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ABSTRACT

In-line Raman spectroscopy combined with accurate quantification models can offer detailed real-time insights into a bio-
process by monitoring key process parameters. However, traditional approaches for model calibration require extensive data
collection from multiple bioreactor runs, resulting in process-specific models that are sensitive to operational changes. These
challenges can be tackled by simplifying experimental data generation or implementation of computational methods to obtain
synthetic and augmented Raman spectra. In this study, we utilized a small experimental dataset of 16 single compound spectra
to calibrate quantification models by using partial least squares (PLS) and indirect hard modeling (IHM), leading to comparable
rRMSEP values for glucose (4.8% and 4.2%), ethanol (11.6% and 6.3%), and biomass (16.2% and 10.0%) when applied to yeast
batch and fed-batch bioprocesses. Subsequently, isolated spectral features extracted during IHM were used to generate fully
synthetic spectral datasets for PLS model calibration, resulting in rRMSEPs of 3.2% and 14.5% for glucose and ethanol,
respectively. Finally, spectra from a single batch process were augmented with the same isolated spectral features, and cali-
bration with these augmented spectra reduced rRMSEP by 18.6% point (glucose) and 4.3% point (ethanol) compared to process-
only calibrated models. This study demonstrates how different approaches may support robust development and rapid
implementation of Raman spectroscopy-based models while minimizing experimental efforts, where even complete indepen-
dence of process data can be achieved.

1 | Introduction

Monitoring metabolite, product, and biomass concentration
during a bioreactor process is often based on labor-intensive
manual sampling and off-line sample analysis. Development
and implementation of novel process analytical technology
(PAT) aims to automate quantitative data collection on these
process parameters to achieve hands-free real-time monitoring.
In recent decades, optical PAT has seen a rise in popularity as it
allows for in-line measurements that can be combined with

automated data analysis (Esmonde-White et al. 2021). Specifi-
cally Raman spectroscopy is highly suitable for bioreactor pro-
cesses due to its low signal interference from water and the
ability to provide specific fingerprint signals for many relevant
compounds. Raman spectroscopy is successfully implemented
across a wide range of bioreactor processes, from microbial to
animal cell cultures, with the goal to quantify both simple and
complex target compounds (Tanemura et al. 2023). However, as
the complexity of the measured systems increases, spectral
features of all compounds in the system overlap in the singular
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spectrum, hindering direct interpretation of the raw signal.
Therefore, multivariate modeling techniques are employed to
translate the complex spectral signal into quantitative data.

The most popular multivariate technique is partial least squares
(PLS) regression and it is extensively used for a wide range of
bioprocesses (Zavala-Ortiz et al. 2022). During PLS model cal-
ibration, spectral and reference value datasets are provided, and
the model defines latent variables (LVs) that capture the most
relevant spectral variations correlated to the target compound
identity and abundance (Wold et al. 2001). This makes PLS a
powerful technique for Raman spectral decomposition to pre-
dict the target compound concentration, while little spectral
knowledge of the system is required. These models are tradi-
tionally calibrated with extensive datasets for which multiple
bioreactor runs have to be performed, leading to labor-intensive
data collection procedure. Unfortunately, the required time and
material investment delays the adoption of Raman spectroscopy
as PAT to generate valuable process insights in early-stage
development of new processes or in R&D-based environments.
Moreover, repeating the same bioreactor process to collect cali-
bration data leads to a limited design space, as the relationship
between process compounds remains similar for every process
run. As a consequence, the PLS model will learn to predict
compound concentrations only under the circumstances occur-
ring in that specific process. This means models can be trained to
identify and predict abundance based on unspecific spectral
features when compounds have strong cross-correlations (e.g.,
correlations between substrates, inverse correlations between
substrates and product or biomass). Such models will perform
poorly when process conditions or process operation disturbs this
cross-correlation. To calibrate robust PLS models that can deal
with process variations and transfers to related processes, the
calibration dataset should include variation outside of the stan-
dard process evolution. However, collecting datapoints from the
process itself by repeating bioreactor runs with different con-
centration settings is inefficient, especially when it is solely for
the improvement of a Raman spectroscopy-based PLS model.
Experimental methods for introducing these variations in the
dataset, such as spiking the process with the compound of
interest or creating custom samples in a cell culture matrix, can
enhance a model's specificity for target compounds (Romann
et al. 2022; Santos et al. 2018). However, these approaches are
labor-intensive, requiring careful experimental design and sam-
ple preparation.

Computational approaches can also offer a solution to build
spectral datasets for robust model calibration. When extensive
process knowledge is available and spectral composition of most
individual process compounds is obtainable, methods such as
indirect hard modeling (IHM) can be used. IHM is a physics-
based approach that incorporates known spectral properties to
extract chemical information from a process spectra (Alsmeyer
et al. 2004). It differs from implicit modeling techniques, such
as PLS, by explicitly modeling known spectral features of a
compound with individual peak functions. Spectra of pure or
dissolved compounds are deconvoluted by fitting Pseudo-Voigt
peak profiles to the spectra until the residuals between the fitted
model and experimental spectra are minimized. For mixtures
containing a single unknown compound, the unknown spectral
variation can be characterized through complemental hard

modeling, allowing the spectral composition of the unknown
compound to be extracted (Kriesten et al. 2008). The defined
individual models can be combined into a mixture model,
which is calibrated on training spectra by weighing the intensity
of each compound model to minimize the fit residuals. Com-
plemental hard modeling was successfully applied to chemical
processes and yeast bioprocesses (Alsmeyer et al. 2004;
Echtermeyer et al. 2021; Miiller et al. 2023). When unexplained
spectral residuals remain after optimization, the model can be
expanded by extracting the unknown contribution, use it to
develop a new hard model, and include it in the mixture model
(Miiller et al. 2023). These applications demonstrate that the
IHM approach offers a flexible and low calibration effort
approach for quantification from spectral data. Nevertheless,
IHM requires a high level of spectral knowledge of the process
and the availability of isolated spectral measurements of the
major process compounds.

As effective calibration data is labor-intensive to collect, alter-
native methods by which spectral data can be obtained com-
putationally are highly desired. Methods to artificially generate
Raman spectra or modify existing spectral data can alleviate
current limitations, such as data scarcity and low variability of
the compounds of interest. Several automated methods for
generating synthetic spectra are developed for classification
problems, such as synthetic minority over-sampling technology
(SMOTE) and generative adversarial networks (GANs) algo-
rithms (Hao et al. 2023). The SMOTE algorithm interpolates
between existing spectra of a minority-class to reduce class
imbalance and to increase the diversity of a data set (Chawla
et al. 2002). The GAN approach consists of a generator and
discriminator model that go through adversarial training, where
the generator model learns to generate realistic spectra while
the discriminator attempts to recognize synthetic data (Hao
et al. 2023; Goodfellow et al. 2020). Both methods can be used to
expand small or imbalanced calibration datasets to improve the
performance of classification models (Wu et al. 2021). However,
the use of these algorithms to generate spectra for quantifica-
tion model calibration is limited, as a physically accurate re-
lationships between spectral intensities and compound
concentrations is not guaranteed. Examples for the generation
of synthetic spectra to enhance quantification models are rare.
Goldrick et al. generated synthetic Raman spectra simulating
penicillin fermentation by combining empirical baseline spectra
with simulated characteristic compound peaks in the form of
Gaussian shapes (Goldrick 2019). Sulub & Small employed a
similar method to simulate near-infrared spectra to calibrate a
PLS model for the prediction of glucose in mixture measure-
ments (Sulub and Small 2007). While these studies highlight the
potential of augmenting spectral data for quantification prob-
lems, the application of synthetic Raman spectra remains lar-
gely unexplored.

This study compares four approaches for utilizing single com-
pound spectra to calibrate Raman spectroscopy quantification
models, applicable for bioprocess monitoring or control purposes.
These approaches simulate scenarios where little or no process
data is available before operating a bioreactor process, aiming to
build robust models and enable availability of quantification
models before a new process begins. The first approach uses
a small experimental spectral data set (16 spectra) containing
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single compound measurements of glucose, ethanol, and Sac-
charomyces cerevisiae biomass acquired under bioreactor condi-
tions to calibrate PLS models directly. Secondly, a calibrated
mixture model is obtained through IHM, calibrated with the
same small experimental spectral data set. Both models are val-
idated on a bioprocess data set of 4 batches and a single fed-batch
(65 spectra total) to assess model performance. In the third
approach, isolated spectral features extracted obtained from THM
are used to generate synthetic spectra that simulate bioprocess
conditions. This yielded a full factorial data set of 125 synthetic
spectra to maximize spectral variation, with which PLS models
were calibrated. In the fourth approach, isolated spectral features
of glucose and ethanol from THM were employed to augment a
small spectral process batch bioprocess data set (12 spectra). It
was aimed to improve model specificity towards these targets by
artificially increasing the spectral feature variability, providing a
data augmentation method for situations where process data is
limited. To conclude, four approaches to leverage little to no
process data for Raman spectroscopy-based quantification model
calibration are compared in terms of prediction accuracy, cali-
bration effort, and flexibility towards new compounds. By
investigating these calibration approaches we contribute to rapid
development of flexible and robust quantification models that
can be obtained without running (additional) bioprocesses.

2 | Materials and Methods
2.1 | Experimental Methods
2.1.1 | Bioreactor Settings and Reference Sampling

The Saccharomyces cerevisiae strain CEN. PK113-7D was used
for all bioprocesses (Nijkamp et al. 2012), and cultures were
grown on defined medium containing 5 g/L (NH,),SO,, 3 g/L
KH,PO,, and 0.5 g/L MgS0,.7H,0 corrected to a pH of 6.0 with
2M KOH (Verduyn et al. 1992). After medium sterilization 50%
glucose (J.T. Baker, Philipsburg, NJ) solution (in-house) was
added until 20 g/L, and vitamins and trace elements were added
through 0.2 uM syringe filters (Whatman, Maidstone, UK). The
medium was completed by adding 0.2 g/L sterile Antifoam-C
(BASF, Ludwigshafen, Germany). Bioprocess data was collected
by operating 4 batches and a single fed-batch in a 2 L bioreactor
system (Applikon, Delft, the Netherlands) using a 1 L working
volume. The cultures were maintained at 30°C, stirred at
800 rpm, and aerated with 0.5 L/min of air by a Biostat B bio-
reactor controller (Sartorius, Gottingen, Germany). The
pH setpoint of 6.0 was maintained by the automatic addition of
2 M KOH. The batch bioprocesses were inoculated at an OD660
of 0.3 and sampled until glucose depletion. The fed-batch
started as a batch culture operated at identical settings, and was
bolus fed with 50% glucose solution three times whenever
glucose depleted to extend the process. The bioprocesses were
sampled every hour, and sample supernatants were analyzed
for their glucose and ethanol concentrations with an Agilent
1260 infinity HPLC (Agilent Technologies, CA) equipped with a
Bio-RAD Aminex HPX-87H (300x 7.8 mm) cation-exchange
column (Bio-Rad, Hercules, CA). The biomass concentration of
each sample was determined by measuring the OD660 values
using a Libra S11 spectrophotometer (Biochrom, UK), and dry-
weight determination was performed by loading and drying

10 mL of culture broth on nitrocellulose membrane filters (pore
size: 0.45 um); Gelman Laboratory, MI). An overview of the
reference measurements for each bioprocess is shown in Sup-
porting Information S1: Figure S5.1.3.

2.1.2 | Single Compound Measurements

The glucose, ethanol, and biomass single compound spectra were
acquired in the same 2 L bioreactor system operated under iden-
tical temperature and aeration settings as the bioprocess
(Section 2.1.1). For each compound, the bioreactor was filled with
1L of defined media, and 5 concentrations values were achieved
by adding 50% glucose solution (described in Section 2.1.1, 96%
ethanol, and biomass obtained from a batch bioprocess and sub-
sequently washed in defined media. The final spectral dataset with
a total of 16 spectra consisted of a single defined media spectra
followed by 5 glucose (50-250 mM), 5 ethanol (50-250 mM), and 5
biomass (0.8-5g/L) spectra (Supporting Information S1: Fig-
ure S5.1.1A The concentrations of each step were verified with
HPLC and dry-weight determination as described in Section 2.1.1.

2.1.3 | Raman Spectral Acquisition

Raman spectra were acquired using a RXN2 analyzer (Kaiser
Optical Systems Inc., Ann Arbor, MI) equipped with a 400 mW
785 nm laser, which acquired spectra in the bioreactor system
using a bIO-Optic immersion probe. Spectra were collected over
a range of 100-3400cm™* with a resolution of 4cm™. The
immersion probe was mounted through the headplate of the 2 L
bioreactor, and was autoclaved with the bioreactor for the
bioprocesses. The spectroscope was set to continuously acquire
spectra of 60 s that yielded a detector saturation between 30%
and 58% over all performed measurements. The bioprocess
spectra were averaged from two 60-second acquisitions to
achieve a high monitoring resolution, while the single com-
pound measurements were averaged from a total of ten
60-second spectra to obtain high quality spectra for modeling.

2.2 | Computational Methods
2.2.1 | PLS Model Calibration

All PLS models were developing in PLS_Toolbox version 9.3.8
(Eigenvector Research Inc., WA) running on Matlab R2023a
(MathWorks, WA). All spectra were pre-processed by reducing
variables to the fingerprint region of 700-1800 cm™", Automatic
Whittaker filter baseline correction (4 = 10000, a = 0.001), sul-
fate peak normalization, and mean centering. The reference
values for glucose, ethanol, and biomass were mean centered
before calibration. An individual model was generated for each
compound of interest, and Venetian blinds cross-validation was
used. The number of latent variables for each model was
selected based on the elbow point of the root mean square error
of calibration (RMSEC) and cross-validation (RMSECV) plots,
and by inspecting the loadings of each latent variable to prevent
the inclusion of spectral noise. Model performance across cali-
bration datasets was compared by using the relative root mean
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square error of prediction (rRMSEP) based on the interquartile
range (IQR) shown in Equation 1:

RMSEP
Q3 -0l

rRMSEP = x 100, (1)

where QI and Q3 represent the first and third quartiles,
respectively.

2.2.2 | Indirect Hard Modeling

Single compound hard models and mixture models used for
quantification were generated in the PEAXACT version 5.9
(Aachen, Germany) spectroscopy software. Single compound
spectra were reduced to the fingerprint region (700-1800 cm™?),
and corrected by sulfate peak normalization. The Comple-
mental Hard Modeling (CHM) (Kriesten et al. 2008) approach
was utilized to generate a hard model consisting of 7 peaks for
defined media (Supporting Information S1: Figure S5.2.1). The
defined media hard model was fitted into the highest concen-
tration measurements of glucose, ethanol, and biomass, and
Pseudo-Voigt profiles were fitted sequentially at the location
with the highest residual error. This procedure was continued
until the newly fitted peaks could not be verified with literature
references of their Raman spectra. This resulted in models with
20 peaks for glucose, 8 peaks for ethanol, and 9 peaks for bio-
mass. The four generated models were combined in a single
bioprocess mixture model that was subsequently calibrated on
the 16 single compound measurements by fitting each compo-
nent to minimize the spectral residuals. For the reference
concentrations, the weight of each component was balanced
according to Equation 2:

1= WpefinedMedia + WGlucose + WEthanol + DBiomasss (2)

The calibration procedure generated linear correlations
between component weight and concentration (Supporting
Information S1: Figure S5.2.3). During calibration and appli-
cation, the model was only allowed to change the weights of
each hard model, without accounting for peak shifts and shape
changes. The performance of the IHM model was expressed in
RMSEP and rRMSEP values (Equation 1) to allow for compar-
ison with the PLS models.

2.2.3 | Synthetic Spectra Generation From Single
Compounds

Synthetic Raman spectra simulating bioprocess conditions were
generated using the Pseudo-Voigt profiles obtained during the
IHM steps (Section 2.2.2). Individual peak parameters and lin-
ear correlations between peak intensity and concentration were
extracted and re-combined into bioprocess spectra using an in-
house Python script. Concentration ratios between glucose,
ethanol, and biomass were designed according to a full factorial
design of experiments (DoE) approach with five concentrations
per compound, leading to a total of 125 combinations
(Supporting Information S1: Figure S5.3.1). The concentration
ratios were inserted in Equation 2 to extract the weight of

defined media, and the synthetic spectra were generated by
multiplying the Pseudo-Voigt features with the weights corre-
sponding to the desired concentration according to the cali-
bration lines (Supporting Information S1: Figure S5.2.3). A
detailed workflow of all steps is presented in Supporting
Information S1: Figure S5.3.2.

2.2.4 | Spectral Augmentation of Batch Bioprocess Data

The augmentation of Raman spectra from a single batch bioprocess
was performed using the same spectral features and weight versus
concentration calibrations as used during the generation of syn-
thetic spectra (Section 2.2.3). Two augmented datasets were gen-
erated by adjusting the concentrations of (1) glucose and
(2) ethanol, where +10 and + 20 mM, respectively, around the
original values was generated. This was done by adding and sub-
tracting the Pseudo-Voigt profiles, with a boundary at a concen-
tration of OmM. This resulted in two datasets consisting of
60 spectra (12 original batch process spectra and 48 spectra aug-
mented with Pseudo-Voigt profiles), see Supporting Information
S1: Figure S5.4.2. The detailed workflow of these steps is presented
in Supporting Information S1: Figure S5.4.1.

3 | Results and Discussion

In this study we compare four approaches using simple mea-
surements to calibrate Raman spectroscopy quantification
models for monitoring key compounds during bioprocessing
(glucose, ethanol, and biomass) in scenarios where no or lim-
ited bioprocess data is available. A bioprocess setup with a
simple broth composition was selected as the target process for
quantification, with the main process components being:
defined media, glucose, ethanol, biomass, and low amounts of
glycerol and acetate (abundance for glycerol and acetate was
considered insignificant for modeling). A small data set of 16
single compound spectra was generated, consisting of one
defined media spectrum and five concentrations of glucose,
ethanol, and biomass each, plus their reference measurements
(Supporting Information S1: Figure S5.1.1).

For the first approach, the data set of 16 single compound mea-
surements was used to directly calibrate three PLS models for the
quantification of glucose, ethanol, and biomass (Supporting
Information S1: Figure S1.1, Section 3.1). In the second approach,
single compound spectra were used to generate compound hard
models (HMs) for defined media, glucose, ethanol, and biomass.
The HMs were combined in a single mixture model with the THM
method (Supporting Information S1: Figure S1.2, Section 3.2). In
the third approach, the HMs were used to generate de novo syn-
thetic mixture spectra of custom concentration ratios (Supporting
Information S1: Figure S1.3, Section 3.3). This approach allowed
for the simulation of bioprocess conditions across the entire design
space defined by the concentration ranges of the single compound
measurements. In the fourth approach, isolated spectral features of
glucose and ethanol were used to augment a small data set of a
single batch process (12 spectra), by which the spectral variability
for these compounds could be increased (Supporting Information
S1: Figure S1.4). The performance of these four modeling ap-
proaches was validated using a bioprocess data set consisting of
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multiple batch bioprocesses and a single fed-batch bioprocess to
investigate quantitative accuracy on process data. An overview of
all experimental datasets and the four modeling approaches is
shown in Figure 1.

3.1 | Approach 1: PLS Model Calibration With
Single Compound Spectra

The performance of PLS models calibrated directly using single
compound spectra (16 samples) obtained under standard bio-
reactor conditions was investigated for three targets: glucose,
ethanol, and biomass. These models were assessed using the
validation data set of four batch processes and a single fed-batch
bioprocess (65 samples), and the corresponding model per-
formances, regression coefficient vectors (RCVs), and high
concentration single compound spectra are shown in Figure 2.

Quantitative analysis of model performance resulted in rRMSEP
values of 4.8%, 11.6%, and 16.2% for glucose, ethanol, and biomass,
respectively. Three latent variables were selected for each model,
resulting in low RMSEC and RMSECV values by capturing the
variation of glucose, ethanol, and biomass in separate components
(Supporting Information S1: Figure S5.1.3). Glucose concentrations
were accurately quantified across the batches and the fed-batch
bioprocess. Qualitative model assessment indicates that the RCV of
each model contains the key spectral features of their compound of
interest, while correcting for overlapping spectral features. Glucose
model specificity is reflected by the strong representation of the
peaks for COH-bending (918 cm™ and 1125 cm™"), CO-stretching
(1066 cm™), and CH-bending (1368 cm™) (Dudek et al. 2019) in
the RCV, and overlapping peaks of ethanol are corrected (e.g.,
879 cm™" and 1085cm™). The ethanol model showed good pre-
diction accuracy on the batch bioprocesses (rRMSEP of 6.74%), but
the predictions on the fed-batch data deviated from the 1:1 line,
leading to the overall RMSEP of 11.6%. The ethanol model RCV
closely resembles the single compound spectrum of ethanol, indi-
cated by high coefficients for the CC-stretching (879cm™),
CO-stretching (1046 cm ™), CHs-rocking (1085 cm ™), CH,-twisting
(1277cm™), and CHj;-deformation (1456 cm™) peaks (Boyaci
et al. 2012; Pappas et al. 2016). An inspection of the residuals on
the fed-batch samples revealed multiple regions where true and
fitted spectra deviated (1250-1480 cm™" and 1560-1660 cm™), but
the pattern could not be directly related to a known compound.

Our previous work showed that spectral features associated
with the molecular composition of biomass can be detected
with in-line Raman spectroscopy after correcting for the ex-
tinction effect with a normalization step (Klaverdijk 2025a).
This is reflected by the biomass model RCV that contains
spectral features matching with Raman spectroscopy studies of
S. cerevisiae, displaying positive coefficients for bands related to
phenylalanine (1002cm™"), phospholipids (1084cm™"), CH-
deformation of proteins (1344 cm™), CH,-deformation of lipids
and proteins (1448 cm™"), and amide I stretching (1669 cm™")
(Wang et al. 2023). In the work of Yang et al. (2024), PLS
models for monitoring yeast bioprocesses were calibrated with
single compound spectra of glucose, ethanol, peptone, yeast
extract, and biomass, but no specific signal was found for the
yeast cells (Yang et al. 2024). Instead, signal extinction caused
by biomass was modeled by measuring mixtures of glucose and

ethanol at varying concentrations of biomass, and the nonlinear
relation was used to quantify biomass and correct predictions of
the PLS models during bioprocessing. Other literature on
monitoring of yeast with Raman spectroscopy mainly highlight
the attenuation of spectral features with increasing biomass
concentration, and there is little data on the detection of its
protein and lipid signal during in-line measurements.

The results in Figure 2 show an accurate prediction of the
biomass concentration in three out of four batches, while the
predictions for one batch and the fed-batch bioprocess deviated
from the 1:1 line. Further inspection of the residuals of
the deviating batch data set highlighted large differences in the
water peak at 1640 cm™!, but the cause of these differences
could not be determined. For the fed-batch bioprocess, the
biomass model had to extrapolate, as the single biomass spectra
only reached 5g/L while the fed-batch process went up to
9.2 g/L. The two lowest concentration biomass spectra from the
calibration data set were overpredicted during model develop-
ment, and the need for extrapolation on the fed-batch data
could have propagated this effect outside of the calibration
concentration range.

The latent variable loadings of each model show that the third
latent variable did not contain more than 0.45% of the spectral
variation (Supporting Information S1: Figure S5.1.3). The vast
majority of the spectral variation belonging to glucose and
ethanol is explained in latent variables one and two (loadings of
28.6%-70.9%), which may result from the difference in signal
strength between biomass and the metabolites. To investigate
the impact of including biomass spectra during calibration on
overall model performance, models calibrated with only glucose
and ethanol spectra were tested and applied to the same vali-
dation data set (Supporting Information S1: Figure S5.1.4). This
resulted in models with two latent variables, where the rRMSEP
of the glucose model without biomass in the calibration data set
increased to 13.4% (from 4.8%) and the rRMSEP of the ethanol
model increased to 14.8% (from 11.6%). The RCVs show that
including biomass spectra in the calibration data set allows the
model to correct for overlapping spectral features (e.g.,
1448 cm™! and 1669 cm™!). Moreover, the broad features of
both glucose and biomass overlap over a large section of the
spectra. Although these effects are less visible in the RCVs of
the ethanol models due to narrow peaks, the inclusion of bio-
mass spectra and the subsequent selection of an additional
latent variable led to a higher predictive performance. Thus,
despite the small magnitude of the biomass spectral signal,
including biomass spectra improved spectral decomposition of
the molecular features of yeast and increased prediction per-
formance on bioprocess data.

The performance decrease seen for the fed-batch samples to
quantify ethanol and biomass could also be related to the pre-
processing strategy. Single compound spectra were acquired in
individual bioreactor setups, which resulted in baseline offsets
between the experiments (Supporting Information S1: Fig-
ure S5.1.1). An Automatic Whittaker baseline correction
(A=10000, o =0.001) was utilized to achieve baseline align-
ment. After baseline correction, spectra needed to be normal-
ized for intensity and a normalization based on the sulfate peak
of the synthetic medium as an internal standard yielded the best

328

Biotechnology and Bioengineering, 2026

85LB017 SUOWIWOD SR (edl|dde ayy Aq peusenob ake sapie YO ‘8sn Josajn. 1oy Afeiq18ul|uo A8 |IAN U0 (SUONIPUD-PUE-SWBIAL0D" AB | IM"AJeIq Ul |UO//ScIY) SUOIPUOD PUe SWLB | 8L 89S *[9202/T0/6T] Uo AriqiTauliuo A8]IM ‘Hea NL Ad 2600L 110/200T 0T/I0p/L0o A3 IM AlRIq 1 UIIUO'S [UINO BOLB 105 20 A feUe//:SANY W01y pepeojumoq ‘2 ‘9202 ‘0620260T



Empirical dataset

Single compound dataset Validation dataset
: (D;ﬂ;es% r(n;dla (1) Batch 1 Batch 2,3,4 Fed-batch
< Ethanol (5) 16 spectra Approach 4
+  Biomass (5) Approach 1, 2, 3

Modelling approaches

Approach 1- PLS calibration Approach 2 - Indirect Hard Modelling (IHM)
—— Glucose
= BiEme] Generate 4 hard - Fit hard models to 16
— Biomass models (HM) single compound spectra

Defined media

— Mixture spectrum Ethanol ®m Defined media

\ ) y: A W Glucose B Biomass
e J &HQ L J&JM
v
A
-

Calibrated PLS

Calibrated mixture model
models

Y =XB

1 = Wpefineamedia + Dglucose T WEthanot T+ ®piomass

Approach 3 - HM-based synthetic spectra generation

' “ | Glucose

+
A " R L Ethanol

4 hard models == + L ‘ Biomass
y—t/;l_,\, Defined media

_ Claoge \\“\N\\ model§

A " Total spectrum e /"7/14/ a\\a‘\" Y =XB

Approach 4 - HM-based spectral augmentation

> 125 synthetic
spectra

Biomass [g/L]

Calibrated PLS

e oPoegoegogo0
© 0905040 4,0

® e 00080 P,

® e a0 o0 0000
o ocvmwmococsoomce
® 0P PO OO OIN 00

Hard model glucose

Batch 1 v Sesees
(12 spectra) "REg e,
Process Spectrum
+ »* e
2 hard models Augmented spectrum @ Original .' 0 Calibrated PLS
Y =XB

Sample #

12 original + 48
# g

augmented spectra

Glucose [mM]

FIGURE 1 | An overview of the experimental datasets (top row) and the four modeling approaches performed in this study. For Approach 1: 16 single
compound spectra were used to calibrate Partial Least Squares (PLS) regression models for glucose, ethanol, and biomass directly. Approach 2: the single
compound spectrum of defined media, and the highest concentration spectra of glucose, ethanol, and biomass were used to generate four hard models (HM)
by fitting Pseudo-Voigt features. These HMs were combined in a mixture model that was calibrated on the full single compound data set to establish relations
between signal intensity and compound concentration. Approach 3: HMs of glucose, ethanol, biomass, and defined media and their respective intensity/
concentration calibrations were used to generate synthetic Raman spectra with custom concentrations according to a full factorial Design of Experiments
with 5 concentrations per quantification target. The resulting data set of 125 synthetic spectra was used to calibrate PLS models for glucose, ethanol, and
biomass. Approach 4: a single batch spectral data set (Batch 1) was augmented with the HMs of glucose and ethanol to increase the spectral variability of
each quantification target, resulting in two augmented datasets of 60 spectra used to calibrate PLS models for glucose and ethanol. All PLS models and the
mixture model obtained with IHM were validated on a data set consisting of multiple batch bioprocesses and a single fed-batch bioprocess.
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FIGURE 2 | Pre-processed spectra (before mean-centering, top), regression coefficient vector (middle), and measured versus predicted plots

(bottom) of the glucose (A), ethanol (B), and biomass (C) Partial Least Squares (PLS) models, respectively.

results. However, the fed-batch was bolus fed with 50% sterile
glucose solution three times, slightly diluting the sulfate peak,
thereby compromising the intensity correction. This underlines
the downside of utilizing internal standards for intensity nor-
malization, as process adjustments can directly influence pre-
processing accuracy. Despite these challenges, the sulfate peak
normalization provided the most accurate models, and other
normalization methods (e.g., standard normal variate) resulted
in high prediction errors.

3.2 | Approach 2: IHM Calibrated With Single
Compound Spectra

The 16 single compound spectra were used to generate HMs,
where individual spectral features of each compound are modeled
as Pseudo-Voigt profiles. To prevent the inclusion of noise into
the HMs, fitted peaks were cross-checked with literature, result-
ing in 21 peaks for glucose (Dudek et al. 2019), 8 peaks for ethanol
(Boyaci et al. 2012; Pappas et al. 2016), and 9 peaks for biomass
(Wang et al. 2023). The fitted single compound models showed a
high similarity to other work in literature using the IHM
approach (Miiller et al. 2023). The individual HMs were com-
bined to form a mixture model, which was calibrated on the
single compound data set. The calibrated mixture model was
subsequently applied to evaluate performance with the bioprocess
validation data set (Figure 3). A detailed overview of the workflow
is provided in Supporting Information S1: Figure S5.2.2.

Quantitative model assessment resulted in rRMSEP values of
4.2%, 6.3%, and 10.0% for glucose, ethanol, and biomass,

respectively. The predictions showed high linearity for glucose
and ethanol, with a slight overprediction of glucose. The pre-
diction accuracy for biomass was considered decent for the batch
bioprocesses, but the predictions for the late fed-batch samples
deviated from the 1:1 line, where the model had to extrapolate
past the 5 g/L upper limit of the calibration data. Another factor
leading to the decrease in prediction accuracy for biomass in the
late fed-batch samples may be the broad spectral features with
low specificity obtained using the complemental hard modeling
approach, even though the absolute position of each fitted peak
closely matched the features associated with S. cerevisiae reported
in literature (Wang et al. 2023).

The THM approach was successfully applied by Muller et al. to
monitor glucose and ethanol concentrations during yeast bio-
processing in a 20 mL cuvette setup, where Raman spectra were
acquired with a Raman microscope through the bottom of
the glass cuvette (Miiller et al. 2023, 2024). A total of 11 mixture
spectra plus a single measurement of yeast suspension were
used to calibrate their model, and glucose and ethanol con-
centrations of around 100g/L and 50 g/L, respectively were
successfully quantified. Our model was calibrated without the
need for mixture spectra, and glucose and ethanol concentra-
tions only reached 21 g/L and 23 g/L, respectively, thus result-
ing in a weaker Raman signal. Despite the inherent differences
between experimental setups and lower concentration ranges,
our mixture model accuracy is in the same order of magnitude,
as our RMSEPs for glucose and ethanol were 0.74 mg/g and
0.43 mg/g versus their 3.68 mg/g and 1.70 mg/g. It should be
noted that the use of an immersion probe inside the bioreactor
led to high signal extinction by biomass, and despite the signal
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attenuation our model provided accurate predictions after a
simple normalization step.

3.3 | Approach 3: PLS Model Calibration With
Synthetic Spectra

In this section, we evaluate PLS model performance when cali-
brated with synthetic spectra. The HMs obtained in the previous
section were extracted and utilized to generate de novo Raman
spectra of custom concentration ratios. A total of 125 synthetic
spectra were generated according to a full factorial design, with
ranges of 0-200mM for glucose, 0-500 mM for ethanol, and
0-5 g/L for biomass, including five concentration steps for each

compound (Supporting Information S1: Figure S5.3.1). The syn-
thetic data set was subsequently used to calibrate PLS models for
the quantification of glucose, ethanol, and biomass, and applied
to predict four batch and one fed-batch bioprocess datasets
(Figure 4).

PLS models calibrated on the data set of 125 synthetic spectra
resulted in rRMSEP values of 3.2%, 14.5%, and 256.0% for glu-
cose, ethanol, and biomass, respectively. The synthetic spectra
managed to simulate spectral variation of glucose closely,
resulting in a more accurate prediction than direct calibration
with the 16 experimental single compound spectra (1.6% point).
The RCVs of the glucose models calibrated on experimental
and synthetic data were similar, with the synthetic model
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containing less noise due to the smooth nature of the Pseudo-
Voigt profiles. The ethanol model calibrated on synthetic
spectra had a slightly higher (2.9% point) prediction error than
the model calibrated on the experimental single compound
spectra, but the RCVs were still considered highly similar
between the models. The RCV similarity seen for ethanol
models also resulted in a comparable deviation for the predic-
tion of ethanol concentrations in the fed-batch dataset.

The poor performance of the biomass model clearly indicates
that synthetic spectra cannot properly replicate the spectral
variation caused by biomass. The broad spectral features of bio-
mass extracted from the complemental hard modeling method
did not accurately represent the true spectral contribution of S.
cerevisiae, and this propagated to the synthetic spectra. Further-
more, spectral variation caused by biomass was a small per-
centage of the total spectral variation, as seen in the PLS models
calibrated with experimental single compound spectra directly
(Section 3.1). The small magnitude of the biomass signal possibly
caused a high sensitivity to small deviations in intensity, leading
to difficulties of recreating the proper signal proportions. In
addition, the broad shapes of the simulated biomass signal is
sensitive to intensity changes by baseline correction steps.

This approach shows synthetic spectra allow for setting custom
ratios between glucose and ethanol, by which the design space
could be covered entirely without additional experimental
effort. However, calibration with synthetic spectra did not lead
to improved model performance for ethanol and biomass
compared to calibration with 16 experimental single compound
spectra. Furthermore, the use of synthetic spectra only led to
very minor differences in the model RCVs for glucose and
ethanol, supporting the lack of added benefit in terms of
model performance or specificity. Nevertheless, this approach

>

Glucose

T T T T

-
o
T
L

Regression
coefficient
o

NI ,\%@0\,@'@0
Measured Glucose [mM]

10— ; : : :
800 1000 1200 1400 1600 1800
Raman shift [cm'1]
3 Standard Augmented
= 150 PR 150 ,
o)
g 100 76
S s0 A’
g e ] 50 4
2 . 2 Latent Variables| o8% " [2Latent Variables
© -50 " |RMSEP: 31.4 mM RMSEP: 12.7 mM
3 b rRMSEP: 31.2% rRMSEP: 12.6%
= -100 -
o
SEDRORCRURIS

=== Batch 1 dataset
Augmented dataset

= |inear fit test data

demonstrated the ability to expand a dataset with spectra highly
similar to the process conditions, while maintaining the linear
correlation between signal intensity and compound concentra-
tion. If this method can be expanded with HMs of additional
compounds, it can generate high variability datasets without the
need of collecting process data.

3.4 | Approach 4: PLS Model Calibration With
Augmented Process Spectra

Calibrating quantification models with (repeated) process data
limits the design space, which may lead to incorporation of
cross-correlations and hinders model robustness (Klaverdijk
et al. 2025b). However, generating process spectra de novo as
discussed in Section 3.3 is limited by the availability of HMs for
all process compounds. In many applications, process knowledge
is minimal and single compound spectra can only be acquired for
a few compounds. This section investigates the augmentation of
a small dataset of process spectra with spectral features of the
compound of interest obtained from HMs. This approach utilizes
the standard spectral variation of a small process dataset (a single
batch) while attempting to improve the specificity of models to-
wards a compound of interest, without needing to define other
process compounds. A batch data set of 12 spectra was expanded
by synthetically modifying the concentration of either glucose or
ethanol, up to a total of 60 spectra (Supporting Information S1:
Figure S5.4.2). Augmenting spectra with the isolated biomass
features was not considered because these features exhibited low
specificity in Section 3.3. PLS models were calibrated with the
standard (12 spectra) and augmented (60 spectra) data set, and
applied to the reduced validation data set (3 batches, 1 fed-batch).
The prediction performance of these models on bioprocess data is
shown in Figure 5.

o

Ethanol

S € 20
n QO
§e ol
o O
g8’
10— : ; : :
800 1000 1200 1400 1600 1800
Raman shift [cm'1]
= Standard Augmented
£ 500 7] 500 7
© 400 400 S
< 300 300 &
B 200 200 -
- 2 Latent Variables| 2 Latent Variables|
% 100 RMSEP: 181 mM || 100 RMSEP: 11.7 mM
@ rRMSEP: 121% rRMSEP: 7.8%
o

0
O O O OO QO O O OO
S S S S
Measured Ethanol [mM]

@ Calibration data
¢ Batch, [ll Fed-batch data

FIGURE 5 | The regression coefficient vectors (RCV, top) of the partial least squares (PLS) model calibrated with augmented data (orange),

calibrated with batch process spectra (blue), and the measured versus predicted plots (bottom) of the PLS models. The performance of PLS models
quantifying glucose (A) and ethanol (B) while calibrated on a standard batch data set (12 process spectra) and augmented batch spectra (12 process
spectra and 48 augmented spectra). The calibration datasets were expanded by augmenting the spectral features of the quantification target by + 10

and + 20 mM.
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A total of two latent variables was selected for all four models
based on the RMSEC and RMSECYV values and the noise levels
present in the third latent variable (data not shown). Compared
to the calibration with a single batch, increasing the number of
calibration datapoints through augmentation reduced noise in
the RCVs. Calibrating PLS models with the standard batch data
set of only 12 spectra resulted in rRMSEPs of 31.2% and 12.1%
for glucose and ethanol, respectively. The prediction perform-
ance of the standard models on the three validation batch
bioprocesses was considered high (rRMSEP of 6.34% and 3.91%
for glucose and ethanol, respectively), but accuracy decreased
for the fed-batch process. Calibration with data from an ex-
ponential batch process led to strong cross-correlations between
spectral features in the model, and performance was disrupted
when the ratios between process compounds changed during
the fed-batch mode of operation (Klaverdijk et al. 2025b). The
performance for glucose and ethanol quantification improved
by augmenting the calibration data set and increasing varia-
bility in the data set, improving the rRMSEPs for glucose and
ethanol to 12.6% and 7.8%, respectively. Despite the overall
reduction in prediction error, the augmented glucose model still
performed poorly on the fed-batch data. Comparing the RCV
with those of the PLS models from calibrated on experimental
single compound (Section 3.1) and synthetic spectra
(Section 3.2) indicates that the model lost its ability to com-
pensate for the overlapping biomass signal. Including a third
latent variable also did not improve the model's ability to extract
spectral variation for biomass (data not shown). This means
that correcting for overlapping biomass features seems essential
for accurately predicting glucose concentration with high
specificity (also highlighted in Supporting Information S1:
Figure 5.1.4). The ethanol model seem less affected, as the
augmented ethanol model did not suffer a similar performance
decrease for the fed-batch data. This corresponds to earlier
observations, where it was assumed that the fewer and nar-
rower spectral features, as seen in the ethanol spectrum, are less
affected by the biomass spectral features.

Despite the improvements in model performance and increased
specificity of the RCVs, the loadings of latent variable 1 did not
show large differences from those of the standard models and
mainly captured batch evolution (Supporting Information S1:
Figure 5.4.3). This is expected, as the augmented datasets fol-
lowed an identical concentration trend to the standard batch
bioprocess and the spectra were only slightly adjusted in con-
centration (Supporting Information S1: Figure 5.4.1). Modifying
process spectra with concentrations at the extremes of the
process design space to break cross-correlations (e.g., adjusting
a true concentration of 20 mM to 140 mM) led to large predic-
tion errors and nonlinear effects. The errors in these cases could
be attributed to spectral normalization, where we did not
manage to equally normalize process spectra and synthetic
spectral features before combining the two components in
augmented spectra. As a result, biomass extinction effects in the
batch spectra propagate throughout the augmentation process,
underlining how augmentation approaches are highly sensitive
to small intensity changes not related to concentration changes,
as these disrupt signal linearity.

This section showcased how Pseudo-Voigt profiles isolated from
single compound spectra can be utilized to customize the

concentration of specific compounds in process spectra. This
allows for expansion of a data set's design space while mini-
mizing the impact on other spectral features in the data. The
augmentation approach can be used to artificially spike con-
centrations of compounds of interest without the need for ex-
tensive experimental setups where cell cultures cannot be
recovered after spiking. However, to optimize augmentation
methods, adaptive normalization techniques are necessary that
transfer across spectra without the need for internal standards.

3.5 | Discussion on Modeling Approaches

This section discusses the four modeling approaches demon-
strated in this study. A comparison of the quantitative per-
formance of each model, the calibration data used, and the
complexity of each modeling approach is shown in Table 1.
Time-evolution plots of the model predictions from all four
approaches are provided in Supporting Information SI:
Figures S5.5.1-5.5.4.

Approach 1 showed that PLS models calibrated using 16 ex-
perimentally obtained single compound spectra can achieve
decent prediction performance without the need of collecting
mixture (process) spectra. This approach resulted in compound
specific models, reflected by distinct peaks in the model RCVs.
Moreover, models obtained with Approach 1 outperformed
models calibrated on batch process data supplemented with
single compound spectra for biomass prediction (rRMSEP
of 27.0%), as demonstrated in previous work (Klaverdijk
et al. 2025b). The observed improvement for biomass quantifi-
cation resulted from a higher quality of single-compound bio-
mass measurements, which were consistent with spectral
features reported in literature (Klaverdijk 2025a; Wang
et al. 2023). Despite these improvements, the implicit PLS
models are not expected to perform well outside of their cali-
bration design space, as the performance relies on empirical
relationships learned from training data and the models do not
contain physical understanding of the monitored process. From
this perspective, the semi-explicit IHM used in Approach 2 has
some inherent advantages over implicit modeling techniques.
Once individual HMs of the main process compounds are
available, a mixture model can perform predictions based on
chemical principles. Moreover, the baseline itself is defined as a
process component (consisting of mainly water), thereby
reducing the dependency on spectral pre-processing. In addi-
tion, IHM also offers more flexibility in situations where a novel
or unknown compound is present. For example, spectral vari-
ation of glycerol and acetate was assumed negligible for this
application, but when such a compound becomes more abun-
dant in the process, its single compound spectra could be used
to generate a hard model which is subsequently added to the
mixture model. An alternative route would be fitting Pseudo-
Voigt features to the residuals between the old mixture model
and new process spectra to generate the model of an additional
component (Miiller et al. 2023). Approach 2 is therefore con-
sidered highly flexible, as a database of hard models can be
easily expanded with new compounds and can be calibrated
based on simple measurements. In addition, where PLS models
rely on learned weights at specific wavenumbers, the THM
approach can be tuned to allow peak shifts and shape changes
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Comparison of the four modeling approaches discussed in this study. The relative root mean square error of prediction (rRMSEP) on the validation dataset is provided for each model and

compound to directly compare quantitative performance between the methods.

TABLE 1

rRMSEP

Computational

Experimental

Calibration data set

Ethanol Biomass

Glucose

Model flexibility

time

time

Spectral source

Model type Total spectra

Approach

16.2%
10.0%
256.0%

11.6%
6.3%
14.5%
7.8%

4.8%
4.2%
3.2%
12.6%

Low Medium

Experimental Low

16
16
125
12+

PLS
IHM

High
Medium

Medium

Low

Experimental

High
High

Low

Synthetic

PLS
PLS

Low

High

Process + Augmented

48

during component fitting, leading to higher model robustness
for changing measurement conditions or compound interac-
tions. This tunability could also make quantification models
perform better under extrapolation conditions as long as the
number of process compounds does not change. However, these
advantages come with increased modeling complexity, as HMs
must be generated for all major process compounds, and the
final mixture model must fit each HM to the process spectra for
each prediction. This means that Approach 2 can become
challenging for complex process mixtures where process
knowledge and access to single compound spectra is limited. It
is therefore important to note that the strength of PLS models
lies in their simplicity and their ability to extract key spectral
features of the target compound from complex spectra, thereby
reducing the need for extensive process knowledge. This is
considered beneficial for cell cultures with more complex media
(e.g., for Chinese Hamster Ovary cells), where the number of
relevant process compounds increases rapidly, and gaining
complete spectral knowledge is challenging.

Calibrating PLS models with 125 synthetic mixture spectra
during Approach 3 did not result in model improvements when
compared to calibration with only the 16 experimental single
compound spectra. Biomass prediction accuracy was particu-
larly poor, likely due to the low specificity of the biomass HM.
In addition, PLS models can benefit from calibration with ex-
perimental mixture spectra as interactions between compounds
could influence the position and shape of their spectral features.
The synthetic spectra generated in this study did not include
these interactions, as each compound was modeled from single
compound spectra. However, when compared to automated
methods for spectra generation such as GANs or SMOTE, our
approach can maintain physically accurate linear relationships
between signal and concentration, provided that two key as-
sumptions are met. First, signal intensity must change linearly
with compound concentration withing the calibration range,
supported by our calibration lines based on five single com-
pound spectra. Second, scaled HMs for individual compounds
must combine additively to represent mixture spectra
(Equation 2). Under these conditions, our method allows syn-
thetic spectra generation for any concentration ratio within the
single compound spectra measured range.

Another aspect that was considered challenging was matching
the intensity between synthetic, augmented, and process spec-
tra. We exclusively utilized the sulfate peak at 981 cm™" as an
internal standard for normalization, which is also reported for
the application of Raman spectroscopy for other yeast biopro-
cesses (Picard et al. 2007; Hirsch et al. 2019). However, using
internal standards for normalization should be done with great
caution as they are dependent on a single variable, and there-
fore sensitive to changes in measurement conditions (Yang
et al. 2024). Furthermore, internal standards are not available in
every measurement matrix, and alternative normalization
methods should be explored when generating synthetic data. In
this study, a robust method for normalizing the intensity of
individual spectral components during spectra synthesis and
augmentation was not found. Moreover, disruptions in signal
linearity might occur at every spectral modification step,
including normalization, and errors in intensity can propagate
to the final spectrum.
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The concept of Approach 4, which allows the artificial adjust-
ment of spectral features related to target compounds, holds
potential for complex processes where both process data avail-
ability and knowledge are limited. Since single compound
spectra for common quantification targets (e.g., metabolites and
products) can be easily measured, their key spectral features
can be extracted to build HMs. The HMs can subsequently be
used to enhance the spectral variation of this target compound
within complex mixtures, even in situations where detailed
process knowledge is missing. However, maintaining linearity
between signal intensity and compound concentration is es-
sential for linear regression techniques like PLS, but this is often
disrupted by noise and scattering effects present in bioreactor
spectra (Klaverdijk 2025a).

Despite the challenges highlighted in this study, the ability to
generate synthetic and augmented spectra that accurately
simulate process conditions can be valuable for calibrating
quantification models for Raman spectroscopy. One of the
largest hurdles for calibrating robust quantification models is
the need for extensive data collection, especially capturing
process states outside typical operational patterns, which can
be crucial for improving model accuracy. The operation of
bioreactor processes at different compound concentrations
could provide valuable spectral information, but requires
substantial time and material if solely performed for improv-
ing Raman spectroscopy quantification models. In addition,
literature reports studies that investigated the effectiveness of
compound spiking to generate this valuable data, but this
typically leads to the loss of a cell culture (Santos et al. 2018).
The options to generate these valuable conditions synthetically
or to augment existing process spectra towards the edges of the
desired design space could provide efficient and low-effort
alternatives.

4 | Conclusion

Raman spectroscopy coupled with accurate quantification
models serves as a powerful tool for monitoring bioreactor
processes. Nevertheless, quantification model calibration is
often labor-intensive and requires extensive experimental ef-
forts. Furthermore, collecting large process datasets to calibrate
these models often results in process-specific models with a
narrow design space, highlighting the need for flexible methods
to collect data and expand small process datasets. This study
investigated four approaches by which a small dataset of 16
single compound measurements could be utilized to calibrate
quantification models for glucose, ethanol, and biomass during
S. cerevisiae bioprocesses.

The single compound dataset was used to calibrate quantifica-
tion models using PLS (Approach 1) and IHM (Approach 2).
Both modeling approaches showed similar performance when
comparing the rRMSEP values for glucose (4.8% and 4.2%),
ethanol (11.6% and 6.3%), and biomass (16.2% and 10.0%). The
PLS approach demonstrated how isolated biomass measure-
ments incorporate spectral features associated with the molec-
ular composition of yeast, while the IHM approach proved to be
a robust and flexible method that can be easily extended to
accommodate new process compounds or conditions.

The compound hard models were also applied to synthetically
generate Raman spectra to directly calibrate PLS models
(Approach 3) and to augment experimental process data to
increase model specificity (Approach 4). Direct calibration with
synthetic spectra proved effective for glucose and ethanol quan-
tification PLS models, with rRMSEP values of 3.2% and 14.5%,
respectively. Due to difficulties in isolating sharp spectral fea-
tures for biomass, calibration of PLS models with synthetic
spectra did not result in accurate biomass quantification. Spectral
augmentation of a single batch bioprocess data set led to
rRMSEPs of 12.6% and 7.8% for glucose and ethanol, respectively,
compared to 31.2% and 12.1% when calibrated solely on the
standard batch data. The synthetic generation and augmentation
of Raman spectra showed potential for the enhanced calibration
of PLS models, but robust normalization steps are required to
maintain signal integrity during these processes.

Overall, this study showcased multiple approaches by which
simple spectral measurements can be applied to calibrate quanti-
fication models for bioprocesses, without the need for (additional)
process data. This means that quantification models for yeast
bioprocesses can be developed even before running the actual
process, and models can be easily adapted to changes in process
conditions or when transferring between processes. Furthermore,
the possibility to augment existing spectra of complex processes
enables model calibration improvement without extensive spectral
knowledge of the system. The use of single compound, synthetic,
or augmented Raman spectra supports efficient quantification
model calibration, thereby simplifying the implementation of Ra-
man spectroscopy for bioreactor monitoring.
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