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SUMMARY

In this report a design method for linear proportional and linear dynamic output
feedback regulators for discrete time systems is presented. It is shown how this
design method may be applied to the design of aircraft automatic control

systems.
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0. SYMBOLS AND FRAME OF REFERENCE

0.1. Symbols

A system matrix
B control input distribution matrix
¢ ' mean aerodynamic chord
C _ observation matrix
Cm pitching moment coefficient
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dq number of components of controller state vector 9,
du number of components of input vector u
dv number of components of observation noise vector v
dw number of components of system noise vector w
dx number of components of state vector x
dy number of components of observation vector y
dz number of components of vector of controlled variables z
D output matrix
D dimensionless differential operator



gain matrix

flight altitude

observation noise distribution ﬁatrix
criterion value

discrete time indication

stétic gain of elevator servo

moment of inertia about the Y-axis .
criterion value

integral scale of turbulence

stability and gust derivatives in abbreviated notations

§

aerodynamic moment about the Y-axis, system matrix of the discrete~

time.controller

input distribution matrix
matrix of Lagrange multipliers
angﬁlar rate of'pitch

controller state

weighting matrices

state covariance matrix, wing area
time

control input vector, component of the

airspeed

V along the



aircraft's X—axis

u

v

control input vector

dimensionless horizontal gust velocity
observation noise vector, noise signal
airspeed

system noise vector, noise signal

aircraft weight

state vector

stability and gust derivatives in abbreviated notations

aerodynamic force along the aircraft's X—axis
observation vector

vector of controlled variables

stability and gust derivatives in abbreviated notations

aerodynamic force along the aircraft's Z-axis
angle of attack

gust angle of attack

input distribution matrix

elevator deflection

kronecker delta-function

sampling interval



] angle of pitch
B, dimensionless mass parameter
o air density
h
c; standard deviation
o]
a
g
%
T time
T, time constant of elevator servo
Ty time constant of integrating element
3] transition matrix
d(w) power spectral density function
¢ noise input distribution matrix
w circular frequency

0.2. Frame of reference

The frame of reference is ‘a right handed system OXYZ of orthogonal body axes.
The origin O lies in the aircraft's centre of gravity. The X0Z plane coincides
with the aircraft's plane of symmetry. The positive X—axis 1s fixed relative to
the aircraft. It points forward, parallel to the airspeed V in the steady flight
condition. The positive Y~axis points to the right, the positive Z-axis points
downward.



1. INTRODUCTION

Due to the rapid development in digital electronics, digital computers become

cheaper, smaller and more versatile than their analog predecessors. Furthermore

they weigh less and consume less power. Replacing analog computers in aircraft

by digital ones offers other advantages too. Some of these are:

1. the amount of electrical wiring is decreased using databus structures.

2. non linear functions can be implemented in a relatively easy way.

3. the computer programs can easily be exchanged and parameter settings altered.

4., the increased computational capacity may be used to perform more complicated
computations on board the aircraft. :

As a result the next generation of airplanes will exhibit the extensive use of
digital computers on board the aircraft.

This report discusses a design method for linear discrete time regulators to be

_implemented in a small digital computer. Since the regulators feature output

édback and an optimization procedure 1is used in the design method, this type

~~~~~ regulator .is. also referred to as 'Linear discrete time optimal output

':*The design method has been embodied in the Control System Analysis and Synthesis

Program package for Aerospace Research (CASPAR), developed by the Disciplinary
Group for Aircraft Stability and Control at the Department of Aerospace Engin-
eering of Delft University of Technology. This program package is extensively
described in ref. 1, some of the subroutines are described in ref. 2.

Chapter two presents a design method for proportional and dynamic output
feedback regulators.

Chapter three shows this design method applied to the design of aircraft

controllers performing a stabilization task.
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2. A DESIGN METHOD FOR OUTPUT FEEDBACK REGULATORS

2.1. Introduction

During the last two decades much attention has been paid to the design of
control systems for large multi-variable systems, using 'Modern Control Theory'.
A characteristic feature of 'Modern Control Theory' is the simplicity gained
when dealing with a more complex, multi-variable structure of the system that is
to be controlled. B
Nonetheless, even for simple cases the multivariable approach may have Iits
merits, particularly when dealing with severe limitations on input signals, or
when dealing with systems where output (sensor) signals are intricately related
to state variables and are few in number. The multivariable approach will
prevail when dealing with systems or subsystems exhibiting significant inter-
action in system responses, such as may occur in aircraft having low-frequency
elastic modes or for complicated control tasks (see for instance refs. 3 and 4).
In these cases the single-input-single-output-approach may prove cumbersome to
apply and satisfactory control may be hard to obtain.
In developing a controller, using either a single-input-single~output or a
multivariable approach, the primary design objective is to stabilize the system.
Furthermore, by implementing a control system, the designer attempts to adjust
the characteristics of the system to be controlled, in order to comply with the
general design specification. Desired characteristics may thus be indicated as
secondary design objectives (as opposed to the mandatory characteristic
expressed in the primary design objective). In Modern Control Theory these
secondary design objectives are expressed in terms of a mathematically
formulated performance criterion. A widely used performance criterion is the so-
called ‘'quadratic cost function' which essentially expresses the compromise
between the control effort and the deviations from the desired system state in
terms of the variances of input and state variables for the closed-loop system.

Since the behaviour of a system may be qualified in terms of various, often

intricately related, characteristics, the designer is usually compelled to seek

a compromise, which, in terms of a 'performance criterion', boils down to

mutually weighing the importance of the various characteristics included in the

criterion. Furthermore, not all desired characteristics can be expressed direct-—
ly in a mathematical formulation. It will therefore be clear that optimization

of a performance criterion will in itself not wusually lead directly to a

satisfactory solution, but will require some tuning of weighting functions as

indicated by further evaluation of the controlled system (note that this
essentially also holds for design methods that employ alternative expressions
for a 'performance criterion' such as root-locus or Nichols~diagram design).

In the design method presented in this report, a quadratic cost function will be

used to obtain the feedback control gains for a number of output variables.

Output feedback is applied rather than state feedback since:

1. very often it is not possible to measure the complete state of a system (ref.
5, 6, 7); .

2. in general it is desired to control only some state variables, very often
only these variables need to be measured;. -

3. although the performance of a state feedback controller theoretically will
yield improved result, the cost of installing and maintaining a large set of
observation instruments for directly measuring all state variables can be
prohibitive, especially for large-scale systems.,

This chapter introduces the system to be controlled. It is represented by a
linear model. The performance criterion is given in the form of a quadratic cost
function, weighing the deviations from their reference values of the various
control input signals, and of the controlled variables. The controlled variables
essentially define the control task the controller will perform. They are
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represented as linear combinations of state and input variables.

It will be shown that the necessary conditions for minimization of the chosen
cost function, when employing an output feedback gain matrix, are givem by a set
of three recurrent relations. Solution of this set of equations yields the
elements of the feedback gain matrix. This basic result is subsequently extended
to encompass the design of a dynamic output feedback regulator.

2.2. Design of linear proportional output feedback regulators

Consider the linear, discrete time, time invariant system with state equation
(see fig. 1):

x(k+1) = & x(k) + T u(k) + ¥ w(k) (2.1)

. . where x(k) is the dx dimensional state vector,

“14(k) is the du dimensional control input vector,

: i:the dw dimensional system noise vector,

..the dx * dx dimensional transition matrix,

the dx * du dimensional control input distribution matrix,
‘the dx * dw dimensional noise input distribution matrix.

The disturbing system noise vector w(k) is a sampled sequence of mutually
uncorrelated, zero mean, stochastic vector processes. The dw * dw dimensional
diagonal system noise covariance matrix is given by:

T, o\ 1 _ i | | |
E {w(i), w (D} = ¢ 8(1-1) (2.2)
An example, presenting the equations describing a large jet transport aircraft,
is discussed in Chapter 3.

The output equation of the system reads (see fig. 1):
y(k) = C x(k) + H v(k) (2.3)

where y(k) is the dy-dimensional observation vector,
v(k) 1s the dv-dimensional observation noise vector,
C is the dy * dx dimensional state observation matrix,
H is the dy * dv dimensional noise input distribution matrix.

The observation noise vector v(k) is a sampled sequence of mutually uncorrelated
zero mean stochastic vector processes, possibly correlated with the state noise
vector w(k), but uncorrelated with the state =x(k). The dv * dv dimensional
diagonal covariance matrix is given by:

E {v(1), v/ ()} = ¢ 8 (i-1) | (2.4)

The correlation between the sequences w(k) and v(k) is given by the covariance
matrices: :
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E [w(1), v.(D} = C_ 6 (1-3) = oy 6, (1-1) (2.5)

The vector of controlled variables z(k) is a linear combination of the state
x(k) and the control input ulk).

z(k) = D, x(k) + D, u(k) ' (2.6)

where z(k) 1s the dz-dimensional vector of variables to be controlled
D is a dz * dx dimensional output matrix,

D; is a dz * du dimensional output matrix. ‘

The system will be controlled using a proportional output feedback regulator.
This type of regulator may be described in the ideal case by the following
equation: .

u(l) = =F_ y(k) | (2.7)

where Fy is a du * dy dimensional gain matrix. In practice, however, it is not

possible to process the observations and to generate the control signals
instantaneously, so a computational delay of at least one sample will occur. For
sufficiently high sampling rate, the effect may be considered negligible, and
the delay need not be modelled. In the next section it will be indicated how
this delay may be taken into account, if necessary.

4The control problem can now be formulated as follows. Given the linear system
described by eqs. (2.1), (2.3) and (2.6), where it is assumed that the system is
both observable and controllable (see ref. 5), compute the stabilizing time

invariant gain matrix Fy, occurring in eq. (2.7):

u(k) = =F_ y(k) | (2.7)

which will minimize the criteriom:

!

J= tn 3 {2700 R 2() +u'(R) R u()} (2.8)

Here Rz and Ru are positive, semi-definite weighting matrices with dimensions

dz * dz and du * du respectively. It should be noted from eq. (2.8) that this
criterion constitutes a balance between the deviations of the controlled
variables from their nominal values and the control energy required to maintain -
those nominal values. Consequently, as an initial choice for the elements of Rz )

and Ru’ values may be given that are closely related to the maximum variances

the designer wishes to allow for the various controlled and input variables
(ref. 9, see also refs. 6, 8). As already remarked in the introduction, usually
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further tuning of the weighting matrices will be necessary to establish satis-
factory performance in terms of criteria such as damping, settling time, rise:
time and indifference to plant parameter variations. Note that, through the use
of the controlled variables =z, essential limitations to the solution of the
optimization problem imposed by the open—-loop system characteristics (i.e. the
attainable state-space) are included in the problem formulation. Thus, the
optimization problem is a constrained one. In the remainder of this section it
is shown how this constrained control problem can be solved.

Substitution of eq. (2.3) into (eq. (2.7) yields:
u(k) = -F C x(k) - F_H v(k) | , (2.9)
Substitution of eq. (2.9) into eq. (2.6) yields:

Fy C x(k) - D Fy H v(k) (2.10)

2 2

“THé" following expression for J may be obtained substituting eqs. (2.9) and
(2.10) into eq. (2.8):

k .
3= tim 2% {xT(k)(0RD.- DR D,FC~- CFDRD+ CFDRDFCH
- 17271 17272y y 2 z'1 y 2z 2y
k,> = k—k
1 o)
T_T T T.T.T T_T '
"CFRFC) x(k) + v(K)IHFDRD.FH+ HFRFH| v(k 2.11
Ry ) x(k) (k) ( PRy Ry ) v()} ( )

For sake of simplicity in notations, the following matrices are defined:

A T

R, =Dl R D (2.12)
-

RIZ = Dl Rz D2 (2.13)
A -

R22 = D2 Rz D2 + Ru (2.14)

By virtue of these definitions and by introducing trace operations (see the
Appendix), the criterion J may be rewritten as follows:

) o . _ .TTT , TT . T |
3 = ex{(Ry; = R ,F.C = CF Ry, + CFR,F C) L E{x(k),x (K)}} +
T_T
tr {H FszszHCVV} , (2.15)
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Next the state covariance matrix S(k) is defined as:

A T .
s(k) = E{x(k), x (k)} . ¥ (2.16)

In case the closed 1loop-controlled system is asymptotically stable, the
covariance matrix S(k) will reach a finite steady state value, denoted as S.
Using this definition the criterion J (eq. (2.16)), may be rewritten as:

T_T.T T_T -
J=tr {(R}; - R)pF C = CF Ry + C FszszC)S} +
(2.17)
T_T
tr {H F iRy F B Cou)
Substitution of eq. (2.9):
u(k) = -Fy c x(k) - Fy H v(k) (2.9)

into the state equation of the uncontrolled system (eq. (2.1)), yields the state
equation of the controlled system:

x(k+l) = (2 - T F, C) x(k) - F‘Fy H v(k) + ¥ w(k) ' (2.18)
The propagation in time of the covariance matrix S of a system:
x"(k+1) = &' x'(k) + ¢' w'(k)

where w'(k) is a sequence of mutually uncorrelated, zero-mean vector-valued
stochastic processes with variance matrix C , ,, may be described in terms of
the system perturbations w' and the noise ingﬁg distribution and system matrices
¢' and @'. This yields a so-called Lyapunov-equation:

(k1) = &' S(k) &' + $1C 4 o't

(2.16b)
S(ko) = So
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(see ref. 5). _
Thus, the steady-state covariance matrix S of the system represented by eq.
(2.18):

A
§= Um E [x(k), x (1)} = lim E {x(ktl), x (k+D)} (2.16¢)

k » = k > =

or, alternatively, after substitution of eq. (2.18) in eq. (2.16¢c):

5= lin E{[(®@-TF O x(k) = T R, OB v(k) + ¢ ()],
....... k> (2.19)
[(@-TF, © x() ~TF EwL +4¢ w() ]}
may be found from the Lyapunov equation:
(8-TF C S(3-TF QT -5S+¥cCc_ ¥-TF HC ¥
R A y wW y wv
(2.20)
+¥c HE R T +TF HC_ H F I =5
wv y y v y (o]

using eqs. (2.2), (2.3), (2.4) and (2.16c).

The above stated equation yields the steady state value S of the state

covarliance matrix S of the controlled system, for given gain matrix Fy and

system noise and observation noise covariance matrices C_, C and C . For
ww’ owv v

slight perturbations 6Fy of the output feedback gain matrix Fy, the value J+AJ

of the augmented criterion is approximately given by the original value J and
its first-order variation 8J:

JH+AT=J+8J (2.21a)

Denoting:

>

L=J+ 8J o (2.21b)
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it is a well-known result that a minimum for J may be found by minimizing, for a
certain Fy:

L=J+tr [P So] (2.21¢)

’

where P is a matrix of Lagrange multipiiers, and S follows from eq. (2.20) for
the given value of F_. Thus the constrained optimf&ation problem, laid down in

equations (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.8) and the demand for
stability of the closed-loop system, 1s converted into the unconstrained
optimization problem of minimizing L. .

Substituting eq. (2.17) and eq. (2.20):

T_T TTT o=
L=tr {(R; + C F RopFC = CTFRyy = R ,F 08 +
+[(<§-FFC)§(<D-PFC)T—-S+WC o' - rF nct ¢
) y Yy ww Yy wv
- ¥¢_H'FTI + TF HC HTFTI'T]P} + tr {HTFTR F HC_} (2.214)
wv oy y ovw oy - y 22'y vv

Since L is expressed in terms of the state covariance matrix S, the matrix of
Lagrange multipliers P, ‘and- the output feedback gain‘matrix Fy, the necessary .

conditions to be placed .upon L for J to have a minimum at a certdin Fy are:

5_1: -0 _ (2.22)

83

5L

L. _ (2.23)

5L

5F - 0 o (2.24)
y

Elaborating the rules for matrix trace operations given in the Appendix, the
following equations may be derived: '

SL T ’ TTT
;E-— (® - I‘ch) P(® - rch) =P+ Ry -C FleZ

(2.25)

T.T :
- RlZFyC + C FszszC =0
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SL _ ,n _ o T rm T 3 T _ T ,T
sp = (& - TF.0) § (@~ IF.C) S+ ¥C_ V' - IFHC ¥
(2.26)
- ¥C_HFT + I'FHC_HF.T = 0
wvo oy y wiy
8L T o T T=TT T T
o = 2{(TPT + Ryy) Ty (CSC” + HC_H') - R,5C | T'PYC_H
, (2.27)
- rTpgsct} = 0
T . -1,,.T T - T, 6 .T Ty, =AT T,~1
Fy = (T°PT + R,,) ((R12 + T'P®) SC° + I PY¥C_H )(csc’+ HC  H')
(2.28)

Eqs. (2.25), (2.26) and (2.28) contain the solution of the control problem. The
gain matrix Fy following from eq. (2.28), is influenced by the specified system

noise- and observation noise covariance matrices through the solution S obtained
from eq. (2.26), and by the chosen weighting matrices through the solution P
obtained from eq. (2.25). The solution of this set of equations may thus be
obtained by iterative solution of eqs. (2.25), (2.26) and (2.28). To initiate
the iteration process, a stabilizing control law Fy should be substituted for

Fy in egs. (2.25) and (2.26), and the solution Fy m%y subsequently be found by
updating Fy with the solution Fy found from eq. (2.28) for each iterat%on
cycle. For %ractical purposes the iteration process can be started specifying a
simple stabilizing control law F found by applying common engineering sense
Alternatively one might consider %o compute a state feedback control law Fx
first, and to use the solutiomns S and P for this stabilizing state feedbalk
controller to compute . the initial wvalue Fy eq. (2.28). State feedback control

» is treated extensively in ref. 5. s

The conditions stated in eqs. (2.22) through (2.24) are only necessary condit-
ions., Therefore the calculated solution Fy may lead to a local minimum of J

which may not be unique. Fufthermore, convergence of the iteration process can
only be guaranteed if the controlled system has well-damped responses. A tight
formulation of necessary conditions for the existence of a solution has not been
proposed as yet. Sufficient conditions are discussed in a.o. ref. 10, 11, 12.
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2.3. Design of linear dynamic output feedback regulators

In this section a design method for dynamic output feedback regulators is
presented. Reasons for investigating this type of regulator are:

1. proportional output feedback regulators usually cannot eliminate completely
the effects of constant disturbances (see ref. 5);

2. suitably chosen dynamic output feedback regulators are less sensitive to
system parameter variations (see refs. 6, 7);

3. although not all systems may be stabilized by applying proportional output
feedback, this may in principle be achieved using dynamic output feedback;

4, reconstructive action i1is further enhanced in a dynamic output feedback
regulator. Sensor requirements may therefore be relinquished further.

A dynamic controller can be described by the following discrete time system ‘

equations, see refs. 5, 7 and fig. 2:

"

q (k1) = M q (k) + N y(k) _ (2.29)

[

u(k)v -Fq q. (k) - Fy y(k) (2.30)

Where qc(k) is the dq dimensional state vector of the controller,

yv(k) is the dy dimensional observation vector,

u(k) is the du dimensional control output vector,

M is the dq * dq dimensional transition matrix of the controller,

N - is the dq * dy dimensional observation input distribution matrix,
' Fq,Fy . are gain matrices of dimensions du * dq and du * dy respectively.

The value of dq, i.e. the dimension of the controller state vector qc(k) has to

be specified by the designer. Although the system matrices M and N of the
controller may be included in the optimization process (see ref. 10, 12), the
designer may wish to define explicitely the dynamics of the controller. Since
usually the designer has some knowledge about the system that 1is to be
controlled, specification of the matrices M and N should pose no undue problems,
while yielding benefits in terms of transparency of design process as well as
controller implementation. The design process will thus be discussed for given
matrices M and N, which will define the differentiating or integrating action,
or both, specified for the controller. In chapter 3 the specification of the
matrices M and N will be demonstrated. Finally it should be noted that eqs.
(2.29) and (2.30) may be used to model the computational delay occurring in the
regulator. In that case the matrix Fy will be equal to =zero.

Let the uncontrolled open—~loop system be given by thé‘foliowing discrete time
equations:

x(k+1) =@ x(k) + T ‘u(k) + ¥ w(k) (2.1)
y(k) = C x(k) + H v(k) ' (2.3)
2(k) = D, x(K) + D, u(k) | | (2.6)
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The variables in these equations have been defined in section 2.2.
A block diagram of the controlled system is given in fig. 2.

The control law design problem can now be formulated as follows. Given the
linear system described by eqs. (2.1), (2.3) and (2.6), compute the linear time
invariant dynamic controller described by eqs. (2.29) and (2.30), which will
minimize the criterion:

£

J=1im T {z7(K) R z(k) + ul(k) R u(k) + q (k) R_q (K} (2.31)
k> = =k z u c q ‘c

It should be noted that the controller state q. (k) has been added to the
criterion. The matrices R , R and Rq are positive, semi-definite weighting

s matricess withs:dimensions dz * dz, du * du and dq * dq respectively. Since the

.matrices.M. and .N.are specified by the designer, it remains to compute the gain
matrices Fy:and Fq.

ﬁsubStitution'of~eq. (2.3) into eq. (2.29) yields:
qc(k+1) =M qc(k) + N C x(k) + N H v(k) (2.32)

Substitution of eq. (2.3) into eq. (2.30) and substituting the result into eq.
(2.1) yields the state equation of the controlled system:

x(k+1) = [6 - T F, c] x(x) - T Fq q (k) + ¥ w(k)l— IF B v(k) (2.33)

At this point the augmented state vector x(k), the augmented observation vector
y(k) and the augmented noilse vector w(k) are 1ntroduced defined as:

A
x(k) = col [x(k), q (k)] , (2.34)
- A
y(k) = col [y(k), q (k)] (2.35)
w(k) = col [w(k), v(k)] (2.36)

From eqs. (2.2), (2.4) and (2.5) it follows that the covariance matrix Con is
given by: W

- - ~T wWW wv
Co~ = E{w(i), w ()} = 8 (1=1) (2.37)
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S, = Efw), v} = B (1-1) (2.38)

C
v

The augmented state equation is obtained by combining egs. (2.32) and (2.33):

d-TF C -TF v -TF H
~ y q 4 o y ~
x(k+1) = x(k) + w(k) (2.39)
N C M Lo N H

The observation equation reads:

N c o] _ H | »
y(k) = x(k) + v(k) : (2.40)
o I 0 _ .

In order to obtain the solution of the optimization problem, leaving the spec—
ification of the matrices M and N to the designer, the following partitioned
matrices are introduced:

~ e o0

o = . (2.41)
NC M

T = : . (2.42)
ol

~ cC 0

C = (2.43)
0 I

F =[F F 2.44

y [ y ] ( )

~ (v o

¥ = : (2.45)
0 N H

L

~ H . o

H = : - (2.46)
0 |- ' ' :




Using these matrices,
following equations:

x(k+1) = [3 -
y(k) =
YR

20

the controlled

FF T

X0 - T F
y (k) y

T X(k) + H v(k)

Y(k)

H &(k) + ¥ w(k)

Similarly the equation of the controlled variables reads:

z(k) Sl *(k

)y + D2 u(k)

(2:47)

system may be rewritten to yield the

(2.48)

(2.49)

(2.50)

(2.51)

Substituting eqs. (2.3), (2.6) and (2.30) into eq. (2.32), and using properties

of matrix calculation
obtained:
J = tr{[Rll—R
T
. D1R2D
Where R11 =
0
T
N DlRZD
Rip =
0
~ T
Ryg = DyRy0
S = Lim Efx

k > o

), %K)}

s, the following expression for the
12 Fy C-C E R H#C FszszC]S} + tr{H F Ry
1 0

R

q
2
2 + Ru

criterion J is

T _HC
vy vv

}.

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)
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Since the control law design problem has been formulated in the same terms as
used in the previous section, the solution may be obtained directly from the
following expressions, similar to eqs. (2.28), (2.25) and (2.26):

F - (FI3T4R,, ) 7 ((R] 4758 5C ™+ BUC 7T (BT 4HE, A (2.57)

(B-TF_3)5(3-TF_ &) T-3+¥0~0-7F HoL ¥1-¥0~ HFoTT
y y Wy WY Wy

T ETe #F T =0 (2.58)
y wiy
(¢~PF c) P(@-Pch) B+R 117C F Ry R F CHCTEOR, L C = 0 (2.59)

Where P is a matrix containing Lagrange multipliers.
The gain matrix Ey can be computed from eqs. (2.57) through (2.59) in the same
way as described in section 2.2. Subsequently, the partitions Fy and Fq may be

taken from fy.

2.4, Concluding remarks

In the previous sections the design of linear proportional and dynamic output
feedback regulators has been discussed. It is shown that the control law can be
computed by solving a set of three matrix equations. Since this set of equations
only poses necessary conditions for optimal output feedback, uniqueness and
existence of stabilizing solutions cannot be quaranteed at this' stage. However,
for suitably chosen initial stabilizing solutions Fy , optimization algorithms

will usually converge although convergence may be® slow (and consequently,

computation time may be high).

In the output feedback regulator optimization process, reconstructive and

control actions are closely related. However, regulator control and reconstruct=-

ion properties may be influenced separately by adjusting the weighting matrices

R, R and R, respectively the variance matrices C_, C and C . The latter:
z’ u q v’ ovw wW

are usually chosen on the basis of physical properties of the system to be
controlled. The former are usually tuned through further evaluation of the
closed-loop controlled system. Increasing the value of the elements of R will
shift the poles of the closed-loop system to the left, decreasing the system s
sensitivity to parameter variations, but increasing the control effort. This
effect may also be noticed when decreasing the value of the elements of Ru.

Individual tuning of elements of a weighting matrix will primarily influence the
related system variable(-s). Note that a-priori knowledge of system variable
interrelations may for instance be acquired through modal decomposition of the
system equations.
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3. DESIGN OF OUTPUT FEEDBACK REGULATORS FOR FLIGHT CONTROL SYSTEMS

3.1. Introduction

In the previous chapter a design method for proportional and dynamic output
feedback controllers, applicable to discrete time systems having stochastic
input signals, has been discussed. In this chapter the theory is applied to the
design of an aircraft controller.

In section 3.2 a continuous time system model describing the symmetrical motions
of an aircraft is presented. In section 3.3 a discrete time version of this
system model will be derived. In section 3.4 a proportional and a dynamic
regulator will be computed.

3.2. The aircraft model

The linearized differential equations describing the symmetrical motions of an
_ aircraft due to atmospheric turbulence and control input signals read (see refs.
: :‘ 14) '1..:.: -

- NP 1
- 2uD CX CZ 0 0 u
u a 0
CZ CZ ~ (2u ~C )Dc —CX 2p + C 0 a
u a 0 q
0 0 -D 1 0] 6 =
c
C C_ +C_D 0 c_ =-2p X2p 0 3<
m m m, C cyec v
u a & q
0 -1 1 0 D h
C -
- n L CJ
(3.1)
fo ] _ - -
x Cx. Cx Cx, \' Y
u a a &
g g g g
Cz<S €z €z, ¢z Cy, D u,
u u 04 a
g g g g
0 & + 0 0 0 0 o4
e g
C C C C C D a
m m m, m m. cg
8 u u a a
g g g g
0 0 0 -1 0
L . L . L .

The numerical values of the matrix coefficients used in this report, pertaining
to the BAC SUPER VC 10, are taken from ref. 14 and given in table 1. The above
mentioned set of equations can be written in the general form:
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X=AX+Bu+Ww (3.2)

after eliminating the term Cm_Dca in eq. (3.1). This can be accomplished by
&

multiplying the second row of eq. (3.1) with 2uC-C summing the result and the

Zl’
. a
fourth row, and finally dividing the first row by ch, the second row by

(ZpC-CZ ) and the fourth row by Zuch. The result is, in abbreviated notation:
&

Fe 1 T - F . ~
u X X X 0 0 u.-l 0 T
u a 86
a zu za z9 zq 0 a z6
< =0 0 0 1 0 o+ 0|+ & +
\Y e
de ac
v Pu Pe To mq 0 v 2
3 o -1 1 o of |2 0
n..c‘-.. _Lc__—
r T 7w 3.3
o *a *a *z ug (3.3
g g g g
z Z. z Z, D
u a a cg

The matrix elements written in terms of the elements of eq. (3.1) in this
.equation are presented in table 2.

The disturbing input signals, the gust velocities ug and ag and their first

order derivatives, can be modelled as the output signals of linear filters,
driven by white noise. These filters may be computed from the power spectral -
density functions of the gust signals. These spectra are, according to the
Dryden model:



auxiliary variable az has been introduced:

v
L
g g

<o

w2'

The elevator servo is modelled as
following differential equation:

Here ée is the commanded elevator deflection.
c

a first order system,

- L
‘horizontal gusts: & . == o2 V& 1 (3.4)
ugug ug wL 2
1+ (—75)
wL
» : 1 L 1+ 3 0-5&)
vertical gusts: d == o2 £ (3.5)
a « T a_ V 2
: g 8 g wL
1+ (=8)
A
The following differential equations, describing the turbulence filters,
pertaining to these spectra may be derived (ref. 11):
- 2v
ug + GG Lg v, (3.6)
g
. B T 7] - c || 3v ]
& 0 1 a o, i\l
a VvV L
g _ g g g
<.
v -, _ _ I el
o c c * c c '
ag -1z 2 I \ag (1-2V3) T % V I
L J — g gd L .\ - L g g g‘
(3.7)
Here Wy and.w2 represent white noise signals with intensity 1. Furthermore, the

(3.8)

described by the

(3.9)

Adding the gust turbulence filters and the servo model to the aircraft model,

yields the following augmented system model:
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x = A+ x + Bf u + W+ w (3.10)
+ ~ c h - *
Where x = col [u, a, 6, %—3 E; ée, ug, ag, ag]

u =28

c e

c

+

w = col [wl, wz]

+ .
Note that controllability of the pair (A+, B ) is guaranteed on the basis of -
physical considerations.

To demonstrate the applicability of the control law design method presented in
the previous chapter to the design of aircraft regulators, a proportional as
well as a dynamic altitude regulator will be computed. To facilitate control of
the aircraft, the angle of pitch 6 and the altitude h will be measured. The
vector of controlled varlables z contains two variables, the flight. altitude h
and the rate of pitch q. The latter is considered a controlled variable since,
for reasons of comfort and load limitations, pitch rates should be small.
Considering q a controlled variable implies the possibility to weigh the
deviations of the altitude h and the rate of pitch q versus the control input
signal & .

3

c K

The observation equation reads:

+
y=Cx +Hv ' : (3.11)

0O 01 0 0 0 0 0 O
where: Cc = _ (3.12)
0 0 0 0 ¢ O O O O

H = (3.13)

<
1]

éol [vl, VZ]

Here vy and vz‘represent white noise signals with intensity 1.

The equation of controlled variables reads:

+.
z=D, x +D

1 (3.14)

2‘uc
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0 0 0 ¢/Vv0oOOOO
Where: D, = _ (3.15)
000 O c0O0O0O0

(3.16)

o)
1]

The matrices A+, B+, W+, C,, H, D, and D, are given in table 3.

’
The eigen values and relaged response cfiteria of the uncontrolled aircraft are
given in table 4.

3.3. Discretization of the aircraft model

“'Befo¥e ‘applying ‘the control law design methods discussed in chapter 2, an
- .equivalent :discrete time system model of the aircraft will be presented, derived
from. the. .continuous time model. The discretization process is not treated in
depth. Detailed information about the discretization process may be found in
“ref., 7. Omitting the superscript '+' in eqs. (3.10), (3.11) and (3.14), the
aircraft in the continuous time domain 1s described by the following equations:

%(t) = A x(t) + B uc<£) + W ow(t) (3.17)
y(t) = C x(t) + H v(t) (3.18)
2(t) = D, x(t) + D, u_(t) | (3.19)

According to ref. 7 the state of the system at the sampling instant t = tk+1
can be computed from the system state x(tk), the control input u(t) and the

disturbing input signal w(t), using the following equation:

- 1
x(e, ) = &t ) x(E) + tf ®(t, > B u(®) dr
k
et
+ tf (e, >%) Wwl(e) ds (3.20)
k

Assuming the sampling interval constant and considering the system model to be
time invariant, the following equation holds:

A At
| cI:(tkH,tk) = ®(At, 0) = O =¢e (3.21)
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Where At is the sampling interval.
Furthermore it is assumed that the control signals are computed by a digital
computer and passed onto the aircraft using a zero order hold device. Therefore:

u(t) = u(tk) (tk <t < tk+1) (3.22)

Finally the disturbing white noise input signals w(t) are replaced by a sequence
of mutually uncorrelated, stochastic vectors w(t,) with covariance matrix wa.
Under these assumptions the state equation of the system reads:

x(tk+1) =& x(tk) + T u(tk) + ¥ w(tk) (3.23).

At At
Where T = f e B dx » (3.24)

0

At At
f e W dz v (3.25)
0

The discrete time output equation of the system reads:
y(ti) =C x(ti) + H V(ti) (tk <ty < tk+1) ' (3.26)

Substitution of eq. (20) yields:

t

S
'y(ti) =C@(t, t) x(t) +C / o(t,, 1) B u(t) dt
_ £
s
+ C f o) (ti’ ) Wu(t) dv + H v(ti) (3.27)
t
k

From eq. (3.27) it can be seen that if the sampling instances ty and e do not

coincide, a direct link between system input and output will be created; even if
the continuous time system does not have a direct link.

Assuming that the observation sampling instances ti’ coincide with the instances
tk on which the control signals u(tk) are passed to the system, eq. (3.27)

reduces to:

y(tk) = C x(tk) + H v(tk) - (3.28)
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The continuous time, white noise signals v(t) have been replaced by a sequence
of mutually uncorrelated, stochastic vectors V(tk) with covariance matrix va.

In a similar way the equation of controlled variables may be discretized. The
result reads:

z(tk) = D1 x(tk) + D2 uc(tk) (3.29)

replacing the time argument t, by the time interval notation k, the following
system equations are obtained:
State equation:

x(k + 1) = @& x(k) + T u(k) + ¥ w(k) (3.30)

© " Observation equation:

A.t;43~, ;L;E£5¥; € x(k) + H v(k) | (3.31)
Equation of controlled variables:

z(k) = D1 x(k) + D2 u(k) (3.32)
It will be noted that these last three equations are identical to the ones used

in chapter 2.

3.4, Examples

In this section, two experiments that have been carried through will be briefly
discussed. In section 3.2 a continuous—time system model of the aircraft +
elevator servo + gust turbulence filters has been presented. The system vectors
were defined as follows:

col (u, a, 9,

b
+
]
>
18
ol |z
o
g
R
R
*
~

u =8
e
c
+
w = col (WI’ w2)
y = col (em, hm)
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<
1]

col (vi, v2)

col (q, h)

N
1]

with system matrices defined by eqs. (3.2), (3.3), (3.7), (3.9, (3.11), (3.12),
(3.13), (3.14), (3.15) and (3.16).

This system model has been discretized as described in section 3.3, for a sample
rate of 20 times per second.

Subsequently a regulator has been computed. Table 5 lists the specified weight-
ing matrices and resulting gain matrix which were arrived at after -some re-
adjustments in the initial specification, according to the principles described
in chapter 2. The eigen values and related variables of the controlled aircraft
are given in table 6.

The performance of the regulator has been evaluated using a linear simulation
computer .program. The responses of the uncontrolled and controlled aircraft to a
step shaped disturbing dinput signal wz(t) are . given' in fig.. 3 and 4. The
disturbing input signal is defined by:

]
o
(nJ
A\
o

wz(t) (3.33)

wz(t) 0.2 t>0 ‘ . - (3.34)

The responses of the controlled aircraft have been computed, assuming the
absence of observation noise. From figures 3 and 4 and tables 4 and 6 it 1s con-—
cluded that the damping of the phugoid has been increased while the damping of
the short period oscillation has decreased.

Furthermore it 1is concluded from fig. 4 that the regulator can not completely
eliminate the effect of the disturbing. input signal w_(t) upon the altitude h.
For that reason it was decided to add integrating actiom to the regulator. So a
dynamic regulator will be designed.

Before specifying the matrices M and N, consider the following discrete time
state equation of an integrating element: B

x, (k+ 1) = x, () + 25 A, L (0 - - (3.35)

2

Where X, is the state of the integrator
uy is the input signal of the integrator
At is the sampling time interval

Ti is the integration time constant

Using this equation, the matrices M and N, describing the dynamics of the
regulator can easily be specified:
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In this experiment At equals 0.05 and T, was chosen equal to 10. sec. to main=—
tain parameter values for the integrator state variable at magnitudes comparable
to the other output signals in the relevant frequency interval (see also table
4)., Note that here such a choice 1is irrelevant for the controller performance
since the resulting feedback gain factor is directly related to the magnitude of
¢, and hence optimization will ensure proper scaling (for given weighting

factors) in the resulting feedback gain matrix. For the given time interval
At and integration time constant T ’

- ~=[o 0.005]

Subsequently. .the system matrices were augmented as described in section 3.3 and
"“the 'gain matrix was computed. The specified weighting matrices and resulting
“control law ‘are given in table 7. Note that the weighting factors for the
proportional feedback signals have remained unaltered, allowing evaluation of
the effect of adding integrating actions.

Slight changes have obviously resulted in the feedback gains of the proportional
feedback signals to maintain the minimum value of the criterion. The eigen
values of the controlled aircraft are given in table 8. The responses of the
controlled aircraft to a step shaped disturbing input signal w_(t) are given
in figs. 3 and 4. From these figures and tables 4 and 8 it is concluded that the
damping of the phugoid has been increased, while the damping of the short period
oscillation- has decreased. Both are slightly smaller than in the proportional
feedback case. More important, a marked improvement in the stability of the
aperiodic (altitude) motion has been achieved. Fig. 4 shows that this regulator
completely eliminates the effect of the disturbing input signal v, upon the
altitude h.

Although this regulator is capable of stabilizing the aircraft at a given
altitude h, the design process may be continued and regulator performance may be
shaped to conform more closely to the design specification. Ad justment of some
characteristic criteria used in classical control theory may be expressed in
terms of weighting functions as:

1. the settling time of the controlled aircraft may be decreased by increasing
the weighting factor for the integrated deviations of the altitude h, or by
decreasing the integration time constant;

2. the damping ratio of the short period oscillation may be increased by adding
differentiating action to the controller for the angle of pitch 6.

Such adjustments have not been incorporated in the present example, since no

practical implementation of the controller is intended and the above merely

serves to illustrate the method and practice of designing automatic aircraft
control systems using optimization theory.

For practical purposes a proper design specification should be drafted before

engaging in the actual design process. Such a design specification should

include all kinds of considerations relating to passenger comfort, structural
limitations, safety etc., all of which may be either included in the performance
criterion or may be evaluated in the course of the design process. A demonstra-
~tion of a full-scale design process is however considered outside the scope of
this report. '
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4, CONCLUSIONS

In chapter 2 of this report a design method for linear proportional and linear
dynamic regulators for multivariable discrete time systems has been presented.
In chapter 3 the design method has been demonstrated by applying it to the
design of an altitude regulator of a transport aircraft. Since these examples
deal with a conventional control task and a conventional aircraft type, the
advantages of a multivariable approach over a classical single loop approach
have not been dwelt wupon. The example chosen should be regarded as a
demonstration tool, which by virtue of 1its relative simplicity serves to
illustrate an innovative concept.




32

5. REFERENCES

1. J.A. Hoogstraten: 'A survey of CASPAR - the Control system Analysis and
Synthesis Program-package for Aerospace Research', Delft University of
Technology, Report LR-336, to be published. »

2.. P. Valk, O.H. Bosgra, W.J. Naeye: 'PL/I subroutines for basic computations
in linear control and systems. theory - Program descriptions and user
manual', N-94, September 1974.

3. D.V. Binh: 'Multivariable aircraft control by maneuvre commands, an applica-
tion to air-to-ground gunnery', Office National d'Etudes et de Recherches
Aérospatiales (ONERA), TP no. 1980-127, October 1980.

4, B. Lethinen, R.L. DeHoff, R.D. Hackney: 'Multivariable control altitude

10.

11.

12.

13.

14.

15.

16.

W
. wmultivariable - systems', Proc. 4th IFAC symposium on multivariable techno-
-logical systems, Pergamon Press, Oxford, 205-213.

demonstration on the F100 turbofan engine', Journal of Guidance and Control,

Bosgra: 'The design of dynamic compensators for 1linear

D.G. Schultz, J.L. Melsa: 'State functions and linear control systems',
McGraw-Hill Book Company, New York, 1967.

H. Kwakernaak, R. Sivan: 'Linear optimal control systems', J. Wiley & Soms,
New York, 1972.

C.A. Harvey, G. Stein: 'Quadratic weigths for asymptotic regulator prop-
erties', IEEE Transactions on ‘Automatic Control, Vol.  AC-23, no. 3, June

1978.

K. FEklund: 'Multivariable control of a boiler. An application of linear
quadratic control theory'. Report 6901, Lund Institute of Technology,
Division of automatic control, 1969.

W.J. Naeye: 'Optimale uitgangsterugkoppeling als ontwerpmethode voor multi-
variable regelsystemen', Ph.D. dissertation, Delft University Press, 1979.

M.T. Li: 'On output feedback stability of linear systems'. IEEE Transactions
on Automatic Control, Vol. 17, 408-410, 1972.

M.J. Denham: 'Stabilization of linear multivariable systems by output feed-
back', IEEE Transactions on Automatic Control, Vol 18, 62-63, 1973.

B. Etkin: 'Dynamics of atmospheric flight', J. Wiley and Sons, New York,
1971.

J.C. van der Vaart: 'De automatische afvangmanoeuvre van een verkeersvlieg-
tuig'. Delft University of Technology, Report VTH-182, November 1974.

K. Ogata: 'State space analysis of control systems', Prentice-Hall Inc.,
Englewood Cliffs, N.J., 1967.

D.L. Kleimman: 'Suboptimal design of linear regulator systems subject to
storage limitations', Electronic systems lab. rept. 297, M.I.T., Cambridge,
Mass., 1976.



C.g

96160 kg
260.68 m?2
6.10 m
42.67 m

0.36 ¢

-0.0507

0.655

0.655

-0.370

Table 1:
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Aircraft data BAC SUPER VC10

v

W

= 71.24 m/sec
= 49.315
= 2.354

= 0.125 kg sec?/m*

= -1.163
= -20326 C =
m
u
= -5.04 C =
m
a
= -0.395 c =
me
= -4065 C =
m
q
= -0.342 c =
-8
= =5.04 C =
m
[0 4
g
= 4.255 C =
me
a
g
= =2.326 c =
m
u
g
me
u
g

-0572

-8.622

-1.055
-0072

7.400

-0.584
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Table 2: The matrix elements of equation 3.3.

C
. s
C + C « I AT
CZ Ty Zu He CZ-
w Zuc—Cz. u ZPCK%
C
"
C +¢C .
CZ m, YA ch-CZ.
z = a m = &
a 2u_~C,, a ZucKé
a
C
. ms
-C .
-CX X0 ZuC-Cz.
z, = 2 m, = z
) Zuc-CZ. ] chKé
ch+Cz
c + . C
Zp.C+Cz mq ZpC—CZ& m
z = m =
4 ch—cz. 4 ZuCK%
a
C
"
C C + C .
Zug ) mug Z . ZHC_CZ&
VA = — m = i
ug 2pc CZ° ug chKY
C
"
c C + C .
Zug m&g Z . ZpC-CZ.
z - = - m. = Z
ug 2uc CZ- ug ZuCKY
C
. ms
C C + C .
Zag mag VA . ch CZ°
z = — m = i
ag 2p CZ ag ZpCKY
C
"
C C + C
y/ m&g Z&g Zuc—Cz&
z * = — m. = Z
g 2uc CZ° g 2ucKY
"a
C +C
CZ mg 26 ZpC-CZ.
5 o
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Table 3: The matrices of the continuous time aircraft model

+ X
The system matrix A of the augmented linear continuous—time aircraft model:

2

1 2 , 3 4 5
1 | -4.3811-02 +7.7557-02 -1.3770-01 -
2 | =2.7432-01 -5.9440-01 -5.9793-03 | +1.1083+01
3 - - - +1.1678+01
4 | +1.4390-03 -3.3098-02 +3.1367-05 | =4.9184-01
5 - ~-1.1678+01 +1.1678+01 -
6 - - - -
7 - - - -
8 - - - -
9 - - - -

6 7 8 9
1 - -4.3811-02 +7.7557-02 -
2 | -4.0334-01 -2.7891-01 -5.,9440-01 | +5.0182-01
3 - - - -
4 | -5.2856-02 +2.6096-03 -3.3098-02 | +3.6959-01
5 - - -1.1678+01 -
6 | =9-9999+00 - - - 7
7 - -4.7493-01 - -
8 - - : - +1.1678+01
9 - - -1.9313-02 | -9.4986-01

+
The input distribution matrix B of the augmented linear continous—time aircraft

model:

WoO~NOOUL HWN —

1.000+01
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Table 3 (continued)

The noise input distribution matrix W+ of the augmente# linear continuous-time
aircraft model: ]

1 2 |
l
1 - - |
2 | -2.7974-03 | 1.17132-02 :
3 - -
4 | +3.5668-05 | +1.0652-02 |
5 - -
6 - -
7 | +2.8945-01 -
8 - +3.3660-01
9.

T | =1.6675-03

., The .observation matrix C

1 ) 3 4 ] 5

1 - - +1.00000+00 - -

2 - - - - | +6.0999+00
6 7 8 9 |

1 - - - -

2 |- - - -

The observation noise input distribution matrix H:

1 2

1 | +8.6999-03 - |
2 - +1.9999-01 ?
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Table 3 (continued)

The system matrix D, of the equations describing the controlled variables:

1
1 2 3 4 5

1| - - -  +1.1678+01 -

2 - - - - +6..0999+00
6 7 8 9

1 - - - -

2 - - - -

The input distribution matrix D2 of the equations describing the controlled
variables: -

1
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i
|
i

Table 4: The eigenvalues of the uncontroﬁled alrcraft

1

|

1

Real Part | Imag. Part Nat. Frequency | Damping Ratio Time constant
(rad/sec) , (sec)
1
-0.5562 + 0.6128 0.8276 0.6721
-0.0088 + 0.1520 0.1522 0.0581 |
0.0000 0.0000 | ©

Table 5: The specified weighting matrices

1

and resulting

proportional control law

10 0
R, =
01
= |
R, = [200000] |
P, = [-0.754  -0.0012] |

i
|
|
|

Table 6: The eigenvalues of the proportionally controlled aircraft

|

Damping Ratio

Real Part | Imag. Part Nat. Frequency Time constant
(rad/sec) (sec)
A l
-0.3830 + 0.8295 0.9137 0.4192
-0.1485 + 0.2368 0.2796 0.5313
~-0.0069 + 0.0000 - ? 143.99
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Table 7: The specified weighting matrices and resulting
dynamic control law

10 0

0 1

"R = [200000]
R = [0.1000]
-0.0005]

Fy = [-0.7446 -0.0014

Table 8: The eigenvalues of the dynamically controlled aircraft

Real Part { Imag. Part Nat. Frequency | Damping Ratio | Time Constant
) (rad/sec) (sec)
-0.3885 + 0.8234 0.9194 0.4267
-0.1341 + 0.2442 0.2786 0.4812
0.0168 0.000 59.5259
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APPENDIX 1. DIFFERENTIATION OF MATRICES AND VECTORS

1. Introduction

In Matrix Control Theory advanced mathematics, especially state-space analysis
and linear algebra, play a prominent part. Although excellent text books on this
subject are available (see for instance ref. 15), this Appendix was included to
present the reader with some less well-known results that are of particular
interest in the theory of optimal output feedback regulators.

2. Differentials and gradients

Consider the vector x:

X £ col [xl, Xy eees xn] : (1)
The differential of x is defined by:

dx & col [dxl, dX2’ ceey dxn] A (2)
Consider the scalar function £(x):

f(x) = f(xl, Koy ey xn) ' (3)

The gradient Qector of f(x) with respect to x is defined by:

df(x) é col [df(x) df(x) df(x)]

, , '..’
dx dx1 dx2 dxn

(4)

Consider the n x m matrix A with elemenfs ay

(i=1,¢4.,n; j=1,...,m). The
differential of A is defined by: '

»J

da11 da12 ces dalm
dA = | ¢ (5)
danl. dan2 e danm
From this definition the following relations can be derived:
d(cA) = cdA (c is a scalar constant) ‘ (6)

d(A+B) = dA + dB . , "
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d(AB) = (dA) B + A (dB) : (8)
a(aly = -a"lcaa) A1 (9
The last relation may be derived by applying relation (8) to the product AA-1 =
I (I is the unity matrix)
-1 -1 -1
d(AA ") = (dA) A " 4+ A(dA ") =dI =0 (10)
Consider the real scalar function f£(A):
“ﬁvfﬁ(A)-f=f(all’ cees By eees 805 eee, anm) (11)
.. The. gradient matrix of f(A) with respect to A is defined by:
d£(A) dE(A) |
*‘ dap T
df(A) _ :
dA . ' (12)
df(A) C o df(A)
da *** . da
| nl nm |

The Jacobian:
Differentiation of the vector valued variable z(x) with respect to the vector x
is defined by: '

B dz1 dzl dz1 N
dx dx e dx
1 2 n
dz(x) _
dx Tl (13)
dz dz dz
m m m
_dxl dx2 dxn ]

3. Differentiation of linear and quadratic expressions

Using the previously given definitions the derivative with respect to x of the
linear expression:

z(x) = A y(x) _ (14)
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(both z and y are vectorvalued variables) equals:

dz(x)

_ o, dy(x) '
ax = A . (15)

dx

The derivative with respect to the vctor x of the scalar quadratic form:
T ' .
f=y & Azx) (16

(f is a scalar, y = y(x) and z = z(x) are vectors, A is a matrix independent of
X) equals:

T T
df _ dy dz' T
dx " dx Azt A Y (17)

The derivative of the scalar quadratic form f with respect to A equals:

df T

£_,.0. | (18)
Loy | - O 9)
dA

4, Derivatives of matrix trace functions

The trace of a square matrix equals the sum of the diagonal elements:

n
tr [A] = £ a A (20)
i=1 ii

where a 1 are the diagonal elements of the matrix A.
The foliowing relations can be derived:

tr [A] = tr [A]] (21)
tr [A+ B] = tr [A] + tr [B] (22)
er [aTB] = tr [BTA] = tr [aBY] = tr [BAT] | (23)

tr [ABC]

tr [BCA]

tr [CAB] : (24)



Consider the matfix trace function f:

where M is a m x n matrix and X a n x m matrix,

£(X) = tr [MX]

(25)

Since f is a scalar function a gradient matrix can be derived according to
relation (12). The gradient matrix can be calculated by direct differentiation

or by application of Kleinman's lemma (ref.

without further proof.

If the following equation holds:

16).

Without further derivation the gradient matrices of a number of commonly
trace functions will be given:

£(X + eAX) - £(X)

Gredn DR e

" when € approaches 0, then the gradient matrix equals:

e

where 1t i1s assumed that the elements of X are mutually independent (see

d tr[X] _
dX =1
d tr [AX] T

dX = A

5 tr [AX] _
oxX

[
o

d tr [AXB] T.T
3xX -

3 tr [AX'B]
X

BA

T

d er [X AX] _ 1, Ty g

dX

d tr [XAXT]
3X

d tr [AXBX] - AIXTBT + BIXTA

oX
d tr [AXBX-1"
ox

e tr [M(X) AX]

X [A+ AT]

= AXB + A'XB

16) which will be stated here

(26)

(27)

ref.

used

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36



T
d tr gﬁxx B] _ (ATBT + BA) X
n ;
d th[X ] -0 (Xn-l)T
5 tr [X 1] 1,-1,T
—__a—X—_= - (X X )
d tr [e - [eX]T
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(37)

(38)

(39)

(40)







