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Abstract 
Lameness is characterized by abnormal gait and is an indicator of various hoof diseases in cattle. Not 

only does this raise animal welfare issues, it also causes significant economic loss from reduced milk 

yield and fertility. Despite that, prevalence of lameness in dairy farms is high because farmers are unable 

to dedicate time and labor to identify lame cattle. Many automatic lameness detection solutions have 

been proposed in literature. Machine vision solutions using cameras are especially attractive because 

cameras do not require much space and is relatively low cost. However, none of the machine vision 

solutions so far have been robust enough to be useful to dairy farmers. This thesis attempts to remedy 

that by applying deep learning methods to the pose estimation of cattle to analyze their gait and detect 

the presence of lameness. 

313 videos of cattle walking were recorded at a dairy farm. Images were randomly extracted from those 

videos and 17 body parts were manually annotated on the images to fine-tune a deep neural network 

pretrained on ImageNet. The fine-tuned network is then used to automatically find the trajectories of 

the 17 body parts in all 313 videos. 84 gait features were extracted from each video based on these 

trajectories. Each video was also manually given a locomotion score between 1-5 by 2 experts. Due to 

the small number of locomotion score 5 cows, locomotion score 4 and 5 were merged into one group 

for analysis. Two experiments were conducted with these gait features and locomotion scores: a) Data 

analysis to test significant differences between locomotion score groups and b) Automatic locomotion 

score classification. 

Data analysis was done using ANOVA followed by Bonferroni correction. Stance time related features 

were the best at differentiating locomotion score groups, but were unable to differentiate between 

locomotion score pair 2<>3. Step length related features were also relatively good at differentiating 

different locomotion score groups, but have trouble differentiating between locomotion score pairs 

1<>2 and 2<>3.  

For the automatic classification, the 84 gait features were first reduced to 3 features using LDA. Then, 

various classifiers were trained with these 3 features and locomotion score as labels. The linear 

discriminant classifier achieved the highest classification rate at 85.6%, but this number was heavily 

skewed by the high classification rate of locomotion score 1 group (95.3%), which also makes up the 

largest portion of the dataset. Classification rates of locomotion score 2 and 3 were much lower at 

54.2% and 59.6%. Another way to look at this result is by viewing the locomotion score 1 cows as 

healthy cows and the rest as lame cows. The sensitivity of the classifier is then 61.3% and specificity is 

95.3%. To correct this imbalance in the dataset, the prior probabilities were set equal for each 

locomotion score group and the classifiers were trained again. This resulted in much better classification 

rates with the linear discriminant classifier for locomotion score 2 and 3 (71% and 84% respectively) at 

the expense of lowering the classification rate of locomotion score 1 (83.4%). In terms of sensitivity and 

specificity, 78.3% and 83.4% was achieved respectively. Notably, locomotion score 4 (and 5) cows were 

classified with 100% accuracy. 

The results showed that the proposed machine vision method can detect mild lameness relatively well 

and can be used as an early warning system to single out possibly mildly lame cows for inspection. If 

severely lame cows are on the farm, they can be detected with very high certainty. To be even more 

useful to farmers, improvements should be made in the sensitivity and specificity of the classifier.  
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1. Introduction 
In the dairy industry, cattle health is extremely important for optimizing milk productivity and elongating 

their productive lifespan. The three biggest cattle health problems in the dairy industry are mastitis, 

infertility and lameness. Cattle lameness is the third largest factor of economic loss in the dairy industry 

[1] and it is an indicator of various hoof diseases in cattle, which manifests as abnormal gait. Lameness 

prevalence varies a lot from farm to farm, with various studies estimating a high mean lameness 

prevalence of 19-37% [2-6]. This has significant economic consequences, averaging at a cost of $4899 

per year for a herd of 65 cows [7], and adversely impacts animal welfare [8]. One of the factors 

contributing to the prevalence of cattle lameness is the limited time and labor that the farmers can 

allocate to tackle the lameness problem [9]. Notably, the effective detection of lameness is particularly 

time and labor intensive because of the need to regularly inspect each individual cattle in a herd of 

dozens or hundreds of cattle. Various automatic solutions have been proposed in literature with the 

goal of saving time and labor for the farmers, but most of these solutions remain in the research phase 

and not yet commercialized, presumably because they are not yet commercially feasible. 

 

1.1 Skeletal Anatomy of Cattle 
An animal’s gait is normally thought of as the absolute and relative movement of the bones of its limbs 

rather than the entire limbs including the muscles and skin. Thus, a basic understanding of the bones of 

cattle limbs is necessary for further discussion of gait analysis. 

Figure 1 shows the names and locations of the bones of cattle limbs. In the order of increasingly distal 

limb bones, the thoracic limbs (fore limbs) are mainly composed of the scapula, humerus, ulna, radius, 

metacarpus and phalanges. The pelvic limbs (hind limbs) are mainly composed of the femur, tibia, fibula, 

metatarsus and phalanges. 

 

Figure 1 – Illustration of cattle skeleton with limb bones labeled. Image (without labels) is taken from 

https://www.purposegames.com/game/cattle-skeletal-system-quiz on 9/4/2019. 

https://www.purposegames.com/game/cattle-skeletal-system-quiz
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The phalanges are mainly composed of the proximal phalanx, middle phalanx and distal phalanx as 

shown in Figure 2. The bottom of the foot is protected by a hoof which covers the distal phalanx. 

 

Figure 2 – Anatomy of distal end of cattle limb. 2, metacarpus/metatarsus. 4, proximal phalanx. 7, middle phalanx. 9, distal 

phalanx. Image taken from [10]. 

 

1.2 Cattle Gait 
The normal walk cycle of each leg of the cattle goes through a stance phase and a swing phase [11, 12]. 

The stance phase is when the foot is in contact with the ground to support the movement of other legs. 

It starts when the foot first contacts the ground with a heel strike and ends when it leaves the ground. 

Midstance is defined as the moment when the metacarpus is vertical for the front limbs. For the hind 

limbs, midstance is defined as the moment when the hip joint, which is the joint at the proximal head of 

the femur, is vertical to the hoof. The swing phase starts when the foot leaves the ground and lasts until 

it contacts the ground again. 

The movement of each leg during a complete gait cycle of cattle is illustrated in Figure 3 [13]. The 

horizontal bars represent the temporal distribution of the stance phase and swing phase of each leg, 

where the darker areas represent the stance phase and the white areas represent the swing phase. It is 

interesting to note that healthy cattle will try to put the hind feet where the front feet had stepped 

before during normal walking. Thus, cattle will start the swing phase of the front legs right before the 

hind legs steps in as shown in Figure 4. This can also be seen in Figure 3 where the left front (LF) and 
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right front (RF) legs executes hoof off (HO) before the hoof strike (HS) of the left rear (LR) and right rear 

(RR) legs  respectively.  

 

Figure 3 – Temporal distribution of stance phase and swing phase for each leg of a cattle. RF: right front. LF: left front. LR: left 

rear. RR: right rear. HS: Hoof strike. HO: Hoof off. Illustration taken from [13]. 

  

Figure 4 – Cattle left front leg lifting to make space for left hind leg (left) and cattle right front leg lifting to make space for right 

hind leg (right). 
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1.3 Cattle Diseases Associated with Lameness 
Lameness is an indicator of many diseases which manifests as abnormal gait. Most diseases that induces 

lameness consists of infections or defects in the hooves such as sole ulcer, foot rot and white line 

disease [14]. Sole ulcer is caused by the destruction of part of the hoof tissue covering the dermis [15]. 

The exposed dermis inflicts pain when pressure is applied to the area. Another cause of lameness is foot 

rot, which is an infection affecting the skin near the hooves. It is known that the causes of lameness are 

associated with environmental factors and farming practices [16]. Lameness results in lower milk yield 

[17, 18], presumably because cattle are less motivated to feed when in pain [19]. Other consequences of 

lameness are lower reproductive performance [20, 21], lower welfare [8] and in severe cases, the cattle 

is deemed unproductive, resulting in early culling [22]. Current practice for treatment includes antibiotic 

sprays or footbaths. More sophisticated methods involve hoof trimming to expose affected area and 

attaching a block on the hoof such that the affected part is elevated and subject to less stress to speed 

recovery. 

               

Figure 5 – Sole ulcer (left) and foot rot (right). Images taken from [15]. 
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1.4 Locomotion Scoring 
Many visual assessment systems, called locomotion scoring systems, has been devised in literature to 

define visual indicators of cattle lameness and its severity. For example, one popular locomotion scoring 

system by Sprecher et al. defines arched back, short strides, unnatural strides, favoring certain limbs and 

reluctance to bear weight on certain limbs as visual indicators of lameness (Table 1) [23]. In this system, 

a score of 1 corresponds to normal gait and a score of 5 corresponds to severe lameness. 

Table 1 – 5 point locomotion scoring system from [23] 

 

Figure 6 shows examples of cattle of locomotion scores 1,3 and 5. Although some of the visual indicators 

of lameness are undetectable in still images, it can be seen that the back arches more with higher 

locomotion scores. The example image for locomotion score 5 also suggests that the cattle may be 

leaning to one side of its body to avoid bearing weight on the other. 

   
Figure 6 – Cattle with locomotion score 1(left), 3(middle) and 5(right). Images taken from 

https://vet360.vetlink.co.za/locomotion-scoring-crucial-component-lameness-reduction-programs/ on 6-5-2019. 

Another locomotion scoring system is one proposed by Manson and Leaver which focuses on 

abduction/adduction, gait asymmetry, tender hoof placement and difficulties in movement [24]. Breuer 

et al. used a 4 point system with an emphasis on head bobbing [25]. 

It is important to emphasize that lameness is the manifestation of pain and hence locomotion scoring 

can only detect how much pain is suffered by the cattle but not necessarily the severity of diseases. In 

fact, it has been found that higher locomotion scores are only associated with certain diseases but not 

https://vet360.vetlink.co.za/locomotion-scoring-crucial-component-lameness-reduction-programs/
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with others [26]. Reliability of locomotion scoring systems varies widely but they are generally found to 

be moderately reliable [27-29]. 

 

1.5 Automatic Lameness Detection 
Due to lack of time and labor, farmers are generally very reluctant to take action to control lameness in 

their herds [9]. To tackle this problem, some automatic lameness detection solutions have been 

proposed in literature. These solutions all involve some way of measuring something from the cattle and 

detecting patterns that distinguish lame cattle from healthy cattle. They can be categorized based on 

the method used, namely, accelerometers, kinetics, marker-based kinematics and machine vision. 

Accelerometer based methods involve attaching accelerometers to anatomically important body parts 

of cattle and measuring their acceleration [30-32]. Kinetics based methods involve force sensing 

platforms that can measure the amount of force exerted by the feet of cattle and determine the 

location where the force is exerted [33, 34]. Kinematics based methods with markers involve the 

attachment of markers that can be easily detected by cameras on anatomically important body parts of 

cattle and track their movements in 2D or 3D space [35, 36]. Machine vision based methods involve 

video recordings of walking cattle and complex algorithms to extract information from the videos, like 

the back arch [37] and limb movements [38, 39]. 

Most of the current proposed methods have not been commercialized yet, presumably due to their 

disadvantages. Accelerometers and marker based kinematics require attachments on various body parts 

of the cattle, which is a very laborious task even for small farms with dozens of cattle. Moreover, the 

attachments would not only need to be secured tightly on the cattle so as to not fall off, but they would 

also need to be resistant to pressure, collisions, water, slurry and other environmental effects in cattle 

farms. Kinetics based methods require significant investment and space on the farm. This may be more 

feasible at very large farms that have separate buildings for milking and feeding. A force sensing 

walkway can be placed between the buildings such that the cattle will walk over it every time they go for 

milking. However, smaller farms typically have one barn where both feeding and milking take place, 

leaving barely any space for a force sensing walkway. 

Machine vision based methods, are very attractive options from a feasibility point of view because they 

only require one or a few cameras which can be easily installed in farms and do not require attaching 

anything to the cattle. However, the proposed machine vision methods so far have not been successful 

in achieving robust and accurate lameness detection. Over the recent years, the advancement of deep 

learning methods have revolutionized the field of computer vision, significantly improving the 

performance of typical computer vision tasks such as object detection and segmentation to rival and 

even surpass human performance. Recently, an open source deep learning framework named 

DeepLabCut has received much attention from animal behaviorists and neuroscientists because it 

enables automatic, markerless animal pose estimation at human level accuracy [40]. DeepLabCut is 

based on the feature detector of a human pose estimation framework, DeeperCut [41], which itself is a 

variant of deep residual neural networks (ResNet) [42]. By using a ResNet pretrained on ImageNet [43], 

relatively few additional images (hundreds instead of tens of thousands) are needed to fine tune 

DeepLabCut for the pose estimation of arbitrary objects. 
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1.6 Research Questions 
To strive towards an affordable system that can detect lameness without the hassle of attachments on 

cattle, the following research question is posed: 

• How accurately can cattle lameness be detected based on features extracted from pose 

estimation using DeepLabCut? 

With the following sub-questions: 

• Can DeepLabCut accurately detect the location of cattle body parts and estimate their poses? 

• Are the gait variables calculated from pose estimation different between healthy cows and lame 
cows? 

• What are the sensitivity and specificity of lameness detection using information from the gait 
variables and manual locomotion score as ground truth? 

 
Firstly, although DeepLabCut has been shown to achieve high accuracies in estimating the poses of 
various animals such as mice, horses and cheetahs in complex environments, it should be confirmed 
that it also works for cattle in a farm environment. Then, using the pose estimation results, gait variables 
can be calculated. These gait variables should be analyzed to find out if they differ between healthy 
cows and lame cows. Finally, an attempt will be made at automatically classifying the recorded cows 
based on the gait variables calculated.  
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2.1 Cattle and Farm Conditions 
The farm where videos were recorded is in Tilburg, Netherlands. The herd from which videos were 

recorded consist of 70 lactating cows. The cows were milked with an automatic milking system (Lely 

Astronaut, Lely) where the cows may choose when they want to be milked. 

At the time of year when the videos were recorded, the cows were allowed access to the pasture 

located a small distance away from the barn. Access to the pasture was allowed between 9am to 5pm. 

Within this time period, an automatic gate system manages the cows’ exit and entry. This system reads 

the identification tag of the cows to determine when they were last milked. Cows were only allowed to 

exit the barn if they were recently milked within the last few hours. Upon exiting the barn, a walkway 

with electric fences leads to the pasture. Return to the barn was also through this same walkway. Before 

5pm, the cows were allowed to return any time they wish to be milked in the barn. At 5pm, the cows 

that were still outside were led back into the barn by farm staff. 

 

2.2 Recording Setup 

               

Figure 8 – ZED camera (left). Recording setup with camera and a box to store laptop (right). 

The recording setup used in this project consists of a depth camera (ZED, StereoLabs) mounted on a 

tripod (Figure 8). Although the camera used can capture depth images in addition to regular color 

images, only the color images were used in this project. The height of the pole holding the camera is 

adjustable and was set such that the camera is 2 meters from the ground. A metal box was attached to 

the tripod for storing a laptop and an external hard drive. The laptop is required to operate the camera 

and run online compression of recorded videos. This setup was placed 4 meters from the walkway 

leading from the barn to the pasture.  
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2.3 Motion Detection and Recording 
With the camera recording at 1080p and 30fps, single images were retrieved from the camera and 

resized to 1/10 of its original size via bilinear interpolation. The images were downsampled to reduce 

processing burden such as not to interfere the video recording process. Then, the area of the image 

covering the walkway and the cows were segmented, converted to grayscale, and filtered with a 3-by-3 

Gaussian kernel to reduce noise. 

Motion is detected by background subtraction. First, the absolute difference between the retrieved 

image and a reference background image was calculated by element wise subtraction and taking the 

absolute values. Pixel locations where there is an absolute difference of 20 or more were segmented 

and further dilated with a 3-by-3 structuring element. This will result in several blobs in the image where 

the large blobs are cows and small blobs are noise or small movements of the environment such as 

swaying grass and passing birds. These segmented blobs were then detected individually and each of 

their contours were computed using the algorithm by Suzuki and Abe [44]. The areas within these 

contours were then calculated using Green’s theorem. 

       

      

        

Figure 9 – (a) Background image. (b) Image with cow. (c) Background subtraction. (d) Pixels with large difference with 

background image. (e) Dilation (f) Contour of larger than threshold size 

a b 

c d 

e f 
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Every time an object with an area of more than 500 pixels but less than 1000 pixels was detected, a 12-

second video was recorded.  

Due to changing lighting conditions influenced by the sun, the reference background image used for 

background subtraction cannot simply be a single static image. Thus, a running average of recent images 

was used as a dynamic “background” image: 

𝐴𝑡 = (1 − 𝛼)𝐴𝑡−1 + 𝛼𝐼𝑡 

where 𝐼𝑡 is the 𝑡th frame captured by the camera, 𝐴𝑡 is the running average of images up till the 𝑡th 

frame, and 𝛼 controls how quickly the running average is updated with new images. The 𝛼 value used in 

this thesis project was set to 0.1, which was found by trial and error. When the 𝛼 value was too small, 

the “background” image was not adjusted quickly enough to rapidly changing lighting conditions. When 

the 𝛼 value was too large, cows captured by the camera, especially slow moving cows, were quickly 

incorporated into the “background”, making them undetectable. 

The above algorithm was implemented with python and set to automatically start every day at 9am and 

stop at 6pm. Interfacing with the ZED camera was done through an API for python provided by the 

developers (https://github.com/stereolabs/zed-python-api). The image processing algorithms were 

implemented with OpenCV. 

  

https://github.com/stereolabs/zed-python-api


16 
 

2.4 Dataset Creation 
From the recorded videos of the previous segment, a subset of videos was used as the dataset for this 

thesis project with the following inclusion criteria 

• Only a single cow in the video 

• The cow walks from the left of the camera view to the right 

• The cow walks normally without stopping, slipping, slowing down or running 

• The cow takes a total of more than 3 steps 

• Lightning from the sun is not too bright nor too dim 

Having only a single cow in the videos avoids the need to separate multiple cows in the video and 

greatly simplifies the later tasks. Having videos with cows walking in only one direction also greatly 

simplifies the later tasks. Cows in the videos should walk with their natural gait and thus videos 

containing cows stopping, slipping, slowing down or running were excluded. Videos of cows taking less 

than 3 steps were also excluded because it is difficult to manually score a cow without observing 

multiple steps. Videos with too much or too little lighting must also be excluded to ensure similar 

environmental conditions such that they do not influence the gait analysis results too much. 

 

Figure 10 – Videos with high lighting intensities such as this were excluded 

Videos satisfying the first criterion were found using YOLO, an object detection system [45]. Using the 

default weights provided in YOLO, which were pre-trained on the COCO dataset [46], YOLO finds the 

bounding boxes of a wide variety of objects and labels them. 

A video is only included in the dataset if a single cow, dog or horse with a bounding box of more than 

100,000 pixels was detected in one or more frames of the video. When two or more cows, dogs and 

horses with a bounding box of more than 100,000 pixels were detected in any frame in a video, the 

video was excluded from the dataset. Bounding boxes for dogs and horses were included because 

sometimes YOLO mistakenly detects cows as dogs and horses. Only bounding boxes with an area of 

more than 100,000 pixels were of interest because bounding boxes smaller than that were cows behind 

the walkway.  

Then, each video was screened manually to select the ones that satisfy the rest of the criteria. 
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2.5 Locomotion Scoring 
Each video of a walking cow was given a locomotion score of 1 to 5 after discussion by two people 

knowledgeable in animal science and have experience with assessing cow health. The scorers were first 

given a small set of 17 cow videos for a test run. These videos include 12 cows displaying common 

lameness indicators like back arch and gait asymmetry. A meeting was then set up with the scorers, 

where a set of general criteria for each locomotion score was discussed and agreed on (table 2) using 

the 17 test videos to facilitate the discussion. Locomotion scores were mostly whole numbers, except 

locomotion score 1.5 because the scorer’s felt the need to have a score between 1 and 2 for cows that 

they suspected to be slightly lame but weren’t sure about it. However, the cows with locomotion score 

1.5 were later relabeled as score 2 for simplification and because it was more important to detect signs 

of lameness rather than differentiating between locomotion scores 1.5 and 2. 

Table 2 – Locomotion scores and their general criteria 

Locomotion Score  Criteria  

1 Walks normally with a straight back and no visible signs of problems. 

1.5 Has a slightly arched back but no problem in the limbs. 

2 • Has an arched back OR 

• has a problem in one of the limbs OR 

• has a slightly arched back and a problem in one of the limbs 

3 • More serious and obvious version of score 2 criteria OR 

• problems in multiple limbs OR 

• has a stretched neck 

4 Walks with great difficulty due to severe problems in limbs. 

5 Can barely walk. 
 

These criteria were only intended as a reference and not adhered to strictly. The final judgement given 

by the scorers ultimately depended on their intuition. There were two reasons for this. The first reason 

is that locomotion scoring in common practice solely relies on visual assessment and not objective 

measurements. Thus, as with other locomotion scoring methods [23], it is difficult to describe how a 

locomotion score was given in non-ambiguous words. For example, it is up to the scorer’s intuition to 

decide where to draw the line between a slight back arch and a more serious back arch. 

The second reason is that locomotion scoring, like health examinations in general, requires more 

flexibility than a strict set of criteria. For example, a cow may exhibit indicators that fit the criteria of 

locomotion score 2, but the scorers might conclude that the cow is perfectly healthy. Such cases may 

involve cows that has an unusual build, causing it to appear lame or cows that seems to be happy and 

lively despite exhibiting lameness indicators. 

 

  



18 
 

2.6 Body Part Tracking 
17 key points were automatically detected and tracked in the recorded videos using a deep learning 

framework, DeepLabCut [40]. These keypoints are illustrated in Figure 11. 

 

Figure 11 – Tracked body parts. 

3 points were labeled for each limb, the hoof, the fetlock joint and the carpal/tarsal joint. 2 points were 

labeled for the head: the top of the head and the nose. Lastly, 3 points were labeled on the back of the 

cow: one point around the connection between neck and torso, one point above the hip bone, and one 

point in the middle of the two. These points on the back were defined ambiguously because there are 

no easily distinguishable features on the back. 

The hooves, head, and back were chosen as key points because the movement patterns of these body 

parts are commonly used in locomotion scoring. The fetlock joint and the carpal/tarsal joint were also 

chosen because they are visually distinguishable body parts. 

495 images were randomly extracted from 55 videos recorded on 3rd June. The images were then 

manually annotated and used to train a deep neural network for 850,000 iterations on a GPU (GTX 1080 

Ti). The network was then used to find the pixel coordinates of the target body parts across all frames in 

335 videos recorded during the time period ranging from 3rd June to 15th July. All steps from the random 

frame extraction to the points detection were facilitated by the DeepLabCut framework [47]. 

For each video, the positions of each body part key point across time were output as two vectors: the 

horizontal positions 𝑥 in pixels, the vertical positions 𝑦 in pixels. The length of both vectors are equal to 

the number of frames in the video. The specific position of a key point in a particular frame will be 

denoted as (𝑥𝑡 , 𝑦𝑡) for the 𝑡th frame in the video. 

 

  



19 
 

2.7 Valid intervals 
In most of the videos, not all the frames contain a cow (e.g. the cow crossed the edge of the camera’s 

view but the video was still recording). In such frames, DeepLabCut will still try and detect nonexistent 

cow body parts and outputting meaningless values for the positions of the body parts. Thus, for every 

video an interval where the full body of the cow is in the frame had to be determined. Specifically, the 

start of the interval should be the first frame which includes the full body of the cow, while the end of 

the interval should be the last frame before part of the cow crosses the right edge of the frame. 

This was implemented in python where YOLO [45] was used again for detecting and finding the position 
of the cow. The first frame where the bounding box’s left edge was more than 50 pixels away from the 
left edge of the image, and had an area of more than 100,000 pixels was set as the first frame of the 
valid interval. If at any frame a bounding box’s left edge was more than 1300 pixels away from the left 
edge of the image, and had an area of more than 100,000 pixels, the corresponding frame was set as the 
last frame of the valid interval. If none of the frames of the video satisfied the criterion for the last frame 
of the valid interval, the last frame of the video was used instead. 

 

     

Figure 12 – Example of frame used for interval start (left) and interval end (right) 
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2.8 Gait phase classification 
The calculation of most gait variables require that the timing of the gait phases of each limb be known 

such that the swing phase and the stance phase can be separated. A simple classification algorithm 

based on the velocity of each hoof key point was made. 

First, the horizontal velocities 𝑣 of a hoof were estimated by calculating the differences in the horizontal 

positions adjacent in time. 

𝑣𝑡 = 𝑥𝑡 − 𝑥𝑡−1 

If 𝑣𝑡 is more than 8, the 𝑡th frame is classified as swing phase and if it is less than or equal to 8, the 𝑡th 

frame is classified as stance phase. If a swing or stance phase has a duration of less than 4 frames, it is 

assumed to be an error caused by the misdetection of the key points and is reclassified as the other 

phase. 

Figure 13 shows an example of the classification of swing and stance phase based on hoof velocity. 

 

Figure 13 – Plot of hoof velocity and its classified phase 
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2.9 Gait Features 
In total, 84 gait features were calculated from each video. The full list of these features can be found in 

appendix A1, but most of these features were similar to each other and can essentially be summarized 

into the features in table 3. 

Table 3 – Gait features and their methods of calculation. 

Gait features Calculation 

Step length Difference in pixel in horizontal position between the start and end of a 
swing phase 

Step time Duration in number of frames of a swing phase 

Stance time Duration in number of frames of a stance phase 

Asymmetry in step length Difference in pixel between step length of left and right limbs 

Asymmetry in step time Difference in number of frames between step time of left and right limbs 

Asymmetry in stance time Difference in number of frames between stance time of left and right 
limbs 

Head bobbing Variance in pixel2 of vertical position of head 

Nodding Variance of angle between top of the head and nose 

Back arch Radius in pixel of circle fitted on the three back key points 

 
Some of these essential features were calculated multiple times but at different times in the video and 

for different limbs. For example, 19 different step length features were calculated: “LF step length 1” is 

the length of the first step of the left front limb, “LF step length 2” is the length of the second step of the 

left front limb, “RF step length 1” is the length of the first step of the right front limb, etc. 

 

2.10 DeepLabCut performance validation 
To find out how well DeepLabCut performs on our particular farm setting, the 495 labeled images were 

randomly split into a training set and a test set (80% and 20% respectively) for validation. The training 

set was used to refine a ResNet-50 network pretrained on ImageNet for 200,000 iterations on a GPU 

(GTX 1080 Ti). The refined network was then tested on the test set and the average euclidean error 

between the manual labels and the labels predicted by DeepLabCut was calculated. This process was 

repeated 5 times and the mean error was calculated. 

 

2.11 Data Analysis 
To gain an insight on how the gait features differ between locomotion scores, ANOVA (analysis of 

variance) followed by Bonferroni corrected tests were performed on most gait feature. Gait features 

calculated multiple times were excluded because their means were sufficient for the purpose of this 

multiple comparison test. For example, features from individual steps “LF step length 1”, “LF step length 

2” and LF step length 3” were excluded, but the mean of these individual steps, “LF step length” was 

included in the analysis. This step was implemented using MATLAB R2019a, mainly for its data analysis 

functions, ‘anova1’ and ‘multcompare’ (See appendix A2). 
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2.12 Lameness classification 
For the lameness classification, linear discriminant analysis (LDA) was first used to reduce the 84 gait 

features to 3 features. LDA constructs 3 features that best differentiates the cows from different 

locomotion score groups based on the 84 gait features. 

A linear discriminant classifier, quadratic discriminant classifier, k nearest neighbors classifier, decision 

tree classifier, support vector machine, parzen classifier and neural network classifier was trained on the 

reduced features dataset and the cows were classified into a locomotion score group. Prior probabilities 

were set to the frequency of each locomotion score. To assess the classifiers, the classification rate of 

each classifier was calculated with 10-fold cross validation. This was repeated 10 times to calculate the 

means and standard deviations of the classification rates. 

The dataset was expected to be very unbalanced and dominated by cows with locomotion score 1, 

because the number of cows in each locomotion score group usually decreases with higher locomotion 

scores. The overall classification rate may be heavily influenced by the dominating group and can be 

misleading. Thus, it may be more informative to calculate the confusion matrices and get a clearer 

picture of how the classifiers performed on each locomotion score group. 

A confusion matrix was calculated with each 10-fold cross validation. Since the 10-fold cross validation 

was performed 10 times, resulting in 10 confusion matrices, the mean and standard deviation of each 

element in the confusion matrix were calculated. This was repeated with the prior probabilities set 

equal for all locomotion scores to find out how it affects the classification rate and confusion matrix and 

whether it can correct the imbalance of the dataset. 

Everything in this section from dimensional reduction to cross validation was implemented with a 

pattern recognition toolbox for MATLAB called PRTools (http://37steps.com/37-steps/). Specifically, 

PRTools5 was used in MATLAB R2019a (See appendix A3).  

http://37steps.com/37-steps/
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3. Results 

3.1 DeepLabCut pose estimation performance 
The mean error of 5 randomly split datasets as described in section 2.10 was 4.4 ± 1.4 pixels. Figure 14 

shows examples of key points detected by DeepLabCut. 

      
Figure 14 – Key points detected by DeepLabCut 

 

3.2 Final dataset 
The dataset created consisted of 335 videos recorded on dates ranging from 3rd June to 15th July. 22 

videos were further excluded because they had poor body part tracking performance, had less than 3 

full step phases or had less than 3 full stance phases. This resulted in a final dataset size of 313 videos. 

Due to the small number of locomotion score 5 cows (only two), they were relabeled and added to the 

locomotion score 4 group. The final distribution of locomotion scores was 224, 53, 25 and 11 videos for 

locomotion score 1, 2, 3 and 4 respectively. 
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3.3 Data Analysis 
Table 4 presents the means of the analyzed gait features and their significant differences between 

different locomotion score groups according to the bonferroni corrected test. Different alphabetical 

letter superscripts represent groups that are significantly different. For example, in the entry for ‘LF step 

length’: 278𝑎, 268𝑎𝑏, 258𝑏, 227𝑐, the numbers that do not have the same letter in their superscript are 

significantly different. In this particular example, locomotion score 1 is different from locomotion score 

3 and 4, locomotion score 2 is only different from locomotion score 4, locomotion score 3 is different 

from locomotion score 1 and 4. 

Table 4 - Mean of gait features and significant differences between different locomotion score groups 

Features Locomotion 
Score 1 

Locomotion 
Score 2 

Locomotion 
Score 3 

Locomotion 
Score 4 

LF step time [frames] 9.3a 9.3a 9.3a 8.5b 

RF step time [frames] 9.3a 9.4a 9.1a 9.5a 

LH step time [frames] 9.3a 9.3a 9.7a 8.5b 

RH step time [frames] 9.2a 9.2a 8.9a 10.0b 

Overall step time [frames] 9.3a 9.3a 9.2a 9.1a 

Minimum step time [frames] 7.8a 7.5ab 7.6ab 6.8b 

Maximum step time [frames] 10.7a 11.1a 11.0a 11.8a 

LF step length [pixels] 278a 268ab 258b 227c 

RF step length [pixels] 281a 272ab 259b 232c 

LH step length [pixels] 276a 267a 263a 226b 

RH step length [pixels] 286a 276ab 264bc 239c 

Overall step length [pixels] 280a 271b 261b 231c 

Minimum step length [pixels] 233a 229ab 223ab 187b 

Minimum step length [pixels] 341a 327a 316a 273a 

LF stance time [frames] 20.4a 22.5b 23.6b 29.2c 

RF stance time [frames] 20.3a 22.1b 23.4b 27.9c 

LH stance time [frames] 20.4a 22.6b 23.4b 29.4c 

RH stance time [frames] 20.3a 22.4b 23.6b 27.1c 

Overall stance time [frames] 20.3a 22.4b 23.4b 28.3c 

Minimum stance time [frames] 16.2a 18.2ab 18.4ab 21.8b 

Maximum stance time [frames] 23.4a 25.5ab 27.4b 32.7c 

Front step length asymmetry [pixels] 17a 17a 13a 12a 

Hind step length asymmetry [pixels] 17a 20a 24a 24a 

Front step time asymmetry [frames] 0.8a 0.9a 0.9a 1.5b 

Hind step time asymmetry [frames] 0.9a 1.2ab 1.4b 2.4c 

Front stance time asymmetry [frames] 1.4a 1.6a 1.6a 3.0b 

Hind stance time asymmetry [frames] 1.5a 1.7ab 2.7bc 3.7c 

Nose bobbing [pixels2] 1478a 1887a 872a 805a 

Nodding 0.0107a 0.0086a 0.0072a 0.0117a 

Back arch [pixels] 5389a 1636b 1211b 794ab 
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3.4 Dimension reduction and classification 
Figure 15, 16 and 17 show scatterplots of the three features after dimensional reduction with LDA. 

Locomotion scores 1,2,3 and 4 were represented with a blue plus, red asterisk, green circle and black 

cross respectively. 

 

Figure 15 – Distribution of dataset after dimensional reduction (first and second feature) 
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Figure 16 – Distribution of dataset after dimensional reduction (first and third feature) 

 

Figure 17 – Distribution of dataset after dimensional reduction (second and third feature) 
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The mean and standard deviation of the error rate after 10 repetitions of 10-fold cross validation is 

listed in table 5 for each classifier tested. The highest classification rate was from the linear classifier 

with 85.6%± 0.5%. 

Table 5 – Comparison of error rates of each classifier 

Classifier Classification Rate 

Linear Discriminant 85.6% ± 0.5% 

Quadratic Discriminant 84.5% ± 0.3% 

K Nearest Neighbors 82.6% ± 0.6% 

Decision Tree 76.7% ± 1.1% 

Support Vector Machines 84.0% ± 0.5% 

Parzen 84.5% ± 0.4% 

Neural Network 75.2% ± 1.2% 

Tables 6-12 below are the average confusion matrices of each classifier from the 10-fold cross 

validations. The rows represent the true score and the columns represent the predicted score by the 

classifier. For example, in table 6, the element in the first row and first column means that there were 

on average 213.4 locomotion score 1 cows classified as locomotion score 1. The element in the first row 

and second column means that there were on average 10 locomotion score 1 cows classified as 

locomotion score 2. The element in the second row and first column means that there were on average 

22 locomotion score 2 cows classified as locomotion score 1. 

Table 6 – Average confusion matrix from linear classifier after LDA 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 213.4 ± 0.8 10.0 ± 0.7 0.6 ± 0.5 0 224 

2 22.0 ± 1.1 28.7 ± 1.1 2.3 ± 0.8 0 53 

3 8.6 ± 0.8 1.5 ± 0.5 14.9 ± 0.6 0 25 

4 0 0 0 11.0 11 

 

Table 7 – Average confusion matrix from quadratic classifier after LDA 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 220.2 ± 0.6 3.6 ± 0.5 0.2 ± 0.4 0 224 

2 31.6 ± 0.8 19.7 ± 0.8 1.7 ± 0.5 0 53 

3 9.0 0.3  ± 0.5 15.7 ± 0.5 0 25 

4 0 2.0 0 9.0 11 
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Table 8 – Average confusion matrix from K nearest neighbors classifier after LDA 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 207.7 ± 1.8 13.9 ± 1.7 2.4 ± 0.7 0 224 

2 26.8 ± 1.5 24.4 ± 1.0 1.8 ± 0.8 0 53 

3 7.8 ± 0.4 1.8 ± 0.4 15.4 ± 0.5 0 25 

4 0 0 0 11.0 11 

 
Table 9 – Average confusion matrix from decision tree classifier after LDA 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 195.9 ± 2.8 23.4 ± 2.4 4.7 ± 0.7 0 224 

2 26.2 ± 2.6 23.7 ± 2.3 3.1 ± 0.6 0 53 

3 7.5 ± 1.2 2.7 ± 0.8 14.8 ± 1.2 0 25 

4 2.4 ± 0.8 2.2 ± 1.0 0.8 ± 0.4 6.0 ± 1.0 11 

 
Table 10 – Average confusion matrix from support vector machine after LDA 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 216.2 ± 1.1 5.7 ± 0.9 2.1 ± 0.6 0 224 

2 29.6 ± 1.5 21.2 ± 1.5 2.2 ± 0.8 0 53 

3 9.5 ± 0.8 0 15.5 ± 0.8 0 25 

4 0 1.0 0 10.0 11 

 
Table 11 – Average confusion matrix from parzen classifier after LDA 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 219.5 ± 0.7 3.6 ± 0.7 0.9 ± 0.3 0 224 

2 31.1 ± 1.0 19.7 ± 0.7 2.2 ± 0.4 0 53 

3 9.7 ± 0.5 1.0 14.3 ± 0.5 0 25 

4 0 0 0 11.0 11 

 

Table 12 – Average confusion matrix from neural network classifier after LDA 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 192.1 ± 3.6 28.0 ± 3.4 3.9 ± 1.7 0 224 

2 25.6 ± 1.4 24.3 ± 1.4 2.8 ± 1.0 0.3 ± 0.7 53 

3 7.3 ± 1.3 5.1 ± 1.7 12.4 ± 0.8 0.2 ± 0.4 25 

4 1.5 ± 1.4 3.0 ± 1.6 0 6.5 ± 1.6 11 
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The confusion matrices after setting the prior probabilities of all locomotion scores to be equal is shown 

in tables 13-19. 

Table 13 – Average confusion matrix from linear classifier after LDA and equalizing prior probabilities 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 186.8 ± 1.0 28.5 ± 1.2 8.7 ± 1.1 0 224 

2 10.6 ± 1.0 37.7 ± 1.2 4.2 ± 0.4 0.5 ± 0.5 53 

3 1 3 21 0 25 

4 0 0 0 11 11 

 

Table 14 – Average confusion matrix from quadratic classifier after LDA and equalizing prior probabilities 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 182.4 ± 2.2 31.1 ± 1.4 10.5 ± 1.6 0 224 

2 12.9 ± 1.2 33.9 ± 1.4 5.2 ± 0.8 1 53 

3 1.1 ± 0.3 1.8 ± 0.6 22.1 ± 0.7 0 25 

4 0 1.1 ± 0.3 0 9.9 ± 0.3 11 

 

Table 15 – Average confusion matrix from K nearest neighbors classifier after LDA and equalizing prior probabilities 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 207.3 ± 0.9 14.3 ± 0.9 2.4 ± 0.7 0 224 

2 26.8 ± 1.5 24.4 ± 1.0 1.8 ± 0.8 0 53 

3 7.8 ± 0.4 1.8 ± 0.4 15.4 ± 0.5 0 25 

4 0 0 0 11 11 

 
Table 16 – Average confusion matrix from decision tree classifier after LDA and equalizing prior probabilities 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 196.1 ± 2.5 23.1 ± 2.1 4.8 ± 0.8 0 224 

2 26.4 ± 2.8 23.6 ± 2.3 3.0 ± 0.7 0 53 

3 7.4 ± 1.1 2.9 ± 1.1 14.7 ± 1.4 0 25 

4 2.4 ± 0.8 2.3 ± 1.1 0.8 ± 0.4 6.0 ± 1.0 11 
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Table 17 – Average confusion matrix from support vector machine after LDA and equalizing prior probabilities 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 215.2 ± 1.2 6.7 ± 1.3 2.1 ± 0.6 0 224 

2 28.3 ± 1.8 22.3 ± 1.8 2.4 ± 0.7 0 53 

3 8.9 ± 0.7 0 16.1 ± 0.7 0 25 

4 0 1 0 10 11 

 
Table 18 – Average confusion matrix from parzen classifier after LDA and equalizing prior probabilities 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 184.2 ± 1.6 25.4 ± 1.4 14.4 ± 1.3 0 224 

2 12.6 ± 0.8 33.8 ± 0.6 6.6 ± 0.7 0 53 

3 1.4 ± 0.5 1.5 ± 0.7 22.1 ± 0.9 0 25 

4 0 0 0 11 11 

 

Table 19 – Average confusion matrix from neural network classifier after LDA and equalizing prior probabilities 

True 
Score 

Predicted Score Total 

1 2 3 4 

1 192.6 ± 5.4 25.8 ± 4.3 5.5 ± 1.9 0.1 ± 0.3 224 

2 25 ± 1.2 25.1 ± 1.3 2.9 ± 0.7 0 53 

3 7.4 ± 1.8 4.7 ± 1.8 12.9 ± 1.4 0 25 

4 2 ± 1.1 2.3 ± 1.3 0.1 ± 0.3 6.6 ± 1.6 11 
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4. Discussion 
The aim of this project was to find out if markerless pose estimation can feasibly detect lameness in 

cattle. Using DeepLabCut, markerless pose estimation of cows could be done accurately and gait 

features could be extracted reliably from walking cow videos. Tests for significant differences revealed 

that some gait features were able to differentiate between cows of different locomotion scores, except 

between locomotion scores 2 and 3. Classifiers trained with the acquired data initially achieved modest 

sensitivity and very high specificity, but with some tweaks a higher sensitivity could be achieved at the 

expense of lower specificity. 

 

4.1 DeepLabCut performance 
Given that the hooves of the cow in the videos were around 15x25 pixels in size, it can be concluded 
that with a mean error of 4.4 pixels, the predictions by DeepLabCut were accurate and sufficiently 
captured the positional information of the body parts. 
 

4.2 Data Analysis 
In most of the gait features tested, the locomotion score 4 group was significantly different compared to 

the rest. This was not surprising considering that locomotion score 4 cows walk with such difficulty that 

they are easily noticed to be lame even to the untrained eye. 

Significance tests among locomotion score groups 1,2 and 3 had more mixed results. In general, stance 

time gait features were significantly different between healthy cows (locomotion score 1) and lame 

cows (locomotion score 2 and 3), but no difference was found between locomotion score 2 and 3. The 

step length gait features performed similarly, except that locomotion score 1 and 2 were less 

distinguishable. This agrees with the results from the force sensor system by Maertens et al [34] 

because they also found that stance time and step length were features that were significantly different 

between different locomotion scores. 

Step time showed no difference in general among locomotion score groups 1,2 and 3 (although 

locomotion score 4 was different from the rest). This may seem to contradict the results from Maertens 

et al [34], but they calculated step time differently by taking the time difference between the middle of 

each stance phase, not the time difference between hoof lift off and ground strike. The former may be 

influenced by other features like stance time (a longer stance time increases the time between the 

middle of each stance phase). 

Despite other studies showing asymmetry in the left and right limbs [30-32, 34], this analysis did not find 

much differences between the locomotion score groups other than the locomotion score 4 group. One 

possible reason is the lower sampling rate of 30 Hz  used in this project compared to others like 

Maertens et al. (60 Hz) [34] and Alsaaod et al. (400 Hz) [32]. Another possible reason is that most of 

those studies measured the asymmetry of acceleration [30-32] and not the asymmetry of common gait 

variables like step time and stance time used in this project. 

Back arch was another feature that showed lackluster results despite being an important feature 

commonly used in manual locomotion scoring. Notably, the average value of the locomotion score 4 

group was very different from the rest, but was not found to be significantly different from any of them. 
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The standard errors from the back arch of locomotion score groups 1, 2, 3 and 4 were 452 pixels, 928 

pixels, 1352 pixels and 2038 pixels respectively. Thus, it is likely that the sample size of the locomotion 

score 4 group was too small to accurately estimate the mean. 

Head bobbing and its related feature, nodding showed no difference between the locomotion scores 

despite head bobbing being a well-known indicator of lameness. Generally, head bobbing is associated 

with fore limb lameness [48]. Thus, one possible explanation is that the relationship between head 

bobbing and lameness was changed because this project does not differentiate between fore and hind 

limb lameness.  
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4.3 Dimensional reduction and lameness classification 
It can be seen in figures 15, 16 and 17 that the 3 resulting features after LDA contained enough 

information to partially differentiate the different locomotion scores with various degrees of success. 

Feature 1 alone was capable of completely separating locomotion score 4 cows from the rest. 

Locomotion score 3 cows seemed partially separable from locomotion score 1 cows, mostly with feature 

2, and feature 1 to a lesser degree. Locomotion score 2 cows also seemed partially separable from 

locomotion score 1 cows, mostly with feature 3, and feature 1 to a lesser degree. 

The linear discriminant classifier achieved the highest classification rate of 85.6%. However, the 

locomotion score 1 group alone contributed 68.2% to 85.6% of this classification rate because the group 

constitutes about 72% of the whole dataset. Thus, only looking at the classification rate is misleading. 

The confusion matrices reveal how the classifiers actually performed with each locomotion score group. 

All 11 locomotion score 4 cows were detected with 100% accuracy. This was not surprising because 

score 4 was clearly separated from the rest in figure 15. The performance of classification among cows 

of locomotion score 3 were mixed, with an average of 14.9 out of 25 locomotion score 3 cows (59.6%) 

were correctly classified as such. A significant 8.6 out of 25 locomotion score 3 cows (34.4%) were 

wrongly classified as locomotion score 1. As we look at milder states of lameness, it becomes even 

harder for the classifier to differentiate between healthy and lame cows. Only 28.7 out of 53 locomotion 

score 2 cows (54.2%) were correctly classified as such. A significant 22 out of 53 locomotion score 2 

cows (41.5%) were wrongly classified as locomotion score 1. These classifier performance is also 

reflected in the visualization in figure 15 where a portion of the locomotion score 3 cows (green circles) 

and a portion of the locomotion score 2 cows (red asterisks) were both mixed with the cluster of 

locomotion score 1 cows (blue plus). 

Unfortunately, even after examining the confusion matrices, none of the other classifiers really 

outperformed the linear discriminant classifier. Distribution of classification rates of other classifiers 

were similar to the linear discriminant classifier in that locomotion score 1 and 4 cows had very high 

classification rates while locomotion score 2 and 3 had mixed results. Neural network did especially 

badly with a classification rate of 75.2%. This was most likely the result of overfitting because additional 

tests revealed that the neural network classifier achieved a 96% classification rate on the training set. 

Setting the prior probabilities to be equal for all locomotion scores significantly increased the 

classification rates of locomotion score 2 and 3 at the expense of decreasing the classification rate of 

locomotion score 1 cows. This was expected because equal weights were given to all locomotion scores 

such that the classifiers were no longer biased against low population locomotion score groups. 

If we view the locomotion score 1 cows as healthy cows and other cows as lame cows, the initial 

configuration of prior probabilities resulted in 61.3% sensitivity and 95.3% specificity with the linear 

discriminant classifier. Setting the prior probabilities of all locomotion scores to be equal resulted in 

78.3% sensitivity and 83.4% specificity with the linear discriminant classifier. While the proposed 

lameness detection method is nowhere near being able to give assessments with 100% confidence, it 

can be used as an early warning system to alert farmers about cows that are potentially locomotion 

score 2 or 3 and may need attention. Whether to favor detecting more potentially lame cows early (high 

sensitivity), or avoid wasting time and labor examining false positive cows (high specificity), depends on 

their economic values and the preferences of the farmer.  
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4.4 Recommendations for future work 
One way to improve the classification rate is by adding more features that can differentiate between 

healthy and lame cows. The movements of the fetlock joints and carpal/tarsal joints were not included 

in the extracted features despite being successfully detected by DeepLabCut. With these key points, the 

angles of the joints of each limb can be calculated, which may turn into useful gait features as shown by 

Pluk et al. They showed that joint angle features such as touch and release angles (angle of fetlock joint 

when touching and leaving the ground) were different between healthy and lame cows [38]. It may also 

be possible to add more features by adding new key points on other body parts. From the results in this 

and many other projects, DeepLabCut seems capable of detecting arbitrary objects with high accuracy. 

Thus, as long as the key points of interest are visually distinguishable enough such that they can be 

manually labeled by a human, it is very likely that DeepLabCut can handle these new key points. 

Another obvious way to improve the classification rate is by increasing the size of the dataset. The 

overfitting problems encountered by the neural network classifier might have been caused by the small 

size of the current dataset. Of course, to verify that the proposed method works well in general, 

additional data should be gathered at different farms with different cows and different farm conditions. 

Instead of trying to differentiate between healthy cows and lame cows, some works in literature have 

proposed a different approach: detecting lameness by detecting changes in gait variables in individual 

cows [38, 49]. It has been argued that every cow is different and not all cows have the same gait 

variables when they are lame. Thus, it may be better to monitor individual cows over a long period and 

detect any significant changes in gait variables, which may indicate that the cow has gotten lame. The 

methods described in this thesis is very suitable for such a task because as long as a camera can be set 

up at a good location in a farm, walking cows can be automatically recorded and monitored for a very 

long period of time. This should be coupled with a system that automatically records the ID number of 

cows when they leave and enter the barn, like the Lely Grazeway (Lely, the Netherlands), to enable the 

identification of individual cows. 

 

5. Conclusion 
Lameness is a big problem in cattle farms because farmers lack the time and labor to control it. 
Automatic lameness detection methods proposed in literature so far are costly or unfeasible for 
commercial farms. This thesis proposed a method to detect lameness by extracting gait features with a 
camera. Pose estimation of cows was done using DeepLabCut. Gait features were then extracted from 
the information acquired via pose estimation and analyzed. Notable gait features with significant 
differences between healthy cows and lame cows were step length and stance time. Classification 
attempts resulted in an overall classification rate of 85.6%. However, upon further analysis, it was found 
that the specificity was 95.3%, but sensitivity was only 61.3%. Adjusting the prior probabilities of all the 
locomotion score groups to be equal significantly boosted the sensitivity to 78.3% at the expense of 
reducing specificity to 83.4%. Future works should focus on improving the classification rate (both 
sensitivity and specificity) by adding more relevant features and looking into the change in a cow’s gait 
as it becomes lame.  
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Appendix 

 

A1. Full list of gait features 
Table – Full list of gait features 

Gait Feature Description 

LF step time 1 Step time of first step of left front limb 

LF step time 2 Step time of second step of left front limb 

LF step time 3 Step time of third step of left front limb 

LF step time mean Mean step time of left front limb 

RF step time 1 Step time of first step of right front limb 

RF step time 2 Step time of second step of right front limb 

RF step time 3 Step time of third step of right front limb 

RF step time mean Mean step time of right front limb 

LH step time 1  Step time of first step of left hind limb 

LH step time 2 Step time of second step of left hind limb 

LH step time 3 Step time of third step of left hind limb 

LH step time mean Mean step time of left hind limb 

RH step time 1 Step time of first step of right hind limb 

RH step time 2 Step time of second step of right hind limb 

RH step time 3 Step time of third step of right hind limb 

RH step time mean Mean step time of right hind limb 

Overall step time mean Mean step time of all limbs 

Minimum step time Shortest step time 

Maximum step time Longest step time 

LF step length 1 Step length of first step of left front limb 

LF step length 2 Step length of second step of left front limb 

LF step length 3 Step length of third step of left front limb 

LF step length mean Mean step length of left front limb 

RF step length 1 Step length of first step of right front limb 

RF step length 2 Step length of second step of right front limb 

RF step length 3 Step length of third step of right front limb 

RF step length mean Mean step length of right front limb 

LH step length 1  Step length of first step of left hind limb 

LH step length 2 Step length of second step of left hind limb 

LH step length 3 Step length of third step of left hind limb 

LH step length mean Mean step length of left hind limb 

RH step length 1 Step length of first step of right hind limb 

RH step length 2 Step length of second step of right hind limb 

RH step length 3 Step length of third step of right hind limb 

RH step length mean Mean step length of right hind limb 

Overall step length mean Mean step length of all limbs 

Minimum step length Shortest step length 

Maximum step length Longest step length 

LF stance time 1 Stance time of first step of left front limb 

LF stance time 2 Stance time of second step of left front limb 
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LF stance time 3 Stance time of third step of left front limb 

LF stance time mean Mean stance time of left front limb 

RF stance time 1 Stance time of first step of right front limb 

RF stance time 2 Stance time of second step of right front limb 

RF stance time 3 Stance time of third step of right front limb 

RF stance time mean Mean stance time of right front limb 

LH stance time 1 Stance time of first step of left hind limb 

LH stance time 2 Stance time of second step of left hind limb 

LH stance time 3 Stance time of third step of left hind limb 

LH stance time mean Mean stance time of left hind limb 

RH stance time 1 Stance time of first step of right hind limb 

RH stance time 2 Stance time of second step of right hind limb 

RH stance time 3 Stance time of third step of right hind limb 

RH stance time mean Mean stance time of right hind limb 

Overall stance time mean Mean stance time of all limbs 

Minimum stance time Shortest stance time 

Maximum stance time Longest stance time 

Front step length asymmetry 1 Absolute difference between LF step length 1 and RF step 
length 1 

Front step length asymmetry 2 Absolute difference between LF step length 2 and RF step 
length 2 

Front step length asymmetry 3 Absolute difference between LF step length 3 and RF step 
length 3 

Front step length asymmetry mean Mean front step length asymmetry 

Hind step length asymmetry 1 Absolute difference between LH step length 1 and RH step 
length 1 

Hind step length asymmetry 2 Absolute difference between LH step length 2 and RH step 
length 2 

Hind step length asymmetry 3 Absolute difference between LH step length 3 and RH step 
length 3 

Hind step length asymmetry mean Mean hind step length asymmetry 

Front step time asymmetry 1 Absolute difference between LF step time 1 and RF step time 1 

Front step time asymmetry 2 Absolute difference between LF step time 2 and RF step time 2 

Front step time asymmetry 3 Absolute difference between LF step time 3 and RF step time 3 

Front step time asymmetry mean Mean front step time asymmetry 

Hind step time asymmetry 1 Absolute difference between LH step time 1 and RH step time 1 

Hind step time asymmetry 2 Absolute difference between LH step time 2 and RH step time 2 

Hind step time asymmetry 3 Absolute difference between LH step time 3 and RH step time 3 

Hind step time asymmetry mean Mean hind step time asymmetry 

Front stance time asymmetry 1 Absolute difference between LF stance time 1 and RF stance 
time 1 

Front stance time asymmetry 2 Absolute difference between LF stance time 2 and RF stance 
time 2 

Front stance time asymmetry 3 Absolute difference between LF stance time 3 and RF stance 
time 3 

Front stance time asymmetry mean Mean front stance time asymmetry 
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Hind stance time asymmetry 1 Absolute difference between LH stance time 1 and RH stance 
time 1 

Hind stance time asymmetry 2 Absolute difference between LH stance time 2 and RH stance 
time 2 

Hind stance time asymmetry 3 Absolute difference between LH stance time 3 and RH stance 
time 3 

Hind stance time asymmetry mean Mean hind stance time asymmetry 

Nose bobbing Variance in pixel2 of vertical position of head 

Nodding Variance of angle between top of the head and nose 

Back arch Radius in pixel of circle fitted on the three back key points 

 

A2. ANOVA and Bonferroni test 
% features: 313*84 array, 84 gait features from 313 cow videos 
% labels: 313*1 array, true locomotion score of 313 cows 
for i = 1:size(features,2) 
    % ANOVA  
    [p,t,stats] = anova1(features(:,i),labels); 

     
    % Comparison between groups using Bonferroni 
    [c,m,h,nms] = multcompare(stats,'CType','bonferroni'); 
end 
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A3. Dimensional Reduction, classification and cross validation 
% Create dataset with features and their corresponding labels 
% features: 313*84 array, 84 gait features from 313 cow videos 
% labels: 313*1 array, true locomotion score of 313 cows 
locomotion_data = prdataset(features,labels); 
  
% Set prior probabilities to the frequency of each locomotion score group 
locomotion_data = setprior(locomotion_data,getprior(locomotion_data)); 
  
% Dimensional reduction using linear discriminant analysis (Fisher mapping) 
dim_reduc_map = fisherm(locomotion_data); 
locomotion_data_reduc = locomotion_data*dim_reduc_map; 
  

% Scatter plots for figures 13-15 

scatterd(locomotion_data_reduc,'legend'); 

scatterd(locomotion_data_reduc(:,[2,3]),'legend'); 

scatterd(locomotion_data_reduc(:,[1,3]),'legend'); 

 
% Initialize linear discriminant classifier, quadratic discriminant 
% classifier, K=3 nearest neighbors classifier, decision tree classifier, 
% support vector machine, parzen classifier and neural network classifier 
classifiers_untrained = {ldc,qdc,knnc([],3),treec,svc,parzenc,neurc}; 
  
% Perform cross validation 10 times 
iterations = 10; 
  
% Initialize array to store error rate of each classifier over 10 
% iterations 
err_list = zeros(iterations,length(classifiers_untrained)); 
  
% Initialize array to store confusion matrix of each classifier over 10 
% iterations 
confusions = zeros(4,4,iterations,length(classifiers_untrained)); 
 

for i=1:iterations 
    % 10-fold cross validation to calculate error rate and predicted labels 
    [err,~,nlab_out] = prcrossval(locomotion_data_reduc,classifiers_untrained,10); 
    err_list(i,:) = err; 
     
    % Calculate confusion matrices 
    for j = 1:length(classifiers_untrained) 
        [confusion,~,~,~] = confmat(labels,nlab_out{j}); 
        confusions(:,:,i,j) = confusion; 
    end 
end 
  
% Calculate mean and standard deviation of error rates 
err_mean = mean(err_list,1); 
err_std = std(err_list,0,1); 
  
% Calculate mean and standard deviation of confusion matrices 
confusion_mean = mean(confusions,3); 
confusion_std = std(confusions,0,3); 

 


