
Delft University of Technology
Master’s Thesis in Embedded Systems

Extending behavioral test models with
symbolic data

Christiaan Hartman

Extending behavioral test models with symbolic

data

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Christiaan Hartman
c.hartman@student.tudelft.nl

13th May, 2013

mailto:c.hartman@student.tudelft.nl

Author
Christiaan Hartman (c.hartman@student.tudelft.nl)

Title
Extending behavioral test models with symbolic data

MSc presentation
24th May 2013

Graduation Committee
Prof.dr. Koen Langendoen (chair) Delft University of Technology
Prof.dr. Mohammad Reza Mousavi Delft University of Technology,

Eindhoven University of Technology and
Halmstad University

dr.ir. Tim A.C. Willemse Eindhoven University of Technology

mailto:c.hartman@student.tudelft.nl

Abstract

Model-based testing is a technique to automatically generate test cases and
oracles in order to test an implementation. A typical behavioral model
used for model-based testing is a Labeled Transition System (LTS). However
creating the LTS models needed for testing is a complex task, and especially
when data is involved the number of states and thus the complexity will
explode fast. Incorporating data in an LTS leads to a Symbolic Transitions
System (STS), where data is stored in variables and actions have guards
and updates. The result is that the number of states is reduced and the
complexity is moved to the update rules and guards.

In order to simplify the construction of STS an algorithm is presented
that is capable of extracting data from an implementation and enriching
the LTS model in order to form an STS. A domain expert can than inspect
the model for possible faults and in the future the model can be used for
regression testing of the implementation.

iv

Preface

This thesis will mark the end of my journey as a student and educational
life, although its unlikely that one will ever be done learning. It was a long
but interesting journey that started at an elementary school in Delft and
now ends at the Technical University of Delft.

This project builds on my interests for the development of high quality
and reliable embedded software. That started when working on software for
the Delfi-n3Xt nanosatellite during my Battlers thesis, and later in classes
like Software Validation and Embedded Real-Time Systems.

First of all, I would like to thank my supervisor Mohammad Reza Mousavi
for his support and guidance during this project. I also want to wish him
good luck with his new adventures and projects in Sweden at the Halmstad
University. I would like to thank all the fellow students at the TU Delft that
I worked with during projects and especially the fellow students working on
their thesis project at the Embedded Software Group during my time there.
And of course I want to thank friends and family who supported me during
all those years of study.

Christiaan Hartman

Delft, The Netherlands
13th May, 2013

v

vi

Contents

Preface v

1 Introduction 1

1.1 Coffee machine example . 2

1.2 Problem statement . 4

1.3 Summary of the results . 4

1.4 Structure of the report . 5

2 State of the art 7

2.1 Traditional test techniques . 7

2.1.1 Functional testing . 7

2.1.2 Symbolic Execution 9

2.2 Model-based testing . 10

2.2.1 FSM based testing . 10

2.2.2 LTS based testing . 11

3 Models 13

3.1 First Order Logic . 13

3.2 Labeled transition systems . 14

3.2.1 Input-Output Transition systems 15

3.2.2 Symbolic Transition Systems 16

3.3 Conformance Testing . 18

3.3.1 symbolic IOCO . 19

3.4 Control Flow Graph . 20

4 Enriching Behavioral Models with Data 23

4.1 Basic Algorithm . 23

4.1.1 Control Flow Graph generation 24

4.1.2 Symbolic Transition system generation 27

4.1.3 Matching relation . 32

4.1.4 Matching Algorithm 33

4.2 Theorem . 34

vii

5 Implementation 37
5.1 Loading LTS models . 38
5.2 Generation of the CFG . 39
5.3 Matching algorithm implementation 41

5.3.1 Matching algorithm 41
5.4 Using the application . 43
5.5 Example . 44

6 Conclusions and Future Work 49
6.1 Conclusions . 49
6.2 Future Work . 49

6.2.1 Improvements to the parser 50
6.2.2 Error detection and report 50
6.2.3 Model extension . 50
6.2.4 Merging internal actions 50
6.2.5 Formalize a proof for Theorem 4.2.3 51

viii

Chapter 1

Introduction

The reason to test software is because it is known that the people who
designed and implemented it are not perfect and thus can and will make
mistakes that result in bugs, faults and eventually failures. Furthermore
we want to make a judgment about the quality of the implementation, not
just based on a feeling but based on quantitative data. This is even more
important for embedded systems as once they are deployed it is hard to
update the software; in some cases it is even impossible for an end user at
the deployment site to update the software and the embedded system has
to be returned to a service point or a technician has to come and update
the software manually. Although more and more embedded systems are
connected to some sort of network and can be updated over this network,
testing is still important to guarantee a certain quality of software and to
minimize the number of needed bug fixes and thus the cost associated with
fixing the problem and deploying the update.

With testing one can never guarantee that there are no bugs left in the
system; however, one can establish a certain level of quality by testing. The
easiest approach to testing would be to try all possible input combinations
of the implementation, as this would basically guarantee finding all the pos-
sible bugs. Consider a 32-bit adder as found in modern day CPUs. Adding
two 32-bit numbers gives 232+32 possible input permutations. Assuming
that the processor runs at 3.5GHz and is capable of executing one addition
per clock cycle, running all these tests would take 61001 years. Things get
even worse if you consider that the CPU can also do subtractions, multiplic-
ations, divisions and much more instructions. Furthermore modern CPU’s
support techniques to speed up the execution of instructions, among oth-
ers, pipelining, caching and instruction level parallelism. The state of the
pipeline, cache and functional units might result in concurrency issues when
certain instructions are executed in sequence or parallel and data may or
may not be persistently in the cache. Thus exhaustive testing of all input
combinations is infeasible for all but some trivial implementations.

1

One testing method to automatically generate test cases is model-based
testing. In model-based testing a model is used that describes the desired
behavior at a given level of abstraction and the implementation is tested if
it conforms to this model. Using the model it is possible to automatically
construct test cases to test if the behavior of the implementation conforms
to the desired behavior as specified by the model.

1.1 Coffee machine example

In this report a vending machine that servers coffee and tea is used as the
running example. The vending machine is capable of serving coffee after the
coffee button is pressed and serves tea when the tea button is pressed. After
serving coffee or tea it will wait for a new user input to again serve tea or
coffee. A model of the coffee machine is shown in Figure 1.1.

?coffee ?tea
!giveCoffee !giveTea

Figure 1.1: Simple coffee machine

Using the Label Transition System (LTS) depicted in Figure 1.1, with
input actions ?coffee, ?tea and output actions !giveCoffee, !giveTea it is
possible to generate test cases to test an implementation, and to verify if it
is a correct implementation of the model. As with all testing techniques, a
relevant question is when to stop testing. One might think that executing
both input actions once is sufficient to test the implementation, but what
if the vending machine only has a supply to produce five cups of coffee?
Executing the coffee action once will show no fault, twice no fault, three
times no fault, and so on until five cups of coffee have been served and the
vending machine needs a refill. Executing for the sixth time the coffee action
will not produce coffee and thus will show a fault in the implementation.
Unfortunately, there is no way in model based testing (as with other black-
box testing techniques) to know when the system is completely tested and
no faults are left in the system. As a result, white-box metrics such as
statement coverage and branch coverage have to be used to determine if
enough tests have been executed.

Assume that in this case the implementation is correct and the vending
machine is supposed to have a supply of five cups of coffee. That means that
the model needs to be updated to incorporate the supply variable. One of

2

the strengths of model-based testing is that just the model needs updating,
after which again automatically all the test cases can be generated (the old
test cases are simply discarded). This means that it is not necessary to
evaluate all the previously made test cases and decide if they are still valid
or might need updating, as one would have needed to do with manually
crafted test cases. The model required to implement the supply variable is
shown in Figure1.2. Since LTS models have no explicit notation of data the
number of states has grown considerably revealing a downside of LTS.

5

4

3

2

1

0

?coffee

?tea

!giveTea

!giveCoffee

?coffee

?tea

!giveTea

!giveCoffee

?coffee

?tea

!giveTea

!giveCoffee

?coffee

?tea

!giveTea

!giveCoffee

?coffee

?tea

!giveTea

!giveCoffee

?tea

!giveTea

?resupply

Figure 1.2: Coffee machine with encoding for the supply

3

As LTSs have no notion of data, the variable values have to be encoded
into the state of the model. A maximum supply of five for coffee already
results into seventeen states; when adding a supply of five for tea the state
space of the model will quickly explode. This will only get worse when the
supply values are increased. This can be solved by adding symbolic data to
the model, resulting in a Symbolic Transition System (STS). The STS model
for the coffee machine is shown in Figure 1.3 where the supply is present as
a variable, and the ?coffee action has a guard to indicate if the action can
be executed or not. Furthermore the action !giveCoffee and ?resupply have
been annotated with update rules that update the supply value to indicate
the new situation.

?coffee
[supply > 0]

?tea

?resupply
[supply == 0]
supply = 5;

!giveCoffee
supply−−; !giveTea

Figure 1.3: Simple coffee machine with data

1.2 Problem statement

Drawing a model with a repetition of states like in the coffee example is
a tedious and error prone job for larger and more complex systems with
multiple variables. The system can be modeled directly into a STS to lower
the number of states but entering all the guards and update rules into the
system is a lot of work, and when the code changes these need to be updated
while the model might remain in essence the same. To simplify matters
one may exploit the implementation to annotate the model with relevant
information regarding data and its information of the control flow. The
resulting model can then be manually inspected by a domain expert to
make sure that it matches the intended behavior of the system. When the
generated guards and update rules are correct the resulting STS can be used
for regression testing purposes.

1.3 Summary of the results

In this report an algorithm is proposed that is capable of enriching the data
in a behavioral model based on the source code that implements the beha-

4

vior. Based on the proposed algorithm an application was developed that is
capable of parsing a Java class and LTS models built using the application
called Yed. Based on the information in the Java file and the model, the
application is able to execute the algorithm and enrich the supplied model
with data. Using the application a small demonstration is given to show
that the process works. Furthermore formal relations between the models
and source code are proven.

1.4 Structure of the report

Following the introduction, first an overview of the current state of the art
is given in Chapter 2. Than the formal definitions of the models and related
concepts are given in Chapter 3. Building on these formal definitions the
method for enriching LTS models with symbolic data is given in Chapter 4.
This is followed by the implementation in a tool and some examples in
Chapter 5. Finally a conclusion of the work done and a discussion of the
future work are given in Chapter 6.

5

6

Chapter 2

State of the art

In this chapter an overview of the current testing techniques is given that
are relevant to this research. Unfortunately the field of software testing is
so wide that it is impossible to review all the techniques here, thus only an
overview of relevant techniques is given.

2.1 Traditional test techniques

2.1.1 Functional testing

Functional testing is a form of black box testing where the specifications of
the system are used to systematically test the implementation under test
(IUT). This means that all tests are constructed without any knowledge of
the internal operations of the IUT and thus all test cases will come from
the specifications. As with most approaches, testing all possible inputs is
infeasible for all but very basic programs and as a result different approaches
have been developed to select test cases that are the most likely to reveal
faults.

An overview of different functional testing techniques is given in chapter
2.4 of [11] and a brief explanation of these techniques is given next.

Partition Testing / Equivalence Partitioning In partition testing the
input domain is divided into a set of input classes that when combined
cover the complete input domain of the specification. Test cases are then
constructed to cover all combinations of input classes.

Boundary Value Testing For boundary value testing the input is di-
vided into input classes, and for each boundary three values are selected.
One just inside the boundary, one just outside the boundary and one nom-
inal value. For example when integer X is an input and has a boundary
X < a the test values should be: just inside the boundary a−1, just outside

7

of the boundary a and a nominal value b such that b < a − 1. Boundary
value analysis is a simple and easy way of constructing test cases that test
for common one off errors in loops and if statements.

Some extended forms of boundary testing are, Robustness Testing, Worst
Case Testing and Robust Worst Case Testing. In these forms the number of
test cases is extended so that the boundaries are covered more extensively.

Special Value Testing Besides testing the boundaries in a system there
are also special values that a programmer can spot. For example the quad-

ratic formula x = −b±
√
b2−4ac
2a with as inputs ax2+bx+c = 0. We know that

the solution x can either have one or two distinct real roots, or two distinct
complex roots depending on the value of the discriminant. A logical choice
would be to choose inputs in such a way that all three cases are tested. Fur-
thermore when variable a of the quadratic formula equals zero the equation
is no longer a quadratic equation, but if this case is not handled correct it
will result in an division by zero in the quadratic-formula and thus should
be treated as a special case.

Design-Based Functional Testing The requirements specify what cer-
tain requirements functions should do. When implementing these require-
ments functions it is not unlikely that other functions are constructed to
implement the requirements. The requirements function can be seen as the
root note of an tree, with the functions that are used to implement the re-
quirement at the second level. This can be refined even further where even
simpler functions are used on level n+ 1 to implement the simple functions
at level n. The smaller functions that are used to design the requirements
function are called design functions, and will have requirements that are
needed to implement the original requirement.

Selection of the design functions to implement the requirement should be
done in such a way that the functions are accessible for testing and it must
be possible to find a test data set to test the function. The input and output
of each of the design functions should be completely specified to allow the
use of functional testing techniques to construct tests cases.

As this technique involves splitting up the requirements and the IUT into
smaller parts, it is not really black-box testing. But it uses functional testing
techniques that are black-box to test the smaller subsections of the system.

Cause-Effect Graphing In causeeffect graphing, the output of the pro-
gram can be divided into classes which are called effects. Impute values or
causes that generate the same effect are grouped together, in a limited-entry
decision table to which further optimizations can be applied. The test cases
are now chosen to exercise each column of the table.

8

2.1.2 Symbolic Execution

Symbolic execution is a technique that is used to automatically generate
test cases that result in a high coverage. To accomplish this the program is
symbolically executed, and all the branches in the program are symbolically
evaluated to find all the paths and the corresponding path condition (pc).
The concrete values to force the execution along the path are found by
finding an assignment to the variables that satisfies the pc, using a constraint
solver. Solving the pc for all the collected constraints results in a set of test
cases. Consider the following code snippet:

func (int a , int b)
{

//Some code
i f (a>100) {

//Some more code
i f (b > 300 && b < 400) {

//And even more code
}

}
return ;

}

In order to test the code snippet, all the paths need to be symbolically
executed and concrete values for the variables a and b need to be found
for the paths. At the start of the program the pc is initialized to TRUE
and symbolic execution is started. For every branch a copy is made of the
current pc and the negation of the condition is added to it, and the current
pc is updated with the condition. For example if the path chosen assumes
TRUE for the first if statement then pc = (a > 100), now when for the
next if statement FALSE is chosen ¬(b > 300∧ b < 400) is added to the pc
resulting in the following constraint: pc = (a > 100)∧¬(b > 300∧ b < 400).
A constraint solver can now solve the pc to find an assignment for the
variables a, b that satisfies the pc and thus exercises the chosen path. If
there is no assignment that satisfies the pc the path is called infeasible, and
cannot be executed. Analysis of the infeasible paths can reveal pieces of dead
code (i.e code that is unreachable for any combination of input values), this
as dead code implies an infeasible path but unfortunately an infeasible path
does not imply dead code.

Loops with the stop condition depending on the data will result in a huge
amount and potentially infinite different paths. To solve this techniques
such as exploiting assertions and compositional reasoning can be used; an
explanation of these techniques is found in Chapter 7 of [12]. An overview
of the recent research trends in symbolic execution is given in [2].

9

2.2 Model-based testing

A contemporary trend in testing is generating test cases from models or
model-based testing. In model-based testing the IUT is tested to check if it
conforms to the model that describes the desired behavior. In some cases
the model is part of the existing requirements, otherwise the model needs
to be created specifically for testing purposes. Once a suitable model is
constructed tools can be used to extract test cases according to for example
the IOCO testing theory [10] or finite state machine (FSM) based testing
theory [3]. Although the model can be completely verified using model
checking techniques, due to the limitations of testing only a limited number
of test cases can be executed and thus the testing can never be complete.
Thus one can never be completely certain that the implementation conforms
to the model.

2.2.1 FSM based testing

Finite state machine (FSM) testing [3] is based on mealy state machines
where the output depends on the inputs and the current state of the system.
In testing FSM’s there are five fundamental problems:

1. Homing/Synchronizing Sequence When no reset is available or it is
unreliable, a homing sequence is constructed and used to move the
machine into a known state. The state after executing the homing
sequence is based on the outputs that the machine produces during
the execution of the homing sequence and is unknown at the start.
Where the homing sequence moves the state of the machine to a none
predetermined known state, an synchronizing sequence moves it to an
specific predetermined state.

2. State Identification here the complete state digram of the machine is
known, except for the initial state. The goal is to construct an input
sequence that reveals the state at which the machine was when the
input sequence was started.

3. State Verification As with problem 2 the state diagram is known, but
not the initial state. Now the question is given that it is in state s
verify that this is true.

4. Machine Verification/Fault Detection/Conformance Testing Given a
specification machine or model M , check if the model M is equivalent
to the implementation.

5. Machine Identification is the problem of extracting the transition dia-
gram of an given machine using a test sequence. This is used in for ex-
ample reverse engineering of communication protocols and other state
machines.

10

For FSM based testing most of the fundamental problems have been
solved, only it is still not known how to construct checking sequences de-
terministically in polynomial time. Practically there are still problems that
need to be solved, like the state space explosion for larger applications that
involve data and variables.

2.2.2 LTS based testing

Ioco [10] is a conformance relation with its origin in the theoretical area of
testing equivalences and refusal testing. To model systems ioco uses labeled
transition systems (LTS) with inputs and outputs, where input actions are
indicated by ? and output actions with !. With the implementation i and the
specifications s the ioco notation of conformance is defined as: i ioco s↔def

∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ). The function out(s)
denotes all the output action that are possible in state s and s after σ gives
the state of s after the trace σ is preformed. Straces(s) is the set of all
the possible traces over the model s, where a trace is a sequence of actions.
This means that the set of output actions of the IUT after all possible traces
in the model needs to be a subset of the model after the same trace. The
paper describing the ioco relation [10] also gives an algorithm to generate
all possible test cases, but as always with testing the number of test cases is
far too large for practical purposes. One of the ongoing research questions
is to make a good selection amongst these test cases.

sIOCO Using an LTS to model complex systems will quickly result into a
state explosion, as LTSs lack the required abstraction to handle data in the
system efficiently. As a result this will lead to a large number of states that
are needed to represent all the combinations of the variable values. To solve
this the notation of LTS is extended to Symbolic Transition System (STS)
by adding restrictions (guards) and update mappings to transition labels.
The resulting notation has a higher level of abstraction and can handle
complexer applications without resulting in a state explosion. The IOCO
relation for STSs is called Symbolic IOCO (SIOCO) [6] and is an extension
of IOCO to deal with STS models. As a given STS can be converted into
an LTS by the rules in Definition 11 of [6] denoted by JSK, following this
definition a STS S and physical system P are SIOCO compatible P sioco S
iff P ioco JSK.

As STSs can be converted into LTSs, the algorithm proposed in the ioco
paper [10] can be reused to generate all the test cases, but as the conversion
of the STS into a LTS results into a state space explosion this is impractical.
To overcome this an algorithm is proposed in [6] that avoids the state space
explosion by combining the test generation from the STS with an on-the-fly
execution of the test cases. That way only a part of the state space has to

11

be generated avoiding the state space explosion that occurs when generating
the complete state space.

12

Chapter 3

Models

During the development of complex systems, models are used to predict
behavior, test and evaluate the performance of systems. For software sys-
tems the de facto standard is the Unified Modeling Language (UML) which
offers a wide range of different models. But in the field of formal testing,
more formal models like labeled transition systems and symbolic transition
systems are used. In this chapter a description will be given of the models
that will be used in the remainder of this report. But before the definitions
of the models can be given some basic of logic is recalled.

3.1 First Order Logic

The basic concepts form first order logic are used as defined in [6, 7]. The
first order logic structure is assumed as:

• A logical signature S = (F, P) where:

– F is a set of function symbols and each f ∈ F has a corresponding
arity n ∈ N. If n = 0 we call f a constant symbol.

– P is a set of predicate symbols. Each p ∈ P has a corresponding
arity n > 0.

• A model M = (U , (fM)f∈F , (pM)p∈P) where:

– U being a nonempty set called the universe.

– For all f ∈ F , fM is a function Un 7→ U , with arity n.

– For all p ∈ P , pM ⊆ Un is a predicate over elements of the
universe with arity n.

Given a set of variables X , the set of terms over these variables is written
as T (X) and are built using function symbols in F and variables in X ⊆ X .

13

Terms t ∈ T (∅) are called ground-terms and var(t) is used to indicate the
set of variables used in the term t.

A function σ : X 7→ T is called a term-mapping. And the identity map-
ping, is defined for all x ∈ X as id(x) = x. For term mappings the following
notation is used. The function T (Y)X assigns to each variable x ∈ X a term
t ∈ T (Y) and for all the variables x 6∈ X the term x where X ∪ Y ⊆ X .

The set of first order formulas σ is denoted by F(X), for each X ⊆ X . The
set of bound variables in the first order formula σ is denoted as bound(σ)
and the set of free variables as free(σ). A tautology is represented by >.

A valuation ϑ is a function ϑ : X 7→ U . The set of all the valuations is
defined as UX =def {ϑ : X 7→ U|ϑ is a valuation of X}. ϑ ∈ UX is written
where X ⊆ X when only the valuations of the variables X are of interest. For
all the other variables not in X the valuation is set to an arbitrary element of
the set U . For two valuation ϑ ∈ UX and ς ∈ UY where X∩Y = ∅, the union

is defined as: (ς ∪ ϑ) =def

ϑ(x) if x ∈ X
ς(x) if x ∈ Y
∗, is an arbitrary element of U otherwise

If a formula σ is satisfied with respect to a given valuation ϑ this is denoted
by ϑ |= σ. Extending the evaluation to whole terms based on a valuation
ϑ is called a term-evaluation denoted ϑeval : T (X) 7→ U The composition of
functions f : B 7→ C and g : A 7→ B is denoted as f ◦ g.

3.2 Labeled transition systems

A labeled transition system (LTS) is a model that allows to describe the
operation of a system by a sequence of actions preformed by the system. A
common way of displaying these systems is by using a directed graph where
the nodes represent the states and the edges labeled with the action name
the actions.

The definition of LTS as described in the ioco paper [10] will be followed
and is repeated here for convenience.

Definition 3.1. A labeled transition system is a 4-tuple 〈Q,L, T, q0〉 where

• Q is a countable, non-empty set of states;

• L is a countable set of labels;

• T ⊆ Q× (L ∪ {τ})×Q, with τ 6∈ L, is the transition relation;

• q0 ∈ Q is the initial state.

Where q
µ−→ q′ is written when (q, µ, q′) ∈ T and q

µ1·...·µn−−−−−→ q′ when there is

a sequence of states such that ∃q0, . . . , qn : q = q0
µ1−→ q1

µ2−→ . . .
µn−→ qn = q′.

Furthermore q → and q 6→ indicate that there is or is no state q′.

14

Besides the observable actions as defined in L that define the interactions
of the system with the environment there is a internal action represented
by the label τ (τ /∈ L). The internal action is a special action in the sense
that the environment is unable to observe the internal action. It is assumed
that the states of the system are unobservable, and that the environment is
unable to determine if and when an internal action is executed. A weaktrace
starting from state s with a, b and c actions interleaved with a number of

τ ’s before and after each action and leading to state s′ is denoted s
a·b·c
==⇒ s′.

Definition 3.2. For an LTS p = 〈Q,L, T, q0〉, with q, q′ ∈ Q and a, ai ∈ L
and where ε defines the empty sequence of actions, the notation of weak
trace is defined below:

q
ε

=⇒ q′ ⇔def q = q′ ∨ q τ ·...·τ−−−→ q′

q
a

=⇒ q′ ⇔def ∃q1, q2 : q
ε

=⇒ q1
a−→ q2

ε
=⇒ q′

q
a1·...·an====⇒ q′ ⇔def ∃q0 . . . qn : q = q0

a1=⇒ q1
a2=⇒ · · · an=⇒ qn = q′

3.2.1 Input-Output Transition systems

An Input-Output transition system (IOTS) is an LTS where all the actions
in L are either inputs or outputs of the considered system for which it is
assumed that all input actions are enabled in all states and outputs are never
refused by the environment. All output actions belong to the set LU and
are decorated with ! and all input actions belonging to the set LI and are
decorated with ?.

Definition 3.3. An Input-Output transition system is a 5-tuple 〈Q,LI , LU , T,Q0〉
where:

• 〈Q,LI ∪ LU , T,Q0〉 is a LTS.

• LI and LU are sets of input and output actions that are disjoint LI ∩
LU = ∅

• All input actions are enabled in any reachable state.

Starting in a state it is possible to execute a sequence of actions leading to
a new state. This is denoted by p after σ, where p is the starting state and
σ the chosen path. Due to nondeterministic behavior, it is however possible
that there is not just one possible state but a set of states that the system
can be in after executing a sequence of actions.

15

Definition 3.4. For a sequence of actions σ and a starting state p, or a set
of states P, p after σ is defined as follows:

• p after σ =def {p′|p
σ
=⇒ p′}

• P after σ =def
⋃
{p after σ|p ∈ P}

For an IOTS the set of output actions that can possibly be executed by
the model in state a is denoted by out(a). Combined with after this
makes it possible to define the set of all the output actions the system can
generate after a certain sequence of actions σ starting in the state a, denoted
by out(a after σ). When the system is in a state where it is impossible
to preform an output action, the state is called quiescent. We annotate
quiescent states with a particular event, denoted by δ, to explicitly model
quiescence in the traces and the output of the system as an event. We add a
self transition labeled with δto the model, to explicitly define such situations
in the traces and output sets of the system.

Definition 3.5. Given that q is a state and Q a set of states of a transition
system, out() is defined as follows:

• δ(q) =def ∀µ ∈ LU ∪ {τ} : q 6 µ−→

• out(q) =def {x ∈ LU |p
x−→} ∪ {δ|δ(q)}

• out(Q) =def
⋃
{ out(q)|q ∈ Q}

Definition 3.6. Given a IOTS p = 〈Q,LI , LU , T, q0〉 where L∗ indicates
a set containing all the finite sequence over L and ε indicates the empty
sequence, the following concepts are defined:

• Lδ =def L ∪ {δ}

• pδ =def 〈Q,LI , LU ∪{δ}, T ∪Tδ, q0〉 where Tδ =def {q
δ−→ q|q ∈ Q, δ(q)}

• Straces(p) =def {σ ∈ L∗δ |pδ
σ−→}

The Straces(p) are called the suspension traces of p.

3.2.2 Symbolic Transition Systems

Symbolic Transition Systems (STS) [6, 7] extend the notation of LTS by
adding guards and update rules. This results in a model with a higher
level of abstraction that can handle more complex applications using a more
succinct representation.

16

Definition 3.7. A Symbolic Transition System is a tuple 〈Q, q0, V, i, I, A,→
〉, where:

• Q is a countable set of locations and q0 ∈ Q is the initial location.

• V is a countable set of location variables.

• i ∈ T (∅)V is the initializations of the location variables.

• I is a set of interaction variables, disjoint from V .

• A is a finite set of gates. The unobservable gate is denoted τ(τ 6∈ A);
we write Aτ for A ∪ {τ}. The arity of the gate λ ∈ arity(λ), is a
natural number. And the type of a gate λ ∈ Aτ , denoted type(λ), is
a tuple of length arity(λ) of distinct interaction variables. Where the
unobservable action has no interaction variables arity(τ) = 0.

• →⊂ Q×Aτ×F(V ∪I)×T (V ∪I)V ×Q is the switch relation. We write

q
λ,ϕ,ρ−−−→ q′ for (q, λ, ϕ, ρ, q′) ∈→ where λ is called the switch restriction

and ρ the update mapping.

An example of an STS model is given in Figure 3.1. This STS model
represents a coffee machine that is capable of serving multiple cups of coffee
at the same time, and has a supply for coffee. In this model there is a single
interaction variable Cups, that holds the number of cups the user wants.
There are two location variables: nrCups and supply, the nrCups variables
is used to store the number of cups the user requested, as the interaction
variables are only local to the switch relation. The supply variable holds
the number of cups of coffee that are available in the machine. The guard
and the update rules are placed below the gate where guards are enclosed
in square brackets and the update rules are separated by the ’;’ character.
Observe that sending a value using an output action is done by defining an
interaction variable with the gate, and assigning it a value is done via the
guard that restricts the action to the assigned value.

?coffee < INT : Cups >
[supply ≥ Cups]
nrCups=Cups;

?tea < INT : Cups >
nrCups=Cups;

?resupply
supply = 20;

!giveCoffee < INT : Cups >
[nrCups = Cups]
supply = supply − nrCups;

!giveTea< INT : Cups >
[nrCups = Cups]

Figure 3.1: STS model of a coffee machine

17

Generalized switch relation STS

Weak traces over actions in STS, are more complex than with LTS as it is
not possible to simply combine the guards and update rules. The main issue
is that the update rules in the current action have an effect on the guards
and the update rules in the next actions. In order to define weak actions [7]
defines history variables, that represent the data on a point that could have
been communicated over a gate in the system.

Definition 3.8. Given an STS S=〈Q, q0, V, i, I, A,→〉. Assuming we have a
history variable set I1, I2, . . . that are disjoint from each other and from V ∪I
of S. We define V̂ ar =def V ∪ Î with Î =def

⋃
j Ij . The variable-renaming

rn ∈ IIn is assumed to be bijective.

The generalized switch relation ⇒⊆ Q×A∗ ×F(V̂ ar)× I(V̂ ar)V ×Q is
defined as the smallest relation following these rules:

(Sε) q
ε,>,id
===⇒ q

(Sτ) q
σ,ϕ∧ψ[ρ],[ρ]◦π
========⇒ q′ if q

σ,ϕ,ρ
===⇒ q′′ and q′′

τ,ψπ−−−→ q′

(Sλ) q
σ·λ,ϕ∧(ψ[rn])[ρ],([ρ]◦π))
===============⇒ q′ if q

σ,ϕ,ρ
===⇒ q′′ and q′′

λ,ψ,π−−−→ q′′ and n =
length(σ) + 1

As with the generalized switch relation for LTS, unobservable actions are
hidden without affecting the observable actions in the system. An example
of a weak symbolic action is given in Figure 3.2.

τ
V = 10 + I;

τ
R = V × 2;

τ
[R > 100] !a

!a
[(10 + I)× 2 > 100]
V = 10 + I;
R = (10 + I)× 2;

Figure 3.2: Example of weak STS action

3.3 Conformance Testing

Input-output conformance (ioco) [10] is a conformance relation relation used
in model based testing that uses LTS models as specifications.

18

Definition 3.9. Given an implementation i as an IOTS with the input and
output labels LI , LU and a specification s as LTS with the same labels the
ioco relation is defined as follows:

i ioco s⇔def ∀σ ∈ Straces(s) : out(i after σ) ⊆ out(s after σ)

3.3.1 symbolic IOCO

The ioco relation is extended to the setting of STS models, resulting in a
notion called symbolic ioco (sioco) [6]. A given STS can be converted into
an LTS by creating a state for every combination of variable valuation and
location and the actions between the states encode the guards and update
rules, by the presence or lack of the action to the next state that represents
the new variable value. This conversion is indicated by JAK and is defined
below.

Definition 3.10. Given a STS S = 〈Q, q0, V, i, I, A,→〉 the interpretation
of S as a LTS is given by JSK = 〈Q′, L, T, q′0〉 where:

• Q′ = Q×UV are the state and all the possible combinations of variable
values.

• q′0 = (q0, eval ◦ i) ∈ Q′ initial state built up from the initial variable
values and initial state.

• L =
⋃
λ∈Aτ ({τ} × Uarity(λ))

• T ⊆ Q′ × L×Q′ as defined:

q
λ,ϕ,ρ−−−→ q′ ς ∈ U type(λ) v ∪ ς |= ϕ v′ = (v ∪ ς)eval ◦ ρ

(q, v)
(λ,ς(type(λ))−−−−−−−−→ (q′, v′)

Using the conversion from STS to LTS makes it possible to define the
sioco relation based on the ioco relation.

Definition 3.11. Given a model S in the the form of an STS and an imple-
mentation I in the form of an IOTS, the sioco relation is defined as follows:

I sioco S iff I ioco JSK

And when implementation I is in the form of an Input-Output STS the
sioco relation is defined as follows:

I sioco S iff JIK ioco JSK

19

3.4 Control Flow Graph

A Control Flow Graph (CFG) is a directed Graph where the nodes represent
program statements and the edges indicate statements that can be executed
in a sequence. Using a CFG it is possible to represent the control flow
structure of a module or a program. Labels with conditions are present on
the edges to indicate the edge taken after special statements such as if ,
while,for, until and switch.

Definition 3.12. A Control Flow Graph is an LTS = 〈Q,L,→, q0〉 where:

• Q is the set of program statements, including the: if , while, for,
until and switch statements.

• L is a set of labels containing conditions belonging to the special state-
ments. Where else signifies the path taken iff none of the other con-
ditions are met.

• → indicates the next program state, i.e. q
l−→ q′ when there is an

execution path in which q′ appears immediately after q.

• q0 indicates the first program statement to be executed.

Listing 3.1 shows a code snippet of a simple java hello world example with
a for loop. The matching CFG of this example is shown in Figure 3.3.

public stat ic void main (St r ing args [])
{

for (int i = 0 ; i < 10 ; i++) {
System . out . p r i n t l n (” He l lo World ! ”) ;

}
}

Listing 3.1: Hello world example with for loop

20

i = 0

FORi + +

System.out.println(”Hello World!”)

END
i < 10

i < 10

Figure 3.3: Control flow graph of the hello world example in Listing 3.1

21

22

Chapter 4

Enriching Behavioral Models
with Data

The goal of this chapter is to describe an algorithm, which given a behavioral
model as an LTS and an implementation, extracts data-related information
from the implementation and attaches it to the corresponding behavior in
the LTS. In other words the, goal of the algorithm is to enrich a specification
represented by an LTS model using data dependencies found in an actual
implementation. The result is an STS if the LTS is correctly implemented.

Many complications arise when the complete problem is considered; to
manage these difficulties, extra assumptions are made to simplify the prob-
lem.

4.1 Basic Algorithm

For the basic version of the algorithm a couple of extra assumptions are used
to simplify the development of the algorithm. Thus the following items are
assumed:

• No internal τ actions are present in the specifications.

• The application is single threaded.

• All the variables in the code have some influence on the control flow.

The input of the algorithm is an LTS describing the desired behavior of
the system, and the source code of the implementation of the system. The
output of the system is an STS model in the same shape as the supplied
LTS. The following two basic steps are performed to generate the STS:

1. Extract a CFG from the code.

2. Generate an STS based on the comparison of the CFG and the LTS.

23

In the first step the code is processed to extract the CFG, in a future
enhancement post processing can be done to ensure that only the necessary
information is present in the CFG and that variables and statements not af-
fecting the input-output behavior are removed. The second step then builds
the relations between the states and actions of the LTS and CFG. Based
on these relations the information in the LTS and the CFG is combined to
form the final STS.

4.1.1 Control Flow Graph generation

Translation of code into a CFG is done using the translation scheme given
in Table 4.1. In the actual CFG, nodes such as endif and endwhile may be
merged with the next Progn node.

Table 4.1: From code to CFG and to STS

Code CFG equivalent STS equivalent

Sequential composition:
prog0;
prog1;

prog0

prog1

prog0

prog1

Statement:
V = 10 + A * B;

V = 10 + A * B

END

τ
V=10+A*B;

Continued on next page

24

Code CFG equivalent STS equivalent

Conditional:
IF(cond) THEN
prog0
ELSE
prog1
END

IF

prog0 prog1

END

cond else τ
[cond]

τ
[cond]

prog0 prog1

While loop:
WHILE(cond) DO
prog0
END

WHILE

prog0 END

cond

else

τ
[cond]

[cond]
prog0

Repeat-until loop:
REPEAT prog0
UNTIL(cond)
END

prog0

UNTIL

END

cond

else

prog0
τ
[cond]

τ
[cond]

For loop:
FOR(init; cond; update)
Prog0
END

init

FOR

update

prog0 END

cond

else

τ
[cond]

τ
[cond]

init

update

prog0

Continued on next page

25

Code CFG equivalent STS equivalent

Switch Condition:
SWITCH
case1: prog0 break
case2: prog1 break
default : prog2 break
END

SWITCH

prog0

prog1

prog2

END

case1

case2

default τ
[case1]

τ
[case2]

τ
[case1 ∧ case2]

prog0
prog1

prog2

Function call:
Foo(Arg0,Arg1,...)

Foo(Arg0,Arg0,...)

!Foo< INT : IArg0, INT : IArg1, ... >
[Arg0 = IArg0 ∧ Arg1 = IArg1 ∧ ...]

Testing software systems can be divided into the following testing levels:

Unit testing, isolates the individual components (classes) using scaffolding
in order to test the components with test cases.

Integration testing, combines several components in order to find faults
in their interactions.

System level testing, the completely integrated system is tested in order
to verify that it meets its requirements.

Extracting a CFG from code can be done for all three the testing levels as
long as the source code is available, the challenge for system level testing lies
in identifying the input and output actions of the system. Aside from the
complexity of detecting the input and output actions, one can question the
meaning of the CFG when it includes for example code from a GUI library
that is used by the applications but the code is not part of the project.
For Unit testing and for integration testing the inputs and outputs of the
system can respectively be defined as the functions of the components and

26

the function calls made by the components. For that reason the focus in
this research is on Unit testing and Integration testing where inputs and
outputs of the systems will be function calls to and from the system under
test respectively.

For every function that represents an input action to the system a CFG
can be constructed, describing the control flow of that function. Once done
for all the input functions this will give a set of separate CFG’s for every
input action of the system. These septate CFG’s can be combined into one
large model of the implementation by creating an initial state that has an
input action for every function, and where the end of the function returns
back to the initial state.

Extracting a CFG from the coffee machine code snippet given in List-
ing 4.1 results in the STS as shown in Figure 4.1. As a CFG or STS
generated from code van be directly translated into each other both are now
referred to as CFG when generated from code.
public class CoffeeMachineController {

void resupplyCoffee ()

{

if(coffeeSupply == 0) {

coffeeSupply = 5;

}

}

void Coffee ()

{

if(coffeeSupply >= 1) {

CM.outputCoffee ();

coffeeSupply --;

}

}

void Tea()

{

CM.outputTea ();

}

private int coffeeSupply = 0;

private CoffeeMachine CM;

}

Listing 4.1: Simple coffee machine that can serve coffee and tea

4.1.2 Symbolic Transition system generation

After generating the CFG from the code, the CFG will have a large number
of states and τ actions that are not present in the LTS. These τ actions
represent updates and guards on variables and need to be placed with the

27

?cofee

?resupply

?tea

τ
[coffeeSupply ≥ 1]

τ
[coffeeSupply ≥ 1]

!outputCoffee

τ
[coffeeSupply == 0]

τ
[coffeeSupply == 0]

τ
coffeeSupply = 5;

τ
coffeeSupply −−;

!outputTea

Figure 4.1: STS of the coffee machine implementation

correct actions in the LTS.

Equivalence relation

In order to map these τ actions to the correct action into the LTS, a rela-
tion between a weak action in the CFG and an action in the LTS has to
be constructed. This is done, by first creating a relation between the states
and actions of the LTS and CFG, in such a way that there are states p, p′

in the CFG and q, q′ in the LTS, where p has a relation with q and p′ has
a relation with q′, and where both can execute the same action, i.e. p

a
=⇒ p′

and q
a−→ q′ Graphically this can be expressed as follows where < indicates

the relation:

p p’

q q’

< <

a
=⇒

a−→

For the relation between the action in the LTS and the weak action in the
CFG, the relation between the states p and q is referred to as the start of
the relation. And the relation between the states p′ and q′ is referred to as
the end of the relation.

Consider a simple example of which the code listing and the corresponding
CFG are given in Figure 4.2. The two τ transitions in the CFG represent
the two conditions from the if statement, followed by their respected output
actions.

28

void a ()
{

i f (con) {
b () ;

} else {
c () ;

}
}

S0

S1

S2 S3

S4 S5

?a
τ
[con]

τ
[con]

!b !c

Figure 4.2: Example listing containing if statement and its matching CFG

For this application two different valid LTS’s exist and for both of these
the chosen relation should link the states such that the actions in the LTS are
connected to one weak trace in the CFG. To accomplish this the matching
relation needs to satisfy the following conditions;

1. The implementation (CFG) contains far more details (states and trans-
itions) than the model (LTS) and hence, the relation should be able to
match several transitions of the implementation to a single transition
in the model.

2. Starting from the initial state, the start of a relation between actions
in the CFG and LTS should be the end of an other relation between
actions in the CFG and LTS or the relation between the initial states.

In order to build the relations between the actions there needs to be a
relation between the states of the CFG and LTS as outlined before. One of
the possibilities would be to use an ioco like relation; out(QS after ε) ⊆
out(QL after ε) between the states where QS is a state in the CFG and QL
a state in the LTS. As can be seen in Figure 4.3 the result for the first LTS
model looks promising, as the relations are created as expected.

For the second LTS model the result is a bit different as can be seen
in Figure 4.4 there are three options for state L1 that would be correct
according to the relation, where in truth only the relation between L1 and
S1 is correct. The problem with the subset in the relation is that the actions
are not required to be there but if they are there the relation should be build
correctly. To overcome this the output equivalence relation is introduced
that requires both states to have the same output actions.

29

L0

L1 L2

L3 L4

?a ?a

!b !c

S0

S1

S2 S3

S4 S5

?a

τ τ

!b !c

<

< <

< <

Figure 4.3: ioco like relation, left LTS model 1, right CFG

L0

L1

L2 L3

?a

!b !c

S0

S1

S2 S3

S4 S5

?a

τ τ

!b !c

<

<?

<?
<?

< <

Figure 4.4: ioco like relation, left LTS model 2, right CFG

Definition 4.1. Output equivalence. Given a specification IOTS = 〈QS , LU∪
LI ,→S , q0s〉 and an implementation IOTS = 〈QI , LU ∪ LI ,→I , q0i〉, a state
of qs ∈ Qs is output equ. to a state qi ∈ QI , denoted by qs =out qi iff:

out(qs after ε) = out(qi after ε)

Applying the output equivalence to the first LTS model will result in
the same relations as for the ioco like relation, as depicted in Figure 4.3.
However for the second LTS model the resulting relation have changes as
depicted in Figure 4.5. As can be seen there is now just one possible relation
for the states L1, and this relation ensures that the relations between the
actions are chosen such that the correct relations between the actions will
be build.

Unfortunately only the output equivalence relation is not enough to guar-
antee that all the paths in the CFG are chosen correctly. The example given

30

L0

L1

L2 L3

?a

!b !c

S0

S1

S2 S3

S4 S5

?a

τ τ

!b !c

<

<

< <

Figure 4.5: output equivalence relation, left LTS model 2, right CFG

in Figure 4.2 is rather simple as there are no variables present in the code
and thus the number of τ actions is limited to the two from the if statement.
When extra statements are added this will result in more τ actions as can
be seen in Figure 4.6 where the variable VarA is introduced.

void a ()
{

VarA = VarA + 10 ;
i f (VarA > 100) {

VarA = 200 ;
b () ;

} else {
VarA = 0 ;
c () ;

}
}

S0

S1

S2

S3

S4

S5

S6

S7 S8

?a

τ
V arA = V arA+ 10;

τ
[V arA > 100]

τ
[V arA > 100]

τ
V arA = 200;

τ
V arA = 0;

!b !c

Figure 4.6: More complicated example containing multiple τ actions.

Again the same two LTS models are possible where one of them is shown
in Figure 4.7. Unfortunately both will show that some nodes in the LTS
can be connected to multiple nodes in the CFG, this is not a problem per
definition but it does complicate things. What the relation shows is that

31

some τ actions can be placed on either the previous action or the next action
in the LTS, and that there is no unique correct way to place them based on
the LTS. The only thing that needs to be ensured is that these τ actions are
placed just with one actions in the LTS. This is ensured by requiring that the
first relations between actions start at the initial state and that subsequent
relations between actions start where previous relations have ended.

L0

L1 L2

L3 L4

?a ?a

!b !c

S0

S1

S2

S3

S5

S4

S6

S7 S8

?a

τ

τ τ

τ τ

!b !c

<

<?

<?

<?

<?

< <

Figure 4.7: Output equivalence on implementation with multiple τ actions.

4.1.3 Matching relation

In order to ensure that the relations are correctly built as outlined in the
previous sections. A matching relation is proposed.

Definition 4.2. Matching Relation. Given a specification IOTS = 〈QS , LU∪
LI ,→S , qS0〉 and an implementation IOTS = 〈QI , LU ∪ LI ,→I , qI0〉. A re-
lation < ⊆ Qs × QI and function f<(Qs × L × Qs) 7→ (QI × L × QI)∗ is a
matching relation iff:

• (qS0, qI0) ∈ <, i.e., the initial states are in the relation.

• ∀(q0, q1) ∈ <, q0 =out q1, i.e., states in the relation are output equival-
ent.

• ∀(q0, q1) ∈ <, q′0 ∈ Qs, a ∈ LU ∪ LI q0
a−→ q′0 =⇒ ∃q′1q1

a
=⇒ q′1 ∧

f<(q0, a, q
′
0) = q1

a
=⇒ q′1 ∧ (q′0, q

′
1) ∈ < i.e, for every state in the relation

32

there exists an action in the specification that can be mimicked by
an action in the implementation such that the resulting states have a
relation. And the action in the specification may only have a relation
with one weak action in the implementation.

In order to store the built relations between states and actions between
the CFG and the LTS a relation graph is used.

Definition 4.3. Given an LTS 〈Q, q0, L,→〉 and an STS 〈Q′, q′0, V, i, I, L,→
〉, a relation graph is a 4-tuple 〈Q′′, r0, τ∗.L.τ∗,→′′〉 with:

• Q′′ = Q × Q′, i.e., the Cartesian product of the sets of states in LTS
and STS, respectively.

• r0 = (q0, q
′
0) The initial relation between the initial states of the LTS

and STS.

• τ∗.L.τ∗ is the set of weak actions over the actions of the STS.

• →′′⊆ (Q′′ × (τ∗.L.τ∗)×Q′′)

4.1.4 Matching Algorithm

The goal of the matching algorithm is to build all the variations of the STS
that meet the requirements as set in the matching relation. The algorithm
does this in the following three steps:

1. initialization,

2. a refinement step that is repeated until the complete relation is built,
and

3. a merging step that merges the relevant τ actions and adds them to
the LTS to form an STS.

Initialization Given an CFG I and a LTS S, the initial states of these
systems are checked to be output equivalent. If so, a partial solution relating
only the initial states of I and S is added to the solution set P . (A partial
solution is a matching relation of which the domain of states is a strict subset
of LTS’s states.)

Refinement For the refinement step a state p = (q, s) is taken from the
partial solution in the solution set P . The state p should be chosen such that

at least for a transition q
l−→ q′, q′ is not in the domain of the states in the

considered partial solution. The set of partial solutions is then refined based

on all possible matching s
τ∗.l.τ∗−→ s′, such that q′ =out s

′ and ∀(q′′ × s′′) ∈ P :
q′′ = q′ =⇒ s′′ = s′

33

In order to ensure that the requirement: f<(q, l, q′) = s
a

=⇒ s′ is not
violated it must be ensured that all of the states in the LTS are part of
at most one relation. This as in order for the function to give a different
solution, one or both the states q, q′ will need to have two or more relations
with states in the CFG.

The refinement process is continued until the possible solution set is empty
indicating that there is no solution, or until all the possible solutions are
complete meaning that the set of states for all the partial solution that need
to be evaluated is empty.

Construction of the final STS The final STS is based on the structure
of the LTS and the information in the relation graph. The elements of the
STS S=〈Q′, q′0, V ′, i′, I ′, A′,→′〉 are defined as followed:

• Q′ Is defined based on the states of the LTS.

• q0 Is defined based on the initial state of the LTS.

• V ′ Is the set of location variables of the CFG.

• i′ The initialization of the location variables of the CFG.

• I ′ Is the set of Interaction variables from the CFG.

• A′ Is the set of gates from the CFG.

• →′ Is defined based on the weak actions in the relation graph and
the relations build between the CFG and the LTS. If there is and
(Qi, Ci)

l−→ (Qj , Cj) and Ci
λ,ϕ,ρ
===⇒ Cj then Q′i

λ,ϕ,ρ−−−→ Q′j

4.2 Theorem

Theorem 4.2.1. Given an LTS Q and the STS Q′ derived from the code,
the matching algorithm will only generate a STS iff the systems are ioco
equivalent , i.e. Q ioco Q′ when abstracted from data.

Proof. In order to prove that Q ioco Q′. we use induction on the length of
the traces of Q′. We prove that for every trace σ in Q′ the following relation
out(q0 after σ) ⊆ out(q′0 after σ) holds.

Base case The base trace is ε. By step 1 of the algorithm, the initial states
of the two transition systems must be output equivalent and thus the
ioco relation for the trace ε must hold.

Induction step Assuming that for each σ of length n, out(q0 after σ) ⊆
out(q′0 after σ) holds, prove that out(q0 after σ ·a) ⊆ out(q′0 after σ ·
a) holds.

34

Algorithm

Code LTS

STS

ioco

iocosioco

Figure 4.8: Relations between code and the models.

According to the IH there exists a state qi ∈ Q and a state q′i ∈ Q′ that
have a relation and thus are output equivalent after the trace σ: ∃qi ∈
Q,∃q′i ∈ Q′ : out(qi) = out(q′i) ∧ qi ∈ (q0 after σ) ∧ q′i ∈ (q′0 after σ)

According to the matching relation two states only have a relation if:
a ∈ out(qi)∃q1+1 ∈ Q, qi

a−→ qi+1 =⇒ ∃q′i+1 ∈ Q′, q′i
a

=⇒ q′i+1 and
qi+1 =equ q

′
i+1. Thus out(q0 after σ · a) ⊆ out(q′0 after σ · a) holds

As the base case and the induction step have been proven it has been shown
according to the induction hypotheses that the theorem is valid over all the
traces of Q.

Theorem 4.2.2. Given an STS QS generated by the algorithm based on
the LTS QL. The following relation holds Qs ioco Ql when abstracted from
data.

Proof. As Qs is generated based on Ql by placing guards and update rules
on the actions, removing these update rules and actions again produces the
same LTS as Ql thus Qs =id Ql when abstracted from data. And as two
exactly the same LTS must be ioco equivalent as after every trace the set of
states will be the same and the output actions that are possible will be the
same as well.

35

Theorem 4.2.3. Given an implementation Qc in the form of an STS derived
from the code, and the STS QS generated by the algorithm based on Qc.
The following relation holds Qc sioco Qs

When abstracted from data the STS model will be the same as the LTS
model that was used in the generation and thus according to Theorem 4.2.1
the STS is ioco with respect to the implementation when abstracted from
data. As the algorithm makes no changes to the LTS but only adds guards
and updates rules based on the implementation and the matching relation to
generate the STS. This results in an STS that given an state and a variable
valuation after executing the same sequence of actions is capable of executing
the same actions or less than the implementation.

36

Chapter 5

Implementation

To demonstrate the working of the proposed algorithm a demo application
is developed. A schematic overview of the internal operations in the applic-
ation can be seen in Figure 5.1.

Algorithm

STS

STS Model
(.sax)

CFG

AST

Code
(.java)

LTS

LTS Model
(.graphml)

Figure 5.1: Schematic overview of application.

A detailed explanation of Figure 5.1 is provided in the remainder of this
chapter, which is organized as follows. In Section 5.1, we explain how we
parse and load the LTS in our tool. In Section 5.2, we describe how the
CFG is generated from code. In Section 5.3, we show how the matching
algorithm is implemented . In Section 5.5, we conclude by providing some
examples.

37

5.1 Loading LTS models

To design and draw the LTS an application called Yed1 is used. This ap-
plication was chosen as it offers a simple way to draw LTS models and as
the models are stored in XML format, loading such models is fairly simple.
The only downside of using Yed is that indicating the initial state is not
possible. To work around this problem an extra node is added with an edge
to the initial node. Making this node invisible results in an arrow to the
initial state, while loading the model the invisible node and the edge leading
out of it are interpreted as an arrow pointing to the initial state of the LTS.
An example LTS in Yed is shown in Figure 5.2.

Figure 5.2: Yed LTS model, of a coffee machine.

The XML file from Yed is parsed, by using a standard Java library. Using
this library for every tag “node” the ID value is saved This is used as a
reference to the node when adding the transition relations. Furthermore the
visible parameter in the tag “y:NodeLabel” is checked to see if it is set to
false indicating that the edge leading out of this state is the indicator of the
initial state and thus this state is not part of the LTS. If the state is visible
the node is added to the LTS. For every edge tag the ID’s in the source and
target parameters are used to look up the source and target states in the
LTS. If the source is the invisible state, the target state is used as the initial
state of the LTS, if not then a transition relation is added between the two
states in the LTS using the name of the edge as the action name for the
transition relation.

1http://www.yworks.com/en/products_yed_about.html

38

http://www.yworks.com/en/products_yed_about.html

5.2 Generation of the CFG

Parsing the code and generating the CFG directly is a complicated task.
This is why parsing code in general is done by first generating an abstract
syntax tree (AST). By walking through the AST, it is then possible to
generate the CFG of the application. An AST is a tree structure describing
the structure of the source code in the tree form where the nodes represent
the constructs in the source code. An example of such an AST and its
matching code can be seen in Figure 5.3.

void Tea()

{

if(teaSupply >= 1){

CM.outputTea ();

}

}

Figure 5.3: AST of the method declaration tea() .

Parsing and building an AST from the source code is not a trivial task
especially for languages such as Java and C#. ANTLR tool is used to
generate the AST and to walk the AST in order to generate the CFG of the
code. ANTLR [9, 8] is described by its creator Terence Parr as follows:

“ANTLR (ANother Tool for Language Recognition) is a power-

39

ful parser generator for reading, processing, executing, or trans-
lating structured text or binary files. It’s widely used to build
languages, tools, and frameworks. From a grammar, ANTLR
generates a parser that can build and walk parse trees.”

To generate a parser that is capable of building an AST, ANTLR needs a
grammar describing the language, and structure of the AST. Building such
a grammar is a project on its own, but fortunately there are grammars for
various programming languages available on the ANTLR website2 including
one for Java 1.53 which is used to build the AST.

Using the grammar, ANTLR builds a lexer and a parser. The lexer con-
verts the stream of charters found in the source file into tokens and the
parser parses the tokens and produces the AST. Once an AST is generated,
the next step is to walk the AST and construct the CFG, in order to do this
ANTRL uses a treewalker. A treewalker is again a grammar that matches
the nodes in the AST and executes code when walking trough the tree that
is used to generate the CFG. The treewalker walks the tree from left to
right and while walking parts of the CFG are constructed bottom up which
are combined in every step to from in the end the complete CFG of the
application.

In order to create a treewalker that is capable of generating the CFG
custom code has to be added to the rules of the tree grammar. The code for
these rules needs to take the parts that where already generated and combine
them in the correct way. For example the if statement has a condition
followed by two statements to be executed when the condition is evaluated,
to true or false respectively. The condition is an expression, and the two
statements can be anything from a single statement to a block of statements
with while and for loops; the else statement may not be present at all.
The statements will recursively be evaluated by the tree parser and will
form a part of the CFG, according to the rules in Table 4.1. For all the
supported statements and expressions code was added in order to facilitate
the generation of the CFG of the java source code.

Currently the tree walker supports the following statements: if , while
and for, statements such as: assert, break, for each, do while, try− catch
and switch are currently not supported. All variable types except characters
are supported, however byte, short, int and long are all interpreted as an
integer and float and double are both interpreted as double this as the
XML format used to save the final STS only supports a limited number of
simple variable types. All expressions applicable for these variables types are
supported however arrays of variables and enumerators are not supported.

Creation of the final parser based on the grammar files to build the CFG
was done using the development tool ANTLRWorks [5].

2www.antlr3.org/grammar/list.html
3www.antlr.org/grammar/1207932239307/Java1_5Grammars/

40

www.antlr3.org/grammar/list.html
www.antlr.org/grammar/1207932239307/Java1_5Grammars/

5.3 Matching algorithm implementation

In order to implement the matching algorithm, first an algorithm is presen-
ted that is used to build the set of weak actions in the CFG leading out a
state. Next the matching algorithm is presented.

Construction of weak traces

To construct a set of weak actions leaving a state the following rules have
to be applied recursively for every outgoing action of a state, where “Action
= τ” indicates that the action leaving the state is a τ action. And Act
indicates if already an action other than τ was encountered and thus the
trace is already a weak action.

Action = τ Act Actions preformed

True False Add the action to the trace; Continue
True True Add the action to the trace; add the trace to the

set of weakAct; Continue
False False Add the action to the trace; add the trace to the

set of weakAct; set Act to True; Continue
False True Stop end of the trace no more weak actions in

this branch.
Applying these results in Algorithm 1.

Algorithm 1 Generating the set set of all weak actions leaving state s

function weakAct(s)
return weakAct(s, ε, false)

function weakAct(s, t, Act)
for all a ∈ Act(s) do

if a = τ then
t′ ← t · a
if Act = True then

X ← X ∪ {t′}
X ← weakAct(s after a, t′, Act)

else if Act = False then
t′ ← t · a
X ← X ∪ {t′}
X ← weakAct(s after a, t′, True)

return X

5.3.1 Matching algorithm

The matching algorithm is implemented as explained in Section 4.1.4. In
order to implement the algorithm a couple of functions are used:

41

unrefinedState Returns a single relation in the relation graph that needs
to be refined. If there are multiple states than can be refined an
arbitrary state that needs to be refined is given.

createSTS Builds the final STS based on a relation graph or a set of STSs
based on a set of relation graphs.

complete From a set of relation graphs the subset of complete relations
is returned. Where a complete relation graph is defined as a relation
graph for which all the states are refined.

With theses functions the complete algorithm is given in Algorithm 2. The
input of the algorithm is a CFG in the form of an STS and an LTS, and the
output is a set of STSs or an empty set when no solution is found.

42

Algorithm 2 The matching algorithm

Precondition: S = 〈Q, q0, V, i, I, A,→〉 is the CFG of the code as an STS
, and I = 〈Q,LI , LU , T, p0〉 is an IOTS.

Postcondition: C is a set of STSs that are all solutions, if C = ∅ then no
solution was found.
function matchingAlgorithm(S, I)

if out(q0) 6= out(p0) then
return ∅

r ← 〈{(q0 × p0)}, (q0 × p0), ∅, ∅〉
P ← {r}
while |P | > 0 do

r ∈ P
P ← P \ r
(q × p) ← unrefinedState(r)
P ′ ← refine(Act(q), WeakAct(p), r, (q × p))
C ← createSTS(complete(P ′))∪C
P ← (P ′ \ complete(P ′)) ∪ P

return C
Precondition: Act is the set of actions in the LTS that need to be refined,
weakAct is the set of actions in the STS, R = 〈Q′′, r0, L,→′′〉 is the current
relation graph that is refined and (q×p) the relation that is being refined.

Postcondition: P ′ contains all the refined solutions.
function Refine(Act,WeakAct,R, (q × p))

a ← ∈ Act
for all a′ ∈WeakAct do

if a = a′ ∧ out(p after a′) = out(q after a) then
(q′ × p′) ← (q after a× p after a′)
if ∀(q′′ × p′′) ∈ Q′′ : q′′ = q′ =⇒ p′′ = p′ then

E ← ((q × p)×WeakAct× (q′ × p′))
G′ ← 〈Q′′ ∪ (q′ × p′), r0, L ∪WeakAct,→′′ ∪E〉
Act′ ← Act \ a
WeakAct′ ← WeakAct \ a′
if |Act′| = 0 then

P ′ ← P ′ ∪G′
else

P ′ ← refine(Act′,WeakAct′, G′, (p× q)) ∪P ′

return P’

5.4 Using the application

The application uses a simple graphical user interface (GUI) as can be seen
in Figure 5.4 that allows selecting the input files and output directory for the

43

algorithm. By pressing the Load button a file selection dialog will appear

Figure 5.4: GUI of the application

allowing the user to select the Java (*.java) or Yed (*.graphml) file, altern-
atifly the user can also type the path to the file manually. When selecting the
LTS model, the output directory will automatically be set to the directory
of the LTS model. If the user want to use a different directory pressing the
set button will allow selecting an alternative directory for the results. After
the user has supplied the correct files, pressing the start button will run the
algorithm and when complete the output files will be saved in the output
directory named according to the filename specified and appended with a
sequence number. When the results are saved the application will show a
pop-up informing the user that the process is complete and how many res-
ults where found. The STS models are saved as XML files according to the
STSchema Version 1111104.

5.5 Example

As a demonstration of the application a version of the coffee machine ex-
ample is used. The Yed LTS model van be seen in Figure 5.5 and the code
is given in Listing 5.1.

4www.frantzen.info/archives/P20.html

44

www.frantzen.info/archives/P20.html

Figure 5.5: Yed model of the coffee machien example

public class CoffeeMachineController {

private int coffeeSupply = 0;

private int teaSupply = 0;

private CoffeeMachine CM;

public CoffeeMachineController(CoffeeMachine CM)

{

this.CM = CM;

}

public void resupplyTea(int tea)

{

if(teaSupply == 0) {

teaSupply = tea;

}

}

public void resupplyCoffee(int coffee)

{

if(coffeeSupply == 0) {

coffeeSupply = coffee;

}

}

public void Coffee(int coffee)

{

if(coffeeSupply >= coffee) {

CM.outputCoffee(coffee);

coffeeSupply -= coffee;

}

}

public void Tea()

{

if(teaSupply >= 1){

CM.outputTea ();

}

}

}

Listing 5.1: Coffee Machine controller

45

Running the application with these files as input gives 4 different solutions
displayed in Figure 5.6.

The difference between these models is the guards and update rules on
the resupply actions. As the implementation in the code for both of these
actions has an if statement this results in two weak actions in the CFG, and
as a result there exist two different assignments for both actions resulting in
four solutions. In order to test an application with these models a scaffolding
has to be created in order to interface the code with an ioco test tool for
example Jtorx [1]. Once done any of these models can be used to run tests on
the implementation, however as not all the models implement the resupply
function correctly some will end up in a unwanted state where the guards
for the actions ?coffee and or ?tea and their respective resupply action are
false. And thus when reaching the initial state these actions can not longer
be executed, nor can their respective resupply function.

However assuming the code has not changed and testing the implement-
ation based on any of these models using sioco none will reveal any faults.
A domain expert should be able to inspect all the models for faults in the
implementation and select the most appropriate one for regression testing.
In this case the most appropriate model for regression testing would be the
top most model in Figure 5.6

46

?coffee < INT : Icoffee >
[coffeeSupply ≥ Icoffee]
coffee = Icoffee;

?tea <>
[teaSupply ≥ 1]

?resupplyCoffee
[coffeeSupply == 0]
coffee = Icoffee;
coffeeSupply = coffee;

?resupplyTea
[teaSupply == 0]
tea = Itea;
teaSupply = Itea;

!outputCoffee < INT : Icoffee >
[Icoffee = coffee]
coffeeSupply = coffeeSupply − coffee; !giveTea<>

?coffee < INT : Icoffee >
[coffeeSupply ≥ Icoffee]
coffee = Icoffee;

?tea <>
[teaSupply ≥ 1]

?resupplyCoffee
[coffeeSupply == 0]
coffee = Icoffee;

?resupplyTea
[teaSupply == 0]
tea = Itea;

!outputCoffee < INT : Icoffee >
[Icoffee = coffee]
coffeeSupply = coffeeSupply − coffee; !giveTea<>

?coffee < INT : Icoffee >
[coffeeSupply ≥ Icoffee]
coffee = Icoffee;

?tea <>
[teaSupply ≥ 1]

?resupplyCoffee
[coffeeSupply == 0]
coffee = Icoffee;
coffeeSupply = coffee;

?resupplyTea
[teaSupply == 0]
tea = Itea;

!outputCoffee < INT : Icoffee >
[Icoffee = coffee]
coffeeSupply = coffeeSupply − coffee; !giveTea<>

?coffee < INT : Icoffee >
[coffeeSupply ≥ Icoffee]
coffee = Icoffee;

?tea <>
[teaSupply ≥ 1]

?resupplyCoffee
[coffeeSupply == 0]
coffee = Icoffee;

?resupplyTea
[teaSupply == 0]
tea = Itea;
teaSupply = Itea;

!outputCoffee < INT : Icoffee >
[Icoffee = coffee]
coffeeSupply = coffeeSupply − coffee; !giveTea<>

Figure 5.6: Results for the Coffee Machine Example

47

48

Chapter 6

Conclusions and Future
Work

6.1 Conclusions

Symbolic Transition Systems (STSs) are behavioral models that represent
the high-level behavior of systems with data STSs can be used as suitable
models for mode-based testing of such systems. However, constructing STSs
may be a complex task for domain experts.

One possible solutions to tackle the complexity of constructing an STS
has been presented by using an LTS and the implementation to construct
an STS. In order to achieve this a matching relation between the CFG of
the implementation and the LTS model has been presented along with an
algorithm to build this relation and the final STS. Furthermore theorems and
proofs are proposed based on the ioco/sioco relations between the models
and the implementation to witness the correctness of our approach. Using
an example it has been demonstrated that it is possible to enrich an LTS
model with data based on its implementation.

Several issues remain, open such as the error detection in the algorithm
in order to find out why extracting the guards and update rules failed and
extending the model when there are multiple actions in the implementation
that can be related to the same action in the implementation.

6.2 Future Work

This section will given an overview of further work to improve and extend
on the idea and implementation.

49

6.2.1 Improvements to the parser

Currently the parser is able to parse a subset of Java and can only build
CFGs from a single class. This can be extended to allow parsing the com-
plete Java language. Furthermore currently all functions in the code are
interpreted as output actions, this can be changed where only a subset of
the functions is seen as output actions. For the functions that are not seen
as output actions a CFG can be build and placed where the function call
was done in order to include the behavior of that function in the complete
CFG. Another big improvement would be to allow filtering of the variables
to remove variables and code branches that have no influence on the input
output behavior of the system. One possible way of doing this would be
using program slicing [4], by constructing a slice of the application that only
effects the relevant variables.

6.2.2 Error detection and report

The current algorithm is capable of building a relation graph. But if it
fails due to an inconsistency between the code and the model no error is
reported. This means that the user has no idea why the process failed and
thus the process of fixing the error is frustrating. Currently pinpointing
the exact error is not trivial, it is possible to save the relation graphs with
the largest set of relations but this set might contain completely different
relation graphs. The question is now which of the relation graphs shows
an error, and which of them failed because they have incorrect relations in
between the states.

6.2.3 Model extension

Currently only one weak action in the CFG can be assigned to one action
in the model. This means that if an action is present twice in the code, it
also needs to be present twice in the model in order to properly place all
the update rules. As this is not common in LTS a way to automatically
duplicate the actions allows constructing a STS with both paths.

6.2.4 Merging internal actions

A trace with many internal actions, means that there are several possible
variations on creating the relations in between the states. This in turn leads
to many solutions in the output of the algorithm and a long processing time.
To speed up the algorithm it is possible under certain conditions to merge
internal actions, and thus remove possible variations in the assignments. In
the end this will speed up the algorithm as less variations will need to be
evaluated.

50

6.2.5 Formalize a proof for Theorem 4.2.3

An informal sketch of the proof is given, but this should be detailed in order
to formally prove the theorem.

51

52

Bibliography

[1] A. Belinfante. Jtorx: A tool for on-line model-driven test derivation and exe-
cution. In Tools and Algorithms for the Construction and Analysis of Systems,
pages 266–270. Springer, 2010.

[2] S. Khurshid C.S. Păsăreanu K. Sen N Tillmann C. Cadar, P. Godefroid and
W. Visser. Symbolic execution for software testing in practice: preliminary
assessment.

[3] M. Yannakakis D. Lee. Principles and methods of testing finite state machines-
a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[4] Mark Harman and Robert Hierons. An overview of program slicing. Software
Focus, 2(3):85–92, 2001.

[5] T. Parr J. Bovet. Antlrworks: an antlr grammar development environment.
Software: Practice and Experience, 38(12):1305–1332, 2008.

[6] T. Willemse L. Frantzen, J. Tretmans. Test generation based on symbolic
specifications. Formal Approaches to Software Testing, pages 1–15, 2005.

[7] T.A.C. Willemse L. Frantzen, J. Tretmans. A symbolic framework for model-
based testing. In Formal approaches to software testing and runtime verifica-
tion, pages 40–54. Springer, 2006.

[8] T Parr. The definitive antlr reference: Building domain-specific languages
(pragmatic programmers). Pragmatic Bookshelf, May, 2007.

[9] T Parr. Antlr. http://www.antlr.org/, 2013.
[10] J. Tretmans. Model based testing with labelled transition systems. Formal

methods and testing, pages 1–38, 2008.
[11] J.C. Cherniavsky W.R. Adrion, M.A. Branstad. Validation, verification, and

testing of computer software. ACM Computing Surveys (CSUR), 14(2):159–
192, 1982.

[12] M. Young. Software Testing and Analysis: Process, Principles, and Tech-
niques. John Wiley & Sons, 2008.

53

	Preface
	Introduction
	Coffee machine example
	Problem statement
	Summary of the results
	Structure of the report

	State of the art
	Traditional test techniques
	Functional testing
	Symbolic Execution

	Model-based testing
	FSM based testing
	LTS based testing

	Models
	First Order Logic
	Labeled transition systems
	Input-Output Transition systems
	Symbolic Transition Systems

	Conformance Testing
	symbolic IOCO

	Control Flow Graph

	Enriching Behavioral Models with Data
	Basic Algorithm
	Control Flow Graph generation
	Symbolic Transition system generation
	Matching relation
	Matching Algorithm

	Theorem

	Implementation
	Loading LTS models
	Generation of the CFG
	Matching algorithm implementation
	Matching algorithm

	Using the application
	Example

	Conclusions and Future Work
	Conclusions
	Future Work
	Improvements to the parser
	Error detection and report
	Model extension
	Merging internal actions
	Formalize a proof for Theorem 4.2.3

