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Abstract We investigate stability of the solution of a set of partial differential
equations, which is used to model a peri-implant osseointegration process. For certain
parameter values, the solution has a ‘wave-like’ profile, which appears in the distribu-
tion of osteogenic cells, osteoblasts, growth factor and bone matrix. This ‘wave-like’
profile contradicts experimental observations. In our study we investigate the condi-
tions, under which such profile appears in the solution. Those conditions are deter-
mined in terms of model parameters, by means of linear stability analysis, carried out
at one of the constant solutions of the simplified system. The stability analysis was
carried out for the reduced system of PDE’s, of which we prove, that it is equivalent
to the original system of equations, with respect to the stability properties of constant
solutions. The conclusions, derived from the linear stability analysis, are extended for
the case of large perturbations. If the constant solution is unstable, then the solution
of the system never converges to this constant solution. The analytical results are
validated with finite element simulations. The simulations show, that stability of the
constant solution could determine the behavior of the solution of the whole system, if
certain initial conditions are considered.
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1 Introduction

A number of models were proposed so far for the process of bone formation. It is
reported by many researchers, that mechanical stimulation is an important factor,
which influences bone formation. For example, Vandamme et al. (2007a,b,c), Duyck
et al. (2007) investigated peri-implant bone ingrowth under well controlled mechan-
ical loading of the interface tissue, and reported that relative implant-interface tissue
micromotions qualitatively and quantitatively altered the osseointegration process.
The mechanoregulatory models for bone formation were defined, for instance, in
Andreykiv (2006), Carter et al. (1998), Claes and Heigele (1999), Doblaré and García-
Aznar (2006), Prendergast et al. (1997).

Another biological model for peri-implant osseointegration was proposed in Moreo
et al. (2009). This model can be used to simulate osseointegration under a low-medium
loading regime taking into account implant surface microtopography. The author did
not introduce explicitly the dependence of cell and tissue processes on the mechanical
stimulus, and outlined the incorporation of differentiation laws in terms of mechanical
variables as one of the future lines of research. The results presented in Moreo et al.
(2009) were in agreement with experiments. They predicted that bone formation can
occur through contact osteogenesis and distance osteogenesis.

Though, we found that the system of equations, proposed in Moreo et al. (2009),
is characterized by appearance of a ’wave-like’ profile in the solution for a certain
range of parameters. This profile was initially recognized in the solution of the model
equations for the 1D domain of length 2.5 mm (Fig. 1b). This domain was chosen
for the simulations of bone formation near the cylindrical implant, located within the
bone chamber, used in the experiments by Vandamme et al. (2007a,b,c); Duyck et al.
(2007). The authors reported, that in a new bone was formed at all distances from
the host bone, and integration of bone and implant was achieved. That ’wave-like’
profile has not been noticed by Moreo et al. (2009), since for the geometry used in
his simulations, in which the distance from host bone to implant was 0.6 mm, only a
part of ’wave’ is visible in the solution (Fig. 1a), and a ’wave-like’ profile is not dis-
tinguishable. For larger domains, more ’waves’ appear in the solution. The solution
for the domain of length 5 mm is shown in Fig. 1c.

The conditions, under which a ’wave-like’ profile appears, are studied in the present
work. Such a ’wave-like’ profile in the solution for cell densities and growth factor
concentrations is not realistic. In some cases it also leads to a ’wave-like’ distribution
of bone matrix inside the peri-implant region. This distribution is in contradiction with
experimental observations, from which it follows, that bone forms by deposition on the
preexisting bone matrix, and no isolated bone regions appear. Thus, it is desirable to
avoid such a profile in the solution of the original model by Moreo et al. (2009), and to
take into account the stability properties of the system of equations when introducing
mechanical variables in it.

The proposed approach is to study the linear stability of the constant solutions of
the system. As the full system of equations is large and extremely complicated for
analytic derivations, an equivalent simplified system with similar properties will be
defined.
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Fig. 1 Osteogenic cell m and growth factor 2 s2 distributions at different time moments, obtained from the
numerical solution of model equations, defined in Moreo et al. (2009), for 1D axisymmetric domain with
length a L = 0.6 mm and b L = 5 mm

The phenomenon of a ’wave-like’ profile in the solution could be related to the
appearance of bacterial patterns in liquid medium, described mathematically by simi-
lar partial differential equations. Those pattern analyses could be found in Myerscough
and Murray (1992), Tyson et al. (1999), Miyata and Sasaki (2006).

In Sect. 2 the system of equations proposed in Moreo et al. (2009) is reviewed. The
linear stability analysis of the system is carried out in Sect. 3. In Sect. 4 analysis is val-
idated with a sequence of numerical simulations. Finally, in Sect. 5 some conclusions
are drawn.

2 Biological model

The original model proposed in Moreo et al. (2009) consists of eight equations, defined
for eight variables, representing densities of platelets c, osteogenic cells m, osteoblasts
b, concentrations of two generic growth factor types s1 and s2, and volume fractions
of fibrin network v f n , woven bone vw, and lamellar bone vl . The above notations
are introduced for non-dimensional cell densities and growth factor concentrations,
i.e. for those, related to some characteristic values. If f̂ and fc are notations of a
dimensional variable and of its characteristic value, then a non-dimensional variable
f is defined as f = f̂ / fc, f = c, m, b, s1, s2. The following characteristic values are
proposed: cc = 108 platelets ml−1, mc = 106 cells ml−1, bc = 106 cells ml−1, s1c =
100 ng ml−1, s2c = 100 ng ml−1. The model equations are:

∂c

∂t
= ∇ · [Dc∇c − Hcc∇ p] − Acc, (1)

where Dm and Ac are the coefficients of random migration and death of platelets.
The term ∇ · [Hcc∇ p] represents a “linear taxis”. It accounts for the transport of
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platelets towards the gradient of the adsorbed proteins p, which is a predefined func-
tion of the distance from the implant surface d. According to Moreo et al. (2009), it
is defined as

p(d) =
{

0.5(1 − d
0.1 ), if 0 ≤ d < 0.1

0, if d ≥ 0.1
.

∂m

∂t
= ∇ · [Dm∇m − m(Bm1∇s1 + Bm2∇s2)]

+
(
αm0 + αms1

βm + s1
+ αms2

βm + s2

)
m(1 − m) − (αp0 + αmbs1

βmb + s1
)m − Amm,

(2)

where the terms in the right-hand side represent random migration, chemo-taxis, cell
proliferation, differentiation into osteoblasts, and death respectively.

∂b

∂t
= (αp0 + αmbs1

βmb + s1
)m − Abb, (3)

where Ab is the rate of osteoblast death.

∂s1

∂t
= ∇ · [Ds1∇s1] +

( αc1 p

βc1 + p
+ αc2s1

βc2 + s1

)
c − As1s1, (4)

where the terms in the right-hand side model random migration, growth factor secre-
tion and decay respectively.

∂s2

∂t
= ∇ · [Ds2∇s2] + αm2s2

βm2 + s2
m + αb2s2

βb2 + s2
b − As2s2, (5)

where the first term in the right-hand side determines random migration, the second
and the third ones—growth factor secretion, and the last one—decay.

∂v f n

∂t
= − αws2

βw + s2
bv f n(1 − vw), (6)

∂vw

∂t
= αws2

βw + s2
bv f n(1 − vw) − γ vw(1 − vl), (7)

∂vl

∂t
= γ vw(1 − vl). (8)

where terms containing coefficients αw, βw and γ model the substitution of the fibrin
network by woven bone and the remodeling of woven bone into lamellar bone.
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Moreo et al. (2009) proposed the following initial and boundary conditions for this
equation set. Let Ω be a problem domain with the boundary Γ , and Γb is a part of
boundary, corresponding to bone surface, and n is an outward unit normal. Then,

{
c(x, 0) = 0.25, m(x, 0) = 0.001, b(x, 0) = 0.001, s1(x, 0) = 0.01,

s2(x, 0) = 0.01, v f n(x, 0) = 1, vw(x, 0) = 0, vl(x, 0) = 0,
x ∈ Ω.

(9)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(Dc∇c(x, t) − Hcc(x, t)∇ p(x)) · n = 0,

Ds1∇s1(x, t) · n = 0, Ds2∇s2(x, t) · n = 0,
x ∈ Γ, t ∈ (0, ∞)

m(x, t) = 0.2, x ∈ Γb, t ∈ (0, 14] [days]
(Dm∇m(x, t)−m(x, t)(Bm1∇s1(x, t)

+ Bm2∇s2(x, t))) · n = 0,

[
x ∈ Γ \Γb, t ∈ (0, 14] [days],
x ∈ Γ, t ∈ (14, ∞) [days].

(10)

According to Moreo et al. (2009) the following parameters values are proposed:

Dc = 1.365 · 10−2 mm2 day−1, αm0 = 0.25 day−1, αb2 = 25 day−1,

Ac = 0.067 day−1, αm = 0.25 day−1, αm2 = 25 day−1,

Hc = 0.333 mm4 (day−1 mg−1), βmb = 0.1, βc1 = 0.1,

Dm = 0.133 mm2 day−1, βm = 0.1, βc2 = 0.1,

Bm1 = 0.667 mm2 day−1, Ab = 6.67 · 10−3 day−1, βm2 = 0.1,

Bm2 = 0.167 mm2 day−1, As1 = 10 day−1, βb2 = 0.1,

Ds1 = 0.3 mm2 day−1, As2 = 10 day−1, αw = 0.1 day−1,

Ds2 = 0.1 mm2 day−1, αc1 = 66.7 day−1, βw = 0.1,

Am = 2 · 10−3 day−1, αc2 = 10 day−1 γ = 0.06 day−1.

(11)

Remark 1 Growth factor 1 s1 is assumed to stimulate the differentiation of osteogenic
cells into osteoblasts. In Moreo et al. (2009) originally, the differentiation term in
Eqs. (2) and (3) was given in the form αmbs1

βmb+s1
m. In this paper, we propose a more

general representation for differentiation, which is (αp0 + αmbs1
βmb+s1

)m. Parameter αp0
implies, that differentiation can take place, if the growth factor 1 concentration s1 is
zero. This assumption is not in contradiction with experimental observations (Linkhart
et al. 1996; Dimitriou et al. 2005), and can be useful, in order to get a more realistic
simulation results for different problems. The profit of this representation for differ-
entiation will be demonstrated in Remark 3 in Sect. 3.1.

The general form of differentiation term is reduced to its original representation,
proposed by Moreo et al. (2009), if

αmb = 0.5 day−1, αp0 = 0 day−1. (12)
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We also propose the following values, assuming, that differentiation also takes place
without presence of the growth factor:

αmb = 2

3
· 0.5 day−1, αp0 = 1

3
· 0.5 day−1. (13)

In our present study, we will consider both sets of parameter values in Eqs. (12)
and (13).

3 Stability analysis

3.1 The simplified biological model

Our present aim is to study the conditions, that give the appearance of a wave-like
profile. Simulations, performed for the full system, show that the wave-like profile can
appear in the solution for densities of osteogenic cells m and osteoblasts b, for growth
factor 2 concentration s2, and for volume fractions of fibrin network v f n , woven bone
vw and lamellar bone vl , if the computational domain is sufficiently large. The equa-
tions for variables m, b and s2 (2), (5), (3) are coupled and can be solved, after the
solution for c and s1 is obtained from the Eqs. (1) and (4). The equations for variables
v f n, vw and vl (6), (7), (8) contain only reaction terms in their right-hand side. The
wave-like profile in the solution for these variables appears due to the wave-like profile
in the solution for osteoblasts and growth factor 2.

Therefore we will study the phenomenon of the wave-like profile in the solution
for variables m, b and s2. The solution for m, b and s2 is determined by the system of
Eqs. (1)–(5).

We assume, that the profile appearance could be related to the stability of the con-
stant solutions of the system. Zero solutions c = 0, s1 = 0 are the only constant
solutions of system (1)– (5) for variables c and s1.

The equations for platelets c and growth factor 1 s1 (1) and (4), can be solved sep-
arately from the other equations. That means, that the evolution of the platelet density
c(x, t) and growth factor 1 concentration s1(x, t) does not depend on the evolution
of other biological and chemical species involved in the model. Equation (1) contains
a term, corresponding to the death of platelets, but it does not contain a term, corre-
sponding to the production of platelets. Therefore, the total amount of platelets decays
to zero with time. The production of growth factor 1 s1 is proportional to platelets
concentration, and thus the production of s1 also decays with time, while death rate
As1 is constant in time. It can be proved, that the integrals of platelet density and
growth factor 1 concentration over the problem domain tend to zero with time, if zero
flux on the boundaries is considered. If negative values in the solution for c(x, t) and
s1(x, t) are avoided (otherwise the solution becomes biologically irrelevant), then it
follows, that these functions tend to zero almost everywhere in the problem domain.
Numerical simulations confirm (Fig. 2), that for a large time t the solution s1(x, t) is
very close to zero.
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Fig. 2 Growth factor 1 s1 distribution at different time moments, obtained from the numerical solution of
the model Eqs. (1)–(8), for 1D axisymmetric domain with length a L = 0.6 mm, b L = 5 mm

The stability analysis deals with the asymptotic behavior of the system, that is with
the behavior of the solution for long time periods. Therefore, we derive the simplified
system from Eqs. (2), (5) and (3), assuming s1(x, t) ≡ 0, which gives

∂m

∂t
= ∇ · [Dm∇m − Bm2m∇s2)]+

(
αm0 + αms2

βm + s2

)
m(1− m)−(αp0 + Am)m,

(14)
∂s2

∂t
= ∇ · [Ds2∇s2] + αm2s2

βm2 + s2
(m + b) − As2s2, (15)

∂b

∂t
= αp0m − Abb. (16)

Remark 2 In deriving (15) we assumed, that αb2 = αm2 and βb2 = βm2. These sim-
plifying assumptions are in line with the values for αb2, αm2, βb2 and βm2, proposed
by Moreo et al. (2009), which were introduced in (11).

Remark 3 As it was mentioned, the concentration of s1 becomes close to zero after
a certain period of time. Then, differentiation of osteogenic cells into osteoblasts is
roughly described by the term αp0m, as this is done in Eqs. (14), (16). This term turns
to zero, if αp0 = 0, as was proposed by Moreo et al. (2009). Solution of (16), defined
as b(x, t) = b0(x)e−Abt , converges to zero with time. From biological point of view,
this means, that osteogenic cells stop to differentiate after a certain time period. There
is no source of newly formed osteoblasts, and their amount decrease to zero, due to
cell death.

If αp0 �= 0, then differentiation takes place also when s1 is zero. This allows to
obtain the solution for osteoblasts, which does not converge to zero, and hence, is
more realistic from biological point of view. For this reason, we consider both the
parameter values in Eq. (12), as proposed by Moreo et al. (2009), and the alternative
values in Eq. (13).

Moreo et al. (2009) investigated the linear stability of the constant solutions of the
system, which is similar to system (14)–(16), against purely temporal perturbations.
In this paper we will study the system stability against arbitrary perturbations (also
non-homogeneous perturbations).

123



P. Prokharau, F. Vermolen

Constant solutions z′ = (m′, s′, b′) of system (14)–(16) are derived from the alge-
braic system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
αm0 + αms′

2

βm + s′
2

)
m′(1 − m′) − (αp0 + Am)m′ = 0,

αm2s′
2

βm2 + s′
2
(m′ + b′) − As2s′

2 = 0,

αp0m′ − Abb′ = 0.

(17)

Two solutions of the above system have been denoted by Moreo et al. (2009) as:

– “Chronic non healing state”: zt = (0, 0, 0),
– “Low density state”: z0 = (m0, 0, b0),

where

m0 = 1 − αp0 + Am

αm0
, b0 = αp0

Ab
m0. (18)

From system (17), it follows, that root s′
2 can not be equal to −βm < 0 or to −βm2 < 0.

Vectors z− = (m−, s2−, b−) and z+ = (m+, s2+, b+) are defined as

s2± =
−a1 ±

√
a2

1 − 4a2a0

2a2
, (19)

m± = Ab As2(s2± + βm2)

αm2(Ab + αp0)
= As2(s2± + βm2)

χ
, b± = αp0

Ab
m±, (20)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a2 = As2

(
1 + αm

αm0

)
,

a1 =
(

1 + αm

αm0

)
(βm2 As2 − χm0) + αm

αm0
χ(m0 − 1) + βm As2 ,

a0 = βm(βm2 As2 − χm0),

(21)

χ = αm2
(
1 + αp0/Ab

)
, (22)

and m0 is from (18). They are the solutions of system (17), if s2± /∈ {−βm;−βm2}.
Therefore, depending on the values of model parameters, system (17) can have two,
three or four solutions.

Remark 4 From the derivation of the expression (19), which is not given here, it
follows, that at least one of the roots s2+ and s2− is equal to −βm , if and only if
As2(βm2 − βm) = χ . And at least one of the roots s2+ and s2− is equal to −βm2,
if and only if (αm0 − αp0 − Am)(βm − βm2) = αmβm2. For the chosen parameter
values in Eqs. (11), (12), (13), βm2 = βm > 0, αm > 0, χ = αm2

(
1 + αp0/Ab

)
> 0.
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Hence, s2± �= −βm and s2± �= −βm2 for the considered parameter values, and system
(14)–(16) has four constant solutions zt , z0, z+ and z−.

We mention here, that for the existence of real s2± the necessary condition is:

a2
1 − 4a2a0 ≥ 0. (23)

This necessary condition is written in terms of the model parameters as:

a2
1 − 4a2a0 =

(
χ

(
m0 + αm

αm0

)
− As2

(
βm + βm2

(
1 + αm

αm0

)))2

−4As2βm

(
1 + αm

αm0

)
(βm2 As2 − χm0) =

(
χ

(
m0 + αm

αm0

)
− ξ

)2

+χ

(
m0 + αm

αm0

)
η − η

(
βm2 As2 + χ

αm

αm0

)
=
(

χ

(
m0 + αm

αm0

))2

+χ

(
m0 + αm

αm0

)
(η − 2ξ) + ξ2 − η

(
βm2 As2 + χ

αm

αm0

)
≥0, (24)

where

ξ = As2

(
βm + βm2

(
1 + αm

αm0

))
, η = 4As2βm

(
1 + αm

αm0

)
. (25)

From (24) it is derived, that (23) is equivalent to:

⎡
⎣χ

(
m0 + αm

αm0

)
≥ −As2βm

αm
αm0

+
√

η αm
αm0

χ,

χ
(

m0 + αm
αm0

)
≤ −As2βm

αm
αm0

−
√

η αm
αm0

χ.
(26)

The sign of s2± depends on the sign of coefficients a1 and a0 (coefficient a2 is larger
than zero, which follows from its definition). Both roots will be positive if a1 < 0 and
a0 > 0 and if inequality (23) holds.

For the parameter values in Eqs. (11), (12) the constant solutions have values:
m0 ≈ 0.9920, b0 = 0; m− ≈ 0.0201, s2− ≈ −0.0498, b− = 0; m+ ≈ 0.9959,

s2+ ≈ 2.3898, b+ = 0; and for parameter values (11), (13): m0 ≈ 0.3253,

b0 ≈ 8.1293; m− ≈ 0.0012, s2− ≈ −0.0245, b− ≈ 0.0290; m+ ≈ 0.6623,

s2+ ≈ 42.9271, b+ ≈ 16.5486.

Remark 5 For the chosen parameter sets (11), (12) and (11), (13), growth factor 2 con-
centration s2− is negative, which is unphysical. It is desirable to avoid such a negative
concentration of growth factor 2 in the solution of the problem (14)–(16). Calcula-
tions show, that for the chosen parameter values there are two positive eigenvalues of
the Jacobean of the equation system, linearized for the case of small purely temporal
perturbations near the constant solution z−. Hence, constant solution z− is unstable
against temporal perturbations. In simulations we were able to avoid negative values in
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the solution for s2, by choosing sufficiently small time step and mesh size and starting
with positive initial values for concentrations of cells and growth factor.

3.2 Non-homogeneous perturbations

Next we propose an approach, to study the stability of constant solutions of the system
(14)–(16). This approach is valid for a domain in any coordinate system, for which
eigenfunctions of Laplace operator can be found. In this paper, the examples of the
eigenfunctions are given for the domains in 1D Cartesian coordinates and in axisym-
metric coordinates, which have one independent coordinate. The independent space
coordinate is denoted by x for both coordinate systems. Suppose that non-homo-
geneous perturbations m p(x, t), s2p(x, t) and bp(x, t) are imposed on the constant
solution (m′, s′

2, b′). Then the solution is given in the form:

⎧⎪⎨
⎪⎩

m(x, t) = m′ + εm p(x, t),

s2(x, t) = s′
2 + εs2p(x, t),

b(x, t) = b′ + εbp(x, t),

(27)

where |ε| � 1. Then we substitute (27) into (14)–(16), and linearize with respect to
small ε:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂m p

∂t
= Dm∇2m p − m′Bm2∇2s2p +

[(
αm0 + αms′

2

βm + s′
2

)
(1 − 2m′)

− (αp0 + Am)
]
m p + αmβm

(βm + s′
2)

2 m′(1 − m′)s2p,

∂s2p

∂t
= Ds2∇2s2p + αm2s′

2

βm2 + s′
2
(m p + bp) +

[ αm2βm2

(βm2 + s′
2)

2 (m′ + b′) − As2

]
s2p,

∂bp

∂t
= αp0m p − Abbp.

(28)

Let us denote the problem domain as [x0, x0 + L]. Assume, that on the boundaries the
flux of cells and growth factor is zero. Then we consider perturbations of the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m p(x, t) = Cm
0 (t) +

∞∑
n=1

Cm
n (t)φn(x),

s2p(x, t) = Cs2
0 (t) +

∞∑
n=1

Cs2
n (t)φn(x),

bp(x, t) = Cb
0 (t) +

∞∑
n=1

Cb
n (t)φn(x).

(29)
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Functions Cm
0 (t), Cs2

0 (t), Cb
0 (t) represent purely temporal perturbations. Eigenfunc-

tions φn(x) satisfy equation ∇2φn(x) = −k2
nφn(x) and considered boundary condi-

tions, i.e. zero flux on the boundaries: ∇φn(x0) = ∇φn(x0 + L) = 0.
If Cartesian coordinates are considered, then the function φn(x) is given as

φC
n (x) = cos(kn(x − x0)), where kn = πn

L , n = 1, 2, . . .. In this case kn is a wave-
number.

In the case of axisymmetric coordinates functions φn(x) have the form φa
n (x) =

Y ′
0(kn x0)J0(kn x) − J ′

0(kn x0)Y0(kn x), where J0(kn x) and Y0(kn x) are Bessel func-
tions, kn = wn

x0+L and wn, n = 1, 2, . . . are positive real zeros of the function Φ(w) =
−Y ′

0(kn x0)J1(w) + J ′
0(kn x0)Y1(w). Functions φa

n (x), n = 1, 2, . . . are not periodic.
They could be roughly described as “waves” with variable in space wavelength and
magnitude. For simplicity, kn will be referred to as ’wavenumber’, also if it is intro-
duced in functions φa

n (x).

Remark 6 Perturbation modes φn(x), n = 1, 2, . . . by their definition have positive
wavenumbers kn > 0. For the sake of generality, we consider purely temporal pertur-
bations as perturbations of mode n = 0 with zero wavenumber k0 = 0. We also define
φ0(x) ≡ 1.

Substituting (29) into (28), we get:

C′
n(t) = Akn Cn(t), n = 0, 1, . . . , (30)

where

Cn(t) =
⎡
⎢⎣

Cm
n (t)

Cs2
n (t)

Cb
n (t)

⎤
⎥⎦ , n = 0, 1, . . . , (31)

Akn =

⎛
⎜⎜⎜⎝

Akn(1,1) Akn(1,2) 0

αm2s′
2

βm2 + s′
2

Akn(1,2)

αm2s′
2

βm2 + s′
2

αp0 0 −Ab

⎞
⎟⎟⎟⎠ , (32)

where

Akn(1,1) =
(
αm0 + αms′

2

βm + s′
2

)
(1 − 2m′) − (αp0 + Am) − k2

n Dm,

Akn(1,2) = αmβm

(βm + s′
2)

2 m′(1 − m′) + k2
n Bm2m′,

Akn(2,2) = αm2βm2

(βm2 + s′
2)

2

(
1 + αp0

Ab

)
m′ − As2 − k2

n Ds2.
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Then from (30):

Cn(t) = eAkn t C0
n, n = 0, 1, . . . , (33)

where C0
n define the perturbations imposed on the constant solution of the system

initially at time t = 0:

⎡
⎣m p(x, 0)

s2p(x, 0)

bp(x, 0)

⎤
⎦ =

∞∑
n=0

C0
nφn(x).

Thus the solution of (28) is written as:

⎡
⎣m p(x, t)

s2p(x, t)
bp(x, t)

⎤
⎦ =

∞∑
n=0

eAkn t C0
nφn(x). (34)

The magnitude of perturbations ‖Cn(t)‖ = ‖eAkn t C0
n‖ of mode n, will grow in

time, if at least one of the eigenvalues of matrix Akn is a positive real number or a
complex number with a positive real part. And ‖Cn(t)‖ will converge to zero, if all
the eigenvalues of Akn are real negative, or complex numbers with the real part less
than zero. If the matrix Akn has precisely one zero eigenvalue, and other eigenvalues
are real negative of complex with negative real part, then small perturbations remain
small for infinite time period.

It is not complicated to find expressions for the eigenvalues of Akn , evaluated at
the ‘chronic non healing state’ zt = (0, 0, 0) and ‘low density state’ z0 = (m0, 0, b0).
For the constant solution zt eigenvalues of Akn are:

λ1t (k
2
n) = αm0m0 − k2

n Dm > 0, if 0 ≤ k2
n <

αm0m0

Dm
,

λ2t (k
2
n) = −As2 − k2

n Ds2 < 0, λ3t (k
2
n) = −Ab < 0.

(35)

Therefore, if m0 is positive, constant solution zt is unstable against purely temporal

perturbations and perturbations with small wavenumber 0 < kn <
√

αm0m0
Dm

. The first

eigenvalue λ1t (k2
n) takes the largest positive value for wavenumber k0, i.e. for the

purely temporal perturbation mode.

Remark 7 If we consider negative m0, then ’chronic non-healing state’ zt will become
stable against perturbations with any wavenumber. Further the constant solution z0 will
contain an unphysical negative concentration for osteogenic cells. Inequality m0 =
1 − αp0+Am

αm0
< 0 implies, that differentiation and death of osteogenic cell dominate

over their production. Therefore, this situation is not relevant for the considered model
of bone formation, and further m0 > 0 is assumed a priori.
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For the constant solution z0 = (m0, 0, b0) matrix Akn eigenvalues are:

λ10(k
2
n) = −αm0m0 − k2

n Dm < 0,

λ20(k
2
n) = αm2

βm2
m0(1 + αp0

Ab
) − As2 − k2

n Ds2, λ30(k
2
n) = −Ab < 0.

(36)

If expression αm2
βm2

m0(1+ αp0
Ab

)− As2 takes a positive value, which is true for the current
parameter values in Eqs. (11), (12) and (13), then the constant solution z0 is unstable

against perturbations with wavenumbers k2
n <

(
αm2
βm2

m0(1 + αp0
Ab

) − As2

)
/Ds2. The

largest eigenvalue λ20 corresponds to zero wavenumber k0, i.e. to the purely temporal
mode of perturbation.

The eigenvalues of matrix Akn defined at points z− and z+ could not be found
in such a trivial manner, as for constant solutions zt and z0. They are obtained from
the characteristic equation, which is a non-trivial cubic algebraic equation. There-
fore, instead of analyzing the expressions for the eigenvalues, which are extremely
complicated in this case, we propose a different approach, based on a reduction to
two equations with similar stability properties, to study the stability of the considered
system of equations.

Remark 8 For the chosen parameter values, see expressions (11), (12) and (11), (13),
s2− is negative, hence constant solution z− is biologically irrelevant in this case.
Therefore, we will only analyze the stability of constant solution z+ and not of z−.
The stability analysis, being introduced for z+, is not valid for the constant solution
z−, if it contains the negative value of growth factor concentration. Calculations also
show, that for parameter values (11), (12) and (13), constant solution z− is unstable
against at least purely temporal perturbations.

3.3 Stability of the system of two equations

To simplify the stability analysis, system (14)–(16) is reduced to a system of two
equations. For this reduced system the assumption

b(x, t) = αp0

Ab
m(x, t) (37)

is made, instead of Eq. (16). The system is defined as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂m

∂t
= ∇ · [Dm∇m − Bm2m∇s2)]

+
(
αm0 + αms2

βm + s2

)
m(1 − m) − (αp0 + Am)m,

∂s2

∂t
= ∇ · [Ds2∇s2] + αm2s2

βm2 + s2
(1 + αp0

Ab
)m − As2s2.

(38)

Substitution of (37) into Eq. (16), yields the condition ∂b
∂t = 0, which is not true

in general case. Therefore, system (14)–(16) and system (38) are not equivalent, and
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their stability properties are different in general. However, it will be shown in Sect. 3.4,
that there is a certain similarity (or correspondence) between the stability properties
of the two systems. This similarity is sufficient, to transfer important results, obtained
from the stability analysis for the system of two Eqs. (38), onto the system of three
Eqs. (14)–(16).

System (38) has constant solutions, that are analogous to those of the system
(14)–(16). They are: z̃t = (0, 0), z̃0 = (m0, 0), z̃+ = (m+, s2+), z̃− = (m−, s2−).
Linearizing the system near point (m′, s′

2), with m(x, t) = m′ + εm p(x, t) and
s2(x, t) = s′

2 + εs2p(x, t), yields:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂m p

∂t
= Dm∇2m p − m′Bm2∇2s2p +

[(
αm0 + αms′

2

βm + s′
2

)
(1 − 2m′)

− (αp0 + Am)
]
m p + αmβm

(βm + s′
2)

2 m′(1 − m′)s2p,

∂s2p

∂t
= Ds2∇2s2p + αm2s′

2

βm2 + s′
2
(1 + αp0

Ab
)m p

+
[

αm2βm2

(βm2 + s′
2)

2 (1 + αp0

Ab
)m′ − As2

]
s2p.

(39)

Considering solutions of the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m p(x, t) =
∞∑

n=0

Cm
n (t)φn(x),

s2p(x, t) =
∞∑

n=0

Cs2
n (t)φn(x),

and substituting them into system (39), for each n = 0, 1, . . . we arrive at:

⎡
⎢⎢⎣

dCm
n (t)

dt
dCs2

n (t)

dt

⎤
⎥⎥⎦ = Ãkn

[
Cm

n (t)

Cs2
n (t)

]
,

where

Ãkn =
⎛
⎜⎝

Ãkn(1,1) Ãkn(1,2)

αm2s′
2

βm2 + s′
2

(
1 + αp0

Ab

)
Ãkn(1,2)

⎞
⎟⎠ ,
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Ãkn(1,1) =
(
αm0 + αms′

2

βm + s′
2

)
(1 − 2m′) − (αp0 + Am) − k2

n Dm,

Ãkn(1,2) = αmβm

(βm + s′
2)

2 m′(1 − m′) + k2
n Bm2m′,

Ãkn(2,2) = αm2βm2

(βm2 + s′
2)

2

(
1 + αp0

Ab

)
m′ − As2 − k2

n Ds2.

First we investigate the stability properties of system (39) and then determine,
how they are related to the stability properties of the system of three Eq. (28). Since
s2+ �= −βm2, then from (20) m+ �= 0. Therefore, matrix Ãkn , evaluated at point
(m+, s2+), can be simplified. From the first equation of the system (17) we get:

(
αm0 + αms2+

βm + s2+

)
(1 − m+) − (αp0 + Am) = 0. (40)

Then:

Ãkn(1,1)(m+, s2+) =
(
αm0 + αms2+

βm + s2+

)
(1 − 2m+) − (αp0 + Am) − k2

n Dm

= 2

((
αm0 + αms2+

βm + s2+

)
(1 − m+) − (αp0 + Am)

)

−
((

αm0 + αms2+
βm + s2+

)
− (αp0 + Am)

)
− k2

n Dm

= −αm0m0 − αms2+
βm + s2+

− k2
n Dm,

Ãkn(2,1)(m+, s2+) = αm2s2+
βm2 + s2+

(1 + αp0

Ab
) = χ

s2+
βm2 + s2+

,

where χ is defined in (22). Considering (20), we arrive at

Ãkn(1,2)(m+, s2+) = αmβm

(βm + s2+)2 m+(1 − m+) + k2
n Bm2m+

= As2αmβm

χ(βm + s2+)

βm2 + s2+
βm + s2+

(1 − m+) + k2
n Bm2m+.

Everywhere in the calculations, presented in Moreo et al. (2009) and in this paper, the
same values are used for parameters βm and βm2. So both notations βm and βm2 is
used, though βm2 = βm is supposed below. Then

Ãkn(1,2)(m+, s2+) = As2αmβm

χ(βm + s2+)
(1 − m+) + k2

n Bm2m+,

Ãkn(2,2)(m+, s2+) = αm2βm2

(βm2 + s2+)2 (1 + αp0

Ab
)m+ − As2 − k2

n Ds2

= As2(
βm2

βm2 + s2+
− 1) − k2

n Ds2 = −As2
s2+

βm2 + s2+
− k2

n Ds2.
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Therefore, we end up with

Ãkn (m+, s2+) =
(

−αm0m0 − αm s2+
βm+s2+ − k2

n Dm
As2αmβm

χ(βm+s2+)
(1 − m+) + k2

n Bm2m+
χ

s2+
βm2+s2+ −As2

s2+
βm2+s2+ − k2

n Ds2

)
.

Then the characteristic equation for matrix Ãkn , evaluated at point (m+, s2+), is given
by:

λ2(k2
n) + b(k2

n)λ(k2
n) + c(k2

n) = 0, (41)

where

b(k2
n) = − (Ãkn(1,1)(m+, s2+) + Ãkn(2,2)(m+, s2+))

= k2
n Dm + αm0m0 + αms2+

βm + s2+
+ k2

n Ds2 + As2
s2+

βm2 + s2+
= k2

n(Dm + Ds2) + αm0m0 + (αm + As2)
s2+

βm + s2+
,

c(k2
n) = Ãkn(1,1)(m+, s2+)Ãkn(2,2)(m+, s2+) − Ãkn(1,2)(m+, s2+)Ãkn(2,1)(m+, s2+)

=
(

k2
n Dm + αm0m0 + αms2+

βm + s2+

)(
k2

n Ds2 + As2
s2+

βm2 + s2+

)

−
(

k2
n Bm2m+ + As2αmβm

χ(βm + s2+)
(1 − m+)

)
χ

s2+
βm2 + s2+

.

From Eq. (41) the eigenvalues of Ãkn (m+, s2+) are determined as:

λ1,2(k
2
n) = −b(k2

n)

2
± 1

2

√
b2(k2

n) − 4c(k2
n). (42)

We mention that, if

{
s2+ > 0,

m0 > 0
⇒ b(k2

n) > 0. (43)

Thus, we can formulate the lemma.

Lemma 1 Suppose, that for the chosen parameter values m0 defined in (18) is positive,
βm = βm2 and that there exists a real positive s2+ defined in (19). Then the nature of
eigenvalues of matrix Ãkn (m+, s2+) is determined by the sign of c(k2

n):

– if c(k2
n) < 0, then one of eigenvalues is positive and the other is negative,

– if c(k2
n) = 0, then matrix Ãkn (m+, s2+) has one zero eigenvalue and one negative.

– if c(k2
n) > 0 then both eigenvalues are either negative, or complex with negative

real part.
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The wavenumbers which lead to growing perturbations are determined by inequal-
ity c(k2

n) < 0. We can write c(k2
n) is the form:

c(k2
n) = γ2k4

n + γ1k2
n + γ0, (44)

where

γ2 = Dm Ds2, (45)

γ1 = (Dm As2 + Ds2αm − χm+Bm2)
s2+

βm2 + s2+
+ Ds2αm0m0, (46)

γ0 = As2
s2+

βm2 + s2+

(
αm0m0 + αm

s2+
βm + s2+

(2 − m+) + αm(m+ − 1)

)
. (47)

Lemma 2 Suppose, that for the chosen parameter values m0 defined in (18) is positive,
and that βm2 = βm. Then if there exists a real positive s2+ defined in (19), then γ0
defined in (47) is non-negative.

Proof Since s2+ > 0, then it is necessary to prove, that

αm0m0 + αm
s2+

βm + s2+
(2 − m+) + αm(m+ − 1) ≥ 0.

Using (40) and (18), we simplify the previous inequality:

αm0m0 + αm
s2+

βm + s2+
(2 − m+) + αm(m+ − 1)

=
(

αm0m0 + αm
s2+

βm + s2+
(1 − m+) − αm0m+

)
+ αm

s2+
βm + s2+

+ αm0m+ + αm(m+ − 1) = m+(αm0 + αm) + αm

(
s2+

βm + s2+
− 1

)
≥ 0.

That is equivalent to m+(αm0 + αm) ≥
(

αmβm
βm+s2+

)
. Considering (20), this transforms

to

(βm + s2+)2 ≥ αmβmχ

As2(αm0 + αm)
, (48)

where χ is defined in (22). Next, we show, that inequality (48) holds. From Eq. (19)
and assumption βm2 = βm it follows, that
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s2+ + βm =
−a1 +

√
a2

1 − 4a2a0

2a2
+ βm ≥ − a1

2a2
+ βm

= − (αm0 + αm)(βm As2 − χm0) + αmχ(m0 − 1) + αm0βm As2

2As2(αm0 + αm)

+2βm As2(αm0 + αm)

2As2(αm0 + αm)
= αmβm As2 + χ(αm + αm0m0)

2As2(αm0 + αm)
, (49)

where a2, a1, a0 are defined in (21). Since χ = αm2
(
1 + αp0/Ab

)
> 0 and m0 is

supposed to be positive, then from (26) we get:

χ

(
m0 + αm

αm0

)
≥ −As2βm

αm

αm0
+
√

η
αm

αm0
χ. (50)

where η is defined in (25). Thus from (49) and (50) we get:

βm + s2+ ≥ αmβm As2 + χ(αm + αm0m0)

2As2(αm0 + αm)

≥ αmβm As2 − αmβm As2 + √
ηαmαm0χ

2As2(αm0 + αm)

=
√

ηαmαm0χ

2As2(αm0 + αm)
=
√

αmβmχ

As2(αm0 + αm)

Thus inequality (48) holds, and consequently γ0 ≥ 0. ��
Remark 9 From the proof of Lemma 2 it follows, that γ0 = 0, if and only if
a2

1 − 4a2a0 = 0 which is equivalent for m0 > 0 to

χ

(
m0 + αm

αm0

)
= −As2βm

αm

αm0
+
√

η
αm

αm0
χ. (51)

where η is defined in (25). In this case two constant solutions z̃− and z̃+ coincide,
since s2− = s2+ = − a1

2a0
.

We mention here, that under assumptions of Lemma 2, c(0) = γ0 ≥ 0. Then from
Lemma 1 we arrive at Lemma 3.

Lemma 3 If, for the chosen parameter values, m0 defined in (18) is positive, βm2 =
βm and there exists a real positive s2+ defined in (19), then for zero wavenumber
k0, matrix Ãkn (m+, s2+) has either one zero eigenvalue and one negative, or two
negative eigenvalues, or two complex eigenvalues with negative real part; and the
constant solution (m+, s2+) of the system (38) is stable against the purely temporal
perturbations.

Since kn ∈ [0,∞), then c(k2
n), given in (44) could be considered as a real function

of a real non-negative argument. It is a quadratic polynomial. The interval, where

123



Stability analysis for a peri-implant osseointegration model

c(k2
n) < 0, is defined by the roots of the polynomial. If this polynomial has no roots

among non-negative real numbers, then for ∀kn ∈ [0,∞), c(k2
n) > 0, since γ2 defined

(45) is positive. Thus, it is necessary to find the conditions, if polynomial defined in
(44) has at least one non-negative real root. The general formula for the roots of the
polynomial is:

κ2
1,2 =

−γ1 ±
√

γ 2
1 − 4γ2γ0

2γ2
. (52)

The discriminant of the polynomial is:

Dγ = γ 2
1 − 4γ0γ2. (53)

Since γ2 > 0 and γ0 ≥ 0 under the conditions of Lemma 2, the polynomial c(k2
n)

has either two real roots of the same sign as −γ1, which are different if Dγ > 0, and
coincident if Dγ = 0; or two complex roots with real part − γ1

2γ2
, if Dγ < 0.

Theorem 1 Suppose, that for the chosen parameter values m0 defined in (18) is posi-
tive, βm = βm2 and there exists a real positive s2+ defined in (19). Then if Dγ defined
in (55) is positive, and γ1 defined in (54) is negative, then ∃κ1, κ2 ∈ R defined by
expression (52), such that 0 ≤ κ1 < κ2, and the constant solution z̃+ = (m+, s2+)

of the system (38) is unstable with respect to the perturbations with wavenumbers
kn ∈ (κ1, κ2). Otherwise, constant solution z̃+ is stable.

Proof Let λ1(k2
n) and λ2(k2

n) be the eigenvalues of matrix Ãkn (m+, s2+) defined in
(42) and c(k2

n) be defined in (44). Then:

1. If Dγ > 0, and
(a) if γ1 < 0, then ∃κ1, κ2 ∈ R defined from expression (52), such that 0 ≤

κ1 < κ2 and:
– for kn ∈ (κ1, κ2): c(k2

n) < 0, hence λ1(k2
n) < 0 and λ2(k2

n) > 0;
– for kn ∈ {κ1; κ2}: c(k2

n) = 0, and λ1(k2
n) < 0 and λ2(k2

n) = 0;
– for kn ∈ [0,∞)/[κ1, κ2]: c(k2

n) > 0, and λ1(k2
n), λ2(k2

n) are either real
and negative, or complex with negative real part;

(b) if γ1 > 0, then:
i. if γ0 > 0, then for ∀kn ∈ [0,∞): c(k2

n) > 0 and λ1(k2
n), λ2(k2

n) are
either real and negative, or complex with negative real part;

ii. if γ0 = 0, then
– for ∀kn ∈ (0,∞): c(k2

n) > 0 and λ1(k2
n), λ2(k2

n) are either real
and negative, or complex with negative real part;

– c(0) = 0 and λ1(0) < 0 and λ2(0) = 0.
2. If Dγ = 0, and

(a) if γ1 ≤ 0, then ∃κ1 = κ2 =
√

− γ1
2γ2

≥ 0 , such that

– c(κ2
1 ) = 0, and λ1(κ

2
1 ) < 0 and λ2(κ

2
1 ) = 0;

– for kn ∈ [0,∞)/{κ2
1 }: c(k2

n) > 0 and λ1(k2
n), λ2(k2

n) are either real and
negative, or complex with negative real part;
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(b) if γ1 > 0, then for ∀kn ∈ [0,∞): c(k2
n) > 0 and λ1(k2

n), λ2(k2
n) are either

real and negative, or complex with negative real part.
3. If Dγ < 0, then for ∀kn ∈ [0,∞): c(k2

n) > 0 and λ1(k2
n), λ2(k2

n) are either real
and negative, or complex with negative real part.

Therefore, if Dγ > 0, and γ1 < 0, then λ2(k2
n) > 0, if kn ∈ (κ1, κ2), and the magni-

tude of the perturbation modes with wavenumbers kn ∈ (κ1, κ2) grow monotonically
after a certain period of time. Hence, constant solution z̃+ = (m+, s2+) is unstable
with respect to these perturbation modes.

Otherwise, ∀kn ∈ [0,∞) the eigenvalues of matrix Ãkn are either real non-positive
numbers (the matrix Ãkn can not have more than one zero eigenvalue) or complex
numbers with negative real part. Hence, initially small perturbations remain small
during any period of time, or even disappear when t → ∞, and constant solution z̃+
is stable in this case. ��

The parameters γ1 and Dγ , can be written in terms of model parameters as

γ1 = (Dm As2 + Ds2αm − χm+Bm2)
s2+

βm2 + s2+
+ Ds2αm0m0, (54)

Dγ =
(
(Dm As2 + Ds2αm − χm+Bm2)

s2+
βm2 + s2+

+ Ds2αm0m0

)2

− 4Dm Ds2 As2
s2+

βm2 + s2+

(
αm0m0+αm

s2+
βm2+s2+

(2 − m+) + αm(m+ − 1)

)
.

(55)

3.4 Correspondence between the systems of two and three equations

Next we determine the relation between the eigenvalues of matrices Ãkn (m+, s2+) and
Akn (m+, s2+, b+), in order to demonstrate the similarity between the stability of sys-
tems (14)–(16) and (38), with respect to perturbations about equilibria (m+, s2+, b+)

and (m+, s2+) respectively. Let us define matrix Mkn :

Mkn =
[

Akn(1,1) − λ Akn(1,2)

Akn(2,1) Akn(2,2) − λ

]
.

From the definition of Akn we have: Akn(2,3) = Akn(2,1). Then

Akn − λI3 =
⎡
⎣Akn(1,1) − λ Akn(1,2) 0

Akn(2,1) Akn(2,2) − λ Akn(2,1)

αp0 0 −Ab − λ

⎤
⎦

=
⎡
⎣
[

Mkn

]
αp0 0

0
Akn(2,1)

−Ab − λ

⎤
⎦ .
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The determinant of this matrix is the characteristic polynomial of Akn :

det
(
Akn − λI3

) = (− Ab − λ
)

det(Mkn ) + αp0Akn(1,2)Akn(2,1). (56)

From the definition of matrices Ãkn and Akn , it follows that ˜Akn(1,1) = Akn(1,1),
˜Akn(1,2) = Akn(1,2), ˜Akn(2,1) =

(
1 + αp0

Ab

)
Akn(2,1), ˜Akn(2,2) = Akn(2,2). Therefore,

the determinant of matrix Ãkn − λI2 and characteristic polynomial of matrix Ãkn is

det
(
Ãkn − λI2

) = det

([
Akn(1,1) − λ Akn(1,2)

Akn(2,1) + αp0
Ab

Akn(2,1) Akn(2,2) − λ

])

= det (Mkn ) − αp0

Ab
Akn(1,2)Akn(2,1). (57)

From (56) and (57) we derive:

det
(
Akn − λI3

) = (− Ab − λ
)
det

(
Ãkn − λI2

)− λ
αp0

Ab
Akn(1,2)Akn(2,1). (58)

Then we denote the characteristic polynomials of matrices Akn and Ãkn , which are
evaluated at the constant solutions (m+, s2+, b+) and (m+, s2+) respectively, as cubic
polynomial P3(λ) and quadratic polynomial P2(λ) with respect to λ:

P3(λ) = det (Akn (m+, s2+, b+) − λI3); P2(λ) = det (Ãkn (m+, s2+, b+) − λI2).

Equation (58) could be written as:

P3(λ) = (− Ab − λ
)
P2(λ) − C(k2

n)λ, (59)

where

C(k2
n) = αp0

Ab
Akn(1,2)(m+, s2+, b+)Akn(2,1)(m+, s2+, b+)

= αp0

Ab

αm2s2+
βm2 + s2+

(
αmβm

(βm + s2+)2 m+(1 − m+) + k2
n Bm2m+

)
.

(60)

If s2+ > 0, it follows from (20) that m+ > 0, and from (40) we obtain: m+ =
1 − αp0+Am

αm0+ αm s2+
βm+s2+

< 1. Thus,

s2+ > 0 ⇒ 0 < m+ < 1 ⇒ C(k2
n) > 0, ∀k2

n ∈ [0,∞). (61)

Lemma 4 Suppose, that for the chosen parameter values m0 defined in (18) is positive,
and that there exists a real positive s2+ defined in (19). If the matrix Ãkn (m+, s2+)

has one real negative eigenvalue λ̃1 < 0 and one real positive eigenvalue λ̃2 > 0,
then Akn (m+, s2+, b+) has one real positive eigenvalue and either two real negative
eigenvalues, or two complex conjugated eigenvalues with negative real part.
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Proof From the assumption of the lemma and from (61) it follows, that C(k2
n) > 0.

Let Ãkn (m+, s2+) have one real negative eigenvalue λ̃1 < 0 and one real posi-
tive eigenvalue λ̃2 > 0. The characteristic polynomial can be written as P2(λ) =
(λ − λ̃1)(λ − λ̃2). Then from Eq. (59)

P3(λ) = (− Ab − λ
)
(λ − λ̃1)(λ − λ̃2) − C(k2

n)λ

= −λ3+(λ̃1+λ̃2 − Ab)λ
2 + (−λ̃1λ̃2+ Ab(λ̃1+λ̃2)−C(k2

n))λ− Abλ̃1λ̃2.

(62)

From (62) we get:

P3(0) = −λ̃1λ̃2 Ab > 0 and P3(λ̃2) = −λ̃2C(k2
n) < 0. (63)

Since P3(λ) is continuous, it follows from (63), that polynomial P3(λ) has at least one
real positive root λ1 on the interval (0, λ̃2).

The other two eigenvalues λ2 and λ3 of Akn (m+, s2+, b+) could be real (negative
or positive) or complex conjugated numbers (as the coefficients of the polynomial are
real). We can write:

P3(λ) = −λ3 + (λ1 + λ2 + λ3)λ
2 − (λ1λ2 + λ1λ3 + λ2λ3)λ + λ1λ2λ3, (64)

since this polynomial has λ1, λ2, λ3 as its roots. As the coefficients at the second
degree of λ in the two expressions for P3(λ) from (62) and (64) should be equal, we
have λ2 + λ3 = λ̃1 + λ̃2 − Ab − λ1. From (42) it is derived:

λ2 + λ3 = −b(k2
n) − Ab − λ1 < 0. (65)

The above inequality holds, since it was mentioned in (43), that b(k2
n) > 0, if m0 > 0

and s+ > 0. Thus, if two other eigenvalues are real, then from (65) it follows, that at
least one of them is negative. Let us suppose λ2 < 0. Then

lim
λ→−∞ P3(λ) = ∞,

and P3(0) = −λ̃1λ̃2 Ab > 0. That means that on the interval (−∞, 0) polynomial
P3(λ) does not change its sign, or changes it twice. Since P3(λ) is continuous, it fol-
lows from λ2 < 0 that λ3 also is negative. In the case, when λ2 and λ3 are complex
conjugated, their real part is λre = (λ2 + λ3)/2 < 0. ��
Lemma 5 Suppose, that for the chosen parameter values there exists a real positive
s2+ defined in (19). If Ãkn (m+, s2+) has one zero eigenvalue and one real negative
eigenvalue, then Akn (m+, s2+, b+) has one zero eigenvalue and either two real neg-
ative eigenvalues, or two complex conjugated eigenvalues with negative real part.

Proof From the assumption of the lemma and from (61) it follows, that C(k2
n) >

0. Let Ãkn (m+, s2+) have one zero eigenvalue and one real negative eigenvalue,
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λ̃1 < λ̃2 = 0. Then the characteristic polynomial P2(λ) has the form P2(λ) = λ(λ −
λ̃1). Then Eq. (59) implies

P3(λ) = (− Ab − λ
)
λ(λ − λ̃1) − C(k2

n)λ

= −λ(λ2 + (Ab − λ̃1)λ + (C(k2
n) − λ̃1 Ab)).

(66)

And eigenvalues of Akn (m+, s2+, b+) are following:

λ1 = 0, λ2,3 =
−Ab + λ̃1 ±

√
(Ab − λ̃1)2 − 4(C(k2

n) − λ̃1 Ab)

2
. (67)

Since C(k2
n)− λ̃1 Ab > 0 and Ab − λ̃1 > 0, then from (67) it follows, that eigenvalues

λ2,3 are either real and negative (possible coincident), or complex with negative real
part. ��
Lemma 6 Suppose, that for the chosen parameter values there exists a real pos-
itive s2+ defined in (19). If Ãkn (m+, s2+) has two real negative eigenvalues, then
Akn (m+, s2+, b+) has either three real negative eigenvalues, or one real negative
eigenvalue, and two complex eigenvalues with negative real part.

Proof From the assumption of the lemma and from (61) it follows, that C(k2
n) > 0. Let

Ãkn (m+, s2+) have two real negative eigenvalues λ̃1 ≤ λ̃2 < 0. Then the characteristic
polynomial P2(λ) has the form P2(λ) = (λ − λ̃1)(λ − λ̃2). Then from Eq. (59)

P3(λ) = (− Ab − λ
)
(λ − λ̃1)(λ − λ̃2) − C(k2

n)λ

= −λ3 + (λ̃1 + λ̃2 − Ab)λ
2 + (−λ̃1λ̃2 + Ab(λ̃1 + λ̃2) − C(k2

n))λ − Abλ̃1λ̃2.
(68)

From (68) we get:

P3(−Ab) = C(k2
n)Ab > 0 and P3(0) = −λ̃1λ̃2 Ab < 0. (69)

Since P3(λ) is continuous, it follows from (69), that polynomial P3(λ) has at least
one root on the interval (−Ab, 0). Thus we can suppose, that −Ab < λ1 < 0. From
(68) it follows, that for λ ≥ 0 polynomial P3(λ) only takes values less than zero. That
means, that P3(λ) has no non-negative real roots P3(λ). Thus, if two other eigenvalues
of Akn (m+, s2+, b+) are real, they are also negative. Though it is possible, that polyno-
mial P3(λ) has two complex conjugated roots. Let us denote them as λ2,3 = λre±iλim .
Then:

P3(λ) = −(λ − λ1)(λ
2 − 2λreλ + λ2

re + λ2
im)

= −λ3 + (λ1 + 2λre)λ
2 − (2λ1λre + λ2

re + λ2
im)λ + λ1(λ

2
re + λ2

im). (70)

As the coefficients at the second degree of λ in two expressions for P3(λ) (68) and
(70) should be equal, we derive: 2λre = λ̃1 + λ̃2 − Ab − λ1. As λ̃1 ≤ λ̃2 < 0 and
−Ab − λ1 < 0, we get that λre < 0. That is, if two eigenvalues of Akn (m+, s2+, b+)

are complex, then their real part is less than zero. ��
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Lemma 7 Suppose, that for the chosen parameter values there exists a real positive
s2+ defined in (19). If Ãkn (m+, s2+) has two complex conjugated eigenvalues with
negative real part, then Akn (m+, s2+, b+) has either three real negative eigenvalues,
or one real negative eigenvalue, and two complex eigenvalues with negative real part.

Proof From the assumption of the lemma and from (61) it follows, that C(k2
n) > 0.

Let Ãkn (m+, s2+) have the complex conjugated eigenvalues with negative real part
λ̃1,2 = λ̃re ± i λ̃im, λ̃re < 0. Then the characteristic polynomial P2(λ) takes positive
values for ∀λ ∈ R and has the form P2(λ) = (λ2 − 2λ̃reλ + λ̃2

re + λ̃2
im). Then from

Eq. (59), we obtain

P3(λ) = (− Ab − λ
)
(λ2 − 2λ̃reλ + λ̃2

re + λ̃2
im) − C(k2

n)λ

= −λ3 + (2λ̃re − Ab)λ2 + (−λ̃2
re − λ̃2

im + 2Abλ̃re − C(k2
n))λ − Ab(λ̃2

re + λ̃2
im).

(71)

From (71) we get:

P3(−Ab) = C(k2
n)Ab > 0 and P3(0) = −Ab(λ̃

2
re + λ̃2

im) < 0. (72)

Since P3(λ) is continuous, it follows from (72), that polynomial P3(λ) has at least one
root on the interval (−Ab, 0). Thus we can suppose −Ab < λ1 < 0.

From (71) it follows, that for λ ≥ 0 polynomial P3(λ) takes values less than zero.
That means, that P3(λ) has no non-negative real roots P3(λ). Therefore, if the two
other roots of P3(λ) are real, they are also negative.

Next we investigate the possibility, that polynomial P3(λ) has two complex conju-
gated roots. We denote them as λ2,3 = λre ± iλim . Then:

P3(λ) = −(λ − λ1)(λ
2 − 2λreλ + λ2

re + λ2
im)

= −λ3 + (λ1 + 2λre)λ
2 − (2λ1λre + λ2

re + λ2
im)λ + λ1(λ

2
re + λ2

im). (73)

As the coefficients of λ2 in two expressions for P3(λ) (71) and (73) should be equal,
we derive: 2λre = 2λ̃re − Ab − λ1. As λ̃re < 0 and −Ab − λ1 < 0, we get that
λre < 0. That is, if two eigenvalues of Akn (m+, s2+, b+) are complex, then their real
part is less than zero. ��

3.5 Stability of the system of three equations

Lemma 8 Suppose, that for the chosen parameter values, m0 defined in (18) is
positive, βm = βm2 and there exists a real positive s2+ defined in (19). Then the
constant solution z+ = (m+, s2+, b+) of the system (14)–(16) is stable against purely
temporal perturbations.

Proof From Lemma 3, 5, 6 and 7, we obtain, that for zero wavenumber k0, matrix Akn ,
evaluated at the constant solution z+, has either two negative eigenvalues and one zero
eigenvalue, or three real negative eigenvalues, or one real non-positive eigenvalue, and
two complex eigenvalues with negative real part. ��
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Theorem 2 Suppose, that for the chosen parameter values m0 defined in (18) is
positive, βm = βm2 and there exists a real positive s2+ defined in (19). Then if
Dγ defined in (55) is positive, and γ1 defined in (54) is negative, then ∃κ1, κ2 ∈ R

defined by expression (52), such that 0 ≤ κ1 < κ2, and the constant solution z+ of
the system (14)–(16) is unstable with respect to the perturbations with wavenumbers
kn ∈ (κ1, κ2). Otherwise, constant solution z+ is stable.

Proof The theorem is proved, by analogy with the proof of Theorem 1. In that proof
all possible cases for the signs of the parameters Dγ and γ1 are considered, and the
relations between the eigenvalues of matrix Ãkn and wavenumber kn are determined
for each case. From those relations, and from relations between eigenvalues of matri-
ces Ãkn and Akn , stated in Lemma 4–7, it is possible to determine the correspondence
between the eigenvalues of matrix Akn and wavenumber kn for the sets of signs of the
parameters Dγ and γ1.

Therefore, it is obtained, that if Dγ > 0, and γ1 < 0, then ∃κ1, κ2 ∈ R defined
by expression (52), such that 0 ≤ κ1 < κ2, and the magnitude of the perturbation
modes with wavenumbers kn ∈ (κ1, κ2) grow monotonically after a certain period
of time, since one of the eigenvalues of Akn is positive. Hence, constant solution
z+ = (m+, s2+, b+) is unstable with respect to these perturbation modes.

Otherwise, ∀kn ∈ [0,∞) the eigenvalues of matrix Akn are either real non-positive
numbers (the matrix Akn can not have more than one zero eigenvalue) or complex
numbers with negative real part. Hence, initially small perturbations remain small
during any period of time, or even disappear when t → ∞, and constant solution z+
is stable in this case. ��

The conditions on parameters, stated in Theorem 2, can be formulated in compact
form: {

γ1 < 0,

Dγ = γ 2
1 − 4γ0γ2 > 0

⇔ γ1 < −2
√

γ2γ0. (74)

From the proof of the theorem, it follows, that condition (74) is a necessary condi-
tion for the instability of the solution z+, since it is equivalent to the existence of real
positive numbers κ1 and κ2. The necessary and sufficient condition holds, if there exist
wavenumbers kn ∈ (κ1, κ2). From (52) it follows, that the length of interval (κ1, κ2) is

equal to Dγ

Dm Ds2
. If Dγ is small enough, then it is possible, that no wavenumber kn will

lie inside interval (κ1, κ2), and perturbations will not grow. In this case, the necessary
condition for instability holds, but the solution is stable.

The necessary instability condition (74), can be transformed into the sufficient
stability condition by the substitution of the sign in inequality (74) by the opposite
one:

γ1 ≥ −2
√

γ2γ0. (75)

This condition is formulated in terms of model parameters and does not depend on the
problem statement. This means, that general instruction on the choice of the parameter
values, which guaranty the stability of the constant solution z+, can be formulated.
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The necessary and sufficient stability condition is opposite to the necessary and
sufficient instability condition, which depend on the wavenumbers kn . Set of wave-
numbers kn contains infinite number of elements, and is determined by the domain
size, by the coordinate system and by the boundary conditions. Therefore, it is not
possible to state the necessary and sufficient condition in terms of model parameters
for the general case. For different boundary conditions, coordinate systems or domain
sizes, these conditions have to be reformulated.

3.6 Parameter choice and stability

In this subsection the choice of parameter values, providing stability of the constant
solution z+ = (m+, s2+, b+) of the system of three equations, is discussed.

For the parameter values in Eq. (11), (12) and (13), the constant solutions zt =
(0, 0, 0), z0 = (m0, 0, b0) and z− = (m−, s2−, b−) are unstable, and the solution will
not converge to these constant solutions. From a biological point of view, this is a
favorable situation. Since, the ’non-healing state’ zt contains zero concentrations of
osteogenic cells and osteoblasts, the ’low density state’ z0 corresponds to much lower
concentrations of osteogenic cells and osteoblasts, compared to those for z+, and the
constant solution z− contains unphysical negative concentrations of cells.

For the chosen parameter value sets in Eqs. (11), (12) and (11), (13), the sufficient
condition (75) for the stability of z+ does not hold. It is necessary to change the value
of parameters, to guaranty the stability of the constant solution z+ in general. It is pro-
posed here, to vary values of parameters Bm2 and Dm . These two particular parameters
are chosen, since:

– their variation does not cause change of the values of constant solutions zt , z0, z−
and z+ (see Eqs. (18),(19), (20));

– from (35) and (36) it follows, that parameters Bm2 and Dm do not influence the
stability of the constant solutions zt and z0 against purely temporal perturbations.
The stability of the constant solution z− against purely temporal perturbations is
determined from the eigenvalues of matrix Ak0(m−, s2−, b−), see Eq. (32). As
k0 = 0, this matrix does not depend on parameters Bm2 and Dm . For the consid-
ered parameter values in Eqs. (11), (12) and (13), and for any Bm2 and Dm, z− is
unstable against purely temporal perturbations. Therefore, varying Bm2 and Dm ,
we can achieve the stability of constant solution z+, while constant solutions zt , z0
and z− remains unstable;

– calculations showed, that stability condition (75) is most sensitive with respect
to the parameters Bm2 and Dm . That is, the ratio of the initial parameter value
and the ultimate value of the parameter, which satisfies condition (75), is much
smaller for Bm2 and Dm , compared to the rest of the model parameters.

The first quadrant of plane (Dm, Bm2), which contains all possible non-negative
values Dm and Bm2, can be divided into three regions, with regard to the stability of
the solution z+:

region R1: sufficient stability condition (75) holds, solution z+ is stable;
region R2: condition (75) does not hold, no wavenumbers kn lie in the interval
(κ1, κ2), solution z+ is stable;
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Fig. 3 Plot of the regions in the first quadrant of plane (Dm , Bm2), where constant solution z+ is stable
(R1, R2) and unstable (R3), for the case of zero flux of m and s2 on the boundaries, 1D Cartesian coordi-
nates, and domain of length 0.6 mm. The rest of model parameters are initialized: a as in (11), (12), and
b as in (11), (13)

region R3: condition (75) does not hold, some of wavenumbers kn lie in the interval
(κ1, κ2), solution z+ is unstable.

Configuration of regions R2 and R3 depend on the specified boundary conditions,
coordinate system and domain length. In Fig. 3 these regions were plotted for the case
of zero flux of m and s2 on the boundaries, 1D Cartesian coordinates, and domain of
length 0.6 mm. This length is equal to the width of the domain, used in the numerical
simulations by Moreo et al. (2009). Values of model parameters, given in (11), (12)
(Fig. 3a), and in (11), (13) (Fig. 3b), were chosen.

With use of (45), (46) and (47), sufficient stability condition (75) can be rewritten
as follows:

Bm2 ≤ 1

s2+ + βm2

(
Dm + G1 + 2

G0

√
Dm Ds2γ0

)
, (76)

or in the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dm ≥ 0, if Bm2 ≤ G1

s2+ + βm2
,

Dm ≥ Bm2(s2+ + βm2) − G1 + 2
γ0 Ds2

G2
0

− 2

√√√√γ0 Ds2

G2
0

(
Bm2(s2+ + βm2) − G1+ γ0 Ds2

G2
0

) , if Bm2 >
G1

s2+ + βm2
,

(77)

where G0 = As2s2+
s2++βm2

, G1 = Ds2
As2

(
αm + αm0m0

s2++βm2
s2+

)
, and γ0 is defined in (47).

Inequalities (76) and (77) determine the values of Bm2 and Dm , which ensure the
stability of the solution z+.

The following remark can be helpful for the solution of practical problems. Suppose,
that initial values of model parameters do not satisfy sufficient condition (75) for the
stability of the solution z+. Then, it is possible to guaranty the stability of z+ in general
case (i.e. for any set of wavenumbers, which are determined by problem statement),
by decreasing the value of Bm2, or increasing Dm , until condition (76) or condition
(77) is satisfied, respectively.
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4 Numerical results

The predictions from the linear stability analysis are validated against a sequence of
numerical simulations. The sufficient stability condition is considered in the form (76)
and parameter Bm2 is varied.

If we fix the values of all parameters, except Bm2, then the right part of inequality
(76) can be denoted as the ultimate value Blim

m2 , such that for Bm2 ≤ Blim
m2 small per-

turbations near (m+, s2+, b+) are predicted not to grow with time. For Bm2 > Blim
m2

small perturbations of mode φn(x) will grow, if κ1 < kn < κ2. If Bm2 is close to
ultimate value Blim

m2 , then the interval (κ1, κ2) is small, and it could happen, that no
wavenumber kn lies inside this interval. In this case perturbations near the constant
solution will not grow, in spite of the fact, that sufficient stability condition (76) does
not hold.

For the cases when the model parameters are initialized as in (11), (12) and (11),
(13), the ultimate values are Blim

m2 ≈ 0.45716 ∗ 0.167 mm2 day−1 and Blim
m2 ≈

0.02481 ∗ 0.167 mm2 day−1.
First, the parameter values (11), (12) are considered. If the problem domain is a

1D interval x ∈ [1, 6] in Cartesian coordinates, and if a zero flux of osteogenic cells
m and growth factor s2 is supposed, then the wavenumbers are determined as kn =
πn/5 mm−1, n = 0, 1, 2, . . .. Then for Bm2 = 0.4572 ∗ 0.167 mm2 day−1, which is
larger than the ultimate value, still no wavenumber lies between κ1 ≈ 4.2805 mm−1

and κ2 ≈ 4.3838 mm−1. Though, for Bm2 = 0.4573 ∗ 0.167 mm2 day−1, the wave-
number k7 ≈ 4.3982 mm−1 ∈ (κ1, κ2) = (≈ 4.2322 mm−1,≈ 4.4339 mm−1). If the
parameter values (11), (13) are chosen, then for Bm2 = 0.0249∗0.167 mm2 day−1, the
wavenumber k6 ≈ 3.7699 mm−1 ∈ (κ1, κ2) = (≈ 3.6417 mm−1,≈ 4.324 mm−1).

In Fig. 4 the results of numerical simulations are shown. The solutions were obtained
with use of the finite element method. Linear 1D elements of size 0.02 mm were used
for the discretization in space. The implicit backward Euler method, to prevent insta-
bilities due to numerical time integration, and adaptive time stepping were used for
time integration. Zero flux of m, s2 on the boundaries was specified as the boundary
conditions. To introduce the perturbations in the initial solution during simulations,
the corresponding constant solution value plus a small random number were assigned
to every degree of freedom at time t = 0. From Fig. 4 it follows, that for values
Bm2 less than the ultimate value, the numerical solution tends to the constant solution
(m+, s2+, b+) with time (Fig. 4a). And if parameter Bm2 is larger than Blim

m2 and such,
that ∃kn ∈ (κ1, κ2), then there is no convergence to the constant solution, and a wave-
like profile occurs in the solution (Fig. 4c, d). However, if Bm2 is larger than Blim

m2 , but
such that no wave number lies inside (κ1, κ2) yet, then the numerical solutions again
converge to the constant solution (m+, s2+, b+) (Fig. 4b). Thus, the predictions of the
linear stability analysis are fully confirmed by the numerical simulations.

The introduced linear stability analysis allows to assess the stability of the consid-
ered constant solution. From its stability it can be concluded, whether or not small
perturbations grow with time. The important conclusion can be made, for cases in
which perturbations are large: if the constant solution is not stable, then the solution
of the problem will never converge to that constant solution. Hence, the introduced
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Fig. 4 Solution of Eqs. (14)–(16) in Cartesian coordinates at different time moments. Small random
initial perturbations near the constant solution (m+, s2+, b+) are considered. Zero fluxes of m, s2 on
the boundaries are taken as the boundary conditions. Parameter Bm2 takes different values: Bm2 = k ·
0.167 mm2 day−1, a k = 0.3, b k = 0.4572, c k = 0.4573, d k = 1. The rest of parameters are initialized
as in (11), (12)

linear analysis provides important results also for the case of large perturbations, since
it allows to avoid the situation, in which the solution, which is constant in time and
in space, can never be reached. However, if the constant solution is stable, it is still
unknown, how large initial perturbations behave, whether they disappear or prevail,
or even grow.

In reality, we have to deal with large deviations from the constant solution. The
initial and boundary conditions, proposed by Moreo et al. (2009) for the full sys-
tem (1)–(8), were given in Sect. 2. When adapted to the simplified system of three
equations, initial and boundary conditions (9), (10) are rewritten as:

m(x, 0) = 0.001, b(x, 0) = 0.001, s2(x, 0) = 0.01, x ∈ Ω. (78)⎧⎪⎪⎨
⎪⎪⎩

Ds1∇s1(x, t) · n = 0, Ds2∇s2(x, t) · n = 0, x ∈ Γ, t ∈ (0, ∞)

m(x, t) = 0.2, x ∈ Γb, t ∈ (0, 14] [days]
(Dm∇m(x, t) − m(x, t)Bm2∇s2(x, t)) · n = 0,

[
x ∈ Γ \Γb, t ∈ (0, 14] [days],
x ∈ Γ, t ∈ (14, ∞) [days].

(79)

Initial conditions (78) are far from the small perturbations near the constant solution
(m+, s2+, b+).

The simplified system (14)–(16), and the full system (1)–(8) were solved numeri-
cally for initial and boundary conditions (9), (10) and (78), (79) respectively, and for a
number of parameter value sets. Some of the solutions for the full system (1)–(8) are
plotted in Fig. 5. The numerical simulations show, that if the parameter values are such,
that the constant solution (m+, s2+, b+) is stable, then the numerical solutions of both
systems for the unknowns m(x, t), s2(x, t), b(x, t) converge to this constant solution
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Fig. 5 Solution of Eqs. (1)–(8) in axisymmetric coordinates at different time moments. Initial and boundary
conditions are chosen in the form (9), (10), according to Moreo et al. (2009). Parameter Bm2 takes different
values: Bm2 = k · 0.167 mm2 day−1, a k = 0.0248, b k = 0.0249, c k = 0.04, d k = 0.2. The rest of
parameters are initialized as in (11), (13)

after a certain period of time (Fig. 5a). Though, if the constant solution (m+, s2+, b+)

is not stable, then a wave-like profile develops in the solution for osteogenic cells and
growth factor 2 and for parameter values (11), (13) also in the solution for osteoblasts.
For some values of parameter Bm2 that ’wave-like’ profile is steady (Fig. 5b). Though,
if Bm2 is much larger than the ultimate value, then the waves in the numerical solution
are not steady, but moving (Fig. 5c, d). This is in agreement with the stability analysis
presented in Sect. 4.

5 Conclusions

We have defined a simplified system of three equations, characterized by the appear-
ance of a wave-like profile in the solution under the same conditions, as for the solution
of the full system of eight equations. For the considered parameter values the sim-
plified system has four constant solutions. The sufficient stability condition for one
of the constant solutions, denoted as z+ = (m+, s2+, b+), is derived in terms of
model parameters, by means of the linear stability analysis. If all constant solutions
are unstable, then by changing the values of the model parameters Bm2 and Dm , it is
possible to make the solution z+ stable, while three other constant solutions zt , z0 and
z− remain unstable. The analytical predictions on the stability of constant solution
z+ for various parameter sets are confirmed by numerical simulations, when starting
from small perturbations near the constant solution.
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In real simulations for the peri-implant osseointegration, initial conditions corre-
spond to the large deviations from the constant solution. However, linear stability
analysis provides important results also in this case. It allows to avoid such values
of model parameters, for which all constant solutions are unstable, and consequently,
can not be reached. Linear stability analysis makes it possible to determine parame-
ter values, for which the solution of the problem will never converge to the solution,
which is constant in time and in space. This conclusion is confirmed by the numerical
simulations, which evidence, that a wave-like profile appears in the solution, if all the
constant solutions are unstable. The numerical simulations also show, that if the solu-
tion z+ is stable and zt , z0, z− are unstable, then numerical solutions for unknowns
m(x, t), s2(x, t), b(x, t) of the full and the simplified system converge to the con-
stant solution (m+, s2+, b+) after a certain period of time, when starting with initial
conditions proposed in Moreo et al. (2009).

Therefore, the numerical simulations demonstrate, that if constant solutions zt , z0,

z− are unstable, then stability of the constant solution z+ could determine the behavior
of the solution of the whole system, if specific initial conditions are considered. That
makes it possible to determine the values of model parameters, for which biologically
irrelevant solutions with a ’wave-like’ profile can be obtained.
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