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Abstract

A desirable feature of distributed file systems is to enable clients to mount
external namespaces, allowing them to access physically remote data as if it was
transparently stored in the local cluster. This feature is desirable in a variety of
scenarios, such as in enterprise hybrid-cloud deployments, where some data may
be stored remote on the cloud while other in the local file system. This feature
introduces questions as how to design, implement, and handle various file system
semantics, such as different consistency levels and operational performance between
the remote and local storage. For instance, a POXIS-complient block based file
system is strongly consistent and does not pose the same semantics as a more
relaxed eventual consistent object-based cloud storage. Further, it is interesting
to benchmark how such an integrated remote storage solution performs and what
potential speedups that might be possible.

To examine such questions and provide the remote storage feature in HopsFS,
a scale-out metadata HDFS distribution, this thesis presents an Proof-of-Concept
(PoC) implementation that enables the local file system to be transparently integrated
with an external remote storage. The PoC is storage provider agnostic and enables a
HopsFS client to on-demand pull in and access remote data from an external storage
into the local file system.

Currently, the solution works by mounting a snapshot of a remote storage into
HopsFS, a read-only approach. For write and synchronization work, frameworks
that layers stronger consistency models on top of S3 may be used, such as s3mper.
Performance of the implemented feature has been benchmarked against remote
Amazon S3 buckets, showing results of fast throughput for scanning and persisting
metadata, but slower (4 Mb/s) for pulling data into the cluster through the Amazon
cloud connector S3A. To improve performance, caching by replication of the remote
files onto local disk storage has shown to drastically increase the read speed (up to
100x). The work done in this thesis shows a promising PoC that successfully serves
remote blocks into a local file system, with future work including supporting writes,
improved caching mechanisms, and reflecting off-band changes between the remote
and local storage.
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Chapter 1

Introduction

The massive global scale of Big Data is increasing every year. Popular statistics
and infographics often showcase the amount of data, such as social media content,
emails, or videos, being produced, uploaded, and stored daily on servers around
the world. Such numbers are impressive, with trillions of gigabytes of data being
created each day and many companies storing hundreds of terabytes of data [30].
The increasing volume of Big Data raises the need for scalable, reliable, and cost-
efficient file systems and storages.

Distributed file systems, such as Google’s File System (GFS) [24] and Hadoop’s
Distributed File System (HDFS) [5] have decreased the burden of storage and
processing of Big Data by enabling distribution of storage and processing systems,
such as MapReduce, to be built on top of the file system. Such systems work
by distributing data and computation over many nodes, thus leveraging parallel
computation that can span thousands of commodity machines in a cluster. To
provide fault-tolerance, the file system’s data is replicated over multiple nodes
which take up considerable amount of excessive storage. Cloud storages, such as
Amazon Simple Storage (S3) [3], where immense amount of data can be stored for
a relatively cheap price, has aided in the reduction of storage cost for Big Data.

However, some data might not be suitable for storing on the cloud, such as
sensitive or confidential information, or frequent accessed data for computing jobs
(due to latency and cost of reading and writing to a remote cloud server). Providing
an efficient integration between local and remote storage, such as a cloud storage, is
a desirable feature in distributed file systems. Such an integration could be realized
by being able to mount a remote cloud storage into the local file system, providing a
seamless integration of mapping between local files stored in the cluster, and remote
ones stored in the cloud.

This thesis introduces such an external storage solution in HopsFS [42], a scale-
out metadata HDFS distribution developed at RISE SICS and Logical Clock AB.
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Figure 1.1: An example of a mounted external namespace in HDFS. The external
namespace is mounted into HDFS, which is added under the same HDFS namespace
as the local one. From HDFS-9806 [58].

1.1 Motivation and Scenarios

Currently, HopsFS, only supports storing data on their local environment, running
on the start-up’s cluster in the north of Sweden. For economical and practical
purpose, it is desirable, both from a user and organizational perspective, to off-load
and use the cloud for storage of data. For instance, an organization might already
keep data in a remote storage which they wish to integrate into the file system, or
they might want to backup archive data to a remote cloud storage. As different cloud
storage and providers are becoming popular, it would be desirable to implement
a provider agnostic solution that could be used with a range of different cloud
providers, or even other types of remote storages, such as external HDFS clusters.

Specifically, from a client’s perspective there are several scenarios where one
benefit from using a mounted remote storage;

1. Full cloud deployment. The client transparently interacts with the file system
which in turns communicated with the remote cloud store. From the client’s
perspective the data is stored in HopsFS. As opposed to current transient
cluster implementation in HDFS, where a client can communicate directly to
a remote storage (such as Azure HDInsight and Amazon EMR), a mounted
remote storage could enable the file system to cache frequently accessed data
locally, hold temporary data without persisting it to the backing store, and
lazily write-back application data to improve performance [11].

2. Hybrid Cloud Deployment. A client might not be permitted to store all
organizational data on the cloud, due to security or policy reasons. In such a
scenario one can deploy a hybrid cloud scenario, where some data are stored
locally in the file system and other in the cloud. Such clusters can still work
in union, with workflows being coordinated and prioritized between different
mounts.
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3. On prem-deployment. Even if a client does not use the cloud, mounted
storage deployment are still beneficiary. Organizations backing up their data
between geographical regions for availability and fault-tolerance (such as
Business Continuity Planning, BCP [11]) could use multiple mounts in one
cluster to seamlessly integrate between regions.

Being able to locally cache and store the result from pulled data from a remote
store will both increase the throughput, in terms of less round-trip-time of fetching
data from the cloud, as well as reduce the cost of transferring data to and from a
cloud provider. For instance, Amazon S3 (Simple Storage Service) charges a small
volume-based fee each time a client moves data out or into their servers. Therefore,
utilizing a local cluster as the computing medium for frequently accessed data is
both desirable in terms of cost, scalability, and performance. However, as discussed
in the next section, a seamless integration between a local and remote file system
poses new questions; such as how to synchronize data between them and ensure
availability.

1.2 Problem statement

The goal of this thesis is to develop a Proof-of-Concept (PoC) solution that enables
Hops File System (HopsFS) to serve blocks from a remote external provided stor-
age, which is to be mounted into a local HopsFS cluster. We may use the term
”provided”, ”remote”, or ”external”-storage interchangeable to describe a storage
that is physically located outside the local cluster. This remote storage may be
provided from a cloud vendor, another HopsFS cluster. The goal is to implement a
provider-agnostic solution, which can be configured to connect to different cloud
providers (e.g. Amazon S3, Microsoft’s Azure, Google Cloud) through provider-
specific connectors, provided by the vendor. We plan to implement the feature in
HopsFS and test it against Amazon’s object storage S3.

Specifically, HopsFS will treat blocks stored on the local disks of hosts managed
by HopsFS the same as blocks stored in an external block store. The client could
choose storage policy of the blocks, such as choosing offloading or backup of data
to the cloud and storing more frequently used data in the local cluster. Currently,
HopsFS has a periodic synchronization protocol to keep block data and metadata
up to date. This introduces problems of ensuring the availability, consistency and
integrity of block data stored in the external storage (such as S3). Such problems
will have to be taken into consideration when developing the solution, we will
investigate approaches taken into handling these problems. However, for the sake
of scope, the PoC will focus on a read-only solution for serving blocks from a
remote storage. Solutions for handling data consistency and synchronization will
be investigated and discussed, but implementing such tools are scoped outside this
project.

The research challenges of this thesis are to investigate and implement how a
POSIX compliant filesystem (e.g. strong consistency, semantics) can be use with
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an object store that does not enforce such consistency nor semantics, to enable
applications and clients to operate the same regardless of underlying storage system.
Is it viable, and how does such a solution perform?

In this thesis project we will research, implement, and evaluate such an integrated
external storage solution. We state with following research questions;

1. How can a distributed block based file system effectively be integrated
with an external object based cloud storage?

The first research question (RQ1) asks how an integrated storage solution can
be developed. It is critical to understanding the design of such an integration,
as well as how it can be done in an efficient way. For instance, caching
mechanisms might be a design choice to improve round-trip-time. We plan
answer RQ1 through a practical approach of the design and implementation.

2. What are the implications of such an implementation in terms of; data
consistency, data availability, and performance?

The second research question (RQ2) examines what the consequences are
of the provided solution. This will be done by benchmarking the solution
for its performance and investigating aspects in terms of data consistency
and availability. For instance, an S3 object storage have weaker consistency
models (eventual consistency) than HopsFS, a hierarchical file system with
POSIX semantics. This raises trade-off questions as of how to keep data
consistent between the two, e.g. if data is assumed to be available at all time
one will loose consistency. We plan to answer RQ2 through research and
tests.

1.3 Contributions

The scientific contribution of this thesis is to provide research and practical-based
knowledge of how an POSIX compliant filesystem effectively can be integrated
with a remote storage that does not hold such semantics. This will answer questions
of how this can be done and what consequences it imposes. For future develop-
ment of remote storage solutions, this thesis work could serve as a foundation
for understanding the requirements, implementation, and challenges of such an
approach.

From a practical contribution, this thesis work will provide Hops File System with
support of serving remote provided files. This will enable the local environment to
be integrated with a cloud or other remote storage system, allowing clients to access
remote storages through HopsFS. The thesis work will focus on investigating current
solutions, adopting, implementing, and testing them in the HopsFS architecture.
To test and benchmark the implementation against a live cloud vendor, cloud
connectors, which are not currently supported in HopsFS, will have to be integrated
into the distribution. Finally, a tool for scanning the external namespace (e.g. S3
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bucket) to identifying remote files and directories, along with storing their metadata
in HopsFS’s Network Database, will have to be implemented.
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Chapter 2

Background and Related Work

This chapter introduces a few relevant topics that the reader should be familiar with
in order to follow along with the rest of the thesis. We examine the background
and related work of distributed file system and cloud storages that enables the
development of the integrated remote storage feature into HopsFS.

The chapter starts with a general introduction to what file systems are in Section
2.1 Definitions of File Systems, followed by a preceding look into earlier systems
that has enabled the rise of HDFS in Section 2.2 Preceding Distributed File Systems.
Section 2.3 Hadoop Distributed File System (HDFS), details HDFS with important
topics that has been forked off to HopsFS, which is discussed in section 2.4 Hops.
Finally, Section 2.5 Amazon Simple Storage Service (S3) and other Cloud Storages,
investigates remote cloud storages and how to deal with the different consistency
semantics.

2.1 Definitions of File Systems

A file system is the method and structure of an operating system to organize files
and data on a disk [25]. There are a multitude of different filesystems, such as
NTFS, ext, fat, jfs, and many more. These have different semantics, features, and
capabilities (which are far outside this discussion) but share the fact that they are all
operating on the same partition (machine) and disk.

In a UNIX file system, an inode is a unique identifier for a file or directory. It is a
data structure that contains information about the specific file or directory, such as
its attributes and location. It includes metadata about the file, data describing the file
such as access time, modification, owner or permission. The file, pointed out by the
inode, is in term made up of blocks, a sequence of bytes which are determined by
the block size; the smallest read and write unit in the file system. Larger block size
increases performance for large files, since more time is spent on writing/reading
and less spent on seeking to the next file, while it wastes the remaining unused block
for small files (e.g. if a small file is 2 kilobyte (kb) with the block size of 32 kb,
then one waste 30 kb). These trade-off depends on the intended application and use
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of the file system.
In contrast to normal file systems, a distributed file system (DFS), sometimes

called a network file system, is a file system that allows multiple nodes to share and
access data over any location in a machine cluster. The nodes use network protocols
to communicate with each other for file operations, which may have different access
rights depending on the machine. The DFS nodes use the same semantics and
interface to transparently operate on the shared files as local ones.

2.2 Preceding Distributed File Systems

This thesis works with HopsFS, a fork of an earlier HDFS distribution. However,
there are a multiple of preceding systems that has inspired and enabled the develop-
ment of the current file systems, with properties of interest to our remote storage
feature. This section highlights some of these.

2.2.1 Andrew File System (AFS)

An early distributed computing environment developed at Carnegie Mellon Uni-
versity in 1983 was called Andrew [28]. Its distributed file system, Andrew File
System (AFS), was a pioneer to modern distributed file system, presenting a location-
transparent and homogeneous name space to the cluster machines. The goal was to
build a system for high-availability, scalability, high-performance, and fault tolerant.
One distribution at the universirty had over 25.000 nodes [39].

Built on top of a set of trusted servers, Vice, where each node ran the same
UNIX operating system (Berkeley Software Distribution), the operating system
intercepted and forwarded file system operations to user-level processes using the
Venus process. Venus acted as the cache manager for Vice and stored a cache of
remote files, reducing the amount of network operation to the Vice servers. AFS
also had benefits over earlier file systems in terms of scalability and security, using
Kerberos [41] (a network protocol for authentication) and permission based Access
Control Lists (ACLs) [38] (lists of user or system permission for an object).

Many features from AFS can be found in today’s distributed systems, where
some might be interesting for the PoC in this thesis. For instance, the local caching
idea from Venus will equally benefit a cloud integration. By preferring to read from
local replicas instead of remotely hosted ones we will both minimize the network
load as well as the economical fees of inter-cloud data transfer.

2.2.2 Coda

Building ontop of AFS, Coda [48] was developed at the same university but was
focusing on development towards mobile distributed computing (mobile as in the
terms of commodity machines, which was uncommon at the time). This moved the
focus to support for disconnected operations, where a system can function properly
without being connected to a network. This function is called ”hoarding”, and
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enables Coda to cache all files that are accessed on the remote storage, specified in
a text file. This raises a question how caching could be done in our feature, should
be cache all the remote data as in Coda, or only cache the accessed data. The most
probable answer would be to only cache the most accessed files. As ASF, Coda
provides client-side caching, and mounts its data under the ”global name space”
(/coda and /afs). All clients will be able to see the same files under the structure,
similar to how a mount can be done in our integrated storage solution.

2.2.3 ZFS

A file storage is usually made up of logical volumes and physical drives. ZFS
[47] is a unique system that acts as both of these, a file system combined with a
logical volume manager. Therefore, it knows both the physical drives along with the
complete status and health of the volumes. This enables ZFS to manage hundreds
or thousands of physical drives as a single entity, providing almost endless (256
quadrillion zettabytes) scaling capabilities. As it was designed to run on a single
server with an indefinitely number of pluggable storage drives, its goal was to
make sure that data could not be lost due to malfunctioning. To achieve this, ZFS
makes sure to uniquely verify and control each operation, taking necessary actions
to correct them if needed. Further, it provides many features such as self-healing,
snapshotting, cloning, and RAID capabilities [47].

For this thesis, ZFS is interesting since its capabilities of serving many hetero-
geneous storages are not unlike an integrated remote storage environment, where
the remote storages may be of different types and characteristics. This is similar
to the provider-agnostic approach that we wishes to achieve in our PoC, where the
remote vendor might be another distributed file system, key-value store, or cloud
vendor with different semantics.

2.2.4 Google File System (GFS)

Google File System (GFS) was developed to meet the increasing demand for
growing data processing needs at Google [24]. It was driven by observing workloads
in production at Google, which drove new design choices in comparison with
traditional distributed filesystems.

First, failures are seen as the norm instead of the exception. GFS was designed to
run on commodity hardware which drove the motivation of constant-monitoring,
error detection, fault tolerance and automatic recovery as key aspects [24].

Further, as files of multiple gigabytes in size are standard at Google, block size
and I/O operations were designed for large files. These files are mostly appended,
rather than overwritten, with practically non-existent random writes. Once written,
the reads are mostly sequential. Such observations lead to appending being the main
optimization focus for performance and atomicity guarantees [24].
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2.3 Hadoop Distributed File System (HDFS)

Hadoop’s Distributed File System (HDFS) is the underlying file system for Hadoop’s
distributed computing softwares. The filesystem is very similar to GFS but open
source. It was designed for storing very large files (terabytes) with streaming access
to data stored on clusters of commodity hardware that may fail often [58]. Due
to likelihood of failure, HDFS was designed for robustness with fault-tolerance in
mind, with features such as configurable Replication Factors (the number of copies
of each block), Rack Awareness (automatic rack placement on different physical
racks), and High Availability (support for multiple backup Namenodes in case of
failure). This section highlights the fundamental architecture of HDFS, displayed in
Figure 2.1.

2.3.1 Blocks

The files in HDFS are divided into blocks that are replicated amongst the nodes in
the cluster (default three per file). The blocks are typically 128 MB and stored as
independent units. The reason for such large blocks are to minimize seek time and
increase performance.

The advantage for abstracting files into blocks are several. Primarily, a file can be
larger than any single disk in the network since the blocks are distributed among the
machines. Block abstraction is also advantageous for storage management, since
their size is pre-determined they simplify computing of storage size and handling
of meta-data [58]. Further, blocks simplify replications as they may independently
be shuffled around the cluster while their replication factor are being monitored.
A block consist can be in any of the three replication states; under-replicated,
replicated, or over-replicated. HDFS will automatically take action to replicate the
under-replicated blocks or delete excess replicas, the block information are sent
from the datanode to the namenode in a process called block reporting.

2.3.2 Namenodes and Datanodes

In HDFS there are two types of nodes; namenodes and datanodes. The datanodes
store the actual data while the namenode manages the namespace and holds the
metadata about the files and directories. When a clients interacts with HDFS it
first asks the namenode for the file location, whom directs the client to the proper
DataNode to read and write from. See Figure 2.1.

However, The namenode in HDFS suffer from scalability issues. For instance,
since the metadata is stored in the heap of the namenode’s JVM, the heap size is a
limiting factor of the scalability of the namespace [52]. Another limitation of HDFS
is single-writer, multiple-readers, due to global locking of the entire filesystem [42].

Further, there are logging mechanisms in HDFS where the namenode logs the
changes of the metadata into journal servers to ensure high availability, using
quorum-based replication. These are later read and reapplied asynchronously by the
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Figure 2.1: The HDFS architecture displaying clients writing and reading from
a namenode and datanodes. From ”Hadoop documentation. HDFS Architecture
Guide” [45].

standby namenode. The configuration service Zookeeper is used to coordinate the
failovers of the active to standby namenode, as well as providing agreements on the
choice of the active namenode.

2.3.3 Heterogeneous storage types

The datanodes persist their blocks on underlying disk volumes, which are configured
as mount points [1] in HDSF. Heterogeneous Storage in the idea of being able to use
different kinds of storage media depending on their purpose in HDFS. The feature
was introduced in JIRA-2832, Enable support for heterogeneous storages in HDFS
[54]. For instance, machines with larger storage capacity but lower computing
power might be used as archive storage, while faster machines with less storage can
be primarily used for computing.

Heterogeneous storage added the new storage types ARCHIVE and RAM DISK
to the exciting types DISK and SSD. As the name suggest, the ARCHIVE type is
used for offloading data and has large storage capacity but little computing power.
The RAM DISK was added for supporting writing single replica files in memory
[54].

Previous Master thesis work has also been done at Logical Clock to implement
the Heterogeneous Storage in HopsFS [35]. This work will act as a pillar for the
addition of the PROVIDED storage type, which will point towards an external
storage and be implemented in this thesis project.

2.3.4 Storage policies

To determine between which storage types to use to store the block replicas, hetero-
geneous storage policies [1] was introduced with HDFS 2.1, and improved upon
in the heterogeneous storage release. They allow for specifying which preferable
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underlying storage type the replica should be stored upon, as well as a fallback type
for replica creation that does not succeed, which will be used if the preferred storage
type is out of space. These policies can be enforced at the start-up or at any time
during the lifespan of a file, and applies both to directories and all the files in them
[1]. See table 2.1 of a list of the supported storage policies (before implementation
of PROVIDED storage).

Policy name Block placement Fallback creation Fallback replication
All SSD SSD: n DISK DISK
One SSD SSD: 1, DISK: n - 1 SSD, DISK SSD,DISK
Hot DISK: n - ARCHIVE
Warm DISK: 1, ARCHIVE: n - 1 ARCHIVE, DISK ARCHIVE, DISK
RAID5 RAID5: n DISK DISK
Cold ARCHIVE: n - -

Table 2.1: Storage policies in HDFS.

2.3.5 View File System (ViewFS)

The View File System (ViewFS) is a relatively new ”file system” that was added to
HDFS to provides it with the capabilities of supporting multiple namenodes and
namespaces. ViewFS is a trivial filesystem in the sense that it only support linking
of other filesystems and does not have any internal functions [22]. In original HDFS
only one namenode is supported, which is a bottleneck for scalability and a single
point of failure. With ViewFS, HDFS federation was introduced which enables
multiple namenodes to operate independently without coordination of each other
(see Figure 2.2). ViewFS may be used to create personalized namespace views and
is analogous to mount tables in Unix systems [22].

In a HDFS cluster with enabled ViewFS, each namenode has an individual
block pool, referencing the blocks it addresses. Mount points are specified in the
standard Hadoop configuration files, with the prefix of viewfs://clusterX.
For instance, this will make ViewFS look in the mount table for the cluster named
”clusterX”, see Figure 2.2.

ViewFS benefits of increased scalability and isolation and function as a generic
storage service, which can be used for new file system to be added ontop of it.
For instance, in our case of a mounted remote storage solution, we could have
one remote storage mounted in one namespace which is controlled by a dedicated
namenode.

2.3.6 Cloud connectors in HDFS

Currently, there are a few cloud connectors implemented in the Hadoop codebase
that makes it possible for a client to read and write to an external cloud storage.
These work by using their respective Java SDK to communicate to the remote

12



Figure 2.2: An HDFS cluster before (left) and after (right) ViewFS is enabled.
The ViewFS enabled cluster displays multiple namenodes in one HDFS cluster,
instead of the traditional single-namenode architecture. From ”Hortonworks. An
Introduction to HDFS Federation” [53].

cloud service. At the time of writing (august 2018), the supported connectors are;
Amazon S3 (s3a://), Azure’s WASB (wasb://), Azure ADLS (adl://), and
Google Cloud Storage (gcs://) [27]. All of them have their separate module in
the Hadoop codebase, for instance, the S3 connector is found in the hadoop-aws
module.

The connectors work in a similar way where the client specifies a URL of
the resource to access. In the case of S3, the resource is a bucket (a storage
name space abstraction) with a following file name, hosted on Amazon Web Ser-
vices (AWS). For instance, a client specifying the read path to s3a://test-
bucket/testFile.txt will read the file testFile.txt from the bucket
test-bucket. From the client’s perspective, this is a transparent operation where
she only specifies the URL and retrieves the files in the HDFS file system.

Behind the scenes, when a client performs a REST call to an Amazon service
using S3A, the s3a prefix detonates that an instance of the S3(A) file system should
be created, S3AFileSystem, an implementation of the abstract FileSystem
class, see Figure 2.3, which is used to operate on the specified bucket address.
Following, when the client specifies an operation on the resource, the S3 file system
send an HTTP requests to the Amazon S3 REST API, returning the response to the
S3 client. To do so, the user must have configured her AWS credentials so that the
SDK can create a signature to sign the REST call [43]. For instance, a PUT request
will add an object to the bucket which can be accessed through a GET operation or
in the Web Management Console [51].

Since our Proof-of-Concept implementation is targeting testing with Amazon S3,
we will discuss their three available plugins; S3, S3N, and S3A [55].
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Figure 2.3: The cloud connectors in HDFS with their connection to their respective
external cloud storage through Java SDKs. Each implement the abstract Hadoop
FileSystem class. These include S3A, WASB, ADLS, and GCS. From ”Hortonwork.
Accessing Cloud Data” [27].

Amazon S3 connectors

S3 (s3://) was the first S3 plugin introduced in the Hadoop environment. It
implemented a block-based filesystem that was backed by S3, and was introduced
in 2006 when S3 had a limit on the size of their blobs [55]. Files were stored
as blocks and it could support larger files than S3 could at the time. The s3 file
system enabled Hadoop to be ran in Amazon’s EMR infrastructure, using s3 as the
persistent store [37]. However, its drawback was that it was incompatible with any
other application’s use of data in S3 (such as MapReduce) and also required that
a new empty bucket was dedicated to the file system [55]. It has since then been
deprecated and was removed in Hadoop 3.

S3N (s3n://) was the successor to S3 and was the first schema able to read
and write native S3 objects (”n” for ”native”). S3N introduced new features such
as compatibility with standard S3 clients and support for partitioned uploads of
multi-gigabyte files. It solved the compatibility problem of other application and
made operating on Hadoop in EC2 easier [37]. However, it suffered to known issues,
such as seek() being slow on large files due to reads always going to the end of a
file [17]. These relied on third party dependencies that introduced new bugs in the
code. It is no longer shipped with Hadoop 3.

S3A (s3a://) is the latest plugin and was introduced in Hadoop 2.7 as a re-
placement for the previous two. It has since then been the focus of all work and has
seen improvements such as; support for IAM and environment variable authentic-
ation, encryption of AWS secrets in Hadoop credential files, metric collection for
performance diagnostics and better error reporting and scalability [37].

The S3A client are under active deployment with security, scalability and perform-
ance being improved upon (for instance, see HADOOP-14831 [16] and HADOOP-
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13204 [15]).

Mapping directories in object store

An issue that arises when mapping a file hierarchy to an object store is that the object
store has a different semantic than file stores. For instance, Amazon S3 is not a file
storage, but an object storage. This means that there is no knowledge of directories,
which makes a direct mapping of directories structures difficult. To solve this, S3
connectors mimic the directories when a client creates (mkdirs), list, delete, or
renames an directory [17]. The consequences are several; directories might lack
modification time, meaning some applications that rely on this might not function as
indented. Further, operations such as listings and renaming on directories might be
slow and are non atomic, which can lead to problems in case of half-way failures.

Consistency issue

The arguable biggest drawback and problem of S3 is the consistency model. HDFS
is strongly-consistent, meaning data is updated atomically, while S3 is eventual
consistent (for performance and availability). This creates issues when updating
and deleting files in the object storage, a change might not be directly reflected back
to the client and can cause problems. New files might not be directly visible, delete
and update might not propagate directly, and delete and rename operations takes
proportional time to the number of files (due to recursive implementation) [17].

Authentication model

The authentication model of S3, and cloud storages in general, vastly differs from
the one of HDFS. User authenticate to S3 buckets using AWS credentials, and the
S3A plugin does not enforce any authentication.

Attempts have been done to try to solve these issues. S3Guard [40], developed
by Apache, and S3mper [57], developed by Netflix, are features that try to deal with
the eventual consistency issue by storing the object’s metadata of the S3 bucket in
a strongly-consistent, highly available database (DynamoDB). This also improve
performance, since the metadata is cached in the Dynamo database [36].

However, such solutions increase complexity by relying on another system in
order to handle the consistent metadata, requiring operations to go through the new
storage before accessing the data. It also poses a consistency problem between the
database and object store, regular synchronization are needed which brings extra
network operations and cost.

Stocator, An Object Store Aware Connector for Apache Spark [56] is an attempt
at solving these issues by taking advantage of object store semantics to achieve
high performance and fault tolerance [56] for Spark applications. It was announced
in 2017 and according to Vernik et al., it achieves better results than the Hadoop
connector;“18 times faster for write intensive workloads and performs as much
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as 30 times fewer operations on the object store” [56]. In essence, this is due to
Stocator taking advantage of object store instead of file system semantics, thus it
does not have to create and manipulate temporary directories and files. It might be
an interesting option for connecting via Spark application, but is still in early stages.

In this thesis we will use their work as an reference and build it into the HopsFS.

2.4 Hops

To overcome some of the limitations of HDFS, HopsFS has been developed. It
is an open-source fork of HDFS that stores the metadata in a separate Network
Database (see section 2.4.2), instead of in the heap in the namenode. This solves
the scalability issues of HDFS as well as providing faster queries performance. See
Figure 2.4 for an architectural overview of HopsFS and HDFS.

HopsFS also differ from HDFS in its fundamental locking mechanisms. Instead
of locking the entire directory tree (global lock), HopsFS uses more granular locking
on each subtree of the directory structure. This enables multiple-writer, instead of
only one writer at a time. Other changes include a Data Access Layer (DAL) that
every namenode uses to communicate with the database, hopsFS clients providing
load balancing between the nodes using normal, round-robin and sticky policies
[42], and the database being used for leader election of the namenode.

Figure 2.4: The HDFS and HopsFS architecture side-by-side. HopsFS support mul-
tiple namenodes (NNs) with the metadata stored in an external Network Database
(NDB), instead of the active namenode (ANN) with standby namenodes (SbNN),
and Journal/ZooKeeper Nodes for handling coordination. From ”HopsFS: Scaling
Hierarchical File System Metadata Using NewSQL Databases” [42].

2.4.1 HopsWorks

The data platform build on top of HopsFS is called HopsWorks. It is a web-based
user interface used for collaborative data science where users can upload and execute
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various big data jobs. HopsWorks supports running many services; such as Spark
[21], Flink [18], Kafka [20], and support for notebooks such as Jupyter [34] and
Zeppelin [19].

When a user uploads and store jobs in HopsWorks it sends the data down to
HopsFS, it is executed on the cluster (local or remote), and the result displayed in
the user interface (see Figure 2.5). HopsWorks further abstract Hadoop by providing
two abstractions; project and datasets. Users manage membership of projects
and scope access to the datasets. A user can have the role of ”Data Owner” (the
administrator) or ”Data Scientist”. These membership and security should be taken
into account in a provided store, where a remote storage medium (e.g. S3) might
have other type of permissions and security models. Ideally, a user should be able
to choose on what storage medium she wants to store the projects in the UI, such as
on local DISK, SSD, RAM, or at a PROVIDED storage such as in S3. The datasets
stored on the remote cloud storage that are mounted into HopsFS should therefore
be displayed in the UI.

2.4.2 Network Database (NDB)

Network database (NDB) is the storage engine of MySQL Cluster, a shared-nothing,
in-memory, highly-available, distributed, relational NewSQL database. MySQL
Cluster is used as the storage medium of metadata for HopsFS and consists of a
management nodes that manages the cluster, along with several NDB datanodes
that stores the table’s data and handles transactions. These nodes are grouped
where the size of the group is determined by the cluster’s replication factor. Each
group is assigned a partition of the tables’ data, and each node in the group holds
a complete copy of the shards given to the data group. All NDB datanodes also
have a transaction coordinator which enables queries to run in parallel with cross-
partitioned transaction [42]. It is extensible in the way that new nodes can be
added and removed at any time to a running cluster with rebalancing being done
transparently by the cluster.

Moreover, HopsFS abstract the tracking of the inodes (files/direcories in HDFS)
from the namenode into the NewSQL cluster. The inodes are partitioned into blocks
and each one of them is replicated on a predefined number of machines. Their
partitioned status (under-replicated, normal, or over-replicated) is translated into
tables in the NewSQL cluster. For example, an inode is stored as a row in a inodes
table and their associated blocks as rows in a blocks table. These are then used for
HopsFS fine grained row locking mechanism. Each transaction is translated into a
database operation, such as reading or writing from a block.
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Figure 2.5: HopsWorks GUI for datasets stored in HopsFS. The web page displays
the data sets which are shared between project members, such as data scientists and
data owners.

2.5 Amazon Simple Storage Service (S3) and other Cloud
Storages

S3, short for Amazon Simple Storage Service, is a highly-scalable, reliable, and
durable cloud object store on Amazon Web Services (AWS). It guarantees ninety-
nine with eleven nines (99.999999999%) of durability [3] and is designed to store
any amount and form of data in buckets, the storage abstraction of S3. Data in the
buckets are replicated across a minimum of three geographically separate physical
facilities within an AWS region, and can further be replicated across multiple regions.
Security, data-encryption, and access control are bundled with S3 by Amazon and
supports multiple international security standards and compliance certifications.
Further, AWS provides APIs to simplify transfer data between, out, and into the S3
clusters.

2.5.1 AWS Storage Gateway

Amazon Web Services has developed an option to integrate existing on-premises
IT environment into S3. This feature is similar to the one proposed in this thesis,
where S3 buckets can be mounted into an existing on-premises system. The gateway
provides features for storing either files (File Gateway), blocks (Volume Gateway),
or tapes (Tape Gateway).

The volume gateway is the most related ones to this thesis, which provides
cloud-storages volumes that can be backed as Internet Small Computer System
Interface (iSCSI) devices from the on-premises servers. The volume gateway can
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be configured for either cached volumes, where all data is stored in S3 but a copy of
frequent accessed data is retained locally, or stored volumes, where all data is stored
locally and the Volume Gateway configured to backup snapshots to S3. The two
configuration depends on use-cases, for instance, cached volumes offer more cost
savings of storages, eliminating the need for scaling the on-premises servers, but
provides higher latency access to the cloud stored data. On the other hand, stored
volumes offers low-latency access to the entire dataset, and uses S3 as an offshore
backup center.

Nevertheless, it is noteworthy that the Storage Gateway requires a Virtual machine
to be installed on the on-premises clusters, where the file needs to be transferred
to, for upload. It also includes Amazon’s pricing model and the user has to pay
for each transferred GB up and from S3 through the Gateway. In this thesis, we
are looking for a more general open source alternative that is mounted directly into
HopsFS, which does not require e.g. virtual machines.

2.5.2 Layering stronger consistency model on top of S3

From the S3 documentation,“Amazon S3 provides read-after-write consistency for
PUTS of new objects in your S3 bucket in all regions with one caveat. The caveat
is that if you make a HEAD or GET request to the key name (to find if the object
exists) before creating the object, Amazon S3 provides eventual consistency for
read-after-write. Amazon S3 offers eventual consistency for overwrite PUTS and
DELETES in all regions.” [12]. This means that data can be accessed at any time,
from any node, and is used to achieve high availability in S3. However, it implies
that an update to an object will eventually be available, it first has to propagate across
the clusters. This could lead to problems of data-loss or stale data, especially in
read or write heavy tasks such as data and analytic workloads [59]. A few libraries
has been developed to deal with S3’s eventual consistency “issue”.

Netflix’s S3mper

S3mper [57] is an open source library developed by Netflix that tries to deal with
S3’s eventual consistency issues in Netflix’s HDFS distribution. It does so by
storing the metadata of the object in an intermediate, read-after-write consistent,
high performance, DynamoDB database. The idea of S3mper is to identify when a
list operation to S3 returns inconsistent data and provide options to the job owner
[57]. A secondary index is stored in the noSQL database, which keeps the up-to-date
metadata to detects abnormalities. The ”source-of-truth” is therefor still S3, with an
additional layer of checking built on top (See Figure 2.6).

However, as S3mper requires an extra database for keeping data consistent, one
needs to maintain another system. As the authors point out, the tool is not intended
to solve every consistency problem, deletion of data outside of the Hadoop stack
will still occur in divergent of the secondary index. Further, directory support is
limited, since recursive listing is prone to consistency issues [57]. Obviously, the
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Figure 2.6: S3mper uses DynamoDB as an consistent metadata store between the
client and S3. Inconsistent operation are proxied through DynamoDB instead of
directly accessing the storage. From ”Netflix S3mper” [57].

client also has to pay for using the Dynamo database along with S3.

2.5.3 Amazon Elastic MapReduce File System (EMRFS)

Amazon Elastic MapReduce (EMR) [50] is a managed Hadoop framework running
on dynamically scalable virtual machines, Elastic Compute Cloud (EC2) [49]
instances, on AWS. It allows interaction with Amazon’s data storages, such as on
S3 and DynamoDB, with support for frameworks such as Spark [21], HBase [23],
Presto [14], and Flink [18].

The EMR jobs run ontop of EMR File System (EMRFS) [2], Amazon’s im-
plementation of HDFS which guarantees read-after-write consistency with their
storages. It is similar to S3mper in the sense that when a client creates a EMR
cluster with consistent view enabled, a DynamoDB database is used to keep strong
consistency. The read and write capacity of the database can be configured (default
500 read, 100 writes) depending on the number of object that should be ”tracked”
and stored in the database. EMRFS only ensures that the objects in the tracked
folders being are kept consistent [2]. Capacity and other configurations can be
specified using the provided command line interface.

EMR is a popular choice for running MapReduce jobs on top of S3. However, it is
a closed source implementation and does not support jobs running outside of AWS,
such as in a local HDFS distribution. For the Proof-of-Concept implementation
in this thesis, as we desires to pull data from S3 into the local HopsFS cluster, we
primarily focus on storage of data and not MapReduce jobs. Running heavy I/O jobs
is not desirable if the data is remote on S3, since this would require considerably
network bandwidth and round-trip-time. Instead, running heavy I/O jobs should be
done on locally cached data. If one desires to run such jobs, the remote data should
be pre-fetched into the local HopsFS.
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2.5.4 Google Spanner

Google has also tried several approaches to achieve consistent listing across their
cloud service; global caching, porting S3mper, and storing persistent listings along-
side the data. However, these were all suboptimal and required extensive porting
work or relied on a single point of failure [59].

With Spanner [59], Googles globally distributed and strongly consistent relational
database, the eventual consistency issues were solved. It is specialized for horizontal
scaling whilst providing high availability and strong consistency. To provide the
consistency guarantees it uses TrueTime [4], a highly available, distributed clock
which runs on all Google’s servers. TrueTime enables applications to generate
monotonically increasing timestamps, a timestamp T that is guaranteed to be higher
than previous T’ iff T’ was generated. This guarantee holds throughout all servers
and timestamps. It is used by Spanner to assign timestamps to all transactions,
enabling its strong consistency guarantees. The ordering is given to all clients
across all regions due to Spanner keeping multiple immutable versions of data
(multi-version concurrency control), enabling consistent reads and non-blocking
writes [4].

The consistency guarantee provided by Spanner is called external consistency,
where the system behaves as all transactions are executed sequentially even though
they run in parallel. Specifically, if one transaction is finished before another one
starts to commit, the system guarantees that no clients can see the effects of the
second transaction but not the first. According to Google, even though the strong
consistency guarantees and behaviour of a single-machine database, Spanner still
provides performance in the likes of databases with weaker consistency models
such as eventual consistency [4].

2.5.5 Azure Data Lake Store (ADLS)

To meet the broad spectrum of Big Data analysis at Microsoft, Azure Data Lake
Store (ADLS) [46] has been developed. It is a successor of Cosmos and a fully-
managed, elastic, scalable and secure filesystem which supports both Cosmos and
HDFS semantics. It brings together components from both Cosmos and HDFS
to create a unified platform for internal and external workloads, acting as a new
warehouse for data and analytic at Microsoft.

ADLS was designed with a microservice arcitecture, where services for trans-
action, data, block management etc. are decoupled from the physical clusters of
the stored data. This architecture differs from the transitional HDFS clusters where
each service is running on the cluster machines (such as on the namenode).

ADLS is similar to a heterogeneous and provided storage concept in the way
that it seeks to provide tier and locality transparency. It acts as a HDFS compatible
filesystem layer between Hadoop workloads operating in the cloud (on Azure public
compute), and on-premise HDFS clusters, through Azure’s cloud connectors. The
work has been largely adopted and inspired by the Hadoop open-source community,
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such as by the tiered storage, discussed in 2.3.3. The motivation of implementing
tiered storage were three-fold [46];

• The overhead of moving data from the cloud storage into the local compute
tier negatively effects the analytic job performance.

• Fine-grained file managers are required to be ran to determine where the jobs
are stored to collocate computing.

• Users must explicitly manage data placement, consider security and access
control as data moves between services and software boundaries.

This was simplified by ADLS by letting the system manage data locality between
clusters based on higher-level policies specified by the user. Policies to balance
storage cost and set the trade off between local and remote stored data are handled
by the user, whilst security and compliance is handled by ADLS. If relevant data is
only available on the remote storage it is automatically fetched on-demand into the
required cluster machine.

Further, ADLS supports the concept of partial files, a sub-sequence of a file that
can be stored on different storage medium. A file in ADLS is internally represented
by an unordered collection of partial files, each uniquely identified by an ID. This
concept is not exposed to users and enables splitting of files onto different storage
tiers, each with their own storage provider. ADLS is interesting since it interoperates
the provided storage concept which we wish to implement in HopsFS.

22



Chapter 3

Method of Provided Storage
Implementation

In this chapter we explain the method of the remote provided storage implementation
to answer RQ1. We are basing the work on HDFS-9806 [11], adopting and extending
it to work with HopsFS, while highlighting the design choices and challenges of the
implementation.

The chapter starts by explaining the general design of the solution in Section 3.1
Design, followed by the architecture in Section 3.2 Architecture, and finally the
details of the implementation in Section 3.3 Implementation details.

3.1 Design

In the Proof-of-Concept implementation, the client will only enable retrieving and
reading from the external store, thus reducing handling of race-conditions and
inconsistent data. Writing to the external store needs efficient handling of different
consistency levels, which research proved requires external tooling (such as S3mper
or S3Guard, chapter 2.5.2). Handling this will be out of scope of the PoC. However,
integrating and layering such a consistency framework should not be difficult since
they are designed to plug into Hadoop distributions that are using S3 connectors.
It may also be possible to use HopsFS’s Network Database (chapter 2.4.2) as the
single source of truth for keeping consistent metadata, although, this would require
frequent synchronization between the external cluster and HopsFS - which may
not be desirable in a cloud scenario due to multitude of network requests. For the
moment, we will focus on how to design a system for access, read, and store data
from an external storage, to answer RQ1.

3.1.1 Provided storage type

In HopsFS, storage types specify the type of storage where a block resides, currently
these are DISK, ARCHIVE, SSD, RAM DISK. In the PoC, we add a new stor-
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age type called PROVIDED amongst the existing ones which specifies that a block
is stored on a remote provided storage.

A datanode in the cluster can be configured to host a provided storage (we call
such a datanode a provided datanode), which enables it to access the PROVIDED
blocks through a provided store client. The client is provided specific and depends
on the remote storage to be used, such as S3A in the case of an S3 storage (see
Section 2.3.6). The PROVIDED storage type makes no assumption of the underlying
implementation besides that the block is coming from an external namespace and
should be treated as such.

The namenode assumes all PROVIDED blocks from a datanode as valid, based on
the assumption that the remote store has high durability and availability (e.g. 99.99%
and 99.999999999% for S3 [26]). This eliminates the need for the provided datanode
to include the PROVIDED blocks in the block report, the periodic synchronization
of blocks and metadata between datanode and namenode, allowing scaling to large
external storage by paging in data as needed with minimal overhead [11]. If we
instead choose to include all the remote blocks in the reporting, it would case
significant overhead when using a large remote storage.

3.1.2 Alias map design

Currently, HopsFS makes no assumptions of the physical locations of where current
block are stored. The identifier pointing out that a block resides on a remote
namespace, is the PROVIDED storage type of the block. However, to be able to
identify the location of such a remote block, e.g. that resides at a different URL than
the local file system, a mapping between the local block and the remote object has
to be implemented. This map is called an alias map [11] since it maps block aliases
to block locations, and modelled as a key-value store. The alias map maintains
the mapping of local PROVIDED blocks to remote object in the external store and
is used to lookup block location before consulting the remote storage client (see
Figure 3.1).

Specifically, an object in a remote store is modelled and corresponds to a file
region in the local storage. The file region is identified by an URL that points towards
the data, an offset, a length and a nonce. This information is stored as a tuple in
the alias map (see Table 3.1). The nonce can be thought of as an unique identifier
of the metadata that identifies the version of the file, similar to a generation stamp
in HDFS. The nonce is based on the assumption that the external store exposes
modification information by timestamps, unique IDs per file/directory, or other
means, i.e. if the file version is changed the nonce will differ. The nonce can be
used to detect block data inconsistencies, for instance when serving read requests.

Initially, the alias map can be stored in-memory as an service running in the
file system and shared between all datanodes in the cluster. A csv text file can
be used to hold the mapping between the blocks and file regions (see Table 3.1).
However, storing the map in a text file will not scale to multiple provided datanodes.
Further, adopting the design to HopsFS, the alias map may be implemented and
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ID URL offset length nonce
10725 s3a://bucket-1/file_0.txt 0 1024 1001
10726 s3a://bucket-1/file_1.txt 0 512 1001
10727 s3a://bucket-2/script.js 0 2048 1001

Table 3.1: An alias map example containing the ID, URL, offset, length, and nonce
to uniquely identify a block in a remote storage.

stored in the external Network Database (NDB) instead of in-memory, reducing the
memory consumption of the Java Virtual Machine (JVM). Such an implementation
makes sense for production environments, where a client might store hundreds or
thousands of files in the remote storage, while in a small PoC environment the extra
memory consumption of storing the alias map in the NDB will be indistinguishable.

3.1.3 Design benefits

The above design choices have several benefits;
Primarily, the new PROVIDED storage type is storage agnostic. Instead of a

provider specific solution, this general type enables pluggable storages, such as
different kind of cloud providers or key-value stores to be used under the same
storage type. The namenode is only aware that the block resides in a provided
storage, and the only changes of serving a block from another storage is changing
the URL prefix (s3a://, wasb:// etc.) to use that client and cloud connector. The
provider specific implementations are then handled by the provider client, such
as S3A. Overall, this enables code re-usability and decoupling as it builds on the
heterogeneous storage type.

The implementation extends features from HDFS. Since the provided storage is
participating as a storage tier added to the heterogeneous storage, it can uses familiar
features and policies, such as storage-level quotas which limit on the number of
files and space in a directory and storage placements policies (Section 2.3.4).

The design is transparent to users and applications. These do not need to know
if the data is local or remote since this is abstracted by the unified namespace where
data locality is handled by HopsFS. This enables applications to operate as usual
without having to care for the underlying storage type.

Finally, enabling caching and prefetching of local data from the remote store
could be added to the solution to improve performance due to minimizing remote
storage round-trip-time. Frequently accessing a remote versus local block might not
be ideal for performance reasons, and the performance impact will be benchmarked
in the following evaluation chapter. For now, prefetching is not part of the PoC.

3.1.4 Design challenges

The design of a final solution poses multiple challenges and questions, such as;
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How to synchronize metadata without copying data? We want to dynamically
page in the blocks on demand, without having to copy data from the remote store.
For instance, if the remote storage contains 100.000 files, we do not want to move
in all the redundant data due to storage capacity overload. This requires policies for
prefetching and evicting local replicas (i.e. caching eviction).

How to mirror changes in remote namespace? Since data in the remote namespace
can be changed and modified by other users, this should be identified by the client
and reflected accordingly. The cluster should be able to handle out-of-band churns
in the remote storage in a defined way.

How to handle writes consistently? New writes has to maintain file-to-object
mapping and make sense to a provided storage. A direct writing of blocks to the
object store will not work because of the different underlying storage models.

How to enable dynamic mounting? Mounting of the remote storage should be
done in an efficient and clean behaviour. Common accepted standards and concepts
for mounting should be kept, such as directories and hierarchies of installed files.

As discovered, the design challenges are many of an provided storage solution,
motivating our design to focus on the core functionality of being able to mount and
read from a generic external namespace into the local cluster. The mounting will be
done with a recursive creation tool (fs2img), discussed further in the implementation,
and we will focus on supporting translating, store, and read the files from the
provided storage into HopsFS.

3.2 Architecture

This section handles the architecture of the provided storage Proof-of-Concept
implementation. We try to keep the architecture close to HDFS-9806 [10] to
enable easier code maintenance (e.g. simplifying integration of future upgrades and
reflections in the Hadoop code base). However, since HopsFS is an older fork of
a HDFS release (around version 2.3, whilst currently being upgraded), the code
between the two has heavily deviated, and newer features that exists in HDFS does
not exist in HopsFS, and vise verse. The fundamental architecture between the
two is also different, since HopsFS relies on storage of metadata in an external
database instead of in the JVM of the namenode (see Chapter 2.4 for more details).
Therefore, a lot of work has gone into reviewing and adopting a multitude of filed
issues (JIRAs) to fit their needs in the HopsFS architecture to be able to support
provided storages. We highlight two crucial JIRAs and changes that have been
implemented and adopted into HopsFS;

1. HDFS-9809 - Abstract implementation-specific details from the datanode
[31].

This JIRA aims at abstracting away file specific details from the datanode to
enable storage medium that do not follow HDFS semantics. For instance, a
file stored in S3 might not have its data represented as Java Files (as default

26



in HDFS) but as an URL. We model this as a URL pointing to a bucket, with
an offset pointing to a specific block (see design choices above). Further,
volumes might not be divided into directories as assumed by a local HDFS
cluster. This JIRA abstracts such details to be provider handled based on
filesystem semantics.

2. HDFS-7878 - API - expose a unique file identifier [13].

Files in remote provided storage that do not enforce HDFS semantics will
have to be uniquely identified. This JIRA exposes a unique inode ID as an
API, which is used as the nonce for correctness in the provided storage. The
nonce can be thought of as a generation stamp of the block. This makes sure
the correct version is returned and have not been modified, preventing reading
of stale data. The nonce will play an important role when synchronizing
between remote and local storages, such as when reflecting changes from the
local data in the remote storage. For the moment, we ignore the nonce since
we do not reflect changes in the remote store.

Figure 3.1: An architectural overview of a HopsFS cluster with enabled external
provided storage. A read scenario from a client to a remote block is displayed in the
image. Modified from ”HDFS-9806” [11]
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3.2.1 Read scenario

The flow of reading data from the external provided storage in a HopsFS cluster,
displayed in figure 3.1, is discussed below;

1. The file system client, DFSClient, calls getBlockLocations(provided -
file) to the namenode. To identify blocks available from the provided
storage the namenode (NN).

2. The namenode in turn calls the Network Database (NDB) with findBlock-
ById to retrieve the metadata about the datanode reporting the block(s) for
the provided file. The namenode returns the metadata of the located blocks,
containing the datanode(s) (DN1) where the block(s) (blk1) are addressable
along with its storage type (PROVIDED).

3. The client consults the datanode (DN1) to read the block (blk1) in readB-
lock(blk1). The datanode will now resolve the physical location and file
region of the provided block by consulting the shared alias map.

4. The datanode addressing the provided block consults the alias map, which
could be running as a service in the memory of the namenode or be stored
in a csv file, to retrieve the FileRegion which corresponds to the provided
block in the remote storage. The file region, containing the tuple to identify
the remote object in provided storage, is returned.

5. The datanode reads the external provided storage with his provided store
client, using the metadata returned from the alias map as parameters in
read(uri, offset, length, nonce). This step is provider spe-
cific as it depends on the provided store client, e.g. S3A, to call its respective
REST API. The data is returned back through the provider client. At this
final step, data could potentially be cached in the local disk storage of the
datanode.

3.3 Implementation details

To enable the provided storage implementation new classes has been integrated and
a few architectural changes has been made to fit the HopsFS architecture. Figure 3.2
displays a diagram over most of the new classes that has been added, or modified, to
support storage and handling of provided blocks. We will in this section go into the
various details of the most important changes. Many classes build upon previous
abstractions and thus re-use the same functionality.
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Figure 3.2: An overview UML diagram of the provided storage architecture. It
displays the relationship of new and changed classes that has been adapted to support
the provided storage feature.

Provided storage map

The class that stores the map of local and provided storages is ProvidedStor-
ageMap, which allows management and multiplexing between datanode’s local
to provided storages. The namenode keeps the only reference to the map (in the
BlockManager), and uses it when a node is to be added, retrieved, or removed
from any storage. The class contains logic for checking if a storage is of the
PROVIDED type, and if so, will receive the provided storage information from the
provided datanode descriptor, ProvidedDescriptor, a class that keeps track
of datanodes with provided storages.

For example, if a client wants to receive information about a file stored on a
provided storage, the namenode consults the map for the storage, and returns the
storage information from the provided datanode descriptor which addresses the
provided storage. Basically, the logic for retrieving the provided storage map from
the provided datanode descriptor is bundled in this class.

Specifically, the class contains the inner classes ProvidedDescriptor, used
to keep track of datanodes with provided storage (kept in a list), Provided-
DatanodeStorageInfo, an implementation of a provided datanode storage,
and a builder for creating provided located blocks (blocks that are associated with
datanodes). To summarize, the class is used for keeping track of the provided
datanodes and associated provided storages.

Provided volume

The client to a provided storage has been implemented in ProvidedVolumeImpl.
Its purpose is to create and store provided replicas and it is used when building
provided volumes. It is a subclass of a general file system volume, FsVolume,
which represents a general underlying volume to store replicas in, and therefore
maintains the same functionality, except for the following changes;

The inner class ProvidedVolumeDF is added to keep track of usage statistic
for provided volumes. For now, this simply includes the space used of the provided
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volume (represented as a long).
The other new inner inner class, ProvidedBlockPoolSlice, represents a

portion of the block pool stored on a provided volume. This is the important class
that stores and interacts with the alias map and replica map to resolve blocks to file
regions (step 4 in Figure 3.1). The provided volume also contains the iterators to
iterate over the provided blocks in the file region.

3.3.1 Alias map implementations

The alias map contains the mapping between blocks and file regions in the provided
storage and is shared between the namenode and datanodes. Currently, the im-
plementation supports storing the mapping between blocks and file regions in a
text file, TextFileRegionAliasMap, or in-memory of the namenode in the
InMemoryAliasMap. Figure 3.3 displays the overview architecture of the alias
map in terms of classes and protocols (see appendix A. for larger illustrations).

Figure 3.3: A UML diagram of the complete alias map architecture, containing the
block and in-memory alias map implementations.

Block alias map

The abstract class BlockAliasMap is the super class of the block alias map imple-
mentations; TextFileRegionAliasMap and LevelDBFileRegionAli-
asMap with its client InMemoryLevelDBAliasMapClient (see Figure 3.3).
This abstract class provides a template for how to interact with the alias map imple-
mentation through a generalized reader and writer. The reader has functionality for
resolving a block to a corresponding alias and the writer stores the alias with the
associated block.

In practice, the alias can be a file region or any other identifier, depending on the
alias map implementation. The client will send the reader the provided block to be
resolved in Optional<U> resolve(Block b), the reader iterates over the
alias, and if found, returns the matching alias of the block. Similarly, the generalized
writer takes an alias in void store(U alias), appends the associated block
with the values of the alias, and stores it in the implementation specific way. Figure
3.4 displays the simple flow for reading and writing to an alias map, and the simple
API for interacting with the alias map can be found below;

/*
* @param b is the block to resolve in the alias map.

* @return BlockAlias corresponding to the provided block.
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Figure 3.4: Sequence diagram of the read and write flow to an level DB alias map.

*/
public abstract Optional<U> resolve(Block b) throws

IOException;

/*
* @param alias is the general file region to store in the

alias map.

*/
public abstract void store(U alias) throws IOException;

Text file region alias map

A text implementation of the alias map is TextFileRegionAliasMap. It
stores and loads the mapping of blocks to file regions as blockID, path, offset, length,
nonce in a .csv file, and uses its reader and writer to interact with the file. The
class is suitable for testing, but since it only stores the mapping in a physical file it
will not scale beyond a single node, and is not suitable for multi-node production
environments. The client can specify the path to the file as well as the delimiters to
use (defaults to comma) to point the location of the map.

In-memory alias map

The InMemoryAliasMap implementation is better suited for production environ-
ment than the previous text version. Instead of keeping the alias mapping in a file, it
runs an alias map service in the memory of the namenode, storing the mapping in a
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Figure 3.5: The complete in-memory alias map architecture containing the server,
client, and translators

levelDB [9], a key-value store that provides an ordered mapping from string keys to
string values. The key is stored as a byte array representing the given block, and
similarly, the value a byte array of the file region. These pairs are converted to and
from protocol buffers (protobuf), a language and platform-neutral mechanism for
serializing structured data [8]. Utility methods are used to convert the block and file
region to and from the protocol buffers byte arrays.

In-memory alias map protocol

This is the top hierarchy interface of the in-memory alias map implementation. The
client and the server implements the protocol and use it to communicate with the
map. The protocol is simple, containing method for listing, reading, and writing a
block to location;

IterationResult list(Block marker)
void write(Block block, ProvidedStorageLocation location)
ProvidedStorageLocation read(Block block)

Noteworthy is that the iteration result of the list is an inner class (IterationResult),
containing a batch of file regions and the next block to read from. The returned
block is used as a marker by the client to know where to start the next listing from.
The ProvidedStorageLocation is the implementation of the file region, but
serves the purpose of addressing a location through a path, offset, length, nonce.

Client and server side translators

The InMemoryAliasMapProtocolClientSideTranslatorPB translates
and sends request from the client to the sever (see Figure 3.5). For readability
we will refer to this class as the ”client translator”. Similarly, we refer to the
server side translator, AliasMapProtocolServerSideTranslatorPB, as
“server translator”. The client translator configures the client side RPC proxy,
through the common interface AliasMapProtocolPB, connecting with an stat-
ically configured socket IP address. The client translator then serves the purpose of
translating client requests to and from protocol buffers and sending them to the in-
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Figure 3.6: A sequence diagram displaying the read request flow from the client
translator.

terface. Similarly, the server translator implements the AliasMapProtocolPB
and decodes the messages on the server side and forwards them to the in memory
alias map implementation, InMemoryAliasMap.

Figure 3.6 displays the flow diagram of a simple read request from the client
translator. First, the translator uses a builder pattern to build the protobuffers (1.1).
Then, the translator proceeds to converts the client request (list, read, or write) into
protobuffers, using the helper class PBHelperClient (1.2). With the converted
protobuf, the translator calls the RPC proxy AliasMapProtocolPB, which
implements the BlockingInterface, with the read request (1.3).

In-memory alias map server

For the client to interact with the InMemoryAliasMap an RPC server is needed.
This is done through the InMemoryAliasMapServer, which implements the
InMemoryAliasMapProtocol. The class holds the RPC server for the alias
map, as well as the reference to the actual InMemoryAliasMap. Further, it
contains functionality for starting and stopping the RPC server, listing the aliases,
and calling the resolve and store methods in the InMemoryAliasMap. The
reference to the class is kept by the namenode whom also controls when to start and
stop the RPC server.

In-memory alias map client

The client of the InMemoryAliasMapServer is used by the datanodes and
the image creation tool, fs2img (see section 3.4) to store and retrieve file re-
gions based on given block. Specifically, as this client class extends the abstract
BlockAliasMap, it contains the same interaction functionality as previously
described.
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3.4 Image creation process

A tool for creating snapshots of namespaces introduced in HDFS with the provided
storage is fs2img [33]. The tool iterates over a given remote filesystem by URL
and creates a mirror image of the filesystem while populating the alias map, mapping
blockIDs in the generated image to file regions in the scanned remote filesystem.
As pointed out earlier, file region contains the URL, offset, length that
uniquely identifies the remote sequence of bytes in the remote storage, along with
the nonce that verifies that the region is unchanged since creation. Once created,
the namenode and datanode has to be configuration to reference this address space
and restarted to update their view of the remote namespace.

The scanning tool works by sending an list request to the remote storage client’s
API, retrieving a tree-hierarchy of the directories and files in the namespace. For
each scanned node it saves the metadata as an inode and block file entry, writing
the content to an image file. The file is then scanned upon cluster start up by the
namenode, which uses journal logs to append the new snapshot information.

However, this approach of the fs2img does not work in HopsFS, since it does not
support journal logs nor image snapshots, these are unnecessary as the metadata is
stored in the Network Database (chapter 2.4.2). We redesigned the tool to, instead
of creating a snapshot and storing the metadata in a file, write it directly to the
database. This different approach can enable fs2img to be executed on-demand over
the remote namespace, adding metadata as needed to the database and cluster. We
would not need to restart the cluster to gain new information or add out-of-band
chunks, as we can simply rerun the tool in a live cluster (or invoke a thread that
periodically runs it).

Example run in HopsFS

Suppose we have a bucket called ”provided-test”, containg a folder called ”hej”,
with a file inside it called ”build sh.txt” (the extension is irrelevant). We now want
to pull this namespace into the local HopsFS cluster. To do this we can run the
following command:

$ fs2img -b TextFileRegionFormat s3a://provided-test/

Executing the above command, the tool first realizes that the prefix s3a://
means that the S3A file system client should be used. It will create an instance
of the class, S3AFileSystem, which is set as the file system client to inter-
act with during the run. Then it sends an HTTP list request through the client
which consults to the Amazon S3 API, returning the metadata hierarchy of the
s3a://provided-test/ bucket. It proceeds to iterate over the hierarchy, sav-
ing each inode (directories or files) and its blocks (data object) to a data structure.
When done, the structure with inodes, blocks, and users, are persisted to NDB
through the corresponding ClusterJ clients. The metadata of the file has now been
fetched from the S3 bucket and stored in the alias map and persisted in the database.
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Figure 3.7: A screen shot from Amazon S3 displaying a file stored in a directory,
about to be pulled into the local HopsFS through the scanning (fs2img) tool.

The above run is visualized in Figure 3.7, and the result can be seen by inspecting
the created alias map csv file that contains the blockID, path, offset, length of
”build sh.txt”:

1073741825, s3a://provided-test/hej/build sh.txt, 0, 245
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Chapter 4

Evaluation and Analysis

This chapter evaluates and analyses the implemented remote storage solution to
answer RQ2. We start by benchmarking the performance of the implementation
against a remote S3 bucket in Section 4.1 Benchmarks, followed by the unit tests in
Section 4.2 Tests that has been implemented to ensure the correctness of the solution.
Section 4.3 Discussion finishes the chapter with an analysis of the data availability
and consistency aspects from RQ2.

4.1 Benchmarks

To test the performance of the provided storage solution, a couple of benchmarks
have been concluded. This section details and discuss the various ones.

The benchmarks has been performed against an S3 bucket hosted on the AWS
availability zone EU-WEST-1 (ireland), accessed from a local HopsFS distribution
(in Stockholm, release version 2.8) with a latency to the bucket of 30ms, through the
cloud connector S3A (release version 2.7). The machine running the benchmarks
is a commodity laptop with [Intel(R) Core(TM) i7-4510U CPU @ 2.00GHz x 4,
8GB RAM, 350 MB/s SSD Storage] on Ubuntu 16.04 with a network download rate
of about 210 mbit/s. It should be noted that these tests are by no means extensive
as they are executing on a single-machine environment, running them in a live
production cluster will likely produce different results. However, they should act as
a solid base line for understanding the performance of the implementation.

The setup of the benchmarks is following; n datanodes has been created, with
at least one serving a PROVIDED location (DNprovided), and n - DNprovidedserving
a DISK location (DNdisk). The DNprovidedhas been configured to point its storage
location to the remote S3 bucket, whilst the DNdiskpoints it towards the disk on the
local machine (note that we do not specify an SSD storage type, but since our local
machine does not have HDD drives, as default for DISK storage, the DNdiskwill use
SSD). They both use the Network Database for storage of metadata and operate as
normal datanodes in HopsFS.
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4.1.1 Read over size performance

This benchmark has been concluded to test the average read performance of files
of increasing size from the remote S3 storage versus files that resides in the local
HopsFS file system. As seen in Figure 4.1, 99 files of increasingly size of 1 kilobyte
- 90 megabytes has been read from the storage, each file has been read ten times,
with the average plotted in the graph.

Figure 4.1: Graph displaying the time to read bytes from a remote (provided) storage
versus local (disk) file. The x-axis displays the increasing storage size in kilobytes,
with the read time in milliseconds on the y-axis.

As seen in the graph, the read performance of the DNdiskis almost a magnitude
faster than of the DNprovided(note the logarithmic axis for comparison). We see
that the read from the provided location has a fixed starting bound of around 150
ms, likely due to the latency of setting up of the connection to the remote S3
storage through S3A. The read time increases at around 1 megabyte file size (1000
kilobytes in the graph) and continues to grow linearly. This shows us that files of
<1 MB might not make sense for frequent reading from a remote storage, due to
the overhead.

4.1.2 Replication as caching

Due to the substantially slower performance for reading from the remote storage,
caching the blocks on a local storage is desirable for speed up. However, due to
time constrains, automatic caching mechanisms of remote replicas has not been
implemented in our PoC (current work in Hadoop is being done on this, see HDFS-
13069 [29]). In spite of this, replication of a PROVIDED block can be enforced
from the client by setting the replication of the block to >1, prompting HopsFS to
replicate the block to disk on a DNdisk. Subsequent reads from the block will then
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go to the DNdiskand the disk speed up will be achieved (the next datanode to read
from are sorted by network distance, and PROVIDED storages are always marked
as being furthest away from the client).

The graph in Figure 4.2 shows this behaviour when a remote 100 MB file is
replicated on a DNdisk(after read number 10 on the x-axis). An interesting behaviour
is that the performance of subsequent reads to the local replica is even further
increased, achieving a throughput of over 1000 MB/s (notice the drop from 4553,
1848, to 141 ms). This is due to HopsFS utilizing the Operative System (OS) Buffer
to cache the local replicas in RAM. On average, the replication of ten remote versus
local reads achieves a speed up of 39x in our benchmark, see Table 4.1.

Figure 4.2: Graph displaying the time to read a file from an external storage which
gets replicated onto a local disk. The x-axis display each read, and the y-axis the
time in millisecond of each read.

Replica location Average read time Throughput Speed up
Remote 25759 ms 4 MB/s 1x
Local 736 ms 156 MB/s 39x

Table 4.1: Average read time remote and disk replica.

Observing the speed up by replicating a block from DNprovidedto DNdisk, it raises
the question of how long time such a replication takes. Figure 4.3 displays the
replication time of replicating a block of size 0 - 80 MB from a DNprovidedto DNdisk.
The minimum replication time of the benchmark is 6.5 seconds for an empty file,
with an linearly increasing replication time (the copying the blocks) of about 3.5
MB/s.
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Figure 4.3: Graph of time to replicate a file from a provided datanode (DNprovided)
to a disk datanode (DNdisk). The x-axis shows the size in megabytes of each file,
and the y-axis the time to replicate the file.

4.1.3 Scanning tool performance

The tool responsible for iterating over the remote namespace, fs2img, has been
benchmarked by scanning the bucket. The benchmark measures a run of the tool
over the bucket; the time of scanning the remote bucket and storing the object
metadata (user, group, inode, and blocks) into the Network Database (NDB). The
NDB is running in a cluster in the same building as where the test have been
concluded, with a latency of 5 ms.

Figure 4.4 displays a bar chart of scanning an increasingly large bucket. The
test has been done to measure how the performance of an increasingly large bucket
affects the scan and persist time of the fs2img tool. In the graph, the the linearly
increasing Storage size (mb) displays the total size of the bucket, where the bars
consist of the time of scanning the bucket, Scan time, with the additional time of
persisting the found metadata to the NDB, Persist time. Since the scan time is
dependant on network requests (HTTP HEAD) through the S3A to retrieve the
object’s metadata, the spiky behaviour is likely caused by a fluctuating network
connection, where latency spikes resulted in a ten folded increase of scan time.
However, the persist time constantly totals of a small amount of the total run time,
as seen by the red bar top in the graph.

The take away is that the size of the storage and number of objects minimally
affect the fs2img runtime, running the tool over a small storage performs the same
as running it over a large one. Further, the performance is unaffected by the storage
size as the HTTP HEAD requests only retrieves the metadata and not the actual
file content itself. The majority of the impact seemingly relies on the network
connection. Figure 4.5 displays this behaviour better, as bucket with many buckets
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hardly impact the scan and persist time.

Figure 4.4: Graph displaying time to scan a remote bucket (scan time) with time to
persist the object into the database (persist time) over an increasing remote bucket
size (storage size). The x-axis display the number of files, and the y-axis the time in
milliseconds of scanning and persisting the file’s metadata.

4.2 Tests

To test the correctness of the provided storage solution, a multitude of unit tests has
been implemented and some existing tests has been modified. This section details
the most important ones.

Scan and storage tests

For testing the scanning and creation of the remote namespace, testImageLoad
scans a provided directory, creates the image, and compares the file status of the
created image with a local mirror. The test mocks a directory on disk as provided,
creates an image of the disk, and compares it with the actual directory. This test that
the tool loads the image correctly.

Block reporting tests

To verify that the DNprovidedcorrectly reports the blocks and information to the
namenode, testProvidedReporting will trigger the heartbeats of the datan-
odes that updates the namenode provided capacity and knowledge of the provided
volumes. It will check that the multiple DNprovidedare discoverable through the
namenode, that their volumes and information (used capacity and block pool) is
correct, and that the blocks are of the PROVIDED type and resides on a DNprovided.
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Figure 4.5: Graph of the time to scan a remote bucket (scan time) over an increasing
number of files. The x-axis display the number of files, and the y-axis the time in
milliseconds of scanning and persisting the file’s metadata.

Replication and restart tests

Replication has been tested through testDefaultReplication and test-
ProvidedReplication. The former checks that the blocks has the correct
number of storage locations after increasing the replication factor of the block.
This is done through comparing the number of hosts of the block and the expected
locations. The latter is similar, but sets a replication of the block after it has been
created. We then constantly poll the block until we see that is has been replicated on
a new storage. This is the same idea which is used for benchmarking the provided
replication. Noteworthy here is that a datanode can have multiple storages (since
the heterogeneous storage patch), so one DNprovidedmay contain a DISK storage
aswell. However, it will get replicated to another datanode which chooses to put the
replica on its disk (due to choosing nearest storage policy as discussed earlier).

Failure tests

To test the datanode failure and restart, testProvidedDatanodeFailures
will create n DNprovidedwith associated blocks, stop the datanodes, and make sure
the namenode detects that they are dead. We then check that the locations are
removed from the provided blocks and when all n DNprovidedare dead, the block
report count of the provided storage should be reset to zero. As long as there is one
DNprovidedalive that can reference the provided storage, we should not modify the
block report count. When one DNprovidedis restarted, the block report should go up
to one, and the block address should correspond to the address of the DNprovided.
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Location tests

The number of locations for a provided block has been tested in testNumber-
OfProvidedLocations, where multiple files and DNprovidedare created and
stopped in sequential order to verify that the number of locations are correct per
file. The testNumberOfProvidedLocationsManyBlocks functions in a
similar way, however, it increases the number of blocks per file to ten from one, to
check that the discovered locations work for multiple blocks per file. The location
tests also include test for checking that the DNprovidedworks with multiple racks,
testProvidedWithHierarchicalTopology.

Alias map tests

The alias map has been tested through a variety of tests. The in-memory alias map
which stores the alias map in a levelDB, has been tested in testInMemoryAli-
asMap. The test creates a temporary directory for storing the in-memory alias map
and an alias map server to recieve the Remote Procedure Calls (RPCs). Reading
and writing of the alias map is verified by creating blocks and associated provided
storage locations, ProvidedStorageLocation, which are written and read
from the levelDB instance by converting sent protocol buffers to and from java
object.

The text alias map, TextFileRegionAliasMap, has been used in the major-
ity of tests and benchmarks and similar tests has been done against it. These include
setting the reader and writer options (e.g. codex) and testing the read, list, and write
interaction against the csv file.

S3 tests

A few tests have been implemented to test the replication and reading against a
remote live S3 storage, both directly through a provided replica and a DNprovided.
The tests create and write some content into a local file, uploads it to S3 through
the S3A connector, and asserts that a client can read the file content through the
DNprovided. In turn, the replication tests ensures that the objects in an S3 bucket can
be properly replicated onto local datanodes.

As mentioned earlier, the consistency model of a remote storage might not be
consistent with that of the POSIX compliant file system. For instance, S3 provides
read-after-write consistency for new objects but eventual consistency for overwrite
and deletes [12]. Since all our tests created new objects, there were no recorded
consistency issue. To test the number of encountered issues, another test was created
that deletes an object in a remote bucket followed by trying to list it by running
fs2img. If the deleted object was found by the tool, an consistency issue would be
found for that object. The test was performed on 1000 files in a bucket, deleting one
at a time followed by executing the tool. Surprisingly, not a single consistency issue
was encountered in our test. Obviously, more extensive tests would have to be ran to
measure how often such consistency issues appear in live production environments,
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where I/O is heavier. We encourage future work to use the existing frameworks
that implements a strongly consistent metadata layer on top of S3 to deal with this
potential issue (see section 2.5.2).

4.3 Discussion

In this section we discuss some of the aspect that has not been tested, but should
be taken into consideration for future development and live production deployment
of the remote storage solution. We investigate the consistency and data availability
aspects of RQ2.

4.3.1 Handling consistency issues

One consistency issue arises if data is changed out-of-band in the remote storage.
This will be critical to handle to prevent race-conditions (such as TOCTOU, Time
Of Check to Time Of Use [44]) when writes are to be enabled, but are less of an
issue in current implementation. For this, the nonce (the file version identifier)
may be used to ensure that the right version of the remote replica is updated. The
nonce value may further be used to verify read requests, such as to implement an
operation to open file by nonce or id (see HDFS-7878 [13]). Specifically, when a
client wants to read a block from a remote storage, the namenode could return and
embed the nonce in the located block response. The nonce could then be passed to
the DNprovidedwhich uses it for the open-file-by-nonce operation. Another approach
is to store the nonce in the alias map and let the DNprovidedlook it up to ensure that it
is equal to the generation stamp of client’s block request.

To handle changes in the remote namespace, these would first have to be reflected
in the local cluster. This will requires synchronization protocols for periodically
updating HopsFS’ view of the remote storage, pulling in and removing outdated
metadata from the database and updating the alias map. Divergence between the
current and remote cluster will have to be resolved and merged, such as addition
of new metadata and deletion of cached (local) replicas. Currently, our PoC im-
plementation does not take out-of-band changes into consideration, we instead
generate a fresh snapshot of the remote namespace each time when manually run
the fs2img tool. Potentially, the scan could be automatically executed to update
the remote metadata in NDB. However, this would require locking the database to
prevent race conditions during a live cluster run, which might not be desirable due
to performance impact.

4.3.2 Data availability

The question of data availability and consistency can be looked at two-fold, either
we simultaneously provide availability but loose consistency, or we simultaneously
provide consistency but loose availability (CAP theorem [6]). In our solution, we
do not take inconsistencies into consideration and data is available at all time, a
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client requesting a read form a remote object will always have it returned through a
DNprovided. A potential issue arises when the remote block is replicated onto a local
DNdisk. The block data is still available as future reads will go to the DNdisk, and this
replica is now consider to be the single source of truth. As long as the local replica
is not modified, there are no issues. However, if the replica is modified to another
state there will be inconsistency between the local and remote one. How should this
be be reflected in the remote storage? For instance, if we assume that the blocks
should be kept synchronized between the local and remote storage, these blocks
will have to become unavailable for some time, which may be for a significant time
depending on network bandwidth and amount of the changes. Synchronization also
introduces another problem; moving data out and into the S3 cluster cost money
(S3 transfer fee), from an economical perspective it is desirable to keep inter-cluster
IO to a minimum. For now, we avoid these problems as we do not allow writes on
remote replicas, but such questions would have to be taken into consideration for
future work.

4.3.3 Handling security

As mentioned in the introduction, one scenario in deploying the remote storage is
a hybrid cloud scenario where secure data is in the cluster and less secure on the
cloud. Another is to enable clients to store secure data on the cloud, a full-cloud
deployment. To do this we must enforce some kind of security and access rights
over the remote data. The problem is that the remote storage often does not have
the same security as the local file system. For instance, HopsFS has POXIS security
semantics (i.e. user-group-everyone), while S3 uses bucket-wide access credentials
and user policies (such as bucket read, list, or write-only access). The security
model depends on the policies of the remote storage, and while mapping these to the
POSIX model would be desirable, there are no easy provider-independent way to
do this. Currently, HopsFS needs to be configured with the S3 security credentials
which will grant HopsFS permission to access all objects in the remote bucket.
This impersonation approach will share the security credentials (i.e. access keys)
amongst all users in the cluster, which might not be desirable in a large environments
with many users. Another approach is to authenticate the requests through a client
token, having the client supply his credentials through the cluster and proxy them
through the DNprovided, supplying it with a necessary token that acts on behalf of a
client.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has presented a new feature in HopFS that allows the distributed file
system to be integrated with an external remote storage. This external storage is
said to be provided and could in essential be any other type of storage, such as
another distributed file system (e.g. HopsFS or HDFS) or a live cloud storage (e.g.
Amazon S3, Google Cloud Storage, or Microsoft Azure). The presented feature
enables a client of HopsFS to access, retrieve, and store her cloud data transparently
and seamlessly from within the local file system.

The first research question of the thesis asked; How can a distributed block
based file system effectively be integrated with an external object based cloud
storage? (RQ1). We answer this through the implementation where we show how
this feature can and has been designed and adopted in HopsFS. Since the HDFS
and HopsFS architecture fundamentally differers, the work has included research of
implementation differences, redesigning the way of scanning, handling and storing
the provided storage’s metadata, and implementing cloud connectors (S3A) for
testing the solution with live remote (S3) storages.

The second research question; What are the implications of such an implementa-
tion in terms of; data consistency, data availability, and performance? (RQ2), has
been partly answered by evaluating the feature from an performance aspect, which
included benchmarking of the read, scan, replication, and failover -time. Since the
PoC implementation is read-only and we mount a static snapshot through the fs2img
tool, we have avoided synchronization with consistency and data availability issues.
However, for future work we have seen that external frameworks can be used to
layer stronger consistency ontop of the implementation.

We have seen that the PoC scales well, a large remote storage (bucket) does not
significantly increase the scan or database persist time due to the scan tool scanning
and persisting the remote object’s metadata and not its actual content, resulting in
much smaller I/O. The content is pulled in on-demand when read from the client
and the observed bottleneck has been network, due to inter-cluster I/O relying on
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network bandwidth which may heavily fluctuate the performance. The reads from
the bucket has showed to scaled linearly with an average throughput of 4 MB/s
(using S3A version 2.7). Replication ”caching” of the remote block onto local disk
(SSD) storage has proved to be very beneficial, with an average speed-up of 39x
over ten remote/local runs, followed by even further speed-up by the Operating
System (OS) Buffer caching the local replicas in RAM. Comparing reading from
local to remote we achieving a 100x read throughput.

5.2 Future Work

The developed Proof-of-Concept solution has been the first stage of how to integrate
and transparently use a remote storage from a local file system cluster. As such,
there is still future work to be considered until the feature is fully production ready.

Caching mechanisms

Currently, caching of a remote block is done by manually setting the replication
factor of the block to be higher than one. This will prompt HopsFS to replicate
the remote block from the external storage onto a local disk one. Future reads
will be directed to the new local datanode hosting the block, which functions as a
cache. However, there are no automatic caching mechanisms in place that performs
such steps when reading from a remote storage. This will pose a problem for
future write scenarios, where writes would have to be directed through this local
datanode, potentially introducing high load and bottlenecks on the datanode. Each
provided datanode having their own local cache with caching mechanisms, such as
supporting lazy-writes or read/write-through caching, should be considerable for
future development.

Reflecting remote changes

If an object changes in the remote storage (i.e. another application or user edits it),
the local replica is not modified. Similarly, a local change is not reflected to the
remote storage. Implementing uni or bi-directional synchronization could be done
by using endpoints, reflecting a directory whose content is to be kept in sync with
the remote storage (see HDFS-12090 [32]). These would have to be synchronized
asynchronously and propagate metadata and blocks between the remote and local
storage, and tools for attaching such endpoints would have to be implemented. This
requires policies of how often to and what data to synchronize. For instance, an
uni-directional remote to local reflection could be done by periodically execute
fs2img and only paging in new data (which would have to be checked against the
nonce value). Depending on the remote provider, bandwidth and cloud transfer
fees might occur, which should be taken into consideration when developing this
functionality.
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Writes to remote replicas

Supporting writes is important for an production ready remote storage integration,
where a client may want to write new values to the block which is to be uploaded
to the remote cloud storage. However, as discussed earlier, this poses questions
such as how to deal with inter-cluster synchronization, availability, and consistency
issues. For instance, when the remote cluster diverges from the local one, protocols
will have to deal with merges and inconsistent states. Handling writes was scoped
outside this PoC but will be a considerable future project.
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Chapter 6

Appendix

The appendix includes a number of sequence and UML diagram that has been
scaled-up for readability in the thesis. Some of these has been extended with more
detailed information.
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