of the image
to determine which type it is: If the source starts with 'SENTINEL', it returns the NDWI for Sentinel-2. If
the source starts with 'LANDSAT_8' or 'LANDSAT_9', it returns the NDWI for Landsat 8 and 9. For other
types (Landsat 4, 5, 7), it returns the corresponding NDWI calculation.

Computing the NDWI:

1. Compute the NDWI using the appropriate function (calculateNDWI) on the shadowMaskedImage.
2. Clip the NDWI image to the area of interest (geometry).
3. Calculate the histogram for NDWI values within the area of interest using the reduceRegion

method with 100 bins for detailed analysis.
4. Visualize the histogram: A User Interface chart is created to visualize the histogram of MNDWI

values.
5. Adding MNDWI visualization on the map: The ndwiClipped image is added to the map with

specific visualization parameters for Sentinel and Landsat images.

Otsu Thresholding forWater Body Detection: In order to determine the optimal reflectance threshold
for waterbody detection Otsu Thresholding is applied. This is done by the otsu function, which:

• Takes a histogram’s data dictionary as input.
• Computes the Otsu’s threshold using the between-class variance (BCV) method to find an optimal
threshold for separating water from non-water areas.

• Iterates over potential thresholds to find the one with the maximum BCV, which is most suitable
for water detection.

• The threshold is then constrained to a sensible range for water reflectance (approximately 0 to
0.35). As negative reflectance corresponds to built-up areas.

Compute Thresholds for MNDWI and NDWI: The function otsu is applied to the MNDWI and NDWI
histograms to compute the optimal thresholds for water detection. The calculated thresholds (thresholdMNDWI
and thresholdNDWI) are printed to the console.

Create Binary Water Mask for both MNDWI and NDWI by comparing the respective images with their
calculated thresholds. These masks are updated to only display areas identified as water. The resulting
masks are added to the map with a blue color palette for visualization.

By applying the methodology to the Msimbazi Catchment, it is clear that the river is not sufficiently wide
for detection using current Landsat 4-9 or Sentinel 2 imagery. During 2018, when the river reached its
widest, a few reaches were detectable, but it was not feasible to detect the river in other years. This
limitation obstructs a time-based analysis of river changes. Figures A.2 and A.3 show the output of the
model for June 5th, 2018, with a minimum overlap percentage of 50% and a maximum cloud cover of
10%.

According to the Remote Sensing evaluation framework defined by Timmermans (2024), the MNDWI
and NDWI methods are not suitable for accurately detecting the main Msimbazi river due to the limita-
tions posed by the spatial resolution of available imagery. Figure A.3b showes the Msimbazi detection
quite well, but one should remember that this image is form 2018 when the river was relatively wide.
Also, comparing it with figure A.3a, it can be seen that the Msimbazi is only detected for its middle
reach. When moving further downstream, the river is not detected anymore.

To address the gaps in the waterbody detection (see figure A.3c), the model can be improved by inte-
grating Machine Learning or Supervised Classification techniques such as k-means clustering. These
methods are capable of identifying the linear structure of the river and enabling water body detection
even when reflectance alone is inadequate.
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(a) Masked image, red areas represent the areas that are masked by the cloudMask and
shadowMask functions.

(b) MNDWI Layer

(c) NDWI Layer

Figure A.2: MNDWI & NDWI model output
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(a) Catchment area (red) and the detected waterbodies (dark blue)

(b) Zoomed in MNDWI layer + Detected waterbody (Dark blue)

(c) Example of a gap in waterbody detection, although the linear structure is visible in the
MNDWI layer. (MNDWI + detected water (dark blue)

Figure A.3: Water extraction based on MNDWI & NDWI
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A.3. Sentinel-1 (SAR) image analysis method
This method utilizes Synthetic Aperture Radar (SAR) imagery from the Sentinel-1 satellite to classify
water bodies in a region of interest (ROI). SAR sensors are particularly useful in cloudy regions like the
Msimbazi catchment wheremonsoon season blocks visible satellite images. SARworks by transmitting
radar waves towards the Earth at an off-nadir angle, allowing it to penetrate clouds and provide clear
images of the Earth’s surface even during poor weather conditions. The radar signal bounces back
from the surface and is measured based on the amount of backscatter, which varies depending on
surface roughness. Smooth surfaces like water scatter little radar energy, appearing as dark areas
against more scattering land surfaces. Figure A.4 gives a visualisation of how this works (O’Leary et
al., 2019)

Figure A.4: Schematic of SAR application (O’Leary et al., 2019)

The code contains the following functionalities:

Define the Region of Interest (ROI): The code begins by defining the ROI with a specified color
visualization, which is added to the map for context.

Loading and filtering Sentinel-1 data: The code loads the Sentinel-1 SAR image collection from the
COPERNICUS dataset. It filters the collection to include images from the chosen year within the desired
date range. Further filters are applied to retain only images with ’VV’ polarization, which involves both
the transmission and reception of vertically polarized radar waves. This polarization is optimal for water
detection, as variations in backscatter caused by surface roughness do not significantly alter it (O’Leary
et al., 2019).

Adding the first SAR image to themap: An initial SAR image is added to themap for visual inspection,
giving an idea of how a SAR image appears.

Filtering speckle noise: Speckle noise is a common issue in SAR images, characterized by bright dots
that can degrade image quality. The filterSpeckles function applies a focal median filter to reduce
this noise. This process replaces each pixel with the median value of its neighboring pixels, smoothing
out speckle noise without significantly altering the actual features of the image (O’Leary et al., 2019).

Classifying water pixels: The classifyWater function identifies water pixels based on a simple
threshold of backscatter intensity, with pixels below the -16 threshold classified as water. This rule-
based threshold helps distinguish water bodies from surrounding land. The optimal threshold can vary
and might be refined using training data or more complex statistical methods. The function creates a
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binary mask where water pixels are labeled as 1 and non-water pixels as 0, which is then added as a
new band to the SAR image (O’Leary et al., 2019).

Adding classified water area to the map: The code maps the water classification process across the
Sentinel-1 collection, adding the filtered image to the map for comparison with the original image. This
step enhances the visibility of water bodies by removing the speckle noise and clearly defining them
against the land (O’Leary et al., 2019).

Creating a Time Series Chart: A time series chart is generated to visualize the number of inundated
pixels over time within the ROI. This chart uses the sum of the classified water pixels across all images
in the collection as a spatial reducer, which gives the total number of water pixels at each time step.
The scale of the chart is set to 100 meters to speed up calculations, though this introduces some error
compared to the native 10-meter resolution of Sentinel-1 images (O’Leary et al., 2019).

Interactive Chart: An interactive chart is added to the map, with a callback function triggered when
a user clicks on a data point. This function displays the corresponding SAR image and the classified
water area for the clicked date on the map, updating a label with the date of the selected image (O’Leary
et al., 2019).

Just like with the MNDWI and NDWI method, the SAR method proofs to be poor for the Msimbazi
catchment. The critical technical requirement is once again the spatial resolution. To vcalidate the
method and correpsonding JavaScript, the Region of Interest has also been changed to the Rufiji river,
which is located south of Dar es Salaam. This is a wider river and, as can be seen from figure A.5c,
the model is performing well. Un fortunately that cannot be said for the Msimbazi river, as can be seen
from figures A.5a and A.5b.
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(a) SAR water detection for the Msimbazi River on 26 February 2018.

(b) SAR Msimbazi zoomed in.

(c) SAR water detection for the Rufiji River.

Figure A.5: Comparison of SAR water detection for the Msimbazi and Rufiji Rivers.
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Time of concentration

The time of concentration is the duration needed for water from the most distant point in a drainage
basin to travel to its outlet, where ”remoteness” is determined by travel time rather than distance (Iowa
Organization of Natural Resources, 2023; Mehta et al., 2022).

Several factors influence the time of concentration, including:

Surface roughness: Urban development significantly impacts flow velocity by reducing the delay to
flow. In natural, undeveloped areas, slow and shallow overland flow typically occurs through vegetation.
However, urbanization alters these conditions, directing flow over paved areas, which speed up runoff
transport downstream. Consequently, travel time through the catchment decreases (Iowa Organization
of Natural Resources, 2023; Mehta et al., 2022).

Channel shape and flow patterns: In smaller, non-urban catchments, much of the travel time is at-
tributed to overland flow in upstream areas. Urbanization reduces overland flow lengths by channeling
runoff into designed channels as early as possible. These engineered channels are hydraulically effi-
cient, increasing flow velocity and further reducing travel time (Iowa Organization of Natural Resources,
2023; Mehta et al., 2022).

Slope: Changes in slope due to urbanization depend on site grading and the extent to which stormwa-
ter infrastructure are incorporated. When channels are straightened, slopes tend to increase, whereas
directing overland flow into stormwater infrastructure may decrease the effective slope (Iowa Organi-
zation of Natural Resources, 2023; Mehta et al., 2022).

The Kirpich formula (1940) provides an empirical method to estimate the time of concentration. It was
originally developed for small agricultural catchments and reflects the time required for a stream to
transition from its lowest stage to its peak stage during a storm. The formula estimates the time of
concentration (Tc) as the time taken for runoff to travel from the most distant point in the catchment to
its outlet (Aqua Veo, 2016; Singh, 1976).

The equation is given as:

Tc = 0.0195 · L0.77 · S−0.385 (B.1)

Here, Tc represents the time of concentration (minutes), L is the length of the longest flow path (meters),
and S is the catchment slope (dimensionless). The coefficient 0.0195 is empirical and specific to SI units,
derived from experimental studies.

As watersheds urbanize, the empirical coefficient may decrease, indicating a shorter time of concen-
tration. To have the formula account for land cover variations, adjustment factors can be applied: for
overland flow on grassy surfaces, Tc is multiplied by 2.0, while for impervious surfaces like concrete or
asphalt, Tc is multiplied by 0.4 (Aqua Veo, 2016; [CivilWeb], n.d.; Singh, 1976). However, in this study
slightly overestimating the time of concentration will not do any harm to the analysis.
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Applying the Kirpich formula to the Msimbazi catchment is done in two ways. the first method computes
the slope by taking the highest elevation of the location of the longest flow path and the elevation of the
river outlet and dividing it over the entire flow path distance. This method does not take into account
any differences in slope over the river. The second method does take these differences into account
by splitting the flow path in reaches of similar slope. The results are given in table B.1.

Table B.1: The time of concntration of the Msimbazi catchment for two different methods

No splitting of flow path Splitting of flow path
Minutes 695 790
Hours 11.5 13.2

To ensure that water levels do not influence riverbank detection, all satellite images used for delineation
are selected to fall outside the extent of the ToC for different precipitation events.

The ToC values are computed using the following code:

1 def Kirpich(L, h1, h2, C=0.0195):
2 """
3 Calculate the time of concentration using the Kirpich formula.
4

5 Parameters:
6 L (float): Length of overland flow path in meters.
7 h1 (float): Higher elevation point in meters.
8 h2 (float): Lower elevation point in meters.
9 C (float): Empirical coefficient , default is 0.0195.
10

11 Returns:
12 float: Time of concentration in minutes.
13 """
14 # Calculate the slope (S)
15 S = (h1 - h2) / L
16

17 # Calculate the time of concentration (Tc)
18 Tc = (C * (L ** 0.77)) / (S ** 0.385)
19

20 return Tc
21

22 ## No splitting of the river
23 # Given parameters
24 L = 51000 # Length of the flow path in meters
25 h1 = 202 # Higher elevation in meters
26 h2 = 2.98 # Lower elevation in meters
27

28 # Calculate the time of concentration
29 Tc = Kirpich(L, h1, h2)
30

31 # Output
32 print(f' The Time of Concentration for the river, without splitting for different

slopes is: {Tc:.3f} minutes')
33 print(f' The Time of Concentration for the river, without splitting for different

slopes is: {Tc/60:.3f} hours')
34

35 ## Splitting in 2 reaches with different slope
36

37 L_1 = 10000 # Length of the flow path in meters for the upstream reach
38 h1_1 = 202 # Higher elevation in meters for the upstream reach
39 h2_1 = 140.29 # Lower elevation in meters for the upstream reach
40

41 L_2 = 41000 # Length of the flow path in meters for the downstream reach
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42 h1_2 = 140 # Higher elevation in meters for the downstream reach
43 h2_2 = 2.98 # Lower elevation in meters for the downstream reach
44

45 # Calculate the time of concentration
46 Tc_1 = Kirpich(L_1, h1_1, h2_1)
47 Tc_2 = Kirpich(L_2, h1_2, h2_2)
48

49 # Output
50 print(f' The Time of Concentration for the riverfor the upstream reach is: {Tc_1

:.3f} minutes')
51 print(f' The Time of Concentration for the riverfor the downstream reach is: {Tc_2

:.3f} minutes')
52 print(f' The Time of Concentration for the river for both reaches combined is: {

Tc_1+Tc_2:.3f} minutes')
53

54 print(f' The Time of Concentration for the riverfor the upstream reach is: {Tc_1
/60:.3f} hours')

55 print(f' The Time of Concentration for the riverfor the downstream reach is: {Tc_2
/60:.3f} hours')

56 print(f' The Time of Concentration for the river for both reaches combined is: {(
Tc_1+Tc_2)/60:.3f} hours')



C
Centerline detection

This appendix outlines the manual river detection process. It begins with acquiring satellite images,
as described in section C.1. Then, the scale at which the detection is performed is evaluated (section
C.2). Next, the river’s waterbody is identified (section C.3), followed by the detection of edges between
land-classified and water-classified pixels (section C.4). The midline between the detected left and
right banks, known as the centerline, is then extracted (section C.5). Finally, the uncertainty of these
positions is assessed in section C.6.

C.1. Image acquisition
To detect the river manually the satellite images are retrieved outside the time of concentration. As the
analysis will focus on both long- and short term changes. The images originate from different satellites.
Figure C.1 shows the lifespan of the different satellites.

Figure C.1: Lifespan of satellite missions (European Space Agency [ESA], n.d.; U.S. Geological
Survey, 2020)

Images are extracted using Google Earth Engine, where the same code is applied as is proposed in
appendix A for the automated waterbody detection using the MNDWI & NDWI method. A more precise
description of what the extraction process includes is given in section A.2.
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The process for selecting and preparing the best satellite image involves several steps tailored to
Landsat4-9 and Sentinel2 satellites. Initially, images are filtered based on criteria such as area of
interest (AOI), date range, and cloud cover. For each satellite type, functions like filterByOverlap
and tagging functions (tagLandsat for Landsat and tagSentinel for Sentinel2) are applied to compute
overlap percentages, assign metadata, and ensure cloud cover values are defined. The images from
Sentinel2 and Landsat 4, 5, 7, 8, and 9 are combined into a single collection, sorted by cloud cover
to prioritize images with minimal cloud coverage. Cloud masking for both satellite types uses different
bands: Landsat employs the QA_PIXEL band to mask clouds, while Sentinel-2 utilizes the QA60 band
and brightness thresholds. Shadow masking follows a similar procedure: Landsat identifies shadows
using the QA_PIXEL band’s shadow bit, while Sentinel-2 uses the SWIR band (B11) with a dynamic
threshold. This process selects the best image, i.e., the image with the least cloud cover, from the
sorted collection. Additionally, functions like addImageToMap are used to visualize the images with
SWIR1 (reflectances between 2100-2300 nm), SWIR2 (reflectances between 1550-1750 nm) and Red
(reflectances between 630-690 nm) composites and other appropriate adjustments tailored for each
satellite’s spectral bands. At last the image is exported.

C.2. Scaling
Given the differing spatial resolutions of Landsat (30x30m) and Sentinel (10x10m) satellites, determin-
ing the optimal scale for manual riverbank detection is crucial. Observing the imagery at a very small
scale reduces accuracy, as smaller river bends become indistinguishable. On the other hand, ana-
lyzing imagery at a very large scale also impacts accuracy because it becomes difficult to determine
whether a singular pixel represents land or water, especially when transitions between land and water
are not sharply defined.

Figure C.2 illustrates various scales. At an excessively small scale (C.2b), river bends are not accu-
rately visible, and the lack of detail makes it difficult to distinguish smaller meanders. On the other
hand, at an overly large scale (C.2a), the river appears too coarse, disrupting its linear structure and
making manual delineation challenging. Based on these observations, a scale of (C.2c) is identified as
optimal, as it provides sufficient resolution to detect linear river features while preserving the visibility
of smaller bends.

C.3. Manual river detection
Manual river detection is conducted in ArcGIS Pro (Version 6). To ensure compatibility with the DSAS
model, the visible edges of the river are detected and stored according to the requirements specified
by DSAS. This involves separately detecting the left and right edges as polylines, with the following
attributes: OBJECTID, SHAPE, SHAPE_Length, DATE_, and UNCERTAINTY.

The manual detection process involves identifying the boundary between pixels classified as water and
those classified as land. One advantage of manual detection over automated methods is the ability to
interpret ambiguous cases where pixels are not strictly classified as water but still exhibit the linear
structure characteristic of a river. This flexibility allows for more accurate identification of riverbanks in
such instances.

Since Sentinel imagery has a resolution of 10m × 10m and Landsat imagery 30m × 30m, pixel-based
classification of water and land is determined by the average reflectance within each pixel. This can
result in discrepancies between the detected river edges and the actual river edges. For example,
a pixel adjacent to a water-classified pixel may still contain water but be classified as land due to
its dominant reflectance characteristics (Chen et al., 2022). Consequently, the manually delineated
riverbanks may deviate by several meters from their true position. Figure C.3 illustrates this effect.
Please do note that the in this image the scaling is not optimal for river detection. As discussed in
paragraph C.2, this scale is too small and therefore lacks any linear detail. Yet, the image clarifies the
discrepancies involved with the reflectance.

Figure C.3a presents the natural river, which is overlaid with a Sentinel grid of 10m × 10m pixels in
figure C.3b. The reflectance values of individual pixels influence their classification, as demonstrated
in Figures C.3b through C.3e. In Figure C.3b, the first pixel predominantly consists of water, resulting
in a strong water classification (dark blue). Figure C.3c contains a mix of land and water, causing
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(a) Msimbazi river in June 2018 at a scale of 1:5,000 km.

(b) Msimbazi river in June 2018 at a scale of 1:50,000 km.

(c) Msimbazi river June 2018 at a scale of 1:17,500 km.

Figure C.2: Msimbazi river in June 2018 at different scales.
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a weaker water signal and a transition towards a lighter blue reflectance. Figure C.3d represents a
fully land-covered pixel, characterized by a green reflectance, or to be more precise, this reflectance
indicates vegetated land. Figure C.3e shows a mixed reflectance of mostly land but also some water,
producing an intermediate classification.

As seen in Figure C.3, pixel reflectance directly affect river detection. When delineating the river manu-
ally, a pixel such as figure C.3e, which contains both land and water, may be classified entirely as land,
despite the river actually running through it. Consequently, small-scale inaccuracies in pixel classifica-
tion can propagate through manual river detection.

To minimize the impact of these discrepancies on river delineation, both the left and right observable
riverbanks are identified. The centerline is then determined by extracting the exact midpoint between
these two banks. A detailed explanation of this process is provided in Sections C.4 and C.5.

(a) The natural river (b) Reflectance of 1st pixel

(c) Reflectance of 2nd pixel (d) Reflectance of 3rd pixel

(e) Reflectance of 4th pixel (f) Reflectance of all pixels

Figure C.3: Pixel Reflectances

C.4. Riverbank tracking
Given the previously described reflectance characteristics, it is crucial to accurately detect the riverbank.
It is important to note that we are referring to the observed riverbanks, which are derived from satellite
imagery and may be offset by a few meters from the true riverbank position.

The first three steps in figure C.4 are similar to those in figure C.3. The goal is to avoid being misled by
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pixel classifications, which is why the optimal scale was applied. The detected riverbank lines should
not strictly follow the pixel grid. Instead, during manual river detection, the observable linear structure
of the river was prioritized over the pixel boundaries classified as water. This principle is visible in figure
C.4d, where the yellow and pink lines extend to include light blue and light green areas, aiming to detect
the river’s true boundary rather than just a pixel-based classification.

(a) Step 1: The river is located somewhere within
the wider catchment area.

(b) Step 2: A satellite image of the catchment is
obtained.

(c) Step 3: Band selection and image
enhancement make the river water surface

identifiable.
(d) Step 4: The edges of the water surface are
delineated, aiding in centerline identification.

Figure C.4: Stepwise method for detecting river water cover boundaries using satellite imagery.

C.5. Centerline generation
Given the detected riverbanks, it is possible to determine the centerline. This method, where the river-
banks are first identified and then the centerline is derived, is preferred as it minimizes the likelihood of
errors. During the manual detection of the riverbanks, it is possible that some pixels (or parts of pixels)
may have been incorrectly classified as water. However, by manually detecting both the left and right
riverbanks, the resulting centerline will be placed more accurately, as any errors made in detecting one
bank are likely to be counterbalanced by errors in detecting the other.

Figure C.11 shows the methodology of how the centerline is derived. At first the detected left- and
right bank are necessary. On the right bank a perpendicular line is drawn. This perpendicular line
intersects with the left bank. The exact middle of the perpendicular line is given by the midpoint. So,
each midpoint has similar length to the left bank as to the right bank. For each 10 meters along the
right bank a new perpendicular line is drawn and a new midpoint is determined.

Finally, these midpoints are connected by a new line, the so called centerline.
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Figure C.5: 1. Natural River. Figure C.6: 2. Draw a line perpendicular to
the right bank.

Figure C.7: 3. Identify the midpoint on the
perpendicular line with equal distance to right-

and left bank.

Figure C.8: 4. Repeat after 10 meters along
the right bank.

Figure C.9: 5. Keep repeating. Figure C.10: 6. Connect these midpoints
with the Centerline.

Figure C.11: Centerline generation methodology

C.6. Uncertainty
The centerline has been derived from either a Sentinel satellite image, with a resolution of 10 m × 10
m, or a Landsat image, which has a resolution of 30 m × 30 m. Research by Chen et al. (2022) has
shown that coarser satellite imagery inherently introduces positional uncertainty when identifying small
water bodies, as pixel boundaries may not precisely align with the true shoreline.

To quantify this uncertainty, the error propagation formula for averaging independent measurements is
applied (Ku, 1966). Since the centerline is defined as the midpoint between two independently digitized
water body edge lines, X1 and X2, the centerline position C is given by:
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C =
X1 +X2

2
(C.1)

The uncertainty in C is determined using the general error propagation formula:
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Since X1 and X2 are independently derived from the same satellite image, they share the same stan-
dard deviation, i.e., σX1 = σX2 = σX . The partial derivatives of C with respect to X1 and X2 are:
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Substituting these values into Equation C.2 gives:
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Taking the square root:

σC =
σX√
2

(C.6)

Applying this formula to the known spatial resolutions of Landsat and Sentinel imagery, we obtain the
final uncertainty values:

σC =
30√
2
= 21.2 meters (for Landsat) (C.7)

σC =
10√
2
= 7.1 meters (for Sentinel) (C.8)

These values represent the expected positional uncertainty of the centerline and account for errors
introduced by the resolution of the satellite imagery and the manual digitisation process.

For applicability in the Digital Shoreline Analysis System (DSAS) tool these values are rounded to 21
meters for Landsat and 7 meters for Sentinel, as DSAS does not allow decimal values.
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Fieldwork

D.1. Fieldwork observations in the Msimbazi basin
During the fieldwork campaign in the Msimbazi Basin, ten key locations (ID 0 - ID 9) were surveyed to
assess riverbank characteristics, erosion processes and sediment composition. Observations included
sediment types, vegetation cover, visible bank retreat, soil layering, and banks shapes. Below is a
detailed account of findings at each location, followed by an in-depth analysis of downstream trends.
See figure D.1 for the exact locations at which the measurements have been performed.

Figure D.1: Fieldwork locations in the Msimbazi catchment
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0. Identified Source

Table D.1: 0. Identified Source attribute table

Attribute Description
Coordinates (-6.87626, 39.08244)
Elevation 140 m
Material Hard rock with a thin clay top layer (just a few cm)
Vegetation Cover 80-100% at the bank (grass, bushes, trees). The bank slopes near the dam are

less vegetated, as they mainly consist of rock.
Visible Retreat 6 m at the dam; no retreat upstream of the dam
Soil Layers Digging impossible
Solid Waste None observed
Remarks Upstream of this location, several streams converge, with the widest measuring

between 3 and 5 meters in width. According to locals, these streams flow into
a dam constructed by the government to reduce river discharge. Soil analysis
in this area is challenging due to the predominance of rock, with only a thin
clay layer deposited over the rock, likely from upstream areas where the soil is
predominantly clay and highly vegetated. Locals observe that erosion is minimal
in this region, with the exception of the dam area.

Table D.2: 1. Upper Msimbazi Fieldwork 1 Attribute Table

Attribute Description
Coordinates (-6.87583, 39.07861)
Elevation 120 m
Material Rock and cobblestones with a sand overlay. The sand is of medium size, poorly

sorted, and sub-angular.
Vegetation Cover 80-90% on top of the bank; less on the slope (0-5%)
Visible Retreat No imminent retreat visible; gradual widening of the river.
Soil Layers Digging impossible
Solid Waste None observed
Remarks The river width in this area ranges from 10 to 20meters. The banks near the Rail-

way (SGR) are protected by later boulders, and drainage channels are present.
Just downstream of the SGR, sediment accumulation is noticeable, despite the
presence of vegetation, which may have been planted.

Table D.3: 2. Upper Msimbazi Fieldwork 2 Attribute Table

Attribute Description
Coordinates (-6.87583, 39.07861)
Elevation 110 m
Material Right bank: The right bank consists of stone and rock with a thin top layer of

coarse, poorly sorted sand and it is angular. Left bank: The left bank appears
to have similar materials, though it is not accessible for closer examination.

Vegetation Cover The vegetation cover on both the top and slope of the bank is minimal, ranging
from 0 to 5%, primarily consisting of scattered grasses.

Visible Retreat No retreat visible
Soil Layers Digging impossible
Solid Waste None observed
Remarks The river width in this area is approximately 20meters, with cliff-like banks reach-

ing a height of about 1.4 meters, gradually sloping downward. The soil is pri-
marily composed of rock, making excavation impossible.
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Table D.4: 3. Upper Middle Msimbazi Fieldwork 1 Attribute Table

Attribute Description
Coordinates (-6.87556, 39.11556)
Elevation 90 m
Material The point bar is composed of coarse sand, which is sub-angular and moderately

sorted. The cut bank, though difficult to observe clearly, appears to be made of
clay.

Vegetation Cover Above the point bar, vegetation coverage ranges from 70 to 100%, while on the
point bar itself, it is absent. The cut bank is largely covered by vegetation, with
coverage also ranging from 70 to 100%, although it is difficult to assess clearly.
Vegetation is also visible on the point bar.

Visible Retreat At the point bar, a retreat of approximately 3 meters is visible, while at the cut
bank, the retreat is around 5 meters.

Soil Layers A layer of sand, approximately 30 cm thick, is observed before reaching the
bottom water level. Beyond this point, further excavation is not possible. The
material consists solely of sand, with no distinct layers visible.

Solid Waste 20%
Remarks This location marks the beginning of urbanization, with the current bank-to-bank

width estimated at 40-50 meters. Vegetation consists mostly of bushes and
grass. The riverbanks, particularly the cut bank, show layers, though these
consist solely of clay, with no evidence of different soil types. While the bank
was not accessible for detailed observation, the layers are estimated to range
between 30 and 50 cm in height. Remarkably, erosion appears to be equally
severe both before the river reaches the urbanized area and after urbanization
has occurred. Although the urban area contributes to the presence of solid
waste, no such material was found within the soil.

Table D.5: 4. Upper Middle Msimbazi Fieldwork 2 Attribute Table

Attribute Description
Coordinates (-6.87528, 39.13667)
Elevation 80 m
Material Coarse sand, moderately sorted, angular
Vegetation Cover 70-80% (depositional bank); 40-50% (Cut bank)
Visible Retreat At the point bar, the retreat is approximately 3 meters. However, at the cut bank,

it was impossible to determine whether retreat is occurring, as locals could not
provide any insight into the situation.

Soil Layers Digging was only possible to a depth of 30 cm. The first 15 cm consists of
sand, as previously described under the material section. Below this, the sand
becomes slightly finer, with the next 15 cm being well-sorted, rounded, medium
sand.

Solid Waste 30%
Remarks The cut bank features a gradual but steep slope, whereas the point bar consists

of straight banks with a terrace and a sandbar. The amount of solid waste at
this location has increased compared to the previous site, although the provided
percentage is a rough estimation, calculated using the same method as the veg-
etation cover measurement. This may not have been themost accurate method,
as the plastics have not yet spread significantly and are mostly deposited at this
location. It was also noteworthy that locals mentioned they did not experience
frequent flooding in this area.
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Table D.6: 5. Middle Msimbazi Fieldwork Attribute Table

Attribute Description
Coordinates (-6.87444, 39.14833)
Elevation 70 m
Material At the point bank, the material is sandy (very coarse, well sorted, and subangu-

lar). The material of the cut bank is clay.
Vegetation Cover The point bank has a vegetation cover of 80-90% on the bank, consisting mostly

of bushes and grasses, while on the bar, the cover is around 20%, mainly made
up of bushes and grasses. In contrast, the cut bank shows a vegetation cover
of 90-100% on both the bank and the bar, with the bank predominantly covered
by bushes and grass, and the bar nearly entirely covered by grass.

Visible Retreat No retreat visible
Soil Layers At the point bank, the first 20 cm consists of loose sand. Beneath this, a sat-

urated sand layer is observed, which is approximately 20 cm thick, consisting
of coarse, moderately sorted, angular sand. Below this layer, the groundwater
level is visible. In contrast, the cut bank shows no visible layers.

Solid Waste The presence is noticeable, but it appears to be less compared to the upstream
area.

Remarks The point bank has a gradual slope between bank and bar. The cut bank con-
sists of a straight, cliff-like bank.

Table D.7: 6. Lower Middle Msimbazi Fieldwork Attribute Table

Attribute Description
Coordinates (-6.87417, 39.16222)
Elevation 40 m
Material The material for both the bar and the new bank consists of coarse, subangular,

well-sorted sand.
Vegetation Cover The vegetation cover on top of the bank ranges from 80 to 100%, while the

bank slopes are bare. Between the bank slope and the manually constructed
bank, vegetation cover is approximately 10%. The manually built bank itself is
completely bare. This pattern is consistent for both the point bank and the cut
bank.

Visible Retreat The distance between the toe of the natural bank and the toe of the manually
constructed bank is approximately 35 meters.

Soil Layers The measurement was taken on the bar between the two manually built banks,
specifically at the toe of the right bank. The top 20 cm consists of loose, dry
sand, exhibiting properties as previously described under the material section.
Beneath this layer, there is approximately 10 cm of rock and clay, followed by
around 50 cm of the same sand, though this layer is saturated.

Solid Waste Barely present
Remarks There are manually built riverbanks present. See figure D.4a
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Table D.8: 7. Lower Msimbazi Fieldwork Attribute Table

Attribute Description
Coordinates (-6.87389, 39.17667)
Elevation 30 m
Material The upper part of the bank consists of sand. The lower part, closer to the bar,

consists of a mix of finer and coarser sand, indicating variations in deposition
energy.

Vegetation Cover The vegetation cover on top of the bank is estimated to be between 70 and 90%.
On the slope of the bank, vegetation is sparse, between 10 and 20%.

Visible Retreat No retreat visible.
Soil Layers On the bar, digging was possible up to 60 cm. The top 20 cm consists of dry,

loose sand. Below that, a saturated sand layer (about 40 cm) was observed,
with no visible clay or organic matter.

Solid Waste Around 20%
Remarks This site is downstream of the most urbanized parts of the Msimbazi. The bank

profile here is flatter, and both banks are relatively wide and low in height. Waste
accumulation is notable, especially plastic materials embedded in the bar and
lower bank slope.

Table D.9: 8. Estuary Msimbazi Fieldwork Attribute Table

Attribute Description
Coordinates (-6.86972, 39.19111)
Elevation <10 m (tidal influence area)
Material Dominantly silty sand with some organic material. Clearly tidal deposits with

laminated structures.
Vegetation Cover Mangroves and grasses cover 60-80% of the bank.
Visible Retreat Erosion signs at low-tide level; undermining of mangrove roots.
Soil Layers Soft, muddy soil. Easily penetrable. First 20 cm contains organic-rich silty sand,

followed by more compact fine silt.
Solid Waste >50%
Remarks High presence of solid waste, especially plastics. Tidal influence complicates

erosion assessment. Area is critical for ecological functions and serves as a
buffer between river and ocean.

Table D.10: 9. Msimbazi River Mouth Fieldwork Attribute Table

Attribute Description
Coordinates (-6.86750, 39.19917)
Elevation Sea level
Material Fine sand and silt; beach deposits mixed with organic debris and plastic frag-

ments.
Vegetation Cover Very limited; some grasses at high tide line.
Visible Retreat No riverbank visible; transitional zone into ocean.
Soil Layers Surface layer of 10 cm consists of loose, wet sand. Below that, 20 cm of darker,

organic-rich silt.
Solid Waste Extremely high; >70% surface coverage in some areas.
Remarks This is the end point of sediment and waste transport in the basin. Accumulation

is heavily influenced by tides, waves, and urban waste inflow. River morphology
is minimal due to constant tidal reworking.
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(a) Bank profile and vegetation cover ID 0

(b) Bank profile and vegetation cover ID 1

(c) Bank profile and vegetation cover ID 2

Figure D.2: Bank profiles and vegetation cover for Fieldwork ID 0–2
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(a) Bank profile and vegetation cover ID 3

(b) Bank profile and vegetation cover ID 4

(c) Bank profile and vegetation cover ID 5

Figure D.3: Bank profiles and vegetation cover for Fieldwork ID 3–5
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(a) Bank profile and vegetation cover ID 6

(b) Bank profile and vegetation cover ID 7

(c) Bank profile and vegetation cover ID 8

Figure D.4: Bank profiles and vegetation cover for Fieldwork ID 6–8
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(a) Bank profile and vegetation cover ID 9

Figure D.5: Bank profile and vegetation cover for Fieldwork ID 9

D.2. Downstream analysis
Material properties
The results presented in figure D.6 show an expected decrease in grain size as one moves downstream
along the Msimbazi River (figure D.6a). However, it is remarkable that the sediment never reaches
medium, fine, or very fine sizes. This observation may be assigned to the relatively short length of the
river, which limits the time and spatial extent required for sediment to transition from very coarse to
finer sizes before reaching the river mouth. Alternatively, the coarse sediment characteristics observed
could suggest that the upstream sediment input itself is predominantly coarse. This may indicate that
sediment is not undergoing natural erosion processes from the nearby mountains before entering the
river. Human interventions upstream could also contribute to this phenomenon, potentially influencing
the sediment composition entering the river.

When observing the angularity (figure D.6b) of sediment along the river, a clear trend emerges: the
angularity decreases as one moves downstream, which aligns with expectations of natural degradation.
Notably, the sediment remains relatively angular over a significant spatial extent. For instance, at ID 6,
located in the lower middle basin, the sediment is still classified as sub-angular. The missing data at
ID 0 can be attributed to the fact that the sediment at this location consists solely of rock and boulders,
making it impossible to determine the angularity.

Figure D.6c illustrates the sorting of sediment. A decreasing trend in sorting is observed downstream,
as expected with natural degradation. However, attention is drawn to the fact that the two most down-
stream locations (ID 8 and ID 9) exhibit poorly sorted sediment, while the sediment just upstream (ID
7) is well sorted. This phenomenon can be explained by the sand mining activities at locations ID 8
and ID 9, where excavation took place at deeper soil layers. As a result, the sediment at the surface is
likely derived from earlier periods.

This observation reinforces the phenomenon of human intervention, which was also noted in the grain
size analysis. Should coarse sediment become exposed upstream in the catchment, as could have
occurred during the construction of the railway, and then flow downstream through the river, it would
be expected that coarse sediment would be found further downstream. A new balance has likely been
established by now, as evidenced by the finer material encountered at ID 7, where sand mining is not
taking place. This finer sediment would likely be found atop the coarser material. Unfortunately, it was
not possible to verify these findings through soil layer measurements. However, this may also explain
that the sediment quantity appears substantially higher, and the depth is greater than the 1-meter depth
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considered during the soil layer measurements.

Presence of solid waste
As anticipated, the results indicate that solid waste begins to appear when the river flows through
urbanised areas. The expectation was that the amount of solid waste would increase downstream.
Another assumption was that plastics would be scattered across the riverbed as the river would have
deposited it when the discharge decreased. However, both expectations were not entirely accurate. At
the first settlements (ID 3 to ID 4), the amount of solid waste does appear to increase. However, it was
noteworthy that plastic waste was concentrated rather than spread across the riverbed. As the river
continues downstream, the scattering of plastic waste does increase, yet considerable concentrations
remain. This could be due to the fact that the measurements were taken towards the end of February,
well into the dry season. The wet season begins in March/April, which suggests that communities may
have been dumping their waste into the river before it had the opportunity to be transported downstream.

The presence of plastic waste varies significantly, ranging from excessive amounts to barely any, with-
out showing a clear trend as one moves downstream. Possible explanations for this include the pos-
sibility that certain neighbourhoods may not dump their waste into the river, or variations in river flow
velocity may influence the river’s ability to transport waste downstream. Unfortunately, the precise rea-
son remains unclear. It is also possible that multiple factors contribute to these inconsistencies.

Bank shape
At ID 0, it is evident that the dam has been bypassed during high-discharge events. From ID 1 to ID 3,
a transition can be observed from gradually sloping banks to steep cliffs. This suggests that discharge
and flow velocity increase in this section, leading to intensified erosion. As a result, bank failure shifts
from gradual erosion to sudden landslides. The presence of these steep, cliff-like banks indicates that
erosion occurs through a cantilever beam failure mechanism, particularly in combination with dry, loose
sediment such as sand and clay, which contributes to their formation.

Remarkably, these cliff-like banks appear well before the first signs of urbanization along the river. This
suggests that increased runoff due to urban development is not the sole driver of erosion. Instead,
another factor must be contributing to the increased discharge in the river.

From ID 4 to ID 7, the river begins to meander, and a clear distinction emerges between the depositional
and cut banks. The depositional bank exhibits a more gradual slope, while the cut bank continues to
display steep, cliff-like formations. However, starting at ID 6, human interventions are visible: local
communities have constructed sandbanks between the water and the natural riverbank, effectively
modifying the channel. At ID 7, two of these artificial banks have been created, further altering the
river’s dynamics.

ID 9 presents an even more striking example of human adaptation. Here, people have settled within
the river’s floodplain, constructing embankments ranging from 8 to 10 meters high to contain the river
channel. According to local accounts, these embankments withstand only intermediate discharge lev-
els, with any extreme event likely leading to their failure and subsequent flooding of the surrounding
area.

Vegetation cover
Given the significant amount of sediment visible in the river, one might expect the upstream river-
banks to be relatively bare. However, field observations revealed the opposite, these banks were
well-vegetated. According to Engineer Mussa Natti from the World Bank (2025), this vegetation results
from reforestation efforts initiated after the railway’s construction.

Despite this, the extreme erosion observed may still be attributed to a large sediment flux moving
through the river. As the banks have been bare previously.

Identifying trends in vegetation cover along the river is challenging due to the localized nature of obser-
vations. However, analyzing individual sites provides insight into the stability of specific banks or bars
over time based on their vegetation cover.
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Bank Retreat
Although it was not possible to retrieve data on riverbank retreat at many locations, it is noteworthy
that retreat increases downstream. Measurable retreat at locations ID 3 and ID 4 is approximately 3-5
meters, while at ID 6, it reaches around 35 meters, and at ID 7, it is about 54 meters.

Considering that the bank material is not significantly different across these locations, the variation in
retreat is unlikely to be due to substantial differences in bank strength or stability. Instead, the changes
in retreat could be attributed to increases in discharge through the river, which aligns with the observed
urbanisation within the catchment.
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(a) Grainsize distribution along the Msimbazi River.

(b) Angularity of sediment along the Msimbazi River.

(c) Level of sorting of the sediment along the Msimbazi River.

Figure D.6: Soil characteristics along the Mismbazi River.
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Digital Shoreline Analysis System

(DSAS)

For analyzing migration rates along the Msimbazi River, the Digital Shoreline Analysis System (DSAS)
provides a practical method to quantify riverbank erosion and deposition over time (Tha et al., 2022;
U.S. Geological Survey, 2024a), despite originally being designed for shoreline analysis.

With a defined baseline and multiple centerlines over time, DSAS can be applied to track changes
in riverbank position. In this study, the baseline is treated as an offshore reference, meaning that
centerline movement toward the baseline is classified as accretion, while movement away from it is
considered erosion (see figure E.1) (Tha et al., 2022; U.S. Geological Survey, 2024a). Figure E.2
shows how this is then applied on centerlines instead of shorelines.

A series of transects is automatically generated at 15-meter intervals along the baseline (Tha et al.,
2022; U.S. Geological Survey, 2024a). These transects extend perpendicularly from the baseline to
intersect with each year’s centerline. However, to prevent transects from overlapping when the base-
line curves, a smoothing distance of 500 meters is applied. Various methods exist for handling these
intersections, and figure E.3 illustrates how different smoothing distances affect transect orientation.
In general, the smoothing distance should be greater than the width of the bends in the centerline
(Himmelstoss et al., 2021).

In addition to the transect generation process, the choice of transect length and spacing is crucial for
accurately capturing river migration. Given the relatively narrow width of the river, a transect length
of 400 meters may seem large compared to the river’s current width of approximately 60-70 meters.
However, this length is necessary to account for significant migration events, such as bend cut-offs,
where the migrated distance can exceed the river width.

A transect spacing of 15 meters is used to ensure a detailed representation of river migration while
avoiding overlap between adjacent transects. This spacing provides a high-resolution understanding
of migration patterns without excessive redundancy (Himmelstoss et al., 2021).

To compute the rate of migration or absolute distance of migration different methods are available. Table
E.1 explains the applicability of these different methods.

From table E.1, it can be concluded that the Linear Regression Rate (LRR) and the Weighted Linear
Regression (WLR) methods are the most suitable for determining migration rates of multiple centerlines
over time. Both methods calculate migration rates using a regression approach, where LRR fits a
straight line through all available centerline positions over time (figure E.4a). The key distinction of
WLR (figure E.4b) is that it assigns weights to each data point based on the uncertainty in the centerline
location, giving more influence to measurements with lower uncertainty. Given that multiple centerlines
are detected in this research and their accuracy depends on the satellite imagery used, Sentinel or
Landsat, the Weighted Linear Regression (WLR) method is chosen as the most appropriate approach
(Himmelstoss et al., 2021).
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Figure E.1: Functionality of DSAS

Figure E.2: DSAS applicability on rivers.
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Figure E.3: Sample from the Cast Transects interface, illustrating the effect of smoothing distance on
transect orientation for curved and straight coastlines. A smoothing value of 500 meters ensures
orthogonal transects for accurate shoreline change measurement (Himmelstoss et al., 2021).
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(a) Linear Regression Rate

(b)Weighted Linear Regression

Figure E.4: Linear Regression Rate versus Weighted Linear Regression (Himmelstoss et al., 2021).
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Table E.1: Comparison of Shoreline Change Measurement Methods in DSAS (Himmelstoss et al., 2021)

Category Method What it does Pros Cons Best for Class Breaks Meaning of
Class Breaks

R
at
e-
B
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ed

M
et
ho

ds

End
Point
Rate
(EPR)

Measures to-
tal shoreline
change be-
tween the first
and last shore-
line, divided by
years.

Simple, quick,
effective for
linear trends.

Ignores interme-
diate shorelines;
inaccurate for
non-linear
trends.

When only two
shorelines (start
and end) are
available.

MIN—(-0.25),
-0.25—0.25,
0.25—MAX

Negative values
= erosion, posi-
tive = accretion.

Linear
Regres-
sion
Rate
(LRR)

Fits a regres-
sion line
through all
shorelines
and calculates
change rate per
year.

Uses multiple
shorelines,
more reliable
trend estima-
tion.

Assumes a lin-
ear trend, which
may not always
be valid.

When multiple
shorelines are
available and a
trend is needed.

MIN—(-0.25),
-0.25—0.25,
0.25—MAX

Similar to EPR
but more robust
due to multiple
points.

Weighted
Linear
Regres-
sion
(WLR)

Like LRR but
assigns more
weight to shore-
lines with higher
accuracy.

More precise
when shoreline
data has vary-
ing reliability.

Requires shore-
line uncertainty
values.

When shoreline
data has differ-
ent levels of ac-
curacy.

MIN—(-0.25),
-0.25—0.25,
0.25—MAX

Negative val-
ues = erosion,
positive = ac-
cretion, both
are adjusted for
accuracy.

D
is
ta
nc

e-
B
as
ed

M
et
ho

ds

Net
Shore-
line
Move-
ment
(NSM)

Measures total
shoreline move-
ment between
the oldest and
newest shore-
line.

Simple, easy to
interpret.

Doesn’t provide
a rate, making
time-based
comparisons
difficult.

Measuring
absolute shore-
line movement
rather than
yearly rate.

MIN—(-10),
-10—10, 10—
MAX

Negative values
= erosion, posi-
tive = accretion.

Shoreline
Change
Enve-
lope
(SCE)

Measures
max shoreline
movement
considering all
shorelines.

Captures full
range of shore-
line variability.

Doesn’t indicate
if change is ero-
sional or accre-
tional.

Understanding
full extent of
shoreline dy-
namics.

MIN—50, 50—
150, 150—MAX

Measures
largest ob-
served distance
change (me-
ters). High
values = signifi-
cant variation.
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Weighted Linear Regression (WLR)

statistics summary
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Table F.1: Short-term Centerline Weighted Linear Regression (WLR) Summary Statistics (Thieler et al., 2003)

Metric 2007–2017 2017–2019 2019–2021 2021–2023 2023–2024
Total number of transects 1560 1730 1843 1841 1847
Average rate (m/yr) -0.18 -0.66 0.15 -1.01 -0.49
Average confidence interval 19.77 46.25 15.80 12.63 16.48
Reduced number of independent transects (nred) 26.79 212.36 63.63 84.08 50.52
Uncertainty of average rate using nred 3.82 3.17 1.98 1.38 2.32
Average rate with uncertainty (m/yr) -0.18 ± 3.82 -0.66 ± 3.17 0.15 ± 1.98 -1.01 ± 1.38 -0.49 ± 2.32
Number of erosional transects 798 911 948 1006 941
Percent of transects erosional (%) 51.15 52.66 51.44 54.64 50.95
Statistically significant erosion (%) 9.29 2.20 13.78 5.49 14.89
Maximum erosion rate (m/yr) -30.33 -71.56 -69.12 -76.79 -138.34
Transect ID (max erosion) 828 745 400 370 528
Average erosional rate (m/yr) -4.30 -10.05 -11.15 -5.59 -13.65
Number of accretional transects 762 819 895 835 906
Percent of transects accretional (%) 48.85 47.34 48.56 45.36 49.05
Statistically significant accretion (%) 4.62 2.83 17.31 4.67 14.67
Maximum accretion rate (m/yr) 24.57 140.03 69.16 18.68 78.39
Transect ID (max accretion) 108 621 945 836 110
Average accretional rate (m/yr) 4.13 9.78 12.11 4.51 13.18
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Table F.2: Short- and Long-term migration of the left Bank (Weighted Linear Regression (WLR) Summary Statistics) (Thieler et al., 2003)

Metric 2007–2017 2017–2019 2019–2021 2021–2023 2023–2024 2007–2024
Total number of transects 1718 1814 1844 1841 1850 1853
Average rate (m/yr) -0.48 -1.09 0.12 0.03 -1.97 -0.22
Average confidence interval 20.33 26.99 16.52 11.90 19.00 2.72
Reduced number of independent transects (nred) 28.79 121.21 75.95 85.51 60.40 64.97
Uncertainty of average rate using nred 3.79 2.45 1.89 1.29 2.44 0.34
Average rate with uncertainty (m/yr) −0.48± 3.79 −1.09± 2.45 0.12± 1.89 0.03± 1.29 −1.97± 2.44 −0.22± 0.34
Number of erosional transects 893 961 930 879 1022 976
Percent of transects erosional (%) 51.98 52.98 50.43 47.75 55.24 52.67
Statistically significant erosion (%) 6.11 4.19 14.05 4.89 13.89 29.36
Maximum erosion rate (m/yr) -33.06 -84.61 -75.59 -73.76 -140.80 -17.34
Transect ID (max erosion) 751 1783 401 368 528 528
Average erosional rate (m/yr) -4.41 -9.42 -12.14 -5.70 -14.33 -3.89
Number of accretional transects 825 853 914 962 828 877
Percent of transects accretional (%) 48.02 47.02 49.57 52.25 44.76 47.33
Statistically significant accretion (%) 5.01 4.36 16.54 9.23 11.35 23.42
Maximum accretion rate (m/yr) 20.86 59.13 77.60 21.72 66.55 18.25
Transect ID (max accretion) 550 620 945 1209 172 946
Average accretional rate (m/yr) 3.76 8.29 12.59 5.27 13.30 3.87
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Table F.3: Short- and Long-term migration of the left Bank (Weighted Linear Regression (WLR) Summary Statistics) (Thieler et al., 2003)

Metric 2007–2017 2017–2019 2019–2021 2021–2023 2023–2024 2007–2024
Total number of transects 1715 1807 1844 1841 1845 1852
Average rate (m/yr) 0.71 0.05 -0.04 -1.27 1.05 -0.37
Average confidence interval 21.48 22.82 15.68 11.84 17.92 2.71
Reduced number of independent transects (nred) 32.99 61.23 57.14 140.95 53.29 163.76
Uncertainty of average rate using nred 3.74 2.92 2.07 1.00 2.45 0.21
Average rate with uncertainty (m/yr) 0.71 ± 3.74 0.05 ± 2.92 -0.04 ± 2.07 -1.27 ± 1.00 1.05 ± 2.45 -0.37 ± 0.21
Number of erosional transects 839 848 877 1101 844 926
Percent of transects erosional (%) 48.92 46.93 47.56 59.80 45.75 50.00
Statistically significant erosion (%) 8.45 2.99 12.91 9.07 11.33 29.00
Maximum erosion rate (m/yr) -26.31 -86.91 -72.25 -60.49 -129.53 -19.09
Transect ID (max erosion) 827 1784 836 371 1329 365
Average erosional rate (m/yr) -3.61 -8.79 -12.20 -5.63 -13.66 -4.13
Number of accretional transects 876 959 967 740 1001 926
Percent of transects accretional (%) 51.08 53.07 52.44 40.20 54.25 50.00
Statistically significant accretion (%) 6.06 5.64 18.06 6.03 15.66 27.11
Maximum accretion rate (m/yr) 31.59 63.24 70.69 44.06 103.93 17.46
Transect ID (max accretion) 769 622 625 369 111 946
Average accretional rate (m/yr) 4.85 7.87 10.98 5.21 13.46 3.39



G
KS-tests for precipitation duration
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Table G.1: Results of KS-tests for different thresholds with pre- and post-2007 and pre- and
post-2018 comparisons.

Threshold Pre- vs. Post 2007 Pre- vs. Post 2018

(mm/hr) KS-statistic p-value Significance KS-statistic p-value Significance

0 0.041 0.047 Yes 0.076 4.0e-6 Yes

1 0.041 0.26 No 0.088 5.1e-5 Yes

2 0.087 0.0033 Yes 0.12 2.0e-6 Yes

3 0.11 0.0011 Yes 0.12 9.0e-5 Yes

4 0.12 0.0026 Yes 0.070 0.11 No

5 0.11 0.037 Yes 0.063 0.36 No

6 0.13 0.032 Yes 0.10 0.068 No

7 0.11 0.21 No 0.070 0.60 No

8 0.14 0.065 No 0.10 0.31 No

9 0.18 0.046 Yes 0.17 0.039 Yes

10 0.14 0.27 No 0.13 0.27 No

11 0.17 0.15 No 0.11 0.57 No

12 0.21 0.12 No 0.12 0.61 No

13 0.17 0.35 No 0.11 0.86 No

14 0.16 0.55 No 0.096 0.96 No

15 0.16 0.62 No 0.099 0.96 No

16 0.12 0.90 No 0.074 1.0 No

17 0.14 0.85 No 0.098 0.99 No

18 0.15 0.83 No 0.093 1.0 No

19 0.073 1.0 No 0.10 0.99 No

20 0.092 1.0 No 0.12 0.98 No

30 0.085 1.0 No 0.13 1.0 No

40 0.20 0.99 No 0.23 1.0 No

50 0.25 0.99 No - - No Data

60 0.50 0.93 No - - No Data

70 - - No Data - - No Data

80 - - No Data - - No Data

90 - - No Data - - No Data

100 - - No Data - - No Data



H
Detailed hotspot maps

This appendix provides more detailed images of the different hotspot maps. To offer a more compre-
hensive understanding, the river is divided into 5 segments, which are illustrated in figure H.1.

The four types of hotspot maps, long-term migration rates, short-term migration rates, long-term widen-
ing, and short-term widening hotspot maps, are presented below. Figures H.2 to H.6 correspond to the
long-term migration rate hotspot maps. Figures H.7 to H.11 correspond to the short-term migration rate
hotspot maps. Figures H.12 to H.16 correspond to the long-term widening rate hotspot maps. Finally,
figures H.17 to H.21 correspond to the short-term widening rate hotspot maps.

Figure H.1: An overview of the segments (1 through 5) used to present the hotspot maps in a clear
and detailed manner.
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140Figure H.2: Hotspot map as a result of long-term (2007-2024) river migration for segment 1 (An overview of all segments is given in figure H.1).



141Figure H.3: Hotspot map as a result of long-term (2007-2024) river migration for segment 2 (An overview of all segments is given in figure H.1).



142Figure H.4: Hotspot map as a result of long-term (2007-2024) river migration for segment 3 (An overview of all segments is given in figure H.1).



143Figure H.5: Hotspot map as a result of long-term (2007-2024) river migration for segment 4 (An overview of all segments is given in figure H.1).



144Figure H.6: Hotspot map as a result of long-term (2007-2024) river migration for segment 5 (An overview of all segments is given in figure H.1).



145Figure H.7: Hotspot map as a result of short-term (2020-2024) river migration for segment 1 (An overview of all segments is given in figure H.1).



146Figure H.8: Hotspot map as a result of short-term (2020-2024) river migration for segment 2 (An overview of all segments is given in figure H.1).



147Figure H.9: Hotspot map as a result of short-term (2020-2024) river migration for segment 3 (An overview of all segments is given in figure H.1).



148Figure H.10: Hotspot map as a result of short-term (2020-2024) river migration for segment 4 (An overview of all segments is given in figure H.1).



149Figure H.11: Hotspot map as a result of short-term (2020-2024) river migration for segment 5 (An overview of all segments is given in figure H.1).



150Figure H.12: Hotspot map as a result of long-term (2007-2024) river widening for segment 1 (An overview of all segments is given in figure H.1).



151Figure H.13: Hotspot map as a result of long-term (2007-2024) river widening for segment 2 (An overview of all segments is given in figure H.1).



152Figure H.14: Hotspot map as a result of long-term (2007-2024) river widening for segment 3 (An overview of all segments is given in figure H.1).



153Figure H.15: Hotspot map as a result of long-term (2007-2024) river widening for segment 4 (An overview of all segments is given in figure H.1).



154Figure H.16: Hotspot map as a result of long-term (2007-2024) river widening for segment 5 (An overview of all segments is given in figure H.1).



155Figure H.17: Hotspot map as a result of short-term (2020-2024) river widening for segment 1 (An overview of all segments is given in figure H.1).



156Figure H.18: Hotspot map as a result of short-term (2020-2024) river widening for segment 2 (An overview of all segments is given in figure H.1).



157Figure H.19: Hotspot map as a result of short-term (2020-2024) river widening for segment 3 (An overview of all segments is given in figure H.1).



158Figure H.20: Hotspot map as a result of short-term (2020-2024) river widening for segment 4 (An overview of all segments is given in figure H.1).



159Figure H.21: Hotspot map as a result of short-term (2020-2024) river widening for segment 5 (An overview of all segments is given in figure H.1).
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