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Abstract

In this work we explore 3D expression domains by using Hi-C contact information to construct
an interaction network in combination with TRIP expression and position data. After clustering
this network using a community finding algorithm, resulting clusters are analysed for enrichment
of Gene Ontology terms. Our work demonstrates a link between the presence of expression
measuring reporters and GO enrichments. Furthermore we find that the presence of an
insignificant number of a single type of these reporters is generally not linked to these
enrichments. In clusters containing a large number of these reporters, enrichment of GO terms
is more prevalent. By performing analyses on presence of 3D expression domains we hope to
gain more insight into permissive / non-permissive chromatin domains and how these domains
interact over longer distances.

Introduction

The 3D conformation of chromosomes plays an important role in the regulation and expression
of genes [29]. Studies have shown that genes are regulated not only by elements that are
closeby on a linear scale, but also by elements which are located up to 2 million base pairs
away [23]. Chromatin is a biological structure which consists of DNA and associated proteins
[24]. It contains a complex of many repeating nucleosomes. The nucleosome is a DNA
packaging unit, consisting of eight histone cores and a segment of DNA which is wound around
it, comparable to a spool. At the base of the nucleosome there are linker histones. The structure
of nucleosomes makes it possible to act as a general gene repressor by making the DNA
inaccessible.

Histones are part of a larger structure (nucleosome). It acts as a scaffolding around which the
double helix of DNA can coil. There are several types of histones known, divided into five major
families: H1/H5, H2A, H2B, H3 and H4. H1 and H5 are linker histones which prevent mobility of
nucleosomes [33], whilst the other ones are core histones. It is these core histones which
assemble into the core of the nucleosome.

Together these two structures from a complex of many repeating nucleosomes which is the
basis of eukaryotic chromatin. By winding the DNA around histones, the DNA becomes
packaged into a much smaller volume, whilst at the same time preventing damage to occur. A
second advantage to the winding of DNA around histones is that it becomes a more controlled
environment regarding gene expression. If it is in a tight winding, there isn’t room for
transcription factors to bind (or at least becomes far more difficult).

It plays an important role in the regulation of transcription and other functions and is in either of
two defined states: open or closed. The state corresponds with the ability of proteins being able
to bind to a particular part of the chromatin. The state of chromatin is important in models
regarding models for regulation and gene expression.



A study from Filion et al [6] on binding profiles of 100s of proteins across the genome concluded
that chromatin can be divided into several principal types. This was done by analyzing the
binding profiles of chromatin proteins using a 2-state HMM. For every protein the target and
non-target loci are determined and identifies the most likely segmentation of ‘bound’ and
‘unbound’ loci. The types of chromatin were found using a PCA on the binding profiles and
projecting the genomic sites onto the first 3 components.

The five types labeled in the work are identified as major types which may consist of subtypes.
Each type is defined by unique combinations of proteins, with proteins not restricted to a single
type of chromatin. One of the main findings is that roughly half the genome is covered by a
repressive chromatin type (named black chromatin), which also lacks classic heterochromatin
markers. Two types of identified chromatin appear to be similar (red and yellow), having most
genes in an active state and overall expression levels are similar.

From this work it follows that the genome is divided into several regions of chromatin. There are
several factors important for gene regulation: chromatin (proteins binding to DNA, packaging),
regulatory proteins (Transcription Factors) and the 3D conformation of the genome.

The long-range interactions,based on the position on the linear genome have been studied
extensively by means of chromosome conformation capture techniques, such as 3C, 4C and
Hi-C. These methods measure interactions between chromatin and directly facilitate
investigation of gene interactions.

Hi-C

Over the years several methods have been developed to study the 3D structure of chromatin
based on the measurement of DNA-DNA interactions. These include Chromosome
Conformation Capture (3C), 4C, which combines 3C with the use of inverse PCR and 5C
(multiplexed ligation-mediated amplification). A more recent approach is the Hi-C method, which
fundamentally differs from other methods as it does not require a set of target loci, providing a
more unbiased genome wide analysis [2]. Hi-C is a method used to study chromatin interactions
on a large scale via the use of contact information.
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Figure 1: Overview of creation of Hi-C library [2]. 1) Cross-link two pieces of DNA together with
an enzyme. 2) A restriction enzyme cuts the pieces. 3) DNA segment endings are filled and
marked with biotin. 4) Segments are ligated. 5) Using a purify and shearing operation on the
DAN, the fragments contain a ligation junction where contact was made 6) By using paired-end
sequencing, the final interactions are obtained.

As depicted in Figure 1, a Hi-C library is created using a multi-step procedure which starts with
the use of enzymes to bind (cross-link) two pieces of DNA together. Using a restriction enzyme
the pieces are cut and the ends of the DNA segments are filled and marked with biotin.

These segments are then ligated and using a purify and shearing operation on the DNA. DNA
fragments are obtained that contain a ligation junction between two pieces of DNA that were in
contact with each other in the nucleus.

The library is analyzed, by means of parallel sequencing, which in turn produces a catalog of
interacting fragments. The next step is to construct a contact matrix by dividing the genome into
regions (loci), where each entry m;; stands for the number of products measured between locus i
and j. Studies [31,32] have shown that there are three main biases affecting the final dataset:
distance between restriction sites, the GC content of trimmed ligation junctions and sequence
uniqueness.

A normalization step is required in order to account for linear distance bias, as loci can more
often be linked if they are naturally close and thus less dependent of the folding of the genome.
A way this normalization can be done by dividing every entry m; by the average across the
diagonal of matrix M. This comes with the downside where diagonals become shorter when the
distance increases, which can be overcome by using adjacent diagonals to create a longer
diagonal again. Besides a distance bias one can also normalize based on restriction site density
A downside to Hi-C resolution is increasing the resolution by n require n? additional reads.

The primary contribution of Hi-C in the biological field is that it shows that genomic regions
which are linearly distant can share interactions by being in close proximity in space. By



understanding which linearly distant regions of the genome interact, we gain understanding over
long-distance mechanics.

Certain mechanisms within the cell, such as transcription factories make good use of the way
the DNA is folded [21]. The entire length of the DNA has to be packed in the small space of the
nucleus, naturally forcing regions to come into contact via the specific way the folding of DNA
occurs. Other important processes which depend heavily on the 3D folding of the genome are
replication, recombination, repair, transcription and RNA processing machineries.[25]

A single transcription factor can therefore influence activity on several parts of the genome
simultaneously through their close proximity.

These long-range interactions can be analyzed using a network topology. This can be achieved
by using the Hi-C matrix as an adjacency matrix. Binned regions become the nodes of the
network and the interactions work as edges for the network. In such a network, nodes represent
a (set of) gene(s) or a more general region of the genome defined by a start base pair and an
end base pair. Studies have been done that have transformed chromatin interaction data into
networks [2,8,9,10,11] and have been used to study for example gene co-expression and
disease-associated SNP enrichment as well as interchromosomal interactions. Such networks
can be studied with the use of graph theory and clustering algorithms in order to extract smaller
communities [5,8,9,10] which are useful for analysis as there remains a biological constraint that
only a limited number of regions can truly interact with each other in the physical space.

Previous work [1] has shown the presence of expression / chromatin domains, with neighboring
genomic regions having a similar expression pattern or chromatin state. In this work we
investigate 3D expression environments, where multiple genomic regions show similar
expression patterns based on the state of the chromatin. By investigating long range
interactions between local expression domains we hope to establish the presence of 3D
environments.

In order to do so we investigate long-range interactions via the Hi-C methodology to see how
often genomic regions of similar expression patterns interact when they are linearly distant. We
reason that regions of the genome that are in close proximity within the nucleus will show similar
expression patterns for present genes as they reside in the same ‘3D environment’, with the 3D
environment corresponding with multiple sections of chromatin within close proximity within the
nucleus. These regions will likely share more interactions with other regions within the same
environment.

TRIP

A 2013 publication by Akhtar et al ([1]) introduced the methodology of TRIP (Thousands of
Reporters Integrated in Parallel). Reporter genes are a powerful tool to investigate the influence
of chromatin on gene expression. A reporter gene is a non-native gene which is inserted into a
host genome and has its location mapped. By measuring the expression of the reporter gene



we get an idea of the expression level of the genomic location where the insertion took place.
These expression levels help identify the state of the chromatin, as ‘closed’ chromatin will result
in lower expression levels compared to ‘open’ chromatin.

Before the publication of the TRIP method this generally required low throughput analyses as
reporters could only target specific genomic loci. The process of mapping the integration sites is
extremely laborious and not suitable for genome-wide interrogation[22]. TRIP solves these
problems by using a random barcodes of 16-20 bp to track each individual insertion. The
barcode locations are mapped using sequencing and due to the size of the barcode, many
potential markers can be produced for use during the same study. This leads to the ability of
tracking multiple different insertion points and allows for genome-wide analysis.

This methodology uses insertional mutagenesis to insert reporters via the PiggyBac (PB, [26])
system into a host genome and is designed to study position effects genome-wide on a massive
scale. The choice for the PB system was based on its high efficiency [3] and small size of
terminal repeats [4]. These small terminal repeats limit the amount of ‘helper DNA’ which is
inserted into the host genome, which helps prevent adverse effects such as gene silencing. The
reporters are subsequently integrated into the host genome at random positions using the PB
transposon plasmid library.

The TRIP dataset consists of locations defined at a certain base pair on the genome where
reporters are integrated. For each reporter we have an expression value based on the
normalized counts of transcription products measured in the cell pool. The normalization step is
required as integrations are measured over a large pool of cells. This is done by determining the
number of occurrences of a barcode in the cDNA using sequencing and normalizing this count
against the corresponding barcode representation in the genomic DNA, where the location of
the integration is determined using DNA sequencing. This yields an expression value for the
reporter of a certain barcode at a specific genomic location. The normalized expression is
calculated using the logarithm on the expression value. When there are less samples measured
than expected (which results in a ratio smaller than 1), the logarithm returns a negative value for
the expression. These negative expression signs are retained for further use as a possible
indicator of repressive domains.

The primary contribution to the field of chromatin position effect studies gained from this
methodology is the large scale monitoring of influences of local environment on expression. The
research by Akhtar et al [1] shows that the expression of these reporters can be influenced up to
~20k base pair away.

Furthermore, this method shows that the integration site has an important influence on the
expression of the integrated reporter gene, as otherwise each promoter would have a similar
expression value. However Akhtar et al [1] show that this is not the case. The effect is caused
by chromatin states; it is either in an “open” or “closed” state, which refers to the accessibility of
said chromatin for proteins to bind on. The TRIP study has shown that the reporters integrate in
groups of high (positive) or low (negative) expression, showing that chromatin domains exist
where larger sections of chromatin will have similar expression patterns.



The establishing of pairwise interactions of a similar expression pattern forms the basis which
we expand by translating all interactions to a network setup. We hypothesize that regions of the
genome that are in close proximity will show similar expression patterns based on the presence
in the same 3D environment. The expression value of a region is determined by the TRIP
integrations in said regions (Fig 2B). By using Hi-C we start with pairwise interactions (Fig 2C)
and to find more complex interacting regions we use a clustering approach on the densely
connected network (Fig 2D and 2E). For the found clusters we perform Gene Ontology
enrichment analysis and find that clusters with enrichment of TRIP show GO enrichments.

We investigate the effects of introducing a threshold on the Hi-C interaction scores on the
fraction of Positive and Negative TRIP bin pairs to filter out possible noise from the data set.
Next we investigate the folding of the chromosome and its resulting interactions by comparing
the real network against randomly generated networks. We do this to verify that the interactions
which happen in a real cell are not happening based on random chance, but because of the way
the chromosome is folded. Finally we are interested to see if the biological functions are shared
amongst these 3D environments. Biological functions which are shared between regions are an
indication of chromosome organization, with functions separated over longer distances, but still
being able to work together.
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Figure 2: Starting with the densely folded genome in A, we investigate pairwise interactions and
construct an interaction network. From this network we extract densely connected components
and investigate the gene ontology term enrichments for each component.

Methodology

In order to gain understanding of 3D expression domains we look at the interactions between
genomic loci. We are interested to see whether long range interacting domains show similar
expression patterns and whether we can associate a functional role to such domains and
interactions.



To do this we start with the Hi-C matrix, which is an indication of the interactions between pairs
of regions of the genome through scoring. The Hi-C data is obtained using a 40k base pair
window size, using the methodology of Lieberman-Aiden [2]. A Hi-C interaction i,j represents the
number of interactions measured between the windows i and j. These interactions can be used
to convert the symmetrical matrix into an undirected network by using the genomic bins as
nodes and all interactions as the edges.

In order to map the TRIP reporter data onto the Hi-C network, the TRIP locations are mapped to
the same 40k bp window. Due to the number of TRIP integrations in the dataset we end up with
multiple data points in the same 40k bp regions. To provide each bin with an unambiguous
expression sign (+ or -) we use a majority vote. In order to filter out low expression TRIP data
points, we employ a small near-zero threshold on the TRIP reporter expression values ([-0.5,
0.5]). This threshold is used to remove very small (near zero) expression data points which
could be the result of measuring errors or general noise. The resulting TRIP reporters can now
be categorized in three distinct sets: Positive (+), Negative (-) and Neutral (0). In this case the
neutral reporters count as there being no TRIP present at all.

Using a majority count we prevent a single large expression datapoint from deciding the sign of
a bin. If a certain genomic region contains multiple reporters showing a similar chromatin state,
based on the expression of the reporter, a single outlier can represent a measurement error. If
multiple measurements for a region show a certain domain type, the outlier will likely not be a
true measurement.

By using nonzero Hi-C interaction scores we find pairs of Hi-C bins which share a possible
interaction within the nucleus. Based on the presence of TRIP reporters we define TRIP bin
pairs as either Positive (++), with two Positive TRIP bins sharing an interaction, Negative(--),
with two Negative TRIP bins sharing an interaction, and mixed(+-), with one Negative and one
Positive TRIP bin in the interaction. The other combinations involving non-TRIP nodes (+0, -0
and 00) are not counted as TRIP bin pairs.

Hi-C Normalisation

As the contact probability is influenced by sequence proximity, the contact matrix is normalized
by dividing each entry by the chromosome-wide average contact probability for loci at a similar
distance (i.e. along a diagonal on the matrix) as done by Lieberman-Aiden [2]. A downside here
is that as the distance from the main diagonal increases, the diagonals get shorter, which has
an impact on the resulting normalization. As we are mostly interested in long-range interactions,
the normalization step is mostly used to remove short-range bias.

Hi-C Thresholding

In Figure 3 we show what happens to the distribution of TRIP bin pair interactions when we
introduce a threshold on the Hi-C interaction score. The black line depicts the percentage of
Hi-C interactions which are at or above the threshold and would be an indicator for the expected
number of TRIP bin pair interactions at or above the threshold. The other three lines (green, red
and blue) depict the fraction of TRIP bin pair interactions at a certain Hi-C threshold. From the



plot we can see that the fraction of positive TRIP bin pairs above the threshold remains higher
than the fraction of negative and mixed TRIP bin pairs. All bins that show interactions by HiC
also show enrichment for all types of expression bin interactions (++,--, +-) up to the HiC
thresholds indicated in table 1. The significance testing is performed by using the section of the
matrix with interaction scores above the threshold as our sample size and compare the number
of TRIP bin pair interactions of a certain type in this sample against the total number of TRIP bin
pair interactions of the type in the entire matrix. The results of this test show that until the
threshold values shown in table 1, the presence of TRIP bin pairs is significant with a p-value <
0.05.

TRIP bin pair combination | Hi-C threshold for insignificant presence

++ 38
- 42
+- 51

Table 1: Hi-C thresholds for TRIP bin pair combinations which mark the point where there no
longer is a significant number of TRIP bin pair combinations of a certain type left in the data.

Effects of thresholding on distribution of TRIP bin pair interactions
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Figure 3: Effects of thresholding on distribution of TRIP bin pair interactions at Hi-C > t.

Coloured lines show the fraction of TRIP bin pairs present at or above the thresholded Hi-C

interaction score. It becomes clear that for all 3 combinations a higher fraction of interactions is

present above the threshold than would be expected from random chance, which is depicted by

the black line, the Hi-C interaction scores.



Even for high thresholds, we still see that there remains a significant presence of TRIP bin pair
interactions, a threshold of 36 has the result that ~0.3% of the Hi-C interactions are at or above
the threshold.

Graph construction

Converting the entire Hi-C matrix into a network would mean that even the smallest of Hi-C
values are counted as true interactions. Though importance of all smaller values cannot be
ruled out with certainty, some minimum level of values should be imposed to eliminate
measurement errors or noise in our dataset.

We have opted to pick a threshold which keeps a substantial number of edges in the network,
whilst at the same time maintaining connectivity between all nodes. We hypothesize that a large
portion of interactions are valid, and aim to avoid disconnecting nodes from a biological point of
view as unconnected nodes appear to poorly model the possible number of interactions in a
genomic region based on proximity to other genomic regions. To this end we apply a low
threshold on the Hi-C interaction scores of 5, which was found by analysing the effects of the
introduction of a Hi-C threshold on the data. If the threshold is set to a high level the resulting
network will contain disconnected nodes. For some algorithms sparse networks would make
analysis easier, however this comes with the risk of disconnection, which is not preferable.

As discussed before, we apply a threshold on the Hi-C interaction matrix to filter out noise.
Figure 4 shows the number of interactions for each individual genomic bin that remain, with
there being no disconnected nodes. It has to be noted that the plot is truncated as genomic bins
77 and 78 have a much higher interaction count, respectively 1748 and 1176. We immediately
identify that multiple regions within the genome see far more interactions than others. These
may represent hub-like environments. From literature we find that hubs can be associated with
for example transcription factories [27,30], gene-silencing [28] or active chromatin [29,30].
These hubs show that a single region can have a large number of interacting neighbours and
possibly form dense subnetworks within the graph. This leads us to the idea of using graph
clustering to filter out these dense networks.
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Figure 4: From the Hi-C interaction network we retrieve for every Hi-C bin the number of
interactions. As can be seen we see a multitude of peaks, which are indicators of hub-like bins.
The counts for Hi-C bins 77 and 78 are truncated and reach up to 1748 and 1176 respectively.

Clustering

Using the dense network, representing the folded genome within the cell, which we have
created using Hi-C interaction data, we isolate the 3D environments for further analysis. The
best way to isolate densely connected substructures within networks is the use of clustering
techniques. In general clustering is used to segment networks, with sets of nodes showing
certain properties such as a high connectivity compared to nodes which are not in the set. The
reason for applying a clustering approach is that we have identified genomic hubs which can
divide the broader network into smaller sub-networks.

There are a multitude of clustering techniques available in literature, each with their pros and
cons. For this work we have evaluated several methods (using Cytoscape [19] to visualise the
network and Matlab for the cluster creation and analysis), with varying results on our test
chromosome (11). We briefly introduce each method below and explain their results.



Markov Clustering Algorithm (MCL)

The MCL algorithm was developed by van Dongen [7] and works by simulating flow in a
network. It computes random walks and the process of expansion (longer paths) and inflation
where walks within cluster environments will become more probable than walks outside the
environment. Using iterations it will attempt to converge to the separation of clusters.

Using the Cytoscape implementation on chromosome 11 we found that it returns a single large
cluster and a multitude of singular nodes. By varying the granularity setting we see some slightly
different results (mostly small clusters of maximum 4 nodes), but we did not find the clusters of
larger sizes. Large clusters are not probable due to the biological notion that a genomic locus
cannot interact with a large number of other loci due to the way the DNA is packed in the
nucleus. A possible explanation is the relatively low number of iterations used in combination
with a non-sparse network, a necessary restriction to reduce the runtime. This may have left the
algorithm unable to reach cluster sizes of our wish. Our cluster analysis required analysis of
gene presence and therefore requires clusters of up to 25 nodes in size (which represents a
total of 1 megabase worth of genomic regions which can interact). Clusters with 1-4 nodes
cannot contain many possible interactions of genes and as research [9] has shown that genes
do not necessarily have a direction connection, but can share common neighbours. These very
small sets are likely not keeping these indirect connections intact and miss out on this concept.

Clique Detection

Cliques within a graph are sets of nodes which are fully connected. The main difficulty with
clique detection is that it is a NP-complete problem. Combining this with the size of our network
(2965 nodes and 229107 edges) and the only constraint of clusters being at or under 25 nodes,
clique detection quickly becomes computationally expensive. Instead of looking for cliques we
have tried an approach where for every node in the network the maximum neighbourhood
component is calculated, which is similar to k-nearest neighbour algorithms. It takes the Hi-C
interaction scores as a weight on the edge and locates clusters of nodes. A downside to this
approach is that it is computationally expensive: chromosome 11 took 20 hours to be analyzed
and resulted in only a few useable clusters, some of which were identical due to the fact that the
algorithm started on every single node in the network. Due to the computationally expensive
nature of this method we expect to see even longer runtimes for the chromosomes which are
over twice the size of chromosome 11, making it an unfavorable method.

Community Finding

The community finding algorithm proposed by Girvan and Newman [10] tries to find subgraphs
within the network which connect densely internally, but sparsely with other clusters. It works by
calculating betweenness of all edges, removes the edge with the highest betweenness and
subsequently recalculates the betweenness for all affected edges. Due to the computationally
high burden of re-calculating betweenness after every edge removal, a more greedy variation of



the algorithm was developed by Newman [11], calculating a Q score which decides how much a
given division in communities alters from randomness.

This means that the algorithm stops sooner based on a Q value threshold and needs less
iterations and calculations. For chromosome 11 we find 6 communities with a Q value of 0.16
which lies below the regular threshold. Based on the size restrictions an altered algorithm was
made which iteratively re-clusters all cluster results from the Girvan-Newman algorithm. These
iterations continue until result clusters are reached with a maximum size of 25 nodes. For every
cluster we calculate if the presence of TRIP nodes is significant. In comparison to other
algorithms this gives us more control over the size of the communities we are looking for, as
well as providing a decent runtime. Chromosome 11 was dissected in roughly 76 minutes,
whereas for example the MCL algorithm was not completed within 4 hours, whilst not providing
reasonable results when it did finish. The alternative to the clique approach was done in roughly
20 hours.

Also compared to Clique detection the algorithm is more suited, as communities do not require
graphs to be fully interconnected, which would be very limited from a biological viewpoint.
Groups of genes do not necessarily directly influence all other genes in the pathway. Within the
nucleus the interacting genomic regions will unlikely form a perfect sphere where each region
can freely interact with all other regions.

Cluster Significance

The reason why we want to classify our clusters as being part of a domain is that we can look
for the possibility of genomic functionalities being present in these domains. The clustering
algorithm produces a set of result clusters and how informative these clusters are is based on
the distribution of types of nodes within each cluster. Informative clusters are clusters having a
presence of TRIP bins which makes them likely candidates for further analysis. The first type is
a cluster without any TRIP bins at all, from which we cannot deduce what kind of expression
domain it lies in, as this is determined by the presence of TRIP bins. The second type contain
some TRIP bins, but not enough to allow us to conclude that the cluster represents a certain
domain, such clusters can also contain a mixture of some TRIP bins of both types. The third
type contains a significant presence of TRIP bins, which is calculated using hypergeometric
testing for the individual TRIP signs (+ or -). The test uses the full set of nodes as the population
and the number of TRIP nodes of a certain sign as the number of success states within
population. For the draw we take the nodes from a cluster and again use the number of TRIP
nodes as the number of success states within the draw.

Based on the testing we state that a cluster which contains a significant number of positive or
negative TRIP bins is part of a particular expression domain, based on the sign of the TRIP
bins. If a cluster is both significant for positive and negative TRIP bins, this is an indication of a
boundary between two expression domains.



GO Term Enrichment Analysis

All genes per chromosome were downloaded from the Biomart section of the Ensembl website
[16] and provide us with the start- and end-base pair for each gene. The entire length of the
gene is mapped onto the 40k bp bins we use for Hi-C and TRIP and this returns a list of bins a
gene is present in. As shown in figure 5 this can lead to a situation where a gene is present in
more than one bin. In order to conserve as much information as possible, the decision was
made to assign a gene to every bin where it has a presence in, no matter how small the part of
the gene is actually present within a bin.
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Figure 5: lllustration of Genes in combination with TRIP data points, by assigning a gene to all
bins it has a presence in we conserve as much information as possible, due to the limited
number of TRIP integrations in the data.

For every cluster we retrieve the gene list, which is imported into the DAVID web tool [15] and it
returns a list of GO terms which are found to be enriched when comparing the gene list against
the background genome (mouse embryonic stem cells, mm9 reference genome). For every GO
term we employ a 25% FDR to decide if there is an actual enrichment or not.

Results

Hypothesis 1: Regions of the genome that are in close proximity will show similar expression
patterns as they reside in the same ' 3D environment’

We reasoned that due the way the genome is packed inside a cell [2, 3, 17, 18], areas of the
genome which might be linearly distant may come into close proximity. Following this it has
been suggested that this happens with a specific purpose, for example to construct transcription
factories in nuclei[13, 14]. In this case we expect to see that these regions show similar
expression patterns, as they reside in the same ‘3D environment’. The ‘3D environment’ is
determined to be sections of the genome that share interactions based on proximity, as
suggested by Lieberman-Aiden [3]. From a biological viewpoint we expect this hypothesis to be
true, as it collaborates the idea of these mechanisms, as all interacting regions would show an
increase in gene expression levels.

In order to test this hypothesis we perform a statistical analysis of the Hi-C interaction data
contained in matrix m. Hi-C interactions can be classified as non-existing, where m; = 0, or



possible, with m; > 0. A higher score shows a higher certainty of the interaction happening in a
cell. If regions tend show similar expression patterns, we expect to find statistically more regions
of the same expression pattern at Hi-C interaction scores higher than zero. We found that ~40%
of all ++ pairs and ~34% of all -- pairs are present in Hi-C regions with a score higher than zero.
At the same time we find 33.44% of all mismatching pairs present in Hi-C regions with a score
higher than zero. Based on the distribution of the Hi-C data (~31% of all data points have a
score higher than zero) we see a higher presence of ++ pairs compared to -- and +- pairs. This
shows that Positive TRIP bins are more likely to interact with other Positive TRIP bins and have
a larger presence at higher Hi-C values on average compared to Negative TRIP bin pairs.

Hypothesis 2: Introducing a threshold on Hi-C interaction scores, to filter out noise and less
probable interactions, will result in larger fractions of Positive (++) and Negative (--) TRIP bin
pairs.

Due to noise inherent to all measurements, some interactions shown in the dataset may not
necessarily occur in living cells. We wondered at which point we no longer find a significant
presence of TRIP bin pairs of the same sign. By iteratively introducing a higher threshold on the
Hi-C interaction score we find that up to a relatively high score, we keep seeing a significant
presence of TRIP bin pair interactions. At the same time the number of the data points with an
interaction score higher than the threshold decreases drastically. With no threshold we start with
~31% of the interactions having a score higher than zero. At a threshold of 5 this is reduced to
only ~5%, at a threshold of 12 we have < 1% of the interactions left. By raising the threshold we
reach a point where we no longer have a significant presence of TRIP bin pairs (38 for ++, 42
for -- and 51 for +-), at which point we have respectively 3, 5 and 15 interactions left in total. For
the rest of this project we chose a threshold of 5, which reduces the amount of possible
interactions by 95% whilst still keeping a densely connected network. As we saw back in figure
3, the introduction of a threshold does not result in larger fractions of TRIP bin pairs, but at all
points there are larger fractions present at Hi-C > threshold than expected from the distribution
of Hi-C.

Finding that we have a significant presence of matching expression pairs leads us to the
question if this is a random effect, or if the folding of the genome drives these similarly
expressed pairs.

Hypothesis 3: The natural folding of the genome results in a network with more interactions
between regions of similar expression patterns compared to non-natural (random) networks.

We saw enrichment for TRIP bin pair interactions in our network and wondered if similar
patterns would show up if we simulate a different folding of the genome. This is tested using a
randomization setup of our interaction matrix. In order to retain the general topology of the
network we opted for a degree-preserving randomization approach, wherein every node retains
its degree, but edges are randomized. In order to prevent alterations to the degree during the
iteration, thresholds on Hi-C scores were introduced beforehand. In biological terms this means



that we shuffle genomic regions around, but making sure that every region retains the number
of neighbours it had before the shuffle. The resulting network will retain a similar structure, but
with the TRIP nodes shuffled around we expect to see less interactions between similar
expression patterns.

The randomization algorithm uses a probability of 50% to redistribute an edge and iterates 4
times the number of edges over the matrix. During every iteration, two sets of interacting pairs,
a-b and c-d, are selected at random and based on the probability the pairs are switched (a-c,
b-d). The full algorithm was run 100 times to produce 100 random networks which still have a
similar topology based on the original network. As the positive TRIP bin pairs were shown to be
significantly enriched for all Hi-C values above zero as well as having a larger presence than the
negative and mixed TRIP bin pairs, we tested our hypothesis by investigating the enrichment of
Positive TRIP bin pairs for our randomized networks.

In figure 6 we show the result of this analysis in the form of a boxplot. As we can see, in general
there is a spread in values, with a high number of networks not being significant for Positive
TRIP bin pair presence. The significance values are again calculated using the same
hypergeometric setup for the regular analysis. For every threshold level we calculate the
significant presence of Positive TRIP bin pairs. At the same time we can see that for the second
half of the threshold spectrum (starting at 3, the 7th plot) on average the distribution shows a
mean around the significance threshold, meaning roughly 50% of the networks contain a
significant presence of Positive TRIP bin pairs. With larger thresholds this fraction shrinks again.
We conclude that the folding of the genome plays a very important part in the presence of
interactions between genomic regions with a similar expression pattern, based on the large
spread in values. Especially for low thresholds on the Hi-C interaction scores we find a large
spread in the presence of a significant number of Positive TRIP bin interactions which indicates
that the natural structure brings these regions together more often than seen from random
generated networks.



Significance testing for 100 random networks
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Figure 6: 100 random networks tested for significant presence of Positive TRIP bin pairs (++).
For every network we calculate if the presence of Positive TRIP bin pairs is statistically
significant for Hi-C thresholds of 0 - 5, with incremental steps of 0.5 . Especially for the lower
thresholds we see that there are hardly any significant presences of ++ TRIP bin pairs. After a
threshold of 3 (entry 6) do we see the median closing in on the 5% significance threshold.
However even then we see a large spread and conclude the natural folding is a more favorable
folding for these interactions.

As we have shown that on a local pair-wise scale we see matching expression domains we
wondered if these local expression patterns are part of larger domains, being 3D environments.
The nodes in our network represent the domains and the connections between the nodes are
the Hi-C interactions. We are interested to go to higher order interactions (higher than 2D). In
the graph this is represented by a set of densely connected nodes and to find these we use
graph clustering.

In Figure 7 we show the distribution of clusters for all chromosomes. As we can see all
chromosomes except 20 (chromosome X) show a majority of clusters with no TRIP presence
whatsoever. Larger chromosomes obviously result in a larger number of clusters. The number of
significant clusters appears less linked, as for example chromosome 1 has half the number of
significant clusters compared to chromosome 2 but is a larger chromosome. Furthermore
chromosome 12 shows a fairly large number of significant TRIP clusters for its size.
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Figure 7: Clustering results for all 20 chromosomes. As we can see the number of significant
clusters is fairly independent compared to chromosome size. The number of clusters with an
insignificant number of TRIP nodes or no TRIP nodes at all is more in line with the size of the
chromosome. Chromosome 20 has a curious result where the clustering results in more clusters
with some TRIP presence compared to all other chromosomes.

In figure 8 we show a partial result of our clustering of chromosome 11, where individual
clusters have been iteratively broken down until the threshold of 25 nodes is reached. Every
node represents a cluster in in hierarchical order, where all nodes linking to a node are
subclusters of that particular node.

The coloring in the figure shows enrichment for TRIP nodes within each cluster and is a
functionality used in Cytoscape to apply colour to a node based on the value. From the figure
we learn that a large number of clusters do not show a significant presence of TRIP bins as well
as that multiple clusters can be further broken down into smaller subclusters and still have a
significant presence of TRIP bins. This is an indication that a single significant cluster contains
multiple separate regions which are densely connected and each of these regions contains a
significant number of TRIP bins.

The significance testing was done using hypergeometric testing. As input for the test we use the
total number of nodes in the entire network, the total number of TRIP bins of a certain sign, the
size of a cluster and the number of TRIP bins of a certain sign within the cluster. The test then
shows if the number of TRIP bins in the cluster is statistically significant or not. The significance
calculation has been done for both Positive and Negative TRIP bin presence and the colour
represents the result. Green nodes represent clusters with an enriched presence of Positive
TRIP bin pairs, Red nodes the enriched presence of Negative TRIP bin pairs and the yellow



node is a cluster enriched in both Positive and Negative TRIP bins. For example in chromosome
11 we find 268 clusters sized at or below 25 nodes. These individual clusters are, according to
the algorithm, more densely connected and are thus clusters of interest and represent the 3D
environments within the cell.

Figure 8: partial clustering result of Chromosome 11. The tree structure represents reclustering
done by the algorithm and every node represents a clustering result. Green nodes are enriched
for Positive TRIP bins, red nodes for Negative TRIP bins, the blue nodes are not enriched for
either and the yellow node is enriched for both.

Hypothesis 4: Regions of the genome, which are close in proximity in the 3D environment,
share biological functionalities based on present genes on these regions

By investigating whether the identified environments share biological functionalities, we aim to
demonstrate that genes are organized on the genome in such a way that even though they are
far apart on a linear level, their closeness in 3D environments allows interactions. This follows
for example the suggestion of transcription factories [13, 14]. We perform GO enrichment
analysis using the DAVID [15] online database where we compare the gene list of a cluster
against the background genome, mouse embryonic stem cells, mm9. The expectation is to find
a statistically significant enrichment, which show that these regions do not come into contact
with each other based on chance, but rather share biological functions.

Based on our GO term enrichment analysis we found that from our 268 clusters, we have 154
clusters which have an enrichment in at least 1 GO term. Based on these findings we conclude



that our clustering has gathered nodes of similar functionalities together and that it is a
representation of parts of the natural cell. At the same time we see that 114 clusters are not
enriched for any GO term at all. A partial explanation can be that there are left-over clusters, i.e.
a cluster is broken up into several enriched clusters and some nodes that did not fit in any other
cluster and are still grouped together as well as clusters which are gene-deprived. By
investigating if our identified GO term enrichments cover both TRIP and non-TRIP nodes we
can make better predictions for these neutral nodes as to what domain they belong to.
Furthermore we found that cluster size and the significant presence of GO term are positively
correlated at 0.37. The size of the geneset for a cluster has a large correlation with GO term
enrichment (0.41) and cluster size (0.71). It is interesting to see that larger gene sets will in
general show more GO term enrichments, but to a lesser extent than would be expected,
otherwise the correlation would be higher.

Amongst our findings we see that not all identified environments seem to be enriched with
genes with known common biological tasks. Both large and small node sets, as well as large
and small gene sets can result into enrichment of GO terms. An example of GO term
enrichment is shown below in Figure 9 and Figure 10, for a cluster of 9 nodes with an
enrichment of Negative TRIP nodes, as seen in the red nodes. We observe a neutral node (307)
with a high number of interactions with the red nodes. By analyzing the GO term enrichments in
the set we can find if the nodes that do not have a TRIP integrations (neutral nodes) can indeed
be marked as being in the same non-permissive domain.



Figure 9: Result cluster 18 containing a set of 5 negative TRIP nodes, a single positive TRIP
node and 3 neutral nodes. Red nodes are bins with an enrichment of Negative TRIP points, blue
nodes have no TRIP enrichment. The numeric indicators are the bin ID’s based on the linear
genome. The cluster is enriched for negative TRIP nodes.
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Figure 10: GO Enrichment for cluster 18, yellow nodes show enriched GO terms for this
particular cluster. We see fully enriched categories on the right (requlation of biological process)
and top left (metabolic process) side. The low branch is for transportation and the lower left is
for eye and nose development. Visualisation obtained using the BINGO plugin in Cytoscape

Now that we have established that the environments show gene ontology enrichment, we are
interested to see if these shared biological functionalities stem from regions of the genome
which have similar expression patterns. The main reason for investigating this is that studies
have shown that chromatin is split into separate sections [6] of permissive and nonpermissive
domains [1]. According to these studies we should find similar expression patterns as the genes
would lie in the same domain(type)

In order to investigate this, we used hypergeometric testing to determine for each individual
cluster if there is an enriched presence of TRIP bins of either sign (+ or -). We divide our
clusters into several distinct groups: 1) clusters enriched for TRIP (+ or -), 2) clusters with no
TRIP enrichment, but there are some TRIP bins present (+ or -) and 3) neutral clusters (no TRIP
bins at all).

As we show in Table 2, for all clusters in chromosome 11 with a significant enrichment of TRIP
nodes, we always found at least one enriched GO Term using DAVID. Furthermore we see from



the result that if there is a mixed presence of TRIP nodes there are more often than not GO
term enrichments, which could be attributed to either side of the TRIP sign. The presence of
only one of the groups does not influence the presence of enriched GO terms, unless the TRIP
bins have an enriched presence.

GO Term No GO term
Enrichment Enrichment
Enriched for TRIP 17 0
Not enriched, but only has | 7 9
Positive TRIP presence
Not enriched, but only has | 66 67
Negative TRIP presence
Not enriched, has mixed 42 12
TRIP presence
No TRIP presence at all 22 26

Table 2: GO Analysis shows that clusters with enrichment of TRIP also have enrichment for GO
terms.

Discussion

In this work we have investigated 3D environments and a link between expression patterns and
gene ontology enrichment. Using an iterative community finding algorithm on Hi-C interaction
data we found a large selection of small communities which depict interacting regions on the
genome which can be linearly distant and come in close proximity due to how the chromosomes
are folded. Our goal was to find a division of the folded genome which indicates interactions
between linear domains of permissive and nonpermissive chromatin domains in the form of 3D
environments.

Using the found communities we performed gene ontology enrichment analysis and found that
over half of our clusters have an enrichment of a biological function. We then wondered if there
is a link between the presence of an enrichment and expression patterns and found that there is
a possible link between positive expression patterns and biological functionalities. At the same
time we found that there is also a very small correlation between negative expression patterns
and these biological functionalities. A strong negative correlation (-0.54) was found between the
significant presence of Positive TRIP bins and the number of genes in a bin in the enriched set
and a weaker negative correlation (-0.36) for the unenriched set. This shows that the presence
of TRIP bins is linked to the presence of gene sets which are enriched within the environment.



The size of our environments share a direct correlation with the enrichment of GO terms and the
number of genes, with larger environments having an enrichment more often as well as larger
gene sets having an enrichment. Nonsignificant ‘pure’ clusters (only one of the TRIP types
present) do not show a nonrandom distribution of GO enrichments, at the same time ‘mixed’
clusters (where both positive and negative TRIP bins are present) do show an increase in GO
enrichments.

Our clustering results likely include ‘residue’ clusters, which are less informative subclusters
obtained by breaking down a larger cluster. We reasoned that larger clusters can contain
multiple clusters of interest and naturally this will also result in sets of nodes which are not
interesting, but do end up in our resultlist. We found a possible link between the enrichment of
TRIP nodes within a cluster and the presence of enriched Gene Ontology terms. Further
research can be done to see if there is a link between a specific type of TRIP node and the
types of enrichment more prevalent for these types.
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