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Abstract. We develop a framework for quantitative convergence analysis of Picard iter-
ations of expansive set-valued fixed point mappings. There are two key components of
the analysis. The first is a natural generalization of single-valued averaged mappings
to expansive set-valued mappings that characterizes a type of strong calmness of the
fixed point mapping. The second component to this analysis is an extension of the
well-established notion of metric subregularity—or inverse calmness—of the mapping
at fixed points. Convergence of expansive fixed point iterations is proved using these
two properties, and quantitative estimates are a natural by-product of the framework.
To demonstrate the application of the theory, we prove, for the first time, a number of
results showing local linear convergence of nonconvex cyclic projections for inconsistent
(and consistent) feasibility problems, local linear convergence of the forward-backward
algorithm for structured optimization without convexity, strong or otherwise, and local
linear convergence of the Douglas-Rachford algorithm for structured nonconvex mini-
mization. This theory includes earlier approaches for known results, convex and non-
convex, as special cases.
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1. Introduction
We present a program of analysis that enables one to quantify the rate of convergence of sequences generated
by fixed point iterations of expansive set-valued mappings. The framework presented here subsumes earlier
approaches for analyzing fixed point iterations of relaxed nonexpansive mappings and opens up new results
for expansive mappings. Our approach has its roots in the pioneering work of Mann, Krasnoselski, Edelstein,
Gurin,1 Polyak, and Raik who wrote seminal papers in the analysis of (firmly) nonexpansive and averaged
mappings (Mann [54], Krasnoselski [41], Edelstein [31], Gubin et al. [32]) although the terminology “averaged”
wasn’t coined until sometime later in Baillon et al. [8]. Our strategy is also indebted to the developers of notions
of stability, in particular, metric regularity and its more recent refinements (Penot [67], Azé [7], Dontchev and
Rockafellar [29], Ioffe [36, 37]). We follow a pattern of proof used in Hesse and Luke [33] and Aspelmeier
et al. [3] for Picard iterations of set-valued mappings, though this approach was actually inspired by the analysis
of alternating projections in Gubin et al. [32].
The idea is to isolate two properties of the fixed point mapping. The first property is a generalization of

the averaging property, what we call almost averaging. When a self-mapping is averaged and fixed points exist,
then the Picard iteration converges to a fixed point (weakly in the infinite dimensional setting) without any
additional assumptions. (See Opial [65, theorem 3]. See also Schaefer [74, 3. Satz] for the statement under the
assumption that the mapping is weakly continuous.) To quantify convergence, a second property is needed.
In their analysis of Krasnoselski-Mann relaxed cyclic projections for convex feasibility, Gubin et al. [32] assume
that the set-intersection has interior (Gubin et al. [32, theorem 1]). Interiority is an assumption about stability
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of the fixed points of the mapping, and this generalizes considerably. Even if rates of convergence are not the
primary interest, if the averaging property is relaxed in any meaningful way, monotonicity of Picard iterations
with respect to the set of fixed points is lost. To recover convergence in this case, we appeal to stability of the set
of fixed points to overcome the lack of monotonicity of the fixed point mapping. The second property we require
of the mapping is a characterization of the needed stability at fixed points. Metric subregularity of the mapping
at fixed points is one well-established notion that fulfills this stability and provides quantitative estimates for the
rate of convergence of the iterates. This is closely related (actually synonymous) to the existence of error bounds.
The almost averaging and the stability properties are defined and quantified on local neighborhoods, but our
approach is not asymptotic. Indeed, when convexity or nonexpansivity is assumed, these local neighborhoods
extend to the whole space and the corresponding results are global and recover the classical results.
We take care to introduce the notions of almost averaging, stability, and metric subregularity, and to present

the most general abstract results in Section 2. Almost averaged mappings are developed first in Section 2.1, after
which abstract convergence results are presented in Section 2.2. In Section 2.3, the notion of metric regularity
and its variants is presented and applied to the abstract results of Section 2.2. The rest of the paper, Section 3, is
a tutorial on the application of these ideas to quantitative convergence analysis of algorithms for, respectively,
nonconvex and inconsistent feasibility (Section 3.1) and structured optimization (Section 3.2). We focus our
attention on just a few simple algorithms; namely, cyclic projections, projected gradients and Douglas-Rachford.

Among the new and recent concepts are: almost nonexpansive/averaged mappings (Section 2.1), which are a
generalization of averaged mappings (Baillon et al. [8]) and satisfy a type of strong calmness of set-valued map-
pings; a generalization of hypomonotonicity of set-valued self-mappings (Definition 2.3), which is equivalent to
almost firm-nonexpansiveness of their resolvents (Proposition 2.3) generalizing Minty’s classical identification
of monotone mappings with firmly-nonexpansive resolvents (Minty [55], Reich [71]); elementally subregular
sets (Definition 3.1 from Kruger et al. [44, definition 5]); subtransversality of collections of sets at points of non-
intersection (Definition 3.2); and gauge metric subregularity (Definition 2.5 from Ioffe [36, 37]). These objects are
applied to obtain a number of new results: local linear convergence of nonconvex cyclic projections for incon-
sistent feasibility problems (Theorem 3.2) with some surprising special cases like two nonintersecting circles
(Example 3.5) and practical (inconsistent) phase retrieval (Example 3.6); global R-linear convergence of cyclic
projections onto convex sets (Corollary 3.1); local linear convergence of forward-backward-type algorithms with-
out convexity or strong monotonicity (Theorem 3.3); local linear convergence of the Douglas-Rachford algorithm
for structured nonconvex optimization (Theorem 3.4) and a specialization to the relaxed averaged alternating
reflections (RAAR) algorithm (Luke [47, 48]) for inconsistent phase retrieval (Example 3.8).

The quantitative convergence results presented here focus on linear convergence, but this framework is appro-
priate for a wider range of behaviors, particularly, sublinear convergence. The emphasis on linear convergence
is, in part, due to its simplicity, but also because it is surprisingly prevalent in first-order algorithms for com-
mon problem structures (see the discussions of phase retrieval in Examples 3.6 and 3.8). To be sure, there are
constants that would, if known, determine the exact rate, and these are either hard or impossible to calculate.
But in many instances, the order of convergence—linear or sublinear—can be determined a priori. As such, a
posteriori error bounds can be estimated in some cases, with the usual epistemological caveats, from the observed
behavior of the algorithm. For problems where the solution to the underlying variational problem, as opposed
to its optimal value, is the only meaningful result of the numerical algorithm, such error bounds are essential.
One important example is image processing with statistical constraints studied in Aspelmeier et al. [3] and Luke
and Shefi [51]. Here, the images are physical measurements and solutions to the variational image processing
problems have a quantitative statistical interpretation in terms of the experimental data. In contrast, the more
common analysis determining that an algorithm for computing these solutions merely converges, or even that
the objective value converges at a given rate, leads unavoidably to vacuous assurances.

1.1. Basic Definitions and Notation
The setting throughout this work is a finite dimensional Euclidean space Ɛ. The norm ‖ · ‖ denotes the Euclidean
norm. The open unit ball and the unit sphere in a Euclidean space are denoted � and �, respectively. �δ(x)
stands for the open ball with radius δ > 0 and center x. We denote the extended reals by (−∞,+∞] :��∪{+∞}.
The domain of a function f : U→(−∞,+∞] is defined by dom f � {u ∈U | f (u) < +∞}. The subdifferential of f
at x̄ ∈ dom f , for our purposes, can be defined by

∂ f (x̄) :�
{

v | ∃ vk→ v and xk→
f

x̄ such that f (x) ≥ f (xk)+ 〈vk , x − xk〉 + o(‖x − xk ‖)
}
. (1)
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Here, the notation xk→
f

x̄ means that xk→ x̄ ∈ dom f and f (xk)→ f (x̄). When f is convex, (1) reduces to the

usual convex subdifferential given by

∂ f (x̄) :� {v ∈U | 〈v , x − x̄〉 ≤ f (x) − f (x̄), for all x ∈U}. (2)

When x̄ <dom f the subdifferential is defined to be empty. Elements of the subdifferential are called subgradients.
A set-valued mapping T from Ɛ to another Euclidean space � is denoted T: Ɛ⇒� and its inverse is given by

T−1(y) :� {x ∈ Ɛ | y ∈ T(x)}. (3)

The mapping T: Ɛ⇒ Ɛ is said to be monotone on Ω ⊂ Ɛ if

∀ x , y ∈Ω inf
x′ ∈ T(x)
y′ ∈ T(y)

〈x′− y′, x − y〉 ≥ 0. (4)

T is called strongly monotone on Ω if there exists a τ > 0 such that

∀ x , y ∈Ω inf
x′ ∈ T(x)
y′ ∈ T(y)

〈x′− y′, x − y〉 ≥ τ‖x − y‖2. (5)

A maximally monotone mapping is a monotone mapping whose graph cannot be augmented by any more points
without violating monotonicity. The subdifferential of a proper, l.s.c., convex function, for example, is a maxi-
mally monotone set-valued mapping (Rockafellar and Wets [72, theorem 12.17]). We denote the resolvent of T by
JT :� (Id+T)−1 where Id denotes the identity mapping. The corresponding reflector is defined by RT :� 2JT − Id.
A basic and fundamental fact is that the resolvent of a monotone mapping is firmly nonexpansive, and hence
single-valued (Minty [55], Bruck and Reich [22]). Of particular interest are polyhedral (or piecewise polyhedral
Rockafellar and Wets [72]) mappings; that is, mappings T: Ɛ⇒ � whose graph is the union of finitely many
sets that are polyhedral convex in Ɛ×� (Dontchev and Rockafellar [29]).

Notions of continuity of set-valued mappings have been thoroughly developed over the last 40 years. Read-
ers are referred to the monographs (Aubin and Frankowska [6], Rockafellar and Wets [72], Dontchev and
Rockafellar [29]) for basic results. A mapping T: Ɛ⇒ � is said to be Lipschitz continuous if it is closed-valued
and there exists a τ ≥ 0 such that, for all u , u′ ∈ Ɛ,

T(u′) ⊂ T(u)+ τ‖u′− u‖�. (6)

Lipschitz continuity is, however, too strong a notion for set-valued mappings. We will mostly only require
calmness, which is a pointwise version of Lipschitz continuity. A mapping T: Ɛ⇒ � is said to be calm at ū for
v̄ if (ū , v̄) ∈ gph T, and there is a constant κ together with neighborhoods U ×V of (ū , v̄) such that

T(u) ∩V ⊂ T(ū)+ κ‖u − ū‖ , ∀ u ∈U. (7)

When T is single-valued, calmness is just pointwise Lipschitz continuity:

‖T(u) −T(ū)‖ ≤ κ‖u − ū‖ , ∀ u ∈U. (8)

Closely related to calmness is metric subregularity, which can be understood as the property corresponding
to a calmness of the inverse mapping. As the name suggests, it is a weaker property than metric regularity,
which in the case of an n ×m matrix, for instance (m ≤ n), is equivalent to surjectivity. Our definition follows
the characterization of this property given in Ioffe [36, 37], and appropriates the terminology of Dontchev and
Rockafellar [29] with slight but significant variations. The graphical derivative of a mapping T: Ɛ⇒� at a point
(x , y) ∈ gph T is denoted DT(x | y): Ɛ⇒ � and defined as the mapping whose graph is the tangent cone to
gph T at (x , y) (see Aubin and Center [5] where it is called the contingent derivative). That is,

v ∈ DT(x | y)(u) ⇐⇒ (u , v) ∈ Tgph T(x , y), (9)

where TΩ is the tangent cone mapping associated with the set Ω defined by

TΩ(x̄) :�
{

w
���� (xk − x̄)

τ
→ w for some xk→

Ω
x̄ , τ↘ 0

}
. (10)

Here, the notation xk→
Ω

x̄ means that the sequence of points {xk} approaches x̄ from within Ω.
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The distance to a set Ω ⊂ Ɛ with respect to the bivariate function dist(·, ·) is defined by

dist(·,Ω) : Ɛ→�: x 7→ inf
y∈Ω

dist(x , y) (11)

and the set-valued mapping
PΩ: Ɛ⇒ Ɛ : x 7→ {y ∈Ω | dist(x ,Ω)� dist(x , y)} (12)

is the corresponding projector. An element y ∈ PΩ(x) is called a projection. Closely related to the projector is the
prox mapping (Moreau [57])

proxλ, f (x) :� arg min
y∈Ɛ

{
f (y)+ 1

2λ ‖y − x‖2
}
.

When f (x) � ιΩ, then proxλ, ιΩ � PΩ for all λ > 0. The value function corresponding to the prox mapping is
known as the Moreau envelope, which we denote by eλ, f (x) :� infy∈Ɛ{ f (y)+ (1/(2λ))‖y − x‖2}. When λ � 1 and
f � ιΩ, the Moreau envelope is just one-half the squared distance to the set Ω: e1, ιΩ(x)�

1
2 dist2(x ,Ω). The inverse

projector P−1
Ω

is defined by
P−1
Ω
(y) :� {x ∈ Ɛ | PΩ(x) 3 y}. (13)

Throughout this note, we will assume the distance corresponds to the Euclidean norm, though most of the state-
ments are not limited to this. When dist(x , y)� ‖x − y‖, then one has the following variational characterization
of the projector: z̄ ∈ P−1

Ω
x̄ if and only if

〈z̄ − x̄ , x − x̄〉 ≤ 1
2 ‖x − x̄‖2 ∀ x ∈Ω. (14)

Following Bauschke et al. [17], we use this object to define the various normal cone mappings, which, in turn,
lead to the subdifferential of the indicator function ιΩ.

The ε-normal cone to Ω at x̄ ∈Ω is defined

N̂ ε
Ω
(x̄) :�

{
v

���� lim sup
x→
Ω

x̄ , x,x̄

〈v , x − x̄〉
‖x − x̄‖ ≤ ε

}
. (15)

The (limiting) normal cone to Ω at x̄ ∈Ω, denoted NΩ(x̄), is defined as the limsup of the ε-normal cones. That is,
a vector v ∈ NΩ(x̄) if there are sequences xk→

Ω
x̄, vk→ v with vk ∈ N̂εk

Ω
(xk) and εk↘ 0. The proximal normal cone

to Ω at x̄ is the set
Nprox
Ω
(x̄) :� cone(P−1

Ω
x̄ − x̄). (16)

If x̄ <Ω, then all normal cones are defined to be empty.
The proximal normal cone need not be closed. The limiting normal cone is, of course, closed by definition. See

Mordukhovich [56, definition 1.1] or Rockafellar and Wets [72, definition 6.3] (where this is called the regular
normal cone) for an in-depth treatment as well as (Mordukhovich [56, p. 141]) for historical notes. When the
projection is with respect to the Euclidean norm, the limiting normal cone can be written as the limsup of
proximal normals:

NΩ(x̄)� lim
x→
Ω

x̄
Nprox
Ω
(x). (17)

2. General Theory: Picard Iterations
2.1. Almost Averaged Mappings
Our ultimate goal is a quantitative statement about convergence to fixed points for set-valued mappings.
Preparatory to this, we first must be clear what is meant by a fixed point of a set-valued mapping.

Definition 2.1 (Fixed Points of Set-Valued Mappings). The set of fixed points of a set-valued mapping T: Ɛ⇒ Ɛ is
defined by

FixT :� {x ∈ Ɛ | x ∈ T(x)}.

In the set-valued setting, it is important to keep in mind a few things that can happen that cannot happen
when the mapping is single-valued.
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Example 2.1 (Inhomogeneous Fixed Point Sets). Let T :� PAPB , where

A � {(x1 , x2) ∈ �2 | x2 ≥ −2x1 + 3} ∩ {(x1 , x2) ∈ �2 | x2 ≥ 1}, B ��2\�2
++.

Here, PB(1, 1)� {(0, 1), (1, 0)} and the point (1, 1) is a fixed point of T since (1, 1) ∈ PA{(0, 1), (1, 0)}. However, the
point PA(0, 1) is also in T(1, 1), and this is not a fixed point of T. �

To help rule out inhomogeneous fixed point sets like the one in the previous example, we introduce the fol-
lowing strong calmness of fixed point mappings that is an extension of conventional nonexpansiveness and firm
nonexpansiveness. What we call almost nonexpansive mappings below were called (S, ε)-nonexpansive mappings
in Hesse and Luke [33, definition 2.3], and almost averaged mappings are slight generalization of (S, ε)-firmly
nonexpansive mappings also defined there.

Definition 2.2 (Almost Nonexpansive/Averaged Mappings). Let D be a nonempty subset of Ɛ and let T be a (set-
valued) mapping from D to Ɛ:
(i) T is said to be pointwise almost nonexpansive on D at y ∈ D if there exists a constant ε ∈ [0, 1) such that

‖x+ − y+‖ ≤
√

1+ ε‖x − y‖ , ∀ y+ ∈ T y and ∀ x+ ∈ Tx whenever x ∈ D. (18)

If (18) holds with ε � 0, then T is called pointwise nonexpansive at y on D.
If T is pointwise (almost) nonexpansive at every point on a neighborhood of y (with the same violation

constant ε) on D, then T is said to be (almost) nonexpansive at y (with violation ε) on D.
If T is pointwise (almost) nonexpansive on D at every point y ∈D (with the same violation constant ε), then

T is said to be pointwise (almost) nonexpansive on D (with violation ε). If D is open and T is pointwise (almost)
nonexpansive on D, then it is (almost) nonexpansive on D.

(ii) T is called pointwise almost averaged on D at y if there is an averaging constant α ∈ (0, 1) and a violation
constant ε ∈ [0, 1) such that the mapping T̃ defined by

T � (1− α) Id+αT̃

is pointwise almost nonexpansive at y with violation ε/α on D.
Likewise, if T̃ is (pointwise) (almost) nonexpansive on D (at y) (with violation ε), then T is said to be

(pointwise) (almost) averaged on D (at y) (with averaging constant α and violation αε).
If the averaging constant α � 1/2, then T is said to be (pointwise) (almost) firmly nonexpansive on D (with

violation ε) (at y).

Note that the mapping T need not be a self-mapping from D to itself. In the special case where T is (firmly)
nonexpansive at all points y ∈ FixT, mappings satisfying (18) are also called quasi-(firmly)nonexpansive (Bauschke
and Combettes [10]).
The term “almost nonexpansive” has been used for different purposes by Nussbaum [64] and Rouhani [73].

Rouhani uses the term to indicate sequences in the Hilbert space setting that are asymptotically nonexpansive.
Nussbaum’s definition is the closest in spirit and definition to ours, except that he defines f to be locally almost
nonexpansive when ‖ f (y)− f (x)‖ ≤ ‖y−x‖+ε. In this context, see also Reich [70]. At the risk of some confusion,
we re-purpose the term here. Our definition of pointwise almost nonexpansiveness of T at x̄ is stronger than
calmness Rockafellar and Wets [72, chapter 8.F] with constant λ �

√
1+ ε since the inequality must hold for all

pairs x+ ∈ Tx and y+ ∈ T y, while for calmness, the inequality would hold only for points x+ ∈ Tx and their
projections onto T y. We have avoided the temptation to call this property “strong calmness” to make clearer
the connection to the classical notions of (firm) nonexpansiveness. A theory based only on calm mappings,
what one might call “weakly almost averaged/nonexpansive” operators is possible and would yield statements
about the existence of convergent selections from sequences of iterated set-valued mappings. In light of the other
requirement of the mapping T that we will explore in Section 2.3, namely, metric subregularity, this would
illuminate an aesthetically pleasing and fundamental symmetry between requirements on T and its inverse.
We leave this avenue of investigation open. Our development of the properties of almost averaged operators
parallels the treatment of averaged operators in Bauschke and Combettes [10].

Proposition 2.1 (Characterizations of Almost Averaged Operators). Let T: Ɛ⇒ Ɛ , U ⊂ Ɛ, and α ∈ (0, 1). The following
are equivalent;

(i) T is pointwise almost averaged at y on U with violation ε and averaging constant α.
(ii) (1− 1/α) Id+(1/α)T is pointwise almost nonexpansive at y on U ⊂ Ɛ with violation ε/α.
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(iii) For all x ∈U, x+ ∈ T(x), and y+ ∈ T(y), it holds that

‖x+ − y+‖2 ≤ (1+ ε)‖x − y‖2 − 1− α
α
‖(x − x+) − (y − y+)‖2. (19)

Consequently, if T is pointwise almost averaged at y on U with violation ε and averaging constant α, then T is pointwise
almost nonexpansive at y on U with violation at most ε.

Proof. This is a slight extension of Bauschke and Combettes [10, proposition 4.25]. �

Example 2.2 (Alternating Projections). Let T :� PAPB for the closed sets A and B defined below:
(i) If A and B are convex, then T is nonexpansive and averaged (i.e., pointwise everywhere, no violation).
(ii) Packman eating a piece of pizza:

A � {(x1 , x2) ∈ �2 | x2
1 + x2

2 ≤ 1,−1/2x1 ≤ x2 ≤ x1 , x1 ≥ 0} ⊂ �2 ,

B � {(x1 , x2) ∈ �2 | x2
1 + x2

2 ≤ 1, x1 ≤ |x2 |} ⊂ �2 , x̄ � (0, 0).

The mapping T is not almost nonexpansive on any neighborhood for any finite violation at y � (0, 0) ∈
FixT, but it is pointwise nonexpansive (no violation) at y � (0, 0) and nonexpansive at all y ∈ (A∩B)\{(0, 0)}
on small enough neighborhoods of these points.

(iii) T is pointwise averaged at (1, 1) when

A � {(x1 , x2) ∈ �2 | x2 ≤ 2x1 − 1} ∩ {(x1 , x2) ∈ �2 | x2 ≥ 1/2x1 + 1/2}, B ��2\�2
++.

This illustrates that whether or not A and B have points in common is not relevant to the property.
(iv) T is not pointwise almost averaged at (1, 1) for any ε > 0 when

A � {(x1 , x2) ∈ �2 | x2 ≥ −2x1 + 3} ∩ {(x1 , x2) ∈ �2 | x2 ≥ 1}, B ��2\�2
++.

In light of Example 2.1, this shows that the pointwise almost averaged property is incompatible with
inhomogeneous fixed points (see Proposition 2.2). �

Proposition 2.2 (Pointwise Single-Valuedness). If T: Ɛ⇒ Ɛ is pointwise almost nonexpansive on D ⊆ Ɛ at x̄ ∈ D with
violation ε ≥ 0, then T is single-valued at x̄. In particular, if x̄ ∈ FixT (that is, x̄ ∈ Tx̄), then Tx̄ � {x̄}.
Proof. By the definition of pointwise nonexpansive on D at x̄, it holds that

‖x+ − x̄+‖ ≤
√

1+ ε‖x − x̄‖

for all x ∈ D , x+ ∈ T(x) and x̄+ ∈ T(x̄). In particular, setting x � x̄ yields

‖x+ − x̄+‖ ≤
√

1+ ε‖ x̄ − x̄‖ � 0.

That is, x+ � x̄+ and hence we conclude that T is single-valued at x̄. �

Example 2.3 (Pointwise Almost Nonexpansive Mappings Not Single-Valued). Although a pointwise almost nonex-
pansive mapping is single-valued at the reference point, it need not be single-valued on neighborhoods of the
reference points. Consider, for example, the coordinate axes in �2,

A ��× {0} ∪ {0} ×�.

The metric projector PA is single-valued and even pointwise nonexpansive (no “almost”) at every point in A,
but multivalued on L :� {(x , y) ∈ �2\{0} | |x | � |y |}. �
Almost firmly nonexpansive mappings have particularly convenient characterizations. In our development

below and thereafter, we use the set S to denote the collection of points at which the property holds. This is
useful for distinguishing points where the regularity holds from other points of interest, like fixed points. In
Section 2.3, the set S is used to isolate a subset of fixed points. The idea here is that the properties needed to
quantify convergence need not hold on the space where a problem is formulated, but may only hold on a subset
of this space where the iterates of a particular algorithm may be naturally confined. This is used in Aspelmeier
et al. [3] to achieve linear convergence results for the alternating directions method of multipliers algorithm.
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Alternatively, S can also include points that are not fixed points of constituent operators in an algorithm, but
are closely related to fixed points. One example of this is local best approximation points; that is, points in one
set that are locally nearest to another. In Section 3.1, we will need to quantify the violation of the averaging
property for a projector onto a nonconvex set A at points in another set; say, B that are locally nearest points
to A. This will allow us to tackle inconsistent feasibility where the alternating projections iteration converges not
to the intersection, but to local best approximation points.
Proposition 2.3 (Almost Firmly Nonexpansive Mappings). Let S ⊂U ⊂ Ɛ be nonempty and T: U⇒ Ɛ . The following are
equivalent:
(i) T is pointwise almost firmly nonexpansive on U at all y ∈ S with violation ε.
(ii) The mapping T̃: U⇒ Ɛ given by

T̃x :� (2Tx − x), ∀ x ∈U (20)
is pointwise almost nonexpansive on U at all y ∈ S with violation 2ε; that is, T can be written as

Tx �
1
2 (x + T̃x), ∀ x ∈U. (21)

(iii) ‖x+ − y+‖2 ≤ (ε/2)‖x − y‖2 + 〈x+ − y+ , x − y〉 for all x+ ∈ Tx, and all y+ ∈ T y at each y ∈ S whenever x ∈U.
(iv) Let F: Ɛ⇒ Ɛ be a mapping whose resolvent is T, i.e., T � (Id+F)−1. At each x ∈ U for all u ∈ Tx, y ∈ S, and

v ∈ T y, the points (u , z) and (v ,w) are in gph F, where z � x − u and w � y − v, and satisfy

− ε2 ‖(u + z) − (v + w)‖2 ≤ 〈z −w , u − v〉. (22)

Proof. (i)⇔(ii): Follows from Proposition 2.1 when α � 1/2.
(ii)⇒(iii): Note first that, at each x ∈U and y ∈ S,

‖(2x+ − x) − (2y+ − y)‖2 � 4‖x+ − y+‖2 − 4〈x+ − y+ , x − y〉 + ‖x − y‖2 (23a)

for all x+ ∈ Tx and y+ ∈ T y. Repeating the definition of pointwise almost nonexpansiveness of 2T − Id at y ∈ S
with violation 2ε on U,

‖(2x+ − x) − (2y+ − y)‖2 ≤ (1+ 2ε)‖x − y‖2. (23b)
Together (23) yields

‖x+ − y+‖2 ≤ ε2 ‖x − y‖2 + 〈x+ − y+ , x − y〉,

as claimed.
(iii)⇒(ii): Use (23a) to replace 〈x+ − y+ , x − y〉 in (iii) and rearrange the resulting inequality to conclude that

2T − Id is pointwise almost nonexpansive at y ∈ S with violation 2ε on U.
(iv)⇔(iii): First, note that (u , z) ∈ gph F if and only if (u + z , u) ∈ gph(Id+F)−1. From this, it follows that, for

u ∈ Tx and v ∈ T y, the points (u , z) and (v ,w) with z � x− u and w � y− v, are in gph F. Therefore starting with
(iii), at each x ∈U and y ∈ S,

‖u − v‖2 ≤ ε2 ‖x − y‖2 + 〈u − v , x − y〉 (24)

�
ε
2 ‖(u + z) − (v + w)‖2 + 〈u − v , (u + z) − (v + w)〉 (25)

for all u ∈ Tx and v ∈ T y. Separating out ‖u − v‖2 from the inner product on the left-hand side of (25) yields
the result. �
Property (iv) of Proposition 2.3 characterizes a type of nonmonotonicity of the mapping F on D with respect

to S; for lack of a better terminology, we call this Type-I nonmonotonicity. It can be shown that, for small
enough parameter values, this is a generalization of another well-established property known as hypomonotonic-
ity (Poliquin et al. [69]). In Daniilidis and Georgiev [27], the notion of submonotonicity proposed by Spingarn [75]
in relation to approximate convexity Ngai et al. [62] was studied. Their relation to the definition below is the topic
of future research.
Definition 2.3 (Nonmonotone Mappings). (a) A mapping F: Ɛ⇒ Ɛ is pointwise Type-I nonmonotone at v̄ if there is a
constant τ together with a neighborhood U of v̄ such that

− τ‖(u + z) − (v̄ + w)‖2 ≤ 〈z −w , u − v̄〉 ∀ z ∈ Fu , ∀ u ∈U, ∀w ∈ Fv̄. (26)

The mapping F is said to be Type-I nonmonotone on U if (26) holds for all v̄ on U.



Luke, Thao, and Tam: Quantitative Convergence of Iterated Set-Valued Mappings
1150 Mathematics of Operations Research, 2018, vol. 43, no. 4, pp. 1143–1176, ©2018 The Author(s)

(b) The mapping F: Ɛ⇒ Ɛ is said to be pointwise hypomonotone at v̄ with constant τ on U if

− τ‖u − v̄‖2 ≤ 〈z −w , u − v̄〉, ∀ z ∈ Fu , ∀ u ∈U, ∀w ∈ Fv̄. (27)

If (27) holds for all v̄ ∈U then F is said to be hypomonotone with constant τ on U.

If T is, in fact, firmly nonexpansive (that is, S � D and τ � 0), then Proposition 2.3(iv) just establishes the well-
known equivalence between monotonicity of a mapping and firm nonexpansiveness of its resolvent (Minty [55]).
Moreover, if a single-valued mapping f : Ɛ→ Ɛ is calm at v̄ with calmness modulus L, then it is pointwise
hypomonotone at v̄ with violation at most L. Indeed,

〈u − v̄ , f (u) − f (v̄)〉 ≥ −‖u − v̄‖‖ f (u) − f (v̄)‖ ≥ −L‖u − v̄‖2. (28)

This also points to a relationship to cohypomonotonicity developed in Combettes and Pennanen [26]. More
recently, the notion of pointwise quadratically supportable functions was introduced (Luke and Shefi [51, def-
inition 2.1]); for smooth functions, this class—which is not limited to convex functions—was shown to include
functions whose gradients are pointwise strongly monotone (pointwise hypomonotone with constant τ < 0)
Luke and Shefi [51, proposition 2.2]. A deeper investigation of the relationships between these different notions
is postponed to future work.
The next result shows the inheritance of the averaging property under compositions and averages of averaged

mappings.

Proposition 2.4 (Compositions and Averages of Relatively Averaged Operators). Let T j : Ɛ⇒ Ɛ for j � 1, 2, . . . ,m be
pointwise almost averaged on U j at all y j ∈ S j ⊂ Ɛ with violation ε j and averaging constant α j ∈ (0, 1), where U j ⊃ S j for
j � 1, 2, . . . ,m.
(i) If U :� U1 � U2 � · · · � Um and S :� S1 � S2 � · · · � Sm , then the weighted mapping T :� ∑m

j�1 w jT j with weights
w j ∈ [0, 1],

∑m
j�1 w j � 1 is pointwise almost averaged at all y ∈ S with violation ε � ∑m

j�1 w jε j and averaging constant
α � max j�1,2,...,m{α j} on U.
(ii) If T jU j ⊆U j−1 and T jS j ⊆ S j−1 for j � 2, 3, . . . ,m, then the composite mapping T :� T1 ◦T2 ◦ · · · ◦Tm is pointwise

almost nonexpansive at all y ∈ Sm on Um with violation at most

ε �
m∏

j�1
(1+ ε j) − 1. (29)

(iii) If T jU j ⊆U j−1 and T jS j ⊆ S j−1 for j � 2, 3, . . . ,m, then the composite mapping T :� T1 ◦T2 ◦ · · · ◦Tm is pointwise
almost averaged at all y ∈ Sm on Um with violation at most ε given by (29) and averaging constant at least

α �
m

m − 1+ 1/(max j�1,2,...,m{α j})
. (30)

Proof. Statement (i) is a formal generalization of Bauschke and Combettes [10, proposition 4.30] and follows
directly from convexity of the squared norm and Proposition 2.1(iii).

Statement (ii) follows from applying the definition of almost nonexpansivity to each of the operators T j
inductively from j � 1 to j � m.
Statement (iii) is formal generalization of Bauschke and Combettes [10, proposition 4.32] and follows from

more or less the same pattern of proof. Since it requires a little more care, the proof is given here. Define
κ j :� α j/(1− α j) and set κ � max j{κ j}. Identify y j−1 with any y+

j ∈ T j y j ⊆ S j−1 for j � 2, 3, . . . ,m and choose any
ym ∈ Sm . Likewise, identify x j−1 with any x+

j ∈ T j x j ⊆ U j−1 for j � 2, 3, . . . ,m and choose any xm ∈ Um . Denote
u+ ∈ T1 ◦T2 ◦ · · · ◦Tm u for u :� xm and v+ ∈ T1 ◦T2 ◦ · · · ◦Tm v for v :� ym . By convexity of the squared norm and
Proposition 2.1(iii), one has

1
m
‖(u − u+) − (v − v+)‖2 ≤ ‖(x1 − u+) − (y1 − v+)‖2 + ‖(x2 − x1) − (y2 − y1)‖2 + · · ·+ ‖(xm − xm−1) − (ym − ym−1)‖2

≤ κ1((1+ ε1)‖x1 − y1‖2 − ‖u+ − v+‖2)+ κ2((1+ ε2)‖x2 − y2‖2 − ‖x1 − y1‖2)+ · · ·
+ κm((1+ εm)‖u − v‖2 − ‖xm−1 − ym−1‖2).

Replacing κ j by κ yields

1
m
‖(u − u+) − (v − v+)‖2 ≤ κ

(
(1+ εm)‖u − v‖2 − ‖u+ − v+‖2 +

m−1∑
i�1
εi ‖xi − yi ‖2

)
. (31)



Luke, Thao, and Tam: Quantitative Convergence of Iterated Set-Valued Mappings
Mathematics of Operations Research, 2018, vol. 43, no. 4, pp. 1143–1176, ©2018 The Author(s) 1151

From part (ii), one has

‖xi − yi ‖2 � ‖x+

i+1 − y+

i+1‖2 ≤
( m∏

j�i+1
(1+ ε j)

)
‖u − v‖2 , i � 1, 2, . . . ,m − 1

so that
m−1∑
i�1
εi ‖xi − yi ‖2 ≤

(m−1∑
i�1
εi

( m∏
j�i+1
(1+ ε j)

))
‖u − v‖2. (32)

Putting (31) and (32) together yields

1
m
‖(u − u+) − (v − v+)‖2 ≤ κ

((
1+ εm +

m−1∑
i�1
εi

( m∏
j�i+1
(1+ ε j)

))
‖u − v‖2 − ‖u+ − v+‖2

)
. (33)

The composition T is therefore almost averaged with violation

ε � εm +

m−1∑
i�1
εi

( m∏
j�i+1
(1+ ε j)

)
and averaging constant α � m/(m + 1/κ). Finally, an induction argument shows that

εm +

m−1∑
i�1
εi

( m∏
j�i+1
(1+ ε j)

)
�

m∏
j�1
(1+ ε j) − 1,

which is the claimed violation. �

Remark 2.1. We remark that Proposition 2.4(ii) holds in the case when T j ( j � 1, 2, . . . ,m) are merely pointwise
almost nonexpansive. The counterpart for T j ( j � 1, . . . ,m) pointwise almost nonexpansive to Proposition 2.4(i)
is given by allowing α � 0.

Corollary 2.1 (Krasnoselski-Mann Relaxations). Let λ ∈ [0, 1] and define Tλ :� (1 − λ) Id+λT for T pointwise almost
averaged at y with violation ε and averaging constant α on U. Then, Tλ is pointwise almost averaged at y with violation
λε and averaging constant α on U. In particular, when λ� 1/2, the mapping T1/2 is pointwise almost firmly nonexpansive
at y with violation ε/2 on U.

Proof. Noting that Id is averaged everywhere on Ɛ with zero violation and all averaging constants α ∈ (0, 1), the
statement is an immediate specialization of Proposition 2.4(i). �

A particularly attractive consequence of Corollary 2.1 is that the violation of almost averaged mappings can
be mitigated by taking smaller steps via Krasnoselski-Mann relaxation.

To conclude this section, we prove the following lemma, a special case of which will be required in Sec-
tion 3.1.3, which relates the fixed point set of the composition of pointwise almost averaged operators to the
corresponding difference vector.

Definition 2.4 (Difference Vectors of Composite Mappings). For a collection of operators T j : Ɛ⇒ Ɛ ( j � 1, 2, . . . ,m)
and T :� T1 ◦T2 ◦ · · · ◦Tm , the set of difference vectors of T at u is given by the mapping Z: Ɛ⇒ Ɛm defined by

Z(u) :� {ζ :� z −Πz | z ∈W0 ⊂ Ɛm , z1 � u}, (34)

where Π : z � (z1 , z2 , . . . , zm) 7→ (z2 , . . . , zm , z1) is the permutation mapping on the product space Ɛm for z j ∈ Ɛ
( j � 1, 2, . . . ,m) and

W0 :� {x � (x1 , . . . , xm) ∈ Ɛm | xm ∈ Tm x1 , x j ∈ T j(x j+1), j � 1, 2, . . . ,m − 1}.

Lemma 2.1 (Difference Vectors of Averaged Compositions). Given a collection of operators T j : Ɛ⇒ Ɛ ( j � 1, 2, . . . ,m),
set T :�T1◦T2◦· · ·◦Tm . Let S0 ⊂ FixT and U0 be a neighborhood of S0 and define U :� {z � (z1 , z2 , . . . , zm) ∈W0 | z1 ∈U0}.
Fix ū ∈ S0 and the difference vector ζ̄ ∈ Z(ū) with ζ̄ � z̄ −Πz̄ for the point z̄ � (z̄1 , z̄2 , . . . , z̄m) ∈ W0 having z̄1 � ū.
Let T j be pointwise almost averaged at z̄ j with violation ε j and averaging constant α j on U j :� p j(U), where p j : Ɛm→ Ɛ
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denotes the jth coordinate projection operator ( j � 1, 2, . . . ,m). Then, for u ∈ S0 and ζ ∈ Z(u) with ζ � z − Πz for
z � (z1 , z2 , . . . , zm) ∈W0 having z1 � u,

1− α
α
‖ ζ̄− ζ‖2 ≤

m∑
j�1
ε j ‖ z̄ j − z j ‖2 , where α � max

j�1,2,...,m
α j . (35)

If the mapping T j is, in fact, pointwise averaged at z̄ j on U j ( j � 1, 2, . . . ,m), then the set of difference vectors of T is a
singleton and independent of the initial point; that is, there exists ζ̄ ∈ Ɛm such that Z(u)� {ζ̄} for all u ∈ S0.

Proof. First, observe that, since ζ̄ ∈ Z(ū), there exists z̄ � (z̄1 , z̄2 , . . . , z̄m) ∈W0 with z̄1 � ū such that ζ̄ � z̄ −Πz̄,
hence U, and thus U j � p j(U) is nonempty since it at least contains z̄ (and z̄ j ∈U j for j � 1, 2, . . . ,m). Consider a
second point u ∈ S0 and let ζ ∈Z(u). Similarly, there exists z � (z1 , z2 , . . . , zm) ∈W0 such that z1 � u and ζ� z−Πz
with z ∈U. For each j � 1, 2, . . . ,m, we therefore have that

‖(z̄ j − z̄ j−1) − (z j − z j−1)‖ � ‖ ζ̄ j − ζ j ‖ , (36)

and since T j is pointwise almost averaged at z̄ j with constant α j and violation ε j on U j ,

‖ z̄ j − z j ‖2 +
1− α j

α j
‖ ζ̄ j − ζ j ‖2 ≤ (1+ ε j)‖ z̄ j−1 − z j−1‖2 , (37)

where z̄0 :� z̄m and z0 � zm . Altogether this yields

1− α
α
‖ ζ̄− ζ‖2 ≤

m∑
j�1

1− α j

α j
‖ ζ̄ j − ζ j ‖2 ≤

m∑
j�1
((1+ ε j)‖ z̄ j−1 − z j−1‖2 − ‖ z̄ j − z j ‖2)�

m∑
j�1
ε j ‖ z̄ j − z j ‖2 ,

which proves (35). If in addition, for all j � 1, 2, . . . ,m, the mappings T j are pointwise averaged, then ε1 � ε2 �

· · · � εm � 0, and the proof is complete. �

2.2. Convergence of Picard Iterations
The next theorem serves as the basic template for the quantitative convergence analysis of fixed point iterations
and generalizes (Hesse and Luke [33, lemma 3.1]). By the notation T: Λ⇒Λ , where Λ is a subset or an affine
subspace of Ɛ, we mean that T: Ɛ⇒ Ɛ , and T(x) ⊂Λ for all x ∈Λ. This simplification of notation should not lead
to any confusion if one keeps in mind that there may exist fixed points of T that are not in Λ. For the importance
of the use of Λ in isolating the desirable fixed point, we refer the reader to Aspelmeier et al. [3, example 1.8].

Theorem 2.1. Let T: Λ⇒Λ for Λ ⊂ Ɛ and let S ⊂ riΛ be closed and nonempty with T y ⊂ FixT ∩ S for all y ∈ S. Let O
be a neighborhood of S such that O ∩Λ ⊂ riΛ. Suppose

(a) T is pointwise almost averaged at all points y ∈ S with violation ε and averaging constant α ∈ (0, 1) on O ∩Λ and
(b) there exists a neighborhood V of FixT ∩ S and a κ > 0 such that for all y+ ∈ T y , y ∈ S, and x+ ∈ Tx, the estimate

dist(x , S) ≤ κ‖(x − x+) − (y − y+)‖ (38)

holds whenever x ∈ (O ∩Λ)\(V ∩Λ).
Then, for all x+ ∈ Tx,

dist(x+ ,FixT ∩ S) ≤
√

1+ ε− 1− α
κ2α

dist(x , S) (39)

whenever x ∈ (O ∩Λ)\(V ∩Λ).
In particular, if κ <

√
(1− α)/(εα), then for all x0 ∈ O ∩Λ, the iteration x j+1 ∈ Tx j satisfies

dist(x j+1 ,FixT ∩ S) ≤ c j dist(x0 , S) (40)

with c :� (1+ ε− (1− α)/(ακ2))1/2 < 1 for all j such that x i ∈ (O ∩Λ)\(V ∩Λ) for i � 1, 2, . . . , j.

Before presenting the proof, some remarks will help clarify the technicalities. The role of assumption (a) is
clear in the two-property scheme we have set up. The second assumption (b) is a characterization of the required
stability of the fixed points and their preimages. It is helpful to consider a specialization of this assumption,
which simplifies things considerably. First, by Proposition 2.2, since T is almost averaged at all points in S, then
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it is single-valued there and one can simply write T y for all y ∈ S instead of y+ ∈ T y. The real simplification
comes when one considers the case S � FixT. In this case, T y � y for all y ∈ S and condition (38) simplifies to

dist(x ,FixT) ≤ κdist(0, x −Tx) ⇐⇒ dist(x ,Φ−1(0)) ≤ κdist(0,Φ(x)) (41)

for all x ∈ (O ∩Λ)\(V ∩Λ), where Φ :� T − Id. The statement on annular regions (O ∩Λ)\(V ∩Λ) can be viewed
as an assumption about the existence of an error bound on that region. For earlier manifestations of this and
connections to previous work on error bounds, see Luo and Tseng [53] and Ngai and Théra [60, 61]. In the
present context, this condition will be identified in Section 2.3 with metric subregularity of Φ, though, of course,
error bounds and metric subregularity are related.
The assumptions lead to the conclusion that the iterates approach the set of fixed points at some rate that

can be bounded below by a linear characterization on the region (O ∩Λ)\(V ∩Λ). This will lead to convergence
in Corollary 2.2 where on all such annular regions, there is some lower linear convergence bound.
The possibility to have S ⊂ FixT and not S �FixT allows one to sidestep complications arising from the not-so-

exotic occurrence of fixed point mappings that are almost nonexpansive at some points in FixT and not at others
(see Example 2.2(ii)). It would be too restrictive in the statement of the theorem, however, to have S ⊆ FixT,
since this does not allow one to tackle inconsistent feasibility, studied in depth in Section 3.1. In particular, we
have in mind the situation where sets A and B do not intersect, but still the alternating projections mapping
TAP :� PAPB has nice properties at points in B that, while not fixed points, at least locally are nearest to A. The
full richness of the structure is used in Theorem 3.2 were we establish, for the first time, sufficient conditions
for local linear convergence of the method of cyclic projections for nonconvex inconsistent feasibility.

Proof of Theorem 2.1. If O∩V �O, there is nothing to prove. Assume then that there is some x ∈ (O∩Λ)\(V ∩Λ).
Choose any x+ ∈ Tx and define x̄+ ∈ Tx̄ for x̄ ∈ PSx. Inequality (38) implies

1− α
κ2α
‖x − x̄‖2 ≤ 1− α

α
‖(x − x+) − (x̄ − x̄+)‖2. (42)

Assumption (a) and Proposition 2.1(iii) together with (42), then yield

‖x+ − x̄+‖2 ≤
(
1+ ε− 1− α

ακ2

)
‖x − x̄‖2. (43)

Note, in particular, that 0 ≤ 1+ ε− (1− α)/(ακ2). Since x̄+ ∈ T(x̄) ⊂ FixT ∩ S, this proves the first statement.
If, in addition κ <

√
(1− α)/(εα), then c :� (1+ ε− (1− α)/(ακ2))1/2 < 1. Since clearly S ⊃ FixT ∩ S, (39) yields

dist(x1 , S) ≤ dist(x1 ,FixT ∩ S) ≤ c dist(x0 , S).

If x1 ∈ O\V , then the first part of this theorem yields

dist(x2 , S) ≤ dist(x2 ,FixT ∩ S) ≤ c dist(x1 , S) ≤ c2 dist(x0 , S).

Proceeding inductively then, the relation dist(x j ,FixT∩S) ≤ c j dist(x0 , S) holds until the first time x j−1 <O\V . �

The inequality (39) by itself says nothing about convergence of the iteration x j+1 � Tx j , but it does clearly
indicate what needs to hold for the iterates to move closer to a fixed point of T. This is stated explicitly in the
next corollary.

Corollary 2.2 (Convergence). Let T: Λ⇒Λ for Λ ⊂ Ɛ and let S ⊂ riΛ be closed and nonempty with Tx̄ ⊂ FixT ∩ S for
all x̄ ∈ S. Define Oδ :� S + δ� and V δ :� FixT ∩ S + δ�. Suppose that for γ ∈ (0, 1) fixed and for all δ̄ > 0 small enough,
there is a triplet (ε, δ, α) ∈ �+ × (0, γδ̄] × (0, 1) such that
(a) T is pointwise almost averaged at all y ∈ S with violation ε and averaging constant α on O δ̄ ∩Λ, and
(b) at each y+ ∈ T y for all y ∈ S there exists a κ ∈ [0,

√
(1− α)/(εα)) such that

dist(x , S) ≤ κ‖(x − x+) − (y − y+)‖

at each x+ ∈ Tx for all x ∈ (O δ̄ ∩Λ)\(V δ ∩Λ).
Then, for any x0 close enough to S, the iterates x i+1 ∈ Tx i satisfy dist(x i ,FixT ∩ S)→ 0 as i→∞.
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Proof. Let ∆ > 0 be such that for all δ̄ ∈ (0,∆], there is a triplet (ε, δ, α) ∈ �+ × (0, γδ̄] × (0, 1) for which (a) and
(b) hold. Choose any x0 ∈ O∆ ∩Λ and define δ̄0 :� dist(x0 , S) so that (a) and (b) are satisfied for the parameter
values (ε0 , δ0 , α0) ∈ �+ × (0, γδ̄0] × (0, 1). Define x(0, j) ∈ Tx(0, j−1) for j � 1, 2, . . . with x(0, 0) :� x0. At j � 1, there are
two possible cases: either x(0, 1) ∈V δ0

∩O δ̄0
or x(0, 1) <V δ0

∩O δ̄0
. In the former case,

dist(x(0, 1) ,FixT ∩ S) ≤ δ0 ≤ γδ̄0 < δ̄0 ,

therefore for J0 � 1 it holds that
dist(x(0, J0) ,FixT ∩ S) ≤ δ0 ≤ γδ̄0 < δ̄0.

In the latter case, since x(0, 0) ∈ O δ̄0
∩Λ, Theorem 2.1 shows that

dist(x(0, 1) ,FixT ∩ S) ≤ c0 dist(x(0, 0) , S)

for c0 :�
√

1+ ε0 − (1− α0)/(κ2
0α0)< 1. Moreover, clearly, dist(x(0, 1) , S) ≤ dist(x(0, 1) ,FixT∩S), therefore in either case

x(0, 1) ∈ O δ̄0
, and the alternative reduces to either x(0, 1) ∈ V δ0

or x(0, 1) < V δ0
. Proceeding by induction for some

j ≥ 1, it holds that x(0, ν) ∈ (O δ̄0
∩Λ)\(V δ0

∩Λ) for all ν � 0, 1, 2 . . . j − 1 and x(0, j) ∈ O δ̄0
∩Λ with either x(0, j) <V δ0

or x(0, j) ∈V δ0
. If x(0, j) <V δ0

, then since x(0, j) ∈ O δ̄0
∩Λ by Theorem 2.1,

dist(x(0, j+1) ,FixT ∩ S) ≤ c0 dist(x(0, j) , S).

Iterating this process, there must eventually be a J0 ∈ � such that

dist(x(0, J0) ,FixT ∩ S) ≤ δ0 ≤ γδ̄0 < δ̄0. (44)

To see this, suppose that there is no such J0. Then, x(0, j) ∈ (O δ̄0
∩Λ)\(V δ0

∩Λ) and

dist(x(0, j+1) ,FixT ∩ S) ≤ c0 dist(x(0, j) , S) ≤ c j
0 dist(x(0, 0) , S)

for all j ≥ 1. Since, by assumption c0 < 1, it holds that dist(x(0, j) ,FixT ∩ S)→ 0 at least linearly with constant c0,
in contradiction with the assumption that x(0, j) <V δ0

for all j.
Therefore, with J0 being the first iteration where (44) occurs, we update the region δ̄1 :� dist(x(0, J0) , S) ≤

dist(x(0, J0) ,FixT ∩ S) ≤ δ0 ≤ γδ̄0, and set x1 :� x(0, J0) and x(1,0) :� x1. By assumption, there is a triplet (ε1 , δ1 , α1) ∈
�+ × (0, γδ̄1] × (0, 1) for which (a) and (b) hold.
Proceeding inductively, this generates the sequence (x i)i∈� with

x i :� x(i−1, Ji−1) , δ̄i :� dist(x i , S) ≤ dist(x i ,FixT ∩ S) ≤ γi δ̄0.

Therefore dist(x i ,FixT ∩ S)→ 0 as i→∞. As this is just a reindexing of the Picard iteration, this completes the
proof. �
An interesting avenue of investigation would be to see to what extent the proof mining techniques of

Kohlenbach et al. [40] could be applied to quantify convergence in the present setting.

2.3. Metric Regularity
The key insight into condition (b) of Theorem 2.1 is the connection to metric regularity of set-valued mappings
(cf. Rockafellar and Wets [72], Dontchev and Rockafellar [29]). This approach to the study of algorithms has
been advanced by several authors (Pennanen [66], Iusem et al. [38], Artacho et al. [2], Artacho and Geoffroy [1],
Klatte and Kummer [39]). We modify the concept of metric regularity with functional modulus on a set suggested
in Ioffe [36, definition 2.1(b)] and Ioffe [37, definition 1(b)] so that the property is relativized to appropriate sets
for iterative methods. Recall that µ: [0,∞)→ [0,∞) is a gauge function if µ is continuous strictly increasing with
µ(0)� 0 and limt→∞ µ(t)�∞.
Definition 2.5 (Metric Regularity on a Set). Let Φ: Ɛ⇒� , U ⊂ Ɛ, V ⊂ � . The mapping Φ is called metrically regular
with gauge µ on U ×V relative to Λ ⊂ Ɛ if

dist(x ,Φ−1(y) ∩Λ) ≤ µ(dist(y ,Φ(x))) (45)

holds for all x ∈U ∩Λ, and y ∈ V with 0 < µ(dist(y ,Φ(x))). When the set V consists of a single point, V � { ȳ},
then Φ is said to be metrically subregular for ȳ on U with gauge µ relative to Λ ⊂ Ɛ.
When µ is a linear function (that is, µ(t)� κt, ∀ t ∈ [0,∞)), one says “with constant κ” instead of “with gauge

µ(t) � κt.” When Λ � Ɛ, the quantifier “relative to” is dropped. When µ is linear, the smallest constant κ for
which (45) holds is called the modulus of metric regularity.
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The conventional concept of metric regularity (Azé [7], Dontchev and Rockafellar [29], Rockafellar and
Wets [72]) (and metric regularity of order ω, respectively, Kruger and Thao [43]) at a point x̄ ∈ Ɛ for ȳ ∈ Φ(x̄)
corresponds to the setting in Definition 2.5 where Λ � Ɛ, U, and V are neighborhoods of x̄ and ȳ, respectively,
and the gauge function µ(t)� κt (µ(t)� κtω for metric regularity of order ω < 1) for all t ∈ [0,∞) with κ > 0.

Relaxing the requirements on the sets U and V from neighborhoods to the more ambiguous sets in Defini-
tion 2.5 allows the same definition and terminology to unambiguously cover well-known relaxations of metric
regularity such as metric subregularity (U is a neighborhood of x̄ and V � { ȳ}, Dontchev and Rockafellar [29])
and metric hemi/semiregularity (U � {x̄} and V is a neighborhood of ȳ Mordukhovich [56, definition 1.47]). For
our purposes, we will use the flexibility of choosing U and V in Definition 2.5 to exclude the reference point x̄
and to isolate the image point ȳ. This is reminiscent of the Kurdyka-Łojasiewicz (KL) property (Bolte et al. [20])
for functions, which require that the subdifferential possesses a sharpness property near (but not at) critical
points of the function. However, since the restriction of V to a point features prominently in our development,
we retain the terminology metric subregularity to ease the technicality of the presentation. The reader is cau-
tioned, however, that our use of metric subregularity does not precisely correspond to the usual definition (see
Dontchev and Rockafellar [29]) since we do not require the domain U to be a neighborhood.

Theorem 2.2 ((Sub)linear Convergence with Metric Regularity). Let T: Λ⇒ Λ for Λ ⊂ Ɛ, Φ :� T − Id and let S ⊂ riΛ
be closed and nonempty with TS ⊂ FixT ∩ S. Denote (S + δ�) ∩Λ by Sδ for a nonnegative real δ. Suppose that, for all
δ̄ > 0 small enough, there are γ ∈ (0, 1), a nonnegative sequence of scalars (εi)i∈� and a sequence of positive constants αi
bounded above by ᾱ < 1 such that, for each i ∈ �,
(a) T is pointwise almost averaged at all y ∈ S with averaging constant αi and violation εi on Sγi δ̄ and
(b) for

Ri :� Sγi δ̄\(FixT ∩ S + γi+1 δ̄�),
(i) dist(x , S) ≤ dist(x ,Φ−1( ȳ) ∩Λ) for all x ∈ Ri , and ȳ ∈Φ(PS(x))\Φ(x),
(ii) Φ is metrically regular with gauge µi relative to Λ on Ri × Φ(PS(Ri)), where µi satisfies

sup
x∈Ri , ȳ∈Φ(PS(Ri )), ȳ<Φ(x)

µi(dist( ȳ ,Φ(x)))
dist( ȳ ,Φ(x)) ≤ κi <

√
1− αi

εiαi
. (46)

Then, for any x0 ∈Λ close enough to S, the iterates x j+1 ∈ Tx j satisfy dist(x j ,FixT ∩ S)→ 0, and

dist(x j+1 ,FixT ∩ S) ≤ ci dist(x j , S), ∀ x j ∈ Ri , (47)

where ci :�
√

1+ εi − ((1− αi)/κ2
i αi) < 1.

In particular, if εi is bounded above by ε̄ and κi ≤ κ̄ <
√
(1− ᾱ)/(ᾱε̄) for all i large enough, then convergence is

eventually at least linear with rate at most c̄ :�
√

1+ ε̄− ((1− ᾱ)/(κ̄2ᾱ)) < 1.

The first inequality in (46) is a condition on the gauge function µi and would not be needed if the statement
were limited to linearly metrically regular mappings. Essentially, it says that the gauge function characterizing
metric regularity of Φ can be bounded above by a linear function. The second inequality states that the constant
of metric regularity κi is small enough relative to the violation of the averaging property εi to guarantee a
linear progression of the iterates through the region Ri .

Proof of Theorem 2.2. To begin, note that by assumption (b), for any x ∈Ri , x̄ ∈ PS(x), and ȳ ∈Φ(x̄) with ȳ <Φ(x),

dist(x , S) ≤ dist(x ,Φ−1( ȳ) ∩Λ) ≤ µi(dist( ȳ ,Φ(x))) ≤ κi dist( ȳ ,Φ(x)). (48)

Let ȳ � x̄+ − x̄ for x̄+ ∈ Tx̄. The above statement yields

dist(x , S) ≤ κi ‖(x+ − x) − (x̄+ − x̄)‖ , ∀ x ∈ Ri , ∀ x+ ∈ Tx , ∀ x̄ ∈ PS(x), ∀ x̄+ ∈ Tx̄. (49)

The convergence of the sequence dist(x j ,FixT ∩ S) → 0 then follows from Corollary 2.2 with the sequence of
triplets (εi , γ

i+1 δ̄, αi)i∈�. By Theorem 2.1, the rate of convergence on Ri is characterized by

dist(x+ ,FixT ∩ S) ≤
√

1+ εi −
1− αi

κ2
i αi

dist(x , S), ∀ x+ ∈ Tx , (50)

whence (47) holds with constant ci < 1 given by (46).
The final claim of the theorem follows immediately. �
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When S � FixT ∩Λ in Theorem 2.2, the condition (b) (i) can be dropped from the assumptions, as the next
corollary shows.

Corollary 2.3. Let T: Λ⇒Λ for Λ ⊂ Ɛ with FixT nonempty and closed, Φ :�T− Id. Denote (FixT + δ�)∩Λ by Sδ for a
nonnegative real δ. Suppose that, for all δ̄ > 0 small enough, there are γ ∈ (0, 1), a nonnegative sequence of scalars (εi)i∈�
and a sequence of positive constants αi bounded above by ᾱ < 1 such that, for each i ∈ �,

(a) T is pointwise almost averaged at all y ∈ FixT ∩Λ with averaging constant αi and violation εi on Sγi δ̄ and
(b) for

Ri :� Sγi δ̄\(FixT + γi+1 δ̄�),
Φ is metrically subregular for 0 on Ri (metrically regular on Ri × {0}) with gauge µi relative to Λ, where µi satisfies

sup
x∈Ri

µi(dist(0,Φ(x)))
dist(0,Φ(x)) ≤ κi <

√
1− αi

εiαi
. (51)

Then, for any x0 ∈Λ close enough to FixT ∩Λ, the iterates x j+1 ∈ Tx j satisfy dist(x j ,FixT ∩Λ)→ 0 and

dist(x j+1 ,FixT ∩Λ) ≤ ci dist(x j ,FixT ∩Λ), ∀ x j ∈ Ri , (52)

where ci :�
√

1+ εi − ((1− αi)/κ2
i αi) < 1.

In particular, if εi is bounded above by ε̄ and κi ≤ κ̄ <
√
(1− ᾱ)/(ᾱε̄) for all i large enough, then convergence is

eventually at least linear with rate at most c̄ :�
√

1+ ε̄− ((1− ᾱ)/(κ̄2ᾱ)) < 1.

Proof. To deduce Corollary 2.3 from Theorem 2.2, it suffices to check that when S � FixT ∩Λ, condition (46)
becomes (51), and condition (i) is always satisfied. This follows immediately from the fact that Φ(PFixT∩Λ(Ɛ))� {0}
and Φ−1(0)� FixT. �

The following example explains why gauge metric regularity on a set (Definition 2.5) fits well in the framework
of Theorem 2.2, whereas the conventional metric (sub)regularity does not.

Example 2.4 (A Line Tangent to a Circle). In �2, consider the two sets:

A :� {(u ,−1) ∈ �2 | u ∈ �}, B :� {(u , v) ∈ �2 | u2
+ v2

� 1},

and the point x̄ � (0,−1). It is well known that the alternating projection algorithm T :� PAPB does not converge
linearly to x̄ unless with the starting points on {(0, v) ∈�2: v ∈�} (in this special case, the method reaches x̄ in
one step). Note that T behaves the same if B is replaced by the closed unit ball (the case of two closed-convex
sets). In particular, T is averaged with constant α � 2/3 by Proposition 2.4(iii). Hence the absence of linear
convergence of T here can be explained as the lack of regularity of the fixed point set A∩ B � {x̄}. In fact, the
mapping Φ :� T − Id is not (linearly) metrically subregular at x̄ for 0 on any set �δ(x̄) for any δ > 0. However, T
does converge sublinearly to x̄. This can be characterized in the following two different ways:

• Using Corollary 2.3, we characterize sublinear convergence in this example as linear convergence on annular
sets. To proceed, we set

Ri :��2−i (x̄)\�2−(i+1)(x̄), (i � 0, 1, . . .).
This corresponds to setting δ̄ � 1 and γ � 1/2 in Corollary 2.3. The task that remains is to estimate the constant
of metric subregularity, κi , of Φ on each Ri . Indeed, we have

inf
x∈Ri∩A

‖x −Tx‖
‖x − x̄‖ �

‖x∗ −Tx∗‖
‖x∗ − x̄‖ � 1− 1√

2−2(i+1) + 1
:� κi > 0, (i � 0, 1, . . .),

where x∗ � (2−(i+1) ,−1).
Hence, on each ring Ri , T converges linearly to a point in �2−(i+1)(x̄) with rate ci not worse than

√
1− 1/(2κ2

i )< 1
by Corollary 2.3.

• The discussion above uses the linear gauge functions µi(t) :� t/κi on annular regions, and hence a piecewise
linear gauge function for the characterization of metric subregularity. Alternatively, we can construct a smooth
gauge function µ that works on neighborhoods of the fixed point. For analyzing convergence of PAPB , we must
have Φ metrically subregular at 0 with gauge µ on �2 relative to A. But we have

dist(0,Φ(x))� ‖x − x+‖ � f (‖x − x̄‖)� f (dist(x ,Φ−1(0))), ∀ x ∈ A, (53)
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where f : [0,∞)→ [0,∞) is given by f (t) :� t(1− 1/
√

t2 + 1). The function f is continuous strictly increasing and
satisfies f (0)� 0 and limt→∞ f (t)�∞. Hence f is a gauge function.
We can now characterize sublinear convergence of PAPB explicitly without resorting to annular sets. Note first

that, since f (t) < t for all t ∈ (0,∞), the function g: [0,∞)→ [0,∞) given by

g(t) :�
√

t2 − 1
2 ( f (t))2

is a gauge function and satisfies g(t) < t for all t ∈ (0,∞). Note next that, T :� PAPB is (for all points in A)
averaged with constant two-thirds together with (53), we get for any x ∈ A,

‖x+ − x̄‖2 ≤ ‖x − x̄‖2 − (1/2)‖x − x+‖2 � ‖x − x̄‖2 − (1/2)( f (‖x − x̄‖))2.

This implies

dist(x+ , S)� ‖x+ − x̄‖ ≤
√
‖x − x̄‖2 − (1/2)( f (‖x − x̄‖))2 � g(‖x − x̄‖)� g(dist(x , S)), ∀x ∈ A. �

Remark 2.2 (Global (Sub)linear Convergence of Pointwise Averaged Mappings). As Example 2.4 illustrates, Theo-
rem 2.2 is not an asymptotic result and does not gainsay the possibility that the required properties hold with
neighborhood U � Ɛ, which would then lead to a global quantification of convergence. First-order methods for
convex problems lead generically to globally averaged fixed point mappings T. Convergence for convex prob-
lems can be determined from the averaging property of T and existence of fixed points. Hence, to quantify
convergence, the only thing to be determined is the gauge of metric regularity at the fixed points of T. In this
context, see Borwein et al. [21]. Example 2.4 illustrates how this can be done. This instance will be revisited in
Example 3.5.

The following proposition, taken from Dontchev and Rockafellar [29], characterizes metric subregularity in
terms of the graphical derivative defined by (9).

Proposition 2.5 (Dontchev and Rockafellar [29], theorems 4B.1 and 4C.2). Let T: �n⇒�n have locally closed graph at
(x̄ , ȳ) ∈ gph T, Φ :� T − Id, and z̄ :� ȳ − x̄. Then, Φ is metrically subregular for 0 on U (metrically regular on U × {z̄})
with constant κ for U some neighborhood of x̄ satisfying U ∩Φ−1(z̄)� {x̄} if and only if the graphical derivative satisfies

DΦ(x̄ | z̄)−1(0)� {0}. (54)

If, in addition, T is single-valued and continuously differentiable on U, then the two conditions hold if and only if ∇Φ has
rank n at x̄ with ‖[[∇Φ(x)]ᵀ]−1‖ ≤ κ for all x on U.

While the characterization (54) appears daunting, the property comes almost free for polyhedral mappings.

Proposition 2.6 (Polyhedrality Implies Metric Subregularity). Let Λ ⊂ Ɛ be an affine subspace and T: Λ⇒ Λ . If T is
polyhedral and FixT∩Λ is an isolated point, {x̄}, then Φ :�T− Id is metrically subregular for 0 on U (metrically regular
on U × {0}) relative to Λ with some constant κ for some neighborhood U of x̄. In particular, U ∩Φ−1(0)� {x̄}.

Proof. If T is polyhedral, so is Φ−1 :� (T − Id)−1. The statement now follows from Dontchev and Rockafellar [29,
propositions 3I.1 and 3I.2] since Φ−1 is polyhedral and x̄ is an isolated point of Φ−1(0) ∩Λ. �

Proposition 2.7 (Local Linear Convergence: Polyhedral Fixed Point Iterations). Let Λ ⊂ Ɛ be an affine subspace and
T: Λ⇒Λ be pointwise almost averaged at {x̄} � FixT ∩Λ on Λ with violation constant ε and averaging constant α. If
T is polyhedral, then there is a neighborhood U of x̄ such that

‖x+ − x̄‖ ≤ c‖x − x̄‖ ∀ x ∈U ∩Λ, x+ ∈ Tx ,

where c �
√

1+ ε− (1− α)/(κ2α) and κ is the modulus of metric subregularity of Φ :� T − Id for 0 on U relative to Λ.
If, in addition κ <

√
(1− α)/(αε), then the fixed point iteration x j+1 ∈ Tx j converges linearly to x̄ with rate c < 1 for all

x0 ∈U ∩Λ.

Proof. The result follows immediately from Proposition 2.6 and Corollary 2.3. �
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3. Applications
The idea of the previous section is simple. Formulated as Picard iterations of a fixed point mapping T, to
establish the quantitative convergence of an algorithm, one must establish two properties of this mapping:
first, that T is almost averaged, and second, that T − Id is metrically subregular at fixed points relative to an
appropriate subset. This section serves as a tutorial for how to do this for fundamental first-order algorithms.
Each of the problems studied below represents a distinct region on the map of numerical analysis, each with its
own dialect. Part of our goal is to show that the phenomena that these different dialects describe sort into one of
the two more general properties of fixed point mappings established above. While the technicalities can become
quite dense, particularly for feasibility, the two principles above offer a reliable guide through the details.

3.1. Feasibility
The feasibility problem is to find x̄ ∈⋂m

j�1Ω j . If the intersection is empty, the problem is called inconsistent, but a
meaningful solution still can be found in the sense of best approximation in the case of just two sets, or in some
other appropriate sense when there are three or more sets. The most prevalent algorithms for solving these
problems are built on projectors onto the individual sets (indeed, we are aware of no other approach to the
problem). The regularity of the fixed point mapping T that encapsulates a particular algorithm (in particular,
pointwise almost averaging and coercivity at the fixed point set) stems from the regularity of the underlying
projectors and the way the projectors are put together to construct T. Our first task is to show in what way the
regularity of the underlying projectors is inherited from the regularity of the sets Ω j .

3.1.1. Elemental Set Regularity. The following definition of what we call elemental regularity was first presented
in Kruger et al. [44, definition 5]. This places under one schema the many different kinds of set regularity
appearing in Lewis et al. [46], Bauschke et al. [17, 16], Hesse and Luke [33], Bauschke et al. [18], Noll and
Rondepierre [63].

Definition 3.1 (Elemental Regularity of Sets). Let Ω ⊂ Ɛ be nonempty and let ( ȳ , v̄) ∈ gph(NΩ).
(i) Ω is elementally subregular of order σ relative to Λ at x̄ for ( ȳ , v̄) with constant ε if there exists a neighborhood

U of x̄ such that

〈v̄ − (x − x+), x+ − ȳ〉 ≤ ε‖ v̄ − (x − x+)‖1+σ‖x+ − ȳ‖ , ∀ x ∈Λ∩U, x+ ∈ PΩ(x). (55)

(ii) The set Ω is said to be uniformly elementally subregular of order σ relative to Λ at x̄ for ( ȳ , v̄) if for any
ε > 0 there is a neighborhood U (depending on ε) of x̄ such that (55) holds.
(iii) The set Ω is said to be elementally regular of order σ at x̄ for ( ȳ , v̄) with constant ε if it is elementally

subregular of order σ relative to Λ � Ω at x̄ for all ( ȳ , v) with constant ε, where v ∈ NΩ( ȳ) ∩ V for some
neighborhood V of v̄.
(iv) The set Ω is said to be uniformly elementally regular of order σ at x̄ for ( ȳ , v̄) if it is uniformly elementally

subregular of order σ relative to Λ�Ω at x̄ for all ( ȳ , v), where v ∈ NΩ( ȳ) ∩V for some neighborhood V of v̄.
If Λ� {x̄} in (i) or (ii), then the respective qualifier “relative to” is dropped. If σ� 0, then the respective qualifier
“of order” is dropped in the description of the properties. The modulus of elemental (sub)regularity is the infimum
over all ε for which (55) holds.

In all properties in Definition 3.1, x̄ need not be in Λ and ȳ need not be in either U or Λ. In case of order
σ � 0, the properties are trivial for any constant ε ≥ 1. When saying a set is not elementally (sub)regular but
without specifying a constant, it is meant for any constant ε < 1.

Example 3.1. (a) (cross) Recall the set in Example 2.3,

A ��× {0} ∪ {0} ×�.

This example is of particular interest for the study of sparsity constrained optimization. A is elementally regular
at any x̄ , 0; say, ‖ x̄‖ > δ > 0 for all (a , v) ∈ gph NA, where a ∈�δ(x̄) with constant ε � 0 and neighborhood �δ(x̄).
The set A is not elementally regular at x̄ � 0 for any (0, v) ∈ gph NA since NA(0)� A. However, A is elementally
subregular at x̄ � 0 for all (a , v) ∈ gph NA with constant ε � 0 and neighborhood Ɛ since all vectors a ∈ A are
orthogonal to NA(a).
(b) (circle) The humble circle is central to the phase retrieval problem,

A � {(x1 , x2) ∈ �2 | x2
1 + x2

2 � 1}.
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The set A is uniformly elementally regular at any x̄ ∈ A for all (x̄ , v) ∈ gph NA. Indeed, note first that for any
x̄ ∈A, NA(x̄) consists of the line passing through the origin and x̄. Now, for any ε ∈ (0, 1), we choose δ� ε. Then,
for any x ∈ A∩�δ(x̄), it holds cos ∠(−x̄ , x − x̄) ≤ δ ≤ ε. Hence, for all x ∈ A∩�δ(x̄) and v ∈ NA(x̄),

〈v , x − x̄〉 � cos ∠(v , x − x̄)‖v‖‖x − x̄‖ ≤ cos ∠(−x̄ , x − x̄)‖v‖‖x − x̄‖ ≤ ε‖v‖‖x − x̄‖.

(c) (Packman eating a piece of pizza) Consider again the sets

A � {(x1 , x2) ∈ �2 | x2
1 + x2

2 ≤ 1,−1/2x1 ≤ x2 ≤ x1 , x1 ≥ 0} ⊂ �2 ,

B � {(x1 , x2) ∈ �2 | x2
1 + x2

2 ≤ 1, x1 ≤ |x2 |} ⊂ �2 ,

at the point x̄ � (0, 0) from Example 2.2(ii). The set B is elementally subregular relative to A at x̄ � 0 for all
(b , v) ∈ gph (NB ∩A) with constant ε � 0 and neighborhood Ɛ since for all a ∈ A, aB ∈ PB(a), and v ∈ NB(b) ∩A,
there holds

〈v − (a − aB), aB − b〉 � 〈v , aB − b〉 − 〈a − aB , aB − b〉 � 0.

The set B, however, is not elementally regular at x̄ � 0 for any (0, v) ∈ gph NB because by choosing x � tv ∈ B
(where 0, v ∈ B ∩NB(0), t ↓ 0), we get 〈v , x〉 � ‖v‖‖x‖ > 0.

To see how the language of elemental regularity unifies the existing terminology, we list the following equiv-
alences first established in Kruger et al. [44, proposition 4].

Proposition 3.1 (Equivalences of Elemental (Sub)regularity). Let A, A′, and B be closed nonempty subsets of Ɛ.
(i) Let A∩ B ,� and suppose that there is a neighborhood W of x̄ ∈ A∩ B and a constant ε > 0 such that for each

(a , v) ∈V :�
{
(bA , u) ∈ gph Nprox

A

�� u � b − bA , for b ∈ B ∩W and bA ∈ PA(b) ∩W
}
, (56)

it holds that
x̄ ∈ int U(a , v), where U(a , v) :��(1+ε2)‖v‖(a + v). (57)

Then, A is σ-Hölder regular relative to B at x̄ in the sense of Noll and Rondepierre [63, definition 2] if and only if A is
elementally subregular of order σ relative to A∩P−1

B (a+ v) at x̄ for each (a , v) ∈V with constant ε�
√

c and the respective
neighborhood U(a , v).

(ii) Let B ⊂ A. The set A is (ε, δ)-subregular relative to B at x̄ ∈ A in the sense of Hesse and Luke [33, definition 2.9]
if and only if A is elementally subregular relative to B at x̄ for all (a , v) ∈ gph Nprox

A , where a ∈ �δ(x̄) with constant ε
and neighborhood �δ(x̄). Consequently, (ε, δ)-subregularity implies 0-Hölder regularity.

(iii) If the set A is (Ɛ, ε, δ)-regular at x̄ in the sense of Bauschke et al. [17, definition 8.1], then A is elementally regular
at x̄ for all (x̄ , v) with constant ε, where 0, v ∈ Nprox

A (x̄). Consequently, (Ɛ, ε, δ)-regularity implies (ε, δ)-subregularity.
(iv) The set A is Clarke regular at x̄ ∈ A (Rockafellar and Wets [72, definition 6.4]) if and only if A is uniformly

elementally regular at x̄ for all (x̄ , v) with v ∈ NA(x̄). Consequently, Clarke regularity implies (ε, δ)-regularity.
(v) The set A is super-regular at x̄ ∈ A Lewis et al. [46, definition 4.3] if and only if for any ε > 0, there is a δ > 0

such that A is elementally regular at x̄ for all (a , v) ∈ gph NA, where a ∈ �δ(x̄) with constant ε and neighborhood �δ(x̄).
Consequently, super-regularity implies Clarke regularity.
(vi) If A is prox-regular at x̄ Poliquin et al. [69, definition 1.1], then there exist positive constants ε̄ and δ̄ such that,

for any ε > 0 and δ :� εδ̄/ε̄ defined correspondingly, A is elementally regular at x̄ for all (a , v) ∈ gph NA, where a ∈�δ(x̄)
with constant ε and neighborhood �δ(x̄). Consequently, prox-regularity implies super-regularity.

(vii) If A is convex, then it is elementally regular at all x ∈ A for all (a , v) ∈ gph NA with constant ε � 0 and the
neighborhood Ɛ for x and v.

The following relations reveal a similarity to almost firm nonexpansiveness of the projector onto elementally
subregular sets on the one hand, and almost nonexpansiveness of the same projector on the other.

Proposition 3.2 (Characterizations of Elemental Subregularity). (i) A nonempty set Ω ⊂ Ɛ is elementally subregular at
x̄ relative to Λ for (y , v) ∈ gph(Nprox

Ω
), where y ∈ PΩ(y + v) if and only if there is a neighborhood U of x̄ together with a

constant ε ≥ 0 such that
‖x − y‖2 ≤ ε‖(y′− y) − (x′− x)‖‖x − y‖ + 〈x′− y′, x − y〉 (58)

holds with y′ � y + v whenever x′ ∈U ∩Λ and x ∈ PΩx′.
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(ii) Let the nonempty set Ω⊂ Ɛ be elementally subregular at x̄ relative to Λ for (y , v) ∈ gph(Nprox
Ω
), where y ∈ PΩ(y+v)

with the constant ε ≥ 0 for the neighborhood U of x̄. Then,

‖x − y‖ ≤ ε‖(y′− y) − (x′− x)‖ + ‖x′− y′‖ (59)

holds with y′ � y + v whenever x′ ∈U ∩Λ and x ∈ PΩx′.

Proof. (i) This is just a rearrangement of the inequality in (55). (ii) Follows by applying the Cauchy-Schwarz
inequality to the inner product on the right-hand side of (58). �

The next theorem is an update of Hesse and Luke [33, theorem 2.14] to the current terminology. It establishes
the connection between elemental subregularity of a set and almost nonexpansiveness/averaging of the projector
onto that set. Since the cyclic projections algorithm applied to inconsistent feasibility problems involves the
properties of the projectors at points that are outside the sets, we show how the properties depend on whether
the reference points are inside or outside of the sets. The theorem uses the symbol Λ to indicate subsets of
the sets and the symbol Λ′ to indicate points on some neighborhood whose projection lies in Λ. Later, the sets
Λ′ will be specialized in the context of cyclic projections to sets of points S j whose projections lie in Ω j . One
thing to note in the theorem below is that the almost nonexpansive/averaging property degrades rapidly as
the reference points move away from the sets. Our estimate is severe and could be sharpened somewhat, but it
serves our purposes.

Theorem 3.1 (Projectors and Reflectors onto Elementally Subregular Sets). Let Ω ⊂ Ɛ be nonempty closed, and let U be
a neighborhood of x̄ ∈Ω. Let Λ ⊂Ω∩U, and Λ′ :� P−1

Ω
(Λ)∩U. If Ω is elementally subregular at x̄ relative to Λ′ for each

(x , v) ∈V :� {(z ,w) ∈ gph Nprox
Ω
| z + w ∈U and , z ∈ PΩ(z + w)}

with constant ε on the neighborhood U, then the following hold:
(i) The projector PΩ is pointwise almost nonexpansive at each y ∈Λ on U with violation ε′ :� 2ε+ ε2. That is, at each

y ∈Λ,
‖x − y‖ ≤

√
1+ ε′‖x′− y‖ , ∀ x′ ∈U, x ∈ PΩx′.

(ii) Let ε ∈ [0, 1). The projector PΩ is pointwise almost nonexpansive at each y′ ∈ Λ′ with violation ε̃ on U for
ε̃ :� 4ε/(1− ε)2. That is, at each y′ ∈Λ′,

‖x − y‖ ≤ 1+ ε
1− ε ‖x

′− y′‖ , ∀ x′ ∈U, x ∈ PΩx′, y ∈ PΩy′.

(iii) The projector PΩ is pointwise almost firmly nonexpansive at each y ∈Λ with violation ε′2 :� 2ε + 2ε2 on U. That
is, at each y ∈Λ,

‖x − y‖2 + ‖x′− x‖2 ≤ (1+ ε′2)‖x′− y‖2 , ∀ x′ ∈U, x ∈ PΩx′.

(iv) Let ε ∈ [0, 1). The projector PΩ is pointwise almost firmly nonexpansive at each y′ ∈ Λ′ with violation ε̃2 :�
4ε(1+ ε)/(1− ε)2 on U. That is, at each y′ ∈Λ′,

‖x − y‖2 + ‖(x′− x) − (y′− y)‖2 ≤ (1+ ε̃2)‖x′− y′‖2 , ∀ x′ ∈U, x ∈ PΩx′, y ∈ PΩy′.

(v) The reflector RΩ is pointwise almost nonexpansive at each y ∈Λ (respectively, y′ ∈Λ′) with violation ε′3 :� 4ε+4ε2

(respectively, ε̃3 :� 8ε(1+ ε)/(1− ε)2) on U; that is, for all y ∈Λ (respectively, y′ ∈Λ′),

‖x − y‖ ≤
√

1+ ε′3‖x′− y‖ , ∀ x′ ∈U, x ∈ RΩx′,(
respectively, ‖x − y‖ ≤

√
1+ ε̃3‖x′− y′‖ ,∀ x′ ∈U, x ∈ RΩx′, y ∈ RΩy′

)
.

Proof. First, some general observations about the assumptions. The projector is nonempty since Ω is closed.
Note also that, since Λ ⊂Ω, PΩy � y for all y ∈ Λ. Since Λ ⊂ Λ′, Ω is elementally subregular at x̄ relative to Λ
for each (x , v) ∈ V with constant ε on the neighborhood U of x̄, though the constant ε may not be optimal for
Λ even if it is optimal for Λ′. Finally, for all x′ ∈U, it holds that (x , x′− x) ∈V for all x ∈ PΩ(x′). To see this, take
any x′ ∈U and any x ∈ PΩ(x′). Then, v � x′− x ∈ Nprox

Ω
(x) and, by definition (x , v) ∈V .
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(i) By the Cauchy-Schwarz inequality,

‖x − y‖2 � 〈x′− y , x − y〉 + 〈x − x′, x − y〉 ≤ ‖x′− y‖‖x − y‖ + 〈x′− x , y − x〉. (60)

Now, with v � x′ − x ∈ Nprox
Ω
(x) such that x′ � x + v ∈ U, one has (x , v) ∈ V and by the definition of elemental

subregularity of Ω at x̄ relative to Λ ⊂ Ω for each (x , v) ∈ V with constant ε on the neighborhood U of x̄, the
inequality 〈x′ − x , y − x〉 ≤ ε‖x′ − x‖‖y − x‖ holds for all y ∈Λ� U ∩Λ. But ‖x′ − x‖ ≤ ‖x′ − y‖ since x ∈ PΩ(x′),
and y ∈Ω, therefore, in fact, the inequality 〈x′− x , y − x〉 ≤ ε‖x′− y‖‖y − x‖ holds whenever y ∈Λ. Combining
this with (60) yields, for all (x , x′− x) ∈V , and y ∈Λ,

‖x − y‖ ≤ (1+ ε)‖x′− y‖ �
√

1+ (2ε+ ε2)‖x′− y‖. (61)

Equivalently, since for all x′ ∈ U, it holds that (x , x′ − x) ∈ V for all x ∈ PΩ(x′), (61) holds at each y ∈ Λ for all
x ∈ PΩ(x′) whenever x′ ∈U; that is, PΩ is almost nonexpansive at each y ∈Λ ⊂U with violation (2ε + ε2) on U,
as claimed. 4

(ii) Since any point (x , x′ − x) ∈ V satisfies x′ − x ∈ Nprox
Ω
(x), and x ∈ PΩ(x′), Proposition 3.2(ii) applies with Λ

replaced by Λ′; namely,
‖y − x‖ ≤ ε‖(y′− y) − (x′− x)‖ + ‖x′− y′‖

for all y′ ∈U∩Λ′ and for every y ∈ PΩ(y′). The triangle inequality applied to ‖(y′− y)− (x′− x)‖ then establishes
the result. 4
(iii) Expanding and rearranging the norm yields, for all y ∈U ∩Λ,

‖x − y‖2 + ‖x′− x‖2

� ‖x − y‖2 + ‖x′− y + y − x‖2 � ‖x − y‖2 + ‖x′− y‖2 + 2〈x′− y , y − x〉 + ‖x − y‖2

� 2‖x − y‖2 + ‖x′− y‖2 + 2〈x − y , y − x〉 + 2〈x′− x , y − x〉 ≤ ‖x′− y‖2 + 2ε‖x′− x‖‖x − y‖ (62)

for each (x , x′ − x) ∈ V , where the last inequality follows from the definition of elemental subregularity of Ω at
x̄ relative to Λ for (x , x′ − x) ∈ V . As in Part (i), since y ∈ Ω, and x ∈ PΩ(x′), it holds that ‖x′ − x‖ ≤ ‖x′ − y‖.
Combining (62) and part (i) yields, at each y ∈Λ,

‖x − y‖2 + ‖x′− x‖2 ≤ (1+ 2ε(1+ ε))‖x′− y‖2 (63)

for all (x , x − x′) ∈ V . Again, since for all x′ ∈U, it holds that (x , x′ − x) ∈ V for all x ∈ PΩ(x′), (63) holds at each
y ∈Λ for all x ∈ PΩ(x′) whenever x′ ∈U. By Proposition 2.1(iii) with α � 1/2, and y+ � PΩ(y)� y, it follows that
PΩ is almost firmly nonexpansive at each y ∈Λ ⊂U with violation (2ε+ 2ε2) on U, as claimed. 4
(iv) As in part (ii), Proposition 3.2 applies with Λ replaced by Λ′. Proceeding as in part (iii),

‖x − y‖2 + ‖(x′− x) − (y′− y)‖2 � 2‖x − y‖2 + ‖x′− y′‖2 + 2〈x′− y′, y − x〉
≤ ‖x′− y′‖2 + 2ε‖(x′− x) − (y′− y)‖‖x − y‖ , (64)

where by elemental subregularity of Ω at x̄ relative to Λ′ for (x , x′ − x) ∈ V and (58) of Proposition 3.2, the last
inequality holds for each (x , x′ − x) ∈ V for every y′ ∈ U ∩Λ′ for all y ∈ PΩ(y′). This together with the triangle
inequality yields

‖x − y‖2 + ‖(x′− x) − (y′− y)‖2 ≤ ‖x′− y′‖2 + 2ε‖x − y‖(‖x′− y′‖ + ‖x − y‖). (65)

Part (ii) and (65) then give

‖x − y‖2 + ‖(x′− x) − (y′− y)‖2 ≤
(
1+ 4ε 1+ ε

(1− ε)2

)
‖x′− y′‖2 (66)

for all (x , x′−x) ∈V and for all y ∈ PΩ(y′) at each y′ ∈U∩Λ′. Again, since for all x′ ∈U, it holds that (x , x′−x) ∈V
for all x ∈ PΩ(x′), (66) holds at each y′ ∈ Λ′ � U ∩Λ′ for all x ∈ PΩ(x′) whenever x′ ∈ U. By Proposition 2.1(iii)
with α � 1/2 and y+ replaced by y ∈ PΩ(y′), it follows that PΩ is almost firmly nonexpansive at each y′ ∈Λ′ ⊂U
with violation 4ε(1+ ε)/(1− ε)2 on U as claimed. 4

(v) By part (iii) (respectively, part (iv)), the projector is pointwise almost firmly nonexpansive at each y ∈ Λ
(respectively, y′ ∈Λ′) with violation (2ε + 2ε2) (respectively, 4ε(1+ ε)/(1− ε)2) on U, and therefore, by Proposi-
tion 2.3(iii), RΩ � 2PΩ − Id is pointwise almost nonexpansive at each y ∈ Λ (respectively, y′ ∈ Λ′) with violation
(4ε+ 4ε2) (respectively, 8ε(1+ ε)/(1− ε)2) on U. This completes the proof. �



Luke, Thao, and Tam: Quantitative Convergence of Iterated Set-Valued Mappings
1162 Mathematics of Operations Research, 2018, vol. 43, no. 4, pp. 1143–1176, ©2018 The Author(s)

3.1.2. Subtransversal Collections of Sets. Elemental regularity of sets has been shown to be the source of the
almost averaging property of the corresponding projectors. We show in this section that metric subregularity
of the composite/averaged fixed point mapping is a consequence of how the individual sets align with each
other. This impinges on a literature rich in terminology and competing notions of stability that have been
energetically promoted recently in the context of consistent feasibility (see Kruger et al. [44] and references
therein). Our placement of metric subregularity as the central organizing principle allows us to extend these
notions beyond consistent feasibility to inconsistent feasibility. Before we can translate the dialect of set feasibility
into the language of metric subregularity, we need to first extend one of the main concepts describing the
regularity of collections of sets to collections that don’t necessarily intersect. The idea behind the following
definition stems from the equivalence between metric subregularity of an appropriate set-valued mapping on
the product space and subtransversality of sets at common points (Kruger et al. [44, theorem 3]). The trick to
extending this to points that do not belong to all the sets is to define the correct set-valued mapping.

Definition 3.2 (Subtransversal Collections of Sets). Let {Ω1 ,Ω2 , . . . ,Ωm} be a collection of nonempty closed subsets
of Ɛ and define Ψ: Ɛm ⇒ Ɛm by Ψ(x) :� PΩ(Πx) −Πx, where Ω :�Ω1 ×Ω2 × · · · ×Ωm , the projection PΩ is with
respect to the Euclidean norm on Ɛm , and Π: x � (x1 , x2 , . . . , xm) 7→ (x2 , . . . , xm , x1) is the permutation mapping
on the product space Ɛm for x j ∈ Ɛ ( j � 1, 2, . . . ,m). Let x̄ � (x̄1 , x̄2 , . . . , x̄m) ∈ Ɛm , and ȳ ∈Ψ(x̄).
(i) The collection of sets is said to be subtransversal with gauge µ relative to Λ ⊂ Ɛm at x̄ for ȳ if Ψ is metrically

subregular at x̄ for ȳ on some neighborhood U of x̄ (metrically regular on U × { ȳ}) with gauge µ relative to Λ.
(ii) The collection of sets is said to be transversal with gauge µ relative to Λ ⊂ Ɛm at x̄ for ȳ if Ψ is metrically

regular with gauge µ relative to Λ on U ×V , for some neighborhoods U of x̄ and V of ȳ.
As in Definition 2.5, when µ(t) � κt, ∀ t ∈ [0,∞), one says “constant κ” instead of “gauge µ(t) � κt.” When

Λ� Ɛ, the quantifier “relative to” is dropped.

Consistent with the terminology of metric regularity and subregularity, the prefix “sub” is meant to indi-
cate the pointwise version of the more classical, though restrictive, idea of transversality. When the point x̄ �

(ū , · · · , ū) for ū ∈⋂m
j�1Ω j , the following characterization of substransversality holds.

Proposition 3.3 (Subtransversality at Common Points). Let Ɛm be endowed with the 2-norm; that is, ‖(x1 , x2 , . . . , xm)‖2
� (∑m

j�1 ‖x j ‖2Ɛ)1/2. A collection {Ω1 ,Ω2 , . . . ,Ωm} of nonempty closed subsets of Ɛ is subtransversal relative to Λ :� {x �

(u , u , . . . , u) ∈ Ɛm | u ∈ Ɛ} at x̄ � (ū , . . . , ū) with ū ∈⋂m
j�1Ω j for ȳ � 0 with gauge µ if there exists a neighborhood U′ of

ū together with a gauge µ′ satisfying
√

mµ′ ≤ µ such that

dist
(
u ,

m⋂
j�1
Ω j

)
≤ µ′

(
max

j�1,...,m
dist(u ,Ωi)

)
, ∀ u ∈U′. (67)

Conversely, if {Ω1 ,Ω2 , . . . ,Ωm} is subtransversal relative to Λ at x̄ for ȳ � 0 with gauge µ, then (67) is satisfied with any
gauge µ′ for which µ(

√
mt) ≤

√
mµ′(t) for all t ∈ [0,∞).

Proof. Let x � (u , u , . . . , u) ∈ Ɛm with u ∈ U′, where U′ denotes a neighborhood of ū. Note that Πx � x for all
x ∈Λ. Moreover, for Ψ(x) :� PΩ(Πx) −Πx with Ω :�Ω1 ×Ω2 × · · · ×Ωm , it holds that( m⋂

j�1
Ω j ,

m⋂
j�1
Ω j , . . . ,

m⋂
j�1
Ω j

)
∩Λ�Ψ−1(0) ∩Λ. (68)

To see this, note that any element z ∈Ψ−1(0) ∩Λ satisfies z ∈ Λ and 0 ∈ PΩ(Πz) −Πz, which means that zi � z j ,
and z j ∈Ω j for i , j � 1, 2, . . . ,m. In other words, zi ∈

⋂m
j�1Ω j , and zi � z j for i , j � 1, 2, . . . ,m, which is just (68).

Denote Ω :�Ω1 ×Ω2 × · · · ×Ωm . For the first implication, if (67) is satisfied, it holds that

dist
(
x ,

( m⋂
j�1
Ω j ,

m⋂
j�1
Ω j , . . . ,

m⋂
j�1
Ω j

)
∩Λ

)
�
√

m dist
(
u ,

m⋂
j�1
Ω j

)
≤
√

m µ′
(

max
j�1,...,m

{dist(u ,Ω j)}
)

≤
√

m µ′(dist(x ,Ω)) ≤ µ(dist(x ,Ω))� µ(dist(Πx ,PΩ(Πx)))� µ(dist(0,Ψ(x))) (69)

whenever x ∈U ∩Λ� {x � (u , u , . . . , u) | u ∈U′}. By (68), the inequality (69) is equivalent to

dist(x ,Ψ−1(0) ∩Λ) ≤ µ(dist(0,Ψ(x))), ∀ x ∈U ∩Λ, (70)

which is the definition of subtransverality of {Ω1 ,Ω2 , . . . ,Ωm} relative to Λ at x̄ for 0 with gauge µ.
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For the reverse implication, if (70) is satisfied, (using (68)), it holds that

dist
(
u ,

m⋂
j�1
Ω j

)
�

1√
m

dist
(
x ,

( m⋂
j�1
Ω j ,

m⋂
j�1
Ω j , . . . ,

m⋂
j�1
Ω j

)
∩Λ

)
�

1√
m

dist(x ,Ψ−1(0) ∩Λ) ≤ 1√
m
µ(dist(0,Ψ(x)))

�
1√
m
µ(dist(x ,Ω)) ≤ 1√

m
µ

(√
m max

j�1,...,m
{dist(u ,Ω j)}

)
≤ µ′

(
max

j�1,...,m
{dist(u ,Ω j)}

)
, ∀ u ∈U′.

This is (67). �

Note that if one endows Ɛm with the maximum norm, (‖(x1 , x2 , . . . , xm)‖Ɛm :� max1≤ j≤m ‖x j ‖Ɛ), it holds that

dist
(
x ,

( m⋂
j�1
Ω j ,

m⋂
j�1
Ω j , . . . ,

m⋂
j�1
Ω j

)
∩Λ

)
� dist

(
u ,

m⋂
j�1
Ω j

)
;

dist(x ,Ω)� max
j�1,...,m

dist(u ,Ω j) for all u and x as above.

Then, the two properties in Proposition 3.3 are equivalent for the same gauge µ′ � µ.
By Kruger et al. [44, theorem 1], Proposition 3.3 shows that Definition 3.2(i) coincides with subtransversal-

ity defined in Kruger et al. [44, definition 6] for points of intersection. This notion was developed to bring
many other definitions of regularities of collections of sets (Lewis and Malick [45], Lewis et al. [46], Bauschke
et al. [17, 16], Drusvyatskiy et al. [30], Kruger and Thao [43], Kruger [42]) under a common framework. The
definition given in Kruger et al. [44], however, does not immediately lead to a characterization of the relation
between sets at points that are not common to all sets. There is much to be done to align the many different
characterizations of (sub)transversality studied in Kruger et al. [44] with Definition 3.2 above, but this is not
our main interest here.
3.1.3. Cyclic Projections. Having established the basic geometric language of set feasibility and its connection
to the averaging and stability properties of fixed point mappings, we can now pursue our main goal for this sec-
tion: new convergence results for cyclic projections between sets with possibly empty intersection, Theorem 3.2,
and Corollary 3.1. The majority of the work, and the source of technical complications, lies in constructing an
appropriate fixed point mapping in the right space to be able to apply Theorem 2.2. As we have already said,
establishing the extent of almost averaging is a straightforward application of Theorem 3.1. Thanks to Proposi-
tion 2.4, this can be stated in terms of the more primitive property of elemental set regularity. The challenging
part is to show that subtransversality as introduced above leads to metric subregularity of an appropriate fixed
point surrogate for cyclic projections, Proposition 3.4. In the process, we show in Proposition 3.5 that elemental
regularity and subtransversality become entangled and it is not clear whether they can be completely separated
when it comes to necessary conditions for convergence of cyclic projections.
Given a collection of closed subsets of Ɛ, {Ω1 ,Ω2 , . . . ,Ωm} (m ≥ 2), and an initial point u0, the cyclic projections

algorithm generates the sequence (uk)k∈� by

uk+1 ∈ P0uk , P0 :� PΩ1
PΩ2
· · ·PΩm

PΩ1
. (71)

Since projectors are idempotent, the initial PΩ1
at the right end of the cycle has no real effect on the sequence,

though we retain it for technical reasons. We will assume throughout this section that FixP0 ,�.
Our analysis proceeds on an appropriate product space designed for the cycles associated with a given fixed

point of P0. As above, we will use Ω to denote the sets Ω j on Ɛm : Ω :�Ω1 ,× Ω2 × · · · ×Ωm . Let ū ∈ FixP0 and let
ζ̄ ∈Z(ū), where

Z(u) :� {ζ :� z −Πz | z ∈W0 ⊂ Ɛm , z1 � u} (72)

for
W0 :� {x ∈ Ɛm | xm ∈ PΩm

x1 , x j ∈ PΩ j
x j+1 , j � 1, 2, . . . ,m − 1}. (73)

Note that ∑m
j�1 ζ̄ j � 0. The vector ζ̄ is a difference vector, which gives information regarding the intrasteps of the

cyclic projections operator P0 at the fixed point ū. In the case of only two sets, a difference vector is frequently
called a gap vector (Bauschke and Borwein [9], Bauschke et al. [15], Luke [48], Bauschke and Moursi [11]). This
is unique in the convex case, but need not be in the nonconvex case (see Lemma 3.2 below). In the more general
setting we have here, this corresponds to nonuniqueness of cycles for cyclic projections. This greatly complicates
matters since the fixed points associated with P0 will not, in general, be associated with cycles that are the same
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length and orientation. Consequently, the usual trick of looking at the zeros of P0 − Id is rather uninformative,
and another mapping needs to be constructed, which distinguishes fixed points associated with different cycles.
The following development establishes some of the key properties of difference vectors and cycles, which then
motivates the mapping that we construct for this purpose.
To analyze the cyclic projections algorithm, we consider the sequence on the product space on Ɛm , (xk)k∈�

generated by xk+1 ∈ Tζ̄xk with

Tζ̄: Ɛm⇒ Ɛm : x 7→
{(

x+

1 , x
+

1 − ζ̄1 , . . . , x
+

1 −
m−1∑
j�1
ζ̄ j

) ���� x+

1 ∈ P0x1

}
(74)

for ζ̄ ∈Z(ū), where ū ∈ FixP0. To isolate cycles, we restrict our attention to relevant subsets of Ɛm . These are

W(ζ̄) :� {x ∈ Ɛm | x −Πx � ζ̄}, (75a)
L :� an affine subspace with Tζ̄: L⇒ L , and (75b)
Λ :� L∩W(ζ̄). (75c)

The set W(ζ̄) is an affine transformation of the diagonal of the product space and thus an affine subspace: for
x , y ∈W(ζ̄), z � λx + (1− λ)y satisfies z −Πz � ζ̄ for all λ ∈ �. This affine subspace is used to characterize the
local geometry of the sets in relation to each other at fixed points of the cyclic projections operator.
Points in FixP0 can correspond to cycles of different lengths, hence an element x ∈ FixTζ̄ need not be in W0

and vice versa, as the next example demonstrates.

Example 3.2 (FixTζ̄ and W0). Consider the sets Ω1 � {0, 1} and Ω2 � {0, 3/4}. The cyclic projections operator P0
has fixed points {0, 1} and two corresponding cycles, Z(0)� {(0, 0)}, and Z(1)� {(1/4,−1/4)}. Let ζ̄� (1/4,−1/4).
Then, (0,−1/4) ∈ FixTζ̄ but (0,−1/4) <W0. Conversely, the vector (0, 0) ∈W0, but (0, 0) < FixTζ̄. The point (1, 3/4),
however, belongs to W0 and FixTζ̄.

The example above shows that what distinguishes elements in FixTζ̄ from each other is whether or not they
also belong to W0. The next lemma establishes that, on appropriate subsets, a fixed point of Tζ̄ can be identified
meaningfully with a vector in the image of the mapping Ψ in Definition 3.2, which is used to characterize the
alignment of the sets Ω j to each other at points of interest (in particular, fixed points of the cyclic projections
operator).

Lemma 3.1. Let ū ∈ FixP0 and let ζ̄ ∈Z(ū). Define Ψ :� (PΩ − Id) ◦Π and Φζ̄ :� Tζ̄ − Id.
(i) Tζ̄ maps W(ζ̄) to itself. Moreover, x ∈ FixTζ̄ if and only if x ∈W(ζ̄) with x1 ∈ FixP0. Indeed,

FixTζ̄ �
{

x � (x1 , x2 , . . . , xm) ∈ Ɛm

���� x1 ∈ FixP0 , x j � x1 −
j−1∑
i�1
ζ̄i , j � 2, 3, . . . ,m

}
. (76)

(ii) A point z̄ ∈ FixTζ̄ ∩W0 if and only if ζ̄ ∈Ψ(z̄) if and only if ζ̄ ∈ (Φζ̄ ◦Π)(z̄).
(iii) Ψ−1(ζ̄) ∩W(ζ̄) ⊆ Φ−1

ζ̄
(0) ∩W(ζ̄).

(iv) If the distance is with respect to the Euclidean norm, then dist(0,Φζ̄(x))�
√

m dist(x1 ,P0x1).
Proof. (i) This is immediate from the definitions of W(ζ̄) and Tζ̄.
(ii) From the definition of W0, it follows directly that ζ̄ ∈Ψ(z̄) if and only if z̄ ∈ FixTζ̄ ∩W0. Moreover, ζ̄ ∈

Φζ̄(Πz̄) � Tζ̄Πz̄ −Πz̄ if and only if for each j � 1, 2, . . . ,m, it holds that z̄ j+1 + ζ̄ j ∈ (Tζ̄Πz̄) j � u −∑ j−1
i�1 ζ̄i for some

u ∈ P0 z̄2, and z̄m+1 :� z̄1. Equivalently, for some u ∈ P0 z̄2, it holds that z̄ j+1 +
∑ j

i�1 ζ̄i � u for all j � 1, 2, . . . ,m.
Since ∑m

i�1 ζ̄i � 0, then z̄1 � u, therefore z̄ j+1 � z̄1 −
∑ j

i�1 ζ̄i for all j � 1, 2, . . . ,m, and z̄1 ∈ P0 z̄2, which thanks
to the redundancy of the first projector in the definition of P0 (71) and the definition of W0, is equivalent to
z̄ ∈ FixTζ̄ ∩W0, as claimed.
To establish (iii), let z̄ ∈Ψ−1(ζ̄) ∩W(ζ̄). Then, ζ̄ ∈ ((PΩ − Id) ◦Π)(z̄), and since z̄ ∈W(ζ̄), also ζ̄ � z̄ −Πz̄. Hence

ζ̄ � z̄ −Πz̄ and z̄ ∈ PΩ(Πz̄). But this implies that ζ̄ � z̄ −Πz̄, and z̄1 ∈ P0 z̄1, hence Φζ̄(z̄)� 0, and z̄ ∈W(ζ̄). That is,
z̄ ∈Φ−1

ζ̄
(0) ∩W(ζ̄), which verifies (iii).

Relation (iv) is obvious from the definition of Φζ̄. �

Lemma 3.2 (Difference Vectors: Cyclic Projections). Let Ω j ⊆ Ɛ be nonempty and closed ( j � 1, 2, . . . ,m). Let S0 ⊂ FixP0
and U0 be a neighborhood of S0 and define U :� {z � (z1 , z2 , . . . , zm) ∈W0 | z1 ∈U0}. Fix ū ∈ S0 and the difference vector
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ζ̄ ∈ Z(ū) with ζ̄ � z̄ −Πz̄ for the point z̄ � (z̄1 , z̄2 , . . . , z̄m) ∈W0 having z̄1 � ū. If Ω j is elementally subregular at z̄ j

for (z̄ j , 0) ∈ gph Nprox
Ω j

with constant ε̄ j and neighborhood U j :� p j(U) of z̄ j (where p j is the jth coordinate projection
operator), then

‖ ζ̄− ζ‖2 ≤
m∑

j�1
ε j ‖ z̄ j − z j ‖2 (ε j :� 2ε̄ j + 2ε̄2

j ) (77)

for the difference vector ζ ∈Z(u) with u ∈ S0, and ζ � z −Πz, where z � (z1 , z2 , . . . , zm) ∈W0 with z1 � u. If the sets Ω j
( j � 1, 2, . . . ,m) are, in fact, convex, then the difference vector is unique and independent of the initial point ū; that is,
Z(u)� {ζ̄} for all u ∈ S0.

Proof. Note that U0 ⊂ Ω1 and U j ⊂ Ω j ( j � 1, 2, . . . ,m). By Theorem 3.1(iii), the projectors PΩ j
are pointwise

almost firmly nonexpansive at z̄ j on U j with violation ε j :� 2ε̄ j + 2ε̄2
j (and averaging constant α j � 1/2). If the

sets Ω j are convex, then the violation ε j �0 and the projectors are firmly nonexpansive (globally). The result then
follows by specializing Lemma 2.1 to pointwise almost firmly nonexpansive (respectively, firmly nonexpansive)
projectors. �

Proposition 3.4 (Metric Subregularity of Cyclic Projections). Let ū ∈FixP0 and ζ̄ ∈Z(ū) and let x̄ � (x̄1 , x̄2 , . . . , x̄m) ∈W0
satisfy ζ̄� x̄−Πx̄ with x̄1 � ū. For L, an affine subspace containing x̄, let Tζ̄: L⇒ L and define the mapping Φζ̄ :�Tζ̄− Id.
Suppose the following hold:
(a) the collection of sets {Ω1 ,Ω2 , . . . ,Ωm} is subtransversal at x̄ for ζ̄ relative to Λ :� L ∩W(ζ̄) with constant κ and

neighborhood U of x̄;
(b) there exists a positive constant σ such that

dist(ζ̄,Ψ(x)) ≤ σdist(0,Φζ̄(x)), ∀ x ∈Λ∩U with x1 ∈Ω1.

Then, Φ is metrically subregular for 0 on U (metrically regular on U × {0}) relative to Λ with constant κ̄ � κσ.

Proof. A straightforward application of the assumptions and Lemma 3.1(iii) yields

(∀ x ∈U ∩Λ with x1 ∈Ω1) dist(x ,Φ−1
ζ̄
(0) ∩Λ) ≤ dist(x ,Ψ−1(ζ̄) ∩Λ) ≤ κdist(ζ̄,Ψ(x)) ≤ κσdist(0,Φζ̄(x)).

In other words, Φζ̄ is metrically subregular for 0 on U relative to Λ with constant κ̄, as claimed. �

Example 3.3 (Two Intersecting Sets). To provide some insight into condition (b) of Proposition 3.4, it is instructive
to examine the case of two sets with nonempty intersection. Let x̄ � (ū , ū) with ū ∈ Ω1 ∩Ω2 and the differ-
ence vector ζ̄ � 0 ∈ Z(x̄). To simplify the presentation, let us consider L � Ɛ2 and U � U′ ×U′, where U′ is a
neighborhood of ū. Then, one has Λ � W(0) � {(u , u): u ∈ Ɛ}, and hence x ∈Λ∩U with x1 ∈Ω1 is equivalent to
x � (u , u) ∈U with u ∈Ω1 ∩U′. For such a point x � (u , u), one has

dist(0,Ψ(x))� dist(u ,Ω2), dist(0,Φ0(x))�
√

2 dist(u ,PΩ1
PΩ2
(u)),

where the last equality follows from the representation Φ0(x)� {(z − u , z − u) ∈ Ɛ2: z ∈ PΩ1
PΩ2
(u)}.

(b) of Proposition 3.4 becomes

dist(u ,Ω2) ≤ γdist(u ,PΩ1
PΩ2
(u)), ∀u ∈Ω1 ∩U′, (78)

where γ :�
√

2σ > 0. In Kruger et al. [44, Remark 12], the phenomenon of entanglement of elemental subregularity
and regularity of collections of sets is briefly discussed in the context of other notions of regularity in the
literature. Inequality (78) serves as a type of conduit for this entanglement of regularities as Proposition 3.5
demonstrates.

Proposition 3.5 (Elemental Subregularity and (78) Imply Subtransversality). Let ū ∈ Ω1 ∩Ω2, and U′ be the neighbor-
hood of ū as in Example 3.3. Suppose that condition (78) holds and that the set Ω1 is elementally subregular relative
to Ω2 at ū for all ( ȳ , 0) with ȳ ∈ Ω1 ∩U′ with constant ε < 1/(1 + γ2) and the neighborhood U′. Then, {Ω1 ,Ω2} is
subtransversal at ū.

Proof. Choose a number δ′> 0 such that �2δ′(ū) ⊂U′. Take any u ∈Ω1∩�δ′(ū), and u+ ∈PΩ1
PΩ2
(u). Let u′ ∈PΩ2

(u)
such that u+ ∈ PΩ1

(u′). Note that u′ ∈Ω2∩U′. Without loss of generality, we can assume u′ <Ω1. Then, ‖u−u′‖ ≥
‖u′− u+‖ > 0. The elemental regularity of Ω1 relative to Ω2 at ū for (u , 0) with constant ε and neighborhood U′
yields

〈u′− u+ , u − u+〉 ≤ ε‖u′− u+‖‖u − u+‖.
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This inequality and condition (78) (note that dist(u ,Ω2)� ‖u − u′‖ and dist(u ,PΩ1
PΩ2
(u)) ≤ ‖u − u+‖) yield

‖u − u′‖2 � ‖u − u+‖2 + ‖u+ − u′‖2 + 2〈u − u+ , u+ − u′〉 ≥ ‖u − u+‖2 + ‖u+ − u′‖2 − 2ε‖u′− u+‖‖u − u+‖
� (1− ε)(‖u − u+‖2 + ‖u+ − u′‖2)+ ε(‖u′− u+‖ − ‖u − u+‖)2 ≥ (1− ε)(‖u − u+‖2 + ‖u+ − u′‖2)
≥ (1− ε)(γ−2‖u − u′‖2 + ‖u+ − u′‖2).

It is clear that 1/(1− ε) ≥ 1/γ2, and hence

‖u′− u+‖ ≤ c‖u − u′‖ , (79)

where c :�
√

1/(1− ε) − 1/γ2 ∈ [0, 1) as ε < 1/(1+ γ2).
Choose a number δ > 0 such that ((1 + c)/(1 − c))δ ≤ δ′. Employing the basic argument originated in Lewis

et al. [46, theorem 5.2], one can derive that for any given point u ∈ �δ(ū) ∩Ω1, there exists a point ũ ∈Ω1 ∩Ω2
such that

‖u − ũ‖ ≤ 2
1− c

‖u − u′‖.

In other words,

1− c
2 dist(u ,Ω1 ∩Ω2) ≤

1− c
2 ‖u − ũ‖ ≤ ‖u − u′‖ � dist(u ,Ω2), ∀ u ∈ �δ(ū) ∩Ω1.

The subtransversality of {Ω1 ,Ω2} at ū now follows from Proposition 3.3 (or alternatively Kruger et al.
[44, theorem 1(iii)]). �

The main result of this section can now be presented. This statement uses the full technology of regularities
relativized to certain sets of points S j introduced in Definitions 3.1 and 2.2 and used in Proposition 2.4, as well
as the expanded notion of subtransversality of sets at points of nonintersection introduced in Definition 3.2 and
applied in Proposition 3.4.

Theorem 3.2 (Convergence of Cyclic Projections). Let S0 ⊂ FixP0 ,�, and Z :�⋃
u∈S0

Z(u). Define

S j :�
⋃
ζ∈Z

(
S0 −

j−1∑
i�1
ζi

)
( j � 1, 2 . . . ,m). (80)

Let U :� U1 ×U2 ,× · · · ×Um be a neighborhood of S :� S1 × S2 × · · · × Sm and suppose that

PΩ j

(
u −

j∑
i�1
ζi

)
⊆ S0 −

j−1∑
i�1
ζi , ∀ u ∈ S0 , ∀ ζ ∈ Z for each j � 1, 2 . . . ,m , (81a)

PΩ j
U j+1 ⊆U j , for each j � 1, 2 . . . ,m (Um+1 :� U1). (81b)

For ζ̄ ∈ Z fixed and x̄ ∈ S with ζ̄ �Πx̄ − x̄, generate the sequence (xk)k∈� by xk+1 ∈ Tζ̄xk for Tζ̄ defined by (74), seeded by
a point x0 ∈W(ζ̄) ∩U for W(ζ̄) defined by (75a) with x0

1 ∈Ω1 ∩U1.
Suppose that, for Λ :� L∩aff(⋃ζ∈Z W(ζ)) ⊃ S such that Tζ: Λ⇒Λ for all ζ ∈ Z and an affine subspace L ⊃ aff(xk)k∈�,

the following hold:
(a) the set Ω j is elementally subregular at all x̂ j ∈ S j relative to S j for each

(x j , v j) ∈Vj :� {(z ,w) ∈ gph Nprox
Ω j
| z + w ∈U j , and z ∈ PΩ j

(z + w)}

with constant ε j ∈ (0, 1) on the neighborhood U j for j � 1, 2, . . . ,m;
(b) for each x̂ � (x̂1 , x̂2 , . . . , x̂m) ∈ S, the collection of sets {Ω1 ,Ω2 , . . . ,Ωm} is subtransversal at x̂ for ζ̂ :� x̂ −Πx̂

relative to Λ with constant κ on the neighborhood U;
(c) for Φζ̂ :� Tζ̂ − Id and Ψ :� (PΩ − Id) ◦Π, there exists a positive constant σ such that for all ζ̂ ∈ Z,

dist(ζ̂,Ψ(x)) ≤ σdist(0,Φζ̂(x))

holds whenever x ∈Λ∩U with x1 ∈Ω1;
(d) dist(x , S) ≤ dist(x ,Φ−1

ζ̂
(0) ∩Λ) for all x ∈U ∩Λ, for all ζ̂ ∈ Z.
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Then, the sequence (xk)k∈� seeded by a point x0 ∈W(ζ̄) ∩U with x0
1 ∈Ω1 ∩U1 satisfies

dist(xk+1 ,FixTζ̄ ∩ S) ≤ c dist(xk , S)

whenever xk ∈U with

c :�
√

1+ ε̄− 1− α
ακ̄2 (82)

for

ε̄ :�
m∏

j�1
(1+ ε̃ j) − 1, ε̃ j :� 4ε j

1+ ε j

(1− ε j)2
, α :� m

m + 1 , (83)

and κ̄ � κσ. If, in addition,

κ̄ <

√
1− α
ε̄α

, (84)

then dist(xk ,FixTζ̄ ∩ S)→ 0, and hence dist(xk
1 ,FixP0 ∩ S1)→ 0, at least linearly with rate c < 1.

Proof. The neighborhood U can be replaced by an enlargement of S, hence the result follows from Theorem 2.2
once it can be shown that the assumptions are satisfied for the mapping Tζ̄ on the product space Ɛm restricted
to Λ. To see that Assumption (a) of Theorem 2.2 is satisfied, note first that, by condition (81a) and definition (80),
PΩ j

S j+1 ⊂ S j . This together with condition (81b) and Assumption (a) allow one to conclude from Theorem 3.1(iv)
that the projector PΩ j

is pointwise almost firmly nonexpansive at each y j ∈ S j with violation ε̃ j on U j given
by (83). Then, by Proposition 2.4(iii), the cyclic projections mapping P0 is pointwise almost averaged at each
y1 ∈ S1 with violation ε̄ and averaging constant α given by (83) on U1. Since Tζ̄ is just P0 shifted by ζ̄ on the
product space, it follows that Tζ̄ is pointwise almost averaged at each y ∈ S :� S1 × S2 × · · · × Sm with the same
violation ε̄ and averaging constant α on U.

Assumption (b) of Theorem 2.2 for Φζ̄ follows from Assumptions (b)–(d) and Proposition 3.4. This completes
the proof. �

Corollary 3.1 (Global R-Linear Convergence of Convex Cyclic Projections). Let the sets Ω j ( j � 1, 2, . . . ,m) be
nonempty, closed, and convex, let S0 � FixP0 , � and S � S1 × S2 × · · · × Sm for S j defined by (80). Let Λ :� W(ζ̄) for
ζ̄ ∈Z(u) and any u ∈ S0. Suppose, in addition, that
(b′) for each x̂ � (x̂1 , x̂2 , . . . , x̂m) ∈ S, the collection of sets {Ω1 ,Ω2 , . . . ,Ωm} is subtransversal at x̂ for ζ̄ � x̂ −Πx̂

relative to Λ with neighborhood U ⊃ S;
(c′) there exists a positive constant σ such that

dist(ζ̄,Ψ(x)) ≤ σdist(0,Φζ̄(x))

holds whenever x ∈Λ∩U with x1 ∈Ω1.
Then, the sequence (xk)k∈� generated by xk+1 ∈ Tζ̄xk seeded by any point x0 ∈W(ζ̄) with x0

1 ∈Ω1 satisfies

dist(xk+1 ,FixTζ̄ ∩ S) ≤ c dist(xk , S)

for all k large enough where

c :�
√

1− 1− α
ακ̄2 < 1 (85)

with κ̄ � κσ for κ a constant of metric subregularity of Ψ for ζ̄ on U relative to Λ and α given by (83). In other words,
dist(xk ,FixTζ̄ ∩ S)→ 0, and hence dist(xk

1 ,FixP0 ∩ S0)→ 0, at least R-linearly with rate c < 1.

Proof. By Lemma 3.2, Z � Z(u) � {ζ̄} for any u ∈ S0. Moreover, since Ω j is convex, the projector is single-
valued and firmly nonexpansive, and further the conditions (81) are satisfied with U j � Ɛ ( j � 1, 2, . . . ,m) since
S0 � S1 and

PΩ j

(
S1 −

j∑
i�1
ζ̄ j

)
� PΩ j

(S j+1)� S j � S1 −
j−1∑
i�1
ζ̄ j , for each j � 1, 2 . . . ,m. (86)

Also, by convexity, Ω j ( j � 1, 2, . . . ,m) is elementally regular with constant ε j � 0 globally (U j � Ɛ), therefore
Assumption (a) of Theorem 3.2 is satisfied. Moreover, Φ−1

ζ̄
(0) � S0 therefore condition (d) holds trivially. The

result then follows immediately from Theorem 3.2. �
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When the sets Ω j are affine, then it is easy to see that the sets are subtransversal to each other at collections of
nearest points corresponding to the gap between the sets. If the cyclic projections algorithm does not converge
in one step (which it will in the case of either parallel or orthogonally arranged sets), the above corollary
shows that cyclic projections converge linearly with rate

√
1− κ, where κ is the constant of metric subregularity,

reflecting the angle between the affine subspaces. This much for the affine case has already been shown in
Bauschke et al. [12, theorem 5.7.8].

Remark 3.1 (Global Convergence for Nonconvex Alternating Projections). Convexity is not necessary for global lin-
ear convergence of alternating projections. This has been demonstrated using earlier versions of the theory
presented here for sparse affine feasibility in Hesse et al. [34, corollary III.13 and theorem III.15]. A sufficient
property for global results in sparse affine feasibility is a common restricted isometry property Hesse et al. [34,
equation (32)] familiar to experts in signal processing with sparsity constraints. The restricted isometry property
was shown in Hesse et al. [34, proposition III.14] to imply transversality of the affine subspace with all subspaces
of a certain dimension.

Example 3.4 (An Equilateral Triangle—Three Affine Subspaces with a Hole). Consider the problem specified by the
following three sets in �2:

Ω1 ��(1, 0)� {x ∈ �2 | 〈(0, 1), x〉 � 0},
Ω2 � (0,−1)+�(−

√
3, 1)� {x ∈ �2 | 〈(−

√
3, 1), x〉 �

√
3},

Ω3 � (0, 1)+�(
√

3, 1)� {x ∈ �2 | 〈(
√

3, 1), x〉 � 1}.

The following statements regarding the assumptions of Corollary 3.1 are easily verified:
(i) The set S0 � FixP0 � {(−1/3, 0)}.
(ii) There is a unique fixed point x̄ � (x̄1 , x̄2 , x̄3)� ((−1/3, 0), (−1/3, 2/

√
3), (2/3, 1/

√
3)).

(iii) The set of difference vectors is a singleton:

Z � {ζ̄} � {(ζ̄1 , ζ̄2 , ζ̄3)} � {((0,−2/
√

3), (−1, 1/
√

3), (1, 1/
√

3))}.

(iv) The sets S1 , S2, and S3 are given by

S1 � S0 − ζ̄1 � {(−1/3, 2/
√

3)}, S2 � S0 − ζ̄1 − ζ̄2 � {(2/3, 1/
√

3)}, S3 � S0 � {(−1/3, 0)}.

(v) Condition (81a) is satisfied and condition (81b) is satisfied with U j ��2 ( j � 1, 2, 3).
(vi) For j ∈ {1, 2, 3}, Ω j is convex and hence elementally regular at x̄ j with constant ε j � 0 Kruger et al. [44,

proposition 4].
(vii) The mapping Ψ is metrically subregular for ζ̄ on (�2)3 with constant κ �

√
2 relative to W(ζ̄):

dist(x ,Ψ−1(ζ̄) ∩W(ζ̄)) ≤
√

2 dist(ζ̄,Ψ(x)), ∀x ∈ (�2)3.

(viii) For all x ∈W(ζ̄), the inequality dist(ζ̄,Ψ(x)) ≤ σdist(0,Φζ̄(x)) holds with σ � 4
√

2/9.
The assumptions of Corollary 3.1 are satisfied. Furthermore, Proposition 3.4 shows that the mapping Φζ̄ is
metrically subregular for 0 on (�2)3 relative to W(ζ̄) with constant κ̄ � κσ �

√
2 × 4

√
2/9 � 8/9. Altogether,

Corollary 3.1 yields that, from any starting point, the cyclic projections method converges linearly to ū with
rate at most c �

√
37/8.

The next example is new and rather unexpected.

Example 3.5 (Two Nonintersecting Circles). Fix r > 0 and consider the problem specified by the following two
sets in �2

Ω1 � {x ∈ �2 | ‖x‖ � 1}, Ω2 � {x ∈ �2 | ‖x + (0, 1/2+ r)‖ � 2+ r}. (87)
In this example, we focus on (local) behavior around the point ū � (0, 1). For U1, a sufficiently small neighbor-
hood of ū, the following statements regarding the assumptions of Theorem 3.2 can be verified:

(i) S0 � FixP0 ∩U1 � {ū} � {(0, 1)};
(ii) x̄ � (x̄1 , x̄2)� (ū , (0, 3/2))� ((0, 1), (0, 3/2));
(iii) Z� {ζ̄} � {(ζ̄1 , ζ̄2)} � {((0,−1/2), (0, 1/2))};
(iv) the sets S1 and S2 are given by

S1 � S0 − ζ̄1 � {(0, 1/2)}, S2 � S0 − ζ̄1 − ζ̄2 � {(0, 1)};
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(v) (81a) is satisfied, and (81b) holds with U1 already given and U2 equal to a Scaled translate of U1–more
precisely, U1 and U2 are related by

U2 �
2+ r

dist(ū , (0,−1/2− r)) U1 + (0, 1/2);

(vi) L ��2 ×�2;
(vii) for j ∈ {1, 2}, Ω j is uniformly elementally regular at x̄ j for any ε j ∈ (0, 1) Kruger et al. [44, example 2(b)].
To verify the remaining conditions of Theorem 3.2, we use the following parametrization: any double x �

(x1 , x2) ∈W(ζ̄) with x1 ∈Ω1 may be expressed in the form x1 � (b ,
√

1− b2) ∈Ω1, where b ∈ � is a parameter.
(viii) {Ω1 ,Ω2} is subtransversal at x̄ relative to W(ζ̄), i.e.,Ψ is metrically subregular at x̄ for ζ̄ on U (metrically

regular at (x̄ , ζ̄) on U × {ζ̄}) relative to W(ζ̄) with constant

κ > lim
b→0

dist(x ,Ψ−1(ζ̄) ∩W(ζ̄))
dist(ζ̄,Ψ(x))

�
3(2r + 3)√
2r2 + 6r + 9

.

(ix) For any ρ > 0 such that

ρ �

√
2r2 + 6r + 9

2r + 1 > lim
b→0

dist(ζ̄,Ψ(x))
dist(0,Φζ̄(x))

�

√
2
√

2 r2 + 6 r + 9 (2 r + 3)
2
√

4 r2 + 12 r + 13 (r + 2)
,

the following inequality holds:
dist(ζ̄,Ψ(x)) ≤ ρ dist(0,Φζ̄(x))

for all x ∈W(ζ̄) sufficiently close to x̄.
The assumptions of Theorem 3.2 are satisfied. Furthermore, the proof of Proposition 3.4 shows that the mapping
Φζ̄ is metrically subregular at x̄ for 0 relative to W(ζ̄) on U with the constant κ̄ equal to the product of constant
of subtransversality κ in (viii) and ρ. That is,

κ̄ >
3(3r + 3)

2r + 1 �
3
√

2(2r + 3)2

2
√

4 r2 + 12r + 13 (r + 2)
.

Altogether, Theorem 3.2 yields that, for any c with

1 > c >

√
1− (2r + 1)2

18(2r + 3)2 ,

there exists a neighborhood of ū such that the cyclic projections method converges linearly to ū with rate c.

Remark 3.2 (Non-Intersecting Circle and Line). A similar analysis to Example 3.5 can be performed for the case in
which the second circle Ω2 is replaced with the line (0, 3/2)+�(1, 0). Formally, this corresponds to setting the
parameter r � +∞ in Example 3.5. Although there are some technicalities involved to make such an argument
fully rigorous, a separate computation has verified the constants obtained in this way agree with those obtained
from a direct computation. When the circle and line are tangent, then Example 2.4 shows how sublinear con-
vergence of alternating projections can be quantified.

Example 3.6 (Phase Retrieval). In the discrete version of the phase retrieval problem (Luke et al. [52], Bauschke
et al. [13], Burke and Luke [23], Luke [47, 49], Hesse et al. [35], Luke [50]), the constraint sets are of the form

Ω j � {x ∈�n | |(A j x)k |2 � b jk , k � 1, 2, . . . , n}, (88)

where A j : �n→�n is a unitary linear operator (a Fresnel or Fourier transform depending on whether the data
is in the near field or far field, respectively) for j � 1, 2, . . . ,m, possibly together with an additional support/
support-nonnegativity constraint, Ω0. It is elementary to show that the sets Ω j are elementally regular (indeed,
they are semi-algebraic (Hesse et al. [35, proposition 3.5]) and prox-regular (Kruger et al. [44, proposition 4]),
and Ω0 is convex) therefore condition (a) of Theorem 3.2 is satisfied for each Ω j with some violation ε j on local
neighborhoods. Subtransversality of the collection of sets at a fixed point x̄ of P0 can only be violated when the
sets are locally parallel at x̄ for the corresponding difference vector. It is beyond the focus of this paper to show
that this cannot happen in almost all practical instances, establishing that condition (b) of Theorem 3.2 holds. The
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remaining conditions (c)–(d) are technical and Example 3.5—which essentially captures the geometry of the sets
in the phase retrieval problem—shows that these assumptions are satisfied. Theorem 3.2 then shows that near
stable fixed points (defined as those that correspond to local best approximation points Luke [48, definition 3.3])
the method of alternating projections must converge linearly. In particular, the cyclic projections algorithm can
be expected to converge linearly on neighborhoods of stable fixed points regardless of whether or not the phase sets
intersect. This improves, in several ways, the local linear convergence result obtained in Luke [49, theorem 5.1],
which established local linear convergence of approximate alternating projections to local solutions with more
general gauges for the case of two sets: first, the present theory handles more than two sets, which is relevant
for wave front sensing (Luke [52], Hesse et al. [35]); second, it does not require that the intersection of the
constraint sets (which are expressed in terms of noisy, incomplete measurement data) be nonempty. This is in
contrast to recent studies of the phase retrieval problem (of which there are too many to cite here), which require
the assumption of feasibility, despite evidence, numerical and experimental, to the contrary. Indeed, according
to elementary noncrystallographic diffraction theory, since the experimental measurements—the constants b jk
in the sets Ω j defined in (88)—are finite samples of the continuous Fourier/Fresnel transform, there can be
no overlap between the set of points satisfying the measurements and the set of compactly supported objects
specified by the constraint Ω0. Adding another layer to this fundamental inconsistency is the fact that the
measurements are noisy and inexact. The presumption that these sets have nonempty intersection is neither
reasonable nor necessary. Regarding approximate/inexact evaluation of the projectors studied in Luke [49], we
see no obvious impediment to such an extension and this would indeed be a valuable endeavor, again, beyond
the scope of this work. Toward global convergence results, Theorem 3.2 indicates that the focus of any such
effort should be on determining when the set of difference vectors is unique rather than focusing on uniqueness
of the intersection as proposed in Candès et al. [24], Hesse et al. [34].

3.2. Structured (Nonconvex) Optimization
We consider next the problem

minimize
x∈Ɛ

f (x)+ g(x) (P)

under different assumptions on the functions f and g. At the very least, we will assume that these functions
are proper, lower semicontinuous (l.s.c.) functions.
3.2.1. Forward-Backward. We begin with the ubiquitous forward-backward algorithm: given x0 ∈ Ɛ, generate the
sequence (xk)k∈� via

xk+1 ∈ TFB(xk) :� prox1, g(xk − t∇ f (xk)). (89)
We keep the step-length t fixed for simplicity. This is a reasonable strategy, obviously, when f is continuously
differentiable with Lipschitz continuous gradient and when g is convex (not necessarily smooth), which we will
assume throughout this subsection. For the case that g is the indicator function of a set C; that is, g � ιC , then (89)
is just the projected gradient algorithm for constrained optimization with a smooth objective. For simplicity, we
will take the proximal parameter λ � 1 and use the notation proxg instead of prox1, g . The following discussion
uses the property of hypomonotonicity (Definition 2.3(b)).
Proposition 3.6 (Almost Averaged: Steepest Descent). Let U be a nonempty open subset of �n . Let f : �n → � be a
continuously differentiable function with calm gradient at x̄ and calmness modulus L on the neighborhood U of x̄. In
addition, let ∇ f be pointwise hypomonotone at x̄ with violation constant τ on U. Choose β > 0 and let t ∈ (0, β). Then,
the mapping Tt , f :� Id−t∇ f is pointwise almost averaged at x̄ with averaging constant α � t/β ∈ (0, 1) and violation
constant ε � α(2βτ + β2L2) on U. If ∇ f is pointwise strongly monotone at x̄ with modulus |τ | > 0 (that is, pointwise
hypomonotone with constant τ < 0) and calm with modulus L on U and t < 2|τ |/L2, then Tt , f is pointwise averaged at
x̄ with averaging constant α � tL2/(2|τ |) ∈ (0, 1) on U.
Proof. Noting that

Id−(αβ)∇ f � (1− α) Id+α(Id−β∇ f ), (90)
by definition, Tt , f � Id−(αβ)∇ f is pointwise almost averaged at x̄ with violation ε� α(2βτ+β2L2) and averaging
constant α ∈ (0, 1) on U if and only if Id−β∇ f is pointwise almost nonexpansive at x̄ with violation constant
ε/α � 2βτ+ β2L2 on U.
Define Tβ, f :� Id−β∇ f . Then, since f is continuously differentiable with calm gradient at x̄ and calmness

modulus L on U, and the gradient ∇ f is pointwise hypomonotone at x̄ with violation τ on U,
‖Tβ, f (x) −Tβ, f (x̄)‖2 � ‖x − x̄‖2 − 2β〈x − x̄ ,∇ f (x) −∇ f (x̄)〉 + β2‖∇ f (x) −∇ f (x̄)‖2

≤ (1+ 2βτ+ β2L2)‖x − x̄‖2 , ∀x ∈U. (91)
This proves the first statement.
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In addition, if ∇ f is pointwise strongly monotone (pointwise hypomonotone with τ < 0) at x̄, then from (91),
2βτ+ β2L2 ≤ 0 whenever β ≤ 2|τ |/L2—that is, Tβ, f is nonexpansive—on U where equality holds when β � 2|τ |/L2.
Choose β � 2|τ |/L2 and set α � t/β � tL2/(2|τ |) ∈ (0, 1) since t < 2|τ |/L2. The first statement then yields the result
for this case and completes the proof. �

Note the trade-off between the step-length and the averaging property: the smaller the step, the smaller the
averaging constant. In the case that ∇ f is not monotone, the violation constant of nonexpansivity can also be
chosen to be arbitrarily small by choosing β arbitrarily small, regardless of the size of the hypomonotonicity
constant τ or the Lipschitz constant L. This will be exploited in Theorem 3.3 . If ∇ f is strongly monotone,
the theorem establishes an upper limit on the stepsize for which nonexpansivity holds, but this does not rule
out the possibility that, even for nonexpansive mappings, it might be more efficient to take a larger step that
technically renders the mapping only almost nonexpansive. As we have seen in Theorem 2.2, if the fixed point
set is attractive enough, then linear convergence of the iteration can still be guaranteed, even with this larger
stepsize. This yields a local justification of extrapolation or excessively large stepsizes.

Proposition 3.7 (Almost Averaged: Nonconvex Forward-Backward). Let g: �n → (−∞,+∞] be proper and l.s.c. with
nonempty, pointwise Type-I nonmonotone subdifferential at all points on S′g ⊂U′g with violation τg on U′g; that is, at each
w ∈ ∂g(v) and v ∈ S′g , the inequality

− τg ‖(u + z) − (v + w)‖2 ≤ 〈z −w , u − v〉 (92)

holds whenever z ∈ ∂g(u) for u ∈U′g . Let f : �n→� be a continuously differentiable function with calm gradient (mod-
ulus L), which is also pointwise hypomonotone at all x̄ ∈ S f ⊂U f with violation constant τ f on U f . For Tt , f :� Id−t∇ f ,
suppose that Tt , f U f ⊂ Ug , where Ug :� {u + z | u ∈ U′g , z ∈ ∂g(u)} and that Tt , f S f ⊂ Sg , where Sg :� {v + w | v ∈ S′g ,
w ∈ ∂g(v)}. Choose β > 0 and t ∈ (0, β). Then, the forward-backward mapping TFB :�proxg(Id−t∇ f ) is pointwise almost
averaged at all x̄ ∈ S f with violation constant ε � (1+ 2τg)(1+ t(2τ f + βL2)) − 1 and averaging constant α on U f , where

α �


2
3 for all α0 ≤

1
2 ,

2α0

α0 + 1 for all α0 >
1
2 ,

and α0 �
t
β
. (93)

Proof. The proof follows from Propositions 2.4 and 3.6. Indeed, by Proposition 3.6, the mapping Tt , f is pointwise
almost averaged at x̄ with the violation constant ε f � α0(2βτ f + β

2L2) and the averaging constant α0 � t/β ∈ (0, 1)
on U f for t < β. It is more convenient to write the violation in terms of t as ε f � t(2τ f + βL2). By Proposition 2.3
and Definition 2.3(a), proxg is pointwise almost firmly nonexpansive at points ȳ ∈ Sg with violation εg � 2τg

on Ug , since proxg is the resolvent of ∂g, which by assumption satisfies (92) at points in S′g with constant τg on
U′g . Also, by assumption, Tt , f U f ⊂ Ug and Tt , f S f ⊂ Sg , therefore we can apply Proposition 2.4(iii) to conclude
that TFB is pointwise averaged at x̄ ∈ S f with the violation constant (1+2τg)(1+ t(2τ f +βL2))−1 and the averaging
constant α, which is given by (93) on U f whenever t < β, as claimed. �

Corollary 3.2 (Almost Averaged: Semi-Convex Forward-Backward). Let g: �n→(−∞,+∞] be proper, l.s.c. and convex.
Let f : �n→� be a continuously differentiable function with calm gradient (calmness modulus L), which is also pointwise
hypomonotone at all x̄ ∈ S f ⊂U f with violation constant τ f on U f . Choose β > 0 and t ∈ (0, β). Then, the forward-backward
mapping TFB :� proxg(Id−t∇ f ) is pointwise almost averaged at all x̄ ∈ S f with violation constant ε � t(2τ f + βL2) and
averaging constant α given by (93) on U f .

Proof. This is a specialization of Proposition 3.7 to the case where g is convex. In this setting, ∂g is a maximally
monotone mapping (Minty [55], Moreau [58]), and hence is Type-I nonmonotone on �n with no violation (i.e.,
τg � 0). The assumptions Tt , f U f ⊂ Ug , where Ug :� �n , and Tt , f S f ⊂ Sg , where Sg :� �n of Proposition 3.7 are
obviously automatically satisfied. �

As the above proposition shows, the almost averaging property comes relatively naturally. A little more
challenging is to show that Assumption (b) of Theorem 2.2 holds for a given application. The next theorem is
formulated in terms of metric subregularity, but for the forward-backward iteration, the graphical derivative
characterization given in Proposition 2.5 can allow for a direct verification of the regularity assumptions.
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Theorem 3.3 (Local Linear Convergence: Forward-Backward). Let f : �n→� be a continuously differentiable function
with calm gradient (modulus L), which is also pointwise hypomonotone at all x̄ ∈ FixTFB ⊂ U f with violation constant
τ f on U f . Let g: �n→ (−∞,+∞] be proper and l.s.c. with nonempty, pointwise Type-I nonmonotone subdifferential at
all v ∈ S′g ⊂ U′g , with violation τg on U′g whenever z ∈ ∂g(u) for u ∈ U′g . For Tt , f :� Id−t∇ f , let Tt , f U f ⊂ Ug , where
Ug :� {u + z | u ∈U′g , z ∈ ∂g(u)} and let Tt , f FixTFB ⊂ Sg , where Sg :� {v + w | v ∈ S′g ,w ∈ ∂g(v)}. If for all t ≥ 0 small
enough, ΦFB :�TFB− Id is metrically subregular for 0 on U f with modulus κ ≤ κ̄ < 1/(2√τg), then for all t small enough,
the forward-backward iteration xk+1 ∈TFBxk satisfies dist(xk ,FixTFB)→ 0 at least linearly for all x0 close enough to FixTFB.
In particular, if g is convex, and κ̄ is finite, then the distance of the iterates to FixTFB converges linearly to zero from any
initial point x0 close enough to FixTFB provided that the stepsize t is sufficiently small.
Proof. Denote the averaging constant of the inner forward mapping Tt , f by α0. Since, by Proposition 3.6, the
stepsize t, α0, and β are all relative, for convenience, we fix α0 � 1/2 so that t � β/2. From Proposition 3.7, it then
holds that the forward-backward mapping TFB is pointwise almost averaged at all x̄ ∈ FixTFB with the violation
constant ε � (1 + 2τg)(1 + β/2(2τ f + βL2)) − 1 and the averaging constant α � 2/3 (given by (93)) on U f . Hence
Assumption (a) of Theorem 2.2 is satisfied with S � FixTFB. By assumption, for all t (hence β) small enough, ΦFB
is metrically subregular for 0 on U f with modulus at most κ̄, therefore by Corollary 2.3, for all x close enough
to FixTFB

dist(x+ ,FixTFB) ≤ c dist(x ,FixTFB), (94)
where x+ ∈ TFBx and c :�

√
1+ ε− 1/(2κ̄2). By assumption, the constant κ̄ is suitable for all t small enough, but

the violation ε � 2τg + o(t) can be made arbitrarily close to 2τg simply by taking the stepsize t � β/2 small
enough. Hence c < 1 for all β > 0 with 2τg + β/2(2τ f + βL2)+ o(β2)< 1/κ̄2. In other words, for all x0 close enough
to FixTFB, and all t (or β) small enough, convergence of the forward-backward iteration is at least linear with
rate at most c :�

√
1+ ε− (1− α)/(κ2α) < 1.

If g is convex, then as in Corollary 3.2, τg � 0, therefore it suffices simply to have κ̄ bounded. �
Corollary 3.3 (Global Linear Convergence: Convex Forward-Backward). Let f : �n→� be a continuously differentiable
function with calm gradient (modulus L), which is also pointwise strongly monotone at all x̄ ∈ FixTFB on �n . Let g: �n→
(−∞,+∞] be proper, convex, and l.s.c. Let Tt , f FixTFB ⊂ Sg , where Sg :� {v +w | v ∈ S′g ,w ∈ ∂g(v)}. If for all t ≥ 0 small
enough, ΦFB :� TFB − Id is metrically subregular for 0 on �n with modulus κ ≤ κ̄ < +∞, then for all fixed step-length t
small enough, the forward-backward iteration xk+1 � TFBxk satisfies dist(xk ,FixTFB)→ 0 at least linearly for all x0 ∈ �n .
Proof. Note that ∇ f being pointwise strongly monotone is equivalent to ∇ f being pointwise hypomonotone
with violation τ f < 0. Proposition 3.7 then establishes that the forward-backward mapping TFB is pointwise
almost averaged at all x̄ ∈ FixTFB with the violation constant ε � β/2(2τ f + βL2) and the averaging constant
α � 2/3 (given by (93)) on �n . For all stepsizes small enough, or equivalently for all β small enough, it holds
that 2τ f + βL2 < 0 and TFB is, in fact, pointwise averaged. Additionally, for all t (hence β) small enough, ΦFB is
metrically subregular for 0 on �n with modulus at most κ̄ <∞, therefore by Corollary 2.3, for all x

dist(TFBx ,FixTFB) ≤ c dist(x ,FixTFB), (95)

where c :�
√

1− 1/2κ̄2 < 1. This completes the proof. �
Remark 3.3 (Extrapolation). In the proof of Corollary 3.3, it is not necessary to choose the stepsize small enough
that TFB is pointwise averaged. It suffices to choose the stepsize t small enough that c :�

√
1+ ε− 1/2κ̄2 < 1,

where ε � β/2(2τ f + βL2). In this case, TFB is only almost pointwise averaged with violation ε on �n .
Remark 3.4. Optimization problems involving the sum of a smooth function and a nonsmooth function are
commonly found in applications and accelerations to forward-backward algorithms have been a subject of
intense study (Beck and Teboulle [19], Attouch and Peypouquet [4], Nesterov [59], Chambolle and Dossal [25]).
To this point, the theory on quantitative convergence of the iterates is limited to the convex setting under the
additional assumption of strong convexity/strong monotonicity. Theorem 3.3 shows that locally, convexity of
the smooth function plays no role in the convergence of the iterates or the order of convergence, and strong
convexity, much less convexity, of the function g is also not crucial—it is primarily the regularity of the fixed
points that matters locally. This agrees nicely with recent global linear convergence results of a primal-dual
method for saddle point problems that use pointwise quadratic supportability in place of the much stronger
strong convexity assumption (Luke and Shefi [51]). Moreover, local linear convergence is guaranteed by metric
subregularity on an appropriate set without any fine tuning of the only algorithm parameter t, other than
assuring that this parameter is small enough. When the nonsmooth term is the indicator function of some
constraint set, then the regularity assumption can be replaced by the characterization in terms of the graphical
derivative (54) to yield a familiar constraint qualification at fixed points.



Luke, Thao, and Tam: Quantitative Convergence of Iterated Set-Valued Mappings
Mathematics of Operations Research, 2018, vol. 43, no. 4, pp. 1143–1176, ©2018 The Author(s) 1173

If the functions in (P) are piecewise linear quadratic, then the forward-backward mapping has polyhedral
structure (Proposition 3.8), which, following Proposition 2.7, allows for easy verification of the conditions for
linear convergence (Proposition 3.9).

Definition 3.3 (Piecewise Linear Quadratic Functions). A function f : �n → [−∞,+∞] is called piecewise linear
quadratic if dom f can be represented as the union of finitely many polyhedral sets, relative to each of which
f (x) is given by an expression of the form 1

2 〈x ,Ax〉+ 〈a , x〉+α for some scalar α ∈� vector a ∈�n , and symmetric
matrix A ∈�n×n . If f can be represented by a single linear quadratic equation on �n , then f is said to be linear
quadratic.

For instance, if f is piecewise linear quadratic, then the subdifferential of f and its proximal mapping prox f
are polyhedral (Rockafellar and Wets [72, proposition 12.30]).

Proposition 3.8 (Polyhedral Forward-Backward). Let f : Ɛ→� be quadratic and let g: Ɛ→(−∞,+∞] be proper, l.s.c.
and piecewise linear quadratic convex. The mapping TFB defined by (89) is single-valued and polyhedral.

Proof. Since the functions f and g are piecewise linear quadratic, the mappings Id−∇ f and ∂g are polyhedral.
Moreover, since g is convex, the mapping proxg (that is, the resolvent of ∂g) is single-valued and polyhedral
(Rockafellar and Wets [72, proposition 12.30]). The mapping Id−∇ f is clearly single-valued, therefore TFB �

proxg(Id−∇ f ) is also single-valued and polyhedral as the composition of single-valued polyhedral maps. �

Proposition 3.9 (Linear Convergence of Polyhedral Forward-Backward). Let f : Ɛ→ � be quadratic and let g: Ɛ→
(−∞,+∞] be proper, l.s.c. and piecewise linear quadratic convex. Suppose FixTFB is an isolated point {x̄}, where TFB :�
proxg(Id−t∇ f ). Suppose also that the modulus of metric subregularity κ of Φ :� TFB − Id at x̄ for 0 is bounded above by
some constant κ̄ for all t > 0 small enough. Then, for all t small enough, the forward-backward iteration xk+1 � TFB(xk)
converges at least linearly to x̄ whenever x0 is close enough to x̄.

Proof. By Corollary 3.2, the mapping TFB is pointwise almost averaged with violation ε proportional to the
stepsize t. By Proposition 3.8 TFB is polyhedral and by Proposition 2.6 metrically subregular at x̄ for 0 with
constant κ on some neighborhood U of x̄. Since the violation ε can be made arbitrarily small by taking t
arbitrarily small, and since the modulus of metric subregularity κ ≤ κ̄ <∞ for all t small enough, the result
follows by Proposition 2.7. �

Example 3.7 (Iterative Soft-Thresholding). Let f (x) � xTAx + xT b, and g(x) � α‖Bx‖1 for A ∈ �n×n symmetric and
B ∈�m×n full rank. The forward-backward algorithm applied to the problem minimize f (x)+ g(x) is the iterative
soft-thresholding algorithm (Daubechies et al. [28]) with fixed step-length t in the forward step x − t∇ f (x) �
x − t(2Ax + b). The function g is piecewise linear, therefore proxg is polyhedral hence the forward-backward
fixed point mapping TFB is single-valued and polyhedral. As long as FixTFB is an isolated point relative to the
affine hull of the iterates xk+1 � TFBxk , and the modulus of metric subregularity is independent of the stepsize t
for all t small enough, then by Proposition 3.9 for small enough stepsize t, the iterates xk converge linearly to
FixTFB for all starting points close enough to FixTFB. If A is positive definite (i.e., f is convex), then the set of
fixed points is a singleton and convergence is linear from any starting point x0.

3.2.2. Douglas-Rachford and Relaxations. The Douglas-Rachford algorithm is commonly encountered in one
form or another for solving feasibility problems and structured optimization. In the context of problem (P), the
iteration takes the form

xk+1 ∈ TDR(xk) :� 1
2 (R f Rg + Id)(xk), (96)

where R f :� 2 prox f − Id (i.e., the proximal reflector) and Rg is similarly given.
Revisiting the setting of Luke [48], we use the tools developed in the present paper to show when one can

expect local linear convergence of the Douglas-Rachford iteration. For simplicity, as in Luke [48], we will assume
that f is convex to arrive at a clean final statement, though convexity is not needed for local linear convergence.

Proposition 3.10. Let g � ιΩ for Ω ⊂ �n a manifold, and let f : �n→� be convex and linear quadratic. Fix x̄ ∈ FixTDR.
Then, for any ε > 0 small enough, there exists δ > 0 such that TDR is single-valued and almost firmly nonexpansive with
violation εg � 4ε+ 4ε2 on �δ(x̄).
Proof. Suppose that g � ιΩ for Ω ⊂ �n a manifold. In the language of Definition 3.1(iii), at each point x̄ ∈ Ω,
for any ε > 0, there is a δ such that Ω is elementally regular at x̄ for all (a , v) ∈ gph NΩ, where a ∈ �δ(x̄) with
constant ε and neighborhood �δ(x̄). In other words, Ω is prox-regular (Kruger et al. [44, proposition 4(vi)]).
By Theorem 3.1(v), the reflector Rg is then almost firmly nonexpansive with violation εg :� 4ε + 4ε2 on �δ(x̄).
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Another characterization of prox-regular sets is that the projector PΩ is locally single-valued (Poliquin et al. [69]).
We can furthermore conclude that Rg is single-valued on �δ(x̄). Next, the function f : �n→� is quadratic con-
vex, therefore R f is firmly nonexpansive and single-valued as the reflected resolvent of the (maximal monotone)
subdifferential of f . By Proposition 2.4(ii), the composition of reflectors R f Rg is therefore almost nonexpansive
with violation εg on �δ(x̄). Then, by the definition of averaged mappings, the Douglas-Rachford mapping TDR
is almost firmly nonexpansive with violation εg on �δ(x̄). �

Theorem 3.4. Let g � ιΩ for Ω⊂�n a manifold and let f : �n→� be linear quadratic convex. Let (xk)k∈� be iterates of the
Douglas-Rachford (96) algorithm and let Λ� aff(xk). If TDR − Id is metrically subregular at all points x̄ ∈ FixTDR∩Λ,�
relative to Λ, then for all x0 close enough to FixTDR ∩ Λ, the sequence xk converges linearly to a point in FixT ∩ Λ
with constant at most c �

√
1+ ε− 1/κ2 < 1, where κ is the constant of metric subregularity for Φ :� TDR − Id on some

neighborhood U containing the sequence and ε is the violation of almost firm nonexpansiveness on the neighborhood U.

Proof. TDR − Id is metrically subregular at all points in FixTDR ∩Λ with constant κ on some neighborhood U′.
By Proposition 3.10, there exists a neighborhood U ⊂ U′ on which TDR is single-valued and almost firmly
nonexpansive with violation ε satisfying ε < 1/κ2. By Corollary 2.3 the sequence xk+1 � TDRxk then converges
linearly to a point in FixTDR ∩Λ with rate at most c �

√
1+ ε− 1/κ2 < 1. �

Remark 3.5. Assuming that the fixed points, restricted to the affine hull of the iterates, are isolated points,
polyhedrality was used in Aspelmeier et al. [3] to verify that the Douglas-Rachford mapping is indeed metrically
subregular at the fixed points. While in principle the graphical derivative formulas (see Proposition 2.5) could
be used for more general situations, it is not easy to compute the graphical derivative of the Douglas-Rachford
operator, even in the simple setting above. This is a theoretical bottleneck for the practical applicability of metric
subregularity for more general algorithms.

Example 3.8 (Relaxed Alternating Averaged Reflections for Phase Retrieval). Applied to feasibility problems, the
Douglas-Rachford algorithm is also described as averaged alternating reflections (Bauschke et al. [15]). Here,
f � ιA and g � ιB are the indicator functions of individual constraint sets. When the sets A and B are sufficiently
regular, as they certainly are in the phase retrieval problem, and intersect transversally, local linear convergence
of the Douglas-Rachford algorithm in this instance can be deduced from Phan [68]. As discussed in Example 2.4,
however, for any phase retrieval problem arising from a physical noncrystallographic diffraction experiment,
the constraint sets cannot intersect when finite support is required of the reconstructed object. This fact, seldom
acknowledged in the phase retrieval literature, is borne out in the observed instability of the Douglas-Rachford
algorithm applied to phase retrieval (Luke [47]): it cannot converge when the constraint sets do not intersect
(Bauschke et al. [15, theorem 3.13]).
To address this issue, a relaxation for nonconvex feasibility was studied in Luke [47, 48] that amounts to (96)

where f is the Moreau envelope of a nonsmooth function and g is the indicator function of a sufficiently regular
set. Optimization problems with this structure are guaranteed to have solutions. In particular, when f is the
Moreau envelope to ιA with parameter λ, the corresponding iteration given by (96) can be expressed as a convex
combination of the underlying basic Douglas-Rachford operator and the projector of the constraint set encoded
by g (Luke [48, proposition 2.5]):

xk+1 ∈ TDRλxk :� 1
2(λ+ 1) (RARB + Id)(xk)+ λ

λ+ 1 PB xk (97)

where RA � 2PA − Id and RB � 2PB − Id. In Luke [47] and the physics literature, this is known as relaxed
alternating averaged reflections (RAAR). As noted in Example 3.6, the phase retrieval problem in its many
different manifestations in photonic imaging has exactly the structure of the functions in Theorem 3.4. If, in
addition, the fixed point operator TDRλ is metrically subregular at its fixed points relative to the affine hull of
the iterates, then according to Theorem 3.4, for λ large enough and for all starting points close enough to the
set of fixed points, the algorithm (97) applied to the phase retrieval problem converges locally linearly to a fixed
point. In contrast to the usual Douglas-Rachford algorithm and its variants (Bauschke et al. [14]), the RAAR
method does not require that the constraint sets intersect. Still, it is an open problem to determine whether
TDRλ is usually (in some appropriate sense) metrically subregular for phase retrieval.

Endnote
1We learned from Alexander Kruger that Gurin’s name was misprinted as Gubin in the translation of his work into English. Thanks to
Anna Martins for pointing out an error in Example 3.5.
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