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Abstract
Model Counting solvers are critical in many do-1

mains. One way of validating them is through2

fuzzing. However, current fuzzing approaches3

lack systematic methods to evaluate how different4

test generators compare in bug-triggering behavior.5

This paper proposes three methods for evaluating6

fuzzer similarity: black-box analysis, differential7

testing, and white-box analysis.8

A similarity metric was defined using differential9

testing, incorporating solver behavior, solve time,10

and count differences. A case study was conducted11

on three fuzzers across numerous configurations12

and four SOTA model counters, followed by an13

analysis of correlations between CNF feature dis-14

tribution similarities and fuzzer behavioral similar-15

ities.16

The results show moderate correlations between17

graph structure features (minimum variable node18

degrees) and fuzzer similarity, while clause bal-19

ance features show negative correlations. However,20

the method proves inconclusive for selecting dis-21

similar fuzzers due to limited incorrect counts in22

our dataset, uncertainty about crash causes, and the23

similarity metric’s inherent subjectivity. Further re-24

search is needed, either by expanding the scope of25

the experiment with more diverse fuzzers, CNF fea-26

tures, and counters, or by pursuing another method27

recommended by this study.28

1 Introduction29

Model Counting or #SAT is the counting version of the30

Boolean Satisfiability (SAT) problem and determines the31

number of solutions to a Boolean formula in Conjunctive32

Normal Form (CNF). A solution is defined as a set of as-33

signments of truth values to variables such that the formula34

evaluates to true. In recent years, many important areas of35

research have relied more and more on the problem of Model36

Counting, including areas such as quantitative software veri-37

fication [Teuber and Weigl, 2021,Girol et al., 2021], network38

reliability [Kabir and Meel, 2023], cryptography [Beck et al.,39

2020], bayesian networks and probabilistic inference [Dar-40

wiche, 2004], and even real-world applications such as reli-41

ability of power grids [Latour et al., 2022]. Numerous such42

algorithmic problems can be effectively modeled to count the43

number of solutions to a Boolean formula. Researchers have44

been more focused on proving that their respective problems45

can be transformed into #SAT rather than building the neces-46

sary algorithms [Gomes et al., 2021]. Therefore, they require47

available third-party model counters (#SAT solvers).48

Using third-party solvers comes with one important issue:49

they must have a high degree of correctness and efficiency.50

While it is reasonable to expect model counters to accurately51

indicate the model count and do this predictably in terms of52

time, this expectation is not always met. Although new #SAT53

solvers are built employing testing and validation methods,54

they also suffer from bugs that are difficult to spot: integer55

overflow, precision errors, memory issues, and other non-56

deterministic behavior [Brummayer et al., 2010]. For this57

reason, testing and debugging tools are essential for develop-58

ers building and working with model counters, as they ensure59

reliability and robustness [Brummayer et al., 2010].60

Brummayer et al. [2010] argue that fuzzing can be used to61

test SAT solvers and to catch the bugs discussed previously.62

This approach can be naturally extended to #SAT solvers as 63

well. Fuzzing works by generating random inputs for the pro- 64

gram under test and then running the program with said inputs 65

to check if the program crashes or behaves in an unexpected 66

manner [Zeller et al., 2024]. In the case of #SAT, the output 67

generated by the fuzzers represents a collection of Boolean 68

formulas in CNF form, and an a set of undesired behaviors 69

resulting from running solvers with this input (often charac- 70

terized by either a crash or an incorrect model count). 71

Researchers have created tools designed to generate test 72

cases based on the aforementioned principle. However, there 73

is a critical gap in our ability to evaluate them. Specifically, 74

we lack systematic methods to compare their performance 75

across various solvers and to assess the similarities and dif- 76

ferences in the test cases they generate. Subsequently, it is 77

difficult for practitioners to choose the most effective fuzzers 78

to determine the correctness of a specific solver. This paper 79

addresses this research gap through the following contribu- 80

tions: 81

1. Three distinct methods for evaluating fuzzer similarity 82

in #SAT solvers are introduced, drawing upon method- 83

ologies from existing literature. One method is then 84

selected and evaluated through a case study using the 85

SHARPVELVET [Latour and Soos, 2024] project and a 86

collection of instance generators and solvers. 87

2. Using the selected method: 88

(a) Based on experimental results, CNF features that 89

most effectively characterize fuzzer similarity are 90

explored and analyzed. 91

(b) The method’s overall effectiveness in analyzing 92

fuzzer similarity via bug detection patterns is as- 93

sessed. 94

The core research question becomes: 95

96

What methods can be employed to evaluate and char- 97

acterize the similarity between different fuzzers for model 98

counting solvers to ensure comprehensive testing coverage? 99

100

This overarching question is divided into several specific 101

research questions: 102

• RQ1: What are the key characteristics and limitations 103

of different methodological approaches for evaluating 104

fuzzer similarity in Model Counting solvers? 105

• RQ2: Which CNF features most effectively characterize 106

fuzzer similarity when using our approach? 107

• RQ3: How effective is our selected method for evalu- 108

ating fuzzer similarity in Model Counting solvers, and 109

what advantages does it offer compared to alternative 110

approaches? 111

This paper will proceed with Section 2, which provides 112

more technical definitions for SAT and #SAT. Following that, 113

Section 3 explores related work in the field, offering context 114

and emphasizing the contributions of prior research. Sec- 115

tion 4 outlines the proposed methods for evaluating the simi- 116

larity of fuzzers, while Section 5 details the methodology and 117

experimental setup for the selected case study. Section 6 ad- 118

dresses the transparency, accessibility and scientific integrity 119

part of the study. Section 7 presents the results, limitations, 120

and suggestions for future work. Finally, Section 8 summa- 121

rizes the contributions of this research. 122

2 Preliminaries 123

This section contains definitions on Boolean Satisfiability and 124

Model Counting, and important details about SHARPVELVET 125
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project.126

2.1 Boolean Satisfiability127

Boolean Satisfiability, or SAT, is the problem of determin-128

ing whether a given Boolean formula F (usually in Conjunc-129

tive Normal Form) has at least one satisfying assignment. A130

formula F in CNF form is defined over a set of Boolean vari-131

ables X = {x1, x2, . . . , xn}, and is represented as a conjunc-132

tion of clauses, where each clause is a disjunction of literals.133

A literal is either a variable xi or its negation ¬xi. An assign-134

ment α : X → {0, 1} is called a satisfying assignment if α135

makes F evaluate to True.136

2.2 Model Counting137

Model Counting, or #SAT, extends the SAT problem by138

computing the total number of satisfying assignments of a139

Boolean formula F . Let Sol(F ) denote the set of all satisfy-140

ing assignments of F . The model counting problem seeks to141

compute |Sol(F )|, the cardinality of Sol(F ).142

In Figure 1, an example problem instance in CNF form and143

a comparison between the result of the SAT problem and the144

#SAT problem is shown. Note that the assignment shown for145

the SAT problem is just one of many correct assignments.146

Figure 1: An illustration of a boolean formula in CNF form and the
difference between SAT and #SAT.

2.3 The SHARPVELVET Project147

The SHARPVELVET project1 contains the following separate148

components:149

• Instance Generation: The ability to generate CNF in-150

stances in the DIMACS format using multiple genera-151

tors [Latour and Soos, 2024].152

• Fuzz Testing: Scripts for executing multiple solvers on153

the generated instances, reporting discrepancies in their154

outputs and identifying crashes or incorrect results [La-155

tour and Soos, 2024].156

• Verification Tools: Integration with verifiers like CPOG157

[Bryant et al., 2023] for verifying model counts.158

SHARPVELVET requires the use of model counters based159

on the 2024 Model Counting Competition specification2.160

This specification mandates that model counters must accept161

CNF formulas in DIMACS format and output their results in a162

standardized manner, in order to be later parsed by SharpVel-163

vet and compiled into a report.164

1https://github.com/meelgroup/SharpVelvet
2https://mccompetition.org/assets/files/

mccomp_format_24.pdf

3 Related Work 165

This section showcases three important areas relevant to this 166

study: general approaches for fuzzer evaluation, fuzzing tech- 167

niques developed for SAT and #SAT solvers, and methods of 168

CNF instance analysis. First, the literature on general fuzzer 169

evaluation is examined, exploring details about experimen- 170

tal design. Afterward, fuzzing techniques related to SAT and 171

#SAT solvers are addressed, focusing on black-box fuzzing 172

and the problems of determining the ground truth. The sec- 173

tion concludes by discussing methods for characterizing CNF 174

instances, including the established SATZilla feature set and 175

contemporary structural metrics that can be applied to fuzzing 176

analysis. 177

3.1 Evaluating Fuzzers 178

Given that this study focuses on evaluating fuzzers, it is im- 179

portant to first look at existing general methods for fuzzer 180

evaluation. Klees et al. [2018] present guidelines for an- 181

alyzing new fuzzer innovations, proposing a framework to 182

determine whether a new fuzzer advances the state-of-the- 183

art. They emphasize the importance of comparing a pro- 184

posed fuzzer against strong baselines, ensuring experiments 185

account for the inherent randomness of fuzzing, and repeat- 186

ing tests sufficiently (at least 30 trials) to enable statistical 187

validation [Klees et al., 2018]. More recently, Schloegel et 188

al. [2024] expand on these principles by critically review- 189

ing 150 fuzzing papers published between 2018 and 2023. 190

Their analysis revealed widespread deviations from estab- 191

lished evaluation guidelines, such as incomplete documen- 192

tation of setups and insufficient statistical validation. Both 193

studies highlight the need to report experimental setups, in- 194

cluding benchmarks, runtime configurations, and seed selec- 195

tion, to support reproducibility and reliable conclusions. 196

Böhme et al. (2022) challenge the reliability of using code 197

coverage to measure fuzzer effectiveness. The study does 198

indicate a strong correlation between code coverage and the 199

number of bugs found. However, only a moderate correlation 200

between coverage and fuzzer ranking is found. This suggests 201

that while higher code coverage may indicate a greater poten- 202

tial for uncovering bugs, it does not definitively determine the 203

overall effectiveness of a fuzzer. 204

There are two big differences between the fuzzers de- 205

scribed by Klees et al. [2018] and Schloegel et al. [2024] 206

and #SAT fuzzers. Firstly, #SAT fuzzers generate CNF in- 207

puts that adhere to a specific format, rather than producing 208

completely random strings. This characteristic complicates 209

the assessment of whether the test set used in the experimen- 210

tal evaluation is sufficiently diverse. Furthermore, the em- 211

phasis is not on validating whether a particular fuzzer should 212

be classified as state-of-the-art. Instead, comparing the sim- 213

ilarity of fuzzers in terms of the bugs they trigger is more 214

relevant. By doing so, it is possible to achieve higher code 215

coverage on solvers by selecting a collection of dissimilar 216

fuzzers. Nonetheless, it remains essential to apply the find- 217

ings of Klees et al. [2018] and Schloegel et al. [2024] to en- 218

hance the rigor of fuzzer output comparisons, ensuring that 219

the diversity and structural complexity of the generated CNF 220

instances are properly quantified. 221

3.2 Fuzzing Techniques for SAT and #SAT Solvers 222

As mentioned in Section 1, Brummayer et al. [2010] is the 223

cornerstone study that defines the fuzzing SAT and #SAT 224

solvers field. Not only is it the first time fuzzing is proposed 225

as a solution for validating different types of SAT solvers, but 226

it also contributes to one of the earliest implementations of a 227
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CNF instance generator. The fuzzing method behind this gen-228

erator is called “black-box fuzzing”. The fuzzers themselves229

cannot interact with the solver-under-test. Instead, they work230

by only generating syntactically valid but random CNF in-231

puts, which act as inputs to solvers. Given the nature of this232

method, an important question is: How can we determine if233

the solver-under-test triggered a bug on a specific instance?234

This is indeed one important aspect of these fuzzers: they all235

require a mechanism for deciding on the “ground truth”.236

While crashes are easy to identify, determining whether a237

model counter has produced an incorrect result presents a238

more complex challenge.239

3.3 The Structure of Instances240

After addressing fuzzing techniques and ways of evaluating241

fuzzers, another relevant part of this study is analyzing CNF242

features. Nudelman et al. [2004] are the first to describe the243

“SATZilla” set of features, which are a collection of features244

defined to help measure the “hardness” (computational effort)245

of SAT solvers. This concept is further developed in Xu et246

al. [2008], who create a solver portfolio which selects from247

a collection the best counter for each input instance based on248

an empirical hardness model trained on a set of SATZilla fea-249

tures. Shavit and Hoos [2024] revisited these features and250

developed a more efficient feature extractor. This updated251

version incorporates modern preprocessing techniques to op-252

timize feature computation for more extensive SAT formulas.253

The SATZilla set of features has been proven to help pre-254

dict the computational hardness of SAT solvers. However,255

an open question remains: how well do these features scale256

to #SAT solvers? Additionally, do the same features help257

with fuzzing and bug detection patterns? There are also258

many other proposed CNF features to consider, such as the259

treewidth of different graph representations of formulas (pri-260

mal [Dilkas, 2023], consensus, or conflict [Ganian and Szei-261

der, 2021]), structural entropy, as defined by Zhang et al.262

[2021], and many others.263

4 Method Study264

This section presents and evaluates three methods for quanti-265

fying the similarity of fuzzers for model counters in terms266

of bug-triggering behavior. The methods were envisioned267

by documenting standard practices in the fuzzing literature,268

and merits and weaknesses were analyzed. This section ulti-269

mately answers RQ1.270

4.1 Black-box Analysis271

A black-box oracle evaluates a program solely based on its272

inputs and outputs, without relying on knowledge of its inter-273

nal workings [Zeller et al., 2024]. In evaluating the genera-274

tors themselves, metrics such as crashes triggered and incor-275

rect results can be used to assess similarities or differences276

between solvers. By analyzing crash timings, we can deter-277

mine if two fuzzers trigger the same bug, assuming the timing278

measurements remain consistent and reliable across different279

executions. For incorrect counts, the analysis becomes more280

intricate. The number of incorrect model counts per solver281

or the difference between incorrect and correct ones can help282

identify which bugs are triggered by which fuzzers.283

However, this process is not always precise. It often re-284

lies on the assumption that similar incorrect counts indicate285

the same bug, which may not always hold true [Klees et al.,286

2018, Böhme et al., 2022]. Improving result metrics can in-287

volve gathering extensive samples and applying statistical or288

machine-learning methods to identify patterns. For example,289

clustering the count differences can reveal bugs with similar 290

behavior. Therefore, this method of evaluating fuzzers only 291

based on solver output requires significant time and effort to 292

produce a comprehensive analysis. 293

4.2 Differential Testing Approach 294

Differential testing evaluates program behavior by compar- 295

ing solver outputs across multiple implementations [Zeller et 296

al., 2024]. In the context of fuzzer similarity analysis, this 297

approach involves running instances from different fuzzers 298

through multiple solvers and comparing their behavioral pat- 299

terns. Like black-box analysis, this method operates solely 300

on solver outputs without requiring internal knowledge of the 301

solvers or fuzzers. 302

The core idea is to characterize the similarity between two 303

fuzzers by analyzing how pairs of their generated instances 304

behave across multiple solvers. A similarity score can be 305

computed for each pair of instances from different fuzzers 306

based on whether they trigger similar solver behaviors (time- 307

outs, correct count, incorrect count, crashes, or other out- 308

comes). These pairwise similarities can then be aggregated 309

to quantify overall fuzzer similarity. CNF features of the in- 310

stances can be analyzed to understand which characteristics 311

contribute to similar behavior patterns. 312

This method is beneficial when traditional black-box anal- 313

ysis is impractical - for example, when bugs producing incor- 314

rect counts are rare or when precise crash timing analysis is 315

infeasible due to resource sharing or other environmental con- 316

straints. However, the approach has significant limitations. 317

The similarity metric is inherently subjective and based on 318

biased assumptions, making it difficult to establish whether 319

two fuzzers truly pinpoint the same solver weaknesses. 320

4.3 White-box Analysis 321

Unlike analyzing the outputs of different fuzzers in isolation, 322

white-box analysis examines program behavior through sym- 323

bolic execution and program code coverage analysis tech- 324

niques [Godefroid et al., 2008b]. By exploring execution 325

paths and tracking constraints [Godefroid et al., 2008a], 326

more meaningful insights about test coverage and bug de- 327

tection capabilities can be gained compared to black-box ap- 328

proaches [Godefroid, 2012]. 329

A method for comparing fuzzers can be implemented by 330

using AFL3 [Zalewski, 2016] or AFL++ [Fioraldi et al., 331

2020]. The instances produced by existing instance gen- 332

erators like FuzzSAT [Brummayer et al., 2010] can be fed 333

through an AFL-instrumented #SAT solver, allowing execu- 334

tion paths and crashes to be tracked through AFL’s shared 335

memory maps [Zeller et al., 2024]. 336

The gathered data can be used to analyze how different 337

fuzzers’ outputs engage the solver’s functionality, focusing 338

on instances that cause crashes or incorrect counts and identi- 339

fying where in the code these issues occur. Using this method, 340

ensuring that two instances trigger the same bug is trivial. 341

Then, CNF features such as SATZilla [Nudelman et al., 2004] 342

can be used to determine which characteristics of the fuzzing 343

input best determine if two generators will trigger the same 344

set of bugs. 345

While this approach has many advantages compared to the 346

previous two, it also has drawbacks. The central problem 347

is that instrumenting a solver causes overhead, which may 348

drastically impact solver performance. This means that the 349

analysis cannot consider solver timeouts or memory exhaus- 350

tion errors as issues. Another issue is that the instrumented 351

3https://lcamtuf.coredump.cx/afl/
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solver setup must first be implemented. Unforeseen bugs re-352

lated to this implementation may arise later in the analysis353

and be challenging to identify and address.354

5 Methodology and Experimental Setup355

Due to resource and time constraints, only the differential356

testing approach was selected for evaluation. This sec-357

tion focuses on this method and presents a case study using358

the SHARPVELVET project, a selection of fuzzer configura-359

tions, and state-of-the-art #SAT solvers from the 2024 Model360

Counting Competition4. This method was chosen because361

it allows an initial assessment of its effectiveness before ex-362

ploring more complex approaches. SHARPVELVET already363

provides a way of doing differential testing and enables anal-364

ysis of fuzzer behavior patterns even in cases without crashes365

or incorrect counts, offering insights into similarities between366

fuzzers beyond traditional bug-triggering methods.367

A summary of the steps taken to conduct this case study:368

1. Multiple instance generators were configured with vari-369

ous parameter settings (discussed in Section 5.1 and Sec-370

tion 5.3).371

2. A set of features to measure the instances generated was372

selected (addressed in Section 5.2).373

3. A collection of diverse state-of-the-art #SAT solvers was374

chosen (outlined in Section 5.4).375

4. All instances were fuzzed using instances from the se-376

lected generators through the selected #SAT solvers.377

5. The counter responses for each instance was classified378

as correct, incorrect, timeout, or crash (further details in379

Section 5.5).380

6. Similarity between instances and generators was com-381

puted based on the behavioral patterns of the fuzzed382

solvers (see Section 5.6 and Section 7).383

7. CNF features and their correlation with the similarity384

computed for each generator was analyzed using statis-385

tical tests (discussed in Section 7).386

5.1 Generator Configurations387

This study uses three CNF instance generators: FuzzSAT,388

PairSAT5, and HornSAT6, a Horn clause modifier. FuzzSAT,389

developed by Brummayer et al. [2010] and extended by La-390

tour and Soos [2024], generates formulas by constructing391

boolean circuits as Direct Acyclic Graphs, randomly select-392

ing operators (AND, OR, XOR, IFF) to connect nodes un-393

til reaching minimum reference counts, then converting to394

CNF via Tseitin transformation. PairSAT, developed by Vuk395

Jurišić during a parallel research project, creates bipartite396

graphs representing CNF formulas with controlled clause-to-397

variable ratios and balanced variable distributions. HornSAT,398

also developed by Vuk Jurišić, takes existing CNF formulas399

and systematically modifies them to contain varying fraction400

of Horn clauses (clauses with at most one positive literal).401

Each base generator (FuzzSAT and PairSAT) is configured402

across presumed hardness levels and randomness degrees,403

though their actual hardness for model counting remains to404

be empirically validated. For each 100% randomness con-405

figuration, we select a random instance to create HornSAT406

instances. All configurations used and their name can be seen407

in Table 1.408

4https://zenodo.org/records/14249109
5https://github.com/Chevuu/PairSAT
6https://github.com/Chevuu/HornSAT

Generator Hardness Variables Clause Length Randomness
FuzzSAT Easy 18-30 1-3 0%: Purely structural

50%: 45-55% ran-
dom clauses
100%: 90-100% ran-
dom

Hard 30-50 4-6 Same as above
PairSAT Easy 30-50 1-3 0%: Balanced +

fixed (4.0)
100%: Unbalanced +
variable

Hard 55-90 4-6 0%: Balanced +
fixed (4.5)
100%: Unbalanced +
variable

FuzzSATHORN Easy FuzzSAT random easy instance varied to 0-100% Horn
clauses

Hard FuzzSAT random hard instance, varied to 0-100% Horn
clauses

PairSATHORN Easy PairSAT instance with same variations
Hard PairSAT hard instance with same variations

Table 1: Generator configurations and parameters

The choice of fuzzers and configurations was motivated 409

by the need for a diverse range of instances to evaluate in- 410

stance similarity. The combination of different generators and 411

randomness parameters enables the analysis of structural pat- 412

terns across varied formula types, independent of the genera- 413

tors’ effectiveness as fuzzers. 414

5.2 CNF Features 415

The feature set used in the analysis is based on the founda- 416

tional SATZilla features defined by Nudelman et al, and later 417

reduced by Xu et al. [2008] into a “base” set of features. As 418

mentioned in Section 3, no direct connection has been found 419

between this set of features and the hardness of instances for 420

#SAT. These features were selected because they capture im- 421

portant structural patterns within CNF data, which can sub- 422

stitute CNF properties, and they are also easy and quick to 423

extract [Shavit and Hoos, 2024]. While other novel CNF fea- 424

tures were analyzed and considered, they were excluded from 425

this particular experiment due to the lack of available tools for 426

their extraction in SHARPVELVET. 427

Table 2 describes the feature categories from the original 428

SATzilla paper [Nudelman et al., 2004]. 429

Category Description and Features

Problem
Size

Basic formula statistics: variables and clauses before (nvarsOrig,
nclausesOrig) and after preprocessing (nvars, nclauses), their ra-
tio (vars-clauses-ratio), and preprocessing reductions (reduced-
Vars, reducedClauses).

Variable-
Clause
Graph

Statistics from bipartite graph connecting variables to clauses
they appear in. Includes degree distributions for vari-
ables (VCG-VAR-mean/min/max/entropy) and clauses (VCG-
CLAUSE-mean/min/max/entropy).

Variable
Graph

Derived from variable co-occurrence in clauses. Tracks node
degree statistics (VG-mean, VG-coeff-variation, VG-min, VG-
max).

Clause
Graph

Graph where clauses sharing variables are connected. In-
cludes degree statistics (CG-mean/min/max/entropy) and clus-
tering coefficients measuring local density (cluster-coeff-
mean/min/max/entropy).

Balance Distribution of positive/negative literals in clauses (POSNEG-
RATIO-CLAUSE-*) and per variable (POSNEG-RATIO-VAR-
*). Also includes clause size proportions (UNARY, BINARY+,
TRINARY+).

Horn Measures Horn formula characteristics through horn-clauses-
fraction and variable statistics in Horn clauses (HORNY-VAR-
mean/min/max/entropy).

Table 2: Description of SATzilla feature categories used in this anal-
ysis.
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5.3 Instance Reduction Strategy430

Initially, 1000 instances per fuzzer configuration were gener-431

ated, resulting in 10, 000 total CNF instances (+ 404 Horn-432

SAT instances). The reasoning for using a larger number of433

instances is that as the quantity of instances generated in-434

creases, the impact of randomness on instance distribution435

per generator decreases. However, due to time and resource436

limitations, 100 instances from each generator configuration437

were used in the fuzzing process.438

The selection/downsampling process aimed to preserve the439

distribution of CNF features from the original set. This was440

achieved through stratified sampling, where the feature space441

was divided into adaptive bins, and instances were selected442

proportionally from each bin. Statistical validation confirmed443

that the reduced dataset maintained the essential characteris-444

tics of the original, as proven by three example feature dis-445

tributions in Figure 2, while reducing computational require-446

ments by 90%.447

Figure 2: Comparison of three example feature distributions before
and after downsampling.

5.4 Selected Solvers448

The choice of solvers was limited to those accepting DI-449

MACS format instances from the 2024 Model Counting450

Competition, focusing on traditional, unweighted model451

counting. Four state-of-the-art solvers were selected based452

on their diverse technical approaches and strong perfor-453

mance. This selection was motivated by the need to ana-454

lyze fuzzing outcomes across different solver implementa-455

tions while keeping the experimental scope computationally456

tractable.457

• D4 [Lagniez and Marquis, 2017]: A knowledge458

compilation-based counter using dynamic decomposi-459

tion with hypergraph partitioning. Achieved strong per-460

formance across all sections in the 2024 competition7.461

• GANAK [Sharma et al., 2019]: Builds on sharpSAT’s462

[Thurley, 2006] component caching architecture with463

probabilistic component caching and improved heuris-464

tics. Currently state-of-the-art in unweighted model465

counting performance.466

• ExactMC [Lai et al., 2021]: Introduces CCDD, a467

Decision-DNNF generalization capturing literal equiv-468

alences.469

• GPMC [Suzuki et al., 2017]: Extends Glucose 3.0 [Au-470

demard and Simon, 2009] and sharpSAT with prepro-471

cessing and tree decomposition-based decision heuris-472

tics.473

All model counters were run with a timeout of twelve min-474

utes, or 720 seconds. This was chosen because of the limited475

time and resources available for the study; however, it does476

7https://mccompetition.org/assets/files/
2024/MC2024_awards.pdf

balance fuzzing hard instances and the ability to fuzz at least 477

120 instances in 24 hours. 478

5.5 Result Classification 479

Fuzzing results were characterized by distinct classifications, 480

as shown in Table 3. The framework distinguishes between 481

instances with correct counts (including zero for unsatisfiable 482

instances) and incorrect counts, while also tracking solver- 483

specific issues like timeouts and crashes. 484

Classification Details
Correct Count Solution matches expected count (zero for un-

satisfiable instances)
Incorrect Count Solution differs from expected count
Timeout Solver exceeded time limit
Crash Solving process terminated unexpectedly

Table 3: Classification of instances in the testing framework

5.6 Similarity Evaluation 485

Two fuzzers are evaluated for similarity by analyzing their 486

behavior patterns across multiple solvers. For each in- 487

stance generated by a fuzzer, we classify the solver’s re- 488

sponse into four categories: correct count, incorrect count, 489

timeout, or crash. We then compute a similarity score be- 490

tween two fuzzers by comparing these behavioral patterns 491

and their quantitative measures across all their instance pairs 492

and solvers. 493

For two instances i1, i2 with count c1, c2 and solve time t1,
t2, the similarity score s(i1, i2) is calculated as:

S(i1, i2) =



0 if behaviors differ
0.5 + 0.5e−0.1|t1−t2| if both crashed
0.5 + 0.25e−0.01|c1−c2|+ if both correct/

0.25e−0.1|t1−t2| incorrect
P (same behavior) if both timed out

The exponential decay function provides bounded outputs 494

between 0 and 1 with diminishing rates of change as dif- 495

ferences increase. This matches the intuition that the like- 496

lihood of similar algorithmic paths decreases exponentially 497

with growing differences in count or solve time. A baseline 498

similarity of 0.5 is assigned for matching behaviors, with the 499

remaining 0.5 weighted equally between count and time dif- 500

ferences. The steeper −0.1 decay rate for time reflects how 501

variations of tens of seconds typically indicate distinct algo- 502

rithmic paths, while the gentler −0.01 decay for count differ- 503

ences accommodates moderate variations that may still rep- 504

resent similar underlying behavior. 505

For timeout cases, without having access to the ac- 506

tual count and solve time differences, the exact similarity 507

score cannot be computed. However, rather than assum- 508

ing that both instances exhibit the same behavior, we com- 509

pute P (same behavior) as the probability that both instances 510

would exhibit the same behavior (correct or incorrect) based 511

on the sample distributions of their respective generators. 512

The final similarity is calculated between generators as an 513

aggregation of all pairwise similarity scores calculated previ- 514

ously: 515

S = λµS + (1− λ)(1− (smax − smin))

where µS is the mean similarity across all instance pairs and 516

solvers, and λ = 0.7 balances between mean similarity and 517

consistency. The second term uses range rather than stan- 518

dard deviation as it directly measures maximum variability 519
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in the [0, 1]-bounded similarity scores, where higher values520

indicate more consistent behavior patterns. This formula-521

tion rewards fuzzers that maintain reliable algorithmic pat-522

terns across all instances rather than just matching on average,523

while the range’s simple interpretation makes the consistency524

penalty transparent.525

5.7 Software Environment526

The experiments were conducted using an enhanced version527

of SHARPVELVET [Latour and Soos, 2024], augmented with528

some additional features8. These tools were developed col-529

laboratively by the Research Project Peer Group. The modu-530

lar architecture preserves the original SHARPVELVET code-531

base by Latour and Soos [2024] without direct modifications.532

5.8 Hardware Configuration533

All experiments were run on the DelftBlue supercomputer534

[Delft High Performance Computing Centre (DHPC), 2024].535

The experiments utilized Phase 1 compute nodes, each536

equipped with:537

• 48-core Intel Xeon processors538

• 185 GB RAM539

• High-performance interconnect network for parallel540

computing541

6 Responsible Research542

Responsible, accessible and ethical research practices are es-543

sential in any scientific study. Therefore, this section dis-544

cusses such considerations, acknowledging some of the chal-545

lenges regarding fuzzing model-counting solvers and their546

impact on the broader research community.547

6.1 Transparency and Reproducibility548

An important aspect of conducting experimental research is549

ensuring that the resulting data is described transparently and550

that readers of the study can reproduce the experiment in its551

totality. Given the nature of fuzzing, which employs ran-552

domness throughout the process, including the seed used in553

the random number generators is essential. Numerous tools554

(generators, counters) were used and can be configured dif-555

ferently. Knowledge of said configuration is required to en-556

sure another person can use these tools similarly. A com-557

panion GitHub repository8 is therefore available, which in-558

cludes not only any of the aforementioned configurations but559

also a guide on how to use this information in order to repeat560

the same experiment. We also include the Jupyter Notebooks561

used to aggregate the data and generate the figures shown in562

Section 7.563

Nevertheless, it is important to acknowledge that the nature564

of the fuzzing results is non-deterministic and that hardware565

also plays a role in the possible bugs triggered. For example,566

running the solvers on slower hardware results in more time-567

outs. Moreover, the operating system and hardware archi-568

tecture dictate arithmetic logic and memory access behavior.569

Therefore, even with all the information available, a subse-570

quent identical experiment might show different fuzzing be-571

havior.572

8https://github.com/Krat-OS/
cse3000-how-to-break-a-solver/tree/
csoare-cse3000-clean

6.2 Accessibility 573

Accessibility is an important consideration, as it directly im- 574

pacts the study’s broader utility and reach. A step taken to 575

achieve this is using colorblind-friendly visualization princi- 576

ples. All figures, tables, and plots are either in black-and- 577

white or employ a carefully selected colorblind-safe palette 578

called “Viridis”. This way, regardless of color impairment, 579

any reader can visualize the figures. 580

A notable limitation to the study’s accessibility is its com- 581

putational requirements. While all experiments were con- 582

ducted using High-Performance Computing resources [Delft 583

High Performance Computing Centre (DHPC), 2024], these 584

facilities may not be available to researchers aiming to repli- 585

cate our findings, potentially restricting broader validation of 586

our results. 587

6.3 Ethical Considerations and Scientific Integrity 588

Running fuzzers on model-counters has limited ethical impli- 589

cations. The nature of both areas of research is theoretical 590

and does not have direct effects on data privacy or real-world 591

ethical applications. Even if model-counting solvers may be 592

used for unethical purposes, this is derivative and unrelated 593

to the subject of this study: evaluating fuzzers and improving 594

the testing of model counters. 595

Regarding scientific integrity, all software tools used in this 596

paper were utilized under license or with developer permis- 597

sion. They were comprehensively cited, and their licenses 598

are available in their respective repositories and in the main 599

repository for this project. 600

6.4 Generative AI 601

This research utilized Large Language Models and generative 602

AI tools to support various aspects of the study. The applica- 603

tions encompassed: 604

• Research assistance for brainstorming, source identifi- 605

cation, and summarization. For instance, the work by 606

Klees et al. [2018] was identified using ChatGPT’s web 607

search functionality. All AI-generated summaries were 608

comprehensively verified against original source materi- 609

als. 610

• Help with LaTeX formatting. Example prompt used in 611

Claude 3.5 Sonnet: “help me make this table smaller in 612

size while keeping the font large. maybe we could also 613

shorten the text in the cells a little to facilitate this”. 614

• Software development support via GitHub Copilot, pow- 615

ered by Claude Sonnet 3.5, for implementing shell 616

scripts, integrating feature extraction and verification 617

with generator output in Python, and developing the data 618

aggregation and visualization code. 619

• Grammarly AI provided writing support through gram- 620

mar checks and sentence improvements. 621

7 Results, Analysis and Future Work 622

This section presents our experimental results, analyzes the 623

findings, and discusses limitations and suggestions for future 624

research. The experiment was conducted according to the 625

steps described in section 5. 626

7.1 Results and Analysis 627

The analysis was initiated by examining the initial generators 628

and the characteristics of the generated instances. The input 629

data was categorized into the following groups: 630

• Feature Category (Variable Graph Features, Clause 631

Graph Features, etc.) 632
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• Base Generator (FuzzSAT, PairSAT, FuzzSATHORN,633

PairSATHORN)634

• Presumed Hardness (easy, hard)635

• Randomness Control (0%, 50%, 100%)636

While analyzing the distribution of features generated by637

fuzzers is not the primary focus of this study, it remains im-638

portant to understand the data under evaluation. Figure 3 il-639

lustrates the distribution of Clause Graph Features across gen-640

erators for hard instances with 100% randomness, highlight-641

ing the variations in feature coverage among different gener-642

ation approaches.643

Figure 3: Distribution of Clause Graph Features for hard instances
with 100% randomness.

Due to space constraints and visualization clarity, only rep-644

resentative distributions are presented, with Figure 3 as an il-645

lustrative example of the feature analysis methodology. Key646

observations from the feature analysis include:647

1. PairSAT and PairSATHORN easy configurations pro-648

duce instances where the feature extractor can reduce all649

of their original number of clauses and variables to 0.650

This might be because these instances exhibit duplicate651

unary clauses.652

2. FuzzSAT shows expected behavior where increased ran-653

domness and hardness correlate with smaller variable-654

to-clause ratios [Nudelman et al., 2004].655

3. The HornSAT generator maintains consistent Variable656

Graph and Variable-Clause Graph features with the orig-657

inal input instance while showing more variation in658

Clause Graph features.659

After fuzzing all of the solvers on the instances described660

previously, the results in Table 4 were obtained.661

Counter Correct Incorrect Crash Timeout
D4 1042 0 102 260
ExactMC 1043 0 0 361
GPMC 1063 0 2 339
Ganak 1086 0 137 181

Table 4: Fuzzing results by model counter.

The incorrect count is determined by comparing each com- 662

puted count across all solvers and doing majority voting. As 663

shown in Table 4, the four selected state-of-the-art solvers 664

demonstrated the following behaviors: 665

• All solvers achieved similar correct count rates. 666

• No incorrect counts were observed across any solver. 667

• Crashes and timeouts significantly varied, indicating dif- 668

ferent performance characteristics across solver imple- 669

mentation. 670

Table 5 presents the fuzzing results categorized by instance 671

generator rather than by solver. 672

Generator Hardness Random Correct Incorrect Crash Timeout
FuzzSAT easy 0% 397 0 0 3

50% 400 0 0 0
100% 400 0 0 0

hard 0% 157 0 79 164
50% 400 0 0 0

100% 400 0 0 0
PairSAT easy 0% 400 0 0 0

100% 400 0 0 0
hard 0% 39 0 55 306

100% 267 0 71 62
FuzzSAT- easy 100% 404 0 0 0
HORN hard 100% 68 0 3 333
PairSAT- easy 100% 404 0 0 0
HORN hard 100% 98 0 33 273

Table 5: Fuzzing results by generator.

Already, some interesting patterns regarding instance hard- 673

ness emerge. Contrary to our initial assumptions, generators 674

configured for presumably hard instances, which would nor- 675

mally result in more timeouts and crashes, did not consis- 676

tently produce these results. For example, with FuzzSAT, in- 677

creasing the proportion of random clauses in hard instances 678

made them easier to solve and less likely to trigger bugs. This 679

pattern is visible in Figure 4, which shows the average solve 680

time across different generator configurations. Generally, in- 681

stances with higher randomness control parameters (either 682

more random clauses in FuzzSAT or unbalanced variable dis- 683

tribution with variable clause-to-variable ratios in PairSAT) 684

were solved more quickly. They produced fewer timeouts 685

and crashes than their more structured counterparts. 686

Figure 4: Average solve time by generator.
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Also evident from the fuzzing results is that applying the687

HornSAT modifier to either FuzzSAT or PairSAT hard in-688

stances consistently increases their computational difficulty.689

The instances produced by each HornSAT modification show690

higher average solve times and generate more timeouts and691

crashes than their original counterparts. They also produce692

instances with a much higher count or number of solutions,693

as visible in Figure 5.694

Figure 5: Average count value by generator.

Following the similarity evaluation strategy defined in Sec-695

tion 5.6, every instance from each generator was compared696

pairwise with all instances from other generators. Figure 6697

shows the resulting similarity matrix, defining the similarity698

score between every two generators.699

Figure 6: Pairwise similarity scores between generators, displayed
as a triangular matrix to avoid redundant entries.

The matrix highlights distinct yet predictable patterns. In-700

stances generated by presumably easy configurations consis-701

tently achieve high similarity scores (0.7 to 0.9), indicating702

similar solver behavior and count values. In contrast, in-703

stances generated by harder configurations show lower scores704

(0.3 to 0.5), reflecting more diverse outcomes, including705

timeouts and crashes. HornSAT-modified hard instances and706

PairSAT-hard-0 instances have the lowest similarity scores707

(< 0.1), which is to be expected because of the longer solve708

times, higher model counts, and increased timeouts (see Fig-709

ures 4 and 5).710

In order to answer RQ2, we investigated how instance fea-711

ture distributions predict behavioral similarity between gen-712

erators. Spearman correlation, which captures monotonic re- 713

lationships without assuming linearity, was used between fea- 714

ture distribution similarities and behavioral similarity scores. 715

Since our behavioral similarity metric already incorporates 716

solve time and model count differences through specific 717

weights, no additional accounting for these confounding vari- 718

ables was needed. 719

Figure 7: Spearman correlation coefficients between feature distri-
bution similarities and generator behavioral similarity scores. Fea-
tures are sorted by absolute correlation strength (|ρ| > 0.3), showing
only statistically significant correlations (p < 0.05).

As shown in Figure 7, only four features showed mod- 720

erate absolute Spearman correlations (|ρ| > 0.3). Variable 721

graph minimum degrees (VCG-VAR-min, VG-min) showed 722

positive correlations, indicating that generators producing in- 723

stances with similar basic graph structures tend to behave 724

similarly. Conversely, minimum positive-to-negative literal 725

ratio (POSNEG-RATIO-CLAUSE-min) and proportion of 726

unary clauses (UNARY) showed negative correlations. 727

These moderate correlations suggest that examining the 728

distribution of these four features could help researchers se- 729

lect which fuzzers to run by identifying potentially redun- 730

dant behavior without requiring expensive fuzzing campaigns 731

(such as the one conducted in this study). Particularly, fuzzers 732

producing similar VCG-VAR-min and VG-min distributions 733

might be candidates for elimination due to likely behavioral 734

overlap. However, this method proves inconclusive in an- 735

swering RQ3 for two key reasons: first, our dataset could not 736

generate incorrect model counts, weakening the behavioral 737

analysis; second, only a handful of features showed mod- 738

erate correlations, and these correlations rely on a subjec- 739

tive similarity metric that weighs different behavioral aspects 740

(timeouts, crashes, model counts) based on chosen parame- 741

ters rather than empirically derived weights. 742

7.2 Limitations and Future Work 743

Several limitations of this study suggest directions for future 744

research. Our analysis was constrained by limited compu- 745

tational resources, leading to relatively short timeouts (12 746

minutes) and small sample sizes (100 instances per genera- 747

tor). Additionally, the study was limited by the few avail- 748
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able model counters and fuzzers, requiring us to use different749

configurations of the same generators to obtain a statistically750

representative dataset.751

A significant limitation in our crash analysis is that many752

reported crashes could have been caused by system-level753

process termination rather than actual solver bugs. Out-754

of-memory handlers and infrastructure-related issues in the755

fuzzing setup may have terminated solver processes prema-756

turely, making distinguishing between genuine solver crashes757

and external termination events difficult.758

The absence of incorrect counts in our results indicates the759

need for more sophisticated instance generators that better ex-760

plore corner cases. Future work should investigate alternative761

CNF features beyond the base SATzilla set, such as treewidth762

measures [Dilkas, 2023] and structural entropy [Zhang et al.,763

2021].764

Our similarity metric, while functionally able to compare765

fuzzing results, relies on subjective weights for different be-766

havioral aspects, and its black-box nature makes it challeng-767

ing to identify definitively when different errors stem from the768

same underlying bug. Future work should scale up this exper-769

iment with more diverse fuzzers and model counters, develop770

empirically validated similarity metrics that better capture er-771

ror relationships, and explore the other proposed methodolo-772

gies in Section 4.773

8 Conclusion774

Although evaluating fuzzers is essential for improving the775

validation of #SAT solvers, this evaluation is no easy feat.776

The complex implementation of model counters, combined777

with limited computational resources and time constraints,778

makes evaluating fuzzers based on the similarity of bug-779

triggering behavior an essential approach. This study pro-780

posed three methods for achieving this goal while conducting781

a comprehensive case study using differential testing on three782

available fuzzers and four state-of-the-art #SAT solvers.783

The results revealed moderate correlations between cer-784

tain CNF features and fuzzer similarity, particularly in graph785

structure metrics like variable node degrees and clause polar-786

ity ratios. However, the limited number of features showing787

significant correlations, combined with the absence of incor-788

rect model counts in our results and uncertainty about crash789

behaviors, suggests that feature-based similarity alone may790

not be sufficient for selecting a dissimilar subset of fuzzers791

that maximizes coverage.792

While this approach demonstrated promise, the findings in-793

dicate the need for more advanced fuzzer evaluation tech-794

niques, particularly those incorporating white-box analysis795

with AFL instrumentation. The proposed methods and results796

contribute to a growing understanding of effectively evaluat-797

ing fuzzers for #SAT solvers while working within practical798

resource constraints.799
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Böhme, Gordon Fraser, and Christian Holler. The Fuzzing
Book. CISPA Helmholtz Center for Information Security,
2024. Retrieved 2024-07-01 16:50:18+02:00.

[Zhang et al., 2021] Zaijun Zhang, Daoyun Xu, and
Jincheng Zhou. A Structural Entropy Measurement Prin-
ciple of Propositional Formulas in Conjunctive Normal
Form. Entropy, 23(3):303, 2021.

11

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

	Introduction
	Preliminaries
	Boolean Satisfiability
	Model Counting
	The SharpVelvet Project

	Related Work
	Evaluating Fuzzers
	Fuzzing Techniques for SAT and #SAT Solvers
	The Structure of Instances

	Method Study
	Black-box Analysis
	Differential Testing Approach
	White-box Analysis

	Methodology and Experimental Setup
	Generator Configurations
	CNF Features
	Instance Reduction Strategy
	Selected Solvers
	Result Classification
	Similarity Evaluation
	Software Environment
	Hardware Configuration

	Responsible Research
	Transparency and Reproducibility
	Accessibility
	Ethical Considerations and Scientific Integrity
	Generative AI

	Results, Analysis and Future Work
	Results and Analysis
	Limitations and Future Work

	Conclusion

