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An Effective Approach for Rotor Electrical
Asymmetry Detection in Wind Turbine DFIGs

Raed Khalaf Ibrahim , Simon J. Watson , Member, IEEE, Siniša Djurović, and Christopher J. Crabtree

Abstract—Determining the magnitude of particular fault
signature components (FSCs) generated by wind turbine
(WT) faults from current signals has been used as an effec-
tive way to detect early abnormalities. However, the WT cur-
rent signals are time varying due to the constantly varying
generator speed. The WT frequently operates with the gen-
erator close to the synchronous speed, resulting in FSCs
manifesting themselves in the vicinity of the supply fre-
quency and its harmonics, making their detection more
challenging. To address this challenge, the detection of ro-
tor electrical asymmetry in WT doubly fed induction gen-
erators, indicative of common winding, brush gear, or high
resistance connection faults, has been investigated using a
test rig under three different driving conditions, and then an
effective extended Kalman filter (EKF) based method is pro-
posed to iteratively estimate the FSCs and track their mag-
nitudes. The proposed approach has been compared with
a continuous wavelet transform (CWT) and an iterative lo-
calized discrete Fourier-transform (IDFT). The experimental
results demonstrate that the CWT and IDFT algorithms fail
to track the FSCs at low load operation near-synchronous
speed. In contrast, the EKF was more successful in tracking
the FSCs magnitude in all operating conditions, unambigu-
ously determining the severity of the faults over time and
providing significant gains in both computational efficiency
and accuracy of fault diagnosis.

Index Terms—Condition monitoring (CM), continuous
wavelet transform (CWT), doubly fed induction genera-
tors (DFIGs), extended Kalman filter (EKF), fault diagnosis,
Fourier transform, induction generators, signal processing,
time-frequency analysis, wavelet transforms, wind power
generation, wind turbines (WTs).

Manuscript received September 5, 2017; revised November 29, 2017
and January 17, 2018; accepted February 13, 2018. Date of publication
March 19, 2018; date of current version June 26, 2018. This work was
supported by the SUPERGEN Wind Hub under Grant EP/L014106/1.
The work of R. K. Ibrahim was supported by the Higher Committee for
Education Development in Iraq. (Corresponding author: Raed Khalaf
Ibrahim.)

R. K. Ibrahim is with the Wolfson School of Mechanical, Electrical
and Manufacturing Engineering, Centre for Renewable Energy Sys-
tems Technology, Loughborough University, Loughborough LE11 3TU,
U.K. (e-mail: r.ibrahim@lboro.ac.uk).

S. J. Watson is with the TU Delft Wind Energy Institute, Delft University
of Technology, Delft 2629 HS, The Netherlands (e-mail: s.j.watson@
tudelft.nl).
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I. INTRODUCTION

IN RECENT years, wind energy has experienced substan-
tial growth compared to other forms of power generation.

While alternatives are emerging, a large proportion of currently
installed and manufactured wind turbines (WTs) continue to
use induction generators. The doubly fed induction generator
(DFIG) in particular remains an attractive generator technology
with a strong market position [1] due to its unique wide-range
variable-speed-constant-frequency operating capability coupled
with low-power electronic inverter rating requirements and ef-
fective power flow control.

Undetected generator faults in DFIGs have been associated
with high failure rates, replacement of major components, and
subsequent significant downtime [2]. The primary cause of this
higher downtime in the offshore environment is the increased
need for heavy-lifting vessels [3]. Usually, faults evolve from
an incipient stage to a progressively more severe condition and
eventually turn to failure. Early fault detection can hence avoid
catastrophic failures and downtime reduction through enabling
careful condition-based maintenance planning [4]. An analysis
of failure statistics showed that 20% to 70% of the generator
faults were related to bearings, 3% to 38% to the stator, 7%
to 50% to the rotor, and the rest were categorized as “other”
[5]. Another study, which reviewed 80 journal papers published
by the IEEE and IEE/IET on the subject of induction machine
failure statistics over the past 26 years, reported that 21% of
generator faults were bearing problems, 35% stator related, and
44% rotor related [6]. Rotor electrical unbalance is identified as
an indicator of some of the major contributors to WT generator
failure rate [7], [8]. This condition is representative of a number
of recognized rotor electrical fault modes in DFIG systems such
as brush gear degradation, rotor winding fault, and/or improper
connection between the slip ring unit and the rotor cable leads
and its analysis and detection have been the topic of a number
of studies conducted on representative academic scale test rig
systems and MW-size DFIG field applications [4]–[12]. Unde-
tected electric faults may gradually develop to a major short
circuit, and can cause severe damage to the machine and the
system to which it is connected [13]. Therefore, early detection
of rotor electrical unbalance faults of in-service generators is
essential to eliminate consequential damage.

Previous works [14], [15] showed that faults in electrical ma-
chines can be detected in a noninvasive manner by either current
or power signal analysis. The use of current and power signals
analysis has consequently been proposed as a general tool for
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WT fault detection [16]–[20]. In particular, the diagnostic ap-
plication of stator current signature analysis to detect DFIG
rotor asymmetry conditions has been studied on laboratory test
rigs, simulation studies [5], [8], [9], [21], [22], or analytical
formulations of fault frequencies [10], [11]. Rotor electrical un-
balance has been emulated by connecting external resistances
to machine windings [4]–[11], [23], [24].

The available literature indicates that rotor asymmetries gen-
erate particular spectral signatures (called fault signatures) in
the frequency spectra of WT current signals. Theoretical and
analytical formulations of fault signature frequencies and their
generation were attempted in [8], [10], and [25] to define the
signal spectral component that can be monitored for diagnos-
tic purposes. To date, various WT condition monitoring (CM)
techniques that aim to utilize these and similar diagnostic sig-
nals have been developed [17], [19], [26], [27]. However, a fully
satisfactory method to detect the full range of WT faults in their
early stages has not been achieved yet, and false alarms are still
frequently reported from sites with the generator being a signif-
icant contributor [2], demonstrating the need to optimize these
alarms. The root cause of generator false alarms can be related
to the following problems.

1) The lack of clear understanding of the diagnostic in-
formation embedded in the DFIG stator current spectral
content.

2) The lack of signal processing tools with sufficient sensi-
tivity and reasonable computational efficiency to extract
the instantaneous amplitude (IA) of fault signature com-
ponents (FSCs) from the WT current signals.

The first problem has largely been addressed in [9], [10],
[21], and [28] with a comprehensive theoretical analysis of the
DFIG stator current spectrum content for the machine operating
in steady state, both with and without supply and/or winding
asymmetries. The research reported in this paper will focus on
a potential solution to address the second problem where the
FSCs in the WT current signals have nonlinear and nonstation-
ary characteristics due to the constantly varying shaft rotating
speeds caused by turbine variable loads [29]. Furthermore, a
wide range of CM technique performance assessment under
relevant transient conditions has not been widely reported in the
literature, particularly when the machine operates at low load
near to synchronous speed. As a result, in these conditions, the
FSCs are particularly difficult to detect or differentiate using
existing methods, which may lead to an increase in the false
alarms for these conditions. This problem has not received at-
tention in reported literature despite the fact that actual WTs
frequently operate at low load conditions where the generator
rotational speed is close to the synchronous speed, motivating
the research in this study to propose potential solutions.

In this paper, we introduce an effective approach to enhance
the detection of rotor electrical asymmetry in WT DFIGs by
analyzing the generator current signals. First, the analytical ex-
pressions defining rotor electrical asymmetry fault signature in
DFIG stator current described in [9] and [28] have been used to
enable FSCs to be recalculated over time as a function of ma-
chine speed. Second, an adaptive extended Kalman filter (EKF)
tracker has been proposed to extract the IAs of the FSCs based

on the corresponding machine speed signal and the estimated
error covariance. At each time step, the calculated FSCs along
with those extracted from the measured current signal are pro-
cessed by the EKF to predict the future state of the FSCs, and
continuously update the IAs of FSCs as real-time monitored
signal data samples become available. The proposed technique
has been validated experimentally on a WT drive train test rig
with two fault levels of rotor electrical asymmetries at three dif-
ferent driving conditions whose variability is representative of
WT generator field operation. The performance of the proposed
approach is compared with some of the leading WT generator
CM techniques [9], [30]. The reported experimental findings
demonstrate clear and significant gains in both the computa-
tional efficiency and the diagnosis accuracy using the proposed
technique.

This paper is organized as follows. Section II describes the
signature of rotor electrical asymmetry in the DFIG current sig-
nals and the use of continuous wavelet transform (CWT) and
iterative localized discrete Fourier-transform (IDFT) for fre-
quency tracking. Section III describes the methodology used
in the present work using an EKF for diagnosing rotor elec-
trical asymmetry. Section IV describes the data available and
employed in this paper. In Section V, the results obtained for
three test cases are presented using the EKF, CWT, and IDFT
tracking algorithms. Finally, conclusions are drawn and final
remarks are made in Section VI.

II. FREQUENCY TRACKING AND FAULT DETECTION

The rotor electrical asymmetry condition in DFIGs is mani-
fested through a range of additional sideband components in the
stator current signal spectrum; it was experimentally proven in
[9] and [28] that the rotor electrical imbalance faults in a WT-
based DFIG can give rise to additional frequency components
in the stator current at frequencies given by

ff =
(

I ± k(1 − s)
p

)
.fs (1)

where ff are the series of the calculated FSCs related to the fault,
fs is the fundamental supply frequency, k is the component order
(k = 1, 2, 3, ...), s is the slip, I is a constant that relates to air-gap
field space harmonics, and p is the number of pole pairs.

Rotor electrical imbalance faults could be detected by moni-
toring the magnitudes of the components in (1) over time, taking
into account variable operating conditions. Efforts have been
made to extract the magnitude of the FSCs using a CWT [31]–
[33]. However, the CWT cannot achieve fine resolution in both
the time and frequency domains simultaneously. In addition,
high computational time (CT) is needed to obtain good results
with the CWT, making it unsuitable for large size data analysis.
To overcome this, another frequency tracking methodology was
proposed in [9] using the IDFT algorithm to extract the energy
of the FSCs, defined in (1), over time. The IDFT has good com-
putational efficiency and applies a discrete Fourier analysis over
a narrow band around the frequency of interest to extract a peak
amplitude, which is assumed to be the amplitude of the FSC
within the predefined window. However, the challenge with this
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assumption is that the FSC can be difficult to isolate accurately
as it can be merged with other frequency components irrelevant
to the fault or it can be hidden in other components such as
the supply frequency and its harmonics due to the variable op-
erating conditions. This makes the use of the IDFT difficult to
implement when monitoring actual WTs. One of the purposes
of this paper is to demonstrate an approach, which is better able
to isolate an FSC under variable loading conditions. Section III
will illustrate the theory behind this approach.

III. EKF FOR FREQUENCY TRACKING

The EKF is an efficient recursive algorithm widely applied in
the fields of radar tracking [34] and adaptive control [35]. The
conventional Kalman filter assumes a linear system dynamics
model with Gaussian noise in the measurements, which is not
always realistic in many applications. The EKF on the other
hand is an extension of the conventional Kalman filter to non-
linear system dynamics and has been used for state estimations
of induction motors and WT DFIGs [36], [37]. In this section,
the observed FSC at time k is first modeled. The mathematical
formulation of the EKF used to iteratively estimate the FSCs
is then briefly presented. Theoretically, the stator current wave-
form in one phase (e.g., phase A) of DFIG can be expressed as
follows:

zk (t) =
∑

i

Ai cos(2πfitk + θi) (2)

where Ai and fi are the amplitude with initial phase θi and the
frequency of the ith sinusoid, respectively. We used a Fourier
transform to convert the time description of the stator current
waveform into an equivalent function in the frequency domain
thus

zk (f) =
∑

i

Ai [δ(fk + fi) + δ(fk − fi)]. (3)

The one-sided Fourier transform of (3) at (fs) the main supply
frequency can be written as follows:

zk (f) = Aδ(fk − fs). (4)

By substituting (1) into (4), we obtain the representation of
the FSCs in the frequency domain

zk (f) = Aδ

(
fk −

(
p

pI ± k(1 − s)

)
ff

)

= Aδ(fk − αff ) (5)

where

α =
(

p

pI ± k(1 − s)

)
. (6)

The dynamics of the state variables can be represented by the
state variable equation as follows:

xk = f(xk−1,uk ) + wk (7)

where f is a nonlinear function of states, uk is the control
vector, and wk is a white noise driving function to account for
the dynamic variation of the state variables. The observed FSC

yk at time k with the additive noise vk can be described as
follows:

yk = zk + vk (8)

and can be represented by the following linear stochastic system:

yk =
[
1 1

][ A
αff

]
+ vk . (9)

The above-mentioned linear representation is also equivalent
to the following nonlinear stochastic system:

State equation xk+1 = f(xk ) + wk (10)

Measurement equation yk = Hxk + vk (11)

where

xk =
[
xk (1) xk (2)

]T =
[
A αff

]T
(12)

f(xk ) =
[
xk (1) xk (1)xk (2)

]T =
[
A Aαff

]T
(13)

H =
[
1 1

]
. (14)

This formulation leads to the EKF algorithm in order to lin-
earize the above-mentioned system, which is slightly different
from a standard linear Kalman filter model. The recursive track-
ing process of a series of fault frequencies at any time step from
k equal to zero is outlined as follows.

Step 1: Predict the estimates of the state variables x̂k+1|k and
the error covariance Mk+1|k

x̂k+1|k = f x̂k |k (15)

Mk+1|k = FPk |kFT + Qk . (16)

Step 2: Update the Kalman gain Kk

rk = |zk − ẑk | (17)

Sk = HkPk |k−1HT
k + rk (18)

Kk = Pk |k−1HT
k S−1

k (19)

where

Fk =
∂f(xk )
∂xk

∣∣∣
xk = x̂k |k

=
[

1 0
x̂k |k (2) x̂k |k (1)

]

=

[
1 0

(1 − ε) ˆ(αff )k |k Âk |k

]
. (20)

Step 3: Update the state variables x̂k |k

x̂k |k = x̄k |k−1 + Kk [yk − Hk (x̄k |k−1)]. (21)

Step 4: Update the error covariance

Pk |k = (I − KkH)Pk |k−1 + qB

B =
[

0 0
0 1

]
(22)

where the symbols¯andˆstand for the predicted and updated
values, respectively. I is the identity matrix. The vector zk is the
observed FSCs, which is obtained by applying the fast Fourier
transform (FFT) algorithm for each interval of interest from the
current signal in the time domain, and ẑk is the expected normal
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state, which represents the calculated FSCs in (1). rk denotes
the measurement innovation.

The design of a stable EKF was largely addressed in [38] and
[39], which reports theoretically supported design guidelines to
characterize the EKF design by a vector of three parameters
(r, ε, q). An easier and more transparent tuning of EKFs is in-
troduced in [40] where the results showed that ε must be set
to zero to achieve the basic property of unbiasedness, and that
the performance of the EKF tracker then only depends on the
ratio λ = r/q; Bittanti and Savaresi [40] proceed to suggest that
q = 1 (and hence λ = r) for a further significant simplification
of the tuning procedure. Hence, the task of tuning the design
parameters of the EKF tracker (parameterized with r, ε, q) is
reduced to the fact that only a single parameter (λ = r) has to
be chosen [40]. This EKF tuning approach was followed in this
paper, where r is set to be the difference between the observed
FSCs and the calculated FSCs in order to limit the variation
of the innovation vector, cope with spurious measured values,
enhance the estimated accuracy, and help the EKF to provide
proper weighting.

In the implementation of the EKF, we assume that at time k
an initial estimate of the state variable is known and is denoted
by xk−1|k−1 and that its associated covariance matrix is also
known and denoted by Mk−1|k−1 . The estimated variables are
not affected by this assumption because the EKF is not sensitive
to moderate changes in the initial covariance [41].

The principal stages of the tracking method based on the EKF
to iteratively estimate the FSCs in the stator current signal are
as follows.

1) Input the initial measured generator rotational speed and
the stator current data points, the initial value of the state
variables x0 and its associated covariance matrix M0 ,
and covariance of the measured error r0 at a sampling
interval Δtk .

2) Calculate the mean speed for the sample and the slip.
3) Calculate the stator current spectrum using an FFT.
4) Calculate discrete constants from frequencies of inter-

est, k.
5) Calculate amplitudes for each constant, k.
6) Extract maximum amplitude and its frequency zk .
7) Calculate the FSCs of interest using (1) ẑk .
8) Predict the estimates of the state variables and the error

covariance using (15) and (16).
9) Calculate covariance of the measured error rk using

(17).
10) Compute the Kalman filter gain Kk using (19).
11) Update the estimates of the state variables and the error

covariance with the measurement zk using (21) and
(22).

12) Project ahead using (15) and (16).
13) Repeat the process starting with next sampling interval

Δtk+1 .

IV. CASE STUDY

The proposed approach has been applied to the generator
current signals collected from a purpose built WT drive train

Fig. 1. Schematic representation of the test rig.

Fig. 2. Current–time waveform.

test rig. As shown in Fig. 1, the test rig comprises a 54-kW
dc variable-speed drive connected via a two-stage gearbox to
a four-pole DFIG that was rated for the experiment at 30 kW.
The rotational speed of the dc motor is controlled by an external
model incorporating the properties of a 2-MW WT operating un-
der closed-loop conditions, driven by realistic wind conditions
at a variety of wind speeds and turbulence intensities. The rotor
circuit of the generator is coupled via slip rings to an external
three-phase resistive load bank so that electrical imbalance can
be applied to the generator rotor. The test rig was instrumented
and controlled using LabVIEW, see [42] for more details. In
the experiments, a rotor unbalance fault was implemented on
the test rig by adding two additional external resistances to one
phase of the rotor circuit through an external load bank. In the
healthy state, the rotor resistance was 1.3 Ω per phase and ad-
ditional resistances of 0.3 and 0.6 Ω were successively added
to one phase to create two fault levels. These correspond to two
levels of rotor unbalance of 23% and 46%, respectively, given
as a percentage of the rotor balanced phase resistance. The test
rig enables the generator to be driven at a desired preprogramed
wind speed profile that emulates realistic WT transient behavior
and is achieved by providing a predefined speed reference pro-
file to the controller. The relevant signals for CM were collected
from the terminals of the generator at a sampling frequency of
5 kHz. An example of the measured current signal under faulty
conditions is shown in Fig. 2.

It can be seen that the amplitude of the current–time wave-
form gave no indication of abnormal conditions. Consequently,
an FFT algorithm is used to convert the generator current signal
from the time domain into the frequency domain in a healthy
condition (no unbalance) and with a rotor unbalance, as shown
in Fig. 3. As is generally expected for any grid connected ma-
chine the supply frequency (50 Hz) and its harmonics are clearly
seen in the spectra. There are also spectral components present
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Fig. 3. Comparison of the current spectra for healthy case and rotor
unbalance case.

around the even and odd harmonics even when operating in a
healthy state. This is believed to be caused by pre-existing low-
level rotor excitation imbalance commonly induced by inherent
manufacturing imperfections [9], [21]. However, the compari-
son of healthy and faulty data indicates a significant rise in the
magnitude of a number of twice slip frequency 2sf sideband
components on the current harmonics, which can be clearly ob-
served when the 23% unbalance is applied to the generator rotor.
In Fig. 3, the FFT algorithm cannot reveal the time information
of any frequency changes, i.e., no time-domain information is
available regarding fault occurrence and progression. Thus, an
EKF has been proposed to detect faults by monitoring the mag-
nitudes of the FSCs over time, taking into account variable
operating conditions. The rotor unbalance fault gave rise to a
number of side-band components in the current spectra. Mon-
itoring all components would be impractical in an operating
environment, so we have selected a series of FSCs that exhibit
the highest magnitude. The FSCs of interest to be tracked using
the EKF algorithm are labeled as f1 , f2 , f3 , f5 in Fig. 3.

V. PERFORMANCE COMPARISON

In order to show the effectiveness of the proposed approach
based on an EKF, we have selected the CWT and IDFT, used
in [9] and [30] for WT generator CM, for comparison. The al-
gorithms are tested under varying rotational speed conditions
representative of the operating regimes seen by a hypothetical
WT out in the field. At each test, the test rig was run for a period
of 150 s after which the 23% and 46% unbalance fault conditions
were applied at 150 s and 300 s, respectively. The driving con-
ditions selected for testing are shown in Fig. 4, corresponding
to the following WT operating conditions.

Test case 1. Supersynchronous speed with high turbulence
intensity: In this test, a high mean wind speed (15 m/s) with
high turbulence intensity (20%) was applied to the test rig via
a dc motor, the speed of which was controlled by an external
model incorporating the properties of a 2-MW exemplar tur-
bine model developed by the University of Strathclyde as part
of the Supergen Wind Energy Technologies Consortium [9].
The CWT, IDFT, and EKF methods have been applied to the
current spectra in Fig. 3 to extract the IAs of the four defined

Fig. 4. Generator speed test conditions.

frequencies of interest (f1 , f2 , f3 , f5) for the detection of rotor
unbalance. The results under supersynchronous speed with high
turbulence intensity are shown in Fig. 5. Note, if the tracked
FSC of each method shows a step change in magnitude when
the fault condition was present or has changed, then the method
has successfully captured the component frequency related to
the fault.

In Fig. 5(a), the conventional CWT is able to capture fault
components f1 and f2 where their IAs did show a marked change
when the fault condition was applied or has changed. The CWT
failed to capture other components due to the influence of the
window function on the results, where the window size is well
matched with the oscillation of component f1 and f2 but as the
fault frequency increases the window is no longer able to capture
the variation of the fault components. A more robust window
design is necessary in order to improve simultaneously high time
resolution and high frequency resolution. But, this is not an easy
task as the difference between the f1 , f2 , and f3 components
is about 50 Hz and increases to 100 Hz for component f5 .
In addition, these components overlap with the main supply
frequencies and other dominant frequency components of the
current signal that are irrelevant to the fault. To overcome these
shortcomings, the IDFT algorithm was applied to extract the
magnitude of the FSCs. The results are shown in Fig. 5(b).

In Fig. 5(b), it is seen that the IDFT method has successfully
tracked the magnitude of the four fault-related frequencies with
increasing fault severity (i.e., from 300 to 450 s) despite the
fact that the shaft speed was varying continuously throughout
the experiments. Similar to the IDFT results, the EKF algorithm
has successfully picked up the four FSCs that are changing
proportionally to the rotational speed, as shown in Fig. 5(c). The
results show that the EKF is able to track the fault frequencies,
giving quantitative information about the fault progression.

However, the tracking results of each algorithm in Fig. 5
follow different variation tendencies due to the fact that the
current signals from an operational WT are not stationary but
are time varying in nature because of the constantly varying
generator speed, making the detection of FSCs by the tracking
algorithms more challenging. In order to demonstrate the best
achieved performance for detecting the rotor unbalance fault
and revealing the actual fault degree, the performance of all
diagnostic methods during the fault event is evaluated using
root-mean-squared error (RMSE) values. Since the increase in
the degree of rotor unbalance can be calculated from the IA
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Fig. 5. Tracking the magnitude of fault frequencies of interest using (a) CWT, (b) IDFT, and (c) EKF for test case 1.

TABLE I
RMSE OF THE TRACKING METHODS FOR TEST CASE 1

FSCs RMSE values (%)

CWT IDFT EKF

f1 1.967 2.135 0.325
f2 1.134 1.301 0.258
f3 N/A 2.115 0.441
f5 N/A 0.420 0.236

variations of the FSCs extracted by the diagnostic methods, a
general expression is derived for machine operation with rotor
unbalance degree η̂k by calculating the difference between the
IA for each component under healthy and faulty conditions
divided by the order of the component order times the average
under healthy conditions as follows:

η̂k =
IAf − IAh

k.IAh
× 100% (23)

where IAh and IAf are the IA at any time step k for each
component under healthy and faulty conditions, respectively,
and k is the component order (k = 1, 2, 3, ...). The RMSE is
given by

RMSE =
1
N

N∑
i=1

(ηi − η̂i) (24)

where ηi is the degree of the fault during the experiment, corre-
sponding to the two levels of rotor unbalance of 23% and 46%.
Table I summarizes the results of the performance evaluation. It
is clear from the table that the IDFT and EKF methods perform
best in terms of the RMSE for all FSCs. The CWT is incapable
of detecting the fault by tracking the components f3 and f5 , but
the RMSE values for components f1 and f2 are lower than the

TABLE II
RMSE OF THE TRACKING METHODS FOR TEST CASE 2

FSCs RMSE Values (%)

CWT IDFT EKF

f1 2.757 2.413 0.318
f2 2.213 0.608 0.276
f3 N/A 2.067 0.382
f5 N/A 0.388 0.234

same components for the IDFT. The comparison between the
three methods shows that the RMSE for all FSCs is much lower
when using the EKF method.

Test case 2. Supersynchronous speed with low turbulence in-
tensity: This test represents 7.5 m/s mean wind speed with low
turbulence intensity 6%. The slip for this state differs signifi-
cantly from case 1 with a wide range as seen in Fig. 4. Similar
results to the previous test case are observed in Fig. 6, where
the CWT is only able to track the fault component f1 and f2 .
This explains why in [30] and [43] only the fault component f1 ,
which is the twice slip frequency was tracked using the CWT.
In contrast, both the IDFT and EKF methods can successfully
show the presence of the fault. It is also clear that the varia-
tion tendencies of the IAs at the four characteristic frequencies
have been correctly extracted despite the time-varying features
due to the variable-speed operation and the disturbance of the
components unrelated to the fault.

The performances of the three methods are summarized in
Table II. Again, the performance of the IDFT and EKF is better
in terms of the RMSE values for all FSCs. Compared to the CWT
and IDFT, the EKF proved capable of dealing with different
variable-speed driving conditions with lower RMSE values. In
addition, the components f1 and f2 for the CWT show higher
RMSE values compared to the results in case 1 as larger variation
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Fig. 6. Tracking the magnitude of fault frequencies of interest using (a) CWT, (b) IDFT, and (c) EKF for test case 2.

Fig. 7. Tracking the magnitude of fault frequencies of interest using (a) CWT, (b) IDFT, and (c) EKF for test case 3.

in rotational speed for test case 2 makes it more challenging to
track the FSCs. It can be concluded that the EKF not only showed
the best performance overall in terms of RMSE metric, but also
in terms of the rotor unbalance fault detection at different driving
conditions, whereas the CWT method performed worst. One
explanation for the poor performance of the CWT method can
be the windowing technique, which has been influenced by the
speed variations.

Test case 3. Near-synchronous speed: Following the success-
ful detection of the fault conditions at supersynchronous speed,
it is important now to verify the CM capability of the algorithms
when the machine operates near to the synchronous speed. In
this case, the slip will be near to zero so the FSCs in (1) will
be very close to the supply frequency (50 Hz) and its harmon-

ics (both odd and even), making CM and fault detection more
challenging even though this condition occurs frequently for an
operational WT. The results of such a scenario are shown in
Fig. 7.

Both the CWT and IDFT algorithms, shown in Fig. 7(a) and
(b), have failed to effectively track the FSCs; the shortcoming
of the CWT and IDFT methods is that both use windowing
technique, and do not have an observer to avoid tracking the
FSCs when they are so close as to be effectively merged with
the supply frequency and its harmonics.

On the other hand, the EKF shows much better resolution of
the varying fault conditions, as shown in Fig. 7(c). The results
clearly show that the amplitude of the fault-related frequencies
jumps sharply when the 23% unbalance fault is introduced at
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Fig. 8. Tracking the fault frequencies of interest using EKF for (a) test case 1, (b) test case 2, and (c) test case 3.

150 s. A similar jump occurs for the 46% unbalance condition in-
troduced at 300 s that shows clear differences between healthy
and faulty conditions particularly for components f2 , f3 , and
f5 . The performances of the FSCs tracked by the EKF in terms
of the percentage RMSE values are found to be 0.378, 0.244,
0.386, and 0.352 for f1 , f2 , f3 , and f5 , respectively. It can be
seen that the EKF shows more accurate fault tracking across
all the driving conditions and the RMSE values for all FSCs
are very close. Over the three cases, the EKF shows better fault
resolution compared to the CWT and IDFT as it does not use
any windowing technique, rather it uses the Kalman gain(Kk ).
The Kalman gain acts as a relative weight given to the current
extracted and measurement values, and its value is continuously
tuned to get the correct estimation value of the FSCs and their
magnitude from the nonstationary current signal. At each time
step, Kk is calculated from the covariance. The constantly vary-
ing generator speeds and nonlinear operation lead to an increase
or decrease of the Kalman gain, so with a high gain the filter
places more weight on the most recent measurements, and thus
follows them more responsively to avoid tracking the noise (i.e.,
the supply frequency and its harmonics or other dominant fre-
quency components of the current signal), which are irrelevant
to the fault. With a low gain, the filter follows the model predic-
tions more closely to track the fault signatures and smooth out
the noise.

To show the effectiveness of the proposed EKF, we compare
in Fig. 8 the tracking results of the EKF associated with the
spectral component frequencies against the actual frequencies,
described by equation (1), across all driving conditions. As it can
be seen from Fig. 8, that the tracking frequencies are different
from the actual frequencies in normal operation when there
is no fault because the magnitude of the actual frequencies is
very small and merged with the noise so they are difficult to
detect or differentiate. Once, the fault has been applied, the
EKF immediately captured the frequencies related to the fault
and continued to track them over time despite the fact that the

actual frequencies are more affected by the speed variations and
follow exactly the same speed variation tendencies, as shown in
Fig. 4. It can also be seen for case 3 that the f1 and f5 FSCs are
particularly difficult to capture compared to the others cases due
to the operation at low load near to synchronous speed, resulting
in FSCs manifesting themselves in the vicinity of the supply
frequency and its harmonics with extraneous noise, as shown in
Fig. 3. This led to an increase in the variation of the innovation
vector rk for these conditions. However, the magnitude of the
tracked f1 and f5 FSCs is still useful for fault detection, and did
show a step change in magnitude when the fault condition was
present or was changed as discussed previously.

In summary, the results for the three cases show that the
rotor electrical unbalance fault can be accurately detected by
tracking any component using the EKF, but overall the second
component f2 showed the lowest RMSE in revealing the fault
degree. The results using the IDFT in Tables I and II show
that the fifth component f5 provides the lowest RMSE (0.404
as an average percentage), whereas the results obtained from
other components are not effective in revealing the degree of
rotor unbalance. If we only consider component f5 for fault
diagnosis, our proposed approach demonstrates a significant
improvement over the IDFT method in imbalance diagnosis
accuracy by reducing the percentage RMSE from 0.404 to 0.235.
Since the results show that the second component f2 has the best
accuracy in the case of the EKF, whereas the fifth component f5
provides the best accuracy in the case of the IDFT, this indicates
we have successfully reduced the volume of data required for
analysis and storage. To clarify, based on the Nyqist–Shannon
sampling theorem, the data requirements to monitor component
f5 for a period of one year would enable the monitoring of
component f2 for a period of approximately two years and
four months, due to the fundamental fact that f5 is greater than
f2 and requires a higher sampling rate to capture. Hence, our
approach shows success in tracking the magnitude of the FSCs
and revealing the severity of the faults over time with significant
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TABLE III
COMPUTATIONAL COMPLEXITY OF THE TRACKING METHODS

FSCs CT (s)

CWT IDFT EKF

f1 35.65 0.98 1.2
f2 20.05 1.01 1.1
f3 14.79 1.05 1.16
f5 4.32 1.09 1.1

gains in both the computational efficiency and the diagnosis
accuracy.

A. Computational Time

To further highlight the improvement offered by an EKF, we
perform CT analysis comparing the EKF method against the
CWT and IDFT methods. The calculations were performed on
a computer with an Intel i7 core processor and 32.0-GB RAM.

Table III shows the plot of the averaged CT for the results
obtained in Figs. 5–7 for the series of FSCs. It is seen that the
CWT method requires a higher CT for the FSCs with lower fre-
quencies because these tend to have much longer wavelengths
with a high signal-to-noise ratio, whereas the higher FSCs have
much shorter wavelengths with low signal-to-noise ratio. Ac-
cordingly, this affects the width of the window function in time
to capture the frequencies of interest; therefore, it requires more
computational resources. In contrast, the IDFT and EKF require
far less computational resource compared to the CWT. This is
due to the fact that the IDFT and EKF methods apply a discrete
Fourier analysis over a narrow band around the frequency of
interest. The IDFT and EKF have very similar CT requirements
making them more suitable for online monitoring than the CWT.

VI. CONCLUSION

This paper proposed the use of an EKF in the detection of
rotor electrical unbalance fault, indicative of common winding,
brush gear, or high resistance connection faults, in a WT DFIG.
The EKF performance was compared with that of a CWT and
an IDFT in terms of its ability to track a series of fault frequen-
cies associated with three different unbalance condition levels
and for three different simulated transient operating regimes us-
ing data generated by a test rig. The EKF demonstrated better
overall resolution of fault frequencies particularly where those
frequencies are close to the synchronous frequencies and their
harmonics; a condition that can occur frequently when a turbine
is operating with the generator close to synchronous speed. Due
to the parsimonious nature of the EKF and the fact that it does not
employ windowing, it is able to accurately detect fault frequen-
cies with minimal computational requirements when compared
with a CWT. The EKF was shown to be capable of detecting the
degree of rotor unbalance with greater accuracy than an IDFT or
CWT. The results presented show that the EKF algorithm shows
promise as a low cost, efficient method for condition monitor-
ing the output of a WT generator particular with regard to the
detection of electrical faults such as rotor unbalance.

Future work is required to apply this approach to real operat-
ing WTs, which may be suffering from rotor electrical asymme-
tries, and to use the detection of the fault degree to potentially
predict the fault progression some time in advance. Work is also
necessary to assess the potential of the reported technique to
be used for the detection of a wider range of WT faults such
as generator bearing, gearbox-bearing, and rotor eccentricity
faults.
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