
 
 

Delft University of Technology

Doppler Spectrum Parameter Estimation for Weather Radar Echoes Using a Parametric
Semianalytical Model

Dash, Tworit ; Driessen, Hans; Krasnov, Oleg A.; Yarovoy, Alexander

DOI
10.1109/TGRS.2023.3338233
Publication date
2024
Document Version
Final published version
Published in
IEEE Transactions on Geoscience and Remote Sensing

Citation (APA)
Dash, T., Driessen, H., Krasnov, O. A., & Yarovoy, A. (2024). Doppler Spectrum Parameter Estimation for
Weather Radar Echoes Using a Parametric Semianalytical Model. IEEE Transactions on Geoscience and
Remote Sensing, 62, 1-18. Article 5100218. https://doi.org/10.1109/TGRS.2023.3338233

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TGRS.2023.3338233
https://doi.org/10.1109/TGRS.2023.3338233


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024 5100218

Doppler Spectrum Parameter Estimation for
Weather Radar Echoes Using a Parametric

Semianalytical Model
Tworit Dash , Graduate Student Member, IEEE, Hans Driessen,

Oleg A. Krasnov , and Alexander Yarovoy, Fellow, IEEE

Abstract— The problem of the limited accuracy of precipita-
tion Doppler spectrum moments estimation measured by fast
azimuthally scanning weather radars is addressed. A novel
approach for the Doppler moment estimation based on maximum
likelihood estimation is proposed. A simplified semianalytical
parametric model for the precipitation power spectral density
(PSD) as a function of the velocity parameters of the scatterers
and the finite radar observation time is derived for typical
precipitation-like weather conditions. An inverse problem for
estimating the Doppler moments from measurements of the PSD
is formulated and solved. It is demonstrated that the variance of
the estimation of the Doppler moments approaches the Cramer
Rao Lower Bound (CRB) when the observation time approaches
infinity. The performance of the proposed approach is compared
with some classical techniques and another realization of the
maximum likelihood approach based on simulated and experi-
mental data. The results indicate the superiority of the proposed
approach, especially for short observation time. Furthermore,
a scanning strategy to accurately estimate the Doppler moments
based on the true velocity dispersion of the scatterers is provided
with the help of the proposed approach.

Index Terms— Doppler velocity retrieval, parametric spectrum
estimation, radar signal processing.

I. INTRODUCTION

DOPPLER weather radars are primarily used to detect
precipitation, estimate the motion of raindrops, and clas-

sify the hydrometeors (rain, hail, graupel, and snow) in the
atmosphere. This information helps us understand the severity
of storms and the microphysics of the hydrometeors. Our focus
is on retrieving the Doppler parameters, which help in the
abovementioned applications.

Traditionally, three Doppler parameters (also known as the
Doppler moments) are retrieved from the echoes received by
the radar to characterize the intensity and the motion of the
raindrops. The first parameter is the total power contained
in the backscattered radar signal (also known as the zeroth
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Doppler moment), and it is used to detect the presence of
precipitation.

The other two parameters help determine the motion of the
raindrops and are derived from the phase change of these
echoes in time. The mean Doppler velocity (also known as
the first Doppler moment) is a measure of the mean radial
velocity of the raindrops. The spatial and temporal variability
of the mean Doppler velocity helps determine the horizontal
wind field (speed and direction of the wind as a function of
space and time) and the mean vertical fall velocity of the
raindrops [1], [2], [3], [4], [5], [6], [7].

The Doppler spectrum width (the square root of the second
spectral Doppler moment about the mean velocity, i.e., the
second central moment) is a measure of velocity dispersion
associated with several statistical effects such as wind shear,
turbulence, as well as antenna beam shape. The Doppler spec-
trum width is used mainly to estimate the turbulence intensity
field in the atmosphere [8], [9], [10], [11], [12], and the drop
size distribution (DSD) of the raindrops [13], [14], [15], [16],
[17]. The use of Doppler moments can also be found in fields
of study other than weather radars, such as ultrasonic Doppler
blood flow sensing [18] and radar astronomy [19], [20].

The classical Doppler moment estimators need long records
of the echo samples to estimate the moments accurately
(especially for the Doppler spectrum width), for which it
is assumed that the spectral content is constant for a long
observation time (stationarity condition). However, the station-
arity condition is often not realized in practice due to, e.g.,
instability of the physical atmospheric conditions and rapid
radar scans. A changing atmosphere is disadvantageous for
slowly scanning traditional weather radars that can accumulate
long records of echo samples. On the other hand, classical
estimators give biased results in the case of rapidly scanning
radars because of limited time on target [21].

In this article, we focus on the fast azimuthal scanning
radars. Therefore, considering the stationarity condition of
the atmosphere only for a short period, a desired moment
estimator should have the feature to estimate the moments
with a small observation time accurately. Another feature of
this desired estimator is the ability to process the data from
multiple radar scans. We propose a maximum likelihood esti-
mator that has both the features mentioned above. In addition
to that, we also propose a quantitative guide to how fast the
radar should scan as a function of the true velocity dispersion.
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The main body of this article is organized as follows.
Section II discusses the classical estimators and the rationale
behind the proposed approach. Section III explains the sim-
plified time domain echo signal model for precipitation-like
weather targets. Section IV contains the proposed semianalyt-
ical model of the power spectrum. Section V discusses the
optimization goals of the approach and the formulation of the
likelihood function for the parameter estimation. Section VI
contains some examples of the estimation using simulated
weather echoes, the comparison with the existing approaches,
and the performance analysis. Section VII presents the applica-
tion to real radar observations. The conclusions are mentioned
in Section VIII. Appendix A contains the derivation of the
expected semi-analytical model of the PSD. Appendix B
contains the derivation of the theoretical variances (for any
number of echo samples) and the unbiased CRB for the
proposed approach (for infinite number of echo samples).

II. CLASSICAL DOPPLER MOMENT ESTIMATORS AND THE
RATIONALE BEHIND THE PROPOSED APPROACH

The Doppler moments estimation techniques can be cate-
gorized into parametric and nonparametric approaches. The
most common and classical nonparametric techniques used
to estimate these moments are the periodogram-based (also
called the power spectrum-based approach, which is referred
to as DFT in this article) and the autocovariance (ACV)-
based approach (also called the pulse pair method and referred
as PP approach in this article). The performance analysis of
such methods along with some other classical nonparametric
estimators, such as the vector phase change (VPC) and the
scalar phase change (SPC) has been studied in [21], [22], [23],
and [24]. The DFT-based moment estimation is carried out
after the reconstruction of the spectrum shape in the frequency
domain and is sensitive to the Doppler spectrum resolution due
to limited observation time. The moment estimates are asymp-
totically unbiased, meaning that the estimates converge to the
true value when the number of coherent echo samples in time
approaches infinity. The PP approach, on the other hand, is an
unbiased estimator of the first moment provided the Doppler
spectrum is symmetric around the mean Doppler velocity. Dif-
ferent versions of the PP approach exist for the spectrum width
estimation that benefit from various combinations of the ACV
of the echo samples with various numbers of sample lags [25],
[26], [27, Ch. 6, pp. 136-138]. The different PP approaches
are denoted as PP Rm/Rn, where Ri is the autocorrelation of
the echo samples in the time domain with i number of sample
lags. It has been shown in [25] and [26] that the PP approaches
with higher lags perform superior for smaller spectrum widths
and vice versa. A hybrid estimator is proposed in [26], where
the estimator chooses one of the PP versions heuristically
based on an initial estimate of the spectrum width. Moreover,
a different version of the PP algorithm exists in the literature
as poly pulse pair (PPP) [28] method for the first Doppler
moment, but its discussion goes beyond the scope of this
article. Another nonparametric approach [29] assumes the
band-limited nature of the Doppler spectrum. Although its
accuracy is better than the DFT and PP approaches, it is based
on estimating interpolation-filter coefficients. The choice of

the impulse transfer function of the filter is empirical and due
to the need to estimate many filter coefficients, the approach
becomes computationally expensive. Another nonparametric
moment estimator class uses autoregressive moving average
(ARMA) models [30]. However, fitting ARMA models also
consumes considerable computational resources. Even though
many nonparametric approaches for Doppler spectrum estima-
tion exist in the literature, the DFT and PP approaches are the
most popular because of their computational efficiency and
nonparametric nature.

The parametric approaches assume a model for the echo
samples’ PSD or ACV. The maximum likelihood estimation
using a power spectrum model of the weather echoes is studied
in [31] and [32] and a maximum entropy-based approach is
studied in [33]. These methods have the advantage of process-
ing finite sequences of echo samples and gapped records (like
that of a scanning radar). Although these techniques provide
accurate results for the mean Doppler velocity, they give biased
results when estimating the Doppler spectrum width due to the
limited observation time. These estimators use a closed-form
shape of the Doppler spectrum and do not consider the Doppler
resolution. In [34], a Gaussian spectrum convolved with a
rectangular window has been considered as a model of the
PSD to remove the effect of the limited resolution. However,
the deconvolution is performed manually after studying the
bias in a tabular form, and analytical expressions are not
known for the variance of the estimator.

In this article, we propose a novel approach, referred to
later as a parametric spectrum estimator (PSE), to estimate
Doppler spectrum moments accurately by processing several
mutually incoherent finite sequences of echo samples. The
method is based on a novel semianalytical model of the PSD,
which is derived using a limited observation time and thus
incorporates the Doppler resolution in the model. The PSD
model is derived using a simplified physical model of the time
domain signal similar to [35] with some changes in the model
of the velocities of the raindrops.

In the signal model, the velocities of the scatterers are
considered to be independent and identically distributed (i.i.d.)
random variables. As the shape of the majority of the
weather Doppler spectrum is Gaussian in nature [22], [23],
[27, Ch. 5, pp. 112-115], [36], and, the velocities of the
raindrops are assumed to be normally distributed having
parameters µv as the mean of the distribution (true mean
Doppler velocity) and σv as the standard deviation (true
Doppler spectrum width). The model of the PSD is derived
by taking the expectation of the power of the discrete Fourier
transform of the time domain signal model. The resulting
expression for the PSD is semianalytical with a numerical sum
across the finite time interval with steps equal to the pulse
repetition time of the radar. A maximum likelihood approach
is used to obtain the spectrum parameters similar to [31]. The
formulation of the signal model, along with the derivation of
the PSD is presented in Sections III and IV.

The performance of this estimator is evaluated by comparing
its variance with the other approaches, such as DFT, PP, and
Levin’s ML approach [31]. In addition, a quantitative guide
to how fast a radar should scan the atmosphere as a function
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of the true velocity dispersion is proposed. The approach is
successfully applied to multiple scans of experimental data
acquired by a fast-scanning atmospheric radar.

III. SIGNAL MODEL

This article focuses on the echo sample modeling of weather
radar in the context of precipitation-like events only. Consider
a radar resolution volume filled with M raindrops during a
rain event. The radar echo at time k is a superposition of the
echoes received from all the raindrops [27, Ch. 4, p. 67]. It is
given by

s(tk) =

M∑
m=1

Am exp
(

j
4π
λ

rm(tk)
)
. (1)

In (1), Am is the amplitude caused by the reflection from the
mth scatterer. It is usually a function of the geometry of the
scatterers (size, shape, orientation, and composition), the range
weighting function due to the effect of the radar waveform,
and the antenna weighting function based on the antenna beam
shape [27, Ch. 5, pp. 112-115], [35]. The quantity λ is the
wavelength of the radar signal, rm is the distance to the mth
scatterer, and j is the imaginary unit (−1)1/2. The change
in a scatterer’s radial distance depends on its radial velocity.
If we consider the radial velocity of the m’th scatterer to be
vm,r at the time instant tk−1, the radial distance of the mth
scatterer at time tk becomes rm(tk) = rm(tk−1)+ vm,r T , where
T = tk − tk−1 is the pulse repetition time for the radar. If we
consider that the radial velocity of each scatterer is constant
throughout the observation time, and if we denote the initial
position of the m’th scatterer to be rm,0, the expression in (1)
could be rewritten as follows:

s(tk) =

M∑
m=1

Am exp
(

j
4π
λ

(
rm,0 + vm,r (tk − t0)

))
. (2)

If we consider the initial time instant to be t0 = 0 and by
using βm = (4π/λ)rm,0, (2) could be rewritten as follows:

s(tk) =

M∑
m=1

Am exp( jβm) exp
(

j
4π
λ
vm,r tk

)
(3)

where the term exp( jβm) is the initial phase caused by the inci-
dent phase of the electromagnetic wave (related to the transmit
phase, range to resolution volume, and atmospheric affects)
and the position of the mth scatterer relative to the center
of the resolution volume. In this article, several assumptions
have been considered for mathematical simplicity. The first
assumption is that the sizes of the scatterers (raindrops) are
assumed to be the same (Am = A∀m). The initial positions
of the scatterers are i.i.d. random variables with a uniform
distribution

{βm}
M
m=1

i.i.d.
∼ U[−π, π]. (4)

We assume that the Gaussian shape of the Doppler spectrum
around the mean Doppler velocity is caused purely by the
scatterers’ motion and not by other statistical effects explained
in the introduction for mathematical convenience. The radial

velocities of the scatterers are considered i.i.d. random vari-
ables with a Gaussian probability density{

vm,r
}M

m=1
i.i.d.
∼ N

(
µv, σ

2
v

)
. (5)

The time domain measurement model considered in this article
includes the signal (3) with added zero mean complex white
Gaussian noise with variance σ 2

n and is given by

z = s + n, {nk}
N−1
k=0

i.i.d.
∼ CN

(
0, σ 2

n

)
. (6)

IV. SEMIANALYTICAL FORM OF THE PSD

The signal model of (3) is used to derive the semi-analytical
form of the PSD. Considering uniform sampling with pulse
repetition interval of T , the DFT at a velocity point v can be
represented as follows:

S(v) = A
N−1∑
k=0

M∑
m=1

exp
[

j
(

4πT
λ

(
vm,r − v

)
k + βm

)]
. (7)

Performing the sum with respect to the time (summing a
geometric progression) results in the following expression:

S(v) = A
M∑

m=1

sin
( 2πT

λ
N
(
vm,r − v

))
sin
( 2πT

λ

(
vm,r − v

))
× exp

[
j(N − 1)

(
vm,r − v

)2πT
λ

+ βm

]
(8)

where sin((2πT/λ)N (vm,r − v))/ sin((2πT/λ)(vm,r − v)) (8)
is a result of the finite observation time. This function is also
called the Dirichlet kernel [37, Ch. 8, p. 189]. As we assume
that the β are uniformly distributed phase, the expectations
of the real and imaginary parts of (8) are 0 when M → ∞.
However, the PSD of the spectrum function of (8) does have
a positive expectation. The PSD using (8) can be represented
as follows:∣∣S(v)∣∣2/N

= A2/N

(
M∑

m=1

sin2((2πT/λ)N
(
vm,r − v

))
sin2((2πT/λ)

(
vm,r − v

))
+

M∑
p ̸=q

sin
(
(2πT/λ)N

(
vp,r − v

))
sin
(
(2πT/λ)

(
vp,r − v

)) sin
(
(2πT/λ)N

(
vq,r − v

))
sin
(
(2πT/λ)

(
vq,r − v

))
× cos

[
(N − 1)

(
vp,r − vq,r

)
(2πT/λ)+

(
βp − βq

)])
(9)

where the expectation of the second term is 0 because of the
uniformly distributed β inside the cosine term. A detailed
explanation of these two terms and their contribution to
receiver power can be found in [27, Ch. 4, pp. 67-68]. Finally,
the following expression gives the expectation of the first term,
and the detailed derivation is presented in Appendix A

F(v) = E
[

1
N

∣∣S(v)∣∣2]

= A2 M

1 + 2
N−1∑
q=1

(
1 −

q
N

)
exp

(
−

(
4πT

λ

)2
σ 2
v q2

2

)
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× cos
(

4πT
λ

q(µv − v)

). (10)

The dependence on N in the model is advantageous, especially
for estimating the Doppler spectrum width, because parameter
is heavily affected by the limited resolution of the spectrum.
This makes it different from the existing maximum likelihood
estimators, where a complete closed form of the PSD is used
without the dependence of N .

V. OPTIMIZATION GOALS

The expression of (10) suggests that the PSD is a function
of the spectrum parameters (the mean frequency (velocity, µv),
the spectrum width σv), the finite number of coherent samples
N , and the multiplicative factor A2

× M . As the multiplicative
factor is a measure of the signal power, it can be estimated by
taking the average of the signal power in the time domain

Â′2 ≈
∣∣z∣∣2. (11)

Here, a change of parametrization is used for A2 M and is
indicated as A′2. The notation Â′ is used to suggest that it is
an estimated quantity. In the following analysis, however, the
value of A′ is assumed to be known beforehand. The objective
of the optimization here is to estimate the parameters 2 =

[µv, σv] based on the given PSD (the PSD of z is referred to
as Z).

Let us denote the number of observations of the PSD as L .
Each of the L observations contains the PSD of N coherent
radar echoes. However, the observations themselves need not
be coherent. If the power spectrum is denoted by Zl(v) for lth
observation, at a velocity point v, the likelihood probability is
given by the following expression [31], [32]:

p
(
Z
∣∣2)

=

N∏
i=1

L∏
l=1

1
π
(

F(vi ,2)+ σ 2
n

) exp
(

−
Zl(vi )

F(vi ,2)+ σ 2
n

)
(12)

where p(Z|2) is the likelihood probability of Z given the
parameters 2. Here, Z is a matrix of size L × N . This
likelihood function is inspired by the fact that the probability
density function of the PSD at a particular frequency (velocity)
is exponential, indicating that the mean of the PSD is equal
to its standard deviation [38]

Z(vi ) ∼ Exp
[

1
F(vi )+ σ 2

n

]
. (13)

The following expression gives the logarithm of this likeli-
hood function. In this formulation, the noise variance σ 2

n is
considered to be known

log(p(Z|2))

= −

N∑
i=1

[
L log

(
π
(

F(vi ,2)+ σ 2
n

))
+

∑L
l=1 Zl(vi )

F(vi ,2)+ σ 2
n

]
.

(14)

The optimization aims at maximizing this log-likelihood (14)
function to estimate the parameters 2

2̂ = max
2

log(p(Z|2)). (15)

The theoretical variances are computed for PSE and Levin’s
ML approaches by the following [31, eq. (4)]. The derivation
of the theoretical variances is given in Appendix B. These
theoretical variances can be computed for a finite number of
samples. The biased-CRBs can also be derived for a finite
number of samples [31, eq. (2)] by using the bias gradients
of the parameters. However, the biases of these estimators are
not known in closed form, making it challenging to obtain the
biased-CRB for a finite number of samples. Nevertheless, it is
essential to note that the theoretical variances for the infinite
number of echo samples (N → ∞, and for a fixed L) reach
the unbiased-CRB (also referred to as CRB) as the estimators
are asymptotically unbiased. Furthermore, the biased-CRB for
the variances can be derived for biased estimators [39] by
Bayesian inference (without having the bias gradients for the
parameters in closed form). However, it is beyond the scope
of this article.

In (14), it can be noticed that the likelihood function
can integrate multiple observations (L in the expressions) of
the stationary stochastic signal PSD. However, the existing
classical nonparametric techniques only process one obser-
vation for the Doppler moment estimation, except for the
DFT approach when periodogram smoothing is applied. The
moment estimation with the DFT approach can be carried out
after applying a periodogram smoothing technique on several
realizations of the PSD (e.g., the periodogram of Bartlett
and Welch [40, Ch. 4, pp. 49-52]) at the expense of poor
Doppler resolution and hence is out of the scope of this article.
In the simulation study, to have comparable results with DFT
and PP, L is kept as 1, suggesting that only one observa-
tion (6) is processed in the proposed method and the classical
methods. The optimization is performed using the active-set
and the Limited Memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithms [41], [42]. This method is chosen for its
faster computation time.

VI. NUMERICAL SIMULATION

This section applies the Doppler moment estimation on sim-
ulated radar echo samples. First, the noise-free echo samples
are simulated using (3). A complex white Gaussian noise is
added to the samples as shown in (6). The input noise variance
for the measurement model is computed with a user-defined
input SNR [38]. The PSE parameter estimation is compared
with the DFT, PP, and Levin’s ML approach. For all these
approaches, the noise variance is assumed to be known to
allow for a fair comparison. The expressions for moment
estimation with the DFT approach using known noise variance
are from [22, eq. (9)]. (The equation is for the mean Doppler,
but similarly, the Doppler spectrum width is computed by
using the second moment.) The mean Doppler estimation with
the PP approach is taken from [22, eq. (16)]. For the Doppler
spectrum width (PP R0/R1; also denoted as PP in this article,
and PP R1/R2), the formulas [43, eq. (6.17) and eq. (6.32)]
are used as these estimators are asymptotically unbiased. The
formula [26, eq. (3)] is used for the R1/R3 spectrum width
estimator.

For Levin’s approach, the parameters are estimated jointly,
like the PSE. The implementation of Levin’s approach in
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Fig. 1. Estimation and performance of the Doppler moments for L = 1 with respect to the number of coherent samples N : (a) mean normalized Doppler
frequency µ̂fn; (b) normalized Doppler frequency width σ̂ fn; (c) standard deviation in estimating the normalized Mean Doppler frequency µ̂fn; and (d) standard
deviation in estimating the normalized Doppler spectrum width normalized σ̂ fn.

this article differs from [31] in the sense that the continuous
integrals are replaced with numerical sums along the frequen-
cies, to include the effect of the limited frequency resolution.
However, the implementation proposed in [31] assumes that
the resolution is enough to contain the detailed structure of
the spectrum, and also, it is assumed that the PSD is slowly
varying (after applying some smoothing operation). Hence,
in [31], continuous integrals along the frequencies are justified.
However, to have a fair comparison of the PSE with Levin’s
approach, no smoothing operation has been performed on the
PSD. Comparing the results of PSE with Levin’s ML approach
allows us to observe the differences between the estimates
when using a model of the PSD has a semianalytical form
(PSE) that includes the Doppler resolution as a sum over time
as compared to a model with a complete closed form (Levin).

The quantitative performance is assessed with Monte Carlo
simulations. The evaluation metric used in this article is
the variance of the estimators. The Doppler frequencies in

the following examples are normalized (λ/(2T ) = 2Va),
where Va is the unambiguous Doppler velocity of the radar.
Therefore, the range of frequencies is from −0.5 to 0.5.
In the following sections, “GT” refers to the ground truth.
The normalized quantities are denoted with a subscriptn . The
theoretical variances are denoted as “Theor” on the plots.

A. Parameter Estimation With L = 1

In this example, the simulated signal has parameters (also
referred to as the ground truth) µfn = 2Tµv/λ = 0 and
σfn = 2Tσv/λ = 0.033. The number of scatterers in the
model is kept as M = 10 000. The SNR input for the
model (6) is 12 dB. The number of iterations used in the Monte
Carlo simulation is 1024 for this analysis. The mean retrieval
(using the Monte Carlo simulations) of the normalized mean
Doppler frequency and the Doppler frequency width is shown
in Fig. 1(a) and (b), respectively.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 28,2023 at 14:11:12 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 2. Estimation and performance of the Doppler moments for L = 1 with respect to σfn at µfn = 0: (a) biases in the estimates of the mean Doppler
frequency normalized µ̂ f n ; (b) Doppler frequency width normalized σ̂ fn; (c) standard deviation in estimating the mean Doppler frequency normalized µ̂fn;
and (d) standard deviation in estimating the Doppler spectrum width normalized σ̂ fn.

According to Fig. 1(a), all approaches perform similarly
when the number of coherent samples is large for estimating
the first moment. For a lower number of coherent samples
(especially below N = 30), PSE and PP approaches have
lower bias than the DFT and Levin’s ML approaches. From
Fig. 1(b), it can also be observed that the biases of the higher
lag versions of PP PP R2/R1 and PP R3/R1 are lower than
PP R0/R1, because the spectrum width considered for this
example is relatively narrow. According to Fig. 1(b), PSE
achieves convergence at a lower number of coherent samples
(at N > 30) than the other approaches. The bias is −0.004,
and percentage error is 13.34% at N = 30 for σfn. The vari-
ances of the estimates in µfn and σfn are computed numerically
as a function of the number of coherent samples (N ). The
standard deviation is plotted in Fig. 1(c) and (d) for µfn and
σfn, respectively. The standard deviations of the approaches
are plotted for N > 30, which is the reciprocal of the true
normalized frequency spectrum width (1/σfn). The minimum

number of coherent samples for the performance analysis is
greater than 1/σfn (the normalized frequency resolution 1 ffn
should be 0 < 1 ffn < 1/[σ−1

fn − 1]) to have sufficient
resolution for the PSD and a low bias in the estimates.

According to Fig. 1(c) and (d), the variance of the PSE goes
lower than the other techniques with an increase in the number
of samples.

Performance is also evaluated as a function of the normal-
ized Doppler spectrum width σ f n , with a fixed normalized
mean Doppler frequency (µ f n = 0) and a fixed number
of coherent samples (N = 64). The biases in the estima-
tion results are shown in Fig. 2(a) and (b) for the mean
Doppler frequency and Doppler spectrum width, respectively.
The performance analyses of both parameters are shown in
Fig. 2(c) and (d) with the other approaches.

All the approaches perform similarly for the mean Doppler
velocity σ f n = 0.2. The PP and PSE approaches have large
biases and oscillate around the true normalized mean Doppler.
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Fig. 3. Estimation and performance of the Doppler moments for L = 1 with respect to µ f at σ f = 0.05: (a) biases in the estimates of the mean Doppler
frequency normalized µ̂fn; (b) Doppler frequency width normalized σ̂ fn; (c) standard deviation in estimating the mean Doppler frequency normalized µ̂fn; and
(d) standard deviation in estimating the Doppler spectrum width normalized σ̂ fn.

The variance of the PSE approach is lower as compared to the
other approaches for the mean Doppler till σ f n < 0.2. The
DFT and Levin’s approach have an increasing negative bias
with increasing spectral width for σ f n > 0.2.

It can be observed that the different versions of the PP
approach give lower bias than the PSE approach for specific
intervals of the spectrum width. It is well known from the
literature that the PP approaches with larger lags give lower
bias for smaller spectral widths and vice versa [25], [26].
However, to construct an adaptive lag estimator, some prior
information has to be known for the spectral width such that
one of the PP versions can be chosen. It is evident from
Fig. 2(b) that the PSE approach performs adequately across
all ranges of spectral widths. The bias increases for very large
spectral widths σ f n > 0.25.

For very low spectral widths σ f n < 0.04, the PP versions
R2/R1 and R3/R1 perform better and have lower variances
than the PSE. For spectrum widths, 0.04 < σ f n < 0.25, PSE

has the lowest variance among all the approaches. For higher
spectrum widths, PP R1/R0 and PSE approaches give similar
variances. The PP R3/R1 and DFT show very low variances at
very high spectrum widths σ f n > 0.25 due to their significant
biases.

The performance is further evaluated as a function of
the normalized mean Doppler frequency µ f n with a fixed
normalized Doppler spectrum width (σ f n = 0.05) and a
fixed number of coherent samples (N = 64). The biases
in the estimation results are shown in Fig. 3(a) and (b) for
the mean Doppler frequency and Doppler spectrum width,
respectively. The performance analyses of both parameters
are shown in Fig. 3(c) and (d). The estimated mean Doppler
frequency suffers from the aliasing near the unambiguous
limit for all methods. The aliasing effect is observed at a
lower mean Doppler frequency for the positive frequencies and
higher mean Doppler frequency for the negative frequencies
with the DFT and Levin’s ML approaches than the PP and
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PSE. The Doppler spectrum width estimated with PP and
PSE approaches is not affected by the aliasing, whereas the
other approaches suffer from the aliasing effect. The bias and
variance of PSE are superior to the other approaches for the
Doppler spectrum width estimate.

B. Performance Analysis With Respect to L

The performance analysis of PSE has been compared with
Levin’s ML approach with a different number of observations
L , keeping the number of coherent samples constant N = 64.
The performances are shown in Fig. 4(a) and (b). It can be
observed that with an increase in L , the variance decreases
and converges for both techniques. The variance of PSE is
lower than Levin’s ML approach.

C. Discussion on the Simulation Results

The following conclusions can be made from the perfor-
mance analysis of the proposed estimator in the previous
sub-sections. The minimum observation time duration required
for an accurate estimation of the Doppler spectrum width
for PSE is inversely proportional to the true velocity dis-
persion of the scatterers (for normalized spectrum widths
of σfn < 0.2). For example, for a velocity dispersion of
one-fortieth of the unambiguous velocity interval (2Va) in
one resolution cell (σv = 2Va/40), the number of slow time
samples needed with PSE should be at least more than 40
(or, the Doppler resolution of 1v < 2Va/39) to measure the
Doppler spectrum width accurately. The minimum number of
slow-time samples per resolution cell can be used to decide the
scanning rate of the radar in azimuth. For the case mentioned
above, if one uses 64 samples at least for one resolution
cell with 813.2 µs pulse repetition time, the radar needs to
spend only 26 ms per resolution cell in azimuth. Suppose
the azimuthal resolution cell is 2.5◦; the scanning speed of
the radar can be fixed to 16 rpm. If the rain is turbulent
with velocity dispersion of (σv = 2Va/10), and if we want
to use only 15 samples in one resolution cell, we can set
the scanning rate to 68 rpm with the configuration mentioned
above.

As the model and algorithm explained in this article are
developed to solve the estimation of Doppler moments con-
sidering the Doppler resolution, we do not specify a practical
accuracy needed for such weather conditions. Based on the
analysis of the bias of the PSE, necessary scan strategies
can be applied for the required accuracy demanded by the
applications.

As PSE uses a maximum likelihood technique performed
numerically with an optimization algorithm (L-BFGS), it is
challenging to provide a quantitative idea about the compu-
tational cost, unlike the nonparametric approaches. However,
PSE has a lower computational cost than the ACV-based
parametric approaches as it does not involve any matrix inverse
operation.

VII. APPLICATION TO REAL DATA

The proposed approach has been applied to real radar data
recorded from the MESEWI radar at the Delft University of

Fig. 4. Estimation and performance of the Doppler moments for N = 64 with
respect to L . µfn = 0 and σfn = 0.033 (a) Standard deviation in estimating the
Mean Doppler Frequency normalized µ̂fn. (b) Standard deviation in estimating
the Doppler Spectrum Width normalized σ̂ fn.

TABLE I
MESEWI RADAR SPECIFICATIONS

Technology in the Netherlands. In these experiments, we have
only used the signals from the HH channel. The MESEWI
radar system is a fully polarimetric X-band (9.4 GHz) FMCW
radar system. The PRI for each polarization is 406.6 µs. For
one polarization, the PRI is 813.2 µs resulting in an maximal
unambiguous Doppler velocity of Va = (λ)/(4 × PRT) =

9.8 m/s (λ is the central wavelength of the radar). The radar
specifications are shown in Table I. The raw radar data are
stored in a 3-D format with fast time, slow time, and azimuthal
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Fig. 5. (a) PPI plot of reflectivity using the DFT approach. (b) Log-likelihood (14) of PSE.

angles as the three dimensions. The data discussed below was
collected when the radar was pointed to a fixed elevation angle
of 30◦. Two experiments were performed with an interval of
26 minutes (the second experiment was performed 26 min after
completing the first). In the first experiment, the azimuthal
rotation speed was one rotation per minute (1 rpm), while
in the second one, it was five rotations per minute (5 rpm).
The date of observation was 9 May 2023. It was a rainy day
surrounding the area of Delft, Netherlands, which allowed us
to observe clouds, the melting layer, and rain.

The preprocessing of sampled intermediate frequency data
was performed along the following steps. After DC compen-
sation, an FFT is applied on the fast time domain to ascertain
the range dependence as it is an FMCW radar system. The
mean is subtracted from each slow time sequence to remove
the effects of the clutter. The Doppler processing is carried out
on the slow time sequence for each range-azimuth resolution
cell of the radar.

A. Experiment 1: Slow Scan of One Rotation per Minute

The bandwidth of operation is BW = 50 MHz for this
experiment. The maximum range of the radar in this opera-
tional mode is 6 km Rmax = ( fs × c)/(4BW × PRF) = 6 km
(c is the speed of the electromagnetic wave), while the range
resolution is three meters (1R = c/(2 × BW) = 3 m). After
the range processing across the fast time, we have 512 echo
samples for Doppler processing for each range-azimuth cell.
For the DFT approach, several cells around the zero Doppler
are chosen as the clutter region and are interpolated with a
chosen noise level. The noise spectrum level (σ 2

n ) is decided
by taking the 15th percentile of the data contained in the
PSD for each range-azimuth resolution cell because it is safe
to assume that 15% of the data in the PSD are not from
hydrometeors. The clutter region is not part of the observations
for the PSE and Levin’s ML approaches. The power scaling
factor is determined from (11) for both Levin’s ML approach
and PSE. With the DFT approach, the total power estimate

(reflectivity) of the Doppler spectrum in each resolution cell
is shown in Fig. 5(a). The reflectivity is shown here to explain
some aspects of the mean Doppler and Doppler spectrum
width estimated later in this article.

Fig. 5(a) shows a bright band ring of strong reflection
around a range of 4 km. It could be attributed to the melting
layer in the atmosphere where the precipitation forms [44].
The azimuth is considered clockwise (0◦ is toward the north)
in this figure and the successive figures in this article. It can be
observed that the reflectivity is considerably higher in ranges
below 4 km, which corresponds to reflections from rain and
in almost all azimuth sectors.

For the plan position indicator (PPI) plots for the mean
Doppler and Doppler spectrum width, the 512 echo samples
are separated into eight observations (L = 8), with each
observation containing 64 coherent samples (N = 64) for the
PSE and Levin’s ML approach. The mean Doppler velocity
and the spectrum width estimated with all the approaches
considered in this article are shown in Fig. 6.

It is observed from the first row of Fig. 6 that the mean
Doppler velocity estimates from all the approaches look sim-
ilar except for some regions. The differences can be observed
in the case of the DFT and Levin’s ML approaches toward
the edges of the figures (at more considerable distances from
the radar). Although these approaches show near zero mean
Doppler velocity, the PP and PSE approaches show a large
deviation from zero. It is because the Doppler spectrum is
nearly flat (having almost the same power in all velocity bins).
Although the spectrum is nearly flat due to minor asymmetry
around the zero Doppler, the other approaches are sensitive
and estimate the mean Doppler velocity on either side of
the zero Doppler. The existing literature [22], [38] shows
that the PP approach is an unbiased estimator of the mean
Doppler velocity and very robust at low signal-to-noise ratios.
According to the results of the mean Doppler velocity, it is
observed that the estimate of the proposed approach (PSE) is
very close to that of the PP. In the directions around from
175◦ till 225◦ azimuth, there is aliasing of the mean Doppler
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Fig. 6. PPI plots showing mean Doppler velocity and Doppler spectrum width with all the approaches discussed in this article. The first row shows the
results of the mean Doppler velocity, and the second row shows the results of the Doppler spectrum width. (a) and (e) DFT, (b) and (f) PP, (c) and (g) Levin,
and (d) and (h) PSE.

velocity. It has been captured by all the moment estimates.
In the processing chain, it is logical first to perform de-aliasing
based on the mean Doppler velocity and use an appropriate
window of velocities to estimate the moments. However,
we do not focus on the problem of de-aliasing the mean
Doppler velocity in this article and focus more on the moment
estimation only. Several observations are made based on the
second row of Fig. 6. The borders of the aliased region are
prominently visible on the Doppler spectrum width estimates
of DFT and Levin’s ML approaches having large values (till
9 m/s). This can be explained by the theoretical simulations
in Section VI [Fig. 3(a) and (b)]. As the mean Doppler
velocity approaches the unambiguous limit, the estimation
of mean Doppler velocity becomes increasingly negatively
biased. As the Doppler spectrum width is the square root
of the second central moment and the DFT and Levin’s ML
approaches use PSD measurements, the spectrum width also
becomes increasingly biased at the borders of this folded
region. However, these high-spectrum width borders are not
visible in the case of the PP and the PSE estimates because the
PP estimator uses measurements in the time domain directly,
and the PSE approach takes care of the aliasing (the semi-
analytical model takes the finite observation window into
account). A visual inspection of the mean Doppler velocity
estimate suggests that the wind direction (the direction the
precipitation field is moving) is toward φ = 15◦. The radial
velocity observed by the radar is a scalar sum of projections
of the horizontal wind (V ) speed and the vertical speed
(W ) of the raindrops in the radial direction and is given
by

µv = V cosψ cos(φ − φwind)+ W sinψ (16)

Fig. 7. PSE-derived mean Doppler velocity. The Doppler spectrum is
analyzed in the highlighted areas of this figure.

where the ψ is the elevation angle from the ground, and
φwind is the horizontal wind direction in azimuth. The vertical
velocity W is usually associated with the reflectivity [45],
[46] [47]. That is why the Mean Doppler velocity estimates
are closer to zero toward φ = 135◦, and φ = 315◦ because
these directions are perpendicular to the wind direction
(φ − φwind ≈ 90◦).

In all the approaches discussed in this article, it has been
assumed that the echo samples in the slow time domain are
stationary and the spectrum is Gaussian shaped. Therefore,
it is important to study not only the estimation performance
but also the profile of the log-likelihood (14) as a function
of the space because it gives a quantitative understanding of
how well the real data fit the semi-parametric model discussed
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Fig. 8. Doppler spectrum reconstruction at cell (1): (a) 512 total samples and (b) 64 total samples.

Fig. 9. Doppler spectrum reconstruction at cell (2): (a) 512 total samples and (b) 64 total samples.

in this article. The log-likelihood (14) has been plotted and
shown in Fig. 5(b) to access the performance of the PSE
approach on the real radar data. It can be observed that at high
reflectivity regions below the melting layer shown in Fig. 5(a),
the likelihood is larger than in the melting layer. It can be
concluded that the model considered in the PSE approach fits
the observations better in the case of the rain Doppler spectrum
than in the melting layer.

The Doppler spectrum reconstruction is performed on spe-
cific resolution cells using all the approaches discussed in this
article to validate the abovementioned test cases. The PSD of
the echo samples is used as a reference (Ground Truth). The
reconstruction is performed using the theoretical expected PSD
of (10). Their estimated counterparts replace the parameters µv
and σv in (10). To highlight the range-azimuth cells discussed
in Sections VII-A1–A3, Fig. 6(d) is shown again in Fig. 7.
Table II shows the coordinates of the chosen resolution cells
for the analysis.

TABLE II
HIGHLIGHTED RESOLUTION CELLS’ COORDINATES

1) High Reflectivity Region (Precipitation Region):
Fig. 8(a) shows the Doppler spectrum at the cell (1). The
Doppler spectrum reconstruction for the same resolution cell
is shown in Fig. 8(b) for N = 64 and L = 1 case. According
to Fig. 8(b), it is observed that with only one observation L =

1 of 64 coherent samples, the PSE approach converges and
reconstructs the spectrum better than the other approaches. The
other approaches overestimate the Doppler spectrum width.
This shows the superiority of the PSE approach with a low
number of samples over the other approaches discussed in this
article.
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Fig. 10. Doppler spectrum reconstruction at cell (3): (a) 512 total samples (b) 64 total samples.

Fig. 11. PSE-derived mean doppler velocity. The Doppler spectrum is
analyzed in the highlighted areas of this figure.

2) High Reflectivity Region With Doppler Aliasing:
Fig. 9(a) shows the Doppler spectrum at cell (2). The Doppler
spectrum reconstruction for the same resolution cell is shown
in Fig. 9(b) for N = 64 and L = 1 case. It is observed
from Fig. 9(b) that the PSE approach converges only with
one observation L = 1 of 64 coherent samples. In addition
to that, the results of Fig. 9(a) and (b) validate the theoretical
conclusions made on Fig. 3(b). The PP and PSE approaches
are immune to the Doppler aliasing in the Doppler spectrum
width estimate case. On the other hand, the other approaches
overestimate the Doppler spectrum width.

3) Melting Layer Region (Low PSE Likelihood Region):
Fig. 10(a) shows the Doppler spectrum at the cell (3). The
Doppler spectrum reconstruction for the same resolution cell is
shown in Fig. 10(b) for N = 64 and L = 1 case. According to
Fig. 10(a), all moment estimators cannot reconstruct the spec-
trum with a large number of samples. The Gaussian spectrum
shape assumption is violated for a long record of samples at
the melting layer. It is confirmed by lower log-likelihood (14)
values at the melting layer compared to the precipitation

area, as shown in Fig. 5(b). The log-likelihood (14) at this
range-resolution cell for N = 64, and L = 8 is −2891.
However, according to Fig. 10(b), PSE fitting is superior to
the other approaches when a short record of only 64 echo
samples is used. The log-likelihood (14) for N = 64, and
L = 1 is −334. From this analysis, it can be concluded that
the Doppler spectrum at the melting layer can only assume
stationarity for a short period.

B. Application to Fast Scanning Radar Data

Under the assumption that the spectral content (in terms
of the spectral width) of the echo signals received from
the multiple scans (from the precipitation regions) remains
unchanged over this period, the PSE has been applied to
real data acquired from multiple scans of the MESEWI radar
with a fast scan in azimuth. In this experiment (mentioned
as the second measurement at the beginning of the section),
the bandwidth of operation was 20 MHz, and consequently,
the range resolution was 1R = c/(2 × BW) = 7.5 m. The
maximum range in this example was Rmax = ( fs ×c)/(4BW×

PRF) = 15 km. However, in all the PPI plots, the range
is shown till 6 km to avoid the region above the melting
layer. The number of echo samples was 100 per resolution
cell per scan. The 100 echo samples were grouped into two
50 coherent samples. Five azimuthal scans are processed,
resulting in ten PSD observations per resolution cell (L = 10).
The real data discussed in this section were acquired on the
same day as the data discussed in Section VII-A. As the data
was acquired after 26 min of the first experiment, the spatial
variability of reflection differs from the case shown in Fig. 6.
The moment estimation uses both PSE and Levin’s ML
techniques. The performance is evaluated by reconstructing the
spectrum with the moments derived similar to Section VII-A
for a few resolution cells. The reconstruction is compared
with the PSD of all the observations (1 ≤ L ≤ 10 in this
case). The noise variance estimate here is determined only
from the first scan of the radar. The resolution cells chosen
for the analysis of the reconstruction are highlighted on top
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Fig. 12. Doppler moments estimation on real radar data with respect to number of observations L at resolution cell (1): (a) Mean Doppler velocity µ̂v m/s
and (b) Doppler spectrum width σ̂ v m/s.

Fig. 13. Doppler spectrum reconstruction with L = 10. Incoherent processing
of five scans of the radar at cell (1).

TABLE III
HIGHLIGHTED RESOLUTION CELLS’ COORDINATES

of the Fig. 11, which shows the PPI plot of the mean Doppler
velocity retrieved from PSE after incoherently processing five
scans of the radar data. Table III shows the coordinates of the
chosen resolution cells for the analysis.

The estimation of the first and second Doppler moments
are shown in Fig. 12(a) and (b) with respect to L at the
resolution cell (1). It can be observed that both the PSE and
Levin’s ML approaches converge to the same estimates with an
increasing number of scans, but the rate of convergence of PSE
is better than that of Levin’s ML approach. As the resolution
cell is inside the precipitation region, the approximation of
the PSD with a Gaussian spectrum is adequate. The spectrum
reconstruction with PSE and Levin is shown in Fig. 13 at
L = 10. In the resolution cell (2), the mean Doppler velocity
exceeds the maximum unambiguous velocity and Doppler
spectrum aliasing takes place. The estimation of the first
and second Doppler moments for this situation are shown

in Fig. 14(a) and (b) with respect to L . It can be observed
that the spectrum width estimate of the PSE approach is not
affected by the aliasing of the Doppler spectrum, while Levin’s
ML approach gives completely wrong results. The spectrum
reconstruction with both approaches is shown in Fig. 15 at
L = 10. The PPI plots of the mean Doppler velocity and
spectrum width are shown in Fig. 16 with five scans (L = 10)
integrated into the estimation until the melting layer. It can be
observed that the PSE approach is not affected by the Doppler
aliasing when it comes to estimating the Doppler spectrum
width.

VIII. CONCLUSION

This article proposes a maximum likelihood approach (PSE)
to estimate Doppler spectral moments with a few coherent
echo samples for weather-like targets such as precipitation.
The proposed parametric model for the Doppler power spec-
trum is a function of the observation time duration and the
precipitation targets’ velocity parameters. For a continuous
Gaussian spectrum, a semi-analytical form of the PSD has
been derived in this article. The estimator’s performance
is studied with respect to the number of coherent Doppler
samples using computer-simulated radar echo samples and
compared with other existing estimators. It is shown that the
performance of the PSE (with a low number of coherent
samples) is superior to the existing classical methods, such
as DFT and PP and Levin’s ML approach for the Doppler
spectrum width. The number of coherent samples required
for accurately estimating the Doppler spectrum width using
the PSE can be characterized by the true normalized Doppler
frequency dispersion σfn as N > 1/σfn (for σfn < 0.2).
However, the classical techniques require much longer obser-
vation time than this because of a larger bias caused by finite
Doppler resolution. An important application of this approach
is realized in the case of a fast-scanning radar in azimuth.
The advantage of PSE over the classical approaches like DFT
and PP is that it can accommodate multiple measurements of
the Doppler spectrum (referred to as L in this article) that
are incoherent among themselves (each of the PSDs contains
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Fig. 14. Doppler moments estimation on real radar data with respect to the number of observations L at resolution cell (2): (a) Mean Doppler velocity
µv m/s and (b) Doppler spectrum width σv m/s.

Fig. 15. Doppler spectrum reconstruction with L = 10. Incoherent processing
of five scans of the radar at cell (2).

N coherent echo samples). The performance analysis of the
PSE has been carried out with the number of observations
(L) at a fixed N , (N > 1/σfn) and compared with Levin’s
ML approach. It is concluded that the estimation accuracy
increases with the number of observations L . The performance
analysis includes a comparison of estimation variances of
different approaches. The estimated parameter variance con-
verges to the CRB when the sample size approaches infinite
(Appendix B).

The PSE is applied to real radar observations collected
from the MESEWI radar at TU Delft. For resolution vol-
umes with rain having high reflectivity, it is shown that an
accurate estimation of the parameters with PSE is achieved
with a relatively small number of samples. In some resolution
volumes, especially in the melting layer, the echo samples in
time do not follow the assumption that the PSD is Gaussian
and stationary for a long period. For these cases, the estimation
of the Doppler moments is erroneous. However, using a short
data record, the Doppler spectrum can be reconstructed accu-
rately with the PSE approach. A comparison of the Doppler
moments estimation using the techniques discussed in this
article is shown for all range-azimuth radar cells. As the pro-
posed approach performs superior for stationary Gaussian-like
weather Doppler spectrum only, a more accurate parametric

model will be derived for a more generic weather-like Doppler
spectrum with extra parameters such as skewness, clutter, and
a variable number of spectral shapes (variable number of
extended targets) in the future.

A similar approach also could be developed using a
semi-analytical form of the ACV function of the time series
instead of the PSD. However, the ACV-based maximum like-
lihood approaches usually involve an inverse ACV matrix,
leading to unnecessary computational overload.

APPENDIX A
EXPECTED VALUE OF THE POWER SPECTRUM

The expectation of the square of the modulus of the spec-
trum function (taken from [9]) is presented in this Appendix.
Here, for the derivation, we do not use the normalization
(1/N ). A change of parametrization from velocity to angular
frequency (ω = (4πT/λ)v) is used in the derivation for
mathematical simplicity

E
[∣∣S(ω)∣∣2] = A2E

 M∑
m=1

sin2
(

N (ωm,r −ω)
2

)
sin2(ωm,r −ω

2

)
. (17)

As the velocities of the raindrops are assumed i.i.d., the
right-hand side of (17) can be approximated to the following
integral:

E
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∫
+∞
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)
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2
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where the p(x) is the probability density function of the
frequencies which is assumed to be Gaussian in this case.
The integral is then

E
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)
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2

) 1√
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ω
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(
−
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2

2σ 2
ω

)
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where µω and σω are normalized angular frequency equivalents
of the normalized Doppler frequencies. It can be further
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Fig. 16. PPI plots at L = 10. Incoherent processing of five scans of the radar: (a) mean Doppler velocity µv m/s with Levin’s ML approach; (b) mean
Doppler velocity µv m/s with PSE; (c) Doppler spectrum width σv m/s with Levin’s ML approach, and (d) Doppler spectrum width σv m/s with PSE.

simplified as

E
[∣∣S(ω)∣∣2] = A2 M

∫
+∞

−∞
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)2 1√
2πσ 2

ω
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(
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2

2σ 2
ω

)
dx. (20)

If a parametrization ζ = exp( j (x−ω)) is applied, exp(− j (N−

1)(x −ω))×((exp( j N (x −ω))−1/ exp( j (x −ω))−1))2 takes
the following form:

I (ζ ) = ζ−(N−1)
(
ζ N

− 1
ζ − 1

)2

(21)

where the expression (ζ N
−1/ζ −1) is equal to a finite length

(N term) sum of a geometric progression with starting point 1

and a common factor of ζ

I (ζ ) = ζ−(N−1)

(
N−1∑
n=0

ζ n

)2

. (22)

The expression (
∑N−1

n=0 ζ
n)2 can be expanded using the princi-

ples of multinomial expansion, which then can be generalized
by the following expression:

I (ζ ) = N +

N−1∑
n=1

n
(
ζ n−N

+ ζ N−n). (23)

Replacing ζ as the function of x , we have

I (x) = N +

N−1∑
n=1

n(exp( j(x − ω)(n − N ))

+ exp( j(x − ω)(N − n))). (24)
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This can be rewritten by a change in parametrization n = N−q

I (x) = N +

N−1∑
q=1

(N − q)(exp( j(x − ω)q)

+ exp(− j(x − ω)q)). (25)

Hence, the original integral (17) can be written as follows:

E
[∣∣S(ω)∣∣2]

= A2 M
∫

+∞

−∞

1√
2πσ 2

ω

exp

(
−
(x − µω)

2

2σ 2
ω

)
I (x)dx. (26)

The integral of a complex exponential function multiplied with
a Gaussian function is generalized by the following relation:∫

+∞

−∞

1
√

2πσ 2
exp

(
−
(x − µ)2

2σ 2

)
exp( jηx)dx

= exp
(

−
σ 2η2

2

)
exp( jηµ). (27)

Using (27), we can rewrite (26) as follows:

E
[∣∣S(ω)∣∣2]

=A2 M

N +

N−1∑
q=1

(N −q)×
[
exp
(
−
σ 2
ωq2

2

)
× (exp( jq(µω−ω))

+ exp(− jq(µω − ω)))

]
(28)

which then simplifies to

E
[∣∣S(ω)∣∣2] = A2 M

N + 2
N−1∑
q=1

(N − q)

×

[
exp
(

−
σ 2
ωq2

2

)
× cos(q(µω−ω))

].
(29)

Changing the parametrization from angular frequency to veloc-
ity, and normalizing it with the number of samples N , we have
the following final expression for the PSD:

E
[

1
N

∣∣S(v)∣∣2]

= A2 M

1+2
N−1∑
q=1

(
1−

q
N

)
×

[
exp

(
−

(
4πT

λ

)2
σ 2
v q2

2

)

× cos
(

4πT
λ

q(µv−v)
)].

(30)

APPENDIX B
THEORETICAL VARIANCE AND THE CRAMER

RAO LOWER BOUND OF PSE

The log-likelihood of (14) is used to compute the theoretical
variance. Here, as there are two parameters (here we consider
the normalized frequency parameters)2 = [θa, θb] = [µv, σv],
the Fisher matrix is of dimension (2 × 2). The entries of the
Fisher matrix are given by

Ia,b = −E

[
∂2 log

(
p
(
Z
∣∣2))

∂θa∂θb

]
. (31)

The derivative of (14) with respect to any one of the parameters
(θa or θb) is given by

∂ log
(

p
(
Z
∣∣2))

∂θa
= −

N∑
i=1

[
L

F(vi ,2)+ σ 2
n

∂F(vi ,2)

∂θa

−

∑L
l=1 Zl(vi )(

F(vi ,2)+ σ 2
n

)2

∂F(vi ,2)

∂θa

]
.

(32)

The derivative of the above expression with respect to the
other parameter (θa or θb) is therefore given by (Using only F
instead of F(vi ,2) and Zl instead of Zl(vi ) for convenience)

∂2 log
(

p
(
Z
∣∣2))

∂θaθb

= −

N∑
i=1

[
−L
(

F + σ 2
n

)
+ 2

∑L
l=1 Zl(

F(vi ,2)+ σ 2
n

)3

(
∂F
∂θa

)(
∂F
∂θb

)

+
L
(

F + σ 2
n

)
−
∑L

l=1 Zl(
F(vi ,2)+ σ 2

n

)2

∂2 F
∂θa∂θb

]
. (33)

The expectation of the expression above is given by (using the
fact that E[Z ] = F + σ 2

n )

E

[
∂2 log

(
p
(
Z
∣∣2))

∂θaθb

]

= −

N∑
i=1

[
L(

F(vi ,2)+ σ 2
n

)2

(
∂F
∂θa

)(
∂F
∂θb

)]
. (34)

For normalized velocity parameters (λ/(2T ) = 2Va), the
function F can be written as follows:

F( f, µfn, σfn)

= M ×

1 + 2 ·

N−1∑
q=1

(
1 −

q
N

)

× exp
(
−2π2σ 2

fnq2)
× cos(2πq(µfn − f ))

.
(35)

The derivatives of (35) are given in the following:

∂F
∂µfn

= −4π · M ·

N−1∑
q=1

q
(

1 −
q
N

)
× exp

(
−2π2σ 2

fnq2) sin(2πq(µfn − f )). (36)
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∂F
∂σfn

= −8π2 M ×

N−1∑
q=1

q2
(

1 −
q
N

)
exp
(
−2π2σ 2

fnq2)
× cos(2πq(µfn − f )). (37)

Therefore, the theoretical variance is given by

VTheor[θ̂a
]

≥ I−1
a,a . (38)

It is also known as the square of the reciprocal of the
sensitivity [31, eq. (4)]. As the estimator is unbiased for both
the parameters for N → ∞, (38) can be used at N → ∞ to
compute the unbiased CRB

V
[
θ̂i
]

≥ I−1
a,a

∣∣
N→∞

. (39)

A closed form of the unbiased CRB is out of the scope of this
article.
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