
 
 

Delft University of Technology

Estimation of 3D grain size distributions from 2D sections in real and simulated
microstructures

Jagt, Thomas van der; Vittorietti, Martina; Sedighiani, Karo; Bos, Cornelis; Jongbloed, Geurt

DOI
10.1016/j.commatsci.2025.113949
Publication date
2025
Document Version
Final published version
Published in
Computational Materials Science

Citation (APA)
Jagt, T. V. D., Vittorietti, M., Sedighiani, K., Bos, C., & Jongbloed, G. (2025). Estimation of 3D grain size
distributions from 2D sections in real and simulated microstructures. Computational Materials Science, 256,
Article 113949. https://doi.org/10.1016/j.commatsci.2025.113949

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.commatsci.2025.113949
https://doi.org/10.1016/j.commatsci.2025.113949


Computational Materials Science 256 (2025) 113949 

A
0

 

Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci  

Full length article

Estimation of 3D grain size distributions from 2D sections in real and 

simulated microstructures
Thomas van der Jagt a ,∗, Martina Vittorietti a , Karo Sedighiani b , Cornelis Bos b,c, 
Geurt Jongbloed a
a Department of Applied Mathematics, Delft University of Technology, Mekelweg 4, Delft, 2628 CD, The Netherlands
b Tata Steel Research & Development, PO Box 10000, IJmuiden, 1970 CA, The Netherlands
c Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, The Netherlands

A R T I C L E  I N F O

Dataset link: https://github.com/thomasvdj/Gr
ainSizeEstimation

Keywords:
Grain size distribution
Stereology
Estimation
Consistency
Simulations
Microstructure

 A B S T R A C T

Obtaining information about the 3D grain size distribution of metallic microstructures is crucial for under-
standing the mechanical behavior of metals. This paper addresses the problem of estimating the 3D grain size 
distribution from 2D cross sections. This is a well-known stereological problem and different estimators have 
been proposed in the literature. We propose a statistical estimation procedure that provides consistent estimates 
without relying on arbitrary binning choices. When applying this procedure to space filling structures, we 
investigate the impact of the choice of grain shape and propose a heuristic to choose the best grain shape. To 
validate our approach, we employ simulations using Laguerre–Voronoi diagrams and apply our methodology 
to a sample of Interstitial-Free steel, obtained via EBSD.
1. Introduction

Polycrystalline materials, composed of multiple grains with distinct 
crystallographic orientations, exhibit intricate microstructures that sig-
nificantly influence their mechanical properties [1]. Different types 
of microstructure-based simulations depend on proper estimation and 
characterization of the microstructure [2]. For example, a thorough 
physical understanding of the underlying mechanisms behind phenom-
ena such as local stress fields [3,4], fracture and damage initiation [5–
7], shear banding [8–10], and recrystallization nucleation [11–13] 
depends on the initial microstructure. In addition to the microscale 
mechanical response, the macroscopic mechanical response, such as 
the stress–strain curve and yield surface, also depends on the mi-
crostructure [14–19]. Therefore, accurate characterization of the mi-
crostructure of polycrystalline materials is essential and has become 
a crucial part of materials science research. One of the critical mi-
crostructural features is the grain size distribution, which can affect 
many mechanical responses [14,20]. For example, at a macro scale, 
it can affect the stress–strain curve. At a smaller scale, it can influ-
ence the stress and strain localization [9,21], impacting for instance 
damage evolution. However, direct 3D measurement of the grain size 
distribution is costly and time-consuming [22]. Instead, more common 
two-dimensional (2D) characterization techniques, such as light mi-
croscopy, Scanning Electron Microscopy (SEM), and Electron Backscat-
ter Diffraction (EBSD), are employed. These 2D techniques provide only 
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surface information, leaving part of the critical information, like the 3D 
grain size distribution, unknown. This paper aims to use 2D information 
obtained from section areas to estimate the 3D grain size distribution, 
offering a more efficient and accessible approach to microstructure 
characterization. Estimating the 3D grain size distribution from 2D ob-
servations is a well-known stereological problem, originally addressed 
by [23], in the so called Wicksell corpuscle problem. In the Wicksell 
model, grains are represented by spheres of varying size, randomly 
positioned in 3D space. Intersecting this system of spheres with a plane 
results in a sample of observed circle radii, the distribution of which is 
uniquely related to the distribution of the 3D sphere radii.

However, when considering real microstructures, the assumption of 
(approximately) spherical grains is often unrealistic. A more realistic 
approach is to generalize the Wicksell model by replacing spheres with 
another convex shape, such as a polyhedron. Such a polyhedron then 
represents the typical grain shape. Instances of this polyhedron are 
randomly scaled, -oriented and -positioned in 3D space. Intersecting 
this system with a plane yields observed section profiles, the areas of 
which can be used to estimate the grain size distribution.

Various estimation procedures have been developed for these stere-
ological problems. For spherical grains (Wicksell’s problem), the
Saltykov method [24] is widely used, estimating the underlying ra-
dius distribution as a discrete histogram, requiring bin size choices. 
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Numerous variations of the Saltykov method exist, often differing in 
binning strategies, inversion procedures, or the choice of parametric 
distributions [25–27]. Other methods extend these principles to non-
spherical grains, such as cubes or other specific polyhedra [28–31]. For 
a more elaborate overview of estimators in the Wicksell problem we 
refer to [32].

In [33] a new estimation procedure is proposed, offering a dis-
crete distribution estimate for grain size via non-parametric maximum 
likelihood estimation. This method, when the shape of the 3D objects 
is known and fixed, is consistent, meaning that as the sample size 
increases, the estimate converges to the true distribution. Unlike the 
Saltykov method, which typically uses a fixed number of bins, this 
new method implicitly optimizes the number and size of bins through 
likelihood maximization, eliminating the need for manual binning.

The estimation procedure used in this paper, was developed (and 
theoretically studied) in [33] from the perspective of randomly placed, 
scaled and oriented particles in a 3D medium. In practice, this type of 
procedures is commonly applied to space-filling structures, often seen 
in metal microstructures. As this procedure works for arbitrary convex 
shapes, it enables to investigate which of these shapes actually works 
best in specific situations with space-filling structures.

In this paper we apply this estimation method to various simulated- 
and real microstructures. We explore a range of grain shapes to assess 
how the chosen shape relates to the estimation accuracy of the actual 
grain size distributions. In the simulation setting, we consider Voronoi 
and the more general Laguerre–Voronoi diagrams as models for metal 
microstructures. These diagrams provide realistic approximations of 
grain shapes and distributions found in metals [34], making them ideal 
for studying the accuracy of 3D grain size distribution estimations de-
rived from 2D cross-sectional images. In fact, though several theoretical 
properties of these models are known in the literature [35–37], there 
are no explicit relations or estimators of the 3D volume distributions 
from the 2D sections. Hence, applying the estimation procedure pro-
posed in this paper in a simulation setting can provide insights into the 
behavior of the estimator for the underlying model.

The contributions in this paper are the following: (i) we estimate the 
3D grain size distribution using a novel statistical estimation procedure; 
(ii) we investigate the influence of assumed grain shapes on the estima-
tion of grain size distributions; (iii) we conduct extensive simulations 
using random 3D (Laguerre)-Voronoi microstructures and single planar 
sections to estimate the underlying grain size distribution; and (iv) we 
show that for the considered microstructures, a few grain shape choices 
yield accurate estimates, providing a practical procedure for selecting 
appropriate shapes for steel samples.

The outline of the paper is as follows: in Section 2 we describe the 
estimation procedure used for obtaining the 3D grain size distributions. 
Furthermore, we illustrate the methods used for the simulation of mi-
crostructures, as well as how cross sections are taken of these simulated 
microstructures. In Section 3, the simulation results for 100 Laguerre 
Voronoi diagrams are presented. Estimates based on different shapes for 
the grains are compared and in Section 4 a heuristic of the choice of 
the best shape is discussed. In Section 5 the new estimation procedure 
is applied to real data. In this special case, the results of the volume 
distribution estimation based on 2D real data can be compared with 
the real 3D volume distribution obtained based on the 3D EBSD data. 
Final considerations and conclusions are discussed in Sections 6 and 7.

2. Methods

In this section, we present the estimation procedure used to deter-
mine the grain size distributions (Section 2.1). Additionally, we de-
scribe the simulation procedure of the microstructures and the process 
of obtaining cross sections from these simulations (Section 2.2).
2 
2.1. Estimation of grain size distributions

We briefly summarize the estimation procedure, introduced in [33]. 
Assume we have a sample of observed section areas: 𝑎1, 𝑎2,… , 𝑎𝑛, with 𝑛
being the sample size. This is assumed to be the sorted sample, meaning 
that: 𝑎1 < 𝑎2 < ⋯ < 𝑎𝑛. We assume a particular 3D grain shape 𝐾 ⊂ R3, 
representing the typical grain in the microstructure at hand. Consider 
taking a random section of the chosen shape 𝐾, which is scaled such 
that it has volume 1. The probability density function associated with 
the square-root of the area of such a random section is denoted by 𝑔𝑆𝐾 . 
In principle 𝑔𝑆𝐾 becomes known once the shape is chosen; in practice we 
use simulations to obtain a very close approximation of this function. 
The estimation procedure can be described by two steps. First we 
estimate a biased size distribution, both for mathematical as well as 
computational convenience. This can be interpreted as the distribution 
of the size of the typical grain which appears in the section plane. It is 
well known that larger grains are more likely to be hit by the section 
plane, meaning that larger grains are over represented in the plane 
section. Therefore, the actual grain size distribution is different, and 
it is estimated in a second step via a de-biasing procedure. Denote by 
𝐻 the size distribution function. The two steps of the procedure are:

• Step 1: Estimation of the length-biased size distribution function 
𝐻𝑏 associated with 𝐻

𝐻𝑏(𝜆) =
∫ 𝜆
0 𝑥d𝐻(𝑥)

∫ ∞
0 𝑥d𝐻(𝑥)

. (1)

Set 𝑠𝑖 =
√

𝑎𝑖 for 𝑖 ∈ {1,… , 𝑛} and denote by +
𝑛  the set of all 

piecewise constant CDFs (Cumulative Distribution Functions) on 
[0,∞), having jumps at the observed 𝑠𝑖’s. The maximum likelihood 
estimator �̂�𝑏

𝑛  for 𝐻𝑏 is then defined as a maximizer of the 
log-likelihood:

�̂�𝑏
𝑛 = argmax

𝐻𝑏∈+
𝑛

1
𝑛

𝑛
∑

𝑖=1
log

( 𝑛
∑

𝑗=1
𝑔𝑆𝐾

(

𝑠𝑖
𝑠𝑗

)

1
𝑠𝑗
(𝐻𝑏(𝑠𝑗 ) −𝐻𝑏(𝑠𝑗−1))

)

Since the log-likelihood is a concave function, this optimization 
problem is computationally tractable, and has only a global max-
imizer. After solving this optimization problem we obtain the 
vector (�̂�𝑏

𝑛 (𝑠1), �̂�
𝑏
𝑛 (𝑠2),… , �̂�𝑏

𝑛 (𝑠𝑛)), representing the values of the 
estimate evaluated at 𝑠1, 𝑠2,… , 𝑠𝑛.

• Step 2: De-biasing the estimate of the length-biased size distribu-
tion. The de-biased distribution function 𝐻 can be expressed in 
𝐻𝑏 by inverting (1). Using this inverse leads to instabilities due 
to the occurrence of very small 𝑠𝑖-values. Therefore we use the 
following estimator of the size distribution function 𝐻 , denoted 
by �̂�𝑛:

�̂�𝑛(𝜆) =

⎧

⎪

⎨

⎪

⎩

∫ 𝜆
𝑡𝑛

1
𝑥 d�̂�

𝑏
𝑛 (𝑥)

∫ ∞
𝑡𝑛

1
𝑥 d�̂�

𝑏
𝑛 (𝑥)

 if 𝜆 ≥ 𝑡𝑛

0  if 0 ≤ 𝜆 < 𝑡𝑛

Here, 𝑡𝑛 is a tuning parameter which leads to a more stable inverse 
(direct inversion of (1) would lead to the choice 𝑡𝑛 ≡ 0). For 𝑡 > 0
the truncated version of �̂�𝑏

𝑛  is given by:

�̂�𝑏
𝑛 (𝜆; 𝑡) =

⎧

⎪

⎨

⎪

⎩

�̂�𝑏
𝑛 (𝜆)−�̂�

𝑏
𝑛 (𝑡)

1−�̂�𝑏
𝑛 (𝑡)

 if 𝜆 ≥ 𝑡

0  otherwise

In order to choose the tuning parameter 𝑡𝑛, write 𝐺𝑆
𝐾 for the CDF 

corresponding to 𝑔𝑆𝐾 and define for 𝑠 ≥ 0

𝐹𝑆
𝑛 (𝑠; 𝑡) ∶= ∫

∞

0
𝐺𝑆
𝐾

( 𝑠
𝜆

)

d�̂�𝑏
𝑛 (𝜆; 𝑡).

This may be interpreted as the distribution of the square-root 
areas if �̂�𝑏(⋅; 𝑡) were the true underlying biased distribution. We 
𝑛
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Fig. 1. (a): Sphere. (b): Dodecahedron. (c): Kelvin cell/ Tetrakaidecahedron. (d) Cube. (e): Octahedron. (f): Tetrahedron.
Fig. 2. The function 𝑔𝑆𝐾 for the shapes shown in Fig.  1.
also define:

𝐹𝑆
𝑛 (𝑠) ∶= 1

𝑛

𝑛
∑

𝑖=1
1{𝑠𝑖 ≤ 𝑠},

the empirical distribution of the observed square-root areas
𝑠1, 𝑠2,… , 𝑠𝑛. Then, we use the following choice for the tuning 
parameter 𝑡𝑛: 

𝑡𝑛 ∶= argmin
𝑡∈{𝑠1 ,…,𝑠𝑛}∫

∞

0
|𝐹𝑆

𝑛 (𝑠; 𝑡) − 𝐹𝑆
𝑛 (𝑠)|d𝑠. (2)

Hence, 𝑡𝑛 minimizes the 𝐿1-distance between the CDF of the square 
root section areas, induced by the estimated (biased) size distribution, 
and the empirical CDF of the actually observed square root section 
areas. In practice the integral in (2) can be computed via numerical 
integration. One should then keep in mind that 𝐹𝑛 is a piecewise 
constant function while 𝐹𝑆

𝑛  is not. This procedure yields an estimate 
of the size distribution function 𝐻 . A grain with size 𝜆 > 0 is up 
to a translation and rotation equal to 𝜆𝐾. By 𝜆𝐾 we mean that 𝐾
is scaled with a factor 𝜆. As such, a grain with size 𝜆 has volume: 
Volume(𝜆𝐾) = 𝜆3Volume(𝐾) = 𝜆3. As a result the size distribution is 
related to the volume distribution function 𝐹𝑉  via: 𝐹𝑉 (𝑥) = 𝐻(𝑥

1
3 ). 

Hence, we estimate 𝐹𝑉  as: 𝐹𝑉 (𝑥) = �̂�𝑛(𝑥
1
3 ). Additionally, the so-called 

biased volume distribution is given by 𝐹 𝑏
𝑉 (𝑥) = 𝐻𝑏(𝑥

1
3 ) and may be 

estimated via 𝐹 𝑏
𝑉 (𝑥) = �̂�𝑏

𝑛 (𝑥
1
3 ). For simulations, we consider the shapes 

shown in Fig.  1. For each shape 𝐾, we need the function 𝑔𝑆𝐾 to carry out 
the estimation procedure. For all the considered shapes the function 𝑔𝑆𝐾
is shown in Fig.  2.

2.2. Simulation of random microstructures

We first describe the model chosen for our simulations. For studying 
the behavior of the estimator proposed in the previous section we 
run simulations using Voronoi diagrams as mathematical model for 
microstructures. Voronoi diagrams and its generalizations are often 
3 
referred as the state of the art for modeling microstructures [34]. Given 
some convex domain 𝛺 in 3D space, a Voronoi diagram divides 𝛺
into so-called cells, which are convex polyhedra. Given distinct points 
𝑥1,… , 𝑥𝑁 ∈ 𝛺 and denoting by ‖ ⋅ ‖ the Euclidean norm, the Voronoi 
diagram generated by these points has cells 𝐶1,… , 𝐶𝑁  with:
𝐶𝑖 = {𝑥 ∈ R3 ∶ ‖𝑥 − 𝑥𝑖‖ ≤ ‖𝑥 − 𝑥𝑗‖,  for all 𝑗 ∈ {1,… , 𝑁}}.

In this paper, we consider the Poisson–Voronoi diagram, meaning 
that the 𝑥𝑖’s are a realization of a homogeneous Poisson process 𝛷
on 𝛺. While Voronoi diagrams are attractive models for materials 
microstructures, the additional flexibility of its generalization, the La-
guerre Voronoi diagrams, also referred as Laguerre diagrams, allows to 
more accurately model real microstructures. In [38] it was observed 
that geometric characteristics of Laguerre diagrams were closer to geo-
metric characteristics of real polycrystalline microstructures in compar-
ison to Voronoi diagrams. In [36,39] Laguerre diagrams were demon-
strated to accurately model a foam microstructure. Moreover, [36] 
showed that Laguerre diagrams provided a better representation of 
foams compared to various types of Voronoi diagrams. The results 
in [40] indicate that Laguerre diagrams provide a superior represen-
tation for sintered alumina than Voronoi diagrams. Additionally, [41] 
demonstrated that Laguerre diagrams can accurately model two-phase 
composites.

Given some convex domain 𝛺 in 3D space, a Laguerre diagram 
also divides 𝛺 into cells, which are convex polyhedra. Given distinct 
points 𝑥1,… , 𝑥𝑁 ∈ 𝛺 and weights: 𝑤1,… , 𝑤𝑁 ∈ R. A Laguerre diagram 
generated by these weighted points has cells 𝐿1,… , 𝐿𝑁  with:
𝐿𝑖 = {𝑥 ∈ R3 ∶ ‖𝑥 − 𝑥𝑖‖

2 −𝑤𝑖 ≤ ‖𝑥 − 𝑥𝑗‖
2 −𝑤𝑗 ,  for all 𝑗 ∈ {1,… , 𝑁}}.

The Voronoi diagram is obtained if all weights are equal: 𝑤1 = 𝑤2 =
⋯ = 𝑤𝑁 . Hence, in order to describe how Laguerre diagrams are 
generated we need to specify how we choose the weights. A La-
guerre diagram with periodic boundary conditions may be obtained by 
replacing the Euclidean distance ‖ ⋅ ‖ with a periodic distance.
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Fig. 3. Example of a 3D Laguerre–Voronoi diagram with periodic boundary conditions, and a 2D planar section. Cells are colored according to their 3D volume.
Fig. 4. Left: Histogram of the number of observed grains for each of the 100 simulations. Right: Histogram of the observed section areas from one simulation.
We now describe the simulation setting. First, we define the domain 
as the unit cube 𝛺 = [0, 1] × [0, 1] × [0, 1]. We fix a number of grains 𝑁 , 
and generate a Poisson process conditioned on having 𝑁 grains, that is 
equivalent to sample 𝑁 uniformly distributed points: 𝑥1,… , 𝑥𝑁  in 𝛺. 
We choose a volume distribution function 𝐹𝑉  and sample 𝑣1,… , 𝑣𝑁

iid∼
𝐹𝑉 . Then, we set:

𝑟𝑖 =
𝑣𝑖

∑𝑁
𝑖=1 𝑣𝑖

,

such that the 𝑟𝑖’s represent the volume fractions. Using the algorithm 
proposed in [42] (Algorithm 2), we generate a Laguerre diagram in 
𝛺 with 𝑛 grains such that grain 𝑖 has volume 𝑟𝑖. This algorithm is 
initialized with generator points 𝑥1,… , 𝑥𝑁 . The final Laguerre diagram 
is approximately centroidal, meaning that the generator point of each 
cell is close to the center of mass of its cell (see Fig.  3).

Having generated a Laguerre diagram we take a random height 
𝑧, sampled from the uniform distribution on [0, 1], and intersect the 
diagram with a horizontal plane at height 𝑧. Throughout, the diagrams 
we consider have periodic boundary conditions. If parts of a cell appear 
in a section multiple times (due to periodic boundary conditions) the 
areas of the parts are added together, and this sum is considered as a 
single observed area.

3. Simulation results

3.1. Laguerre diagrams

In this section, we apply the estimation procedure to randomly 
generated Laguerre diagrams. We apply the procedure described in 
4 
Section 2.2 100 times. By this we mean that 100 times, a Laguerre dia-
gram is generated, a planar section is taken, and estimates of the grain 
volume distribution are computed under various shape assumptions.

For the following simulations we generate Laguerre diagrams with 
𝑁 = 50000 grains. We choose for the volume distribution 𝐹𝑉  a 
lognormal distribution with parameters 𝜎 = 0.4, 𝜇 = − 𝜎2

2 . Each of the 
100 runs generated a random sample of observed section areas whose 
sample sizes are shown in the left panel of Fig.  4.

The distribution of the observed section areas for one simulation is 
shown in the right panel of Fig.  4. For each of the shapes we consider, 
the simulation results are given in Figs.  5–6. Each blue line is an 
estimate corresponding to one of the 100 generated samples of section 
areas.

Looking at the estimates of the volume distribution, the estimates 
corresponding to the sphere and the tetrahedron are quite poor (Figs. 
5 (b) and 6 (f)). One may argue that a sphere is ‘too round’ to be a 
good representation of a typical grain shape and the tetrahedron has 
‘too sharp corners’ to be representative of a real grain. All other shapes 
yield much better estimates, in particular the estimates corresponding 
to the octahedron and the cube (Figs.  6 (b) and 6 (d)) appear quite 
close to the true volume distribution. The estimates corresponding to 
the biased volume distribution paint a similar, but slightly different 
picture. Note in particular that the variance of the estimates is rather 
different for each of the shapes. This variance is the smallest for the 
simulation results corresponding to the sphere, and largest for the 
results corresponding to the tetrahedron (Figs.  5 (a) and 6 (e)).
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Fig. 5. Estimates of the biased volume distribution function (left) and estimates of the volume distribution function (right), based on the sphere, dodecahedron and Kelvin cell. 
The red dashed line represents 𝐹 𝑏

𝑉  and 𝐹𝑉  in the left and right panel respectively.
In Tables  1–2 errors of the estimates in Figs.  5 and 6 are shown. To 
be precise, the supremum error

‖𝐹𝑉 − 𝐹𝑉 ‖∞ ∶= sup
𝑥>0

|

|

|

𝐹𝑉 (𝑥) − 𝐹𝑉 (𝑥)
|

|

|

.

and the 𝐿1 error

‖𝐹𝑉 − 𝐹𝑉 ‖𝐿1
∶= ∫

∞

0

|

|

|

𝐹𝑉 (𝑥) − 𝐹𝑉 (𝑥)
|

|

|

d𝑥.

are considered.
The results confirm what was found by the graphical inspection of 

Figs.  5 and 6. For the unbiased volume distribution function, both the 
supremum and the 𝐿  error suggest that the cube and the octahedron 
1

5 
are the best choice. What can be seen from both tables is that the 
sphere, the canonically used shape, leads to inferior approximations.

4. The choice of grain shape

In the previous section we have observed that some choices of 
grain shape yield much better results than other choices. We attempt 
to obtain a better understanding of why in particular the cube and 
the octahedron is often a good choice when the true data generating 
mechanism is Laguerre. To obtain preliminary results without making 
arbitrary choices on the distribution of weights, in this section Poisson–
Voronoi diagrams that are Laguerre diagrams with all weights equal are 
used.
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Fig. 6. Estimates of the biased volume distribution function (left) and estimates of the volume distribution function (right), based on the octahedron, cube and tetrahedron. The 
red dashed line represents 𝐹 𝑏

𝑉  and 𝐹𝑉  in the left and right panel respectively.
Table 1
Mean supremum errors of estimates for the unbiased and biased size distribution 
function with 2.5% and 97.5% quantiles based on 100 simulations.

‖𝐹𝑉 − 𝐹𝑉 ‖∞ ‖𝐹 𝑏
𝑉 − 𝐹 𝑏

𝑉 ‖∞

Shape Mean error (2.5%, 97.5%) Mean error (2.5%, 97.5%)
sphere 0.391 (0.34 , 0.46) 0.196 (0.17 , 0.22)
dodecahedron 0.167 (0.13 , 0.21) 0.143 (0.12 , 0.17)
Kelvin cell 0.182 (0.14 , 0.23) 0.146 (0.12 , 0.17)
octahedron 0.154 (0.10 , 0.22) 0.118 (0.089, 0.16)
cube 0.134 (0.098, 0.17) 0.114 (0.081, 0.16)
tetrahedron 0.619 (0.52 , 0.75) 0.345 (0.28 , 0.41)
6 
Table 2
Mean 𝐿1 errors of estimates for the unbiased and biased size distribution function with 
2.5% and 97.5% quantiles based on 100 simulations.

‖𝐹𝑉 − 𝐹𝑉 ‖𝐿1
 (×10−6) ‖𝐹 𝑏

𝑉 − 𝐹 𝑏
𝑉 ‖𝐿1

 (×10−6)
Shape Mean error (2.5%, 97.5%) Mean error (2.5%, 97.5%)

sphere 7.52 (6.37, 8.97) 3.51 (3.11 , 4.01)
dodecahedron 2.11 (1.42, 2.91) 1.91 (1.57 , 2.33)
Kelvin cell 2.41 (1.56, 3.74) 1.93 (1.61 , 2.34)
octahedron 1.46 (1.07, 1.97) 1.20 (1.00 , 1.45)
cube 1.45 (1.02, 1.99) 1.10 (0.850, 1.42)
tetrahedron 7.08 (5.29, 9.41) 3.54 (2.91 , 4.15)
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Fig. 7. Simulated distribution of sphericity of a typical Poisson–Voronoi cell, based on 
106 Voronoi cells.

Table 3
Approximate sphericity of various convex shapes.
 Shape Sphericity 
 Sphere 1  
 Dodecahedron 0.910  
 Kelvin cell 0.910  
 Octahedron 0.846  
 Mean typical Voronoi cell 0.808  
 Cube 0.806  
 Tetrahedron 0.671  

4.1. Characterizing shape via sphericity

Given a shape with volume 𝑉  and surface area 𝑆, the isoperimetric 
inequality states:

𝑆 ≥ 𝜋
1
3 (6𝑉 )

2
3 ,

Equality holds if and only if the shape is a sphere. It may also be 
stated as: among all shapes with a given surface area, a sphere has the 
maximum volume. In [43] this was used to define sphericity as:

𝛹 =
𝜋

1
3 (6𝑉 )

2
3

𝑆
.

Then, 𝛹 = 1 for a sphere and for any other shape 0 < 𝛹 < 1. 
In [43] the sphericity of quartz particles was studied. It is challenging 
to determine when two grains have approximately the same shape. One 
approach is to consider grains with approximately equal sphericity as 
being close in shape. The use of sphericity is in any case arbitrary. 
Other shape parameters such ad the number of facets of vertices are 
other reasonable choice. Because we apply the estimation procedure 
to space-filling microstructures, one may wonder what is the average 
sphericity of a grain in such a microstructure. As previously mentioned, 
as an example we consider a Poisson–Voronoi diagram, where all 
weights equal. In [35,44] the sphericity has been used with other 
cell characteristics to describe the Poisson–Voronoi and the more gen-
eral Laguerre diagram, respectively. Via simulations, we can generate 
Poisson–Voronoi cells and computing the sphericities of the individual 
cells yields the distribution in Fig.  7.

In Table  3 the sphericity of various convex shapes is given, as well as 
the estimated mean sphericity of a typical Voronoi cell. Clearly, among 
all considered shapes the sphericity of the cube is closest to the mean 
sphericity of a typical Voronoi cell.
7 
Fig. 8. Estimates of the volume distribution function of the cells of a Poisson–Voronoi 
diagram based on different shapes.

4.2. Verifying the choice of grain shape using the disector

A classical stereological technique for estimating the expected num-
ber of grains per unit volume 𝑁𝑉  is called the disector [45]. It may also 
be used to estimate the mean grain volume since E(𝑉 ) = 1∕𝑁𝑉 , for 
a space filling structure consisting of 𝑁𝑉  cells in a unit volume body. 
The disector allows for unbiased estimation of 𝑁𝑉  without assumptions 
on the grain shape. It requires two (close) parallel sections which are 
a known distance apart. Ideally, we would like to guarantee that no 
grains are lost between section planes, such that there are no grains 
between the two planes that we cannot observe. Let:

• 𝑄+: the number of grains which are observed in the top section 
but not in the lower section.

• 𝑄−: the number of grains which are observed in the lower section 
but not in the top section.

• 𝐴: the area of the observation window/ section plane.
• ℎ: the distance between the section planes.

Then, 𝑁𝑉  may be estimated via:

�̂�𝑉 = 𝑄+ +𝑄−

2𝐴ℎ
.

Let us first proceed as before, we have various shapes we can consider 
to estimate the grain volume distribution using a single section. The 
result of the simulation of one Poisson–Voronoi diagram are shown in 
Fig.  8. This particular realization of the Poisson–Voronoi diagram has 
78862 cells.

For each of the estimates we can also compute the mean volume. 
We have estimates of the distribution function 𝐹𝑉  denoted by 𝐹𝑉 . Then, 
the mean volume corresponding to 𝐹𝑉  is given by:

∫

∞

0
𝑥d𝐹𝑉 (𝑥).

In Table  4 the estimates for all the shape previously considered are 
shown.

In Fig.  9 mean grain volume estimates of the Poisson–Voronoi 
diagram are shown. These estimates are obtained using the disector 
method using 100 pairs of parallel section planes. The actual mean 
volume (red line in Fig.  9) is 12.68, which among the considered 
shapes, is closest to mean grain volume estimates obtained using the 
cube and the octahedron. In the context of this paper, we propose 
the disector method not as a tool for selecting an appropriate grain 
shape, but rather as a diagnostic approach to validate the grain shape 
assumptions made during the estimation process. In practice, one can 
take parallel sectional planes from a steel sample and then apply the 
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Fig. 9. Histogram of mean grain volume estimates of a Poisson–Voronoi diagram 
obtained using the disector. The red line indicates the actual mean volume.

Table 4
Estimated mean volume of the cells of a Poisson–
Voronoi diagram corresponding to the estimates 
shown in Fig.  8 based on different shapes.
Shape Estimated mean volume
Dodecahedron 9.959
Kelvin cell 9.621
Cube 12.35
Octahedron 12.35
Tetrahedron 16.20

disector technique to estimate the mean grain volume without any 
shape assumption. By comparing the estimated mean volumes from 
both a shape assumption and the disector method, which should ideally 
be close, one can validate whether a specific shape is a reasonable 
assumption for the given sample.

5. Application to experimentally measured EBSD data

In this section, we investigate an experimentally measured mi-
crostructure obtained using the Electron Backscatter Diffraction (EBSD) 
technique. The initial microstructure and crystallographic texture of the 
material were measured across the thickness (ND — normal direction) 
perpendicular to the rolling direction (RD) (see Fig.  10). The EBSD scan 
area is 500 μm × 500 μm. Standard metallographic techniques were used 
to prepare the specimen for characterization. Analysis of the EBSD data 
was performed using TSL OIM software. The material used in this study 
is Interstitial-Free (IF) steel. For this example, we have the 3D EBSD 
information available using the serial sectioning technique [22].

Following a standard postprocessing procedure, and discarding the 
small grains located at grain boundaries, we obtained a sample of 1506 
fully observed grains A histogram of the observed section areas and a 
histogram of the observed grain diameters (( 4𝐴𝑟𝑒𝑎𝜋 )1∕2) is shown in Fig. 
11.

For all the shapes considered, we estimate the volume distribution 
function. These estimates can be directly compared to the experimental 
volume distribution in the 3D EBSD data set (Fig.  12)

From the comparison of the different shapes shown in Fig.  12 as in 
the Laguerre Voronoi simulation the cube and octahedron appear to be 
the best shapes.

6. Discussion

This paper critically addresses the problem of estimating 3D grain 
size distributions from 2D cross-sections, highlighting the importance 
8 
Fig. 10. Electron backscatter diffraction (EBSD) measurements of an IF steel sample. 
The figure shows the IPF color map parallel to the normal direction for a section of 
500 μm × 500 μm.

of selecting an appropriate grain shape when applying the estimation 
procedure to space-filling microstructures. Our findings, supported by 
simulations using Laguerre Voronoi diagrams and a real-world data 
set, demonstrate that the choice of grain shape significantly affects 
the accuracy of the stereological estimates. Notably, our results sug-
gest that while traditional shapes like spheres and tetrahedrons often 
provide poor estimates probably due to their geometric simplicity or 
complexity, shapes such as cubes and octahedrons yield more reliable 
results.

The use of the disector method, not as a selection tool for grain 
shapes but as a diagnostic tool, has utility potential. It provides a base-
line for validating the assumptions made during the estimation process, 
ensuring that the chosen grain shape assumptions are reasonable for the 
given sample.

While the study has provided valuable insights into estimating 3D 
grain size distributions from 2D sections, there are natural challenges to 
be addressed in the future. One is related to the fact that our estimation 
method is inspired by a model considering ‘randomly sized and -
oriented shapes randomly positioned in the 3D medium’ and applied 
to space-filling structures. It is interesting to develop methods really 
based on models (like Voronoi, Laguerre Voronoi or newly developed 
models such as generalized balanced power diagrams [46]) leading to 
space-filling structures.

The assumption of isotropy in the grain structures is another issue. 
The models considered assume that the morphological properties of 
the grains are uniform in all directions, which is often not the case 
in real-world materials. Many materials exhibit anisotropic behavior 
due to directional cooling, applied stresses, or processing methods that 
align the grains in particular orientations. Ignoring anisotropy can lead 
to significant deviations between the estimated and actual grain size 
distributions.

As it comes to the simulated data, the use of periodic boundary 
conditions is a practical approach to manage computational bound-
aries. However, this assumption may not accurately reflect the true 
edge conditions of real materials. In natural or manufactured materials, 
the boundary effects can significantly influence the microstructural 
features near the edges, which are not captured by periodic boundary 
conditions. This can skew the estimation of grain size distributions, 
especially for materials where edge effects are pronounced.

Sphericity, as well as other shape parameters, may help in shedding 
some light on why some shapes work better than others. However, 
in the current status, the estimation procedure proposed in this paper 
does not incorporate grain shape information as an input, instead it 
is specific for the assumed grain shape. As a future development, the 
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Fig. 11. Left: Observed grain areas in 2D EBSD data set. Right: Observed  grain diameters in 2D EBSD data set.
Fig. 12. Estimates of the biased volume distribution function (left) and estimates of the volume distribution function (right) based on different shapes.
inclusion of shape parameters as an input of an estimation procedure 
must be explored.

Finally, both the sphericity and the disector method look promising 
but they need to be validated using real data. Having sectional data and 
data on the 3D grain surface areas, one can use the disector method and 
the sphericity measure as diagnostic tools to validate the grain shape 
assumption made during the estimation process.

7. Conclusion

The results of this paper highlight the necessity for sensible grain 
shape selection in the estimation of 3D grain size distributions from 2D 
data. By using shapes that more accurately represent the microstruc-
tural characteristics of the material, such as cubes and octahedrons, 
we achieved more accurate stereological estimates. Future work should 
focus on enhancing these methodologies by integrating models that 
incorporate space-filling characteristics, anisotropy and more realistic 
boundary conditions. Developing these advanced models will enable 
more accurate and generally applicable tools in materials science, 
contributing to the understanding and characterization of complex 
materials.
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