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Abstract

Recent years have witnessed a significant trend towards filling the gap between Social Network Analysis (SNA)
and control theory. This trend was enabled by the introduction of new mathematical models describing
dynamics of social groups, the development of algorithms and software for data analysis and the tremendous
progress in understanding complex networks and multi-agent systems (MAS) dynamics. The aim of this
tutorial is to highlight a novel chapter of control theory, dealing with dynamic models of social networks and
processes over them, to the attention of the broad research community. In its first part [1], we have considered
the most classical models of social dynamics, which have anticipated and to a great extent inspired the recent
extensive studies on MAS and complex networks. This paper is the second part of the tutorial, and it is
focused on more recent models of social processes that have been developed concurrently with MAS theory.
Future perspectives of control in social and techno-social systems are also discussed.

Keywords: Social network, opinion dynamics, multi-agent systems, distributed algorithms.

1. Introduction

Originating from the early studies on sociome-
try [2, 3], Social Network Analysis (SNA) has quickly
grown into an interdisciplinary science [4–7] that
has found applications in political sciences [8, 9],
medicine [10], economics [11, 12], crime prevention
and security [13, 14]. The recent breakthroughs in
algorithms and software for big data analysis have
made SNA an efficient tool to study online social
networks and media [15, 16] with millions of users.
The development of SNA has inspired many impor-
tant concepts of modern network science [17–20] such
as cliques and communities, centrality measures, re-
silience, graph’s density and clustering coefficient.

Employing many mathematical and algorithmic
tools, SNA has however benefited little from the re-
cent progress in systems and control [21–23]. The
realm of social sciences has remained almost un-

✩The paper is supported by Russian Science Foundation
(RSF) grant 14-29-00142, hosted by IPME RAS.

∗Corresponding author
Email address: anton.p.1982@ieee.org (Anton V.

Proskurnikov)

touched by control theory, despite the long-term stud-
ies on social group dynamics [24–26] and “sociocyber-
netics” [27–30]. This gap between SNA and control
can be explained, to a great extent, by the lack of
dynamic models of social processes and mathemati-
cal armamentarium for their analysis. Focusing on
topological properties of networks, SNA and network
science have paid much less attention to dynamics
over them, except for some special processes such
as e.g. random walks, branching and queueing pro-
cesses, percolation and contagion dynamics [19, 20].

The recent years have witnessed an important ten-
dency towards filling the gap between SNA and con-
trol theory, enabled by the rapid progress in multi-
agent systems and dynamic networks. The emerging
branch of control theory, studying social processes,
is very young and even has no name yet. However,
the interest of sociologists to this new area and un-
derstanding that “coordination and control of social
systems is the foundational problem of sociology” [31]
leaves no doubt that it should become a key instru-
ment to examine social networks and dynamics over
them. Without aiming to provide a exhaustive survey
of “social control theory” at its dawn, this tutorial fo-
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cuses on the most “mature” results, primarily dealing
with mechanisms of opinion formation [31–36].

In the first part of this tutorial [1], the most classi-
cal models of opinion formation have been discussed
that have anticipated and inspired the “boom” in
multi-agent and networked control, witnessed by the
past decades. This paper is the second part of the
tutorial and deals with more recent dynamic mod-
els, taking into account effects of time-varying graphs,
homophily, negative influence, asynchronous interac-
tions and quantization. The theory of such models
and multi-agent control have been developed concur-
rently, inspiring and reinforcing each other.

Whereas analysis of the classical models addressed
in [1] is mainly based on linear algebra and matrix
analysis, the models discussed in this part of the tu-
torial require more sophisticated and diverse mathe-
matical tools. The page limit makes it impossible to
include the detailed proofs of all results discussed in
this part of the tutorial; for many of them, we have to
omit the proofs or provide only their brief sketches.

The paper is organized as follows. Section 2 intro-
duces preliminary concepts and some notation used
throughout the paper. Section 3 considers basic re-
sults, concerned with properties of the non-stationary
French-DeGroot and Abelson models. In Section 4 we
consider bounded confidence models, where the inter-
action graph is opinion-dependent. Section 5 is de-
voted to dynamic models based on asynchronous gos-
siping interactions. Section 6 introduces some mod-
els, exploiting the idea of negative influence. Sec-
tion 7 concludes the tutorial.

2. Preliminaries and notation

In this section we introduce some notation; basic
concepts regarding opinion formation modeling are
also recollected for the reader’s convenience.

2.1. Notation

We use m : n to denote the set {m,m + 1, . . . , n}
(here m,n are integer and m ≤ n). Given a vector
x ∈ R

n, |x| stands for its Euclidean norm |x| =
√
x⊤x.

Each non-negative matrix A = (aij)i,j∈V corre-
sponds to the weighted graph G[A] = (V,E[A], A),
whose arcs represent positive entries of A: aij > 0 if
and only if (j, i) ∈ E(A). Being untypical for graph
theory (where the entry aij > 0 is encoded by the arc
(i, j)), this notation is convenient in social dynamics
modeling [1] and multi-agent control [37, 38].

Dealing with algorithms’ complexity, we use stan-
dard Landau-Knuth notation [39]. Given two posi-
tive functions f(n), g(n) of the natural argument n,
g(n) = O(f(n)) stands for the estimate |g(n)| ≤
C|f(n)|, where C is some constant, and f(n) =
Ω(g(n)) means that lim

n→∞
f(n)/g(n) > 0 (i.e. f(nk) ≥

c0g(nk) for a constant c0 > 0 and a sequence nk → ∞.

2.2. Agent-based modeling of opinion evolution

From the sociological viewpoint [31], an individ-
ual’s opinion stands for his/her cognitive orienta-
tion towards some object (e.g. issue, event, ac-
tion or another individual). Mathematically, opin-
ions are scalar or vector quantities of interest, asso-
ciated with social actors. Depending on the specific
model, opinions may represent signed attitudes [40–
42], subjective certainties of belief [43, 44] or proba-
bilities [45, 46]. In this tutorial, we deal with models
where opinions can attain a continuum of values and
are represented by real numbers or vectors. Dynam-
ics of real-valued opinions obey ordinary differential
or recurrent equation and are much better studied by
the systems and control community than the evolu-
tion of discrete (finite-valued) opinions. For this rea-
son, many important models with finite-valued opin-
ions [47–55] are beyond the scope of this tutorial.

Historically, the first approach to social dynamics
modeling originates from mathematical biology [56–
59], portraying social behaviors as interactions of
multiple “species” or compartments [60]. Dealing
with a social group, a compartment is a subgroup
whose members are featured by some behavior or
hold the same position on some issue. Interacting
as indecomposable entities, compartments can grow
or decline. The models describing these processes are
called compartmental and broadly used in mathemat-
ical biology and evolutionary game theory [60–62],
as exemplified by the SIR/SIS models of epidemic
spread and the Lotka-Volterra predator-prey dynam-
ics. Compartmental models describe how the dis-
tribution of individuals between the compartments
evolves, paying no attention to behaviors of specific
social actors. This statistical approach is typical for
sociodynamics [63–65], representing the state of a so-
ciety by a point in some configuration space and has
lead to statistical model of opinion formation, de-
scribing how the distribution of opinions evolves over
time. Similar in spirit to models arising in continuum
mechanics, such models are often referred to as Eule-
rian [66–68] or continuum [69–71] opinion dynamics.
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In this tutorial, we focus on agent-based models
of opinion formation, describing how the opinion of
each individual social actor, or agent, evolves under
the influence of the remaining individuals. The col-
lective behavior of a social group is constituted by
the numerous individual behaviors. Such “bottom-
up” models of social dynamics, called also aggrega-
tive [72], are similar in spirit to agent-based models
of self-organization in complex physical and biological
systems [73–75]. Unlike statistical models, adequate
for very large social groups, agent-based models can
describe both small-size and large-scale communities.
Throughout this paper, we deal with a closed com-
munity of n ≥ 2 agents, indexed 1 through n.

2.3. Models of consensus and Abelson’s puzzle

As have been discussed in the first part of this tuto-
rial [1], the first agent-based model of opinion forma-
tion was introduced by French [76] and later studied
and extended by Harari [77, 78] and DeGroot [45].
The French-DeGroot model describes the discrete-
time evolution of the agents opinions x1, . . . , xn ∈ R,
whose stack vector x(k) = (x1(k), . . . , xn(k))

⊤ ∈ R
n

at step k = 0, 1, . . . obeys the averaging dynamics

x(k + 1) = Wx(k), k = 0, 1, . . . (1)

where W = (wij) is a stochastic matrix. The
continuous-time counterpart of (1), proposed by
Abelson [40], is the Laplacian flow dynamics [79]

ẋ(t) = −L[A]x(t), t ≥ 0, (2)

where A = (aij) is a non-negative matrix of “contact
rates” and L[A] stands for the Laplacian matrix of the
corresponding weighted graph [1, 79]. The asymp-
totic consensus of opinions appears to be the most
typical behavior of the systems (1) and (2), the rele-
vant criteria are considered in [1]. At the same time,
real social groups often fail to reach consensus and
exhibit clustering of opinions and other “irregular”
behaviors. This has lead Abelson to the fundamental
problem, called the community cleavage problem [31]
or Abelson’s diversity puzzle [80]: to find mathemati-
cal models, able to explain these disagreement effects.
The original formulation of Abelson [40] was as fol-
lows: “we are naturally lead to inquire what on earth
one must assume in order to generate the bimodal
outcome of community cleavage studies”.

One reason for community cleavage is the absence
of connectivity: consensus of opinions in the mod-
els (1) and (2) cannot be established when the cor-
responding interaction graph G[W ] or G[A] has no

directed spanning tree. Although social networks
are usually densely connected [81], they may contain
some “radical” groups [82], closed to social influence.
For instance, consensus is not possible in presence
for several stubborn individuals (or zealots) [53, 83],
whose opinion remains unchanged xi ≡ xi(0). Fur-
ther development of this idea naturally leads [1] to
the Friedkin-Johnsen theory of social influence net-
works [84, 85] with “partially stubborn” agents.

Stubborness is however not the only factor lead-
ing to the community cleavage; in this part of the
tutorial we consider other models of opinion forma-
tion where opinions can both converge to consensus or
split into several clusters. Many of these models are
based on the ideas, proposed in the seminal Abelson’s
works [40, 72] and extend the classical models (1),(2).

3. The models by French-DeGroot and Abel-

son with time-varying interaction graphs

Non-stationary counterparts of the models (1)
and (2) have been thoroughly studied in regard to
consensus and synchronization in multi-agent net-
works. In this tutorial, only some results are consid-
ered that directly related to social dynamics; detailed
overview of consensus algorithms can be found e.g. in
the recent monographs and surveys [37, 38, 86–90].

3.1. The time-varying French-DeGroot model

We start with a time-varying counterpart of (1),
where W is replaced by a sequence (W (k))k≥0

x(k + 1) = W (k)x(k), k = 0, 1, . . . (3)

Obviously, all solutions to (3) are bounded and the
sequences mini xi(k) and maxi xi(k), k = 0, 1, . . ., are
respectively non-decreasing and non-increasing.

As discussed in [1], even for the static case W (k) ≡
W the opinions do not always converge. For instance,
when the graph G[W ] is periodic, the system (1) has a
periodic solution. The convergence problem for time-
varying system (3) still remains a challenge, and up to
now only sufficient convergence conditions have been
obtained. One of them is given by the following im-
portant result, proved independently in [91–93].

Lemma 1. Let δ > 0 exist such that the sequence of
n × n stochastic matrices (W (k))k≥0 satisfies at any
time k ≥ 0 the following three conditions:

(a) (non-vanishing couplings) wij(k) ∈ {0} ∪ [δ, 1];
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(b) (self-confidence) wii(k) ≥ δ ∀i ∈ 1 : n;

(c) (type-symmetry) wij(k) > 0 ⇐⇒ wji(k) > 0.

Then the limit x̄ = limk→∞ x(k) exists for any x(0) ∈
R
n, being an equilibrium point: W (k)x̄ = x̄ for suffi-

ciently large k. If agents i and j interact persistently

∞∑

k=0

wij(k) = ∞,

then their limit opinions coincide x̄i = x̄j .

Introducing the undirected graph of persistent in-
teractions G∞ = (V,E∞), whose nodes stand for the
agents and arcs (i, j) connect pairs of persistently in-
teracting agents, the last statement of Lemma 1 can
be formulated as follows: in each connected compo-
nent of G∞, the opinions reach consensus.

We give a sketch of the proof of Lemma 1, follow-
ing the ideas from [91] and proposed in [94] for more
general systems of recurrent inequalities. It suffices
to consider the case of connected graph G∞. Indeed,
if (i, j) 6∈ E∞, then wij(k) > 0 only for finite number
of instants k thanks to condition (a). In other words,
k0 ≥ 0 exists such that wij(k) = 0 for k > k0 unless i
and j persistently interact. Renumbering the agents,
for k > k0 the matrix W (k) is block diagonal

W (k) =






W11(k) . . . 0
...

. . .
...

0 . . . Wrr(k)




 ,

where the stochastic submatrices Wii(k) correspond
to connected components of G∞. Hence (3) for k > k0
is decoupled into r independent systems.

Let G∞ be connected and j1(k), . . . , jn(k) be
the permutation of indices, sorting the opinions
x1(k), . . . , xn(k) in the ascending order, that is,
yi(k) = xji(k)(k) satisfy the following inequalities

min
i

xi(k) = y1(k) ≤ y2(k) ≤ . . . ≤ yn(k) = max
i

xi(k).

We are going to prove the following statement: for
any k ≥ 0 and i = 1, . . . , n − 1, there exists k′ > k
(depending on both k,i), satisfying the inequality

yi+1(k
′) ≤ δyi(k) + (1− δ)yn(k), (4)

where δ > 0 is the constant from condition (a).
To prove this, divide the agents into two sets I =
{j1(k), . . . , ji(k)} and J = {ji+1(k), . . . , jn(k)}. Since
G∞ is connected, an arc between I and J should exist,

and hence there exist K > k, such that wqp(K) ≥ δ
for some p ∈ I, q ∈ J . Let k0 stand for the mini-
mal such K. Since xs(k) ≤ yi(k) for any s ∈ I and
the agents from I and J do not interact at times
k, k + 1, . . . , k0 − 1, it can be shown that xr(k0) ≤
yi(k)∀r ∈ I. Also xr(k0) ≤ yn(k0) ≤ yn(k)∀r ∈ J
since yn(k) is non-increasing in k. For r ∈ I, one has

xr(k0 + 1) ≤ xr(k0) +

1−wrr(k0)≤1−δ
︷ ︸︸ ︷
∑

l 6=r

wrl(k0) [xl(k0)
︸ ︷︷ ︸

≤yn(k0)

−xr(k0)] ≤

≤ xr(k0) + (1− δ)[yn(k0)− xr(k0)] ≤
≤ δxr(k0) + (1− δ)yn(k0) ≤ δyi(k) + (1− δ)yn(k).

Recalling that wqp(k0) ≥ δ and p ∈ I, similarly to the
previous inequality one obtains

xq(k0 + 1) ≤ wqp(k0)xp(k0) + (1− wqp(k0))yn(k0) =

= yn(k0)− wqp(k0)[yn(k0)− xp(k0)] ≤
≤ δxp(k0) + (1− δ)yn(k0) ≤ δyi(k) + (1− δ)yn(k).

Denoting k′ = k0 + 1, for any index ρ ∈ I ′ = I ∪ {q}
one has xρ(k

′) ≤ δyi(k) + (1− δ)yn(k). Since I ′ con-
tains i+ 1 different indices, one arrives at (4). Since
yn(k) is bounded from below and non-increasing, it
converges to a limit yn(k) → M∗ as k → ∞. Pass-
ing to the limit as k → ∞ in (4), the corresponding
sequence k′ = k′(i, k) also tends to ∞ and thus

lim
k→∞

yi+1(k) ≤ δ lim
k→∞

yi+1(k) + (1− δ)M∗.

Applying this to i = n − 1, one has
M∗ ≤ limk→∞ yn−1(k) ≤ limk→∞ yn−1(k) ≤
limk→∞ yn(k) = M∗, and therefore yn−1(k) −−−→

k→∞
M∗. Iterating this procedure for i = n− 2, . . . , 1, one
proves that yi(k) → M∗, i.e. consensus of opinions is
established. Obviously, any consensus vector c1n is
an equilibrium point, which finishes the proof. �

The convergence of opinions in (3) can be reformu-
lated in terms of matrix products convergence [93].

Corollary 2. Under the assumptions of Lemma 1,
the limit of the matrix products exist

W̄ = lim
k→∞

W (k) . . . W (1)W (0). (5)

Renumbering of the agents, W̄ is block-diagonal

W̄ =






W̄11 . . . 0
...

. . .
...

0 . . . W̄rr




 ,
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where r is the number of connected components in
G∞ and W̄ii are “consensus matrices” 1ni

p⊤i , where
pi ∈ R

ni is a non-negative vector1 with p⊤i 1ni
= 1.

It should be noticed that the consensus criterion
from Lemma 1 can be substantially extended [95, 96].
In particular, are reported in the preprint [96], in
the case of connected undirected graph G∞ the type-
symmetry condition (c) can be relaxed to its “non-
instantaneous” version and (a) can be discarded (as-
suming (b) to be valid). Many models of opinion
dynamics (e.g. time-varying extensions of the FJ
model [97]), however, exhibit disagreement instead of
consensus, being uncovered by these strong results.

A natural question arises how to measure the
rate of convergence in (3) (being, in general, non-
exponential). Possible measures for such a rate are
the total and the kinetic s-energies [98], defined as

E(s) =
∑

k=0,1,2,...
(i,j):wij(k)6=0

|xi(k)− xj(k)|s

K(s) =

∞∑

k=0

n∑

i=1

|xi(k + 1)− xi(k)|s.
(6)

It is not obvious that E(s) and K(s) are finite for
s ≤ 1, however, under the assumptions of Lemma 1
both series converge2 for all s > 0. Some explicit
estimates for E(s) and K(s), depending on s, n, δ and
the initial condition x(0), has been derived in [98].

In practice, the assumption (c) restricting the in-
teractions among the agents to be bidirectional (or
reciprocal) often fails. The dynamics of matrix prod-
ucts without the type-symmetry assumption is a
long-standing problem in matrix analysis and non-
stationary Markov chain theory [99–101]. Some ex-
tensions of Corollary 2 to the matrices without type-
symmetry assumption has been reported in [102, 103].
Most of the existing convergence criteria are however
confined to the case where the model (3) exhibits
consensus. The following fundamental property, es-
tablished in [101], shows the equivalence between the
“weak” and “strong” definitions of consensus, exist-
ing in the literature and corresponding to, respec-
tively, weak and strong ergodicity [101] of the back-
ward matrix products W (k) . . . W (0).

1Similar to the static model (1), the elements of pi ≥ 0 can
be considered as social powers of the corresponding agents [1].

2Choosing the “agreement parameter” ρ = min(δ, 1/2), the
conditions (a),(b) entail the inequalities (3) from [98].

Proposition 3. For any sequence {W (k)}, the fol-
lowing two conditions are equivalent:

1. for any x(0), opinions asymptotically synchro-
nize so that maxi,j |xi(k)− xj(k)| −−−→

k→∞
0;

2. for any x(0), the opinions converge to a common
limit xi(k) −−−→

k→∞
x∗ (which depends on x(0)).

The following lemma gives a widely known suffi-
cient condition for consensus [37, 91, 92, 104].

Lemma 4. Suppose that the sequence of n × n
stochastic matrices (W (k))k≥0 satisfies the conditions
(a) and (b) from Lemma 1. Additionally, let the fol-
lowing repeated quasi-strong connectivity hold: there
exists T > 0 such that the following graphs

GT (k) = G[W (k) + . . .+W (k+ T − 1)], k ≥ 0 (7)

have directed spanning trees (quasi-strongly con-
nected). Then the opinions exponentially converge
to consensus x(k) −−−→

k→∞
c1n, where c = c(x(0)) ∈ R.

The repeated quasi-strong connectivity implies
that the union of each T consecutive graphs is quasi-
strongly connected, extending thus the consensus cri-
terion for static French-DeGroot model (1) [1, Corol-
lary 13]. Lemmas 1 and 4 remain valid in presence of
communication delays [91, 105] and can be extended
to some nonlinear consensus algorithms [92, 105, 106].

3.2. The time-varying Abelson model

The convergence criterion, similar to Lemma 1,
holds also for the time-varying counterpart of (2)

ẋ(t) = −L[A(t)]x(t), t ≥ 0. (8)

Here A(t) = (aij(t)) is a non-negative matrix, whose
entries are suppose to be locally L1-summable. Un-
like the static Abelson model with A(t) ≡ A, where
opinions always converge [1], the convergence of (8)
is a non-trivial problem. For the case of bidirectional
(reciprocal) interactions, however, the following ele-
gant result has been obtained in [103, 107].

Lemma 5. Suppose that the gains aij(t) satisfy the
following type-symmetry condition

K−1aji(t) ≤ aij(t) ≤ Kaji(t) ∀t ≥ 0, (9)

where K ≥ 1 is a constant. Then the functions
ẋj , aij(xj − xi) are L1-summable for any i, j. In par-
ticular, the limit x̄ = limk→∞ x(k) exists and if agents
i and j interact persistently in the sense that

∫ ∞

0
aij(t)dt = ∞,

5



then their final opinions are coincident x̄i = x̄j.

The proofs in [103, 107] are based on the properties
of the ordering permutation yi(t) = xji(t)(t), sorting
the opinions in the ascending order, we do not include
them as they require some non-trivial mathematical
tools. In the case where consensus is established (the
graph of persistent interactions is connected), an al-
ternative proof has been proposed in [108]. In fact,
the type-symmetry assumption (59) can be replaced
by the weaker cut-balance condition [103], which has
recently been further relaxed to a non-instantaneous
(integral) reciprocity [109]. Lemma 5 can be also ex-
tended to one-sided differential inequalities [110].

Similar to the discrete-time case3, the convergence
of (8) without reciprocity assumptions remains a non-
trivial problem. The existing convergence criteria are
mainly confined to the case where consensus of opin-
ions is established. The most general of such criteria
is a continuous-time counterpart of Lemma 4, estab-
lishing exponential convergence to consensus for uni-
formly quasi-strong connected (UQSC) graphs.

Lemma 6. Let A(·) be bounded 0 ≤ aij(t) ≤ M and
there exist ε, T > 0 such that the following graphs

Gε,T (t) = G
[∫ t+T

t

A(s)ds

]

, t ≥ 0 (10)

are quasi-strongly connected for any t ≥ 0. Then the
opinions in (8) exponentially converge to consensus.

Unfortunately, a complete proof of Lemma 6 is
not easily available in the literature. Most of the
proofs require extra assumptions, e.g. the existence
of a common root node in all the graphs Gε,T [111],
piecewise-constantness of A(t) [37, 112, 113] or at
least its continuity almost everywhere [108]. Anal-
ysis of the proofs in [108, 112, 113] reveals, however,
the possibility to discard these additional restrictions.

The consensus criterion from Lemma 6 can be ex-
tended to some nonlinear consensus continuous-time
algorithms [112–116] and retains its validity in pres-
ence of communication delays [113, 117], whereas the
validity of Lemma 5 in presence of communication
delays seems to be a non-trivial open problem.

Whereas the uniform connectivity from Lemma 6
is “almost” necessary for consensus (being necessary

3As can be shown [37, Lemma 2.27], if A(t) is piecewise-
constant, attains values in some compact set of matrices and its
consecutive switchings are separated by a positive dwell time,
the model (8) in fact reduces to the discrete-time model (3).

for exponential consensus [112] and the consensus’
robustness [108]), it is only sufficient for the con-
vergence of opinions in the time-varying Abelson
model (8) (for instance, we have seen [1] that for
A(t) ≡ A the opinions always converge, whereas con-
sensus requires the quasi-strong connectivity of the
graph G[A]). At the same time, is can be easily shown
that, similar to the discrete-time model, solutions al-
ways remain bounded since the convex hull spanned
by the opinions does not expand [103, 107, 112, 113].

4. Opinion dynamics with bounded confidence

The well-known adage “birds of a feather flock to-
gether” prominently manifests the principle of ho-
mophily [118]: similar individuals interact more often
and intensively than dissimilar people. Distancing
from the members of other social groups, e.g. rejec-
tion of cultural forms they like [119], is an important
factor of social segregation and cleavage. Humans
readily assimilate opinions of like-minded individuals,
accepting dissimilar opinions with discretion [120].

The idea to introduce homophily into the dynam-
ics of opinion (“attitude”) formation has in fact been
proposed by Abelson [40] who first realized that the
time-varying model (8) can reflect the effects of biased
assimilation. As stated in [40], the variability of the
“contact rates” aij(t) can express that people tend to
locomote into groups that share their attitudes and out
of groups that do not agree with them. The latter phe-
nomenon lies in the heart of many mathematical mod-
els, proposed recently and dealing with modifications
of the French-DeGroot and Abelson models, where
the influence of agent j on agent i is the stronger,
the closer are opinions of the agents [121]. The latter
principle is prominently illustrated by bounded con-
fidence models, attracting enormous attention of a
broad research community, from systems and control
theorists to statistical physicists and data scientists.

Bounded confidence models stipulate that individ-
uals are totally insensitive to opinions, falling out-
side their confidence sets. Simple yet instructive
models of this type were independently proposed by
Krause [122] and Deffuant and Weisbuch [123]. The
Deffuant-Weisbuch model, based on the idea of gos-
siping, will be discussed in Section 5. In this section,
we are primarily concerned with the model from [122],
which is nowadays referred to as the Hegselmann-
Krause (HK) and has become widely known after the
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publication of the work [124]. Along with the HK
model, some of its recent extensions are considered.

4.1. The original HK model

We start with the original model from Krause’s pa-
per [122]. Being an extension of the French-DeGroot
model (1), the HK model deals with n agents, whose
real opinions xi ∈ R constitute the opinion vector
x = (x1, . . . , xn) ∈ R

n. We introduce the fixed
range of confidence d > 0 and call the closed4 set
[xi − d, xi + d] ⊂ R confidence interval of agent i.
Each agent i ignores the opinions beyond his/her
confidence interval, interacting only with a group of
trusted individuals Ii(x) = {j : |xj − xi| ≤ d} ∋ {i}.
Using |Ii(x)| to denote their number, the ith agent’s
opinion evolves at each step as follows

xi(k + 1) =
1

|Ii(x(k))|
∑

j∈Ii(x(k))

xj(k), i ∈ 1 : n. (11)

The opinion formation process (11) is a nonlinear au-
tonomous (time-invariant) discrete-time system

x(k + 1) = C(x(k)) ∈ R
n,

C(x) = (C1(x), . . . , Cn(x))⊤,

Ci(x) =
1

|Ii(x)|
∑

j∈Ii(x)

xj , i ∈ 1 : n.

(12)

We refer the mapping C : Rn → R
n to as the HK op-

erator. On the other hand, this system can be consid-
ered as the time-varying French-DeGroot model (3)
with the state-dependent matrix W (x(k)), where

W (x) = (wij(x)), wij(x) =

{

1/|Ii(x)|, j ∈ Ii(x)

0, otherwise.

Introducing the corresponding influence graph

G(x) = (V,E(x),W (x)),

(i, j) ∈ E(x) ⇐⇒ j ∈ Ii(x) ⇐⇒ |xi − xj| ≤ d,
(13)

one notices that the HK model stipulates the same
mechanism of the opinion formation as the original
French model [76], considered in the first part [1].
Each agent updates its opinion to the average opinion
of its neighbors in the influence graph. The crucial

4As will be shown in the next subsection, most properties
of the HK model remain valid, replacing closed confidence in-
tervals by open ones (xi − d, xi + d), considered e.g. in [69].

difference with the French model is that this graph
G(x) coevolves with the opinions, depending on their
mutual distances5. This graph may lose its connec-
tivity, leading to disagreement of the opinions.

Dynamic networks, where the nodes and topolo-
gies have mutually dependent (coevolutionary) dy-
namics are actively studied by physicists [125]. The
HK model and its modifications constitute one im-
portant class of such networks, thoroughly studied in
control theory. In the literature, one can find many
other examples of coevolutionary networks, e.g. the
seminal Vicsek model of phase transitions [74], multi-
agent models of flocks [126–128] and robotic networks
with range-restricted interactions [129].

In Fig. 1, we simulate the dynamics of n = 100
opinions for different confidence ranges d. The ini-
tial values xi(0) (same for all six experiments) are
uniformly distributed on [0, 1]. The simulation re-
veals some counter-intuitive phenomena, for instance,
a non-monotone dependence between d, the number
of clusters and the termination time. One could ex-
pect that the number of clusters is declining and the
convergence time is decreasing as d is growing. In re-
ality, an increase in d can increase the number of clus-
ters (see the plots (a),(b) and (c),(d) in Fig. 1). There
is no obvious dependence between d and the conver-
gence time, furthermore, for d = 0.25 the convergence
is visibly slower than for small d (Fig. 1f) (this phe-
nomenon of “abnormally” slow convergence to con-
sensus has been reported in [102]; the relevant con-
sensus states are referred in [102] as “metastable”).
In Table 1, the results are compared with the predic-
tion of a so-called 2R-conjecture [130, 131], stating
that for the initial opinions, uniformly sampled from
[0, 1] and d = R < 1/2, the opinions converge to
≈ 1/(2R) clusters, separated by distances of ≈ 2R.

A natural question arises whether opinions in the
HK model converge, as suggested by Fig. 1, or can
oscillate for some x(0). The following result, first
proved in [132], shows that the HK model always con-
verges to a fixed point in a finite number of steps.

Theorem 7. For any initial condition x(0), the HK
dynamics (11) terminates in a finite number of steps

5The influence, or interaction graph should not be confused
with the communication (information) graph, determining the
agents’ awareness of each other’s opinions. The HK model as-
sumes implicitly that agents are able to compute their sets
Ii(x(k)), having thus the full information about the state vec-
tor x(k). In this sense, the original HK dynamics (11) unfolds
over a social network with all-to-all communication.
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(c) d = 0.11
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(d) d = 0.12

0 5 10 15 20 25

step, k

0

0.2

0.4

0.6

0.8

1

o
p

in
io

n
s
, 

x
i(k

)

(e) d = 0.2
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(f) d = 0.25

Figure 1: The HK model with n = 100 agents and different d.

x(k) ≡ x̄∀k ≥ k∗, where the final opinion x̄ and the
termination time depend on x(0) and d. After the
model’s termination, any agents i, j either are in con-
sensus x̄i = x̄j or distrust each other |x̄i − x̄j | > d.

Note that Theorem 7 provides no information
about stability of equilibria points. In general, so-
lutions of the HK model can converge to unstable
equilibria, however, experiments show that for ran-
domly chosen initial opinions such a behavior is un-
typical [69]. For criteria of (local) asymptotic stabil-
ity we refer the reader to [69].

There are several ways to prove Theorem 7. The
original proof [132] extends the ideas from [122] and
is based on the matrix products convergence. An-
other approach is based on Lyapunov energy-like
functions. The relevant methods will be discussed
in the next subsections, dealing with multidimen-
sional extensions the HK model. The proof we outline
in this subsection is based on the important order-
preservation property of the HK model (11) and gives
the best known estimate for its termination time.

Lemma 8. [122] The HK operator C from (12) pre-

Table 1: Actual numbers of clusters vs. 2R-conjecture [130]

d Number of clusters Rounded 1/(2d)

0.05 7 10
0.06 8 8
0.11 3 5
0.12 4 4
0.2 2 3
0.25 1 2

serves the order of the elements x1, . . . , xn, that is,
if j1, . . . , jn is the ordering permutation of indices
xj1 ≤ . . . ≤ xjn, then Cj1(x) ≤ . . . ≤ Cjn(x).

Lemma 8 can be proved via induction on n. For
n = 1, the statement is obvious. Assuming that it
holds for the HK operator of dimension n−1, denoted
C̃ : Rn−1 → R

n−1, our goal is to prove it for the HK
operator C : R

n → R
n. It suffices to consider the

case where x is sorted in the ascending order x1 ≤
. . . ≤ xn, i.e. ji = i. If xn − x1 ≤ d, then C1(x) =
. . . = Cn(x) = (x1 + . . . + xn)/n, and the statement
is obvious. Otherwise, let j = min In(x) < n and
l = max I1(x) > 1 and xh = (x1, . . . , xn−1)

⊤, xt =
(x2, . . . , xn)

⊤ be the “head” and “tail” truncations of
x. For i ≤ j one has xi ≤ xj < xn−d, that is, agent i
is not influenced by agent n, and thus C̃i(xh) = Ci(x).
For the same reason, C̃i(xt) = Ci(x) whenever i ≥ l.
Therefore, the sequences {Ci(x)}ji=1 and {Ci(x)}ni=l

are non-decreasing. If l ≤ j, the induction step is
proved. Assuming that j < l, we have to show that

Cj(x) ≤ Cr(x) ≤ Cs(x) ≤ Cl(x). (14)

whenever j < r < s < l. Since r, s ∈ I1(x) ∩ In(x),

Cr(x)
(∗)
=

mrC̃r(x
h) + xn

mr + 1
=

mrC̃r(x
t) + x1

mr + 1
,

Cs(x)
(+)
=

msC̃s(x
h) + xn

ms + 1

(!)
=

msC̃s(x
t) + x1

ms + 1
,

(15)

wheremr = |Ir(x)|−1 andms = |Is(x)|−1. Recalling
that C̃r(x

h) ≥ C̃j(x
h) = Cj(x) and xn = maxi xi ≥

C̃j(x
h), one proves the leftmost inequality in (14) by

using the equality (*) from (15). Similarly, the equal-
ity (!) entails the rightmost inequality in (14). Using
(*) and (+), the mid inequality in (14) shapes into

mrC̃r(x
h) ≤ msC̃s(x

h) + (mr −ms)xn.

To prove the latter inequality, note that C̃s(x
h) ≥

C̃r(x
h) by assumption, xn = maxi xi ≥ C̃r(x

h) and

8



Is(x) ⊆ Ir(x), entailing that mr ≥ ms. This finishes
the proof of (14) and of the induction step.�

From now on until the end of this subsection, the
agents’ opinions are numbered in the ascending order

x1 ≤ . . . ≤ xn. (16)

If the initial vector of opinions x(0) is sorted as
in (16), this order of opinions is preserved at any it-
eration due to Lemma 8. We say that the opinions
(xi, . . . , xm) constitute a d-chain [132] if the distances
between consecutive opinions xi+1−xj , . . . , xm−xm−1

are ≤ d, that is, the graph G(x) from (13) contains a
chain of arcs i ↔ i + 1 ↔ . . . ↔ i + m. Obviously,
the vector of opinions x consists of several maximal d-
chains (that are not contained by any longer d-chain),
which correspond to the connected components of the
graph G(x). This is illustrated in Fig. 2, where the
opinions split into three maximal d-chains (x1, x2),
(x3, x4) and (x5, x6, x7), standing for the three con-
nected components of the graph G(x).

Figure 2: Opinions of n = 7 agents and the graph G(x)

It can be easily shown that two different maximal
d-chains can never merge, and the corresponding sets
of agents do not influence each other at any step.

Lemma 9. Suppose that the initial opinions xi(0)
are sorted in the ascending order (16) and xi+1(0)−
xi(0) > d. Then xi+1(k) is non-decreasing and xi(k)
is non-increasing in k, and thus xi+1(k)− xi(k) > d.
In other words, two maximal d-chains cannot merge.

Proof. We will show via induction on k that

xi(k + 1) ≤ xi(k) ≤ xi+1(k)− d ≤ xi+1(k + 1)− d.
(17)

We prove the induction base k = 0. Agent i can inter-
act at step k = 0 only with some of agents 1, . . . , i−1,
and thus xi(1) ≤ xi(0) = maxj≤i xj(0). Similarly,
agent i+1 can interact only with agents i+2, . . . , n,
so that xi+1(1) ≥ xi+1(0). This proves (17) for k = 0.
The step from k to k+1 is proved in the same way.�

Corollary 10. If two agents i and j belong to differ-
ent connected components of G(x(k0)), there are no
walks connecting them in any of the graphs G(x(k)),
k ≥ k0. As k grows, the strong components of G(x(k))
can split into smaller components but cannot merge.

Lemma 9 can also be reformulated as follows:
in each maximal d-chain xj(k) ≤ . . . ≤ xm(k)
the leftmost opinion xj(k) is non-decreasing xj(k +
1) ≥ xj(k), whereas the rightmost opinion is non-
increasing xm(k + 1) ≤ xm(k). In particular, the di-
ameter of the d-chain xm(k)−xj(k) is non-increasing.

If the diameter of a maximal d-chain is not greater
than d, at the next step this chain collapses into a
group of identical opinions xi = xi+1 = . . . = xi+m,
which we henceforth refer to as a xi = xi+1 =
. . . = xi+m (an example of such a cluster is the
pair of opinions x3, x4 in Fig. 2). This happens e.g.
with the maximal d-chain with only two opinions
xi(k) < xi+1(k). Maximal d-chains containing 3 or
4 opinions in fact also collapse into consensus clus-
ters after, respectively, 2 and 5 steps [122], and hence
the HK model with n < 5 agents always converges to
consensus. This statement does not hold for n > 5:
maximal d-chains with 5 and more opinions can split
into shorter d-chains, which in turn can further split
or converge to different consensus clusters. For this
reason, the HK model with n ≥ 5 agents may fail to
reach consensus even when G(x(0)) is connected.

A more accurate analysis of d-chains reveals the
following important property [133].

Lemma 11. During each two consecutive steps k
and k+ 1, any maximal chain in the vector x(k) col-
lapses into a singleton, splits into several maximal
d-chains or reduces in diameter by at least d/(n2).

There can be at most n − 1 times k at which one
of the chains collapses, and at most n − 1 splitting
times. Obviously, the sum of the diameters of all d-
chains is not greater than (n−1)d, so the diameter can
be decreased no more than (n − 1)n2 times. Hence,
the HK dynamics terminates in no more than k∗ ≤
2((n − 1)n2 + 2(n− 1)) = 2n3 − 2(n − 1)2 steps.

Corollary 12. [133] The HK model with n agents
terminates in no more that O(n3) steps.

The polynomial convergence time has been first
conjectured in [98], where the HK model has been
proved to terminate in nO(n) steps. An alternative
proof of Corollary 12, based on Lyapunov analysis,
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has been given in [134] (with the upper bound of ter-
mination time 3n3 + n). More conservative polyno-
mial estimates for the termination time have been
obtained in [129, 135, 136]; the approaches developed
there are also applicable to more general multidimen-
sional HK models, considered in the next subsection.
Notice that Lemma 11 gives only an upper bound of
the convergence time. To the best of the authors’
knowledge, the tightness of this estimate remains a
non-trivial open problem. For some initial conditions
the HK model terminates in Ω(n2) steps [137].

4.2. The multidimensional HK model

A natural extension of the HK model deals with
multidimensional opinions xi(k) ∈ R

m [138]. Choos-
ing some norm ‖·‖ on R

m, the confidence interval for
agent i is replaced by the ball {ξ ∈ R

m : ‖ξ−xi‖ ≤ d}
and hence the set of trusted individuals is defined as

Ii(x) = {j : ‖xj − xi‖ ≤ d}, (18)

where x ∈ R
nm denotes the column vector, obtained

by stacking x1, . . . , xn ∈ R
m on top of each other.

Here ‖ · ‖ can be an arbitrary norm on R
m, however

most of the existing works [133, 135, 138–140] deal
with the Euclidean norm ‖ξ‖ =

√

ξ⊤ξ.
Considering the scalar elements of the multidimen-

sional opinions as individual’s positions on different
issues, the definition of trust sets (18) imposes an im-
plicit dependence between these issues. In particular,
two individuals i, j that strongly disagree on the sth
issue (e.g. |xi,s − xj,s| ≥ d) ignore each other’s posi-
tions on all remaining issues since i 6∈ Ij(x), j 6∈ Ii(x).

Unlike the scalar case, for m > 1 the connected
components of the graph G(x) can not only split,
but also merge as shown in Fig. 3. Consider n = 4
opinion vectors xi(0) ∈ R

3, being the vertices of
a tetrahedron x1(0) = (0, 0, b), x2(0) = (0, 0,−b),
x3(0) = (a, 0, 0), x4(0) = (0, a, 0), where 0 < b < d/2
and

√
d2 − b2 < a ≤ d. It can be easily shown that

the graph G(x(0)) has three connected components
(Fig. 3c) since I1(x) = I2(x) = {1, 2} and Ii(x) = {i}
for i = 3, 4. At the next step (Fig. 3b) one has

x1(1) = x2(1) = (0, 0, 0), x3(1) = x3(0), x4(1) = x4(0),

and thus the graph G(x(1)) is connected (Fig. 3d) (in
fact, agents reach consensus in k = 3 steps).

A natural question thus arises whether result
of Theorem 7 holds for the multidimensional HK
model (11), (18), that is, the dynamics terminate in

(a) Opinions xi(0) (b) Opinions xi(1)

(c) The graph G(x(0)) (d) The graph G(x(1))

Figure 3: Two connected components of G(x) merge

finite time. An affirmative answer is giving by the
following theorem.

Theorem 13. For any choice of the norm ‖ · ‖, the
model (11),(18) terminates in finite number of steps.

The simplest way to prove Theorem 13 is to apply
Lemma 1. It can be easily shown that the HK dy-
namics (11), (18) can be written as the time-varying
French-DeGroot model (3), where the stochastic ma-
trix W (k) = W (x(k)) is state-dependent and satis-
fies all assumptions of Lemma 1. Hence the opinions
converge, and it remains to prove finite-time conver-
gence. Considering the graph of persistent interac-
tions G∞ corresponding to some specific solution. As
we have noticed, condition (a) in Lemma 1 implies
that if nodes i and j are not connected in G∞, they are
not connected in G(x(k)) for large k. Hence for large
k the nodes from different components of G∞ do not
influence each other. Consider now connected com-
ponents Gs

∞ = (V s, Es
∞) of the graph G∞. Thanks to

Lemma 1, in each component consensus is established

xi(k) −−−→
k→∞

x̄s ∀i ∈ V s.

Therefore, for large k one has |xi(k) − xj(k)| <
d∀i, j ∈ V s, and hence Ii(x) = V s ∀i ∈ V s. This
means that at some step k = k0 the opinions in each
connected component of G(x(k)) become equal

xi(k0 + 1) =
1

|V s|
∑

j∈V s

xj(k0) ∀i ∈ V s,

that is, the HK model terminates in finite time. �
A natural question arises whether the termination

time depends on the number of agents n polynomi-
ally. The positive answer has been given in [133, 135,
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139, 141]. In the Euclidean norm, the best existing
estimate for the dimensions m ≥ 2 seems to be 2n4

steps [140]. This and other existing estimates for the
convergence time of the multidimensional HK model
are based on special Lyapunov functions that will be
discussed in the next subsection. It is remarkable
that the best known lower bound for the dimensions
m ≥ 2 is Ω(n2) (same as in one-dimensional case); as
demonstrated in [133], the agents placed in the ver-
tices of regular (planar) n-gon with the side d reach
consensus in no less than n2/28 steps.

It can be noticed that Theorem 13 remains valid for
more general distance-based models of opinion for-
mation, examined in [142, 143]. Given a function
ϕ : [0,∞) → [0,∞), the multidimensional opinion
vectors xi(k) ∈ R

m evolve as follows

xi(k + 1) =

∑n
j=1 ϕij(k)xj(k)
∑N

j=1 ϕij(k)
,

ϕij(k) := ϕ(|xj(k)− xi(k)|2).
(19)

Obviously, the multidimensional HK model with Eu-
clidean norm is a special case of the model (19), where
ϕ stands for the indicator function of the interval
[0, d2]. In [143], another function was considered

ϕ(σ) =







a, σ ≤ d21
b, σ ∈ (d21, d

2
2),

0, σ > d22,

where 0 < a < b and 0 < d1 < d2. This function ϕ(σ)
represents the phenomenon of heterophily : moder-
ately distant opinions are attracted more intensively
than similar ones. A counter-intuitive phenomenon,
reported in [143], is the facilitation of consensus by
these “heterophilous” interactions.

The result of Theorem 13 (except for the finite-time
convergence) can be easily extended to systems (19)
with special functions ϕ(·).

Lemma 14. Suppose that ϕ(σ) ∈ {0} ∪ [a, b]∀σ ≥
0 for some constants 0 < a < b and, furthermore,
ϕ(0) > 0. Then the opinions, obeying (19), converge
(yet do not stabilize after finite number of steps).

Lemma 14 easily follows from Lemma 1. As will
be discussed in the next subsection, in fact the sys-
tem (19) converges for many other functions ϕ(·), in-
cluding continuous ones; the relevant convergence re-
sults are based on special Lyapunov functions. As a
further extension of (19), one may consider a model

where each pair of agents (i, j) is endowed with its
own distance-measuring function ϕij(σ); without loss
of generality we assume that ϕii(σ) ≡ ϕii > 0.

xi(k + 1) =

∑n
j=1 ϕij(k)xj(k)
∑N

j=1 ϕij(k)
,

ϕij(k) := ϕij(|xj(k)− xi(k)|2).
(20)

Obviously, if ϕij(σ) ∈ {0} ∪ [a, b] for some 0 < a < b
and ϕij(σ) > 0 ⇔ ϕji(σ) > 0, the result of Lemma 14
remains valid for the heterogeneous model (20). A
special case of model (20) has been proposed in [69],
choosing the mappings ϕij as follows

ϕij(σ) =

{

wj, σ < d2

0, σ ≥ d2.

Here w1, . . . , wn > 0 are positive “weights” or “rep-
utations” [144] of the agents. Similarly to the usual
HK model, in the scalar case (m = 1) such a model
provides the order preservation of the opinions [69].

4.3. Lyapunov methods for the HK model

Henceforth the “term HK model” stands for the
multidimensional model (11),(18) with the Euclidean
norm ‖x‖ = |x|.

The standard Lyapunov function used to study
consensus algorithms (3),(8) is the diameter of the
convex hull, spanned by the agents’ opinions [92, 112].
This Lyapunov function, however, appears to be most
useful in the case where consensus of opinions is es-
tablished (and thus their convex hull collapses into a
singleton), whereas the opinions in the HK model, in
general, split into several clusters. The special struc-
ture of the HK model (11), however, implies the exis-
tence of another piecewise-smooth Lyapunov function

E(x) ∆
=

n∑

i,j=1

min(|xi − xj|2, d2). (21)

This “energy” function is a special case of more gen-
eral Lyapunov functions, proposed in the seminal pa-
per [145] to examine some types of nonlinear consen-
sus algorithms (a similar Lyapunov function has been
also used to study “continuum” bounded confidence
opinion dynamics in [130]). The function (21) proves
to be non-increasing along the system’s trajectories;
moreover, it strictly decreases until the opinion evo-
lution terminates, as implied by the following.
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Proposition 15. [133, 145] For any solution of the
HK model and k = 0, 1, . . ., the inequality holds

E(x(k))−E(x(k+1)) ≥ 4

n∑

i=1

|xi(k+1)−xi(k)|2. (22)

The inequality (22) implies the following bound for
kinetic 2-energy (defined in (6)) of the HK model

K(2) ≤ E(x(0)) ≤ d2n(n− 1). (23)

Using elegant techniques from algebraic graph theory,
it has been shown in [140] that during each step of the
opinion formation either two opinions merge or the
energy E(x(k)) is decreased by at least d/(2n2), and
hence the HK dynamics terminates in O(n4) steps
independent of the opinions’ dimension m.

Proposition (15) can be extended to a more general
model (19) with a non-increasing function ϕ(·).

Lemma 16. [142] Suppose that ϕ(·) in (19) is non-
increasing. Then the “energy” function

Eϕ(x) =
n∑

i,j=1

Φ(|xi −xj |2), Φ(r) =
∫ r

0
ϕ(σ)dσ, (24)

is non-increasing and satisfies the inequality

Eϕ(x(k)) − Eϕ(x(k + 1)) ≥

≥
n∑

i,j=1

ϕij(k)|∆xi(k) + ∆xj(k)|2

≥ 4ϕ(0)
n∑

i=1

|∆xi(k)|2,

(25)

where ∆xi(k) = xi(k + 1)− xi(k).

Obviously, Lemma 16 implies Proposition 15 since
in the case of the usual HK model one has Φ(r) =
min(r, d2) and ϕ(0) = 1. We give the sketch of
the proof of Lemma 16, presented6 in [142] (Propo-
sition 4.1). The proof is based on the following
three relations. First, the function Φ(r) is concave
(Φ′(r) = ϕ(r) is non-increasing) and hence

Φ(a)− Φ(b) ≥ ϕ(a)(a − b) ∀a, b ≥ 0. (26)

6In fact, Proposition 4.1 in [142] reports a stronger in-
equality E(x(k)) − E(x(k + 1)) ≥ 4

∑
i,j ϕij(k)|∆xi(k)|2 whose

proof seems to be elusive: the latter inequality relies on (25)
and the incorrect inequality −

∑
i,j

ϕij(k)|∆xi(k)+∆xj(k)|2 ≤

−4
∑

i,j
ϕij(k)|∆xi(k)|2 (which holds with ≥ instead of ≤).

Second, ϕij(k) = ϕji(k), and therefore

−2
∑

i,j

ϕij(k)ξ
⊤
i (ηj−ηi) =

∑

i,j

ϕij(k)(ξj−ξi)
⊤(ηj−ηi)

(27)
for any set of vectors ξi, ηi ∈ R

m (here i = 1, . . . , n).
Finally, for each i (19) implies the following

n∑

j=1

ϕij(k)∆xi(k) =

n∑

j=1

ϕij(k)(xj(k)− xi(k)). (28)

Denoting zij(k) = xj(k)− xi(k), one obtains

∑

i,j

ϕij(k)(∆xj(k)−∆xi(k))
⊤zij(k)

(27)
=

= −2
∑

i,j

ϕij(k)∆xi(k)
⊤zij(k)

(28)
=

= −2
∑

i,j

ϕij(k)|∆xi(k)|2 =

= −
∑

i,j

ϕij(k)
(
|∆xj(k)|2 + |∆xi(k)|2

)
.

(29)

By noticing that zij(k+1) = zij(k)+∆xj(k)−∆xi(k),
the latter equality entails that

Eϕ(x(k)) − Eϕ(x(k + 1))
(24),(26)

≥
≥

∑

i,j

ϕij(k)(|zij(k)|2 − |zij(k + 1)|2) =

= −
∑

i,j

ϕij(k)|∆xj(k)−∆xi(k)|2−

− 2
∑

i,j

ϕij(k)(∆xj(k)−∆xi(k))
⊤zij(k)

(29)
=

=
∑

i,j

ϕij(k)|∆xj(k) + ∆xi(k)|2 ≥

≥ 4
∑

i

ϕii(k)|∆xi(k)|2 = 4ϕ(0)
∑

i

|∆xi(k)|2.�

Using the inequality (25), it is possible to establish
convergence of the model (19) when the function ϕ(·)
does not satisfy the conditions of Lemma 14 [142,
143, 145]. The result of [142, Theorem 3] estab-
lishes convergence of the model (19) for any non-
increasing and concave function ϕ(·) with a compact
support, on which the inequality |ϕ′(r)|2 ≤ Cϕ(r)
should hold for some constant C > 0. The method
developed in [145] allows to discard the concavity as-
sumption [145, Corollary 1] in the scalar case.

It should be noticed that (21) is not the only Lya-
punov function that can be used to examine the HK

12



model. Alternative Lyapunov functions have been
employed in [134, 146] and [136, 138] (the latter
works deal with a special Lyapunov functional, based
on the construction of a so-called adjoint system and
depending on the whole trajectory of the HK model).

4.4. Extensions and related models

Recently a lot of alternative models based on the
ideas of bounded confidence and extending the HK
model in different ways, have been proposed. One
extension, known as the Deffuant-Weisbuch model,
will be considered in Section 5, dealing with asyn-
chronous gossip-based models. Focused on agent-
based models, this tutorial also does not address sta-
tistical (Eulerian) bounded confidence models studied
in [68, 70, 71, 130, 147–149]. Some other extensions
are briefly summarized in this subsection.

4.4.1. Continuous-time bounded confidence models

Many results, available for the original HK model,
have been extended to its continuous-time coun-
terparts. The direct extension of the scalar HK
model (11), introduced in [147], is as follows

ẋi(t) =
∑

j:|xj(t)−xi(t)|<d

(xj(t)− xi(t)) ∈ R (30)

(following [69], this model deals with open confi-
dence intervals; modifications with closed intervals
have been also considered [150]).

The differential equation (30) has a discontinuous
right-hand side, which gives rise to the problem of
solution existence. As has been shown in [147], the
classical Caratheódory solution (with xi(t) absolutely
continuous for t ≥ 0 and, moreover, differentiable ev-
erywhere except for a countable set of points) exists
for almost all initial conditions x(0). Using the result
of Lemma 5, it can be easily shown that every such
solution converges as t → ∞. In general, the solu-
tions does not reach consensus, however, consensus
has been proved in the situation where the initial in-
teraction graph G(x(0)) is “densely” connected [150].
Alternatively, one may consider generalized solutions
(replacing, as usual, the discontinuous right-hand side
by a differential inclusion). In [151], the existence
of Krasovskii solutions for any initial conditions and
their convergence have been shown. Krasovskii solu-
tion is not uniquely determined by its initial condi-
tion and, in general, may exhibit some “pathological”
behavior (e.g. the solution starting at an equilibrim

point may leave it and converge to another equilib-
rium). To avoid numerical instabilities, caused by
the discontinuities, the following “smoothed” modifi-
cation of the HK model can be introduced [150, 151]

ẋi(t) =
∑

j

s(xj − xi)(xj(t)− xi(t)) ∈ R, (31)

where s : R → R+ stands for some even continu-
ous function (similar multidimensional models, ex-
tending (19) to the case of continuous time, have
been examined in [142, 143, 152]). Smoothed and dis-
continuous bounded confidence models inherit many
properties of the original HK model, e.g. the order
preservation property [151]. Similar to the discrete-
time model [69], criteria for the equilibria’s local sta-
bility can be obtained [151, 152]. Unlike the discrete-
time model, the models (30) and (31) also preserve
the “average” opinion x̄(t) = n−1(x1(t)+ . . .+xn(t))
since, obviously, ˙̄x(t) = 0 almost everywhere.

4.4.2. Effects of stubborness

As has been discussed in Part I of this tuto-
rial [1], the dynamics of the French-DeGroot model
changes dramatically in presence of stubborn indi-
viduals (keeping their opinions unchanged). Further
relaxation of the stubborness concept leads to the
Friedkin-Johnsen (FJ) model, where some agents can
be “partially” stubborn (prejudiced). Such agents
assimilate the others’ opinions, being at the same
time “anchored” at their initial opinions and factor-
ing them into every step of the opinion iteration. Sim-
ilar extensions have been suggested for the HK model.

In their work [153], Hegselmann and Krause have
proposed a model that inherits both the HK and FJ
models. Consider n agents with m-dimensional opin-
ions x1, . . . , xn ∈ R

m and fix one point T ∈ R
m in the

opinion space referred to as the “truth”. Assigning
agent i with a constant λi ∈ [0, 1] that character-
izes the attractiveness of the truth for this agent and
being a counterpart of the susceptibility in the FJ
model [1], the dynamics from [153] is as follows

xi(t+ 1) =
λi

|Ii(x(t))|
∑

j∈Ii(x(t))

xj + (1− λi)T, (32)

where the Ii(x) stand for the sets of trusted individ-
uals (18). As discussed in the more recent work [82],
the “truth” value may be considered as some exter-
nal signal, influencing the system. The agents with
1 − λi > 0 are referred in [153] as truth seekers. In
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the absence of truth seekers, (32) boils down to the
usual HK model (11). The truth seekers with λi = T
are stubborn: xi(t) ≡ T for t ≥ 1. Comparing the
model (32) with the FJ model, one notices two prin-
cipal differences: first, the influence graph is distance-
dependent (giving rise to the convergence problem7)
and, second, the agents have equal prejudices.

The most general result, concerned with the con-
vergence of the model (32), is as follows.

Theorem 17. [82, 98] The opinions of all truth
seekers (λi < 1) converge to the truth8 xi(t) −−−→

t→∞
T .

The opinions of the remaining agents (with λi = 0)
either converge to T or stabilize in finite time at some
values x̄i such that |x̄i − T | ≥ d.

Notice that convergence of the opinions to the truth
value is usually asymptotical but not finite-time, as
can be easily shown for the system of n = 2 agent,
one of them being stubborn x1(t) ≡ T ∈ R and the
other starting at some point x2(0) ∈ (T − d, T + d).
Some conservative estimates for the convergence rate
have been obtained in [98]. A natural question when
the opinions reach consensus at T in presence of
agents with λi = 0 still remains open. Numerical
results, reported in [82] for the special case where all
agents are either stubborn (λi = 1) or do not seek
the truth (λi = 0) have revealed a highly non-trivial
and counter-intuitive dependence between the num-
ber of stubborn agents, the confidence bound d and
the number of clusters. In particular, for some d con-
sensus is reached for small number of stubborn indi-
viduals and is destroyed as their number increases.

A more general class of models with stubborn indi-
viduals have been studied in [155] by using Lyapunov
techniques. In [155], the class of “inertial” HK mod-
els has been studied9, obeying the equations

xi(t+1) = (1−λi)xi(t)+
λi

|Ii(x(t))|
∑

j∈Ii(x(t))

xj. (33)

Here λi ∈ [0, 1] (referred in [155] to as the coefficient
of inertia); the agents with λi(t) ≡ 0 are stubborn
(in [155], they are called “close-minded”). For the

7In general, opinions in the FJ model with time-varying
influence graph can oscillate even when the graph remains
strongly connected and some agents have λi < 1, see [97].

8In the scalar case, this convergence was proved in [153, 154].
9Note that the “inertial” bounded confidence models have

been also introduced and numerically studied in [156, 157].

general system (33), extensions of Proposition (15)
and the inequality (23) have been established in [155].
These results allow to prove that the HK model with
stubborn agents, that is, the system (33) where each
agent has either λi = 0 or λi = 1, always converges.

Theorem 18. [155] The opinions in the system (33)
with λi ∈ {0, 1} asymptotically converge.

Notice that, unlike Theorem 17, stubborn agents in
the model (33) need not have identical opinions. In
the case where λi = 1 for any i, Theorem 18 im-
plies Theorem 13 (for the Euclidean norm). In [155],
the result of Theorem 18 has been extended to “an-
chored” HK systems, where opinions of each agent
consists of a “mobile” part and static part; such sys-
tems appear to be equivalent, in some sense, to a
special case of the heterogeneous model (20).

4.4.3. Asymmetric interactions

An important property of the HK model (11),(18),
dramatically simplifying its analysis, is the symme-
try of interactions. The influence graph G(x(k)) is
undirected, that is, at each step k every two agents i
and j either mutually influence each other or are in-
dependent. The modifications of the HK models with
asymmetric interactions are much more complicated,
and many of their properties observed in experiments
are still waiting for mathematical investigation.

The simplest asymmetric bounded confidence
model, proposed in [124], deals with scalar opinions
xi ∈ R and asymmetric confidence intervals, that is,
the set of trusted individuals is defined as follows

Ii(x) = {j : −dl ≤ xj − xi ≤ dr}, dl, dr > 0. (34)

Obviously, in the case where εl 6= εr the graph
G(x(k)) can be directed (which makes it impossible to
apply Lemma 1, ensuring convergence). Also, the or-
der of opinions in general is not preserved [133, 146].
Nevertheless, modification of the proof discussed in
Subsect. 4.1 allows to show that the model (34) ter-
minates in finite time; moreover, this holds for the
more general class of asymmetric models with het-
erogeneous confidence intervals as follows

Ii(x) = {j : −d+ηi ≤ xj−xi ≤ d}, d, ηi > 0. (35)

Theorem 19. [133, 146] Assume that ηi ≥ 0∀i
and η = maxi ηi < d. Then the asymmetric HK
model (11),(35) terminates in finite time.
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As has been shown in [146], the termination time can
be estimated as O(n3) + O(n2) ln(1 − ζ), where ζ =
η/d < 1, in particular, if ζ < 1 − exp(−O(n)) then
the convergence time of the model is O(n3) like in the
symmetric HK model (ηi = 0).

Obviously, Theorem 19 remains valid for the con-
fidence intervals (xi − ε, xi + ε − ηi) (which can be
proved by changing the signs of opinions xi 7→ −xi).
However, allowing both left and right endpoints of the
confidence intervals to be heterogeneous

Ii(x) = {j : −dil ≤ xj − xi ≤ dir}, dil , d
i
r > 0, (36)

one arrives at a very complicated system, still waiting
for thorough analysis. Most typically, the confidence
intervals are symmetric dil = dir = di or, dealing with
multidimensional opinions xi ∈ R

m, one has10

Ii(x) = {j : ‖xj − xi‖ ≤ di}. (37)

Whereas the model (11),(37) has been proposed
simultaneously with its homogeneous counterpart
(di = d) [124], its behavior in general “remains a
mystery” [155]. Unlike the special case of the homo-
geneous model with stubborn agents (di ∈ {d, 0} ∀i)
discussed in the previous subsection, in general the
convergence has been proved only for special so-
lutions [135, 158], although simulations show that
the convergence is a generic property of the het-
erogeneous HK model [158, 159] and its modifica-
tions [144, 157, 160]. An interesting phenomenon
reported in [159] is emergence of consensus in the
homogeneous HK model after injecting a very small
proportion of agents with different confidence bound.
Sufficient conditions for consensus in some heteroge-
neous HK models have been proposed in [161, 162].

4.4.4. Other extensions

The idea of bounded confidence, allowing to ex-
plain the phenomenon of persistent disagreement be-
tween opinions, has inspired numerous novel models
of opinion formation. Most of them have been studied
numerically and their mathematical properties have
not been fully understood. For this reasons, the rel-
evant works are only briefly mentioned.

Obviously, in reality social actors do not know the
exact values of the others’ opinions, which gives rise

10Along with bounded confidence model, a “bounded in-
fluence” model can be considered [158], replacing (37) by
Ii(x) = {j : ‖xj − xi‖ ≤ dj}; the two models are equivalent
in the homogeneous case, being quite different when di 6= dj .

to the problem of robustness against various distur-
bances. Numerical simulations show high sensitivity
of the HK dynamics to inaccuracies in the floating
point arithmetic [82]. This is consonant with the
recent analytic result [163], showing that small ad-
ditive noises destroy clusters in the HK model and
lead to “quasi-consensus”. Similar effect is reported
in [131] for stochastic differential equations, extend-
ing the continuous-time model (30). The model’s
ability to generate disagreement is however regained,
allowing some non-local random interactions between
the agents (an agent’s opinion is not confined to the
confidence interval) [80, 164–166]. Some extensions
of the “truth-seeking” model (32), allowing random
noises, have been proposed in [160, 167, 168].

Bounded confidence models appear to be related
with community detection algorithms in graphs [169],
Bayesian algorithms for distributed decision mak-
ing [170] and algorithms of data clustering [171].
Bounded confidence models have been proposed for
dynamics of “uncertain” opinions (standing for inter-
vals of possible values) [172] and “linguistic” opinions
representing words of a formal language [54, 173].

The HK model belongs to a family of so-called
influence systems, introduced by B. Chazelle [174–
176] and generalizing a number of multi-agent al-
gorithms arising in social and natural science. An
influence system corresponds to the distributed pro-
tocol of iterative averaging, similar to the French-
DeGroot and Abelson’s models and their nonlinear
counterparts [92, 107, 112, 113], over a state de-
pendent graph. The existence of an arc in such a
graph (that is, interaction between a pair of agents)
is determined by some system of algebraic inequal-
ities (strict or non-strict) with rational coefficients.
The fundamental property of influence systems with
bidirectional graphs is their asymptotic convergence
(which has been shown for homogeneous HK model),
whereas influence systems with directed graphs can
exhibit very complex dynamics, being e.g. chaotic
or Turing-complete (able to simulate any Turing ma-
chine) [175]. However, these “irregular” behaviors
appear to be non-robust against small random per-
turbations, making almost all the trajectories of an
influence system asymptotically periodic [175].

It should be noticed that introduction of the
distant-based influence weights is not the only way
to describe effects of homophily and biased assimi-
lation in social groups, as illustrated by the recent
work [120] that advocates a novel nonlinear extension
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of the DeGroot model to explain opinion polarization.

5. Randomized Gossip-based Models

The models considered in the previous sections
adopt an implicit assumption of synchronous inter-
actions among the agents. The agents simultane-
ously display their opinions to each other and simul-
taneously update them. Evidently, even for small-
group discussions this assumption is unrealistic; as
noticed in [84], “interpersonal influences do not occur
in the simultaneous way... and there are more or less
complex sequences of interpersonal influences in the
group”. One approach to portray these asynchronous
and interactions among social actors is known as gos-
siping, assuming that agents interact not simultane-
ously but in in pairs. At any step, two11 agents in-
teract (e.g. meet each other at some public place or
communicate via phone/e-mail), after which one or
both of their opinions can be changed.

Interest to gossip protocols has been stirred up by
the following gossiping (or “telephone”) problem in
graph theory [178–180]. Suppose that each of n peo-
ple knows an item of scandal, which is not known to
any of the others. They communicate by telephone,
and whenever two individuals make a call, they pass
on to each other, as much scandal as they know at
that time. How many calls are needed before all the
individuals know all the scandal? A more general
problem with unidirectional communication has been
addressed in [181, 182]. In the case of bidirectional
information exchange (requiring undirected commu-
nication topology) and n ≥ 4 the worst-case number
of calls is 2n− 4, whereas unidirectional communica-
tion over strongly connected directed graph requires,
in general, 2n− 2 calls [181, 182]. A survey of results
on gossiping and a similar broadcasting problem (an
item of information, known by one agent, has to be
transmitted to all other agents) can be found in [183].

The pairwise gossiping interactions between the
agents need not be random; consensus and other
problems of multi-agent control can be solved e.g.
by using periodic gossiping [184] and other dis-
tributed algorithms with deterministic asynchronous
events [185, 186]. In this tutorial, we focus on ran-
domized gossip-based models of opinion formation,

11Some results, discussed in this section, can be extended to
the case of synchronous gossiping [177] where several dyadic in-
teractions occur during each interaction session. For simplicity,
we confine ourselves to the case of asynchronous interactions.

where random choice of the agents interacting at each
step mimics spontaneity of real social interactions.

In this section, we suppose that the reader is fa-
miliar with the basic concepts of probability theory
(probability spaces, random variables and their dis-
tributions, expectation and moments, convergence in
probability and almost surely etc.) [187]. Henceforth
P(A) denotes the probability of an event A and Ef
stands for expectation of a random variable f .

5.1. Gossip-based consensus

In spite of relatively slow convergence, gossip-based
consensus algorithms have attracted a lot of atten-
tion, being simple and very parsimonious in use of
communication resources. The simplest linear gossip-
ing algorithms can be considered as special cases of
the French-DeGroot model (3) with random i.i.d.12

stochastic matrices W (k). We first discuss some
properties of such a randomized dynamics.

Definition 1. In the system (3), opinions are said
to synchronize in probability, almost surely or in the
p-th moment (p > 0) if for any i, j = 1, . . . , n and any
(deterministic) initial condition the sequence xi(k)−
xj(k) converges in the corresponding sense, i.e.

P(|xi(k) − xj(k)| ≥ ε) −−−→
k→∞

0∀ε > 0 (in probability)

P

(

lim
k→∞

|xi(k)− xj(k)| = 0

)

= 1 (almost surely)

E|xi(k)− xj(k)|p −−−→
k→∞

0 (in the p-th moment)

The following fundamental result [177, 188, 189]
(see also special cases in [190, 191]) extends Propo-
sition 3 to the case of randomized French-DeGroot
model, reducing it to a deterministic model.

Lemma 20. Consider the system (3) with i.i.d.
stochastic matrices W (k) and denote W̄ = EW (0).
Then the following statements are equivalent

a) the deterministic French-DeGroot model

x(k + 1) = W̄x(k), k ≥ 0 (38)

reaches consensus, i.e. the stochastic matrix W̄ is
fully regular (or stochastic indecomposable aperi-
odic, SIA) [1];

b) the opinions reach consensus almost surely

P(∃c ∈ R : lim
k→∞

x(k) = c1n) = 1 ∀x(0); (39)

12Independent and identically distributed
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c) the opinions synchronize almost surely;

d) the opinions synchronize in probability;

e) the opinions synchronize in the p-th moment for
some p ∈ [1,∞).

Furthermore, if (a)-(e) hold and W (k) have a com-
mon nonnegative left eigenvector w⊤, such that
w⊤

1n = 1, then in (39) one has c = w⊤x(0).

The equivalence between (a) and (c)-(e) has been
proved in [189]. Obviously, (b) implies (c). The
last statement of Lemma 20 and the implication
(a)=⇒(b) has been established in [188] under the
additional assumption that W (k) have strictly pos-
itive diagonal; the latter assumption can also be dis-
carded [177] (formally, [177] establishes the implica-
tion (a)=⇒(b) only for the case of irreducible W̄ , but
the reducible case can be considered similarly). Con-
sensus criteria, similar in spirit to Lemma 20, have
been also established for non-stationary randomized
models (where the i.i.d. assumption fails) [192, 193].

Remark 21. Under the assumptions of Lemma 20,
W (k) is independent of x(k) (which depends only on
W (1), . . . ,W (k − 1)), which implies that the vectors
Ex(k) obey the deterministic model (38)

Ex(k + 1) = EW (k)Ex(k) = W̄Ex(k) ∀k,

in particular, the opinions’ expectations Exi(k) con-
verge to consensus if (a)-(e) hold.

Consider now the following asynchronous gossip al-
gorithm [177]. Consider a group of n agents with
opinions x1(k), . . . , xn(k) ∈ R and a stochastic ma-
trix P = (pij) with zero diagonal pii = 0. At each
step k of the opinion iteration, one agent i = i(k)
is randomly activated; we assume that the sequence
i(k) is i.i.d. and uniformly distributed in {1, . . . , n}.
With probability pij, the active agent i interacts with
agent j and updates its opinion as follows

xi(k + 1) = (1− γi)xi(k) + γixj(k), (40)

where γi ∈ (0, 1) is a constant, describing the “trust”
of individual i in his/her neighbors. The opinions of
the other agents (including j) remain unchanged

xl(k + 1) = xl(k) ∀l 6= i(k). (41)

It can be easily shown that the algorithm (40),(41)
is a special case of (3), where W (k) are i.i.d. stochas-
tic matrices, attaining one of the values W ij =

In+γi(ej −ei)e
⊤
i with the probability and P(W (k) =

W ij) = n−1pij (here ei ∈ R
n is the column vector

with all components equal to 0 except for the ith
component, which is equal to 1). Introducing the di-
agonal matrix Γ = diag(γ1, . . . , γn), we have

W̄ = EW (1) = In − n−1Γ + n−1ΓP.

Obviously, the diagonal entries of W̄ are positive and
when i 6= j, one has w̄ij > 0 ⇔ pij > 0. Hence,
the system (38) reaches consensus if and only if the
graph G(P ) has a directed spanning tree (see [1]).
Lemma 20 yields in the following consensus criterion.

Corollary 22. For any gains γ1, . . . , γn and stochas-
tic matrix P , such that the graph G(P ) has a directed
spanning tree, the protocol (40),(41) provides consen-
sus of opinions with probability 1 (39).

Along with unidirectional gossip algorithm, one
may consider bidirectional protocol where both agents
i,j update their opinions. The simplest algorithm of
this type has been examined in [194]

xi(k + 1) = xj(k + 1) =
xi(k) + xj(k)

2
xl(k + 1) = xl(k) ∀l 6= i, j.

(42)

It can be shown [194] that in this situation one has

W̄ = I − 1

2n
D +

1

2n

(

P + P⊤
)

,

where D is the diagonal matrix with entries dii =
1 +

∑

j pji ≤ 1 + n. Consensus in (38) is established
if and only if the undirected graph, corresponding to
P + P⊤, is connected.

A more advanced analysis of gossip-based consen-
sus algorithms and overview of their applications are
available in [177, 184, 194–197] and references therein.

5.2. Gossiping with stubborn agents

As has been in discussed in Part I [1], the pres-
ence of several stubborn agents in the static French-
DeGroot model (1) yields in more interesting dynam-
ics than conventional consensus algorithms exhibit:
opinions do not reach consensus and typically split
into several clusters (this holds when the matrix W
is regular, i.e. the limit lim

k→∞
W k exists). A natu-

ral question arises whether its gossip-based counter-
part exhibits a similar behavior. The answer to this
question appears to be negative: as has been shown
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in [198], in presence of stubborn agents the gossip
algorithms fail to provide almost sure convergence
of the opinions, which keep on fluctuating in an er-
godic fashion. At the same time, the distribution of
the opinion vector x(k) converges to some probabil-
ity measure. In this subsection, we discuss similar
results13, concerning the asynchronous gossip-based
version of the Friedkin-Johnsen (FJ) model [199–203].

5.2.1. Example: fluctuation between two stubborn
leaders and Bernoulli convolution series

We start with an example from [198], demonstrat-
ing that in presence of stubborn agents the gossip
algorithm does not provide convergence of the opin-
ions. Consider two stubborn individuals with fixed
opinions x1 ≡ 0 and x2 ≡ 1 and “regular” agent that
can interact with both of them. At each step k, the
regular agent chooses one of the stubborn neighbors
i = i(k) ∈ {1, 2} with probability 1/2 and shifts its
own opinion towards the opinion of this neighbor

x3(k + 1) = (1− γ)x3(k) + γxi(k), γ ∈ (0, 1).

Since x3(k) = (1−γ)kx3(0)+γ
∑k−1

s=0(1−γ)sxi(k−s), it
can be shown that the distribution of x3 converges14

as k → ∞ to the distribution of the random variable

x̄3 =
γ

1− γ
ξ̄, ξ̄ =

∑

s≥1

(1− γ)sξs,

where ξj are i.i.d. Bernoulli random variables with
probability 1/2. The random variable ξ̄ in the right-
hand side is referred to as the Bernoulli convolu-
tion [204]. For γ = 1/2, ξ̄ is uniformly distributed on
[0, 1]. For almost all γ ∈ (0, 1/2) its distribution on
[0,1] is absolutely continuous (has a density), whereas
for γ > 1/2 it is supported on the Cantor set [204].

This example demonstrates, in particular, that
consensus in Lemma 20 cannot be replaced by con-
vergence of the opinions: such a convergence in the

13Technically the model in [198] differs from the models con-
sidered in this subsection, e.g. it deals with dynamics on a
continuous time scale, where interactions between pairs of con-
nected agents are activated by clocks, each ticking at the times
of an independent Poisson process of certain rate. Some results
from [198], concerned with the characteristics of the stationary
distribution, still have not been extended to the FJ model.

14Henceforth, by convergence of distributions we mean the
standard weak convergence: a sequence of probability measures
Pk on the same σ-algebra converges to a measure P, if EPk

f →
EPf as k → ∞ for any bounded random variable f .

deterministic model (38), in general, does not im-
ply the convergence of the model (3) with random
W (k). At the same time, Remark 20 implies that ex-
pected values of the opinions converge. For the spe-
cial gossip-based model considered below, the conver-
gence of time averages can also be proved.

5.2.2. The asynchronous gossip-based FJ model

Recall that the FJ model [84] is characterized by
two matrices Λ,W , where Λ is a diagonal matrix of
agents’ susceptibilities to social influence, 0 ≤ Λ ≤
In, and W is a stochastic matrix of influence weights.
The opinion vector x(k) ∈ R

n evolves as follows

x(k + 1) = ΛWx(k) + (I − Λ)u, u = x(0). (43)

The relations between the FJ model and the French-
DeGroot model has been discussed in Part I [1], as
well as the graphical conditions for the model’s sta-
bility and convergent. In this subsection, we assume
that the model (43) is a stable15 as a system with
static input u, that is, ΛW is a Schur stable matrix
ρ(ΛW ) < 1, and hence the opinions in (43) converge

x(k) −−−→
k→∞

x̄ = (I − ΛW )−1(I − Λ)u. (44)

Numerous experiments with small and medium-
size group [84, 85, 205, 206] have confirmed the pre-
dictive power of the FJ model, in particular, (44)
gives a good approximation for the real distribution
of final opinions. This means that the asynchronous
gossip-based counterpart of the FJ model should also
provide (in some sense) the correspondence (44) be-
tween the “prejudice” vector u = x(0) and the out-
come of the opinion formation process. We consider
one such gossip-based model, proposed in [203] and
generalizing the protocols from [199–201].

Let G[W ] = (V, E) stand for the interaction graph
of the network and consider two matrices

Γ1 = ΛW, Γ2 = (I − Λ)W. (45)

Consider the following asynchronous gossip-based al-
gorithm, similar in structure to (40),(41). At each
step k, an arc is uniformly sampled in the set E . If

15As shown in [1, 203], unstable FJ model (with ρ(ΛW ) =
1) contains a subgroup of agents obeying the usual French-
DeGroot model and independent of the remaining agents. Such
situation is impossible, e.g. when Λ 6= I and W is irreducible.
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this arc is (i, j), then agent i communicates to agent
j and updates its opinion as follows

xi(k+1) = (1−γ1ij−γ2ij)xi(k)+γ1ijxj(k)+γ2ijui. (46)

Hence during each interaction the agent’s opinion is
averaged with its own prejudice and the neighbors’
opinion; note, however, that the weight of the preju-
dice depends on both λii and wij . The other opinions
(including opinion of agent j) remain unchanged

xl(k + 1) = xl(k) ∀l 6= i. (47)

The following theorem shows that the gossiping
opinion formation process (46), (47) inherits the
properties of the FJ model on average. Let x̄(k) stand
for the Cesáro (or Polyak) average

x̄(k) :=
1

k + 1

k∑

l=0

x(l). (48)

Theorem 23. [203] Let ρ(ΛW ) < 1 and Γ1,Γ2 be
matrices from (45). Then, there is the following cor-
respondence between the gossip-based model (46), (47)
and the deterministic model (43):

1. the steady expected value lim
k→∞

Ex(k) = x̄ coin-

cides with (44) for any x(0);

2. the random process x(k) is almost sure ergodic

P( lim
k→∞

x̄(k) = x̄) = 1;

3. for any p > 0, the process x(k) is Lp-ergodic

E|x̄(k)− x̄|p −−−→
k→∞

0.

Additionally, the process x(k) converges in distribu-
tion to some random vector x∞ with Ex∞ = x̄, whose
distribution is determined by Λ,W .

As noticed in [203], the statements of Theorem 23
remain valid for any matrix Γ2 such that 0 ≤ γ2ij ≤
1 − γ1ij ,

∑n
j=1 γ

2
ij = 1 − λii and γ2ij = 0 as (i, j) 6∈ E .

In [203], multidimensional gossip-based models have
been also considered, where opinions represent indi-
viduals’ positions on several interrelated topics (belief
systems [44]). In [199], the estimate for the conver-
gence rate (and variance) of x̄(k) has been obtained

E|x̄(k)− x̄|2 ≤ χ

k + 1
,

where χ depends on u and the spectral radius ρ(ΛW )
(in fact, χ → ∞ as ρ → 1). The proof of Theorem 23
is based on the elegant results of [200], dealing with
the properties of randomized affine system

ξ(k + 1) = M(k)ξ(k) + u(k), (49)

with special i.i.d. sequences of the matrices M(k)
(non-stochastic) and vectors u(k) with finite expec-
tations. The key property of the system (49), needed
for the existence of a stationary distribution and er-
godicity of its solutions is the decomposability

EM(k) = αI + (1− α)P,

where α ∈ (0, 1) and det(I − P ) 6= 0.
Similar to the example with three agents from pre-

vious subsection, opinion vectors x(k) usually do not
converge and keep on fluctuating, as demonstrated by
the following example [203]. Consider n = 4 agents
with the initial opinions u = x(0) = (25, 25, 75, 85)⊤

and the matrix W , observed in a real social group [84]

W =







0.220 0.120 0.360 0.300
0.147 0.215 0.344 0.294
0 0 1 0

0.090 0.178 0.446 0.286






.

The matrix Λ is defined by the “coupling condition”
Λ = I − diagW . The final opinion vector (44) of
the FJ model is x̄ ≈ (60, 60, 75, 75)⊤ , i.e. agents 1
and 2 form their own cluster, whereas stubborn agent
3 attracts the opinion of agent 4. Fig. 4 illustrates
the trajectories of the deterministic and randomized
FJ models, as well as the Cesáro averages x̄(k). As
shown in Fig. 4c, the opinions fluctuate (except for
the opinion of stubborn agent 3).

A similar behavior is demonstrated by the random-
ized algorithms for PageRank computation [207–209],
whose relation to the asynchronous gossip-based FJ
model has been disclosed in [200, 201].

5.3. The Deffuant-Weisbuch model

Along with the HK model discussed Section 4,
the Deffuant-Weisbuch (DW) model is among the
most illustrious models of opinion formation. Being a
gossip-based counterpart of the HK model, the DW
model in fact was proposed in [123] independent of
Krause’s work [122], employing the same principle
of bounded confidence. In spite of many numerical
results and experimental observations, dealing with
the behavior of the DW model and its modifications
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Figure 4: Deterministic FJ model (43) vs. the asynchronous
gossip-based model (46), (47).

over complex networks [123, 210–215], the compound
of randomness and nonlinear dynamics makes these
models very hard for mathematical investigation, and
analytic results explaining their behavior are limited.

The original DW model has a structure similar
to the symmetric gossiping protocol (42), however,
the interaction graph is coincident with the graph
G(x(k)) introduced for the HK model in Section 4, be-
ing state-dependent and determined by the distances
between the opinions. Similar to the HK model, the
DW model [123] deals with a group of n agents, each
having the confidence bound d > 0 (referred also to as
the agent’s “threshold” [123] or “uncertainty” [210]).
The opinions16 xi ∈ R are updated in accordance
with the gossiping procedure as follows.

At each step, a pair of agents (i, j) is chosen ran-
domly. These two agents interact if and only if their
opinions are close. Denoting the indicator function of

16For simplicity, we confine ourselves to scalar DW model,
although vector opinions have been also introduced in [123].

an event Ω with I(Ω), the DW model is as follows

xi(k + 1) = xi(k) + µ(xj(k)− xi(k))Ik,

xj(k + 1) = xj(k) + µ(xi(k)− xj(k))Ik ,

xl(k + 1) = xl(k) ∀l 6= i, j,

I(k) = I(|xj(k)− xi(k)| ≤ d).

(50)

The constant µ ∈ (0, 1) is called convergence param-
eter [123] and stands for the attraction between the
opinions. Similarly to the models from the previous
subsections, (50) can be considered as the French-
DeGroot model with state-dependent random matri-
ces W (k) = W (x(k)). Such matrices are no longer
i.i.d. since W (k) depends on W (k−1), however, x(k)
remains a Markov process, and for any its realization
the matrices W (k), as can be easily shown, satisfy the
conditions of Lemma 1, entailing in the following.

Lemma 24. The opinions in the model (50) con-
verge almost surely, that is

P(∃x̄i = lim
k→∞

xi(k)) = 1 ∀i.

Furthermore, for any i, j one almost surely has either
|x̄i − x̄j| ≥ d or x̄i = x̄j.

The first statement of Lemma 24 is immediate from
Lemma 1. To prove the second statement, consider
a pair of indices (i0, j0). Due to the Borel-Cantelli
lemma [187], (i, j) = (i0, j0) infinitely often with
probability 1. Hence either agents (i0, j0) are in-
finitely connected in the time-varying graph G(W (k))
(and then x̄i0 = x̄j0) or the sequence ks → ∞ exists
such that |xi0(ks)− xj0(ks)| > d, i.e. |x̄i0 − x̄j0 | ≥ d.

An important and non-trivial result from [216],
based on techniques from [193], shows that Lemma 24
retains its validity for the extensions of (50) that al-
low asymmetric interactions among the agents. The
simplest of such models is similar to (50) yet assumes
that only agent i updates its opinion, and the other
opinions remain constant

xi(k + 1) = xi(k) + µ(xj(k)− xi(k))Ik,

xl(k + 1) = xl(k) ∀l 6= i

Ik = I(|xj(k)− xi(k)| ≤ d).

(51)

More complicated are “multi-choice” [216] extensions
of (51), allowing an “active” agent i to interact with
several neighbors. Lyapunov techniques allow to ob-
tain some explicit estimates for the convergence rate
of (50) and its asymmetric counterparts [217].
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Similar to the case of HK model, heterogeneous
confidence bounds di in the DW model lead to se-
rious complications. The heterogeneous counterpart
of (50), studied in [159, 218], is as follows

xi(k + 1) = xi(k) + µ(xj(k)− xi(k))I
i
k ,

xj(k + 1) = xj(k) + µ(xi(k)− xj(k))I
j
k,

xl(k + 1) = xl(k) ∀l 6= i, j,

I
i
k = I(|xj(k)− xi(k)| ≤ di),

I
j
k = I(|xj(k)− xi(k)| ≤ dj).

(52)

As reported in [218], in presence of “extremists” with
very narrow confidence intervals, the model (52) ex-
hibits ergodic fluctuations of the opinions, similar
to the behavior of asynchronous gossip-based models
with stubborn agents [198] and the FJ model (46).

Even more sophisticated are extensions of the DW
models, involving nonlinear couplings among inter-
acting agents (e.g. the “relative agreement” mod-
els [210, 214, 215, 219]), dynamic or random confi-
dence bounds [211, 220, 221], noises [222, 223] and
“long-range” interactions (agents can assimilate opin-
ions beyond their confidence intervals) [216, 223].
These models are beyond the scope of this tutorial, as
well as the gossip-based counterparts of the “truth-
seeking” model (32), introduced in [224, 225].

6. Disagreement via Negative Influence

The models discussed in the previous section ex-
tend the basic French-DeGroot and Abelson mod-
els, inheriting however the key idea of iterative av-
eraging. Even though agreement is not always pos-
sible (due to the effects of stubborness, homophily
etc.), the agents cooperate in order to reach it, always
changing their opinions towards each other. In many
systems, arising in economics, natural sciences and
robotics such positive (attractive) couplings among
the agents coexist with negative (repulsive) couplings,
leading to the agents’ distancing. These negative ties
among the agents can correspond to their competi-
tion; multi-agent networks where agents can both co-
operate and compete are sometimes called “coopet-
itive” [226, 227]. Repulsive interactions lie in the
heart of many biological system [228, 229] and are
vital for collision avoidance in swarms and robotic for-
mations [230–232]. Unlike the well-developed theory
of cooperative networks, the studies on “coopetitive”
networks are taking their first steps.

As a possible reason for disagreement of opinions,
Abelson [72] mentions the boomerang effect [233, 234],
being an unintended consequence of the persuasion
process. An attempt to persuade a person sometimes
shifts his/her opinion away from the persuader’s
opinion. The boomerang effects can be partly ex-
plained by personal insults [235] occuring during
the discussion or the discussants’ reactance17 [236].
The theories of balance [237] and cognitive disso-
nance [238] explain the presence of negative influences
by coevolution of the opinions and personal relations
between individuals. An agreement with negatively
evaluated person creates a psychological tension, and
individuals can resolve such tensions by “moving their
opinions away from a disliked source” [239]. Mod-
els proposed in [240–242] postulate that negative ties
between individuals arise due to large discrepances
of their opinions. Unlike the bounded confidence
models, an individual does not reject too dissimilar
opinions but rather shifts his/her opinion away from
them. These and many other models of opinion for-
mation under negative influence, offered in the litera-
ture and still awaiting rigorous analysis [119, 243–
245], illustrate that antagonism among the agents
may lead to the community cleavage.

The ubiquity of such negative ties has not secured
by experimental evidence, e.g. the recent experi-
ments reported in [239] does not support the afore-
mentioned hypotheses, explaining negative influence
to dissimilarities and disliking. Nevertheless, from
the authors’ point of view, models of opinion forma-
tion with antagonistic interactions deserve attention
since they exhibit non-trivial behaviors and can lead
to the development of novel mathematical theories.
In this section, we consider the model proposed by
Altafini [246, 247] and its extensions. The idea of
opinion polarization via structural balance has trig-
gered the extensive research on “bipartite” consensus,
synchronization and flocking [248–250], extending the
relevant results of multi-agent cooperative control to
networks with antagonistic interactions.

6.1. Balance theory

The idea of Altafini’s model has been inspired by
the theory of structural balance, pioneered in [237,

17The reactance is an individual’s ability to resist the per-
suasion, being heavily pressed to accept some attitude. This
resistance may lead, under some circumstances, to adoption of
an attitude, which is opposite to the persuader’s one.
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251, 252] and postulating the mutual dependence be-
tween the interpersonal relations and the opinion for-
mation: “an attitude towards an event can alter the
attitude towards the person who caused the event,
and, if the attitudes towards a person and an event
are similar, the event is easily ascribed to the per-
son” [237]. Positive and negative evaluations of the
individuals by each other are naturally represented
by signed graphs.

Definition 2. A signed graph is a triple G =
(V,E,A), where (V,E) is a graph and A = (aij)i,j∈V
is matrix, whose entries may be negative, such that
aij 6= 0 if and only if (j, i) ∈ E. An arbitrary matrix
A = (aij)i,j∈V corresponds to the unique signed graph
G[A] = (V,E[A], A), where E[A] = {(i, j) : aji 6= 0}.

One can interpret positive arcs as relations of
friendship or trust, negative ones standing for enmity
or suspicion. We call arc (i, j) of a signed graph pos-
itive (negative) if its “weight” aij is positive (nega-
tive). Henceforth, unless stated otherwise, we assume
that all signed graphs are sign-symmetric [247] in the
sense that aijaji ≥ 0 (in other words, the relations
of friendship and enmity are symmetric). This condi-
tion is necessary for the structural balance and allows
to simplify some constructions.

To illustrate the notion of structural balance, con-
sider for the moment a complete signed graph. The
structural balance in such a graph can be defined as
balance in each triad (subgraph with three nodes),
which is understood as follows [237, 252].

Definition 3. A complete sign-symmetric graph is
structurally balanced if each triad with nodes (i, j, k)
is balanced in the sense that aijajkaki > 0 (Fig 5).

A balanced triad (Fig. 5a,b) represent either a
triple of “friends” (a) or an alliance of two “friends”
against a common “enemy” (b). The imbalance in
a triad (Fig. 5c,d), violating the ancient proverb the
friend of my enemy is my enemy, the enemy of my en-
emy is my friend [253], creates social tensions which
social actors, according to balance theory, tend to re-
solve. Whereas structural balance is inherent to many
real-world networks [11, 254, 255], classical balance
theory does not explain how the system reaches the
balanced state. Dynamics of weights aij that lead to
their structural balance are beyond the scope of this
tutorial and can be found e.g. in [256–263].

It can be seen that the nodes of a structurally bal-
anced sign-symmetric complete graph split into two

Figure 5: Balanced vs. imbalanced triads

factions, or “hostile camps” [264] as follows. Con-
sider an arbitrary agent i and let the set V1 consist of
i and his/her friends V1 = {i} ∪ {j 6= i : aij > 0},
while the set V2 consists of his/her enemies V2 =
{j 6= i : aij < 0}. By definition of the structural
balance, every two friends, as well as every two en-
emies, of agent i are friends, i.e. ajk > 0 whenever
(j, k) ∈ (V1 × V1) ∪ (V2 × V2) and j 6= k. Similarly,
a friend of i and an enemy of i are always enemies:
ajk < 0 when (j, k) ∈ (V1×V2)∪ (V2×V1) and j 6= k.
The converse statement is also valid: if the set of
nodes V can be decomposed into two disjoint sets
V1, V2 with the aforementioned properties, then the
graph is structurally balanced. Indeed, in each triad
two nodes belong to the same “camp”. The remaining
node can either belong to the same camp or the op-
posite camp, which corresponds, respectively, to the
triads of types (a) and (b) in Fig. 5. This result, es-
tablished in [265] and called the “balance theorem”,
inspires the following general definition.

Definition 4. (Structural balance) A general signed
graph is G = (V,E,A) is structurally balanced if the
set of its nodes can be divided into such disjoints
subsets V = V1 ∪ V2 that for any pair i, j ∈ V , i 6= j,

{

aij ≥ 0, if (i, j) ∈ (V1 × V1)
⋃
(V2 × V2),

aij ≤ 0, if (i, j) ∈ (V1 × V2)
⋃
(V2 × V1).

Note that one of the “camps” Vi may be empty
(this holds in the case of a usual weighted graph,
where the matrix A is nonnegative). Unlike the case
of a complete graph, balance in each triad is insuffi-
cient for structural balance in the graph. To formu-
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late a necessary and sufficient condition, we introduce
two auxiliary concepts.

Definition 5. For a sign-symmetric graph G =
(V,E,A), consider an undirected graph Ĝ =
(V, Ê,A+A⊤) obtained from G by “mirroring” each
directed arc.18 A semiwalk v0, . . . , vn in the graph G
is a sequence of nodes, corresponding to a walk in Ĝ;
if v0 = vn, this semiwalk is called semicycle.

Definition 6. We call a walk v0, . . . , vn is a signed
graph G positive (respectively, negative) if the
product of all weights on the connecting arcs
av0v1av1v2 . . . avn−1vn is positive (negative). The sign
of a semiwalk in a sign-symmetric graph G is its sign
as a walk in the corresponding undirected graph Ĝ.

It can be shown (using e.g. induction on the walk’s
length) that a negative walk in a structurally bal-
anced graph connects the nodes from different camps,
whereas a positive walk starts and ends at the same
camp. In particular, for structural balance it is nec-
essary that the all cycles are positive (for cycles
of length 2, this implies the sign symmetry of the
graph). This is condition is also sufficient for strongly
connected graphs [247], however, without strong con-
nectivity, even graphs with n = 3 nodes can be struc-
turally imbalanced and have no cycles (see Fig. 6). By
noticing that the undirected graph Ĝ, corresponding
to a structurally balanced graph G, is also structurally
balanced, one shows that in fact all semicycles have
to be positive, and this condition appears to be suffi-
cient for structural balance [252].

Figure 6: A graph without cycles, no structural balance

Lemma 25. 19 If a signed graph is structurally bal-
anced, then all its cycles are positive (in particu-
lar, the graph is sign-symmetric). This condition is

18Since aijaji ≥ 0 for i 6= j, (A + A⊤)ij 6= 0 if and only if
|aij | + |aji| 6= 0. In other words, (i, j) ∈ Ê ⇔ (j, i) ∈ Ê ⇔
(i, j) ∈ E ∨ (j, i) ∈ E, so the undirected graph Ĝ contains all
directed arcs (i, j) of G together with their “mirrors” (j, i).

19The necessary and sufficient condition from this lemma is
often used as a definition of structural balance [252].

also sufficient for structural balance when the graph
is strongly connected. In general, for structural bal-
ance it is necessary and sufficient that the graph is
sign-symmetric and all its semicycles are positive.

The concept of structural balance has been ex-
tended in various directions, e.g. the more general
condition of weak balance allows clustering into more
than two factions [266], where members of each fac-
tions are friends and the members of different fac-
tions are enemies. For undirected graphs, the weak
balance is equivalent to the absence of cycles with
exactly one negative arc [266]. A natural question,
concerned with imbalanced signed graph, is how to
measure the “level of imbalance” (or how close the
graph is to balance). Different measures of imbalance
have been proposed in [11, 254, 255, 267].

Following [247], we define the Laplacian matrix
L = L[A] of the signed graph G = (V,E,A) as follows

L[A] = (ljk), ljk =

{

−ajk, j 6= k
∑N

m=1 |ajm|, j = k.
(53)

In the case where A is nonnegative, (53) coincides
with the conventional Laplacian matrix of a weighted
graph [1]. As implied by the Gershgorin Disc Theo-
rem, L[A] has no eigenvalues in the closed left half-
plane C̄− = {λ ∈ C : Reλ ≤ 0} except for, possibly,
λ = 0. Unlike the unsigned case, in general L[A]
can have no zero eigenvalue, in which case the matrix
(−L[A]) is Hurwitz.

The following elegant result [247] establishes a re-
lation between the Laplacian and structural balance.

Lemma 26. For a strongly connected signed graph
G = (V,E,A), λ = 0 is an eigenvalue of L[A] if and
only if the graph G is structurally balanced.

As will be shown, the sufficiency part in Lemma 26
in fact does not rely on the strong connectivity. The
“gauge transformation” [247] introduced in the next
subsection transforms the Laplacian of a structurally
balanced graph L[A] into the matrix L[A|·|], where
A|·| = (|aij |). In other words, L[A] is similar to the
Laplacian of an (unsigned) weighted graph, which al-
ways has an eigenvalue at 0.

6.2. Altafini’s model of opinion formation

Balance theory suggests that a natural outcome of
the opinion formation process should somehow reflect

23



the partition of the network into two opposing fac-
tions [246]. In the models offered in [246, 247], struc-
tural balance of a signed network leads to polarization
(“bipartite consensus”) of the opinions: opinions in
each faction reach consensus, and their consensus val-
ues are equal in modulus yet differ in sign.

The original20 Altafini model [247] is coincident
with the Abelson model (8), however the matrix
A(t) need not be nonnegative, and the correspond-
ing Laplacian is understood in the sense of (53)

ẋi(t) =
n∑

j=1

|aij(t)|(xj(t) sgn aij(t)− xi(t)) =

=

n∑

j=1

(aij(t)xj(t)− |aij(t)|xi(t))∀i,
(53)⇐⇒

⇐⇒ ẋ(t) = −L[A(t)]x(t), t ≥ 0.

(54)

To ensure the existence and uniqueness of the so-
lution for any x(0), it suffices to assume that A(·) is
locally L1-function. Similar to the Abelson model,
solutions of the Altafini model are globally bounded;
it can be shown [264] that M(t) = maxi |xi(t)| is a
non-increasing function and hence |xi(t)| ≤ M(0) for
any i and t ≥ 0, entailing the following proposition.

Proposition 27. System (54) is Lyapunov stable.

As we will see, unlike the unsigned case the sys-
tem (54) can, in general, be asymptotically stable.

6.2.1. The case of a time-invariant signed graph

We start with analysis of the static Altafini model
(A(t) ≡ A is a constant matrix). Similar to the static
Abelson model, the opinions always converge.

Proposition 28. For any matrix A and initial con-
dition x(0), there exist finite limits x̄i = lim

t→∞
xi(t).

Proposition 28 is immediate from Proposition 27.
If L[A] has an eigenvalue at 0, the Jordan cells cor-
responding to it are trivial in view of the Lyapunov
stability. Since all other eigenvalues of (−L[A]) are
stable, this implies the existence of lim

t→∞
e−L[A]t. �

Proposition 28 can be also proved by using the lift-
ing approach [270], showing that the Altafini model is
equivalent to Abelson’s model with 2n agents 1, . . . , n

20In this tutorial, we confine ourselves to the linear Altafini
model and do not consider its nonlinear counterparts [246, 247,
264, 268, 269], whose properties are in fact very similar.

and 1′, . . . , n′, where agent i′ is the antipode of agent
i and has opinion xi′ = (−xi). Some other results,
concerned with the behavior of Altafini’s model, can
also be derived by using this lifting technique. Note
that the arguments, used in [1] to prove the conver-
gence of static Abelson models, cannot be extended
to the signed case since L[A] is no longer a M -matrix.

The Altafini model has the most interesting be-
havior when the graph G = (V,E,A) is structurally
balanced. Consider the decomposition of V into two
“hostile camps” V = V1 ∪ V2 and the following map-
ping, referred in [247] to as the gauge transformation

xi 7→ yi = δixi, δi =

{

+1, i ∈ V1

−1, i ∈ V2.
(55)

By noticing that δiδjaij = |aij |, (54) shapes into

ẏi(t) =

n∑

j=1

|aij |(yj(t)− yi(t)) ∀i, (56)

that is, the vector y(t) obeys the Abelson model with
the (nonnegative) weight matrix A|·| = (|aij |) and

L[A] = ∆L
[

A|·|
]

∆, ∆ = ∆−1 = diag(δ1, . . . , δn).

In particular, if the graph G has a directed span-
ning tree [1], then consensus is established in the sys-
tem (56) yi −−−→

t→∞
p⊤y(0), where p ≥ 0 is the only

left eigenvector of L[A|·|] such that p⊤L[A|·|] = 0 and
p⊤1n = 1 (the vector of “social powers” [1]). This im-
plies the following polarization property of the solu-
tions, referred also to as the bipartite consensus [247]

lim
t→∞

xi(t) =

{

w⊤x(0), i ∈ V1

−w⊤x(0), i ∈ V2,
(57)

where w = ∆p is some non-zero vector (not neces-
sarily positive). In other words, for almost all initial
conditions opinions in the “hostile camps” reach con-
sensus at the opposite values.

If G is structurally balanced but has no directed
spanning tree, the opinions in (56) (and thus also
in (54)) split into several clusters, determined by the
graph’s matrix of “spanning forests” [271].

Consider now the case of structurally imbalanced
graph. In the case where G is strongly connected,
Lemma 26 implies that the system (54) is exponen-
tially stable since (−L[A]) is Hurwitz. In this case,
opinions reach consensus at zero value independent
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Figure 7: A structurally imbalanced quasi-strongly (yet not
strongly) connected graph

of the initial condition. This statement is not valid
for graphs with multiple strongly component compo-
nent, as illustrated by the simple example with n = 3
agents [264]. Let a12 = a21 = −1 and a31, a32 > 0, so
the graph G has a directed spanning tree and is struc-
turally imbalanced (Fig. 7). The Altafini system

ẋ1 = (−x2 − x1), ẋ2 = (−x1 − x2),

ẋ3 = a31x1 + a32x2 − (a31 + a32)x3,

has equilibria (ξ,−ξ, ρξ), with ρ = (a31 − a32)/(a31 +
a32) ∈ (−1; 1), ξ ∈ R, exhibiting thus neither polar-
ization nor stability. Such a behavior is a special case
of “interval bipartite consensus21” [272]. We do not
consider the structure of the clusters, arising in (54)
in the general case of imbalanced yet not strongly
connected graphs and conditions, ensuring stability
in this case, for further reading see [264, 272].

The results concerning the behavior of static
Altafini’s model are summarized in the following.

Theorem 29. For the Altafini model over a static
graph G = (V,E,A), the following statements hold:

(a) if the graph has an directed spanning tree and is
structurally balanced, the opinions polarize (57);

(b) if the graph is strongly connected and is struc-
turally imbalanced, the system is stable;

(c) in general, the opinions converge and can split
into several clusters, whose number and structure
depend on the graph G.

Remark 30. In the cases (a) and (b) opinions reach
consensus in modulus in the sense that

lim
t→∞

|x1(t)| = . . . = lim
t→∞

|xn(t)|. (58)

21The work [272] deals with a quasi-strongly connected
graphs with multiple root nodes (like nodes 1 and 2 in Fig. 7),
constituting a closed strongly connected component [1] and
reaching consensus in modulus (see Remark 30 below). De-
noting their steady modulus value by θ = θ(x(0)) ≥ 0, rhe
“interval bipartite consensus” is defined in [272] as the conver-
gence of all opinions xi(t) as t → ∞ to the interval [−θ, θ].

6.2.2. The dynamic graph case

The case of a general time-varying matrix A(t)
has not been fully studied, which is not surprising
since necessary and sufficient conditions for conver-
gence and consensus are still elusive even for the time-
varying Abelson model (aij ≥ 0). Obviously, if the
graph G[A(t)] is structurally balanced and the de-
composition V = V1 ∪ V2 is time-invariant (that is,
the friendship and enmity relations between each two
agents are constant), the model reduces to Abelson
model (56) via the gauge transformation (55). In gen-
eral, such a transformation is not possible, neverthe-
less the properties of the Altafini model (54) and the
associated Abelson model (56) are closely related.

The following counterpart of Lemma 5 has been
established in [110, 264, 270].

Lemma 31. Suppose that the gains aij(t) satisfy the
following type-symmetry condition

K−1|aji(t)| ≤ |aij(t)| ≤ K|aji(t)| ∀t ≥ 0, (59)

where K ≥ 1 is a constant. Then the limit ξi =
limk→∞ |xi(k)| exists for each i. If agents i and j
interact persistently in the sense that

∫ ∞

0
|aij(t)|dt = ∞,

then the moduli of their final opinions coincide ξ̄i =
ξ̄j. If the graph of persistent interactions is connected,
consensus in modulus (58) is established.

Similar to Lemma 5, Lemma 31 can be extended
to graphs satisfying a more general cut-balance con-
dition [110]. Lemma 31 implies, in particular, that
if (59) holds consensus in (56) is equivalent to con-
sensus in modulus in (54). This consensus in modu-
lus can be either polarization (57) (with some w 6= 0)
or asymptotic stability; necessity and sufficient con-
ditions for both types of behavior has been given
in [264, 270]. It is remarkable that Lemma 6 can-
not be extended to Altafini’s model in the same way:
the UQSC condition for the matrix A|·| implies con-
sensus in (56), however, in general it implies neither
consensus of the opinions’ absolute values (58), nor
even their convergence [264]. Consensus in modulus
is provided by the uniform strong connectivity.

Lemma 32. Let A(·) be bounded |aij(t)| ≤ M and
there exist ε, T > 0 such that the following graphs

Gε,T (t) = G
[∫ t+T

t

A|·|(s)ds

]

, t ≥ 0 (60)
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are strongly connected for any t ≥ 0. Then consensus
in modulus (58) is established.

Unlike the type-symmetric case from Lemma 31, in
the situation of Lemma 32 it is not easy to give con-
ditions for polarization and stability. To the best of
the authors’ knowledge, this problem has been solved
only under additional assumptions [270, 273, 274].

6.3. Extensions and related works

In [275], a generalization of the Altafini models has
been studied as follows

ẋi(t) = −σixi(t) +

n∑

j=1

aijxj(t),

where σi > 0 are constant “degradation rates”, aii =
0 and aij can be both positive and negative for i 6= j.
The main concern is the reaching of sign consensus,
or “unanimity” [275] of opinions, that is, their con-
vergence to the cone obtained by union of the positive
and the negative orthant Rn

+∪R
n
−. The key property,

providing such a relaxed consensus, is eventual non-
negativity of the matrix A (a matrix is eventually non-
negative if all its powers Ak are non-zero and at least
one of them is nonnegative). In [276], an interesting
model has been proposed that combines the ideas of
antagonistic interactions and bounded confidence (a
smooth counterpart of this model has been also stud-
ied in [277]). Extending the idea of gauge transforma-
tion, distributed continuous-time protocols sorting a
given list of real numbers have been proposed in [278].

Along with continuous-time model (54), the
“discrete-time Altafini model” can be considered

x(k + 1) = W (k)x(k) ∈ R
n, (61)

where the matrix W |·| = (|wij(k)|) is stochastic and
wii(k) ≥ 0, while wij(k) for i 6= j can be negative.
Properties of the discrete-time model (61) are similar
to the properties of its continuous-time counterpart;
e.g. consensus in modulus can be proved under the
assumption of repeated strong connectivity. For this
reason we do not consider the relevant theory and
refer the reader to recent works [94, 273, 279, 280].

Among other extensions, gossip-based models with
antagonistic interactions [281–283] should be men-
tioned. Unlike Altafini’s model, some of these mod-
els [282, 283] provide polarization under the assump-
tion of weak structural balance [266].

7. Conclusions and Future Works

The models describing social processes are numer-
ous. It will not be an exaggeration to say that almost
every week a novel model appears. When this tuto-
rial was started, many of the papers referred in it
had not been even written. Confining ourselves to
a special class of dynamic models, we clearly real-
ize that even this class remain partially uncovered by
this tutorial. For instance, we do not consider mod-
els with quantized communication among the agents
(that is, information an agent displays to the oth-
ers is limited to a finite set of symbols) [284–286].
Focusing on stability and convergence problems, we
avoid other important properties of opinion forma-
tion models such as e.g. their controllability [83, 287]
and identifiability [288, 289]. Processes closely re-
lated to opinion formation, e.g. the dynamics of re-
flected appraisals [290–293], have been also excluded
from the consideration. A very recent direction of
research, opened by [294], deals with open models of
multi-agent systems, which can be joined and left by
agents. This approach opens up the perspective of
modeling real social media, where agents interact via
web forums, chats and blogs, and other temporal so-
cial networks that can loose and acquire not only con-
nections among the nodes, but also nodes themselves.
To make social networks more resilient against mali-
cious attacks, it is important to understand mech-
anisms of “misbehavior” such as e.g. rumors, fake
news and misinformation spreading [295, 296]. Mod-
els proposed to describe belief systems [297] and por-
traying the evolution of opinions on multiple interre-
lated topics [44, 203, 298, 299] also remain uncovered.

To overview all cutting-edge models in a journal
paper is hardly possible, and without any doubts,
sooner or later textbooks and monographs on social
dynamics modeling will be published. The goal of
this tutorial is to unveil the new field, lying in the
frontier between systems theory and social science,
to the broadest audience, and we hope that it will be
helpful for researchers, starting working in this area.

In spite of recent progress in mathematical studies
of opinion formation models, we still know very little
about real processes in society. All of the existing
models describe only one of the numerous facets of
the social life, and most of focus on one special ef-
fect or property of social interactions (stubborness,
homophily, xenophobia etc.) The ancient fable about
blind men touching an elephant teaches us that this
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reductionist approach sometimes fails to give a real
picture of the real phenomenon. Should we con-
tinue studying simplified models or seek for a com-
plex holistic models of social influence? Which of the
existing “simple” models is closer to reality? Should
we use different models in different situations?

Evidently, mathematics cannot answer these ques-
tions; the only way to get realistic models is to work
with data. Such data can be collected during social
experiments. Nowadays, a huge amount of data is
available in online social media. Although we witness
some examples of successful interdisciplinary collab-
orations in experimental validation of dynamic mod-
els [206, 300], the current level of collaboration among
between the communities systems and control theo-
rists, sociologists and data scientists is insufficient.
From our viewpoint, the toughest challenge is to unite
the forces of these communities, elaborating a com-
mon language and instruments to be used in qualita-
tive and quantitative studies of social dynamics.

Afterword by Anton V. Proskurnikov

This paper was conceived by Dr. Roberto Tempo
and myself in 2016 as a survey, giving an overview
of social dynamics models, scattered in mathemati-
cal, physical, sociological and engineering literature,
from the systems and control viewpoint. Soon we re-
alized that such a survey will be appreciated only by
researchers, working on consensus and coordination
of multi-agent networks, whereas our purpose was to
open the exciting field of “social systems theory” to
the broadest audience. It was decided to transform
the survey into a tutorial, starting from the very be-
ginning and introducing all necessary mathematical
concepts. We have followed this plan in Part I, deal-
ing with classical models of opinion formation.

Roberto’s tragic and abrupt decease in January
2017 has made me postpone the submission of Part
II for more than half a year and seriously restruc-
ture the text. Some sections, promised in Part I (e.g.
distributed algorithms for network analysis and de-
tailed discussion of emerging directions) have been
discarded or shortened. Besides this, I have decided
to include some very recent results, trying to keep a
reasonable balance between tutorial and survey func-
tions of this paper. Since the relevant mathematical
techniques are too complicated to be considered, only
some of the results are accompanied by full proofs.

Whether we like this or not, this tutorial is written
by control theorists and primarily deals with prob-
lems, addressed by the systems and control commu-
nity. I have received several emails, asking about the
relation between the “strange” problems we consider
and “actual” theory of social networks. Although I
have done my best to explain the difference between
the problems, models and approaches considered in
this tutorial, and those studied by other communi-
ties (e.g. social network analysts, data scientists and
statistical physicists), I have to repeat the key the-
ses. We consider not social networks themselves, but
rather dynamical processes over them, namely, dy-
namics of opinion formation. Among the dynamic
models, we focus on agent-based models with contin-
uous opinions, whereas statistical and discrete opin-
ion models remain uncovered by this paper.

I am grateful to all colleagues, encouraging me
to finish this important work, being one of the last
Roberto’s projects. I was especially encouraged by
receiving messages from young researchers, urging
me with impatience to publish its draft. I am in-
debted to Francoise Lamnabhi-Lagarrigue, Editor in
Chief of Annual Reviews in Control, for inviting us to
contribute this tutorial, and to my colleagues Noah
Friedkin, Andreas Fläche, Francesco Bullo, Paolo
Frasca, Claudio Altafini, Julien Hendrickx, Fabrizio
Dabbene and Chiara Ravazzi for fruitful discussions.
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