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1
INTRODUCTION

The subject of this thesis is the maximal Lp -regularity of the Cauchy problem:

u′(t )+ A(t )u(t ) = f (t ), t ∈ (0,T )

u(0) = x.
(1.0.1)

Here (A(t ))t∈(0,T ) is a family of closed operators on a Banach space X0, and the
dependence on time is assumed to be measurable. We assume the operators have
a constant domain D(A(t )) = X1 for t ∈ [0,T ]. Maximal Lp -regularity means that for
all f ∈ Lp (0,T ; X0), the solution to the evolution problem (1.0.1) has the “maximal”
regularity in the sense that u′, Au are both in Lp (0,T ; X0).

The main goal of this thesis is two-fold:

• introduce a new abstract approach to maximal Lp -regularity in the case where
the dependence on time is merely measurable, based on functional calculus
and R-boundedness techniques 1;

• apply the abstract approach to evolution equations and systems to obtain
mixed Lp (Lq )-estimates, for every p, q ∈ (1,∞).

The last part of this thesis is devoted to the study of higher-order parabolic
equations on the upper half space with general boundary conditions. Here, the
leading coefficients of the operators involved are assumed to have vanishing mean
oscillation in both the time and space variables. This is based on a different ap-
proach and results in Lp (Lq )-estimates, for every p, q ∈ (1,∞), for this case.

1.1. THE ABSTRACT APPROACH

In the last decades there has been much interest in maximal regularity techniques
and their application to nonlinear partial differential equations (PDEs). Maximal
regularity is a very useful tool, as it allows to obtain a priori estimates which give
global existence results. For example, using maximal regularity it is possible to
solve quasilinear and fully nonlinear PDEs by elegant linearization techniques
combined with the contraction mapping principle [8, 10, 28, 29, 113, 127]. Vari-
ous approaches to problems from mathematical physics, such as fluid dynamics,

1The R-boundedness is a random boundedness condition on a family of operators which is a strength-
ening of uniform boundedness (see Definition 2.7.1).

3



4 1. INTRODUCTION

reaction-diffusion equations, material science, etc., can be found for example in
[1, 28, 39, 66, 78, 106, 116, 118, 125, 127, 130, 137, 158]. Maximal regularity can also
be defined for other classes of function spaces instead of Lp -spaces, in particular
for Hölder spaces. Hölder maximal regularity is in fact easier to establish and it
is known to hold under rather broad assumptions, both in the autonomous and
non-autonomous case [3, 113, 157]. In comparison, maximal Lp -regularity has the
advantage that it usually requires the least regularity of the data in the PDEs. On
the other hand, it is far more difficult to establish.

An important step in the theory of maximal Lp -regularity was the discovery
of an operator-theoretic characterization in terms of R-boundedness properties of
the differential operator A, due to Weis in [152, 153]. This characterization was
proved for the class of Banach spaces X with the UMD property In such spaces,
the boundedness of the Hilbert transform can be translated into R-boundedness
of certain operator families.2

The case in which the operator A is time-dependent is not as well understood.
If t 7→ A(t ) is (piecewise) continuous, one can study maximal Lp -regularity using
perturbation arguments (see [9, 13, 128]). In particular, Prüss and Schnaubelt in
[128] showed that maximal Lp -regularity of (1.0.1) is equivalent to the maximal
Lp -regularity for each operator A(t0) for t0 ∈ [0,T ] fixed. This, combined with the
characterization of [153], yields a very precise condition for maximal Lp -regularity.
The disadvantage is that continuity in time is not a natural assumption in the
Lp -setting. In fact, in many real-life models, the differential operator A has time-
dependent coefficients, and the dependence on time can be rather rough (e.g. the
coefficient could be a stochastic process). If this is the case, the operator-theoretic
characterization of maximal regularity just mentioned does not apply or leads to
unwanted restrictions.

In this thesis we develop a functional analytic approach to maximal Lp -regularity
in the case where t 7→ A(t ) is only measurable (see Chapter 3, in particular Theorem
3.3.8). Using a mild formulation, one sees that to prove maximal Lp -regularity one
needs to bound a singular integral with operator-valued kernel Ae−(t−s)A . With
this motivation, our approach is based on the Lp -boundedness of a new class of
vector-valued singular integrals of non-convolution type (see Theorem 3.2.4). It is
important to note that we do not assume any Hörmander conditions on the ker-
nel in the time variable. For discussion and references on (vector-valued) singular
integrals we refer the reader to Section 3.2.

When the time dependence is just measurable, an operator-theoretic condition
for maximal Lp -regularity is known only in the Hilbert space setting for p = 2 (see
[110, 111] and [143, Section 5.5]). The assumption here is that A arises from a
coercive form a(t , ·, ·) : V ×V →C and V ,→ X0 ,→V ′. Unfortunately, this only yields
a theory of maximal L2-regularity on V ′ in general (see [59] for a counterexample).

2i.e. the Hilbert transform is bounded in Lp (R; X ) for every p ∈ (1,∞) (see Definition 2.7.8).
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In many situations one would like to have maximal Lp -regularity on X0 and also
for any p ∈ (1,∞). Results of this type have been obtained in [14, 43, 44, 73] using
regularity conditions on the form in the time variable.

The case where the domains D(A(t )) vary in time will not be considered in
this thesis. In that setting maximal Lp -regularity results can be obtained under
certain Hölder regularity assumptions in the time variable (see [126] and references
therein).

An overview of our main result is given in the following theorem, where we
assume the problem (1.0.1) to have zero initial value. The corresponding version
with non-zero initial value can be treated via an application of related trace theo-
rems. Details about the initial value problem will be given in Section 3.3.4.

Theorem 1.1.1. Let T ∈ (0,∞) and let X0, X1 be Banach spaces, and assume that X0 has
finite cotype and that X1 is densely and continuously embedded in X0. Assume A : (0,T ) →
L (X1, X0) is such that for all x ∈ X1, t 7→ A(t )x is measurable and

c1‖x‖X1 ≤ ‖x‖X0 +‖A(t )x‖X0 ≤ c2‖x‖X1 , t ∈ (0,T ), x ∈ X1.

Assume there is an operator A0 on X0 with D(A0) = X1 such that

• A0 has a bounded H∞-functional calculus of angle θ ∈ (0, π2 ),

• (A(t )− A0)t∈(0,T ) generates an evolution family (T (t , s))0≤s≤t≤T on X0 which com-
mutes with (e−r A0 )r≥0:

e−r A0 T (t , s) = T (t , s)e−r A0 , 0 ≤ s ≤ t ≤ T, r ≥ 0.

Moreover, let K be the set of all functions k : R→ C such that |k ∗ f | ≤ M f , where M

denotes the Hardy-Littlewood maximal function. For k ∈ K and f : (0,T ) → X0 define
now the operator Ik on Lp ((0,T ), X0) by

Ik f (t ) =
∫ T

0
k(t − s)T (t , s) f (s)d s.

Assume that the family {Ik : k ∈K } is R-bounded.
Then A has maximal Lp -regularity for every p ∈ (1,∞), i.e. for every f ∈ Lp ((0,T ), X0)

there exists a unique solution u ∈ W 1,p ((0,T ), X0)∩Lp ((0,T ), X1) of the problem (1.0.1)
and there is a constant C independent of f such that

‖u′‖Lp ((0,T ),X0) +‖u‖Lp ((0,T ),X1) ≤C‖ f ‖Lp ((0,T ),X0).

This result is derived as a consequence of Theorem 3.3.8, where the more gen-
eral case of maximal Lp -regularity on the whole real line is considered and where
Muckenhoupt weights are included.
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The condition on A(t )− A0 can be seen as an abstract ellipticity condition. The
assumption that the operators commute holds for instance if A(t ) and A0 are differ-
ential operators with coefficients independent of the space variable on Rd . In our
proof, we show that the space dependence can be added later on by perturbation
arguments. The family T (t , s) ∈L (X ) is a two-parameter evolution family (see Sec-
tions 2.4 and 3.3.1 for details). The R-boundedness of the family {Ik : k ∈K } plays
a central role here. Details will be given in Section 3.2. A sufficient condition for
this R-boundedness condition in the case X0 = Lq will be discussed later on in this
introduction.

As a consequence of Theorem 3.3.8, we also obtain a characterization of maxi-
mal Lp -regularity when X0 is a Hilbert space (see Theorem 3.3.20).

1.2. APPLICATIONS

Many concrete parabolic PDEs can be formulated in terms of the abstract Cauchy
problem (1.0.1). For applications to quasilinear and nonlinear parabolic problems,
it is useful to look for minimal smoothness assumptions on the coefficients of the
differential operators involved.

As applications of our abstract approach, we consider higher-order parabolic
equations and systems in which the operators A under consideration are assumed
to have leading coefficients measurable in the time variable and continuous in the
space variable. In particular, we prove maximal Lp -regularity for the following
class of parabolic PDEs:

u′(t , x)+ A(t )u(t , x) = f (t , x), t ∈ (0,T ), x ∈Rd , (1.2.1)

with and without initial value, where A is given by

A(t )u(t , x) = ∑
|α|≤2m

aα(t , x)Dαu(t , x). (1.2.2)

with aα :R×Rd →CN×N , αmultiindex such that |α| =α1+...+αd for α= (α1, · · · ,αd ) ∈
Nd

0 and Dα = Dα1
1 · ... ·Dαd

d , where D j :=−i ∂
∂ j

.
This will be treated in Section 3.4 in the case N = 1 and in Chapter 5 in the case

of systems.
For such concrete equations with coefficients which depend on time in a mea-

surable way, maximal Lp -regularity results have been derived using PDE tech-
niques. This approach has been developed in a series of papers by Krylov, Dong
and Kim in which several Lp (Lq )-regularity results for (1.2.1) are derived under
the assumption of coefficients measurable in time and have vanishing mean oscil-
lation in space (see the monograph [102] and [51] and references therein). In [102,
Theorem 4.3.8] the case N = 1, p = q and m = 2 has been considered. Extensions to
the case 1 < q ≤ p <∞ have been given in [101] and [96]. The case p = q for higher-



1.2. APPLICATIONS 7

order equations and systems under the same assumptions for the coefficients was
considered by Dong and Kim in [51].

Our results enable us to give an alternative approach to several of these prob-
lems. Moreover, we are the first to obtain a full Lp (R;Lq (Rd ))-theory, whereas pre-
vious articles usually only give results for p = q or q ≤ p. Very recently, Dong and
Kim in [52] generalized the approach of [51] to the full range of p, q ∈ (1,∞), with
Muckenhoupt weights and small bounded mean oscillation assumptions on the
space variable, also in the case of systems.

An overview of the first of our applications is given in the next result, where we
consider N = 1. We will use condition (C) on A which will be introduced in Section
3.4.2. It basically says that A is uniformly elliptic and the highest order coefficients
are continuous in space, but only measurable in time.

Theorem 1.2.1. Let T ∈ (0,∞). Assume that family of operators (A(t ))t∈(0,T ) given by
(1.2.2) satisfy condition (C). Let p, q ∈ (1,∞). Then the operator A has maximal Lp -
regularity on (0,T ), i.e. for every f ∈ Lp (0,T ;Lq (Rd )) there exists a unique

u ∈W 1,p (0,T ;Lq (Rd ))∩Lp (0,T ;W 2m,q (Rd ))

such that (1.2.1) holds a.e. and there is a C > 0 independent of f such that

‖u‖Lp (0,T ;W 2m,q (Rd )) +‖u‖W 1,p (0,T ;Lq (Rd )) ≤C‖ f ‖Lp (R;Lq (Rd )).

The above result is derived in Section 3.4 as a consequence of Theorem 3.4.5,
where we consider the more general case of maximal Lp -regularity with t ∈ R and
where we also include Muckenhoupt weights in time and space. In the case of
systems of operators, the corresponding maximal Lp -regularity result is stated in
Theorem 5.1.3, where we assume a Legendre–Hadamard ellipticity condition on
the operators involved, and in Theorem 5.1.4 for divergence form operators. The
proofs are an application of the operator-theoretic method introduced in Theorem
1.1.1, combined with PDE techniques as the localization procedure and the method
of continuity. As a consequence, via an application of related trace theorems we
also obtain maximal Lp -regularity with non-zero initial value (see Theorems 3.4.8
and 5.3.2).

In order to apply our abstract approach to concrete PDEs, we need to construct
the evolution family (S(t , s))s≤t generated by A(t ) on X0 = Lq in the case where the
coefficients of the operator are space-independent. The main difficulty in obtain-
ing the evolution family is that the operators A(t ) and A(s) do not commute in
general. While in the case N = 1 an explicit formula for the evolution family ex-
ists and is well-known, see e.g. Example 3.3.3, in the case of systems as far as we
know the existence and uniqueness of the evolution family was unknown even in
the case q = 2. In this thesis we explicitly construct the evolution family generated
by systems of higher-order differential operators, for every q ∈ (1,∞). This will be
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treated in Section 5.2. This “generation” result is interesting on its own and can be
found in Theorem 5.2.4. Its proof is based on Fourier multiplier theory (see Sec-
tion 2.6). Since we are dealing with systems, the symbol is not explicitly known
and only given as the solution to an ordinary differential equation. In order to
provide estimates for the symbol, we use the implicit function theorem.

As a further application of our abstract approach we consider boundary value
problems on the upper half space with homogeneous general boundary condi-
tions. When the coefficients are measurable functions of t only, a weighted mixed
Lp (Lq )-regularity result for second-order parabolic equations on the half space was
proved by Krylov [99] and Kozlov-Nazarov [98], with power type weights. Their
proofs rely on Gaussian bounds for the derivatives of the Green’s kernel of the
fundamental solution of the parabolic equation under consideration. In this the-
sis, we prove maximal Lp -regularity for systems of higher-order differential oper-
ators with coefficients measurable in the time variable and continuous in the space
variable, provided that the operator under consideration generates an evolution
family which is bounded on weighted Lq -spaces. This is stated in Theorem 6.2.2.
The proof is developed as an application of the abstract approach introduced in
Theorem 1.1.1 combined with PDEs techniques. In Section 6.4 we will show as an
example that a second-order elliptic differential operator with x-independent co-
efficients generates an evolution family which is bounded on weighted Lq -spaces.
In particular, we will see that Gaussian estimates for the evolution family play
an important role here as well (see Lemma 6.4.2). In the case of second-order di-
vergence form operators, Gaussian estimates for the fundamental solutions of the
equations under consideration were proven by Aronson [16] in the autonomous
case and by Sturm [142] in the non-autonomous case with measurable dependence
on time. In the case of non-divergence form operators, Ladyženskaja-Solonnikov-
Ural’ceva in [105] proved Gaussian estimates for the fundamental solution of the
non-autonomous boundary value problem under the assumption that the depen-
dence on time is Hölder continuous. It is still unclear how to prove these results for
higher-order operators and systems, and it is the subject of further investigation.

1.2.1. Sufficient conditions

In the characterization of maximal Lp -regularity state in Theorem 1.1.1, a central
role is played by the R-boundedness of the family of integral operators {Ik : k ∈
K } ⊆ Lp (R; X ), with Ik given by

Ik f (t ) =
∫
R

k(t − s)T (t , s) f (s)d s. (1.2.3)

Details will be given in Section 3.2. Therefore, in order to apply our abstract ap-
proach to show Lp (Lq )-regularity for concrete PDEs, one needs sufficient condi-
tions for the R-boundedness of such families.
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In this thesis we show that in the scalar case X = Lq with N = 1, the following is
a sufficient condition for the R-boundedness of such families (see Theorem 3.1.4).

Theorem 1.2.2. Let O ⊆ Rd be open. Let q0 ∈ (1,∞) and let {T (t , s) : s, t ∈ R} be a family
of bounded operators on Lq0 (O ). Assume that for all Aq0 -weights w ,

‖T (t , s)‖L (Lq0 (O ,w)) ≤C , (1.2.4)

where C depends on w and is independent of t , s ∈R. Then the family of integral operators
I = {IkT : k ∈K } ⊆L (Lp (R, v ;Lq (O , w))) as defined in (1.2.3) is R-bounded for all p, q ∈
(1,∞) and all v ∈ Ap and w ∈ Aq . Moreover, in this case the R-bounds R(I ) depend on
the weights v and w .

This allows us to apply Theorem 1.1.1 in the proof of Theorem 1.2.1. It is
valid for general families of operators {T (t , s) : −∞< s ≤ t <∞} ⊆ L (Lq (Ω, w)), and
we do not use any regularity conditions for (t , s) 7→ T (t , s). In the setting where
T (t , s) = e−(t−s)A with A as in (1.0.1), the condition (1.2.4) also appears in [61] and
[77, 81] in order to obtain R-sectoriality of A. There (1.2.4) is checked by using
Calderón-Zygmund and Fourier multiplier theory. Examples of such results for
two-parameter evolution families will be given in Section 3.3.1.3

The idea behind Theorem 1.2.2 is as follows. As a consequence of the Kahane-
Khintchine inequality, in standard spaces such as Lp -spaces, R-boundedness is
equivalent to the so-called `2-boundedness (see Section 2.7). The latter is a special
case of `s-boundedness property (see Section 4.1). In Lp -spaces this boils down
to classical Lp (`s )-estimates from harmonic analysis (see [70, 71], [65, Chapter V]
and [32, Chapter 3]). It follows from the work of Rubio de Francia (see [132–134]
and [65]) that Lp (`s )-estimates are strongly connected to estimates in weighted Lp -
spaces. Details will be given in Chapter 4.

Even if it is a sufficient condition for the scalar case, Theorem 1.2.2 is not
enough for systems of operators. For this case, we need to generalize Theorem
1.2.2 to the setting of operators with values in a Hilbert space H , i.e. X (H) =
Lq (Rd ; H). In the case H has finite dimension N , one could apply Theorem 1.2.2
coordinate-wise, but this only yields estimates with N -dependent constants.

To avoid this, in this thesis (Chapter 4) we directly consider H-valued oper-
ators and we introduce the notion of `s

H -boundedness, which is an extension of
`s-boundedness to this setting. We then give a class of examples for which we can
prove the `s

H -boundedness of the family {Ik : k ∈ K }. The main result is stated in
Theorem 4.3.12 and it gives a sufficient condition for the `s

H -boundedness of such
a family. For H =CN , this will be sufficient for our purpose. Theorem 1.2.2 is then
shown as a special case for H =C.

To prove Theorem 1.2.2 we apply weighted techniques of Rubio de Francia.
Without additional effort we actually prove the more general Theorem 4.3.5, which

3R-sectoriality stands for R-boundedness of a family of resolvents on a sector, see Section 2.7
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states that the family of integral operators on Lp (v,Lq (w ; H)) is `s
H -bounded for all

p, q, s ∈ (1,∞) and for arbitrary Ap -weights v and Aq -weights w . Both the modern
extrapolation methods with Aq -weights (as explained in the book of Cruz-Uribe,
Martell and Pérez [32]) and the factorization techniques of Rubio de Francia (see
[65, Theorem VI.5.2] or [71, Theorem 9.5.8]), play a crucial role in our work. It is
unclear how to apply the extrapolation techniques of [32] to the inner space Lq di-
rectly, but it does play a role in our proofs for the outer space Lp . The factorization
methods of Rubio de Francia enable us to deal with the inner spaces (see the proof
of Proposition 4.3.8).

In the literature there are many more R-boundedness results for integral oper-
ators (e.g. [38, Section 6], [40, Proposition 3.3 and Theorem 4.12], [69], [75, Section
3], [87, Section 4], [104, Chapter 2]). However, it seems they are of a different na-
ture and cannot be used to prove our results Theorem 4.3.5, Corollary 4.3.9 and
Theorem 4.3.12.

1.3. Lp (Lq )-ESTIMATES FOR PARABOLIC PROBLEMS WITH VMO AS-
SUMPTIONS AND GENERAL BOUNDARY CONDITIONS

In the last chapter of this thesis, we investigate Lp (Lq )-estimates for parabolic equa-
tions with general boundary conditions. This will be done using a different ap-
proach, based on PDE techniques, which allows us to consider operators whose
leading coefficients have vanishing mean oscillation both in the time and in the
space variables. The interest in these problems comes from their application to
quasilinear and nonlinear PDEs (see e.g. [42, 117]).

In particular, in Chapter 7 we establish Lp (Lq )-estimates with p, q ∈ (1,∞) for
the higher-order parabolic equations{

ut + (λ+ A)u = f on R×Rd+
trRd−1 B j u = g j on R×Rd−1, j = 1, . . . ,m,

(1.3.1)

where trRd−1 denotes the trace operator, A is an elliptic differential operator of order
2m, and (B j ) is a family of differential operators of order m j < 2m for j = 1, . . . ,m.
The coefficients of A are assumed to have vanishing mean oscillation (VMO) both
in the time and space variable, while the leading coefficients of B j are assumed
to be constant in time and space. On the boundary, we assume the Lopatinskii–
Shapiro condition to hold. This condition was first introduced by Lopatinskii [112]
and Shapiro [150]. See also the work of Agmon–Dougalis–Nirenberg [6]. Roughly
speaking, this is an algebraic condition involving the symbols of the principal part
of the operators A and B j with fixed coefficients, which is equivalent to the solv-
ability of certain ODE systems.

Research on Lp (Lq )-regularity for these kind of equations has been developed
in the last decades by mainly two different approaches.
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On the one hand, for parabolic problems on the half space with Dirichlet bound-
ary conditions, a PDE approach has been developed mainly by Krylov, Dong,
and Kim (see [51, 102] and references therein). For the case of the whole space,
Krylov in [101] showed Lp (Lq )-regularity for second-order operators with coeffi-
cients merely measurable in time and VMO in space, with the restriction q ≤ p.
This approach is based on mean oscillation estimates of solutions to the equation. To
give a general idea, if the system under consideration is elliptic of the form Au = f

with constant coefficients in the whole space, then by the mean oscillation estimate
of D2mu we mean a pointwise estimate of the form

−
∫

Br (x0)

∣∣∣D2mu −−
∫

Br (x0)
D2mud y

∣∣∣d x

≤Cκ−1
(
−
∫

Bκr (x0)
|D2mu|2d x

)1/2
+Cκd/2

(
−
∫

Bκr (x0)
| f |2d x

)1/2
,

for all x0 ∈Rd , r ∈ (0,∞) and κ ∈ [κ0,∞) and where Br (x0) is a ball with center x0 and
radius r .

The methodology of Krylov was then extended by Dong and Kim in [49] and
[51] to higher-order systems with the same class of coefficients. In particular, in
[51] a new technique was developed to produce mean oscillation estimates for
higher-order equations and systems in the whole and half spaces with Dirichlet
boundary conditions, for p = q . This technique had been extended recently by the
same authors in [52] to mixed Lp (Lq )-spaces with Muckenhoupt weights and small
bounded mean oscillations assumptions on the space variable, for any p, q ∈ (1,∞).

On the other hand, there is the operator-theoretic approach in which Lp (Lq )-
regularity is shown as an application of maximal Lp -regularity. With coefficients
in the VMO class, higher-order systems in the whole space have been investigated
in several papers, for example in [77, 81] where the leading coefficients are VMO
with respect to the space variable and independent of the time variable, by using
Muckenhoupt weights and estimates of integral operators of Calderon-Zygmund
type.

Concerning Lp (Lq )-regularity for equations on the half space with boundary
conditions satisfying the Lopatinskii–Shapiro condition, a breakthrough result was
obtained by Denk, Hieber, and Prüss in [40] in the case of autonomous initial-
boundary value problems with homogeneous boundary conditions and operator-
valued constant coefficients. They combined operator sum methods with tools
from vector-valued harmonic analysis to show Lp (Lq )-regularity, for any p, q ∈
(1,∞), for parabolic problems with general boundary conditions of homogeneous
type, in which the leading coefficients are assumed to be bounded and uniformly
continuous. Later, in [41], the same authors characterized optimal Lp (Lq )-regularity
for non-autonomous, operator-valued parabolic initial-boundary value problems
with inhomogeneous boundary data, where the dependence on time is assumed
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to be continuous. It is worth noting that in the special case where m = 1, complex-
valued coefficients and q ≤ p, a similar result was obtained by Weidemaier [151].
The results of [41] have been generalized by Meyries and Schnaubelt in [120] to
the weighted time-dependent setting, where the weights considered are Mucken-
houpt power-type weights. See also [117]. Very recently, Lindemulder in [108]
generalized these results to vector-valued parabolic initial boundary value prob-
lems with Muckenhoupt power-type weights both in time and space.

In this thesis, we relax the assumptions on the coefficients of the operators
involved. We obtain weighted Lp (Lq )-estimates for parameter-elliptic operators
on the half space with VMO coefficients in the time and space variables, and
with boundary operators having constant leading coefficients and satisfying the
Lopatin-skii–Shapiro condition. An overview of our main result is given in the
following theorem.

Theorem 1.3.1. Let p, q ∈ (1,∞). Then there exists λ0 ≥ 0 such that for every λ ≥ λ0,
there exists a constant C > 0 such that the following holds. For any u ∈ W 1

p (R;Lq (Rd+))

∩Lp (R;W 2m
q (Rd+)) satisfying (1.3.1), where

f ∈ Lp (R;Lq (Rd
+)) and g j ∈ F

k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1))

with k j = 1−m j /(2m)−1/(2mq), we have

‖ut‖Lp (R;Lq (Rd+)) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lp (R;Lq (Rd+))

≤C‖ f ‖Lp (R;Lq (Rd+)) +C‖g j ‖
F

k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1))

.

This is stated in Theorem 7.2.4, where we also consider Muckenhoupt weights,
and in the elliptic setting in Theorem 7.2.5. The proofs are based on the results
in [40] combined with an extension of the techniques developed in [50–52, 100,
102]. In particular, in the main result of Section 7.3, Lemma 7.3.5, we prove mean
oscillation estimates for equations on the half space with the Lopatinskii–Shapiro
condition. A key ingredient of the proof is a Poincaré type inequality for solutions
to equations satisfying the Lopatinskii–Shapiro condition.

1.4. FURTHER COMMENTS

Most results of this thesis will be presented in the setting of weighted Lp -spaces,
with Muckenhoupt weights. For instance in Theorem 3.4.5 we will present a weigh-
ted Lp (Lq )-maximal regularity result in the case A is a 2m-th order elliptic operator,
assuming only measurability in the time variable and continuity in the space vari-
able. Weighted results can be important for several reasons. Maximal Lp -regularity
with a Muckenhoupt power weight tα in time (e.g. see [97, 118]) allows one to con-
sider rather rough initial values. It can also be used to prove compactness prop-
erties which in turn can be used to obtain global existence of solutions. Another
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advantage of using weights comes from a harmonic analytic point of view. The
theory of Rubio de Francia (see [32] and references therein) enables one to extrap-
olate from weighted Lp -estimates for a single p ∈ (1,∞), to any p ∈ (1,∞). In Section
3.4, Ap -weights in space will be used to check R-boundedness of certain integral
operators. We refer to Theorem 3.1.4 and Step 1 of the proof of Theorem 3.4.5 for
details. Weights in time will be used for extrapolation arguments more directly, as
for instance in step 4 of the proof of Theorem 3.4.5.

Moreover, in the main results we will study maximal Lp -regularity on R, in-
stead on a bounded time interval. The reason is that this case is more general, and
allows us to avoid the technicalities caused by the non-zero initial value, as we will
see in Section 3.3 (and in particular Proposition 3.3.18). Therefore, in this thesis we
will focus on t ∈ R and we will derive the initial-valued results via related trace
theorems.

1.5. OUTLINE OF THE THESIS

In Chapter 2, we introduce the background results and notation that will be used
throughout this thesis. In particular, we will introduce the notion of a solution to
a non-homogeneous evolution equation and we will introduce elliptic differential
operators. Preliminaries on functional calculus, weights, Fourier multipliers and
R-boundedness will also be given.

Chapter 3 is the core of this thesis. There, we show our new abstract approach
to maximal Lp -regularity, and we consider applications to 2m-th order differential
operators and quasilinear equations. The chapter is organized as follows. In Sec-
tion 3.1 we discuss the R-boundedness of a particular class of integral operators,
which will be used in Section 3.2 to prove the Lp -boundedness of a new class of
singular integrals. The main result on maximal Lp -regularity is presented in Sec-
tion 3.3. In Section 3.4 we show how to use our new approach to derive maximal
Lp -regularity for (1.2.1). Finally in Section 3.5 we extend the results of [28] and
[127] on quasilinear equations to the time-dependent setting.

In Chapter 4 we prove an `s
H -boundedness result for integral operators with

operator-valued kernel. In Section 4.2 we discuss weighted extrapolation in Lp (Lq )-
spaces, while the main result is stated and proved in Section 4.3. Besides its in-
trinsic interest, the main result of this chapter has relevant applications in both
Chapter 3 and 5.

In Chapter 5 we further apply our abstract approach to the case of systems of
differential operators. The main results are stated in Section 5.1. In Section 5.2, we
prove that in the case of x-independent coefficients, the operator A(t ) generates an
evolution family on weighted Lq -spaces, which is the main novelty of this chapter.
In Section 5.3 we present the proofs of the main theorems and we show how to
deduce maximal regularity results for the initial value problem as well.

As a natural last application of our abstract approach, we study in Chapter 6
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maximal Lp -regularity for systems of differential operators in the upper half space
with homogeneous general boundary conditions. The generation of the evolution
family will play an important role here as well, and it will be shown in full details
in Section 6.4, in which we consider the example of a second-order differential
operator.

Chapter 7 is the last chapter of this thesis. There, we show mixed Lp (Lq )-
estimates in the case the coefficients of the operator A are VMO both in the time
and the space variable, and we consider general boundary conditions. The chap-
ter is organized as follows. In Section 7.1 we give some preliminary results and
introduce some notation. In Section 7.2 we list the main assumptions on the op-
erators and we state the main result, Theorem 7.2.4. In Section 7.3 we prove the
mean oscillation estimates needed for the proof of Theorem 7.2.4, which is given
in Section 7.4. Finally, in Section 7.5 we prove a solvability result by using the a
priori estimates in the previous sections.



2
PRELIMINARIES

Before presenting the background results that will be used throughout this thesis,
we introduce some basic notation. We denote the set of natural numbers as N =
{1,2,3, . . .} and N0 =N∪ {0}. We denote the half-line R+ = [0,∞) and the upper half-
space Rd+ = {x = (x1, x ′) ∈Rd : x1 > 0, x ′ ∈Rd−1}. For a multi-index α= (α1, · · · ,αd ) ∈Nd

0
we denote |α| = α1 + ...+αd and we consider the standard multi-index notation
Dα = Dα1

1 · ... ·Dαd
d , where D j := −i ∂

∂ j
denotes −i times the partial derivative in the

j−th coordinate direction.

The letters X and Y are used to denote Banach spaces, and we write X ∗ for the
dual of X . We denote as L (X ,Y ) the space of all bounded linear operators, with
norm ‖·‖L (X ,Y ).

A function f : Rd → X is called strongly measurable if it is the a.e. limit of a se-
quence of simple functions, and it is called strongly continuous if it is continuous in
the strong operator topology.

In the next sections, we introduce and motivate definitions that will be relevant
for this thesis. In Section 2.1 we introduce the function spaces that will be used. In
Section 2.2, we present Muckenhoupt weights and classical extrapolation results.
In Section 2.3 we introduce some basic results on functional calculus, with partic-
ular attention to analytic semigroups and their generators, and H∞-calculus. In
Section 2.4 we define the mild solutions of a non-homogeneous evolution equa-
tion via a functional analytic point of view. In Section 2.5 we will introduce elliptic
differential operators. In Sections 2.6 and 2.7, we define Fourier multipliers and
R-boundedness. Finally, in Section 2.8 we define maximal Lp -regularity for au-
tonomous problems and we introduce the characterization of maximal-Lp regular-
ity due to Weis in [152].

2.1. FUNCTION SPACES

Let X be a Banach space. For p ∈ [1,∞], Lp (Rd ; X ) is the space of all strongly mea-
surable functions f :Rd → X such that

‖ f ‖Lp (Rd ;X ) =
(∫
Rd

‖ f ‖p
X d x

) 1
p <∞ if p ∈ [1,∞),

15
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and ‖ f ‖L∞(Rd ;X ) = ess. supx∈Rd ‖ f (x)‖. For p ∈ [1,∞] and k ∈N0 we define the Sobolev
space

W k,p (Rd ; X ) = {u ∈ Lp (Rd ; X ) : Dαu ∈ Lp (Rd ; X ), ∀|α| ≤ k}.

For K = R,C we write Lp (Rd ;K) = Lp (Rd ). For p ∈ [1,∞] we let p ′ ∈ [1,∞] be the
Hölder conjugate of p, defined by 1

p + 1
p ′ = 1.

We denote as S (Rd ; X ) the Schwartz class of rapidly decreasing smooth func-
tions from Rd into X . The Fourier transform F : S (Rd ; X ) → S (Rd ; X ) is defined
by

(F f )(ξ) := f̂ (ξ) :=
∫
Rd

e−2πi xξ f (x)d x,

and it is a bijection whose inverse is given by

(F−1 f )(x) := f̂ (x) :=
∫
Rd

e2πi xξ f̂ (ξ)dξ,

where f ∈S (Rd ; X ) and x,ξ ∈Rd .

Motived by the study of the regularity of initial value problems, as for instance
in Section 3.4, we introduce in what follows the so called Besov spaces. A complete
characterization can be found in [147] and [148].

Let Φ(Rd ) be the set of all sequences (ϕk )k≥0 ⊂S (Rd ) such that

ϕ̂0 = ϕ̂, ϕ̂1(ξ) = ϕ̂(ξ/2)− ϕ̂(ξ), ϕ̂k (ξ) = ϕ̂1(2−k+1ξ),

for k ≥ 2, ξ ∈ Rd , and where the Fourier transform ϕ̂ of the generating function
ϕ ∈S (Rd ) satisfies 0 ≤ ϕ̂(ξ) ≤ 1 for ξ ∈Rd and

ϕ̂(ξ) = 1 if |ξ| ≤ 1, ϕ̂(ξ) = 0 if |ξ| ≥ 3

2
.

Definition 2.1.1. Given (ϕk )k≥0 ∈Φ(Rd ) we define the Besov space

Br
p,q (Rd ) = { f ∈S ′(Rd ) : ‖ f ‖Br

p,q (Rd ) := ‖(2kr F−1(ϕ̂k f̂ ))k≥0‖`q (Lp (Rd )) <∞},

The following representation of Besov spaces will be needed. We refer the
reader to [147, Theorem 1.6.4] for the proof.

Theorem 2.1.2. Let p ∈ (1,∞), q ∈ [1,∞), k ∈ N and θ ∈ (0,1). Then the Besov space
Bs

p,q (Rd ) has the following representation via real interpolation

Bs
p,q (Rd ) = (Lp (Rd ),W k

p (Rd ))θ,q ,

where s = kθ.

We will not deal with interpolation spaces here. The interested reader can find
an exhaustive description in [114, 148].
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2.2. Ap -WEIGHTS AND EXTRAPOLATION

In this section, we introduce Muckenhoupt Ap -weights and we state some of their
properties. Details can be found in [71, Chapter 9] and [141, Chapter V].

A weight is a locally integrable function on Rd with w(x) ∈ (0,∞) for a.e. x ∈
Rd . For a Banach space X and p ∈ [1,∞], Lp (Rd , w ; X ) is the space of all strongly
measurable functions f :Rd → X such that

‖ f ‖Lp (Rd ,w ;X ) =
(∫
Rd

‖ f ‖p w d x
) 1

p <∞ if p ∈ [1,∞),

and ‖ f ‖L∞(Rd ,w ;X ) = ess. supx∈Rd ‖ f (x)‖.
For p ∈ (1,∞) a weight w is said to be an Ap -weight if

[w]Ap = sup
Q

−
∫

Q
w(x)d x

(
−
∫

Q
w(x)−

1
p−1 d x

)p−1 <∞.

Here the supremum is taken over all cubes Q ⊆Rd with axes parallel to the coordi-
nate axes and −∫

Q = 1
|Q|

∫
Q . The extended real number [w]Ap is called the Ap -constant.

The Hardy-Littlewood maximal operator is defined as

M( f )(x) = sup
Q3x

−
∫

Q
| f (y)|d y, f ∈ Lp (Rd , w),

while the sharp maximal function is defined as

f ](x) = sup
Q3x

−
∫

Q
| f (y)− ( f )Q | d yd s,

with Q ⊆Rd cubes as before. Recall that w ∈ Ap if and only if the Hardy-Littlewood
maximal operator M is bounded on Lp (Rd , w). In the case of the half-space Rd+, we
obtain an equivalent definition by replacing the the cubes Q with Q∩Rd+ =: Q+ with
center in Rd+.

Next we will summarize a few basic properties of weights which we will need.
The proofs can be found in [71, Theorems 9.1.9 and 9.2.5], [71, Theorem 9.2.5 and
Exercise 9.2.4], [71, Proposition 9.1.5].

Proposition 2.2.1. Let w ∈ Ap for some p ∈ [1,∞). Then we have

1. If p ∈ (1,∞) then w− 1
p−1 ∈ Ap ′ with [w− 1

p−1 ]Ap′ = [w]
1

p−1

Ap
.

2. For every p ∈ (1,∞) and κ> 1 there is a constant σ= σp,κ,d ∈ (1, p) and a constant
Cp,d ,κ > 1 such that [w]A p

σ

≤Cp,κ,d whenever [w]Ap ≤ κ. Moreover, κ 7→σp,κ,d and
κ 7→Cp,κ,d can be chosen to be decreasing and increasing, respectively.

3. Ap ⊆ Aq and [w]Aq ≤ [w]Ap if q > p.
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4. For p ∈ (1,∞), there exists a constant Cp,d such that

‖M‖Lp (Rd ,w)→Lp (Rd ,w) ≤Cp,d · [w]
1

p−1

Ap
.

Example 2.2.2 (power weights). Let α ∈ (−d ,∞) and let w(x) := |x|α. For p ∈ (1,∞),
it holds that w ∈ Ap (Rd ) if and only if a ∈ (−d ,d(p−1)) (See [141] for details). Power
weights will play an important rôle in the study of maximal Lp -regularity of prob-
lems with non-zero initial values (see Section 3.3.4)

Let w be a weight. The duality relation Lp (Rd , w)∗ = Lp ′
(Rd , w ′) holds with

〈 f , g 〉 =
∫
Rd

f (x)g (x)d x, f ∈ Lp (Rd , w), g ∈ Lp ′
(Rd , w ′).

On the other hand, Lp (Rd , w)∗ = Lp ′
(Rd , w) if we let

〈 f , g 〉 =
∫
Rd

f (x)g (x)w(x)d x, f ∈ Lp (Rd , w), g ∈ Lp ′
(Rd ).

The celebrated result of Rubio de Francia (see [132–134], [65, Chapter IV]) al-
lows one to extrapolate from weighted Lp -estimates for a single p to weighted Lq -
estimates for all q . As a remarkable consequence, one gets that Lp (`s )-estimates
are strongly connected to estimates in weighted Lp -spaces. This will play an im-
portant rôle in Chapter 4. The proofs and statements have been considerably sim-
plified and clarified in [32] and can be formulated as follows (see [32, Theorem 3.9]
and [32, Corollary 3.12] ).

Theorem 2.2.3. Let f , g : Rd → R+ be a pair of nonnegative, measurable functions and
suppose that for some p0 ∈ (1,∞) there exists an increasing function α on R+ such that for
all w0 ∈ Ap0

‖ f ‖Lp0 (Rd ,w0) ≤α([w0]Ap0
)‖g‖Lp0 (Rd ,w0).

Then for all p ∈ (1,∞) there is a constant cp,d s.t. for all w ∈ Ap ,

‖ f ‖Lp (Rd ,w) ≤ 4α
(
cp,d [w]

p0−1
p−1 +1

Ap

)
‖g‖Lp (Rd ,w).

Corollary 2.2.4. Let ( fi , gi ) be a family of pairs of non-negative, measurable functions
fi , gi : Rd → R+ and suppose that for some p0 ∈ (1,∞) and every w0 ∈ Ap0 there exists a
constant C =C ([w0]Ap0

) such that

‖ fi‖Lp0 (Rd ,w0) ≤C‖gi‖Lp0 (Rd ,w0).

Then, for all p and s, 1 < p, s <∞, w ∈ Ap there is a constant c = c(p,d , [w]Ap ) s.t.

‖(
∑

i
| fi |s )1/s‖Lp (Rd ,w) ≤ c‖(

∑
i
|gi |s )1/s‖Lp (Rd ,w).
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The following simple extension of Theorem 2.2.3 will be needed.

Theorem 2.2.5. For every λ≥ 0, let fλ, gλ :Rd →R+ be a pair of nonnegative, measurable
functions and suppose that for some p0 ∈ (1,∞) there exist increasing functions αp0 , βp0

on R+ such that for all w0 ∈ Ap0 and all λ≥βp0 ([w0]Ap0
),

‖ fλ‖Lp0 (Rd ,w0) ≤αp0 ([w0]Ap0
)‖gλ‖Lp0 (Rd ,w0). (2.2.1)

Then for all p ∈ (1,∞) there is a constant cp,d ≥ 1 such that for all w ∈ Ap , and all λ ≥
βp0 (φ([w]Ap ))

‖ fλ‖Lp (Rd ,w) ≤ 4αp0 (φ([w]Ap ))‖gλ‖Lp (Rd ,w),

where φ(x) = cp,d x
p0−1
p−1 +1.

Note that Theorem 2.2.3 corresponds to the case that fλ and gλ are constant in
λ. To obtain the above extension one can check that in the proof [32, Theorem 3.9]
for given p and w ∈ Ap , the Ap0 -weight w0 which is constructed satisfies [w0]Ap0

≤
φ([w]Ap ). This clarifies the restriction on the λ’s.

Estimates of the form (2.2.1) with increasing functionαp0 will appear frequently
in this thesis. In this situation we say there is an Ap0 -consistent constant C such that

‖ f ‖Lp0 (Rd ,w0) ≤C‖g‖Lp0 (Rd ,w0).

Note that the Lp -estimate obtained in Theorem 2.2.3 is again Ap -consistent for all
p ∈ (1,∞).

The following observation will be often applied. For a bounded Borel set A ⊂Rd

and for every f ∈ Lp (Rd , w ; X ) one has 1A f ∈ L1(Rd ; X ) and by Hölder’s inequality

‖1A f ‖L1(Rd ;X ) ≤Cw,A‖ f ‖Lp (Rd ,w ;X ).

A linear subspace Y ⊆ X ∗ is said to be norming for X if for all x ∈ X , ‖x‖ =
sup{|〈x, x∗〉| : x∗ ∈ Y ,‖x∗‖ ≤ 1}. The following simple duality lemma will be needed.

Lemma 2.2.6. Let p, p ′ ∈ [1,∞] be such that 1
p + 1

p ′ = 1. Let v be a weight and let v ′ =
v− 1

p−1 . Let Y ⊆ X ∗ be a subspace which is norming for X . Then setting

〈 f , g 〉 =
∫
R
〈 f (t ), g (t )〉d t , f ∈ Lp (R, v ; X ), g ∈ Lp ′

(R, v ′; X ∗),

the space Lp ′
(R, v ′; X ∗) can be isometrically identified with a closed subspace of Lp (R, v ; X )∗.

Moreover, Lp ′
(R, v ′;Y ) is norming for Lp (R, v ; X ).

2.3. FUNCTIONAL CALCULUS

In this section, we focus our attention to sectorial operators and generators of an-
alytic semigroups. These notions will be used in the next section to introduce
the semigroup approach to evolution equations. Furthermore, we recall the H∞-
calculus that was developed by McIntosh and collaborators (see e.g. [7, 17, 31,
115]). We refer to [57, 76, 104] for an extensive treatment of these subjects.
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2.3.1. Sectorial operators and analytic semigroups

Let X be a Banach space. We denote as D(A) ⊆ X the domain of an operator A

on X . If A is closed and unbounded, then D(A) is a Banach space when endowed
with the norm ‖x‖D(A) := ‖x‖+‖Ax‖, x ∈ D(A). Let σ(A) be the spectrum of A and
ρ(A) :=C\σ(A) be the resolvent set. The identity operator on X is denoted by I .

For σ ∈ [0,π] we set

Σσ =
{

{z ∈C\ {0} : |arg(z)| <σ} if σ ∈ (0,π]

(0,∞) if σ= 0

where arg :C\ {0} → (−π,π].

Definition 2.3.1. A closed densely defined linear operator (A,D(A)) on X is said to
be sectorial of type σ ∈ (0,π) if

(i) it is injective and has dense range,

(ii) its spectrum is contained in Σσ,

(iii) for all σ′ ∈ (σ,π) the set{
z(z + A)−1 : z ∈C\ {0}, |arg(z)| >σ′}

is uniformly bounded by some constant C A .

The infimum of all σ ∈ (0,π) such that A is sectorial of type σ is called the sectoriality
angle of A.

Definition 2.3.2. A mapping T : [0,∞) → L (X ) is said to be a semigroup if T (0) = I

and it possesses the semigroup property T (t )T (s) = T (t + s), t , s > 0. The semigroup T

is called bounded if sup0<t<∞ ‖T (t )‖ >∞.

A semigroup T is called strongly continuous (or C0-semigroup) if limt↓0 T (t )x = x,
for every x ∈ X . If there exist constants M ≥ 1, ω ∈ R such that ‖T (t )‖ ≤ Meωt for all
t ≥ 0, then the semigroup is called exponentially bounded. Moreover, it is said to be
exponentially stable if ω0(T ) := inf{ω ∈R : ∃ M such that ‖T (t )‖ ≤ Meωt , t ≥ 0} < 0.

Definition 2.3.3. Let θ ∈ (0,π/2]. A mapping T : Σθ → L (X ) is said to be a bounded
analytic semigroup if it has the following properties:

(i) T (0) = I and the semigroup law T (r )T (s) = T (r + s) holds for all r, s ∈Σθ,

(ii) the mapping T :Σθ →L (X ) is analytic, and

(iii) the mapping T satisfies supz∈Σϕ ‖T (z)‖ <∞ for each ϕ ∈ (0,θ).
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The following proposition states that if A is sectorial of angle σ< π/2, then the
mapping T given by

T (z) = e−z A , for |arg(z)| < π

2
−σ,

is a bounded analytic semigroup of angle θ = π
2 −σ and

‖T (z)‖ ≤C ACσ. (2.3.1)

In this case, the family (T (z)) = (e−z A) with |arg(z)| < π/2−σ is called the analytic
semigroup generated by A, and the operator A is said to be the generator of an ana-
lytic semigroup. We refer to [76, Proposition 3.4.1] for the proof (see also [57, 113]).

Proposition 2.3.4. Let A be a sectorial operator of angle σ < π/2. Then the following
assertions hold.

(i) e−r Ae−s A = e−(r+s)A for all r, s ∈Σπ/2−σ.

(ii) The mapping Σπ/2−σ 3 z 7→ e−z A ∈L (X ) is analytic.

(iii) If x ∈ D(A) then lim
z→0, |arg z|≤ϕ

e−z A x = x for each ϕ ∈ (0,π/2−σ).

(iv) Let ϕ ∈ (0,π/2−σ) Then, for each choice of ϕ′ ∈ (σ,π/2−ϕ) there exists a constant
Cϕ′ such that ‖e−z A‖ ≤Cϕ′C A for all |arg(z)| ≤ϕ.

For further details on semigroups and their generators, we refer to [76, Ap-
pendix A.8]. We list some examples of generators of analytic semigroups that will
play a prominent role in what follows. They are taken from [104, Example 1.2].

Example 2.3.5. Let X = Lp (Rd ), p ∈ (1,∞).

(1) Consider the Laplace operator ∆ = ∑d
j=1

∂
∂x j

, with D(∆) = W 2,p (Rd ), p ∈ (1,∞).
Then −∆ has spectral angle 0 and it generates the Gaussian semigroup

(G(t ) f )(x) = (4πt )−d/2
∫
Rd

e−|x−y |2/4t f (y)d y.

A proof can be found in [76, Proposition 8.3.1].

(2) Elliptic differential operators (see the precise definition in Section 2.5). De-
tails can be found in [104, Example 1.2.b and Section 6].

2.3.2. H∞-calculus

We now consider the H∞-calculus for sectorial operators.
Let θ ∈ (0,π) and let H∞(Σθ) be the the set of all bounded complex-valued holo-

morphic functions defined on Σθ. This is a Banach space endowed with the norm

‖ f ‖H∞(Σθ) = sup{ f (z)| : z ∈Σθ}.
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Let now H∞
0 (Σθ) denote the linear subspace of all f ∈ H∞(Σθ) for which there

exists ε> 0 and C ≥ 0 such that

| f (z)| ≤ C |z|ε
(1+|z|)2ε , z ∈Σθ.

If A is sectorial of type σ0 ∈ (0,π), then for all σ ∈ (σ0,π) and f ∈ H∞
0 (Σσ) we define

the bounded operator f (A) by

f (A) = 1

2πi

∫
∂Σσ

f (z)(z + A)−1 d z.

A sectorial operator A of type σ0 ∈ (0,π) is said to have a bounded H∞(Σσ)-
calculus for σ ∈ (σ0,π) if there exists a C ≥ 0 such that

‖ f (A)‖ ≤C‖ f ‖H∞(Σσ), f ∈ H∞
0 (Σσ).

If A has a bounded H∞(Σσ)-calculus, then the mapping f 7→ f (A) extends to a
bounded algebra homomorphism from H∞(Σσ) to L (X ) of norm ≤C .

Many differential operators on Lq -spaces with q ∈ (1,∞) are known to have a
bounded H∞-calculus (see [40, 104] and the survey [154]). For instance, it includes
all sectorial operators A of angle <π/2 for which e−t A is a positive contraction (see
[94]).

Example 2.3.6. The operator A = −∆ on Lp (Rd , w) has a bounded H∞-calculus of
arbitrary small angle σ ∈ (0,π) for every w ∈ Ap and p ∈ (1,∞). This easily follows
from the weighted version of Mihlin’s multiplier theorem (see [104, Example 10.2]
and [65, Theorem IV.3.9]). Details about Fourier multipliers will be given in Section
2.6.

2.4. EVOLUTION EQUATIONS AND MILD SOLUTION

Throughout this thesis we use the semigroup approach to evolution equations. In
this approach, the solution of a non-homogeneous parabolic Cauchy problem is
defined in terms of the sectoriality properties of the operator A.

In this section, we recall this abstract approach both in the autonomous and
the non-autonomous case, and we refer the reader to [113, 124] and [143] for more
details.

2.4.1. Autonomous problems

Let X be a Banach space, A : D(A) ⊂ X → X with D(A) dense in X and let T > 0.
Consider the problem {

u′(t )+ Au(t ) = f (t ) 0 < t < T

u(0) = x
(2.4.1)

where f : (0,T ) → X and x ∈ X . The following definition is taken from [124].
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Definition 2.4.1. A function u is said to be a strong solution of of the problem
(2.4.1) if u ∈ W 1,1(0,T ; X )∩L1(0,T ;D(A))∩C ([0,T ], X0) if u(0) = x and u′(t )+ Au(t ) =
f (t ) for almost all t ∈ (0,T ).

The spectral properties of A allows one to define the solution of the non-homo-
geneous problem (2.4.1) in terms of the analytic semigroup generated by A. More
precisely, if A is sectorial of angle < π/2, then the solution of (2.4.1) may be repre-
sented by the variation of constants formula

u(t ) = e−t A x +
∫ t

0
e−(t−s)A f (s)d s, 0 ≤ t ≤ T, (2.4.2)

where e−t A is the analytic semigroup generated by A.

Definition 2.4.2. The function u ∈C ([0,T ]; X ) defined in (2.4.2) is said to be the mild
solution of (2.4.1) on [0,T ].

A proof of the following result can be find in [124, Corollary 4.3.3] and [113,
Proposition 4.1.2].

Proposition 2.4.3. Let f ∈ L1(0,T ; X ) and let x ∈ X . Let A be the generator of an analytic
semigroup e−t A . If (2.4.1) has a strong solution, then it is given by (2.4.2).

Further details on mild solutions can be found in [124, Chapter 4], [143, Chapter
3] and [113, Chapter 4].

2.4.2. Non-autonomous problems

Let X be a Banach space, A(t ) : D(A(t )) ⊂ X → X and let T > 0. Consider the problem{
u′(t )+ A(t )u(t ) = f (t ) 0 < t ≤ T

u(0) = x
(2.4.3)

where f (t ) is an X -valued function and x ∈ X . We consider only the simple case
in which the operators A(t ) have common domains D(A(t )) = D(A) and t 7→ A(t ) is
continuous in the uniform operator topology. We assume D(A) to be dense in X .

The strong solution of (2.4.3) is defined as in Definition 2.4.1.
The role of the analytic semigroup e−t A is played now by the evolution family

S(t , s).

Definition 2.4.4. Let (A(t ))t be as in (2.4.3). A two parameter family of bounded
linear operators

{S(t , s) : 0 ≤ s ≤ t ≤ T } ⊂L (X )

is called an evolution family for A if

(i) S(t , s)S(s,r ) = S(t ,r ), S(s, s) = I , 0 ≤ r ≤ s ≤ t ≤ T .



24 2. PRELIMINARIES

(ii) (t , s) → S(t , s) is strongly continous for 0 ≤ s < t ≤ T .

(iii) t 7→ S(t , s) is differentiable in (s,T ] with values in L (X ), and

∂

∂t
S(t , s) =−A(t )S(t , s),0 ≤ s < t ≤ T.

(iv) s 7→ S(t , s) is differentiable in [0, t ) with values in L (X ), and

∂

∂s
S(t , s) = S(t , s)A(s),0 ≤ s < t ≤ T.

The construction of the evolution family associated with the initial value prob-
lem is quite technical and will not be done here. For an exhaustive treatment of
this subject, we refer to and [124, Chapter 5], [143, Chapters 4 and 5] and [113,
Chapter 6].

Example 2.4.5. If A(t ) = A is independent on t and sectorial of angle strictly less
then π/2, then S(t , s) = e−(t−s)A and the two parameter family of operators reduces
to the one parameter family (e−t A)0≤t≤T which is the semigroup generated by A.

However, if there exists an evolution family S(t , s) such that properties (i )-(i v)

are satisfied, then one can show that under reasonable assumptions on f : [s,T ] ⊂
[0,T ] → X , the solution of the problem

{
u′(t )+ A(t )u(t ) = f (t ) 0 ≤ s < t ≤ T,

u(s) = x,
(2.4.4)

can be represented by the variation of constants formula

u(t ) = S(t , s)x +
∫ t

s
S(t ,r ) f (r )dr, s ≤ t ≤ T. (2.4.5)

In fact, the analogue of Proposition 2.4.3 holds in the non-autonomous case (see
[113, Corollary 6.2.4] and also [124, Theorem 5.7.1]).

Proposition 2.4.6. Let f ∈ L1(s,T ; X ) and let x ∈ X . Let S(t , s) be the evolution family
generated by A(t ). If the problem (2.4.4) has a strong solution, then it is given by the
formula (2.4.5).

Evolution equations and evolution families are extensively studied in the liter-
ature (see [3, 57, 113, 114, 124, 138, 143, 144, 156]). In Section 3.3.1 we will discuss
in details evolution families in the case in which t 7→ A(t ) is only measurable, and
we will give an example. In Section 5.2 we will construct the evolution family in
the case of systems of equations.
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2.5. ELLIPTIC DIFFERENTIAL OPERATORS

An example that will play a prominent rôle in this thesis is that of elliptic par-
tial differential operators. Below we consider only the simpler case in which the
operator A has time-independent, scalar-valued coefficients, as we want to give a
general idea. The more general cases of non-autonomous equations and systems
will be considered in Sections 3.4 and 5.1.1.

Let m ≥ 1 be an integer and α be a multiindex such that |α| = α1 + ...+αd for
α = (α1, · · · ,αd ) ∈Nd

0 . For aα ∈ C, we define the differential operator A of order 2m

as
A = ∑

|α|≤2m
aαDα,

with the multi-index notation Dα = Dα1
1 · ... · Dαd

d , where D j = −i ∂
∂ j

. Let D(A) =
W 2m,p (Rd ) and X = Lp (Rd ), p ∈ (1,∞).

In the following we denote the principal part of a differential operator A as

A] := ∑
|α|=2m

aαDα.

Let A](ξ) be the principal symbol of A, which is defined by

A](ξ) := ∑
|α|=2m

aαξ
α.

We have, formally, ∑
|α|=2m

aαDαu(x) =F−1
ξ (ξ 7→ A](ξ)Fu(ξ))(x),

which underline the importance of the principal symbol in connection to Fourier
multiplier theory (see Section 2.6).

Example 2.5.1. The principal symbol of A = −∆ = −∑n
j=1

∂2

∂x2
j

is given by A](ξ) =
−|ξ|2.

Definition 2.5.2. We say that A is uniformly elliptic of angle θ ∈ (0,π) if there exists
a constant κ ∈ (0,1) such that

A](ξ) ⊂Σθ and |A](ξ)| ≥ κ, ξ ∈Rd , |ξ| = 1.

If additionally there is a constant K such that |aα| ≤ K for all |α| ≤ 2m, then we write
A ∈ Ell(θ,κ,K).

In the case m = 1 and real-valued coefficients, the above ellipticity condition is
equivalent to the following (see [102]).
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Definition 2.5.3. Let ai j , bi , c ∈ R, for i , j = 1, . . . ,d . Assume ai j = a j i . Then the
second-order differential operator

A =
d∑

i , j=1
ai j Di D j +

d∑
i=1

bi Di + c, (2.5.1)

is said to be uniformly elliptic if there exists costants K > 1,κ ∈ (0,1) such that for
all ξ ∈Rd we have the ellipticity condition

κ|ξ|2 ≤
d∑

i , j=1
ai jξ

iξ j ≤ K |ξ|2. (2.5.2)

2.6. FOURIER MULTIPLIERS

Here, we recall briefly definitions and some properties of vector-valued Fourier
multipliers that will be used thorough this thesis. For details, we refer to [70, 104].

Definition 2.6.1. Let X and Y be Banach spaces. Consider a bounded measurable
function m : Rd → L (X ,Y ). It induces a map Tm : S (Rd ; X ) → L∞(Rd ;Y ), p ∈ (1,∞)

where
f 7→ Tm f =F−1(m(·)[ f̂ (·)]).

We call m a Lp -Fourier multiplier if there exists a constant Cp such that

‖Tm f ‖Lp (Rd ;Y ) ≤Cp‖ f ‖Lp (Rd ;X ), ∀ f ∈S (Rd ; X ).

The map Tm extends uniquely to an operator Tm ∈ L (Lp (Rd ; X ),Lp (Rd ;Y )), which
is called the Lp -Fourier multiplier operator corresponding to m and whose operator
norm is the smallest constant Cp for which the above estimate holds.

Let Mp (X ,Y ) = {m : Rd → L (X ;Y ) : m is a Fourier multiplier}. If m ∈ Mp (X ,Y ),
then we define

‖m‖Mp (X ,Y ) := ‖m‖p := ‖Tm‖L (Lp (Rd ;X ),Lp (Rd ;Y )).

Consider the scalar case X = Y = C. The following Mihlin’s multiplier theorem
gives a sufficient condition for m to be a Lp -Fourier multiplier. Details on the proof
can be found in [70, Theorem 5.2.7]. A weighted version of the Mihlin’s multiplier
theorem can be found in [65, Theorem IV.3.9].

Theorem 2.6.2 (Mihlin’s Multiplier Theorem). Let m(ξ) be a complex-valued bounded
function on Rd \{0} that satisfies the Mihlin’s condition

|ξ||α||∂αξ m(ξ)| ≤Cd

for all multiindices |α| ≤ [d/2]+1 ∈N. Then, for all p ∈ (1,∞), m is a Lp -Fourier multi-
plier, i.e. m ∈ Mp (Rd ) and the following estimate is valid

‖m‖Mp ≤Cd max(p, (p −1)−1)(Cd +‖m‖L∞ )).
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2.7. R-BOUNDEDNESS

The concept of R-boundedness plays a major rôle in the characterization of maxi-
mal regularity that will be shown in Chapter 3. We introduce below the definition
of R-boundedness and we state some of its most important properties. Details can
be found in [27, 40, 104] and [85].

Let (Ω,A ,P) be a probability space and let X be a Banach space. An X -valued
random variable is a strongly measurable function ξ : Ω→ X . Let I be an index set.
A collection {ξi }i∈I of X -valued random variables is called independent if for all
choices of distinct indices i1, . . . , iN ∈ I and all Borel sets B1, . . . ,BN ⊆ X we have

P(ξi1 ∈ B1, . . . ,ξiN ∈ BN ) =ΠN
n=1P(ξn ∈ Bn).

A sequence of independent R-valued random variables (rn)n≥1 on a probability
space (Ω,A ,P) is called a Rademacher sequence if P(rn = 1) =P(rn =−1) = 1

2 .

Definition 2.7.1. Let X and Y be Banach spaces. A family of operators T ⊆L (X ,Y )

is said to be R-bounded if there exists a constant C such that for all N ∈ N, all se-
quences (Tn)N

n=1 in T and (xn)N
n=1 in X ,

∥∥∥ N∑
n=1

rnTn xn

∥∥∥
L2(Ω;Y )

≤C
∥∥∥ N∑

n=1
rn xn

∥∥∥
L2(Ω;X )

. (2.7.1)

The least possible constant C is called the R-bound of T and is denoted by
R(T ).
The L2(Ω; X )-norms in (4.3.8) can be replaced by Lp (Ω; X ), for any p ∈ [1,∞), to
obtain an equivalent definition up to a constant depending on p. In this case, we
denote the R-bound as Rp (T ). This is a consequence of the Kahane-Khintchine
inequality (see [45, 11.1]).

Theorem 2.7.2 (Kahane-Khintchine). For every p, q ∈ [1,∞), there exists a Cp,q > 0

such that for all N ∈N and (xn)N
n=1 ∈ X ,

∥∥∥ N∑
n=1

rn xn

∥∥∥
Lp (Ω;X )

≤Cp,q

∥∥∥ N∑
n=1

rn xn

∥∥∥
Lq (Ω;X )

. (2.7.2)

Example 2.7.3.

(1) Let T ∈L (X ,Y ). Then, Rp (T ) = ‖T ‖.

(2) Let X = Lp (R), p ∈ (0,∞), p 6= 2. The set of translation operators T j f (·) = f (·− j )

for j ∈N∪ {0} is not R-bounded on X . (see [104, Example 2.12] for the proof).

Every R-bounded family of operators T ⊆ L (X ,Y ) is uniformly bounded, with
sup{‖T ‖ : T ∈ T } ≤ Rp (T ). A converse holds for Hilbert spaces X and Y : every
uniform bounded family of operators is automatically R-bounded.
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Let now q ∈ (1,∞). If X = Y = Lq (Rd ), then T ⊆L (Lq (Rd )) is R-bounded if and
only if there exists a constant C such that for all N ∈N, all sequences (Tn)N

n=1 in T

and ( fn)N
n=1 in Lq (Rd ), the square function estimate

∥∥∥( N∑
n=1

|Tn fn |2
) 1

2
∥∥∥

Lq (Rd )
≤C

∥∥∥( N∑
n=1

| fn |2
) 1

2
∥∥∥

Lq (Rd )
.

holds. This is a consequence of Khintchine’s inequality.

Proposition 2.7.4 (Khintchine). For every p ∈ [1,∞), there exists a Cp > 0 such that for
all N ∈N, and (xn)N

n=1 ∈C,

C−1
p

∥∥∥ N∑
n=1

rn xn

∥∥∥
Lp (Ω)

≤
( N∑

n=1
|xn |2

)1/2 ≤Cp

∥∥∥ N∑
n=1

rn xn

∥∥∥
Lp (Ω)

. (2.7.3)

This reformulation allows one to connect with the square function estimates
known in harmonic analysis (see Chapter 4), and allows for special results not
available in the general Banach space setting.

With the definition of R-boundedness in mind, we now introduce functional
analytic notions in terms of R-boundedness.

Definition 2.7.5. A closed operator A on a Banach space X with dense domain is
said to be R-sectorial of angle σ<π/2 if it is sectorial of angle σ and for all σ′ ∈ (σ,π)

the set {z(z + A)−1 : z ∈C\{0}, |arg(z)| >σ′} is R-bounded.

The following theorem shows the equivalence of various R-boundedness con-
ditions. We refer to [104, Theorem 2.20] for the proof.

Theorem 2.7.6. Let A be the generator of a bounded analytic semigroup (T (t ))t≥0 in a
Banach space X . Then the following are equivalent:

(i) A is R-sectorial of angle σ<π/2;

(ii) for some n ∈N, {(i t )n(i t + A)n : t ∈R\{0}} is R-bounded;

The concept of R-boundedness has been used first implicitly by Paley, Marcin-
kiewicz and Zygmund in the ’30s in terms of square functions, and later in the ’80s
by Rubio de Francia, who connected Lp (`s )-estimates to estimates in weighted Lp -
settings for every p, s ∈ (1,∞) (see [65]). In its randomized form, R-boundedness
was introduced in 1986 by Bourgain [22] to prove vector-valued multiplier the-
orems, and later by Clement, de Pagter, Sukochev and Witvliet [27], in 2000, to
prove boundedness of certain operators, multipliers theorems, etc. The connection
between R-boundedness and maximal Lp -regularity was first introduced in 2001
by Weis [152]. It is based on a Fourier multiplier theorem under R-boundedness
assumptions, proved by the same author in [153]. For completeness, we recall it
below.
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Theorem 2.7.7 (Weis). Let X ,Y be UMD spaces, m ∈ C 1(R\{0},L (X ,Y )) be such that
the sets

{m(ξ) : ξ ∈R\{0}} and {ξm′(ξ) : ξ ∈R\{0}}

are R-bounded. Then the operator Tm f =F−1(m(ξ) f̂ (ξ), f ∈ S(R, X ), extends to a bounded
operator T : Lp (R, X ) → Lp (R,Y ) for all p ∈ (1,∞).

An exhaustive explanation on UMD spaces can be found in [65, 86] and will
not be treated here. Briefly speaking, in the case of Bochner spaces Lp (R; X ) it make
sense to consider only those Banach spaces X for which the simplest multiplier
function m(·) = sign(·)IX is a Fourier multiplier, which is equivalent to the bound-
edness of the Hilbert transform on Lp (R; X ), p ∈ (1,∞). Such Banach spaces X are
called UMD spaces. Examples of UMD spaces are Lq (Rd ) for q ∈ (1,∞), and Lq (R, X )

is UMD if X is UMD. On the other hand, the space L1(Rd ) does not have the UMD
property. Below we give the precise definition for completeness.

Definition 2.7.8. X is UMD if the Hilbert transform

H f (x) := lim
ε↓0

R→∞

(
1

π

∫
ε<|x−y |<R

f (y)

x − y
d s

)
,

extends to a bounded operator on Lp (R, X ) for every p ∈ (1,∞). Equivalently, X is
UMD if and only if m : R\{0} →L (X , X ), m(t ) = sign(t )IX is a Fourier multiplier on
Lp (R, X ) for every p ∈ (1,∞).

2.8. MAXIMAL Lp -REGULARITY

We are finally in the position to introduce maximal Lp -regularity, for any p ∈ (1,∞).
In what follows we will consider autonomous problems with zero initial values.
The non-autonomous case will be introduced in Definition 3.3.10.

Let X0 and X1 be Banach spaces, X1 densely and continuously embedded in X0,
and let A : D(A) = X1 → X0 be a closed (bounded) linear operator on X0. Consider
the problem {

u′(t )+ Au(t ) = f (t ), t ∈ (0,T )

u(0) = 0.
(2.8.1)

Definition 2.8.1. Let p ∈ (1,∞). The operator A has maximal Lp -regularity if there
exists a constant C ≥ 0 such that for every f ∈ Lp (R+; X0) there exists a unique solu-
tion u ∈W 1,p (R+; X0)∩Lp (R+; X1) of (2.8.1) that satisfies the a priori estimate

‖u‖W 1,p (R+;X0) +‖u‖Lp (R+;X1) ≤C‖ f ‖Lp (R+;X0). (2.8.2)

This implies that for each f ∈ Lp (R+; X0), both u′, Au are in Lp (R+; X0). The
space W 1,p (R+; X0)∩Lp (R+; X1) is the maximal regularity space, and we denote it by
MRp (R+). In particular, this is a Banach space for the norm

‖u‖MRp (R+) := ‖u‖W 1,p (R+;X0) +‖u‖Lp (R+;X1).
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Example 2.8.2. Let p ∈ (1,∞). Elliptic differential operators on Lp (Rd+) of the form

Au = ∑
|α|≤2m

aα(x)Dαu, x ∈Rd ,

where the coefficients aα : Rd+ → C are bounded uniformly continuous for |α| = 2m

and aα ∈ L∞(Rd+,C) for |α| < 2m, with general boundary conditions have the maxi-
mal Lp -regularity property(see [104, Sections 6 and 7]).

On the other hand, the operator A =−∆ on L1(Rd ) does not enjoy the maximal
Lp -regularity property (see [104, Counterexample 1.15]).

The maximal regularity estimate (2.8.2) has a long tradition. The first posi-
tive result on maximal Lp -regularity was obtained in the ’60s by Ladyžhenskaya,
Solonnikov and Ural’tseva [105], where X = Lp (Ω),Ω⊂Rd being a bounded smooth
domain, and A is a 2nd-order elliptic differential operator.

The first abstract results were obtained by Sobolevskii [139], de Simon [37],
and da Prato-Grisvard [33], where they considered the problem in the framework
of generators of analytic semigroups on Banach spaces. Da Prato and Grisvard
initiated a new approach via the operator sum method, that was extended by Dore
and Venni [54], and Kalton and Weis [94].

In [37] De Simon showed that every generator of a bounded analytic semigroup
on a Hilbert space has maximal Lp -regularity. A natural question was posed by
Brezis in the ’80s, about whether every generator of an analytic semigroup on Lq ,
q ∈ (1,∞) have maximal Lp -regularity. A counterexample was found by Kalton
and Lancien [93] in 2000, showing basically that Hilbert spaces are the only ones
in which the question posed by Brezis has a positive answer. Their example is not
a differential operator, and their result was revisited by Fackler in [58].

In 2001, Weis [152, 153] discovered an operator-theoretic characterization of
maximal Lp -regularity in terms of R-boundedness of the resolvent of A and the
Mihlin’s theorem for operator valued Fourier multipliers. This leads the way to
numerous results about maximal Lp -regularity, as discussed in the introduction.

2.8.1. Weis’ characterization of maximal regularity

In the following we recall Weis’ characterization of maximal Lp -regularity from
[104]. We only give an idea of the proof. Details can be found in [104, 152, 153].

Theorem 2.8.3 (Weis). Let A be the generator of a bounded analytic semigroup on a
UMD space X and let 0 ∈ ρ(A). Then, A has maximal Lp -regularity for p ∈ (1,∞) if and
only if A is R-sectorial.

Proof. It is well-known that if A is the generator of an analytic semigroup, the
solution to problem (2.8.1) is given by the variation of constant formula (2.4.2),
that we recall below:

u(t ) =
∫ ∞

0
e−(t−s)A f (s)d s.
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so that
Au(t ) =

∫ ∞

0
Ae−(t−s)A f (s)d s.

Consider the integral operator defined by

K f (t ) :=
∫
R

Ae−(t−s)A f (s)d s, (2.8.3)

where we extended f by zero on (−∞,0) and k(t ) = Ae−t A if t > 0 or equals zero
if t < 0. This implies that A has maximal Lp -regularity if K extends to a bounded
operator K : Lp (R; X ) → Lp (R; X ). Observe that K is a convolution operator with an
operator-valued kernel, singular at zero, i.e. ‖Ae−t A‖ ∼ 1

t .
Apply now the Fourier transform to (2.8.3) to get

F (K f )(ξ) =F (Ae−t A)(ξ)[F ( f )(ξ)], ξ ∈R.

So, we can identify F (Ae−t A)(ξ) as a Fourier multiplier of the form

m(ξ) :=F (Ae−t A)(ξ) = AR(iξ, A) = I − iξR(iξ, A),

with
ξm′(ξ) =−iξAR(iξ, A)2 = iξR(iξ, A)[iξR(iξ, A)− I ].

where R(iξ, A) = ∫ ∞
0 e−iξt T (t )d t and T (t ) denotes the analytic semigroup generated

by A. From this it follows that in order to show the Lp -boundedness of K , we
need to prove that m is a Fourier multiplier on Lp (R; X ). For this, it is enough
to show that m : ξ 7→ iξR(iξ, A) is a Fourier multiplier. By the R-sectoriality of A

and equivalence (i ) ⇔ (i i ) of Theorem 2.7.6, we get the R-boundedness of the sets
{m(ξ)} and {ξm′(ξ)}. This, together with Theorem 2.7.7, implies that m is a Fourier
multiplier. Therefore, K ∈L (Lp (R; X )) and A has maximal Lp -regularity.

This implies that A has maximal Lp -regularity if one of the equivalent condi-
tions of Theorem 2.7.6 are satisfied.

Remark 2.8.4. The need for UMD condition becomes natural from the following
result of Couhlon and Lamberton [30]: the generator of the Poisson semigroup on
L2(R, X ) has maximal Lp -regularity if and only if X is a UMD space.
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3
MAXIMAL REGULARITY FOR PARABOLIC EQUA-
TIONS WITH MEASURABLE DEPENDENCE ON

TIME

In this chapter we study maximal Lp -regularity for evolution equations of the form
(1.0.1) with time-dependent operators A, where we merely assume a measurable
dependence on time. In the first part, we present a new sufficient condition for
the Lp -boundedness of a class of vector-valued singular integrals which does not
rely on Hörmander conditions in the time variable. This is then used to develop
an abstract operator-theoretic approach to maximal regularity (Section 3.3).

The results are applied to the case of m-th order elliptic operators A with time
and space-dependent coefficients, where the highest order coefficients are assumed
to be measurable in time and continuous in the space variable (Section 3.4). This
results in an Lp (Lq )-theory for such equations for p, q ∈ (1,∞).

In the final section we extend a well-posedness result for quasilinear equations
to the time-dependent setting. Here we give an example of a nonlinear parabolic
PDE to which the result can be applied.

This chapter is the heart of this thesis. The results of Section 3.3 will be applied
in the second part of this work, where we will consider maximal Lp - regularity for
systems of parabolic equations in the whole and half-space (Chapters 5 and 6). We
remark that in the estimates below, C can denote a constant which varies from line
to line. The results here presented are based on [64].

3.1. PRELIMINARIES: R-BOUNDEDNESS OF INTEGRAL OPERATORS

In this section we introduce a certain family of integral operators that will be
needed later on and we give sufficient conditions for the Lp -boundedness and the
R-boundedness of such a family.

Let K be the class of kernels

K = {k ∈ L1(Rd ) : for all simple f :Rd →R+ one has |k ∗ f | ≤ M f a.e.}, (3.1.1)

where M denotes the Hardy-Littlewood maximal operator. There are many ex-
amples of classes of functions k with this property (see [70, Chapter 2] and [123,

35
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Proposition 4.5 and 4.6]). It follows from [123, Lemma 4.3] that every k ∈K satis-
fies ‖k‖L1(Rd ) ≤ 1.

The next example gives an important class of kernels which are in K .

Example 3.1.1. Let k : (0,∞)×R→ C, be such that |k(u, t )| ≤ h( |t |u ) 1
u , u > 0, where

h ∈ L1(R+)∩Cb(R+), h has a maximum in x0 ∈ [0,∞) and h is radially decreasing on
[x0,∞). Then,∫ ∞

0
sup
|t |≥x

|k(u, t )|d x ≤
∫ ∞

0
sup
t≥x

|h( t
u )| d x

u
=

∫ ∞

0
sup
s≥ x

u

|h(s)| d x

u
=

∫ ∞

0
sup
s≥y

|h(s)|d y

=
∫ x0

0
sup
s≥y

|h(s)|d y +
∫ ∞

x0

|h(y)|d y = x0|h(x0)|+‖h‖L1(x0,∞).

Now by [123, Proposition 4.5] we find { k(u,·)
C : u > 0} ⊆ K with C = x0|h(x0)| +

‖h‖L1(x0,∞).

Suppose T : {(t , s) ∈ R2 : t 6= s} →L (X ) is such that for all x ∈ X , (t , s) 7→ T (t , s)x is
measurable. For k ∈K let

IkT f (t ) =
∫
R

k(t − s)T (t , s) f (s)d s. (3.1.2)

Consider the family of integral operators I := {IkT : k ∈ K } ⊆ L (Lp (R; X )). The R-
boundedness of such families I of operators will play an important rôle in this
chapter. In fact, as we will see in Section 3.2, it constitutes a sufficient condition
for the Lp -boundedness of a class of vector-valued singular integrals. In the case
X = Lq , T (t , s) in (3.1.2) denotes the evolution family generated by a higher-order
differential operator. This will be treated in Section 3.4.

Proposition 3.1.2. If {T (t , s) : s, t ∈ R} is uniformly bounded on X , then I is uniformly
bounded on Lp (R, v ; X ) for every p ∈ (1,∞) and v ∈ Ap . Moreover, it is also uniformly
bounded on L1(R; X ).

Proof. For any p ∈ (1,∞), note that

‖IkT f (t )‖X ≤
∫
R
|k(t − s)|‖T (t , s) f (s)‖X d s

≤C
∫
R
|k(t − s)|‖ f (s)‖X d s ≤C M(‖ f ‖X )(t ).

for a.e. t ∈ R. Therefore the uniform boundedness of IkT follows from the bound-
edness of the maximal operator. The case v ≡ 1 and p = 1 follows from Fubini’s
theorem and the fact that ‖k‖L1(R) ≤ 1 (see [123, Lemma 4.3]).

The R-boundedness of (3.1.2) has the following simple extrapolation property:

Proposition 3.1.3. Let p0 ∈ (1,∞). If for all v ∈ Ap0 , I ⊆L (Lp0 (R, v ; X )) is R-bounded
by a constant which is Ap0 -consistent, then for every p ∈ (1,∞) and v ∈ Ap , I ⊆L (Lp (R,

v ; X )) is R-bounded by a constant which is Ap -consistent.
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Proof. The special structure of I will not be used in this proof. Let I1, . . . , IN ∈ I ,
f1, . . . , fN ∈ Lp (R, v ; X ) and let

Fp (t ) =
∥∥∥ N∑

n=1
rn In fn(t )

∥∥∥
Lp (Ω;X )

and Gp (t ) =
∥∥∥ N∑

n=1
rn fn(t )

∥∥∥
Lp (Ω;X )

.

Then the assumption combined with Fubini’s theorem yields that for all v ∈ Ap0 ,

‖Fp0‖Lp0 (R,v) ≤C‖Gp0‖Lp0 (R,v),

where C is a constant which is Ap0 -consistent. Therefore, by Theorem 2.2.5 we find
that for each p ∈ (1,∞), there is an Ap -consistent constant C ′ (depending only on C )
such that

‖Fp0‖Lp (R,v) ≤C ′‖Gp0‖Lp (R,v). (3.1.3)

Now by (2.7.3), Fp ≤ κp,p0 Fp0 , Gp0 ≤ κp0,pGp , and the result follows from (3.1.3) and
another application of Fubini’s theorem.

In the case X = Lq , the following is a simple sufficient condition for the R-
boundedness of such families.

Theorem 3.1.4. Let O ⊆ Rd be open. Let q0 ∈ (1,∞) and let {T (t , s) : s, t ∈ R} be a family
of bounded operators on Lq0 (O ). Assume that for all Aq0 -weights w ,

‖T (t , s)‖L (Lq0 (O ,w)) ≤C , (3.1.4)

where C is Aq0 -consistent and independent of t , s ∈R. Then the family of integral operators
I = {IkT : k ∈K } ⊆L (Lp (R, v ;Lq (O , w))) as defined in (3.1.2) is R-bounded for all p, q ∈
(1,∞) and all v ∈ Ap and w ∈ Aq . Moreover, in this case the R-bounds R(I ) are Ap - and
Aq -consistent.

The proof of this result will be given in the end of Chapter 4 as a special case
of Corollary 4.3.9, and it is is based on extrapolation techniques of Rubio de Fran-
cia. As for fixed t , s ∈R, T (t , s) on Lq (O ) is usually defined by a singular integral of
convolution type in Rd , one can often apply Calderón-Zygmund theory and mul-
tiplier theory to verify (3.1.4). In this case it is usually not more difficult to prove
the boundedness for all Aq -weights, than just w = 1. The reason for this is that for
large classes of operators, boundedness implies weighted boundedness (see [65,
Theorem IV.3.9], [71, Theorem 9.4.6] and [79, Corollary 2.10]). Another situation
where weights are used to obtain R-boundedness can be found in [61, 77].

Example 3.1.5. For a bounded measurable function θ :R2 →K let T (t , s) f = θ(t , s) f ,
f ∈ Lq0 (Rd , w). Then (3.1.4) holds and hence Theorem 3.1.4 implies that
I ⊆ L (Lp (R, v ;Lq (Rd , w))) is R-bounded for all p, q ∈ (1,∞) and all v ∈ Ap and w ∈
Aq .
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3.2. A CLASS OF SINGULAR INTEGRALS WITH OPERATOR-VALUED

KERNEL

Let X be a Banach space. In this section, we present a new sufficient condition for
the Lp -boundedness of a class of vector-valued singular integrals of the form

IK f (t ) =
∫
R

K (t , s) f (s)d s, t ∈R, (3.2.1)

where K : {(t , s) : t 6= s} →L (X ) is an operator-valued kernel.
There is a natural generalization of the theory of singular integrals of convolu-

tion type to the vector-valued setting (see [89]). In the case the singular integral is of
non-convolution type, the situation is much more complicated. An extensive treat-
ment can be found in [83, 84, 88], where T 1-theorems [34] and T b-theorems [35]
have been obtained in an infinite dimensional setting. Checking the conditions
of these theorems can be hard. For instance, from [145] it follows that the typical
BMO conditions one needs to check, have a different behavior in infinite dimen-
sions. Our motivation comes from the application to maximal Lp -regularity of
(1.2.1). At the moment we do not know whether the T 1-theorem and T b-theorem
can be applied to study maximal Lp -regularity for the time dependent problems
we consider. Below we study a special class of singular integrals with operator-
valued kernel for which we prove Lp -boundedness. The assumptions on K are
formulated in such a way that they are suitable for proving maximal Lp -regularity
of (1.2.1) later on.

3.2.1. Assumptions

The assumptions in the main result of this section are as follows.

(H1) Let X be a Banach space and let p ∈ [1,∞) and1 v ∈ Ap .

(H2) The kernel K factorizes as

K (t , s) = φ0(|t − s|A0)T (t , s)φ1(|t − s|A1)

t − s
, (t , s) ∈R2, t 6= s. (3.2.2)

Here A0 and A1 are sectorial operators on X of angle < σ0 and < σ1 respec-
tively, and φ j ∈ H∞

0 (Σσ′
j
) and σ′

j ∈ (σ j ,π) for j = 0,1. Moreover, we assume
T : {(t , s) : t 6= s} →L (X ) is uniformly bounded and for all x ∈ X , {(t , s) : t 6= s} 7→
T (t , s)x is strongly measurable.

(H3) Assume X has finite cotype. Assume A j has a bounded H∞(Σσ j )-calculus
with σ j ∈ [0,π) for j = 0,1.

1For the case p = 1, the convention will be that v ≡ 1.
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(H4) Assume the family of integral operators I := {IkT : k ∈ K } ⊆ L (Lp (R, v ; X )) is
R-bounded.

The class of kernels K is as in Definition 3.1.1. Recall from (3.1.2) that

IkT f (t ) =
∫
R

k(t − s)T (t , s) f (s)d s.

Since T is uniformly bounded, the operator IkT is bounded on Lp (R, v ; X ) by Propo-
sition 3.1.2.

Remark 3.2.1.

1. The class of Banach spaces with finite cotype is rather large. It contains all
Lp -spaces, Sobolev, Besov and Hardy spaces as long as the integrability expo-
nents are in the range [1,∞). The spaces c0 and L∞ do not have finite cotype.
The cotype of X will be used in order to have estimates for certain continu-
ous square functions (see (3.2.6)). We have collected some general facts about
type and cotype in Appendix 3.5.3.

2. In the theory of singular integrals in a vector-valued setting one usually as-
sumes X is a UMD space. Note that every UMD has finite cotype and non-
trivial type by the Maurey-Pisier theorem (see [45]).

3. A sufficient condition for the R-boundedness condition in the case X = Lq

can be deduced from Theorem 3.1.4.

4. In (H2), φ j (|t − s|A j ) could be replaced by φ j ((t − s)A j ) if the A j ’s are bisec-
torial operators. On the other hand, one can also consider T (t , s)1{s<t } and
T (t , s)1{t<s} separately. Indeed, the hypothesis (H1)–(H4) holds for these op-
erators as well whenever they hold for T (t , s).

Example 3.2.2. Typical examples of functions φ j which one can take are φ j (z) =
zαe−z for j = 0,1. If T (t , s) = I 1{s<t }, then for A = A0 = A1 one would have

K (t , s) = (t − s)2α−1 A2αe−2(t−s)A1{s<t }.

This kernel satisfies ‖K (t , s)‖ ∼ (t − s)−1 for t close to s. If one takes T (t , s) varying
in t and s one might view it as a multiplicative perturbation of the above kernel.

The following simple observation shows that IK as given in (3.2.1) can be de-
fined on Lp (R;D(A1)∩R(A1)), where D(A1) denotes the domain of A1 and R(A1) the
range of A1.

Lemma 3.2.3. Under the assumptions (H1) and (H2), IK from (3.2.1) is bounded as an
operator from Lp (R, v ;D(A1)∩R(A1)) into Lp (R, v ; X ).
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Proof. As φ1 ∈ H∞
0 (Σσ′

1
), we can find a constant C and ε ∈ (0,1) such that |φ1(z)| ≤

C |z|ε|1+ z|−2ε. We claim that for all x ∈ D(A1)∩R(A1),

‖φ1(t A1)x‖ ≤C min{tε, t−ε}(‖x‖+‖A1x‖+‖A−1
1 x‖), t > 0. (3.2.3)

Before proving the claim, we show how to deduce the assertion of the lemma.
From the claim and the assumptions that φ0 ∈ H∞

0 (Σσ′
0
) and ‖T (t , s)‖ is uniformly

bounded we obtain

|t − s|‖K (t , s)x‖ ≤ ‖φ0(|t − s|A0)‖‖T (t , s)‖‖φ1(|t − s|A1)x‖
≤C min{|t − s|ε, |t − s|−ε}(‖x‖+‖A1x‖+‖A−1

1 x‖).

Therefore, K : {(t , s) : t 6= s} →L (R(A1)∩D(A1), X ) is essentially nonsingular, and the
assertion of the lemma easily follows. Indeed, for f ∈ Lp (R, v ;D(A1)∩R(A1)), we
find

‖IK f (t )‖ ≤C
∫
R

min{|t − s|ε−1, |t − s|−ε−1}‖ f (s)‖D(A1)∩R(A1) d s.

As k(s) = min{|s|ε−1, |s|−ε−1} is radially decreasing and integrable it follows from
[70, Theorem 2.1.10] that

‖IK f (t )‖ ≤ ‖k‖L1(R)M g (t ),

where M is the Hardy-Littlewood maximal operator and g (s) = ‖ f (s)‖D(A1)∩R(A1).
Therefore, the boundedness follows from the fact that M is bounded on Lp (R, v),
for p ∈ (1,∞). The case p = 1 follows from Young’s inequality.

To prove (3.2.3), let g (A1) = A1(1+ A1)−2 and note that

g (A1)−1 = 2+ A1 + A−1
1 and φ1(z A1) = (φ1(z·)g )(A1)g (A1)−1

(see [104, Appendix B]). For y = g (A1)−1x one has ‖y‖ ≤ 2‖x‖+‖A1x‖+‖A−1
1 x‖ and

it remains to show

‖(φ1(t ·)g )(A1)‖ ≤C min{tε, t−ε}, for t > 0.

For this, let Γ= ∂Σσ with σ ∈ (σ1,σ′
1). By [104, Theorem 9.2 and Appendix B]

‖(φ1(t ·)g )(A1)‖ ≤ 1

2π

∫
Γ
|φ1(tλ)||λ||1+λ|−2‖(λ+ A1)−1‖|dλ|

≤C
∫
Γ

|λt |ε
|1+λt |2ε |1+λ|

−2 |dλ|

≤C |t |ε
∫
Γ

|λ|ε
|1+λ|2 |dλ|

≤C ′|t |ε.
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This prove the required estimate for 0 < t < 1. To prove an estimate for t > 1, note
that 1

|1+µ| ≤ C
1+|µ| ≤ C

|µ| for µ ∈Σσ. Therefore,

‖(φ1(t ·)g )(A1)‖ ≤C
∫
Γ

|λt |ε
|1+λt |2ε |1+λ|

−2 |dλ|

≤C
∫
Γ

|λt |−ε
|1+λ|2 |dλ| ≤C |t |−ε

∫
Γ

|λ|−ε
|1+λ|2 |dλ| ≤C ′|t |−ε.

3.2.2. Main result on singular integrals

Theorem 3.2.4. Assume (H1)-(H4). Then IK defined by (3.2.1) extends to a bounded
operator on Lp (R, v ; X ).

The proof is inspired by the solution to the stochastic maximal Lp -regularity
problem given in [122].

Before we turn to the proof, we have some preliminary results and remarks.

Example 3.2.5. Assume (H2) and (H3). If T (t , s) is as in Example 3.1.5 then (H4)
holds. Therefore, IK is bounded by Theorem 3.2.4. Surprisingly, we do not need
any smoothness of the mapping (t , s) 7→ K (t , s) in this result. In particular we do
not need any regularity conditions for K (t , s) (such as Hörmander’s condition) in
(t , s).

Recall the following Poisson representation formula (see [122, Lemma 4.1]).

Lemma 3.2.6. Let α ∈ (0,π) and α′ ∈ (α,π] be given, let X be a Banach space and let
f :Σα′ → X be a bounded analytic function. Then, for all s > 0 we have

f (s) = ∑
j∈{−1,1}

j

2

∫ ∞

0
kα(u, s) f (ue i jα)du,

where kα :R+×R+ →R is given by

kα(u, t ) = (t/u)
π

2α

(t/u)
π
α +1

1

αu
. (3.2.4)

Proof. Let g : Σ 1
2π+ε → X be analytic and bounded for some ε > 0. Then, by the

Poisson formula on the half space (see [82, Chapter 8])

g (t ) = 1

π

∫ ∞

−∞
t

t 2 + v2 g (i v)d v.

For small ε> 0 let ϕ :Σ 1
2π+ε→α′ be defined by ϕ(t ) := t 2α/π. Then ϕ is analytic, and

taking g = f ◦ g gives

f (t 2α/π) = 1

π

∫ ∞

−∞
t

t 2 + v2

Then taking s = t 2α/π and u = |v |2α/π we get the required result.
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Remark 3.2.7. In the proof below we will use the probabilistic notions of γ-bounded-
ness and γ-radonifying operators, i.e T ∈ γ( du

u ; X ), with u ∈R+ and X Banach space.
Detailed definitions will be given in Appendix 3.A.2. As a general idea, in the spe-
cial case X = Lq (S) with q ∈ (1,∞), we present some identification of spaces which
can be used to simplify the proof below. This might be of use to readers who are
only interested in Lq -spaces. In this case one can take

γ( du
u ; X ) = Lq (S;L2(0,∞; du

u )),

γ( du
u ; X )∗ = Lq ′

(S;L2(0,∞; du
u )),

γ( du
u ;Lp (R, v ; X )) = Lp (R, v ;Lq (S;L2(0,∞; du

u ))).

The γ-multiplier theorem (cf. Theorem 3.A.7) which is applied below in (3.2.5) can
be replaced by [152, 4a] in this case. Finally, the estimates in (3.2.6) can be found in
[107] in this special case.

Proof of Theorem 3.2.4. Step 1: By density it suffices to prove

‖IK f ‖Lp (R,v ;X ) ≤C‖ f ‖Lp (R,v ;X )

with C independent of f ∈ Lp (R, v ;D(A1)∩R(A1)). Note that by Lemma 3.2.3, IK is
well defined on this subspace.

Step 2: Fix 0 <α<α′ ≤ min{σ′
0−σ0,σ′

1−σ1}. First, since z →φ0(z A0)T (t , s)φ1(z A1)

is analytic and bounded on Σα′ , by Lemma 3.2.6, for x ∈ D(A1)∩R(A1) and z > 0,

φ0(z A0)T (t , s)φ1(z A1)x = ∑
j∈{−1,1}

j

2

∫ ∞

0
Φ0, j (u)kα(u, z)T (t , s)Φ1, j (u)x du,

with kα(u, t ) as in (3.2.4) and Φk, j (u) = φk (ue i jαAk ) for j ∈ {−1,1} and k ∈ {0,1}. To-
gether with (H2) this yields the following representation of K (t , s)x for x ∈ D(A1)∩
R(A1):

K (t , s)x = ∑
j∈{−1,1}

j

2

∫ ∞

0
Φ0, j (u)Su(t , s)Φ1, j (u)x

du

u
,

where Su(t , s) := k̃α(u, t − s)T (t , s) with k̃α(u, t ) := kα(u, |t |) u
t and kα is defined as in

(3.2.4). Moreover, the kernels k̃α(u, ·) satisfy

|k̃α(u, t )| ≤α−1hα( t
u )u−1, u, t > 0,

where hα(x) = xβ−1

x2β+1
and β := π

2α > 0. Extending kα(u, t ) as zero for t < 0, by Example
3.1.1 we find that k̃α(u, ·) ∈K . Indeed, substituting y = xβ, we obtain

‖h‖L1(0,∞) =
∫ ∞

0

xβ−1

x2β+1
d x = 1

β

∫ ∞

0

1

y2 +1
d y =α.
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Therefore, the following representation holds for the singular integral

IK f = ∑
j∈{−1,1}

j

2

∫ ∞

0
Φ0, j (u)ISu [Φ1, j (u) f ]

du

u
,

where f ∈ Lp (R, v ;D(A1)∩R(A1)).

Step 3: Let Y1 = Lp (R, v ; X ) and Y2 = Lp ′
(R, v ′; X #), where X # := D(A∗

0 )∩R(A∗
0 ) is

the moondual2 of X with respect to A0 (see [104, Appendix A]) and v ′ = v− 1
p−1 .

For g ∈ Y2 write 〈 f , g 〉Y1,Y2 = ∫
R〈 f (t ), g (t )〉d t . In this way Y2 can be identified with

an isometric closed subspace of Y ∗
1 . Note that by [104, Proposition 15.4], X # is

norming for X , i.e. ‖x‖# := sup{|〈x, x#〉| : x# ∈ X #, ‖x#‖ ≤ 1} defines a norm on X

which is equivalent to the original norm. Hence, Lemma 2.2.6 implies that Y2 is
norming for Y1. For fixed g ∈ Y2 it follows from Fubini’s theorem and γ-duality
(see [74, Sections 2.3 and 2.6] and [95, Section 5]),

|〈IK f , g 〉Y1,Y2 | ≤
∑

j∈{−1,1}

1

2

∣∣∣∫
R

∫ ∞

0
〈Φ0, j (u)ISu [Φ1, j (u) f ](t ), g (t )〉 du

u
d t

∣∣∣
= ∑

j∈{−1,1}

1

2

∣∣∣∫ ∞

0
〈ISu [Φ1, j (u) f ],Φ0, j (u)#g 〉 du

u

∣∣∣
= ∑

j∈{−1,1}

1

2
‖ISu [Φ1, j (u) f ]‖

γ(R+, du
u ;Y1)‖Φ0, j (u)#g‖

γ(R+, du
u ;Y1)∗ .

Here Φ0, j (u)# :=φ0(ue i jαA#
0). By (H4) the family {ISu : u > 0} is R-bounded by some

constant CT . Therefore, by the Kalton-Weis γ-multiplier theorem (cf. Theorem
3.A.7)

‖ISu [Φ1, j (u) f ]‖
γ(R+, du

u ;Y1) ≤CT ‖Φ1, j (u) f ‖
γ(R+, du

u ;Y1). (3.2.5)

Here we used that X does not contain an isomorphic copy of c0 as it has finite
cotype (see (H3)). The remaining two square function norms can be estimated
by the square function estimates of Kalton and Weis. Indeed, by (H3) and [74,
Theorem 4.11] or [95, Section 7] (here we again use the finite cotype of X ) and the
γ-Fubini property (see [121, Theorem 13.6]), we obtain

‖Φ1, j (u) f ‖
γ(R+, du

u ;Y1) h ‖Φ1, j (u) f ‖Lp (R,v ;γ(R+, du
u ;X )) ≤C A1‖ f ‖Y1 ,

‖Φ0, j (u)#g‖
γ(R+, du

u ;Y1)∗ h ‖Φ0, j (u)#g‖Lp′ (R,v ′;γ(R+, du
u ;X )∗) ≤C A0‖g‖Y2 .

(3.2.6)

Combining all the estimates yields

|〈IK f , g 〉Y1,Y2 | ≤CT C A0C A1‖ f ‖Y1‖g‖Y2 .

Taking the supremum over all g ∈ Lp ′
(R, v ′; X #) with ‖g‖Y2 ≤ 1 we find ‖IK f ‖Y1 ≤

CT C A0C A1‖ f ‖Y1 . This proves the Lp -boundedness.
2In the special case X = Lq (S) with q ∈ (1,∞), one can use the usual adjoint ∗ instead of the moon adjoint

#. The advantage in using the moondual comes in the case in which X is a non-reflexive space. We
refer to [104, Section 15] for details.
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Remark 3.2.8. One can also apply standard extrapolation techniques to obtain weigh-
ted boundedness results for singular integrals from the unweighted case (see [26,
79]). However, for this one needs Hörmander conditions on the kernel. As our
proof gives a result in the more general setting, we can avoid smoothness assump-
tions on the kernel.

3.3. MAXIMAL Lp -REGULARITY

In this section we will apply Theorem 3.2.4 to obtain maximal Lp -regularity for the
following evolution equation on a Banach space X0:

u′(t )+ A(t )u(t ) = f (t ), t ∈ (0,T )

u(0) = x.
(3.3.1)

As explained in the introduction no abstract Lp -theory is available for (3.3.1) out-
side the case where t 7→ A(t ) is continuous.

The following assumption will be made throughout this whole section.

(A) Let X0 be a Banach space and assume the Banach space X1 embeds densely
and continuously in X0. Let p ∈ [1,∞) and v ∈ Ap with the convention that
v ≡ 1 if p = 1. Let A : R→ L (X1, X0) be such that for all x ∈ X1, t 7→ A(t )x is
strongly measurable, and there is a constant C > 0 such that

C−1‖x‖X1 ≤ ‖x‖X0 +‖A(t )x‖X0 ≤C‖x‖X1 .

The above implies that each A(t ) is a closed operator on X0 with D(A(t )) = X1. Note
that whenever A is given on an interval I ⊆R, we may always extend it constantly
or periodically to all of R.

Before we state the main result we will present some preliminary results on
evolution equations with time-dependent A.

3.3.1. Preliminaries on evolution equations

Preliminaries on evolution equations and evolution families were given in Section
2.4. We explain here some parts that are different in our set-up.

For a strongly measurable function f : (a,b) → X0 we consider:{
u′(t )+ A(t )u(t ) = f (t ), t ∈ (a,b)

u(a) = x,
(3.3.2)

where u(a) = x is omitted if a =−∞.

1. Assume −∞ < a < b < ∞. The function u is said to be a strong solution of
(3.3.2) if u ∈W 1,1(a,b; X0)∩L1(a,b; X1)∩C ([a,b]; X0), u(a) = x and (3.3.2) holds
for almost all t ∈ (a,b).
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2. Assume a = −∞ and b <∞. The function u is said to be a strong solution of
(3.3.2) if u ∈ W 1,1

loc (a,b; X0)∩L1
loc(a,b; X1)∩C ((a,b]; X0) and lims→a u(s) = 0 and

(3.3.2) holds for almost all t ∈ (a,b).

3. Assume b =∞. The function u is said to be a strong solution of (3.3.2) if for
every T > a the restriction to [a,T ] or (a,T ] yield strong solutions in the sense
of (1) and (2) respectively.

Note the following simple embedding result for general Ap -weights.

Lemma 3.3.1. Let p ∈ [1,∞) and let v ∈ Ap , where v ≡ 1 if p = 1. For −∞< a < b <∞,
W 1,p ((a,b), v ; X0) ,→C ([a,b]; X0) and

‖u‖C ([a,b];X0) ≤C‖u‖W 1,p ((a,b),v ;X0).

Proof. Since Lp ((a,b), v ; X0) ,→ L1(a,b; X0), and u(t )−u(s) = ∫ t
s u′(r )dr , the continuity

of u is immediate. Moreover,

‖u(t )‖ ≤ ‖u(s)‖+
∫ t

s
‖u′(r )‖dr ≤ ‖u(s)‖+C‖u′‖Lp ((a,b),v ;X0).

Taking Lp ((a,b), v)-norms with respect to the s-variable yields the result.

There is a correspondence between the evolution problem (3.3.2) and evolution
families as defined below. Recall that a function is called strongly continuous if it
is continuous in the strong operator topology.

Definition 3.3.2. Let (A(t ))t∈R be as in (A). A two parameter family of bounded
linear operators S(t , s), s ≤ t , on a Banach space X0 is called an evolution family for A

if the following conditions are satisfied:

(i) S(s, s) = I , S(t ,r )S(r, s) = S(t , s) for s ≤ r ≤ t ;

(ii) (t , s) → S(t , s) is strongly continuous for s ≤ t .

(iii) For all s ∈R and T ∈ (s,∞), for all x ∈ X1, the function u : [s,T ] → X0 defined by
u(t ) = S(t , s)x is in L1(s,T ; X1)∩W 1,1(s,T ; X0) and satisfies u′(t )+A(t )S(t , s)x = 0

for almost all t ∈ (s,T ).

(iv) For all t ∈ R and T ∈ (−∞, t ] for all x ∈ X1, the function u : [T, t ] → X0 defined
by u(s) = S(t , s)x is in L1(T, t ; X1)∩W 1,1(T, t ; X0) and satisfies u′(s) = S(t , s)A(s)x.

Note that (iii) says that u is a strong solution of (3.3.2) with f = 0.
The above definition differs from the usual one from the literature, because

t 7→ A(t ) is only assumed to be measurable in time. Therefore, one cannot expect
S(t , s)x to be differentiable in the classical sense.
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Example 3.3.3. Assume A :R→L (X1, X0) is strongly measurable and satisfies (A).
Define a family of operators A by

A = {A(t ) : t ∈R}∪
{ 1

t − s

∫ t

s
A(r )dr : s < t

}
.

Here we use the strong operator topology to define the integral. Assume there
exist φ, M and N such that all B ∈ A are all sectorial of angle φ < π/2 and for all
λ ∈Σφ,

‖λ(λ+B)−1‖ ≤ M and ‖x‖X1 ≤ N (‖x‖X0 +‖B x‖X0 )

Assume for every B1,B2 ∈ A and λ,µ ∈ Σφ, the operators (λ+B1)−1 and (µ+B2)−1

commute. Define

S(t , s) = e−(t−s)Ast , where Ast = 1

t − s

∫ t

s
A(r )dr.

Then S is an evolution family for A. Here the exponential operator is defined by
the usual Cauchy integral (see [113, Chapter 2]). Usually, no simple formula for S

is available if the operators in A do not commute.
Note that in this special case the kernel K (t , s) = 1{s<t } A(0)e−λ(t−s)S(t , s) satisfies

the Calderón-Zygmund estimates of [79]. Indeed, note that

∂K

∂t
=−1{s<t }(λ+ A(t ))A(0)e−λ(t−s)S(t , s)

and
∂K

∂s
= 1{s<t }(λ+ A(s))A(0)e−λ(t−s)S(t , s).

Now since for all r ∈ R and B ∈ A , ‖A(r )x‖ ≤ NC (‖x‖X0 +‖B x‖X0 ), we find that for
all r,τ ∈R and s < t letting σ= (t + s)/2,

‖A(r )A(τ)S(t , s)‖ = ‖A(r )S(t ,σ)‖‖A(τ)S(σ, s)‖
≤ N 2C 2(1+‖Aσt S(t ,σ)‖)(1+‖AsσS(σ, s)‖)

≤C ′(1+ (t − s)−1)2 ≤ 3
2C ′(1+ (t − s)−2).

Therefore, the extrapolation results from the unweighted case to the weighted case
of Remark 3.2.8 does hold in this situation.

Proposition 3.3.4. Let S be an evolution family for A. Fix x ∈ X0 and f ∈ L1(a,b; X0). If
(3.3.2) has a strong solution u ∈ L1(a,b; X1)∩W 1,1(a,b; X0)∩C ([a,b]; X0), then it satisfies

u(t ) = S(t , s)u(s)+
∫ t

s
S(t ,r ) f (r )dr, a < s ≤ t < b, (3.3.3)

where we allow s = a and t = b whenever these are finite numbers. In particular, strong so-
lutions are unique if a >−∞. In the case a =−∞ this remains true if lims→−∞ ‖S(t , s)‖ =
0.
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A partial converse is used and proved in Theorem 3.3.8.

Proof. Fix a < s < t < b. We claim that for u ∈ C 1([s,b]; X1), r 7→ S(t ,r )u(r ) is in
W 1,1(s,b; X0) and

d

dr
[S(t ,r )u(r )] =−S(t ,r )A(r )u(r )+S(t ,r )u′(r ), r ∈ (s,T ). (3.3.4)

Indeed, let φ ∈ C 1
c (s, t ) be a test function. For a function u =ψx with ψ ∈ C 1([s,b])

and x ∈ X1, it follows from d
dr S(t ,r )x =−S(t , s)A(r )x that

∫ t

s
S(t ,r )

d

dr
[u(r )φ(r )]dr =

∫ t

s
S(t ,r )x

d

dr
[ψ(r )φ(r )]dr

=
∫ t

s
S(t ,r )A(r )xψ(r )φ(r )dr

=
∫ t

s
S(t ,r )A(r )u(r )φ(r )dr.

Now (3.3.4) follows for this special choice of u since d
dr [u(r )φ(r )] = u′(r )φ(r ) +

u(r )φ′(r ). By linearity and density (3.3.4) extends to all u ∈C 1([s,b]; X1).
Again by density (3.3.4) extends to all u ∈ W 1,1([s,b]; X0)∩L1(s,b; X1). Indeed,

given such a u we can extend it to a function u ∈ W 1,1(R; X0) ∩ L1(R; X1). Now
a simple mollifier argument shows that we can approximate u by a sequence of
functions in C 1([s,b]; X1) in the norm of W 1,1(R; X0)∩L1(R; X1).

Applying (3.3.4) to the strong solution u of (3.3.2), yields

d

dr
[S(t ,r )u(r )] = S(t ,r ) f (r ).

Integrating this identity over (s, t ), we find (3.3.3).
If a >−∞, then we may take s = a in the above proof and hence we can replace

u(s) = u(a) by the initial value x. If a =∞, the additional assumption on S allows
us to let s →−∞ to obtain

u(t ) =
∫ t

−∞
S(t ,r ) f (r )dr, t < b.

Corollary 3.3.5. If S1 and S2 are both evolution families for A, then S1 = S2.

Proof. Fix x ∈ X1 and a < s < T < b. By definition u(t ) = S1(t , s)x for t ∈ [s,T ], is a
strong solution of u′(t ) = A(t )u(t ) and u(s) = x. As S2 is an evolution family for
A, Proposition 3.3.4 yields that u(t ) = S2(t , s)x for t ∈ [s,T ]. Therefore, S1(t , s)x =
S2(t , s)x and the result follows from the fact that X1 is dense in X0.
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3.3.2. Assumptions on A

The following condition can be interpreted as an abstract ellipticity condition.

(E) Assume that X0 has finite cotype and assume that there exists A0 ∈L (X1, X0)

which has a bounded H∞-calculus of angle σ < π/2 and that there is a con-
stant C > 0 such that

C−1‖x‖X1 ≤ ‖x‖X0 +‖A0x‖X0 ≤C‖x‖X1 .

Assume moreover that there exists a strongly continuous evolution family
(T (t , s))s≤t for (A(t )− A0)t∈R such that e−r A0 commutes with T (t , s) for every
t ≥ s and r ∈R+ and assume there exists an ω ∈R such that

‖T (t , s)‖L (X0) ≤ Meω(t−s), s ≤ t .

Set T (t , s) = 0 for t < s. The following R-boundedness condition will be used.

(Rbdd) Assume that the family I := {Iω,kT : k ∈ K } ⊆ L (Lp (R, v, X0)) is R-bounded,
where for k ∈K and f ∈ Lp (R, v ; X0),

Iω,kT f (t ) :=
∫
R

k(t − s)e−ω|t−s|T (t , s) f (s)d s.

Remark 3.3.6.

1. By (A) and (E) there is a constant C such that

C−1(‖A(t )x‖X0 +‖x‖X0 ) ≤ ‖A0x‖X0 +‖x‖X0

≤C (‖A(t )x‖X0 +‖x‖X0 ), t ∈R (3.3.5)

and both norms are equivalent to ‖x‖X1 .

2. For m even, if the A(t ) are m-th order elliptic operators with x-independent
coefficients one typically takes A0 = δ(−∆)m with δ> 0 small enough.

3. For p, q ∈ (1,∞), v ∈ Ap and X = Lq , the R-boundedness assumption follows
from the weighted boundedness of T (t , s) for all w ∈ Aq (see Theorem 3.1.4).

4. Although we allow p = 1 and v = 1 in the above assumptions, checking the
assumption (Rbdd) seems more difficult in this limiting case.

Lemma 3.3.7. Under the assumptions (A) and (E) the evolution family S for A uniquely
exists and satisfies

S(t , s) = e−(t−s)A0 T (t , s)

= T (t , s)e−(t−s)A0 = e−
1
2 (t−s)A0 T (t , s)e−

1
2 (t−s)A0 , s ≤ t ,

(3.3.6)
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and there is a constant C such that for all s ≤ t , ‖S(t , s)‖L (X0) ≤Ceω(t−s). Moreover, there
is a constant C such that,

‖S(t , s)‖L (X1) ≤C‖S(t , s)‖L (X0), s ≤ t .

Proof. The second identity follows from (E). To prove the first identity, we check
that S(t , s) given by (3.3.6) is an evolution family for A. By Corollary 3.3.5 this
would complete the proof. It is simple to check properties (i) and (ii) of Definition
3.3.2 and it remains to check (iii) and (iv). Let x ∈ X1. By the product rule for weak
derivatives and (E) we find

d

d t
S(t , s)x =−A0e−(t−s)A0 T (t , s)x − (A(t )− A0)T (t , s)e−(t−s)A0 x

=−A0S(t , s)x − (A(t )− A0)S(t , s)x =−A(t )S(t , s)x.

Similarly, one checks that d
d s S(t , s)x = S(t , s)A(s)x. The fact that S(t , s) satisfies the

same exponential estimate as T (t , s) follows from the estimate (2.3.1) applied to A0.
By assumptions, for every x ∈ X1, e−r A0 S(t , s)x = S(t , s)e−r A0 x. Thus, by differen-

tiation we find −A0S(t , s)x =−S(t , s)A0x and therefore

‖S(t , s)x‖X1 ≤C (‖A0S(t , s)x‖X0 +‖S(t , s)x‖X0 )

≤C (‖S(t , s)A0x‖X0 +‖S(t , s)x‖X0 )

≤C‖S(t , s)‖L (X0)(‖A0x‖X0 +‖x‖X0 ) ≤C ′‖S(t , s)‖L (X0)‖x‖X1 .

3.3.3. Main result on maximal Lp -regularity

Next we will present our main abstract result on the regularity of the strong solu-
tion to the problem

u′(t )+ (A(t )+λ)u(t ) = f (t ), t ∈R. (3.3.7)

Theorem 3.3.8. Assume (A), (E), and (Rbdd). For any λ>ω and for every f ∈ Lp (R, v ; X0)

there exists a unique strong solution u ∈W 1,p (R, v ; X0)∩Lp (R, v ; X1) of (3.3.7). Moreover,
there is a constant C independent of f and λ such that

(λ−ω)‖u‖Lp (R,v,X0) +‖A0u‖Lp (R,v ;X0) ≤C‖ f ‖Lp (R,v ;X0)

‖u′‖Lp (R,v ;X0) ≤ C (λ−ω+1)
λ−ω ‖ f ‖Lp (R,v ;X0).

(3.3.8)

Remark 3.3.9. Parts of the theorem can be extended to λ =ω, but we will not con-
sider this in detail. The constant in the estimate (3.3.8) for u′ can be improved if
one knows ‖A(t )x‖X0 ≤C‖A0x‖X0 or when taking λ≥ω+1 for instance.

Before, we turn to the proof of Theorem 3.3.8 we introduce some shorthand
notation. Let Sλ(t , s) = e−λ(t−s)S(t , s) and Tλ(t , s) = e−λ(t−s)T (t , s). Since by Lemma
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3.3.7, S is an evolution family for A, also Sλ is the evolution family for A(t )+λ.
Similarly, Tλ(t , s) is an evolution family for A(t )− A0+λ. By (3.3.3) if the support of
f ∈ L1(R; X0) is finite, a strong solution of (3.3.7) satisfies

u(t ) =
∫ t

−∞
Sλ(t ,r ) f (r )dr, t ∈R. (3.3.9)

Proof. Replacing A(t ) and T (t , s) by A(t )+ω and e−(t−s)ωT (t , s) one sees that without
loss of generality we may assume ω = 0 in (E) and (Rbdd). We first prove that u

given by (3.3.9), is a strong solution and (3.3.8) holds. First let f ∈ Lp (R, v ; X1) and
such that f has support on the finite interval [a,b]. Later on we use a density
argument for general f ∈ Lp (R, v ; X0). Let u be defined as in (3.3.9). Note that u = 0

on (−∞, a].

Step 1: By Lemma 3.3.7 the function u defined by (3.3.9) satisfies

‖u(t )‖X1 ≤
∫ t

−∞
‖Sλ(t , s)‖L (X1)‖ f (s)‖X1 d s

≤C ′‖ f ‖L1(a,b;X1) ≤Cv‖ f ‖Lp (R,v ;X1).

We show that u is a strong solution of (3.3.7). Observe that from Fubini’s Theorem
and d

d s Sλ(s,r )x =−(λ+ A(s))Sλ(s,r )x for x ∈ X1, we deduce∫ t

−∞
(λ+ A(s))u(s)d s =

∫ t

−∞

∫ s

−∞
(λ+ A(s))Sλ(s,r ) f (r )dr d s

=
∫ t

−∞

∫ t

r
(λ+ A(s))Sλ(s,r ) f (r )d s dr

=
∫ t

−∞
(−Sλ(t ,r ) f (r )+ f (r ))dr =−u(t )+

∫ t

−∞
f (r )dr.

Therefore, u is a strong solution of (3.3.7).

Step 2: In this step we show there exists a C ≥ 0 independent of λ and f such
that

‖A0u‖Lp (R,v ;X0) ≤C‖ f ‖Lp (R,v ;X0). (3.3.10)

By (3.3.6) and (3.3.9) we can write A0u = IK f , where

K (t , s) = φ((t − s)A0)Tλ(t , s)φ((t − s)A0)

t − s
.

Here φ ∈ H∞
0 (Σσ′ ) for σ′ < π/2 is given by φ(z) = z1/2e−z/2. In order to apply The-

orem 3.2.4, we note that all assumptions (H1)-(H4) are satisfied. Only the R-
boundedness condition (H4) requires some comment. Note that k ∈ K implies
that for all λ ≥ 0, kλ ∈ K where kλ(t ) = e−λt 1{t>0}k(t ). Therefore, it follows from
(Rbdd) that for all λ≥ 0,

R(IkTλ : k ∈K ) =R(IkλT : k ∈K ) ≤R(IkT : k ∈K ) <∞
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which gives (H4) with a uniform estimate in λ. Now (3.3.10) follows from Theorem
3.2.4.

Step 3: In this step we show there exists a C ≥ 0 independent of λ and f such
that

λ‖u‖Lp (R,v ;X0) ≤C‖ f ‖Lp (R,v ;X0). (3.3.11)

Using (3.3.9) and ‖S(t , s)‖ ≤C we find

λ‖u‖X0 ≤
∫ t

−∞
λ‖Sλ(t , s) f (s)‖X0 d s ≤C

∫ t

−∞
λe−λ(t−s)‖ f (s)‖X0 d s ≤Crλ∗ g (t ),

where rλ(t ) = λe−λ|t | and g (s) = ‖ f (s)‖X0 As r1 ∈ L1(R) is radially decreasing by [70,
Theorem 2.1.10] and [71, Theorem 9.1.9],

λ‖u‖Lp (R+,v ;X0) ≤C‖rλ∗ g‖Lp (R,v)

≤C‖M g‖Lp (R,v) ≤C ′‖g‖Lp (R,v) =C ′‖ f ‖Lp (R,v ;X0)

in the case p > 1. The case p = 1 follows from Fubini’s theorem and the convention
v ≡ 1. This estimate yields (3.3.11).

Step 4: To prove the estimate for u′ note that u′ =−λu−Au+ f , and hence writing
Z = Lp (R, v ; X0), by (3.3.5) and (3.3.8), we obtain

‖u′‖Z ≤λ‖u‖Z +‖Au‖Z +‖ f ‖Z

≤ (λ+C )‖u‖Z +C‖A0u‖Z +‖ f ‖Z ≤ K
(λ+C

λ−ω +1
)
‖ f ‖Z .

This finishes the proof of (3.3.8) for f ∈ Lp (R; X1) with support in [a,b]

Step 5: Now let f ∈ Lp (R, v ; X0). Choose for n ≥ 1, fn ∈ Lp (R, v ; X1) with compact
support and such that fn → f in Lp (R, v ; X0). For each n ≥ 1 let un be the corre-
sponding strong solution of (3.3.7) with f replaced by fn . From (3.3.8) applied to
un −um we can deduce that (un)n≥1 is a Cauchy sequence and hence convergent to
some u in Lp (R, v ; X1)∩W 1,p (R, v ; X0). On the other hand, for u defined as in (3.3.9)
one can show in the same way as in Step 3 that for almost all t ∈R,

‖u(t )−un(t )‖ ≤
∫ t

−∞
‖Sλ(t , s)‖‖ f (s)− fn(s)‖d s

≤C
∫ t

−∞
e−λ(t−s)‖ f (s)− fn(s)‖d s ≤C M(‖ f − fn‖)(t ),

where M is the Hardy-Littlewood maximal operator. Taking Lp (v)-norms and us-
ing the boundedness of the maximal operator we find un → u in Lp (R, v ; X0) and
hence u = u if p ∈ (1,∞). Taking limits (along a subsequence), (3.3.7) and (3.3.8)
follow if p ∈ (1,∞). The case p = 1 is proved similarly using Young’s inequality.
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It will be convenient to restate our results in terms of maximal Lp
v -regularity.

For −∞≤ a < b ≤∞, let

MRp ((a,b), v) =W 1,p ((a,b), v ; X0)∩Lp ((a,b), v ; X1).

Definition 3.3.10. Let −∞ ≤ a < b ≤ ∞. Assume (A) holds and let p ∈ [1,∞) and
v ∈ Ap with the convention that v ≡ 1 if p = 1. The operator-valued function A is
said to have maximal Lp

v -regularity on (a,b) if for all f ∈ Lp ((a,b), v ; X0), the problem{
u′(t )+ A(t )u(t ) = f (t ), t ∈ (a,b)

u(a) = 0,
(3.3.12)

has a unique strong solution u : (a,b) → X0 and there is a constant C independent
of f such that

‖u‖MRp ((a,b),v) ≤C‖ f ‖Lp ((a,b),v ;X0). (3.3.13)

Here we omit the condition u(a) = 0 if a =−∞.

Of course, the reverse estimate of (3.3.13) holds trivially. Note that maximal Lp
v -

regularity on (a,b) implies maximal Lp
v -regularity on (c,d) ⊆ (a,b). It is also easy

to check that if |b −a| <∞, the maximal Lp
v -regularity on (a,b) for A and λ+ A are

equivalent (see first part of the proof of Proposition 3.3.11). If one additionally as-
sumes that A generates an evolution family then one can obtain a uniform estimate
in the additional parameter λ.

Proposition 3.3.11. Assume p ∈ (1,∞). Assume −∞ < a < b < ∞. Assume (A) and
assume A generates a strongly continuous evolution family S. If there is a λ0 ∈ R such
that λ0 + A has maximal Lp

v -regularity on (a,b), then for every λ ∈ R, λ+ A has maximal
Lp

v -regularity on (a,b). Moreover, there is a constant C such that for every λ ≥ λ0 and
f ∈ Lp ((a,b), v ; X0), the unique strong solution u ∈MRp ((a,b), v) satisfies

|λ|‖u‖Lp ((a,b),v ;X0) +‖u‖MRp ((a,b),v) ≤C‖ f ‖Lp ((a,b),v ;X0). (3.3.14)

When it is unclear whether A generates an evolution family, then the above
result still holds, but it becomes unclear whether (3.3.14) holds with a uniform
estimate in λ.

Proof. In all evolution equations below we assume zero initial conditions.
The existence and uniqueness of a strong solution follows from the observation

that the solutions of u′(t )+ (λ+ A(t ))u(t ) = f (t ) and w ′(t )+ A(t )w(t ) = eλt f (t ) are
connected by the identity u(t ) = e−λt w(t ).

To prove the required estimate let λ ∈ R be arbitrary and note that the strong
solution of u′(t )+ (λ+ A(t ))u(t ) = f (t ) satisfies

u′(t )+ (λ0 + A(t ))u(t ) = f (t )+ (λ0 −λ)u(t ).
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Therefore, the estimate (3.3.13) yields

‖u‖MRp ((a,b),v) ≤C
[
‖ f ‖Lp ((a,b),v ;X0) +|λ0 −λ|‖u‖Lp ((a,b),v ;X0)

]
.

It remains to estimate |λ0 −λ|‖u‖Lp ((a,b),v ;X0). First consider λ > 0. Since u(t ) =∫ t
0 e−λ(t−s)S(t , s) f (s)d s it follows in the same way as in the proof of (3.3.11) that

λ|u(t )|X0 ≤Crλ∗ g (t ),

where g = 1(a,b) f and we used the uniform boundedness of S on finite time inter-
vals. Now the proof can be finished in the same way as was done for (3.3.11). For
λ ∈ [λ0,0] the result is obvious as |λ0 −λ| ≤ |λ0|.

Remark 3.3.12. A version of this result holds on infinite time intervals if one takes
λ>ω where ω is such that ‖S(t , s)‖ ≤ Meω(t−s) for −a < s ≤ t < b. This follows from
the same argument as in the above proof. However, one needs to start with f with
compact support, and use a density argument at the end. This is in order to make
sure that t 7→ eλt f (t ) is in Lp ((a,b), v ; X0) again.

The result of Theorem 3.3.8 immediately implies that

Corollary 3.3.13. Assume (A), (E) and (Rbdd). For any λ > ω, λ+ A has maximal Lp
v -

regularity on R.

Actually the constant in the estimate can be taken uniformly in λ. Indeed, for
fixed λ0 >ω by (3.3.8) and Remark 3.3.9, there is a constant C such that for all λ≥λ0

and for all f ∈ Lp (R+, v ; X0),

‖u‖MRp (R,v) ≤C‖ f ‖Lp (R,v ;X0). (3.3.15)

This is a maximal regularity estimate with constant which is uniform in λ.

Remark 3.3.14. If A is time independent and has an H∞-calculus of angle < π/2,
then setting A0 = A, and T (t , s) = I , Theorem 3.3.8 yields a maximal regularity result
for autonomous equations. There are much more suitable ways to derive maximal
Lp -regularity results in the autonomous case (see [94, 104, 152, 153]), using less
properties of the operator A. Indeed, only R-sectoriality of A is needed, but the
Banach space X0 is assumed to be a UMD space. We assume more on the operator
but less on the space as we only require finite cotype of X0 and the R-boundedness
of a certain integral operator. Another theory where no assumptions on the Banach
space are made but even more on the operator, can be found in [92]. In the above
mentioned works only maximal Lp -regularity on R+ is considered, but by a stan-
dard trick due to Kato one can always reduce to this case (see for instance the proof
of [53, Theorem 7.1]). For the case of time-dependent operators this is no longer
true.
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For convenience of the reader we state the following consequence in the au-
tonomous case.

Corollary 3.3.15. Let p ∈ [1,∞) and v ∈ Ap . Assume A ∈ H∞(Σσ) with σ<π/2. Assume
the family I := {Ik : k ∈ K } ⊂ L (Lp (R, v, X0)) is R-bounded, where for k ∈ K and f ∈
Lp (R, v ; X0),

Ik f (t ) :=
∫
R

k(t − s) f (s)d s. (3.3.16)

Then for every f ∈ Lp (R+, v ; X0) there exists a unique strong solution u ∈W 1,p
loc (R+, v ; X0)∩

Lp
loc(R+, v ; X1) of the problem

{
u′(t )+ Au(t ) = f (t ), t ∈R+
u(0) = 0,

(3.3.17)

Moreover, there is a constant C independent of f such that

‖u′‖Lp (R+,v,X0) +‖Au‖Lp (R+,v ;X0) ≤C‖ f ‖Lp (R+,v ;X0). (3.3.18)

We show with the following proposition that one can use standard extrapola-
tion techniques to obtain maximal Lp

v -regularity from the unweighted case. This is
a consequence of Theorem 3.3.8 combined with the extrapolation results of [79].

Proposition 3.3.16. Assume (A), (E) and (Rbdd) with v = 1 and p ∈ (1,∞). Assume
‖A0S(t , s)‖ ≤ C (t − s)−1. Then for any v ∈ Ap (R) and any λ > ω, λ+ A has maximal Lp

v -
regularity on R.

Proof. As in the proof of Theorem 3.3.8 it is enough to prove the estimate

‖A0u‖Lp (R,v ;X0) ≤C‖ f ‖Lp (R,v ;X0), ∀ v ∈ Ap (R).

The result then follows in the same way as Corollary 3.3.13 from Theorem 3.3.8.
Assume first v = 1. As in the proof of Theorem 3.3.8, we can write A0u = IK f ,

with

K (t , s) = 1{s<t } A0e−λ(t−s)S(t , s).

Note that in the special case in which ‖A0S(t , s)‖ ≤C (t − s)−1, the kernel K (t , s) sat-
isfies the Calderón-Zygmund estimates of [79, Definition 2.5]. Moreover, by Theo-
rem 3.3.8 it holds that ‖A0u‖Lp (R;X0) ≤C‖ f ‖Lp (R;X0), which implies that IK is a vector
valued Calderón-Zygmund operator (see [79, Definition 2.6]). We can thus apply
[79, Corollary 2.10] to get that for all v ∈ Ap , ‖A0u‖Lp (R,v ;X0) ≤C‖ f ‖Lp (R,v ;X0), with C

independent of f and λ, but depending on the Ap constant [v]p .
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3.3.4. Traces and initial values

Recall from Lemma 3.3.1 that any u ∈ W 1,p ((a,b), v ; X0) has a continuous version.
We introduce certain interpolation spaces in order to give a more precise descrip-
tion of traces. Let Xv,p be the space of all x ∈ X0 for which there is a u ∈MRp (R+, v)

such that u(0) = x. Let

‖x‖Xv,p = inf{‖u‖MRp (R+,v) : u(0) = x}. (3.3.19)

Spaces of this type have been studied in the literature (see [18, 23, 91] and refer-
ences therein). Obviously, one has X1 ,→ Xv,p ,→ X0.

For t ∈R and a weight v , let vt = v(·− t ). The following trace estimate on R+ is a
direct consequence of the definitions. A similar assertions holds for u ∈ MRp (R, v)

for all t ∈R.

Proposition 3.3.17 (Trace estimate). For u ∈MRp (R+, v), one has

‖u(t )‖Xvt ,p ≤ ‖u‖MRp (R+,v), t ∈ [0,∞).

A simple application of maximal regularity is that one can automatically con-
sider non-zero initial values. Note that without loss of generality we can let a = 0.

Proposition 3.3.18. Assume (A) and let T ∈ (0,∞]. Assume A has maximal Lp
v -regularity

on (0,T ) with constant K A . For x ∈ X0 and f : (0,T ) → X0 strongly measurable the follow-
ing are equivalent:

(1) The data satisfies x ∈ Xv,p and f ∈ Lp ((0,T ), v ; X0)

(2) There exists a unique strong solution u ∈MRp ((0,T ), v) of{
u′(t )+ A(t )u(t ) = f (t ), t ∈ (0,T )

u(0) = x.
(3.3.20)

In this case there is a constant cv,p,T such that the following estimate holds:

max{cv,p,T ‖x‖Xv,p ,‖ f ‖Lp ((0,T ),v ;X0)} ≤ ‖u‖MRp ((0,T ),v)

≤ K A‖x‖Xv,p +K A‖ f ‖Lp ((0,T ),v ;X0).
(3.3.21)

Proof. (1) ⇒ (2): Let w ∈ MRp (R+, v) be such that w(0) = x. Let g (t ) = −(w ′(t )+
A(t )w(t )). Then g ∈ Lp ((0,T ), v ; X0). Let ũ be the solution to (3.3.20) with zero initial
value and with f replaced by f + g . Now u(t ) = ũ(t )+w(t ) is the required strong
solution of (3.3.20). Indeed, clearly u(0) = x and

u′(t )+ A(t )u(t ) = ũ′(t )+ A(t )ũ(t )+w ′(t )+ A(t )w(t )

= f + g − g = f .
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Moreover,

‖u‖MRp ((0,T ),v) ≤ ‖ũ‖MRp ((0,T ),v) +‖w‖MRp ((0,T ),v)

≤ K A‖ f ‖Lp ((0,T ),v ;X0) +K A‖w‖MRp (R+,v).

Taking the infimum over all w ∈ MRp (R+, v) with w(0) = x also yields the second
part of (3.3.21).

(2) ⇒ (1): As u′ and Au are both in Lp ((0,T ), v ; X0), the identity in (3.3.20) yields
that f ∈ Lp ((0,T ), v ; X0) with the estimate as stated. To obtain the required proper-
ties for x note that u ∈ MRp ((0,T ), v) can be extended to a function u ∈ MRp (R+, v)

with cv,p,T ‖u‖MRp (R+,v) ≤ ‖u‖MRp ((0,T ),v). In the case T =∞ we can take cv,p = 1.

It can be difficult to identify Xv,p . For power weights this is possible. Includ-
ing a power weight has become an important standard technique to allow non-
smooth initial data and to create compactness properties. At the same time, the
regularity properties of the solution to (3.3.20) for t > 0 are unchanged. Moreover,
maximal regularity results with power weights are important in the study of non-
linear PDEs. For more details and applications to evolution equations we refer to
[72, 97, 113, 119, 120, 129].

Example 3.3.19. Assume v(t ) = tα with α ∈ (−1, p − 1). Then v ∈ Ap and Xv,p =
(X0, X1)1− 1+α

p ,p (see [148, Theorem 1.8.2]). Here (X0, X1)θ,p stands for the real inter-

polation space between X0 and X1. In the limiting cases α ↑ p −1 and α ↓ −1, one
sees that the endpoint X1 and X0 can almost be reached.

As in [129] we find that for α ∈ [0, p −1), any u ∈ MRp (R+, v) has a continuous
version with values in (X0, X1)1− 1+α

p ,p and

sup
t∈R+

‖u(t )‖(X0,X1)
1− 1+α

p ,p
≤C‖u‖MRp (R+,v). (3.3.22)

Indeed, this follows from the boundedness and strong continuity of the left-transla-
tion in Lp (R+, v ; (X0, X1)1− 1+α

p ,p ) and Proposition 3.3.17.

On the other hand, for every −1 < α < p −1 one has u ∈ C ((0,∞); (X0, X1)1− 1
p ,p )

and for every ε> 0,

sup
t∈[ε,∞)

tα/p‖u(t )‖(X0,X1)
1− 1

p ,p
≤C‖t 7→ tα/p u(t )‖MRp (ε,∞) ≤Cε‖u‖MRp (R+,v),

where we used t−p ≤ max{1,ε−p }. If additionally u(0) = 0, then by Hardy’s inequal-
ity (see [80, p. 245-246]) we can take ε= 0 in the last estimate.

In the special case X0 is a Hilbert space, Theorem 3.3.8 implies the following
result.
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Theorem 3.3.20. Let X0 be a Hilbert space. Assume A : (0,τ) → L (X1, X0) is such that
for all x ∈ X1, t 7→ A(t )x is measurable and

c1‖x‖X1 ≤ ‖x‖X0 +‖A(t )x‖X0 ≤ c2‖x‖X1 , t ∈ (0,τ), x ∈ X1.

Assume there is an operator A0 on X0 with D(A0) = X1 which generates a contractive
analytic semigroup (e−z A0 )z∈Σθ which is such that (A(t )−A0)t∈(0,τ) generates an evolution
family (T (t , s))0≤s≤t≤τ on X0 which commutes with (e−r A0 )r≥0.

e−r A0 T (t , s) = T (t , s)e−r A0 , 0 ≤ s ≤ t ≤ τ, r ≥ 0.

Then A has maximal Lp -regularity for every p ∈ (1,∞), i.e. for every f ∈ Lp (0,τ; X0) and
x ∈ (X0, X1)1− 1

p ,p there exists a unique strong solution u ∈ Lp (0,τ; X1)∩W 1,p (0,τ; X0)∩
C ([0,τ]; (X0, X1)1− 1

p ,p ) of (3.3.20) and there is a constant C independent of f and x such
that

‖u‖Lp (0,τ;X1) +‖u‖W 1,p (0,τ;X0)+‖u‖C ([0,τ];(X0,X1)
1− 1

p ,p
)

≤C‖ f ‖Lp (0,τ;X0) +C‖x‖(X0,X1)
1− 1

p ,p
.

Proof. First of all we may use a constant extension of A to an operator family on
R. Clearly, we can do this in such a way that T (t , s) is uniformly bounded in
−∞< s ≤ t <∞ say by a constant M . For instance one can take A(t ) = A0 for t ∉ (0,τ).
Assumption (A) is clearly satisfied. Note that by the assumption and [104, Theo-
rem 11.13], A0 has a bounded H∞-calculus of angle <π/2 and hence (E) is satisfied.

By Proposition 3.1.2 {IkT : k ∈K } is uniformly bounded. For p = 2, this implies
R-boundedness of {IkT : k ∈ K } ⊆ L (L2(R, v ; X0)), because L2(R, v ; X0) is a Hilbert
space. By Proposition 3.1.3 this implies that {IkT : k ∈ K } ⊆ L (Lp (R, v ; X0)) is R-
bounded as well and hence condition (Rbdd) holds. Therefore, all the conditions
of Theorem 3.3.8 are satisfied, and we find that A has maximal Lp

v -regularity on
R. This implies that A has maximal Lp

v -regularity on (0,τ), and hence the required
result follows from Proposition 3.3.18 and Example 3.3.19.

3.3.5. Perturbation and approximation

In this section we will illustrate how the additional parameter λ from (3.3.15) can
be used to solve the perturbed problem{

u′(t )+ A(t )u(t )+B(t ,u(t )) = f (t ), t ∈ (0,T )

u(0) = x.
(3.3.23)

Here B : [0,T ]× X1 → X0 is such that there exists a constant ε> 0 small enough and
constants C ,L ≥ 0 such that for all x, y ∈ X1 and t ∈ (0,T ),

‖B(t , x)−B(t , y)‖X0 ≤ ε‖x − y‖X1 +LB‖x − y‖X0 ,

‖B(t , x)‖X0 ≤CB (1+‖x‖X1 ).
(3.3.24)
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Recall that MRp ((0,T ), v) =W 1,p ((0,T ), v ; X0)∩Lp ((0,T ), v ; X1).

Proposition 3.3.21. Assume T <∞. Assume (A) holds and assume there is a λ0 such
that for all λ≥λ0, λ+A has maximal Lp

v -regularity on (0,T ) and there is a constant C A > 0

such that for all λ≥λ0 and f ∈ Lp ((0,T ), v ; X0), the strong solution u to (3.3.12) satisfies

λ‖u‖Lp ((0,T ),v ;X0) +‖u‖MRp ((0,T ),v) ≤C A‖ f ‖Lp ((0,T ),v ;X0). (3.3.25)

Assume the constant from (3.3.24) satisfies ε< 1
C A

. Then for every f ∈ Lp ((0,T ), v ; X0) and
x ∈ Xv,p , there exists a unique strong solution u ∈MRp ((0,T ), v) of (3.3.23) and

‖u‖MRp ((0,T ),v) ≤C (1+‖x‖Xv,p +‖ f ‖Lp ((0,T ),v ;X0)), (3.3.26)

where C is independent of f and x.

The proof of this proposition is a standard application of the regularity estimate
(3.3.25) combined with the Banach fixed point theorem.

Proof. Let λ> 0 be so large that C A LB
λ <C Aε := 1−θ and define the following equiv-

alent norm on MRp ((0,T ), v):

‖u‖λ =λ‖u‖Lp ((0,T ),v ;X0) +‖u‖MRp ((0,T ),v).

We will prove that for all g ∈ Lp ((0,T ), v ; X0) and x ∈ Xv,p there exists a unique
strong solution w ∈MRp ((0,T ), v) of

w ′(t )+ (A(t )+λ)w(t )+ B̃(t , w(t )) = g (t ), w(0) = x. (3.3.27)

and that w satisfies the estimate (3.3.26) with (u, f ) replaced by (w, g ). Here B̃(t , x) =
e−λt B(t ,eλt x) and note that B̃ satisfies the same Lipschitz estimate (3.3.24) as B . To
see that the required result for (3.3.23) follows from this, note that there is a one-to-
one correspondence between both problems given by u(t ) = eλt w(t ) and f = eλt g .
Therefore, from now it suffices to consider (3.3.27).

In order to solve (3.3.27) we use the maximal regularity estimate (3.3.25) com-
bined with Proposition 3.3.18 and the special choice of λ. For φ ∈MRp ((0,T ), v) we
write w = L(φ), where w ∈MRp ((0,T ), v) is the unique strong solution of

w ′(t )+ (A(t )+λ)w(t ) = g (t )− B̃(t ,φ(t )), w(0) = x. (3.3.28)

Then for φ1,φ2 ∈MRp ((0,T ), v), by (3.3.25) one has

‖L(φ1)−L(φ2)‖λ ≤C A‖B̃(·,φ1)− B̃(·,φ2)‖Lp ((0,T ),v ;X0)

≤C Aε‖φ1 −φ2‖Lp ((0,T ),v ;X1) +C ALB‖φ1 −φ2‖Lp ((0,T ),v ;X0)

≤ (1−θ)‖φ1 −φ2‖λ.

Hence L is a contraction on MRp ((0,T ), v) with respect to the norm ‖·‖λ. Therefore,
by the Banach fixed point theorem there is a unique w ∈ MRp ((0,T ), v) such that
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L(w) = w . It is clear that w is the required strong solution of (3.3.27). To prove the
required estimate note that by (3.3.25) and Proposition 3.3.18 one has

‖w‖λ = ‖L(w)‖λ ≤ ‖L(w)−L(0)‖λ+‖L(0)‖λ
≤ (1−θ)‖w‖λ+C A(‖g‖Lp ((0,T ),v ;X0) +CB )+C‖x‖Xv,p .

Subtracting (1−θ)‖w‖λ on both sides, and rewriting the estimate in terms of f and
u gives the required result.

A similar result holds on infinite time intervals if we replace the assumption
(3.3.24) by the following condition:

‖B(t , x)−B(t , y)‖X0 ≤ ε‖x − y‖X1 +LB‖x − y‖X0 ,

‖B(t , x)‖X0 ≤CB‖x‖X1 .
(3.3.29)

This is to make sure that t 7→ B(t ,u(t )) ∈ Lp (R, v ; X0) if u ∈ Lp (R, v ; X1). Consider for
λ large enough:

u′(t )+ (λ+ A(t ))u(t )+B(t ,u(t )) = f (t ), t ∈R. (3.3.30)

Proposition 3.3.22. Assume (A) holds and assume there is a λ0 such that for all λ≥ λ0,
λ+ A has maximal Lp

v -regularity on R and there is a constant C A > 0 such that for all
λ≥λ0 and f ∈ Lp (R, v ; X0), the strong solution u to (3.3.12) satisfies

λ‖u‖Lp (R,v ;X0) +‖u‖MRp (R,v) ≤C A‖ f ‖Lp (R,v ;X0). (3.3.31)

Assume the constant from (3.3.29) satisfies ε < 1
C A

. Then there exists a λ′
0 such that

for every λ ≥ λ′
0 for every f ∈ Lp (R, v ; X0) there exists a unique strong solution u ∈

Lp (R, v ; X1)∩W 1,p (R, v ; X0) of (3.3.30) and

‖u‖MRp (R,v) ≤C‖ f ‖Lp (R,v ;X0), (3.3.32)

where C is independent of λ and f .

The proof follows the line of that of Proposition 3.3.21, so we omit the details.
With a similar method as in Proposition 3.3.21 one obtains the following perturba-
tion result which will be used in Section 3.5.

Proposition 3.3.23. Assume T <∞. Assume (A) holds and A(·) has maximal Lp
v -regularity

on (0,T ) and the estimate (3.3.13) holds with constant C A . Let ε < C A . If B : [0,T ] →
L (X1, X0) satisfies ‖B(t )x‖X0 ≤ ε‖x‖X1 for all x ∈ X1 and t ∈ [0,T ], then A +B has maxi-
mal Lp

v -regularity with constant C A
1−C Aε

.

Proof. One can argue as in the proof of Proposition 3.3.21 with λ = 0, g = f , B̃ = B

and 1−θ =C Aε. Moreover, if w = L(w), then

‖w‖MRp ((0,T ),v) = ‖L(w)−L(0)‖MRp ((0,T ),v) +‖L(0)‖MRp ((0,T ),v)

≤ (1−θ)‖w‖MRp ((0,T ),v) +C A‖ f ‖Lp ((0,T ),v ;X0),

and the required estimate result follows.
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Consider now the sequence of problems:{
u′

n(t )+ An(t )u(t ) = fn(t ), t ∈ (a,b)

u(a) = xn .
(3.3.33)

Here we omit the initial condition if a =−∞.
Recall that va = v(·−a). The following approximation result holds.

Proposition 3.3.24. Assume (A) holds for A and An for n ≥ 1 with uniform estimates
in n. Assume A and An for n ≥ 1 have maximal Lp

v -regularity on (a,b) with uniform
estimates in n. Let fn , f ∈ Lp ((a,b), v ; X0) and xn , x ∈ Xva ,p for n ≥ 1. Then if u and un are
the solutions to (3.3.2) and (3.3.33) respectively, then there is a constant C only dependent
on the maximal Lp

v regularity constants and the constants in (A) such that

‖un −u‖MRp ((a,b),v) ≤C
[
‖xn −x‖Xva ,p +‖ fn − f ‖Lp ((a,b),v ;X0)

+‖(An − A)u‖Lp ((a,b),v ;X0)

]
.

(3.3.34)

In particular if xn → x in Xva ,p , for all z ∈ X1, An(t )z → A(t )z in X0 a.e. and fn → f in
Lp ((a,b), v ; X0), then un → u in MRp ((a,b), v).

Typically, one can take An = ϕn ∗ A where (ϕn)n≥1 is an approximation of the
identity. If ϕn are smooth functions, then An will also be smooth and therefore, An

will generate an evolution family with many additional properties (see [113, 143]).

Proof. The last assertion follows from (3.3.34) and the dominated convergence the-
orem. To prove the estimate (3.3.34) note that wn = un −u satisfies the following
equation

w ′
n + An wn = ( fn − f )+ (An − A)u, wn(a) = xn −x.

Therefore, the (3.3.34) follows immediately from the maximal Lp
v -regularity esti-

mate.

3.4. AN EXAMPLE: m-TH ORDER ELLIPTIC OPERATORS

In this section let p, q ∈ (1,∞), m ∈ {1,2, ...} and consider the usual multi-index nota-
tion Dα = Dα1

1 · ... ·Dαd
d , ξα = (ξ1)α1 · ... · (ξd )αd and |α| =α1 +·· ·+αd for a multi-index

α= (α1, · · · ,αd ) ∈N0
d . Below we let X0 = Lq (Rd , w) and X1 =W m,q (Rd , w).

Recall that f ∈ W m,q (Rd , w) if f ∈ Lq (Rd , w) and for all |α| ≤ m, ‖Dα f ‖Lq (Rd ,w) <
∞. In this case we let

[ f ]W m,q (Rd ,w) =
∑

|α|=m
‖Dα f ‖Lq (Rd ,w), ‖ f ‖W m,q (Rd ,w) =

∑
|α|≤m

‖Dα f ‖Lq (Rd ,w).

The weights in space will be used in combination with Theorem 3.1.4 to obtain
R-boundedness of the integrals operators arising in (Rbdd).
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Consider an m-th order elliptic differential operator A given by

(A(t )u)(t , x) := ∑
|α|≤m

aα(t , x)Dαu(t , x), t ∈R+, x ∈Rd , (3.4.1)

where D j :=−i ∂
∂ j

and aα :R+×Rd →C.

In this section we will give conditions under which there holds maximal Lp
v -

regularity for A or equivalently we will prove optimal Lp
v -regularity results for the

solution to the problem{
u′(t , x)+ (λ+ A(t ))u(t , x) = f (t , x), t ∈ (a,b), x ∈Rd

u(a, x) = u0(x), x ∈Rd .
(3.4.2)

A function u will be called a strong Lp
v (Lq

w )-solution of (3.4.2) if u ∈MRp ((a,b), v) and
(3.4.2) holds almost everywhere.

With slight abuse of notation we write A for the realization of A on X0 = Lq (Rd , w)

with domain D(A) = X1. In this way (3.4.2) can be modeled as a problem of the form
(3.3.20). Also, we have seen in Section 3.3 (and in particular Proposition 3.3.18) that
it is more general to study maximal Lp

v -regularity on R. Therefore, we will focus
on this case below.

3.4.1. Preliminaries on elliptic equations

In this section we present some results for elliptic equations which will be needed
below. Recall the definition of A ∈ El l (θ,κ,K ) from Section 2.1:

Definition 3.4.1. Let

A := ∑
|α|≤m

aαDα,

with aα ∈ C constant. We say that A is uniformly elliptic of angle θ ∈ (0,π) if there
exists a constant κ ∈ (0,1) such that

A](ξ) := ∑
|α|=m

aαξ
α ⊂Σθ and |A](ξ)| ≥ κ, ξ ∈Rd , |ξ| = 1

and there is a constant K such that |aα| ≤ K for all |α| ≤ m. In this case we write
A ∈ Ell(θ,κ,K).

The following result is on the sectoriality of the operator in the x-independent
case. The proof is an application of the Mihlin multiplier theorem.

Theorem 3.4.2. Let 1 < q <∞ and w ∈ Aq . Assume A ∈ Ell(θ0,κ,K) with θ0 ∈ (0,π). Then
for every θ > θ0 there exists an Aq -consistent constant C depending on the parameters
m,d ,θ0 −θ,κ,K , q such that

‖λ1− |β|
m Dβ(λ+ A)−1‖L (Lq (Rd ,w)) ≤C , |β| ≤ m, λ ∈Σπ−θ . (3.4.3)

In particular, there is a constant C̃ depending only on θ and C such that ‖e−t A‖ ≤ C̃ .
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The case of x-dependent coefficients can be derived by standard localization
arguments, but we will not need this case below (see [77, Theorem 3.1] and [102,
Section 6]).

Proof. For (3.4.3) we need to check that for every λ ∈Σπ−θ, and |β| ≤ m, the symbol
M :Rd →C given by

M (ξ) =λ1− |β|
m ξβ(λ+ A](ξ))−1

satisfies the following: for every multiindex α ∈ Nd
0 , there is a constant Cα which

only depends on d ,α,θ−θ0,K ,κ such that

|ξαDαM (ξ)| ≤Cα, ξ ∈Rd . (3.4.4)

Indeed, as soon as this is checked, the result is a consequence of the weighted
version of Mihlin’s multiplier theorem (see [65, Theorem IV.3.9]).

In order to check the condition for ` ≥ 0 let F` be the span of functions of the
form ληg h−1, where η ∈ [0,1], g : Rd → C is polynomial which is homogeneous of
degree ν ∈N0 and h = (λ+A])µ with µ ∈N and `= m(µ−η)−ν. It is clear that M ∈ F0.
Using induction one can check that for f ∈ F` one has Dα f ∈ F`+|α|.

We claim that for f ∈ F` the mapping ξ 7→ |ξ|` f (ξ) is uniformly bounded. In
order to prove this it suffices to consider f = ληg h−1 with g and h as before, and
`= m(µ−η)−ν. As ξ 7→ |ξ|−νg (ξ) is bounded it remains to estimate

ληh(ξ)−1|ξ|`+ν = sη(s + A](ξ
∗))−µ,

where ξ∗ = ξ/|ξ| and s =λ|ξ|−m .
Write A](ξ∗) = r e iϕ with r = |A](ξ∗)| and |ϕ| < θ0 and s = ρe iψ with ρ = |s| and

|ψ| <π−θ. Then

|sη(s + A](ξ
∗))−µ| = ρη|ρe iψ+ r e iϕ|−µ = ρη(ρ2 + r 2 +2ρr cos(ψ−ϕ))−µ/2.

Since cos(ψ−ϕ) ≥ cos(π− (θ−θ0)) =−cos(θ−θ0) =−(1−ε2) with ε ∈ (0,1) and −2ρr ≥
−(ρ2 + r 2) and we find

|sη(s + A](ξ
∗))−µ| ≤ ρη(ρ2 + r 2)−µ/2ε−µ ≤ κµ−ηε−µ,

where in the last step we used r ≥ κ and µ≥ η. This proves the claim.
In order to check (5.2.3) note that M ∈ F0 and hence by the above DαM (ξ) ∈ F|α|.

Therefore, the bound follows from the claim about F` and the observation that the
functions g arising in the linear combinations of the form ληg h−1 satisfy |g (ξ)| ≤
CK ,d ,α.

The assertion for e−t A follows from (2.3.1) and the estimate (3.4.3) with β =
0.

As a consequence we obtain the following:
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Corollary 3.4.3. Let λ0 > 0. Under the conditions of Theorem 3.4.2, the operator A is
closed and for every λ≥λ0,

c‖u‖W m,q (Rd ,w) ≤ ‖(λ+ A)u‖Lq (Rd ,w) ≤ (K +λ)‖u‖W m,q (Rd ,w),

where c−1 is Aq -consistent and only depends on m,d ,θ0 −θ,κ,K , q and λ0.

Corollary 3.4.3 for x-dependent coefficients will be derived from Theorem 3.4.5
in Remark 3.4.7.

Corollary 3.4.4. Let m ≥ 1, 1 < q < ∞ and w ∈ Aq . If m ≥ 2, then there is an Aq -
consistent constant C depending only on d , q and m such that for all |β| ≤ m −1

‖Dβ f ‖Lq (Rd ,w) ≤C‖ f ‖Lq (Rd ,w)[ f ]W m,q (Rd ,w)

≤C ′λ
β
m ‖ f ‖Lq (Rd ,w) +C ′λ− m−|β|

|m| [ f ]W m,q (Rd ,w).

Proof. Note that for |β| = 1,

‖Dβ f ‖Lq (Rd ,w) ≤Cλ
1
2 ‖ f ‖Lq (Rd ,w) +λ− 1

2 [ f ]W 2,q (Rd ,w)

follows from Theorem 3.4.2 with A =−∆ and the required estimate follows by min-
imizing over all λ > 0. The case m > 2 can be obtained by induction (see [102,
Exercise 1.5.6]). The final estimate follows from Young’s inequality.

3.4.2. Main result on Rd

For A of the form (3.4.1) and x0 ∈Rd and t0 ∈R let us introduce the notation:

A(t0, x0) := ∑
|α|≤m

aα(t0, x0)Dα.

for the operator with constant coefficients.

(C) Let A be given by (3.4.1) and assume each aα : R×Rd → C is measurable. We
assume there exist θ0 ∈ [0,π/2), κ and K such that for all t0 ∈ R and x0 ∈ Rd ,
A(t0, x0) ∈ Ell(θ0,κ,K). Assume there exists an increasing function ω : (0,∞) →
(0,∞) with the property ω(ε) → 0 as ε ↓ 0 and such that

|aα(t , x)−aα(t , y)| ≤ω(|x − y |), |α| = m, t ∈R, x, y ∈Rd .

As θ0 < π/2, the above ellipticity condition implies that m is even in all the
results below.

The set of parameters on which all constant below will depend is given by

P = {κ,K ,ω, [v]Ap , [w]Aq , p, q,d ,m,θ0}. (3.4.5)

Moreover, all the dependence on the weights will be in an Ap and Aq -consistent
way.
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Theorem 3.4.5. Let p, q ∈ (1,∞). Let v ∈ Ap (R) and w ∈ Aq (Rd ). Assume condition
(C) on A. Then there exists a λ0 ∈ R depending on the parameters in P such that for all
λ≥λ0 the operator λ+ A has maximal Lp

v -regularity on R. Moreover, for every λ≥λ0 and
for every f ∈ Lp (R, v ; X0) there exists a unique u ∈ MRp (R, v) which is a strong Lp (Lq )

solution of
u′(t , x)+ (λ+ A(t ))u(t , x) = f (t , x), a.e. t ∈R, x ∈Rd

and there is constant C depending on the parameters in P such that

λ‖u‖Lp (R,v ;X0)) +‖u‖MRp (R,v) ≤C‖ f ‖Lp (R,v ;X0). (3.4.6)

Recall that MRp (R, v) =W 1,p (R, v ; X0)∩Lp (R, v ; X1).
Also note that the estimate (3.4.6) also holds if one replaces R by (−∞,T ) for some
T ∈ R. The above result also implies that λ+ A has maximal Lp

v -regularity on (0,T )

for every T <∞ and every λ ∈R.
The proof of the above result is a based on Theorem 3.3.8, standard PDE tech-

niques and extrapolation arguments. The proof of Theorem 3.4.5 is divided in
several steps of which some are standard, but we prefer to give a complete proof
for convenience of the reader. In Steps 1 and 2 we assume aα = 0 for |α| < m and
show how to include these lowers order terms later on.

Step 1: Consider the case where the coefficients aα : R→ C are x-independent.
Choose δ > 0 small enough and set A0 = δ(−∆)m/2. Note that by Corollary 3.4.3
D(A0) = X1. We write

A(t ) = ∑
|α|=m

aα(t )Dα, Ã(t ) = A(t )− A0.

It is a simple exercise to see that there exist δ0 > 0, θ′ ∈ (θ, π2 ) and κ′ > 0 depending
on κ and θ that for all δ ∈ (0,δ0], Ã(t ) ∈ Ell(θ′,κ′,K). Therefore, each Ã(t ) satisfies
the conditions of Theorem 3.4.2 with constants only depending on δ0,κ,θ,K . The
same holds for operators of the form Ãab := 1

b−a

∫ b
a Ã(t )d t , where 0 ≤ a < b < ∞.

Note that Ãab and Ã(t ) are resolvent commuting and have domain X1. Therefore,
by Example 3.3.3 the evolution family for Ã exists and is given by

T (t , s) = exp
(
− (t − s)Ãst

)
, 0 ≤ s ≤ t <∞.

Moreover, for all λ> 0,

‖T (t , s)‖L (Lq (Rd ,w)) ≤C , 0 ≤ s ≤ t , (3.4.7)

where C only depends on δ0,κ,θ,θ0,K , q, [w]Aq . Since A0 is also resolvent com-
muting with Ãab and Ã(t ), it follows from Lemma 3.3.7 that the evolution family
generated by A factorizes as

S(t , s) = e−
1
2 (t−s)A0 T (t , s)e−

1
2 (t−s)A0 , 0 ≤ s ≤ t <∞.
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We check the hypothesis (A), (E) and (Rbdd) of Theorem 3.3.8. Condition (A)
follows Corollary 3.4.3 with λ = 1. For condition (E), recall from Section 2.3 that
A0 has a bounded H∞-calculus of angle <π/2. Moreover, X0 = Lq (Rd ) has finite co-
type (see [45, Chapter 11]). Finally, (Rbdd) follows from Theorem 3.1.4 and (3.4.7).
Therefore, by Theorem 3.3.8 we find there is a constant C such that (3.4.6) holds for
all λ≥ 1.

Step 2: Next we consider the case where the coefficients of A are also x-dependent,
but still with aα = 0 for α< m. We start with a standard freezing lemma.

Lemma 3.4.6 (Freezing lemma). Let ε > 0 be such that ω(ε) ≤ 1
2C , where C is the con-

stant for (3.4.6) obtained in Step 1. If u ∈ MRp (R, v) and for some x0 ∈ Rd for each t ∈ R,
u(t , ·) has support in a ball B(x0,ε) = {x : |x − x0| < ε}, then for all λ ≥ 1, the following
estimate holds:

λ‖u‖Lp (R,v ;X0) +‖u‖MRp (R,v) ≤ 2C‖(λ+ A)u +u′‖Lp (R,v ;X0). (3.4.8)

Proof. Let f := (λ+ A)u +u′ and observe that u′+ (A(·, x0)+λ)u = f + (A(·, x0)− A)u.
By (3.4.6), we find

λ‖u‖Lp (R,v ;X0) +‖u‖MRp (R,v) ≤C‖ f ‖Lp (R,v ;X0) +C‖(A(·, x0)− A)u‖Lp (R,v ;X0).

Note that by the support condition on u and the continuity of x 7→ aα(·, x),

‖(A(t , x0)− A(t ))u(t )‖X0 ≤ω(ε)‖u(t )‖X1 .

Therefore, C‖(A(·, x0)− A)u‖Lp (R,v ;X0) ≤ 1
2‖u‖MRp (R,v) and hence

λ‖u‖Lp (R,v ;X0) +‖u‖MRp (R,v) ≤C‖ f ‖Lp (R,v ;X0) + 1

2
‖u‖MRp (R,v).

and the result follows from this.

Step 3: In this step we use a localization argument in the case p = q to show that
there is a constant C such that for all u ∈MRp (R, v),

λ‖u‖Lq (R,v ;X0) +‖u‖Lq (R,v ;X1) ≤C‖(λ+ A)u +u′‖Lq (R,v ;X0). (3.4.9)

(a) Take a φ ∈ C∞(Rd ) with φ ≥ 0, ‖φ‖Lq (Rd ) = 1 and support in the ball Bε = {x :

|x| < ε} where ε> 0 is as in Lemma 3.4.6. Note that

|∇mu(t , x)|q =
∫
Rd

|∇mu(t , x)φ(x −ξ)|q dξ. (3.4.10)

By the product rule, we can write

∇m[u(t , x)φ(x −ξ)] =∇mu(t , x) ·φ(x −ξ)+ ∑
|α|≤m−1

cαDαu(t , x)Dg (α)φ(x −ξ),
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with |g (α)| ≤ m and cα ≥ 0. Therefore,

|∇mu(t , x) ·φ(x −ξ)| ≤ |∇m[u(t , x)φ(x −ξ)]+ C̃
∑

|α|≤m−1
|Dαu(t , x)|,

where used
∑

|α|≤m−1 cα|Dg (α)φ(x)| ≤ C̃ . Taking Lq (R, v)-norms on both sides gives

‖∇mu‖Lq (R,v ;X0) =
(∫
Rd

‖∇muφ(·−ξ)‖q
Lq (R;X0)dξ

)1/q

≤
(∫
Rd

‖∇m(uφ(·−ξ))‖q
Lq (R,v ;X0)dξ

)1/q
+L,

(3.4.11)

where L = C̃
∑

|α|≤m−1 ‖Dαu‖Lq (R,v ;X0). For each fixed ξ in the case p = q , Lemma 3.4.6
applied to x 7→ u(t , x)φ(x −ξ) yields

‖∇m(u(t )φ)‖Lq (R,v ;X0) ≤
(∫
Rd

‖∇m(uφ(·−ξ))‖q
Lq (R,v ;X0)dξ

)1/q
+L

≤C
(∫
Rd

‖(λ+ A)(uφ(·−ξ))+u′φ(·−ξ)‖q
Lq (R,v ;X0) dξ

) 1
q +L,

(3.4.12)

Note that for each ξ ∈Rd ,

(λ+ A)(uφ(·−ξ)) = ∑
|α|=m

aαDα[uφ(·−ξ)]+λuφ(·−ξ)

= (λ+ A)u ·φ(·−ξ)+ ∑
|α|≤m−1

cαaαDαuDg (α)φ(·−ξ).

Thus we also have(∫
Rd

‖(λ+ A)(uφ(·−ξ))+u′φ(·−ξ)‖q
Lq (R,v ;X0) dξ

) 1
q

≤
(∫
Rd

‖[(λ+ A)u +u′]φ(·−ξ)‖q
Lq (R,v ;X0) dξ

) 1
q +K L.

= ‖(λ+ A)u +u′‖Lq (R,v ;X0) +K L.

Combining the latter with (3.4.11) and (3.4.12) gives

‖∇mu‖Lq (R,v ;X0) ≤C‖(λ+ A)u +u′‖Lq (R,v ;X0) + (K +1)L,

where K is as in condition (C). We may conclude that

‖u‖Lq (R,v ;X1) ≤C‖(λ+ A)u +u′‖Lq (R,v ;X0) +C‖u‖Lq (R,v ;W m−1,q (Rd ,w)). (3.4.13)

To include the lower order terms, let

B(t )u(t , x) = ∑
|α|≤m−1

aα(t , x)Dαu.
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By (3.4.13) with f = (A+B +λ)u +u′ and the triangle inequality, we find

‖u‖Lq (R,v ;X1) ≤C‖ f ‖Lq (R,v ;X0) +C (K +1)‖u‖Lq (R,v ;W m−1,q (Rd ,w)). (3.4.14)

In a similar way, one sees that for all λ≥ 1

λ‖u‖Lq (R,v ;X0) ≤C‖ f ‖Lq (R,v ;X0) +C (K +1)‖u‖Lq (R,v ;W m−1,q (Rd ,w)). (3.4.15)

In order to obtain (3.4.9) from (3.4.14) and (3.4.15) note that it follows from the
interpolation inequality from Corollary 3.4.4 that for all ν> 0

‖u‖W m−1,q (Rd ,w) ≤Cνm−1‖u‖Lq (Rd ,w) +Cν−1‖u‖W m,q (Rd ,w). (3.4.16)

Therefore, choosing ν small enough we can combine the latter with (3.4.15) to ob-
tain

λ‖u‖Lq (R,v ;X0) +‖u‖Lq (R,v ;X1) ≤C‖ f ‖Lq (R,v ;X0)

+ 1

2
‖u‖Lq (R,v ;X1) +Cν‖u‖Lq (R,v ;X0).

Setting λ0 = max{2Cν,1}, it follows that for all λ≥λ0,

1

2
λ‖u‖Lq (R,v ;X0) +

1

2
‖u‖Lq (R,v ;X1) ≤C‖ f ‖Lq (R,v ;X0).

This clearly implies (3.4.9).

Step 4: To extrapolate the estimate from the previous step to p 6= q , let u :R→ X1

be a Schwartz function. Then by (3.4.9) we have for all v ∈ Aq there exists Aq -
consistent constants λ0,C > 0 such that for all λ≥λ0

‖Fλ‖Lq (R,v) ≤C‖Gλ‖Lq (R,v),

where Fλ = ‖u‖X1 , Gλ = ‖(λ+ A)u +u′‖X0 . Therefore, by the extrapolation result
Theorem 2.2.5 it follows that for all v ∈ Ap there exist a Ap -consistent constants λ′

0

and C ′ such that for all λ≥λ′
0,

‖Fλ‖Lp (R,v) ≤C ′‖Gλ‖Lp (R,v),

This yields
‖u‖Lp (R,v ;X1) ≤C ′‖(λ+ A)u +u′‖Lp (R,v ;X0).

Similarly, one proves the estimate for λ‖u‖Lp (R,v ;X0). As u′ = (λ+ A)u +u′− (λ+ A)u,
(3.4.6) with righthand side f = (λ+ A)u +u′ follows.

Step 5: Let A be as in the theorem. For s ∈ [0,1] let As = s A+(1−s)(−∆)m/2, where
we recall that m is even. Then As satisfies condition (C) with constants κ and K

replaced by min{κ,1} and max{K ,1}, respectively. Therefore, for all λ ≥ λ0, (3.4.6)
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holds with right-hand side f = (λ+ As )u +u′ with a constant C which does not
dependent on s. For s = 0 for all λ≥ λ0, for every f ∈ Lp (R, v ; X0), one has existence
and uniqueness of a strong solution u ∈ MRp (R, v) to u′+ (λ+ As )u = f by step 1.
Therefore, the method of continuity (see [68, Theorem 5.2]) yields existence and
uniqueness of a strong solution for every s ∈ [0,1]. Taking s = 1, the required result
follows and this completes the proof of Theorem 3.4.5.

Remark 3.4.7. In the proof of Theorem 3.4.5 we applied Corollary 3.4.3 only for the
case of x-independent coefficients. It is rather simple to derive Corollary 3.4.3 with
x-dependent coefficients from Theorem 3.4.5 (cf. [102, Exercise 4.3.13]). Indeed, let
A be t-independent but such that (C) holds and let u ∈W m,q (Rd , w). For ũ :R→ X1

given by ũ(t ) = e−µ|t |u with µ> 0, let

f (t ) = 1(−∞,0)(t )(ũ′(t )+ (λ+ A)ũ(t )) = 1(−∞,0)(t )eµt [−µ+ (λ+ A)u].

Then, applying (3.4.6) to ũ with v = 1, we get that for every λ≥λ0,

(µp)−1/p [λ‖u‖X0 +‖u‖X1 ] =λ‖u‖Lp ((−∞,0),X0) +‖u‖MRp ((−∞,0))

≤C‖ f ‖Lp (R;X0) =C (µp)−1/p‖−µ+ (λ+ A)u‖X0 .

Comparing the left and right-hand side and letting µ ↓ 0, we obtain

λ‖u‖Lq (Rd ,w) +‖u‖W m,q (Rd ,w) ≤C‖(λ+ A)u‖Lq (Rd ,w).

Finally, as a consequence of Theorem 3.4.5, we show the following maximal
regularity result with non-zero initial value.

Theorem 3.4.8. Let T ∈ (0,∞). Assume condition (C) on the family of operators
(A(t ))t∈(0,T ) given by (3.4.1). Let p, q ∈ (1,∞). Then the operator A has maximal Lp -
regularity on (0,T ), i.e. for every f ∈ Lp (0,T ;Lq (Rd )) and u0 ∈Bs

q,p (Rd ) with s = m(1− 1
p ),

there exists a unique

u ∈W 1,p (0,T ;Lq (Rd ))∩Lp (0,T ;W m,q (Rd ))∩C ([0,T ];Bs
q,p (Rd ))

such that
u′(t , x)+ A(t )u(t , x) = f (t , x), t ∈ (0,T ), x ∈Rd ,

u(0, x) = u0(x), x ∈Rd .
(3.4.17)

holds a.e. and there is a C > 0 independent of u0 and f such that

‖u‖Lp (0,T ;W m,q (Rd )) +‖u‖W 1,p (0,T ;Lq (Rd )) +‖u‖C ([0,T ];Bs
q,p (Rd ))

≤C
(‖ f ‖Lp (R;Lq (Rd )) +‖u0‖Bs

q,p (Rd )

)
.

(3.4.18)

Proof. By Theorem 3.4.5 there is a λ ∈ R such that λ+ A has maximal Lp -regularity
on R and hence on (0,T ) as well. By the observation after Definition 3.3.10 this
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implies that A has maximal Lp -regularity on (0,T ) and hence we can find a unique
solution

u ∈W 1,p (0,T ;Lq (Rd ))∩Lp (0,T ;W m,q (Rd ))

of (1.2.1) with u0 = 0. By Proposition 3.3.18 with v ≡ 1, we can allow non-zero initial
values u0 ∈ Xv,p = (Lq (Rd ),W m,q (Rd ))1− 1

p ,p (see Example 3.3.19). By [19, Theorem

6.2.4] or [148, Remark 2.4.2.4] this real interpolation space can be identified with
Bs

q,p (Rd ) with s = m(1− 1/p). Finally, the fact that u ∈ C ([0,T ];Bs
q,p (Rd )) follows

from Example 3.3.19 as well.

Remark 3.4.9. In the case A is time-independent and v ≡ 1, Theorem 3.4.5 reduces
to [77, Theorem 3.1] in case of scalar equations.

3.5. QUASILINEAR EVOLUTION EQUATIONS

In this section we illustrate how the results of Section 3.3 can be used to study
nonlinear PDEs. We extend the result of [28] and [127] (see [97] for the weighted
setting) to the case of time-dependent operators A without continuity assumptions.
Our proof slightly differs from the previous ones since we can immediately deal
with the non-autonomous setting. For notational simplicity we consider the un-
weighted setting only.

3.5.1. Abstract setting

Let X0 be a Banach space and X1 ,→ X0 densely, 0 < T ≤ T0 < ∞, J = [0,T ], J0 =
[0,T0] and p ∈ (1,∞). Let Xp = (X0, X1)1− 1

p ,p equipped with the norm from (3.3.19).

Consider the quasi-linear problem

{
u′(t )+ A(t ,u(t ))u(t ) = F (t ,u(t )), t ∈ J

u(0) = x.
(3.5.1)

where x ∈ Xp and

• A : J0 × Xp → L (X1, X0) is such that for each y ∈ X1 and x ∈ Xp , t → A(t , x)y

is strongly measurable and satisfies the following continuity condition: for
each R > 0 there is a constant C (R) > 0 such that

‖A(t , x1)y − A(t , x2)y‖X0 ≤C (R)‖x1 −x2‖Xp ‖y‖X1 , (3.5.2)

with t ∈ J0, x1, x2 ∈ Xp , ‖x1‖Xp ,‖x2‖Xp ≤ R, y ∈ X1.

• F : J0 × Xp → X0 is such that F (·, x) is measurable for each x ∈ Xp , F (t , ·) is
continuous for a.a. t ∈ J0 and F (·,0) ∈ Lp (J0; X0) and F satisfies the following
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condition on Lipschitz continuity: for each R > 0 there is a function φR ∈
Lp (J0) such that

‖F (t , x1)−F (t , x2)‖X0 ≤φR (t )‖x1 −x2‖Xp ,

for a.a. t ∈ J0, x1, x2 ∈ Xp , ‖x1‖Xp ,‖x2‖Xp ≤ R.

Theorem 3.5.1. Assume the above conditions on A and F . Let x0 ∈ Xp and assume
that A(·, x0) has maximal Lp -regularity. Then there is a T ∈ (0,T0] and radius ε > 0 both
depending on x0 such that for all x ∈ Bε = {y ∈ Xp : ‖y−x0‖Xp ≤ ε}, (3.5.1) admits a unique
solution u ∈ MR(J ) := W 1,p (J ; X0)∩Lp (J ; X1). Moreover, there is a constant C such that
for all x, y ∈ Bε the corresponding solutions ux and uy satisfy

‖ux −uy‖MR(J ) ≤C‖x − y‖Xp .

The proof will be given in Section 3.5.3.

Remark 3.5.2. This result can be extended to the weighted setting, with power
weight v(t ) = tα, α ∈ (−1, p − 1) (see Example 3.3.19). In this case, the usual re-
flection argument does not work, since the extension becomes dependent on the
weight and the constant in (3.5.7) becomes T -dependent. Instead, one can use a lin-
ear and bounded extension operator from MR((0,T ), v) to MR(R+, v) whose norm is
independent on T (see [119, Lemma 2.5]).

3.5.2. Example of a quasilinear second order equation

Let T0 > 0 and J0 = [0,T0]. In this section we will give conditions under which there
exists a local solution of the problem:

u′(t , x)+ ∑
|α|=2

aα(t , x,u(t , x),∇u(t , x))Dαu(t , x) = f (t , x,u(t , x),∇u(t , x)), (3.5.3)

with initial value u(0, x) = u0(x), t ∈ J0, x ∈Rd and where D j :=−i ∂
∂ j

. The main new
feature here is that the above functions aα are only measurable in time. Note that
possible lower order terms aα can be included in f . We will provide an Lp (Lq )-
theory for (3.5.3) under the following conditions on p and q :

(i) Let X0 = Lq (Rd ), X1 =W 2,q (Rd ), Xp =B
2(1− 1

p )
q,p (Rd ) where p, q ∈ (1,∞) satisfy

2
(
1− 1

p

)
− d

q
> 1. (3.5.4)

This condition is to ensure the following continuous embedding holds (see [148,
Theorem 2.8.1])

B
2(1− 1

p )
q,p (Rd ) ,→C 1+δ(Rd ), for all 0 < δ< 2

(
1− 1

p

)
− d

q
−1. (3.5.5)
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Also note that B
2(1− 1

p )
q,p (Rd ) = (X0, X1)1− 1

p ,p by [148, 2.4.2(16)].

On a and f we assume the following conditions:

(ii) Assume each aα : J0 ×Rd ×R×Rd →C is a measurable function such that
supt ,x,y,z |aα(t , x, y, z)| < ∞ and there is an θ ∈ (0,π) and κ ∈ (0,1) such that for
all t ∈ J0, x, z ∈Rd , y ∈R,∑

|α|=2
aα(t , x, y, z)ξα ⊂Σθ and

∣∣∣ ∑
|α|=2

aα(t , x, y, z)ξα
∣∣∣≥ κ, ξ ∈Rd , |ξ| = 1.

(iii) Assume that for every R > 0 there exists a function ωR :R+ →R+ with
limε↓0ωR (ε) = 0 such that for all t ∈ J0, x1, x2 ∈Rd , |y |, |z| ≤ R,

|aα(t , x1, y, z)−aα(t , x2, y, z)| ≤ωR (|x1 −x2|).

(iv) Assume that for each |α| = 2 for every R > 0 there exists a constant Cα(R) such
that for all t ∈ J0, x ∈Rd , |y1|, |y2| ≤ R, and |z1|, |z2| ≤ R,

|aα(t , x, y1, z1)−aα(t , x, y2, z2)| ≤Cα(R)(|y1 − y2|+ |z1 − z2|), (3.5.6)

(v) Assume f : J0 ×Rd ×R×Rd →C is a measurable function such that∫
J0

(∫
Rd

| f (t , x,0,0)|q d x
) p

q
d t <∞.

For every R > 0 there exists a function φ(R) ∈ Lp (J0) such that for all t ∈ J0,
x ∈Rd , |y1|, |y2| ≤ R and |z1|, |z2| ≤ R,

| f (t , x, y1, z1)− f (t , x, y2, z2)|X0 ≤φ(R)(t )(|y1 − y2|+ |z1 − z2|).

Let MRp (J ) =W 1,p (J ;Lq (Rd ))∩Lp (J ;W 2,q (Rd )) and note that by (3.5.5)

MRp (J ) ,→C (J ; Xp ) ,→C (J ;C 1+δ(Rd )).

In order to apply Theorem 3.5.1 to obtain local well-posedness define A : J0 ×Xp →
L (X1, X0) and F : J0 ×Xp → X0 by

(A(t , v)u)(x) = ∑
|α|≤2

aα(t , x, v(x),∇v(x))Dαu(x),

F (t ,u)(x) = f (t , x,u(x),∇u(x)).

Then A and F satisfy the conditions of Theorem 3.5.1. Indeed, applying (3.5.6) we
find that for R > 0 and ‖v1‖Xp ,‖v2‖Xp ≤ R and u ∈ X1,

‖A(t , v1)u − A(t , v2)u‖X0 ≤ K (R)
(
‖v1 − v2‖X0 +‖∇v1 −∇v2‖X0

)
‖u‖X1
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≤ K (R)C‖v1 − v2‖Xp ‖u‖X1 .

Here we have used that for k ∈ {0,1} and v ∈ Xp , ‖Dk v‖∞ ≤C‖v‖Xp by (3.5.5).
Next we check that for every g ∈ Xp , A(·, g ) has maximal Lp -regularity. In order

to do so we check that A(t , g ) satisfies the conditions of Theorem 3.4.5. Indeed, let
R = ‖g‖C 1(Rd ) <∞. By (3.5.5), g ∈C 1+δ(Rd ) and therefore,

|aα(t , x1, g (x1),∇g (x1))−aα(t , x2, g (x2),∇g (x2))|
≤ |aα(t , x1, g (x1),∇g (x1))−aα(t , x2, g (x1),∇g (x1))|
+ |aα(t , x2, g (x1),∇g (x1))−aα(t , x2, g (x2),∇g (x2))|
≤ωR (|x1 −x2|)+|g (x1)− g (x2)|+ |∇g (x1)−∇g (x2)|
≤ωR (|x1 −x2|)+‖g‖C 1+δ(Rd )(|x1 −x2|+ |x1 −x2|δ).

Thus A(t , g ) satisfies the required continuity condition in the space variable. Hence
Theorem 3.4.5 yields that A(·,u0) has maximal Lp -regularity. The conditions on F

can be checked in a similar way and we obtain the following result as a conse-
quence of Theorem 3.5.1.

Theorem 3.5.3. Assume the above conditions on p, q ∈ (1,∞) and aα and f . Let g ∈ Xp :=
B

2(1− 1
p )

q,p (Rd ) be arbitrary. Then there is a T ∈ (0,T0] and radius ε> 0 both depending on g

such that for all u0 ∈ Bε = {v ∈ Xp : ‖v − g‖Xp ≤ ε}, (3.5.3) admits a unique solution

u ∈W 1,p (J ;Lq (Rd ))∩Lp (J ;W 2,q (Rd ))∩C (J ; Xp ).

Moreover, there is a constant C such that for all u0, v0 ∈ Bε the corresponding solutions u

and v satisfy

‖u − v‖W 1,p (J ;Lq (Rd )) +‖u − v‖Lp (J ;W 2,q (Rd )) +‖u − v‖C (J ;Xp ) ≤C‖x − y‖Xp .

Remark 3.5.4.

1. If aα only depends on u and not on its derivatives, then one can replace
(3.5.4) by the condition 2

(
1− 1

p

)
− d

q > 0.

2. Theorem 3.5.3 can be extended to higher-order equations. Then aα is allowed
to depend on the (m−1)-th derivatives of u. Moreover, by the results that will
be introduced in Chapter 5 one can also consider higher-order systems.

3.5.3. Proof of Theorem 3.5.1

From the trace estimate (3.3.22) and a simple reflection argument one sees see that
there exists a constant C independent of T such that for all u ∈MRp (J ) with u(0) = 0

one has
‖u‖C ([0,T ];Xp ) ≤CTr‖u‖MRp (J ). (3.5.7)
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Without the assumption u(0) = 0, one still has the above estimate but with a con-
stant which blows up as T ↓ 0 (see (3.3.21) and use a translation argument).

For u, v ∈ MR(J ) with u(0) = v(0) ∈ Xp , the following consequence of (3.5.7) will
be used frequently:

‖u‖C (J ;Xp ) ≤ ‖u − v‖C (J ;Xp ) +‖v‖C (J ;Xp )

≤CTr‖u − v‖MRp ((0,T )) +‖v‖C (J ;Xp ).
(3.5.8)

Proof of Theorem 3.5.1. We modify the presentation in [97] to our setting. By the
assumption and Proposition 3.3.18 we know that for each x ∈ Xp , there exists a
unique solution w x ∈ MRp (J ) of the problem{

w ′(t )+ A(t , x0)w(t ) = F (t , x0), t ∈ J0

w(0) = x.

Moreover, by linearity

‖w x −w y‖MRp (J0) ≤C0‖x − y‖Xp .

By (3.3.21) and a translation argument we see that

‖w x −w y‖C (J0;Xp ) ≤C1‖w x −w y‖MRp (J0) ≤C1C2‖x − y‖Xp . (3.5.9)

Step 1. Let C A be the maximal Lp -regularity constant of A(·,u0). We show that
for a certain set of function u ∈ MRp (J ) maximal Lp -regularity holds with constant
2C A . Fix R > 0. Since w x0 : [0,T ] → Xp is continuous we can find T ∈ (0,T0] such that

‖w x0 (t )−x0‖Xp ≤ 1

4C (R)C A
, t ∈ [0,T ]. (3.5.10)

Let
r0 := 1

4C (R)C A(CTr +CTrC2 +C1C2)

and write

Br0 = {v ∈ MRp (J ) : ‖v(0)−x0‖Xp ≤ r0 and ‖v −w x0‖MRp (J ) ≤ r0}.

From the assumptions we see that for all v ∈Br0 and t ∈ [0,T ], writing x = v(0),

‖v(t )−x0‖Xp

≤ ‖v(t )−w x (t )‖Xp +‖w x (t )−w x0 (t )‖Xp +‖w x0 (t )−x0‖Xp

≤CTr‖v −w x‖MRp (J ) +C1C2‖x −x0‖Xp +
1

4C (R)C A

≤CTrr0 +CTr‖w x0 −w x‖MRp (J ) +C1C2‖x −x0‖Xp +
1

4C (R)C A

≤CTrr0 +CTrC2r0 +C1C2r0 + 1

4C (R)C A
≤ 1

2C (R)C A
,

(3.5.11)
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where we used (3.5.7) and (3.5.9). Therefore by (3.5.11) and the assumption

‖A(t , v(t ))− A(t , x0)‖L (X1,X0) ≤C (R)‖v(t )−x0‖Xp ≤ 1

2C A
.

Now Proposition 3.3.23 yields that A(·, v(·)) has maximal Lp -regularity with con-
stant 2C A for each v ∈Br0 .

Step 2. Let R = 1+CTr+CTrC2+C1C2+‖w x0‖C (J0;Xp ). Fix 0 < r ≤ min{1,r0} and T as
in Step 1. Note that by (3.5.8) and (3.5.9) for v ∈Br and x = v(0),

‖v‖C (J ;Xp ) ≤CTr‖v −w x‖MRp (J ) +‖w x −w x0‖C (J ;Xp ) +‖w x0‖C (J ;Xp )

≤CTr‖v −w x0‖MRp (J ) +CTr‖w x0 −w x‖MRp (J ) +C1C2‖x −x0‖Xp +‖w x0‖C (J ;Xp )

≤CTrr + (CTrC2 +C1C2)‖x −x0‖Xp +‖w x0‖C (J ;Xp )

≤CTrr + (CTrC2 +C1C2)r +‖w x0‖C (J ;Xp ) ≤ R,

where we used r ≤ 1. Similarly, for x ∈ Br , ‖x‖Xp ≤ r +‖x0‖Xp ≤ R.
For x ∈ Br , let Br,x ⊆Br be defined by

Br,x = {u ∈ MRp (J ) : u(0) = x and ‖u −w x0‖MRp (J ) ≤ r }.

Before we introduce a fixed point operator argument on Br,x , let

f (v1, v2) = F (t , v1(t ))−F (t , v2(t )),

a(v1, v2, v3)(t ) = (A(t , v2(t ))− A(t , v1(t )))v3(t ).

for v j ∈ Br,x j with x j ∈ Br for j ∈ {1,2} and v3 ∈ MRp (J ). Observe that by (3.5.8) and
(3.5.9)

‖v1 − v2‖C (J ;Xp ) ≤CTr‖v1 − v2 − (w x1 −w x2 )‖MRp (J ) +‖w x1 −w x2‖C (J ;Xp )

≤CTr‖v1 − v2‖MRp (J ) + (CTrC2 +C1C2)‖x1 −x2‖Xp .

Let C J = ‖φR‖Lp (J ). For f we find

‖ f (v1, v2)‖Lp (J ;X0) ≤ ‖φR (v1 − v2)‖Lp (J ;Xp ) ≤C J‖v1 − v2‖C (J ;Xp )

≤C J CTr‖v1 − v2‖MRp (J ) +C J C3‖x1 −x2‖Xp ,

where C3 = (CTrC2 +C1C2). Similarly, applying the estimate for v1 − v2 again,

‖a(v1, v2, v3)‖Lp (J ;X0) ≤C (R)
∥∥‖v2 − v1‖Xp ‖v3‖X1‖

∥∥
Lp (J ;X0)

≤C (R)‖v1 − v2‖C (J ;Xp )‖v3‖MRp (J )

≤C (R)‖v3‖MRp (J )
[
CTr‖v1 − v2‖MRp (J ) +C3‖x1 −x2‖Xp

]
.

For v ∈Br,x and x ∈ Br let Lx (v) = u ∈ MRp (J ) denote the solution of{
u′(t )+ A(t , v(t ))u(t ) = F (t , v(t )), t ∈ J0

u(0) = x.
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For v1, v2 as before let u j := Lx j (v j ) for j ∈ {1,2}. We find that u := u1 −u2 in MRp (J )

satisfies u(0) = x1 −x2 and

u′(t )+ A(t , v1(t ))u(t ) = f (v1, v2)(t )+a(v1, v2,u2)(t ), t ∈ J .

Therefore, by Step 1, Proposition 3.3.18 and the previous estimates, we find

‖Lx1 (v1)−Lx2 (v2)‖MRp (J )

≤ 2C A

(
‖x1 −x2‖Xp +‖ f (v1, v2)‖Lp (J ;X0) +‖a(v1, v2,u2)‖Lp (J ;X0)

)
≤ K1(‖u2‖MRp (J ))‖x1 −x2‖Xp +K2(‖u2‖MRp (J ))‖v1 − v2‖MRp (J ),

(3.5.12)

where for s ≥ 0,

K1(s) = 2C A(1+C J C3 +C (R)C3s),

K2(s) = 2C A
[
C J CTr +C (R)CTrs

]
.

Extending the definitions of L, f and a in the obvious way we can write w x0 =
Lx0 (x0). Estimating as before, one sees that for x ∈ Br and v ∈Br,x ,

‖Lx (v)−Lx0 (x0)‖MRp (J )

≤ 2C A

(
‖x −x0‖Xp +‖ f (v, x0‖Lp (J ;X0) +‖a(v, x0, w x0 )‖Lp (J ;X0)

)
≤ 2C A

(
‖x −x0‖Xp +

[
C J +C (R)‖w x0‖MRp (J )

]‖v −x0‖C (J ;Xp )

)
,

≤ 2C A

(
‖x −x0‖Xp +

[
C J +C (R)‖w x0‖MRp (J )

] 1

2C (R)C A

)
,

(3.5.13)

where in the last step we used (3.5.11).
Choose 0 < r ≤ min{1,r0} such that

4C ArC (R)CTr ≤ 1

4
.

Choose T such that (3.5.10) holds,

2C AC J CTr ≤ 1

4
,

C J

C (R)
≤ r

4
, and ‖w x0‖MRp (J ) ≤

r

4
.

Let ε = min{ r
4C A

,r }. Then from (3.5.13) we obtain that for all x ∈ Bε, Lx maps Br,x

into itself. In particular, for all x ∈ Bε and v ∈Br,x ,

‖Lx (v)‖MRp (J ) ≤ ‖Lx (v)−w x0‖MRp (J ) +‖w x0‖MRp (J ) ≤ r + r

4
≤ 2r. (3.5.14)

Moreover, for all x j ∈ Bε and v j ∈Br,x j for j ∈ {1,2},

‖Lx1 (v1)−Lx2 (v2)‖MRp (J ) ≤ K1(2)‖x1 −x2‖Xp +
1

2
‖v1 − v2‖MRp (J ), (3.5.15)

where we used (3.5.12) and (3.5.14). In particular, Lx defines a contraction on Br,x

and by the Banach contraction principle we find that there exists a unique u ∈ Br,x

such that Lx (u) = u. This yields the required result.
The final estimate of the theorem follows from (3.5.15).



76 3. MAXIMAL REGULARITY WITH MEASURABLE DEPENDENCE ON TIME

3.A. APPENDIX: γ-BOUNDEDNESS

We give here a brief description of γ-boundedness and related notions. The inter-
ested reader can find more details in [74, 85, 104, 121].

3.A.1. Type and cotype

We first define type and cotype of a Banach space X . Most of this material is taken
from [85].

Definition 3.A.1. A Banach space X has type p ∈ [1,2] if there exists a constant τ≥ 0

such that for all sequences (xn)N
n=1 ∈ X , N ∈N, we have

(E‖
N∑

n=1
εn xn‖p )1/p ≤ τ(‖

N∑
n=1

xn‖p )1/p ,

and X has cotype q ∈ [2,∞] if there exists a constant c ≥ 0 such that for all sequences
(xn)N

n=1 ∈ X , N ∈N, we have

(‖
N∑

n=1
xn‖q )1/q ≤ c(E‖

N∑
n=1

εn xn‖q )1/q ,

with the obvious modifications if q =∞.

The least admissible constants in the estimates above are called respectively the
type p constant τp,X and the cotype q constant cq,X of X . By the Kahane-Khintchine
inequalities (cf. Theorem 2.7.2), the exponents p and q (with exception of q =∞)
could be replaced by any r ∈ [1,∞), up to different constants.

We say that X has non-trivial type if it has type p ∈ (1,2]. finite cotype if it has
cotype q ∈ [2,∞).

Example 3.A.2. We list some examples of type and cotype. We refer to [85] for
details.

1. Every Banach space X has type 1 and cotype ∞, with type and cotype con-
stants equal to 1.

2. The space c0 does not have any non-trivial type.

3. Every Hilbert space H has type 2 and cotype 2, with type and cotype con-
stants equal to 1. This follows by the properties of the inner product.

The next proposition states a duality relation between type and cotype (see [85,
Proposition 7.7])

Proposition 3.A.3. If X has type p ∈ [1,2], then X ∗ has cotype q ∈ [2,∞] with 1
p + 1

q = 1,
and cq,X∗ ≤ τp,X .

The proof follows by a simple duality argument. For more properties of type
and cotype, we refer the reader to [45, 85].
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3.A.2. γ-boundedness

Let now (Ω,A ,P) be a probability space. Let (γn)N
n=1 be a finite Gaussian sequence,

i.e. a sequence of independent Gaussian random variables on Ω. The following
definitions can be found in [121] and [85].

Definition 3.A.4. A family of operators T ∈ L (X ) is said to be γ-bounded if there
exists a constant C ≥ 0 such that for all N ∈N, (Tn)N

n=1 ∈T , (xn)N
n=1 ∈ X∥∥∥ N∑

n=1
γnTn xn

∥∥∥
L2(Ω;X )

≤C
∥∥∥ N∑

n=1
γn xn

∥∥∥
L2(Ω;X )

.

The least admissible constant C is called the γ-bound of T , and it is denoted by
γ(T ).

Every γ-bounded family T is uniformly bounded with supT∈T ‖T ‖ ≤ γ(T ), and
the reverse holds if X is a Hilbert space.

Replacing the Gaussian random variables by Rademachers functions in the
above definitions, we arrive at the related notion of R-boundedness. In partic-
ular, every R-bounded family is γ-bounded, and the reverse holds if X has finite
cotype.

An important result concerning γ-boundedness is the so-called γ-multiplier
theorem, due to Kalton and Weis in [95, Proposition 4.11]. The version stated be-
low in Theorem 3.A.7 is taken from [121, Theorem 5.2], and it is the one of interest
for us.

Definition 3.A.5. Let H be a Hilbert space. An operator T ∈ L (H ; X ) is called γ-
summing if

‖T ‖2
γ∞(H ;X ) := sup

h
E
∥∥∥ N∑

n=1
γnT hn

∥∥∥2
<∞,

where the supremum is taken over all finite orthonormal systems h = {h1, . . . ,hn} in
H . The space of all γ-summing operators from H to X is denoted by γ∞(H ; X ).

With respect to the norm ‖T ‖γ∞(H ;X ), the space γ∞(H ; X ) is a Banach space. We
denote as γ(H ; X ) the closure of the finite rank operators in γ∞(H ; X ). The operators
T ∈ γ(H ; X ) are called γ-radonifying. The following properties hold.

Proposition 3.A.6. Let T ∈L (H ; X ). Then the following hold.

(i) Every γ-radonifying operator T is γ-summing and ‖T ‖γ∞(H ;X ) = ‖T ‖γ(H ;X ).

(ii) If X does not contain a closed subspace isomorphic to c0, then γ∞(H ; X ) = γ(H ; X );

(iii) On γ∞(H ; X ) the equivalent norm

‖T ‖p
γ∞,p (H ;X ) := sup

h
E
∥∥∥ N∑

n=1
γnT hn

∥∥∥p

holds.
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We remark that (ii) fails for H = `2 and X = c0. For the proofs, we refer to [121,
Proposition 3.15] for (i) and [121, Theorem 4.3] for (ii), while statement (iii) follows
directly from Kahane’s inequality.

Let now (A ,Σ,µ) be a σ-finite measure space. For a bounded and strongly
measurable function φ : A → L (H , X ) we define the operator Tφ ∈ L (L2(A ; H), X )

by

Tφ f :=
∫
Ω
φ f dµ.

If φ is a finite rank simple function, i.e. a simple function with values in γ(H ; X ),
then Tφ ∈ γ(L2(A ; H); X ).

Theorem 3.A.7 (Kalton-Weis γ-multiplier theorem). Let X ,Y be Banach spaces and
(A ,Σ,µ) be a σ-finite measure space. Suppose that M : A →L (X ,Y ) is strongly measur-
able and that T := {M(t ) : t ∈A } is γ-bounded. Then for every finite rank simple functions
φ : A → γ(H ; X ), the operator TMφ belongs to γ∞(L2(A ; H);Y ) and

‖TMφ‖γ∞(L2(A ;H);Y ) ≤ γ(T )‖Tφ‖γ∞(L2(A ;H);X )

As a result, the map M̃ : Tφ → TMφ has a unique extension to a bounded operator M̃ :

γ∞(L2(A ; H); X ) → γ∞(L2(A ; H);Y ) of norm ‖M̃‖ ≤ γ(T ).

Moreover, the following γ-Fubini property holds. This is taken from [121, The-
orem 13.6].

Theorem 3.A.8. The isomorphism

γ(H ;Lp (A ; X )) ' Lp (A ;γ(H ; X ))

holds for every p ∈ [1,∞).



4
ON THE `s

H -BOUNDEDNESS OF A FAMILY OF

INTEGRAL OPERATORS

In this chapter we consider operators with values in a Hilbert space H and we
prove an `s

H -boundedness result for integral operators with operator-valued ker-
nels. The proofs are based on extrapolation techniques with weights due to Rubio
de Francia (Section 4.2). As a consequence of the main result Theorem 4.3.5, in
the special case H =C we will prove Theorem 3.1.4, which gives a sufficient condi-
tion for the R-boundedness of a family of integral operators and has been already
applied in Chapter 3. The generalization to `s

H -boundedness will be needed in
Chapter 5, in order to prove a maximal regularity result for systems of parabolic
equations. The results here presented are base on [62].

4.1. PRELIMINARIES ON `s -BOUNDEDNESS

In this section we introduce the notions of `s-boundedness and `s
H -boundedness,

where H is an Hilbert space, and we present some simple example.

4.1.1. `s-boundedness

In this section we introduce `s-boundedness. For this we will use the notion of
a Banach lattice (see [109]). An example of a Banach lattice is Lp or any Banach
function space (see [159, Section 63]). In our main results only iterated Lp -spaces
will be needed. They will be introduced later in (4.2.1).

Although `s-boundedness is used implicitly in the literature for operators on
Lp -spaces, on Banach functions spaces it was introduced in [152] under the name
Rs-boundedness. An extensive study can be found in [103, 149].

Definition 4.1.1. Let X and Y be Banach lattices and let s ∈ [1,∞]. We call a family
of operators T ⊆ L (X ,Y ) `s-bounded if there exists a constant C such that for all
integers N , for all sequences (Tn)N

n=1 in T and (xn)N
n=1 in X ,

∥∥∥(
N∑

n=1
|Tn xn |s

) 1
s ∥∥∥

Y
≤C

∥∥∥(
N∑

n=1
|xn |s

) 1
s ∥∥∥

X

with the obvious modification for s =∞. The least possible constant C is called the
`s-bound of T and is denoted by R`s

(T ) and often abbreviated as Rs (T ).

79
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Example 4.1.2. Take p ∈ (1,∞) and let T ⊆ L (Lp (Rd )) be uniformly bounded by a
constant C . Then T is `p -bounded with Rp (T ) ≤C .

The following basic properties will be needed later on.

Proposition 4.1.3. Let T ⊆L (X ,Y ), where X and Y are Banach function spaces.

1. Let 1 ≤ s0 < s1 ≤∞ and assume that X and Y have an order continuous norm. If
T ⊆ L (X ,Y ) is `s j -bounded for j = 0,1, then T is `s-bounded for all s ∈ [s0, s1]

and with θ = s−s0
s1−s0

, the following estimate holds:

Rs (T ) ≤Rs0 (T )1−θRs1 (T )θ ≤ max{Rs0 (T ),Rs1 (T )}

2. If T is `s-bounded, then the adjoint family T ∗ = {T ∗ ∈ L (Y ∗, X ∗) : T ∈ T } is
`s′-bounded and Rs′ (T ∗) =Rs (T ).

Proof. (1) follows from Calderón’s theory of complex interpolation of vector-valued
function spaces (see [25] and [103, Proposition 2.14]). For (2) we refer to [103,
Proposition 2.17] and [123, Proposition 3.4].

Remark 4.1.4. Below we will only need Proposition 4.1.3 in the case X = Y = Lq (Ω).
To give the details of the proof of Proposition 4.1.3 in this situation one first needs
to know that X ∗ = Lq ′

(Ω) which can be obtained by elementary arguments (see
Proposition 4.A.1 below). As a second step one needs to show that X (`s

N )∗ =
X ∗(`s′

N ) and this is done in Lemma 4.A.2.

Example 4.1.5. Let 1 ≤ s0 ≤ q ≤ s1 ≤ ∞. Let X = Lq (Ω) and let T ⊂ L (X ) be `s j -
bounded for j ∈ {0,1}. Then for s ∈ [s0, q], Rs (T ) ≤ Rs0 (T ) and for s ∈ [q, s1],
Rs (T ) ≤Rs1 (T ). Indeed, note that by Example 4.1.2,

Rq (T ) = sup
T∈T

‖T ‖ ≤Rs j (T ), j ∈ {0,1}.

Now the estimates follow from Proposition 4.1.3 by interpolating with exponents
(s0, q) and (q, s1). In particular, it follows that the function s 7→Rs (T ), is decreasing
on [s0, q] and increasing on [q, s1].

4.1.2. `s
H -boundedness

In order to deal with systems of operators in Chapter 5, we need to general-
ize the definition of `s-boundedness to the setting of operators with values in a
Hilbert space H , i.e. X (H) = Lq (Rd ; H). In the case H has finite dimension N , one
could apply Definiton 4.1.1 coordinate-wise, but this only yields estimates with N -
dependent constants. To avoid this, in this chapter we directly consider H-valued
operators and we introduce the notion of `s

H -boundedness, which is an extension
of `s-boundedness to this setting. For H = CN , this will give a sufficient condition
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to obtain maximal Lp -regularity for systems of operators (see Theorems 4.3.12 and
5.1.3), while Theorem 3.1.4 will follow directly taking H =C.

In the following we introduce the definition of `s
H -boundedness, for an Hilbert

space H .

Definition 4.1.6. Let H be a Hilbert space and let s ∈ [1,∞]. We call a family of
operators T ⊆ L (X (H),Y (H)) `s

H -bounded if there exists a constant C such that for
all integers N , for all sequences (Tn)N

n=1 in T and (xn)N
n=1 in X (H),

∥∥∥(
N∑

n=1
‖Tn xn‖s

H

) 1
s ∥∥∥

Y
≤C

∥∥∥(
N∑

n=1
‖xn‖s

H

) 1
s ∥∥∥

X

with the obvious modification for s =∞. The least possible constant C is called the
`s

H -bound of T and is denoted by R`s

H (T ) and often abbreviated as Rs
H (T ).

Proposition 4.1.3 and Example 4.1.5 can be directly generalized to this setting.
Below we will only need the case X (H) = Y (H) = Lq (Rd ; H).

4.2. EXTRAPOLATION IN Lp (Lq )-SPACES

Take n ∈ N and let for i = 1, · · · ,n the triple (Ωi ,Σi ,µi ) be a σ-finite measure space.
Define the product measure space

(Ω,Σ,µ) = (Ω1 ×·· ·×Ωn ,Σ1 ×·· ·×Σn ,µ1 ×·· ·×µn)

Then of course (Ω,Σ,µ) is also σ-finite. For q ∈ (1,∞)n we write

Lq (Ω) = Lq1 (Ω1, · · ·Lqn (Ωn)). (4.2.1)

In this section we extend Theorem 2.2.3 to values in the above mixed Lq (Ω)

spaces. For the case Ω=N this was already done in [32, Corollary 3.12]. This will
be needed later on in the proofs.

Theorem 4.2.1. Let f , g :Rd ×Ω→R+ be a pair of nonnegative, measurable functions and
suppose that for some p0 ∈ (1,∞) there exists an increasing function α on R+ such that for
all w0 ∈ Ap0

‖ f (·, s)‖Lp0 (Rd ,w0) ≤α([w0]Ap0
)‖g (·, s)‖Lp0 (Rd ,w0) (4.2.2)

for all s ∈Ω. Then for all p ∈ (1,∞) and q ∈ (1,∞)n there exist cp,q ,d > 0 and βp0,p,q > 0

such that for all w ∈ Ap ,

‖ f ‖Lp (Rd ,w ;Lq (Ω)) ≤ 4nα
(
cp,q ,d [w]

βp0,p,q

Ap

)
‖g‖Lp (Rd ,w ;Lq (Ω)). (4.2.3)
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Proof. We will prove this theorem by induction. The base case n = 0 is just weighted
extrapolation, as covered in Theorem 2.2.3.

Now take n ∈N∪ {0} arbitrary and assume that the assertion holds for all pairs
f , g :Rd ×Ω→R+ of nonnegative, measurable functions. Let (Ω0,Σ0,µ0) be a σ-finite
measure space and take nonnegative, measurable functions f , g :Rd ×Ω0 ×Ω→R+.
Assume that (4.2.2) holds for p0, all w ∈ Ap0 and all s ∈Ω0 ×Ω.

Now take (s0, s1, · · · , sn) ∈Ω0 ×Ω arbitrary. Let q ∈ (1,∞)n be given and take r ∈
(1,∞) arbitrary. Define r = (r, q1, · · · , qn) and the pair of functions F,G : Rd → [0,∞]

as
F (x) = ∥∥ f (x,·)

∥∥
Lr (Ω×Ω0) G(x) = ∥∥g (x,·)

∥∥
Lr (Ω×Ω0)

By our induction hypothesis we know for all p ∈ (1,∞) there exist cp,q ,d and βp0,p,q

such that for all w ∈ Ap

‖ f (·, s0,·)‖Lp (Rd ,w ;Lq (Ω)) ≤ 4nα(cp,q ,d [w]
βp0,p,q

Ap
)‖g (·, s0,·)‖Lp (Rd ,w ;Lq (Ω))

Now taking p = r we obtain

‖F‖Lr (Rd ,w) =
(∫

Ω0

∫
Rd

‖ f (x, s0,·)‖r
Lq (Ω)

w(x) dx dµ0

) 1
r

≤ 4nα(cr,q ,d [w]
βp0,r,q

Ar
)
(∫

Ω0

∫
Rd

‖g (x, s0,·)‖r
Lq (Ω)

w(x) dx dµ0

) 1
r

= 4nα(cr,q ,d [w]
βp0,r,q

Ar
)‖G‖Lr (Rd ,w)

using Fubini’s theorem in the first and third step. So with Theorem 2.2.3 using
p0 = r we obtain for all p ∈ (1,∞) that there exist cr,p,q ,d > 0 and βp0,p,r > 0 such that
for all w ∈ Ap ,

‖ f ‖Lp (Rd ,w ;Lr (Ω0×Ω)) = ‖F‖Lp (Rd ,w)

≤ 4n+1α
(
cr,p,q ,d [w]

βp0,p,r

Ap

)
‖G‖Lp (Rd ,w)

= 4n+1α
(
cr,p,q ,d [w]

βp0,p,r

Ap

)
‖g‖Lp (Rd ,w ;Lr (Ω0×Ω)).

This proves (4.2.3) for n +1.

Remark 4.2.2. Note that in the application of Theorem 4.2.1 it will often be neces-
sary to use an approximation by simple functions to check the requirements, since
point evaluations in (4.2.2) are not possible in general. Furthermore note that in
the case that f = T g with T a bounded linear operator on Lp (Rd , w) for all w ∈ Ap

this theorem holds for all UMD Banach function spaces, which is one of the deep
results of Rubio de Francia and can be found in [135, Theorem 5].

As an application of Theorem 4.2.1 we will present a short proof of the bound-
edness of the Hardy-Littlewood maximal operator on mixed Lq -spaces.
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Definition 4.2.3. Let p ∈ (1,∞) and w ∈ Ap . For f ∈ Lp (Rd , w ; X ) with X = Lq (Ω) we
define the maximal function M̃ as

M̃ f (x, s) = sup
Q3x

−
∫

Q
| f (y, s)| dy

with Q all cubes in Rd as before.

We can see that M̃ is measurable, as the value of the supremum in the definition
stays the same if we only consider rational cubes. We will show that the maximal
function is bounded on the space X = Lq (Ω). Note that if Ω = N, the result below
reduces to the weighted version of the Fefferman-Stein theorem [12].

Theorem 4.2.4. M̃ is bounded on Lp (Rd , w ;Lq (Ω)) for all p ∈ (1,∞) and w ∈ Ap .

Proof. Let M be the Hardy-Littlewood maximal operator and assume that
f ∈ Lp (Rd , w ;Lq (Ω)) is simple. By Proposition 2.2.1 and the definition of the Hardy-
Littlewood maximal operator we know that

‖M̃ f (·, s)‖Lp (Rd ,w) = ‖M f (·, s)‖Lp (Rd ,w) ≤Cp,d · [w]
1

p−1

Ap
‖ f (·, s)‖Lp (Rd ,w)

Then by Theorem 4.2.1 we get that

‖M̃ f ‖Lp (Rd ,w ;Lq (Ω)) ≤αp,q ,d ([w]Ap )‖ f ‖Lp (Rd ,w ;Lq (Ω))

with αp,q ,d an increasing function on R+. With a density argument we then get that
M̃ is bounded on Lp (Rd , w ;Lq (Ω)).

Remark 4.2.5. Using deep connections between harmonic analysis with weights
and martingale theory, Theorem 4.2.4 was obtained in [21] and [135, Theorem 3]
for UMD Banach function spaces in the case w = 1. It has been extended to the
weighted setting in [146]. As our main result Theorem 4.3.5 is formulated for iter-
ated Lq (Ω)-spaces we prefer the above more elementary treatment.

4.3. MAIN RESULT

In this section we present the main results of this chapter, Theorem 4.3.5 and Corol-
lary 4.3.9, and we prove Theorem 3.1.4 as a consequence. We will first obtain some
preliminary results on convolution operators and integral operators which will be
needed in the proofs.

4.3.1. Convolution operators

Recall the class of kernels K from Definition 3.1.1:

K = {k ∈ L1(Rd ) : for all simple f :Rd →R+ one has |k ∗ f | ≤ M f a.e.}.
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To keep the presentation as simple as possible we only consider the iterated
space X = Lq (Ω, H) with q ∈ (1,∞)n below (see (4.2.1)). For a kernel k ∈ L1(Rd ), p ∈
(1,∞) and w ∈ Ap define the convolution operator Tk on Lp (Rd , w ; X ) as Tk f = k ∗ f .
Of course by the definition of M̃ we also have |k ∗ f | ≤ M̃ f almost everywhere for
all simple f :Rd → X .

Proposition 4.3.1. Let q ∈ (1,∞)n and X (H) = Lq (Ω, H). For all s ∈ [1,∞] and p ∈ (1,∞)

and w ∈ Ap , the family of convolution operators T = {Tk : k ∈ K } on Lp (Rd , w ; X (H)) is
`s

H -bounded and there is an increasing function αp,q ,s,d such that

Rs (T ) ≤αp,q ,s,d ([w]Ap ).

Proof. Let 1 < s <∞. Assume that f1, · · · , fN are simple. Take t ∈Ω and i ∈ {1, · · · , N }

arbitrary. Note that we have fi (·, t ) ∈ Lp (Rd , w). Then since |Tki fi (x, t )| ≤ M̃ fi (x, t )

for almost all x ∈Rd , the result follows from Theorem 4.2.4 using the vector (q1, · · · ,

qn , s) and the measure space(
Ω× {1, · · · , N },Σ×P ({1, · · · , N }),µ×λ)

with λ the counting measure. Now the result follows by the density of the simple
functions in Lp (Rd , w ;Lq (Ω, H)).

The proof of the cases s = 1 and s = ∞ follow the lines of [123, Theorem 4.7],
where the unweighted setting is considered. In the case s = ∞ also assume that
f1, · · · , fN are simple. With the boundedness of M̃ from Theorem 4.2.4 we have∫

Rd

∥∥∥ sup
1≤n≤N

|Tkn fn(x)|
∥∥∥p

Lq (Ω,H)
w(x) dx ≤

∫
Rd

∥∥∥∥ sup
1≤n≤N

M̃ fn(x)

∥∥∥∥p

Lq (Ω,H)
w(x) dx

≤
∫
Rd

∥∥∥∥M̃

(
sup

1≤n≤N
| fn |

)
(x)

∥∥∥∥p

Lq (Ω,H)
w(x) dx

≤αp,q ,d ([w]Ap )p
∫
Rd

∥∥∥∥(
sup

1≤n≤N
| fn |

)
(x)

∥∥∥∥p

Lq (Ω,H)
w(x) dx

with αp,q ,d an increasing function on R+. The claim now follows by the density of
the simple functions in Lp (Rd , w ;Lq (Ω, H)).

For s = 1 we use duality. For f ∈ Lp (Rd , w ; X (H)) and g ∈ Lp ′
(Rd , w ′; X ∗), let

〈 f , g 〉 =
∫
Rd

〈 f (x), g (x)〉X ,X (H)∗ d x.

It follows from Proposition 4.A.1 that in this way Lp (Rd , w ; X (H))∗ = Lp ′
(Rd , w ′;

X (H)∗). Moreover, one has T ∗
k = Tk̃ with k̃(x) = k(−x). Now since k ∈ K if and

only if k̃ ∈ K we know by the second case that the adjoint family T ∗ = {T ∗ : T ∈
T } is `∞-bounded on Lp ′

(Rd , w ′; X (H)∗). Now the result follows from Proposition
4.1.3.
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Remark 4.3.2. Proposition 4.3.1 is an extension of [123, Theorem 4.7] to the weighted
setting. The result remains true for UMD Banach function spaces X and can be
proved using the same techniques of [123] where one needs to apply the weighted
extension of [135, Theorem 3] which is obtained in [146].

The endpoint case s = 1 of Proposition 4.3.1 plays a crucial rôle in the proof of
Theorems 4.3.5 and 4.3.12. Quite surprisingly the case s = 1 plays a central rôle in
the proof of [123, Theorem 7.2] as well, where it is used to prove R-boundedness
of a family of stochastic convolution operators.

4.3.2. Integral operators with operator valued kernel

In this section H is a Hilbert space and (Ω,Σ,µ) is a σ-finite measure space such
that Lq (Ω; H) is separable for some (for all) q ∈ (1,∞).

Definition 4.3.3. Let J be an index set. For each j ∈J , let T j :Rd×Rd →L (Lq (Ω; H))

be such that for all φ ∈ Lq (Ω; H), (x, y) 7→ T j (x, y)φ is measurable and ‖T j (x, y)‖ ≤ 1.
For k ∈K define the operator Ik,T j on Lp (Rd , v ;Lq (Ω; H)) as

Ik,T j f (x) =
∫
Rd

k(x − y)T j (x, y) f (y) dy (4.3.1)

and denote the family of all such operators by IT .

In the above definition we consider a slight generalization of the setting of The-
orem 3.1.4: We allow different operators T j for j ∈J in the `s

H -boundedness result
of Theorem 4.3.5.

We first prove that the family of operators IT is uniformly bounded.

Lemma 4.3.4. Let 1 < p, q <∞ and write X (H) = Lq (Ω; H). Assume that for all φ ∈ X (H)

and j ∈ J , (x, y) 7→ T j (x, y)φ is measurable and ‖T j (x, y)‖ ≤ 1. Then there exists an
increasing function αp,d on R+ such that for all Ik,T j ∈IT ,∥∥∥Ik,T j

∥∥∥
L (Lp (Rd ,v ;X (H)))

≤αp,d ([v]Ap ), v ∈ Ap .

Proof. Let f ∈ Lp (Rd , v ; X (H)) arbitrary. Then by Minkowski’s inequality for inte-
grals in (i ), the properties of k ∈ K in (i i ) and boundedness of M on Lp (Rd , v) in
(i i i ), we get

‖Ik,T j f ‖Lp (Rd ,v ;X (H)) =
(∫
Rd

∥∥∥∥∫
Rd

k(x − y)T j (x, y) f (y) dy

∥∥∥∥p

X (H)
v(x) dx

) 1
p

(i )≤
(∫
Rd

(∫
Rd

|k(x − y)|‖T j (x, y) f (y)‖X (H) dy

)p

v(x) dx

) 1
p

≤
(∫
Rd

(∫
Rd

|k(x − y)|‖ f (y)‖X (H) dy

)p

v(x) dx

) 1
p
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(i i )≤
(∫
Rd

(
M(‖ f ‖X (H))(x)

)p v(x) dx

) 1
p (i i i )≤ αp,d ([v]Ap )‖ f ‖Lp (Rd ,v ;X (H))

with αp,d an increasing function on R+. This proves the lemma.

We can now state the main result of this chapter.

Theorem 4.3.5. Let 1 < p, q < ∞ and write X (H) = Lq (Ω; H). Assume the following
conditions

(1) For all φ ∈ X (H) and j ∈J , (x, y) 7→ T j (x, y)φ is measurable.

(2) For all s ∈ (1,∞), T = {T j (x, y) : x, y ∈Rd , j ∈J } is `s
H -bounded,

Then for all v ∈ Ap and all s ∈ (1,∞), the family of operators IT ⊆ Lp (Rd , v ; X (H)) as
defined in (4.3.1), is `s

H -bounded with Rs
H (IT ) ≤ C where C depends on p, q,d , s, [v]Ap

and on Rσ
H (T ) for σ ∈ (1,∞) and is Ap -consistent.

Example 4.3.6. When Ω = Re with µ the Lebesgue measure and q0 ∈ (1,∞), then
the weighted boundedness of each of the operators T j (x, y) on Lq0 (Re , w ; H) for
all Aq0 -weights w in an Aq0 -consistent way, is a sufficient condition for the `s

H -
boundedness which is assumed in Theorem 4.3.5. Indeed, this follows from the
extension of [32, Corollary 3.12] (also see Theorem 4.2.1) to the H-valued setting.

Usually, the weighted boundedness is simple to check with [65, Theorem IV.3.9]
or [71, Theorem 9.4.6], because often for each x, y ∈ Rd and j ∈ J , T j (x, y) is given
by a Fourier multiplier operator in Re .

Example 4.3.7.

(i) Let H = C and let q ∈ (1,∞). Let T (t ) = e t∆ for t ≥ 0 be the heat semigroup,
where ∆ is the Laplace operator on Re . Then it follows from the weighted
Mihlin multiplier theorem ([65, Theorem IV.3.9]) that for all w ∈ Aq ,
‖T (t )‖L (Lq (Re ,w)) ≤C , where C is Aq -consistent. Therefore, as in Example 4.3.6,
{T (t ) : t ∈R+} is `s-bounded on Lq (Rd , w) by an Aq -consistent Rs-bound.

(ii) In order to give an example of an operator Ik,T as in (4.3.1), we could let
T (x, y) = T (φ(x, y)), where φ : Rd ×Rd → R+ is measurable. Other examples
can be given if one replaces the heat semigroup by a two parameter evolution
family T (t , s), which was the setting of Chapter 3.

To prove Theorem 4.3.5 we will first show a result assuming `s
H -boundedness

for a fixed s ∈ (1,∞). Here we can also include s = 1.

Proposition 4.3.8. Let 1 ≤ s < q <∞ and write X (H) = Lq (Ω; H). Assume the following
conditions

(1) For all φ ∈ X (H) and all j ∈J , (x, y) 7→ T j (x, y)φ is measurable.
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(2) T = {T j (x, y) : x, y ∈Rd , j ∈J } is `s
H -bounded.

Then for all p ∈ (s,∞) and all v ∈ A p
s

the family of operators IT ⊆ Lp (Rd , v ; X (H)) defined
as in (4.3.1), is `s

H -bounded and there exist an increasing function αs,p,q,d such that

Rs
H (IT ) ≤Rs

H (T )αs,p,q,d ([v]A p
s

).

Proof. Without loss of generality we can assume Rs
H (T ) = 1. We start with a pre-

liminary observation. By the extensions of [65, Theorem VI.5.2] or [71, Theorem
9.5.8] to the H-valued setting, the `s

H -boundedness is equivalent to the following:

for every u ≥ 0 in L
q

q−s (Ω) there exists a U ∈ L
q

q−s (Ω) such that

‖U‖
L

q
q−s (Ω)

≤ ‖u‖
L

q
q−s (Ω)

,∫
Ω
‖T j (x, y)φ‖s

H u dµ≤
∫
Ω
‖φ‖s

HU dµ, x, y ∈Ω, j ∈J , φ ∈ Lq (Ω; H).
(4.3.2)

For n = 1, · · · , N take Ikn ,T jn
∈ IT and let In = Ikn ,T jn

where j1, . . . , jN ∈ J . Take
f1, · · · , fN ∈ Lp (Rd , v ; X ) and note that

∥∥∥(
N∑

n=1
‖In fn‖s

H

) 1
s ∥∥∥

Lp (Rd ,v ;Lq (Ω))
=

∥∥∥ N∑
n=1

‖In fn‖s
H

∥∥∥ 1
s

L
p
s

(
Rd ,v ;L

q
s (Ω)

).

Let r ∈ (1,∞) be such that 1
r + s

q = 1 and fix x ∈Rd . As Lr (Ω) = L
q
s (Ω)∗, we can find a

function u ∈ Lr (Ω), which will depend on x, with u ≥ 0 and ‖u‖Lr (Ω) = 1 such that

∥∥∥ N∑
n=1

‖In fn(x)‖s
H

∥∥∥
L

q
s (Ω)

=
N∑

n=1

∫
Ω
‖In fn(x)‖s

H u dµ. (4.3.3)

By the observation in the beginning of the proof, there is a function U ≥ 0 in Lr (Ω)

(which depends on x again) such that (4.3.2) holds. Since ‖kn‖L1(Rd ) ≤ 1, Hölder’s
inequality yields

‖In fn(x)‖s
H ≤

∫
Rd

|kn(x − y)|‖T jn (x, y) fn(y)‖s
H dy. (4.3.4)

Applying (4.3.4) in (i ), estimate (4.3.2) in (i i ), and Hölder’s inequality in (i i i ), we
get:

N∑
n=1

∫
Ω
‖In fn(x)‖s

H u dµ
(i )≤

N∑
n=1

∫
Ω

∫
Rd

|kn(x − y)|‖T jn (x, y) fn(y)‖s
H dy u dµ

=
N∑

n=1

∫
Rd

|kn(x − y)|
∫
Ω
‖T jn (x, y) fn(y)‖s

H u dµ dy

(i i )≤
N∑

n=1

∫
Rd

|kn(x − y)|
∫
Ω

‖ fn(y)‖s
H U dµ dy
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=
∫
Ω

N∑
n=1

∫
Rd

|kn(x − y)| ‖ fn(y)‖s
H dy U dµ

(i i i )≤
∥∥∥ N∑

n=1

∫
Rd

|kn(x − y)| ‖ fn(y)‖s
H dy

∥∥∥
L

q
s (Ω)

.

Combining (4.3.3) with the above estimate and applying the `1-boundedness result
of Proposition 4.3.1 to ‖ fn‖s

H ∈ L
p
s

(
Rd , v ;L

q
s (Ω)

)
(here we use v ∈ A p

s
), we get

∥∥∥( N∑
n=1

‖In fn‖s
H

) 1
s

∥∥∥
Lp (Rd ,v ;Lq (Ω))

≤
∥∥∥ N∑

n=1

∫
Rd

|kn(·− y)|‖ fn(y)‖s
H dy

∥∥∥ 1
s

L
p
s

(
Rd ,v ;L

q
s (Ω)

)
=

∥∥∥ N∑
n=1

∣∣∣kn ∗‖ fn‖s
H

∣∣∣ ∥∥∥ 1
s

L
p
s

(
Rd ,v ;L

q
s (Ω)

)
≤αp,q,s,d ([v]A p

s
)
∥∥∥ N∑

n=1
‖ fn‖s

H

∥∥∥ 1
s

L
p
s

(
Rd ,v ;L

q
s (Ω)

)

=αp,q,s,d ([v]A p
s

)
∥∥∥(

N∑
n=1

‖ fn‖s
H

) 1
s ∥∥∥

Lp (Rd ,v ;Lq (Ω))

with αp,q,s,d an increasing function on R+. This proves the `s
H -boundedness.

Next we prove Theorem 4.3.5. For a constant φ depending on a parameter
t ∈ I ⊂R, we write φ∝ t if φt ≤φs whenever t ≤ s and s, t ∈ I .

Proof of Theorem 4.3.5. Fix q ∈ (1,∞), p = q , v ∈ Aq and κ= 2[v]Aq ≥ 2. The case p 6= q

will be considered at the end of the proof.
Step 1. First we prove the theorem for very small s ∈ (1, q). Proposition 2.2.1

gives σ1 =σq,κ,d ∈ (1, q) and Cq,κ,d such that for all s ∈ (1,σ1] and all weights u ∈ Aq

with [u]Aq ≤ κ,
[u]A q

s
≤ [u]A q

σ

≤Cq,κ,d .

Moreover, σ1 ∝ κ−1 and C ∝ κ.
By Proposition 4.3.8, IT ⊆ L (Lq (Rd , v ; X (H))) is `s

H -bounded for all s ∈ (1,σ1)

and
Rs

H (IT ) ≤Rs (T )αs,q,d ([v]A q
s

) ≤Rs
H (T )βq,s,d ,κ, (4.3.5)

with βq,s,d ,κ =αq,s,d (Cq,κ,d ). Note that β∝ κ and β∝ s′.
Step 2. Now we use a duality argument to prove the theorem for large s ∈

(q,∞). By Proposition 2.2.1, v ′ ∈ Aq ′ and κ̃ = 2[v ′]Aq′ = 2[v]
1

q−1

Aq
= 2(κ

1
q−1 ). Note

that we can identify X (H)∗ = Lq ′
(Ω; H) and Lq (Rd , v ; X (H))∗ = Lq ′

(Rd , v ′; X (H)∗) by
Proposition 4.A.1. Define I ∗

T = {I∗ : I ∈IT }.
It is standard to check that for Ik,T j ∈IT the adjoint I∗k,T j

satisfies

I∗k,T j
g (x) =

∫
Rd

k̃(y −x)T̃ j (x, y)g (y) dy = Ik̃,T̃ j
g (x)
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with k̃(x) = k(−x) and T̃ j (x, y) = T ∗
j (y, x). Indeed, for all f ∈ Lq (Rd , v ; X (H)) and

g ∈ Lq ′
(Rd , v ′; X (H)∗) we have〈

f , I∗k,T j
g
〉

Lq (Rd ,v ;X (H)),Lq′ (Rd ,v ; X (H)∗)
=

〈
Ik,T j f , g

〉
Lq (Rd ,v ;X (H)),Lq′ (Rd ,v ; X (H)∗)

=
∫
Rd

〈∫
Rd

k(x − y)T j (x, y) f (y) dy, g (x)

〉
X (H),X (H)∗

dx

=
∫
Rd

∫
Rd

k(x − y)
〈

T j (x, y) f (y), g (x)
〉

X (H),X (H)∗ dy dx

=
∫
Rd

∫
Rd

〈
f (y),k(x − y)T ∗

j (x, y)g (x)
〉

X (H),X (H)∗
dy dx

=
∫
Rd

〈
f (y),

∫
Rd

k(x − y)T ∗
j (x, y)g (x) dx

〉
X (H),X (H)∗

dy

=
〈

f , y 7→
∫
Rd

k(x − y)T ∗
j (x, y)g (x) dx

〉
Lq (Rd ,v ;X (H)),Lq′ (Rd ,v ′;X (H)∗)

As already noted before we have k̃ ∈K . Furthermore, by Proposition 4.1.3 the
adjoint family T ∗ is Rs′

H -bounded with Rs′
H (T ∗) = Rs

H (T ). Therefore, it follows
from Step 1 that there is a σ2 =σq ′,κ̃,d ∈ (1, q ′) such that for all s′ ∈ (1,σ2], I ∗

T is `s′
H -

bounded on Lq ′
(Rd , v ′; X (H)∗) and using Proposition 4.1.3 again, we obtain IT is

`s
H -bounded and

Rs
H (IT ) =Rs′

H (I ∗
T ) ≤Rs′

H (T ∗)βq ′,s′,d ,κ̃ =Rs
H (T )βq ′,s′,d ,κ̃. (4.3.6)

Therefore, Proposition 4.1.3 yields that IT is `s
H -bounded on Lq (Rd , v ; X (H)) for all

s ∈ [σ′
2,∞).

Step 3. We can now finish the proof in the case p = q by an interpolation argu-
ment. In the previous steps 1 and 2 we have found 1 < σ1 < q < σ′

2 <∞ such that
Iα is `s

H -bounded for all s ∈ (1,σ1]∪ [σ′
2,∞) with

Rs
H (IT ) ≤Rs

H (T )γq,s,d ,κ. (4.3.7)

where γq,s,d ,κ = βq,s,d ,κ if s ≤ σ1 and γq,s,d ,κ = βq ′,s′,d ,κ̃ if s ≥ σ′
2. Clearly, γ := γq,s,d ,κ

satisfies γ∝ κ, γ∝ s′ for s ∈ (1,σ1] and γ∝ s for s ∈ [σ′
2,∞). Moreover, σ1 ∝ 1

κ and
σ′

2 ∝ κ.
Now Proposition 4.1.3 yields the `s

H -boundedness and the required estimates
for the remaining s ∈ [σ1,σ′

2] and by (4.3.7) we find

Rs
H (IT ) ≤ max{Rσ1

H (IT ),R
σ′

2
H (IT )}

≤ max{Rσ1
H (T ),R

σ′
2

H (T )}γ.

where γ= max{γq,σ1,d ,κ,γq ′,σ2,d ,κ̃}. By Example 4.1.5, R
σ1
H (T ) ∝ κ and R

σ′
2

H (T ) ∝ κ.
Also γ∝ κ in the above. Therefore, the obtained Rs

H -bound is Aq -consistent.
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Step 4. Next let p, q ∈ (1,∞). Fix s ∈ (1,∞). For n = 1, · · · , N take Ikn ,T jn
∈IT and

let In = Ikn ,T jn
. Take f1, · · · , fN ∈ Lp (Rd , v ; X (H))∩Lq (Rd , v ; X (H)) and let

F =
∥∥∥( N∑

n=1
‖In fn‖s

H

) 1
s
∥∥∥

Lq (Ω)
and G =

∥∥∥( N∑
n=1

‖ fn‖s
H

) 1
s
∥∥∥

Lq (Ω)
.

By the previous step we know that for all v ∈ Aq ,

‖F‖Lq (Rd ,v) ≤C‖G‖Lq (Rd ,v),

where C depends on d , s, q , and [v]Ap and is Ap -consistent. Therefore, by Theorem
2.2.3 we can extrapolate to obtain for all p ∈ (1,∞) and v ∈ Ap ,

‖F‖Lp (Rd ,v) ≤ C̃‖G‖Lp (Rd ,v),

where C̃ depends on C , p and [v]Ap and is again Ap -consistent. This implies the
required Rs

H -boundedness for all p, q ∈ (1,∞) with constant C̃ .

Corollary 4.3.9. LetΩ⊆Re be an open set and H be an Hilbert space. Let 1 < p, q, q0 <∞.
Assume the following conditions

(1) For all φ ∈ Lq (Ω; H) and j ∈J , (x, y) 7→ T j (x, y)φ is measurable.

(2) For all w ∈ Aq0 , sup
j∈J ,x,y∈Ω

‖T j (x, y)‖L (Lq0 (Ω,w ;H)) ≤C , where C is Aq0 -consistent.

Then for every v ∈ Ap , w ∈ Aq and s ∈ (1,∞), the family of operators

IT ⊆ Lp (Rd , v ;Lq (Ω, w ; H)) as defined in (4.3.1),

is `s
H -bounded with Rs

H (IT ) ≤ C̃ where C̃ depends on p, q,d , s, [v]Ap , [w]Aq and on Rσ
H (T )

for σ ∈ (1,∞) and is Ap - and Aq -consistent.

Proof. In the case Ω = Re , note that Example 4.3.6 yields that for each q ∈ (1,∞)

and each w ∈ Aq and s ∈ (1,∞), T considered on Lq (Ω, w ; H) is `s
H -bounded. More-

over, Rs
H (T ) ≤ K , where K depends on q, s,e and [w]Aq in an Aq -consistent way.

Therefore, the result follows from Theorem 4.3.5.
In the case Ω⊆Re , we reduce to the case Re by a restriction-extension argument.

For convenience we sketch the details. Let E : Lq (Ω, w ; H) → Lq (Re , w ; H) be the
extension by zero and let R : Lq (Re , w ; H) → Lq (Ω, w ; H) be the restriction to Ω. For
every x, y ∈ Rd and j ∈ J , let T̃ j (x, y) = ET j (x, y)R ∈ L (Lq (Re , w ; H)) and let T̃ =
{T̃ j (x, y) : x, y ∈Rd }.

Since ‖T̃ j (x, y)‖L (Lq (Re ,w ;H)) ≤ ‖T j (x, y)‖L (Lq (Ω,w ;H)) ≤ C , it follows from the case
Ω = Re that IT̃ ⊆ Lp (Rd , v ;Lq (Re , w ; H)) is `s-bounded with Rs

H (IT̃ ) ≤ C̃ . Now it
remains to observe that the restriction of Ik,T̃ j

to Lp (Rd , v ;Lq (Ω, w ; H)) is equal to
Ik,T j and hence Rs

H (IT ) ≤Rs
H (IT̃ ) ≤ C̃ .
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Next we will prove Theorem 3.1.4. We first introduce the notion of RH -boundedness
for operators with values in a Hilbert space H .

Definition 4.3.10. Let H be a Hilbert space. We call a family of operators T ⊆
L (X (H),Y (H)) RH -bounded if there exists a constant C such that for all N ∈ N, all
sequences (Tn)N

n=1 in T and (xn)N
n=1 in X ,

∥∥∥ N∑
n=1

rnTn xn

∥∥∥
L2(Ω;Y (H))

≤C
∥∥∥ N∑

n=1
rn xn

∥∥∥
L2(Ω;X (H))

. (4.3.8)

The least possible constant C is called the RH -bound of T and is denoted by
RH (T ).

Remark 4.3.11. For X (H) = Y (H) = Lq (Ω; H) with q ∈ (1,∞)n , the notions `2
H -boundedness

and RH -boundedness of any family S ⊆L (X ,Y ) coincide and C−1R2
H (S ) ≤RH (S ) ≤

CR2
H (S ), where C is a constant which only depends on q . This assertion follows

from the Kahane-Khintchine inequalities (see [45, 1.10 and 11.1]), and in the case
X = Y = Lq it was already shown in Section 2.7.

Theorem 4.3.12. Let Ω ⊆ Rd be an open set, H be a Hilbert space. Let p, q ∈ (1,∞).
Assume that for all Aq -weights w ,

‖T (t , s)‖L (Lq (Ω,w ;H)) ≤C , s, t ∈R, (4.3.9)

where C depends on the Aq -constant of w in a consistent way. Then the family of integral
operators {Ik : k ∈K } ⊆L (Lp (R;Lq (Ω; H))) as defined in (3.1.2) is RH -bounded.

Proof. The result follows directly from Corollary 4.3.9 and Remark 4.3.11 with
X (H) = Lp (R;Lq (Ω; H)).

Theorem 3.1.4 follows directly from Theorem 4.3.12 with H =C.

4.A. APPENDIX: DUALITY OF ITERATED Lq -SPACES

In this section we consider H = C for simplicity. Let (Ωi ,Σi ,µi ) for i = 1, . . .n be σ-
finite measure spaces. The dual of the iterated space Lq (Ω) as defined in (4.2.1), is
exactly what one would expect. In a general setting one can prove that Lp (Ω; X )∗ =
Lp ′

(Ω, X ∗) for reflexive Banach function spaces X from which the duality for Lq (Ω)

follows, as is done in [46, Chapter IV] using the so-called Radon-Nikodym prop-
erty of Banach spaces. Here we present an elementary proof just for Lq (Ω).

Proposition 4.A.1. Let q ∈ (1,∞)n . For every bounded linear functional Φ on Lq (Ω)

there exists a unique g ∈ Lq ′
(Ω) such that:

Φ( f ) =
∫
Ω

f g dµ (4.A.1)

for all f ∈ Lq and ‖Φ‖ = ‖g‖Lq′ (Ω), i.e. Lq (Ω)∗ = Lq ′
(Ω).
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Proof. We follow the strategy of proof from [136, Theorem 6.16]. The uniqueness
proof is as in [136, Theorem 6.16]. Also by repeatedly applying Hölder’s inequality
we have for any g satisfying (4.A.1) that

‖Φ‖ ≤ ‖g‖Lq′ (Ω). (4.A.2)

So it remains to prove that g exists and that equality holds in (4.A.2). As in [136,
Theorem 6.16] one can reduce to the case µ(Ω) <∞. Define λ(E) =Φ(χE ) for E ∈ Σ.
Then one can check that λ is a complex measure which is absolutely continuous
with respect to µ. So by the Radon-Nikodym Theorem [136, Theorem 6.10] we can
find a g ∈ L1(Ω) such that for all measurable E ⊆Ω

Φ(χE ) =
∫

E
g dµ=

∫
Ω
χE g dµ

and from this we get by linearity Φ( f ) = ∫
Ω f g dµ for all simple functions f . Now

take a f ∈ L∞(Ω) arbitrary and let fi be simple functions such that ‖ fi − f ‖L∞(Ω) → 0

for i →∞. Then since µ(Ω) <∞ we have ‖ fi − f ‖Lq (Ω) → 0 for i →∞. Hence

Φ( f ) = lim
i→∞

Φ( fi ) = lim
i→∞

∫
Ω

fi g dµ=
∫
Ω

f g dµ. (4.A.3)

We will now prove that g ∈ Lq ′
(Ω) and that equality holds in (4.A.2). Take k ∈N

arbitrary. Let E 1
k = {s ∈Ω : 1

k ≤ |g (s)| ≤ k} and define for i = 2, · · · ,n

E i
k =

{
s ∈Ω :

∥∥gk (s1, · · · , si−1,·)
∥∥

L
q′

i (Ωi ,···Lq′n (Ωn ))
≥ 1

k

}
Now take gk = g

∏n
i=1χE i

k
and let α be its complex sign function, i.e. |α| = 1 and

α|gk | = gk . Take

f (s) =α|gk (s)|q ′
n−1

n∏
i=2

∥∥gk (s1, · · · , si−1,·)
∥∥q ′

i−1−q ′
i

L
q′

i (Ωi ,···Lq′n (Ωn ))

where we define 0 ·∞= 0. Then f ∈ L∞(Ω) and one readily checks that

∫
Ω

f gk dµ= ‖gk‖q ′
1

Lq′ (Ω)
and

∥∥ f
∥∥

Lq (Ω) = ‖gk‖
q′1
q1

Lq′ (Ω)
. (4.A.4)

So from (4.A.4) we obtain

‖gk‖q ′
1

Lq′ (Ω)
=

∫
Ω

f gk dµ=Φ( f ) ≤ ∥∥ f
∥∥

Lq (Ω)‖Φ‖ = ‖gk‖
q′1
q1

Lq′ (Ω)
‖Φ‖

which means ‖gk‖Lq′ (Ω) ≤ ‖Φ‖. Since this holds for all k ∈ N we obtain by Fatou’s

lemma that ‖g‖Lq′ (Ω) ≤ ‖Φ‖, which proves that g ∈ Lq ′
(Ω) and ‖g‖Lq′ (Ω) = ‖Φ‖. From

this we also get (4.A.3) for all f ∈ Lq ′
(Ω) by Hölders inequality and the dominated

convergence theorem. This proves the required result.
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To obtain the duality result in Proposition 4.1.3 for s = 1 and s = ∞, one also
needs the following end-point duality result. Let X (`s

N ) be the space of all N -tuples
( fn)N

n=1 ∈ X N with

‖( fn)N
n=1‖X (`s

N ) =
∥∥∥( N∑

n=1
| fn |s

)1/s∥∥∥
X

with the usual modification if s =∞.

Lemma 4.A.2. Define X = Lq (Ω). Take s ∈ [1,∞] and N ∈ N. Then for every bounded
linear functional Φ on X (`s

N ) there exists a unique g ∈ X ∗(`s′
N ) such that

Φ( f ) =
N∑

i=1
〈 fi , gi 〉X ,X ∗

for all f ∈ X (`s
N ) and ‖Φ‖ = ‖g‖

X ∗(`s′
N )

, i.e. X (`s
N )∗ = X ∗(`s′

N ).

Also this result can be proved with elementary arguments. Indeed, for r1,r2 ∈
[1,∞] we have X (`r1

N ) = X (`r2
N ) as sets and the following inequalities hold for all

f ∈ X (`r
N ) and r ∈ [1,∞]

‖ f ‖X (`r
N ) ≤ ‖ f ‖X (`1

N ) ≤ N 1− 1
r ‖ f ‖X (`r

N )

‖ f ‖X (`∞N ) ≤ ‖ f ‖X (`r
N ) ≤ N

1
r ‖ f ‖X (`∞N ).

(4.A.5)

Now the lemma readily follows from X (`r
N )∗ = X ∗(`r ′

N ) for r ∈ (1,∞) and letting r ↓ 1

and r ↑∞.
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5
EVOLUTION FAMILIES AND MAXIMAL REGU-
LARITY FOR SYSTEMS OF PARABOLIC EQUA-
TIONS

In this chapter we prove maximal Lp -regularity for systems of parabolic PDEs,
where the elliptic operator A has coefficients which depend on time in a measur-
able way and are continuous in the space variables. The proof is an application
of the characterization of maximal Lp -regularity introduced in Chapter 3 and it is
based on operator-theoretic methods. One of the main ingredients in the proof
is the construction of an evolution family on weighted Lq -spaces, in Section 5.2.
This application generalizes the one in Section 3.4. In this chapter we will consider
operators in divergence forms as well. The results here presented are based on
[63].

5.1. ASSUMPTIONS AND MAIN RESULTS

5.1.1. Ellipticity

Consider an operator A of the form

A = ∑
|α|≤m,|β|≤m

aαβDαDβ

where aαβ ∈CN×N are constant matrices and D =−i (∂1, . . . ,∂d ). The principal symbol
of A is defined as

A#(ξ) := ∑
|α|=|β|=m

〈ξα, aαβ ξ
β〉, ξ ∈Rd . (5.1.1)

Definition 5.1.1. We say that A is uniformly elliptic of angle θ ∈ (0,π) if there exists
a constant κ ∈ (0,1) such that

σ(A#(ξ)) ⊆Σθ∩ {ξ : |ξ| ≥ κ},ξ ∈Rd , |ξ| = 1, (5.1.2)

and there is a constant K ≥ 1 such that ‖aαβ‖ ≤ K for all |α|, |β| ≤ m. In this case we
write A ∈ Ell(θ,κ,K).

Observe that in the case N = 1, the above definition is equivalent to Definition
2.5.2.

97
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Definition 5.1.2. We say that A is elliptic in the sense of Legendre–Hadamard (see
[51, 60, 67]) if there exists a constant κ> 0 such that

Re(〈x, A#(ξ)x〉) ≥ κ‖x‖2, ξ ∈Rd , |ξ| = 1, x ∈CN (5.1.3)

and there is a constant K such that ‖aαβ‖ ≤ K for all |α|, |β| ≤ m. In this case we
write A ∈ EllLH(κ,K).

Obviously, (5.1.3) implies (6.2.3) with θ = arccos(κ/K̃ ) ∈ (0,π/2), where K̃ de-
pends only on m and K .

5.1.2. Lp (Lq )-theory for systems of PDEs with time-dependent coefficients.

In order to state the main result consider the following system of PDEs

u′(t , x)+ (λ+ A(t ))u(t , x) = f (t , x), t ∈R, x ∈Rd (5.1.4)

where u, f :R×Rd →CN and A is the following differential operator of order 2m:

(A(t )u)(x) = ∑
|α|≤m,|β|≤m

aαβ(t , x)DαDβu(x), (5.1.5)

where aαβ : R×Rd → CN×N . A function u : R×Rd → CN is called a strong solution
to (5.1.4) when all the above derivatives (in distributional sense) exist in L1

loc(R×
Rd ;CN ) and (5.1.4) holds almost everywhere.

For A of the form (5.1.5), x0 ∈Rd , and t0 ∈R let us introduce the notation:

A(t0, x0) := ∑
|α|≤m,|β|≤m

aαβ(t0, x0)DαDβ.

for the operator with constant coefficients.
The coefficients of A are only assumed to be measurable in time. More precisely,

the following conditions on the coefficients are supposed to hold:

(C) Let A be given by (5.1.5) and assume each aαβ :R×Rd →CN×N is measurable.
We assume there exist κ, K such that for all t0 ∈ R and x0 ∈ Rd , A(t0, x0) ∈
EllLH(κ,K). Assume there exists an increasing function ω : (0,∞) → (0,∞) with
the property ω(ε) → 0 as ε ↓ 0 and such that

‖aαβ(t , x)−aαβ(t , y)‖ ≤ω(|x − y |), |α| = |β| = m, t ∈R, x, y ∈Rd .

The first main result is on the maximal regularity for (5.1.4).

Theorem 5.1.3 (Non-divergence form). Let p, q ∈ (1,∞), v ∈ Ap (R), w ∈ Aq (Rd ), X0 =
Lq (Rd , w ;CN ) and X1 =W 2m,q (Rd , w ;CN ). Assume condition (C) holds. Then there exists
an Ap -Aq -consistent constant λ0 such that for all λ≥ λ0 and every f ∈ Lp (R, v ; X0) there
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exists a unique strong solution u ∈W 1,p (R, v ; X0)∩Lp (R, v ; X1) of (5.1.4). Moreover, there
is an Ap -Aq -consistent constant C depending on v , w , p, q , d , m, κ, K and ω such that
for all λ≥λ0,

λ‖u‖Lp (R,v ;X0) +‖u‖Lp (R,v ;X1) +‖u‖W 1,p (R,v ;X0) ≤C‖ f ‖Lp (R,v ;X0). (5.1.6)

By setting MRp (R, v) := W 1,p (R, v ; X0)∩Lp (R, v ; X1) and ‖u‖MRp (R,v) := ‖u‖Lp (R,v ;X1) +
‖u‖W 1,p (R,v ;X0), the above result states that A has maximal Lp

v -regularity on R for all
f ∈ Lp (R, v ; X0), according to Definition 3.3.10.

Note that the constant C does not depend on the dimension N . Actually, our
proof allows a generalization to infinite dimensional systems, but we will not con-
sider this here.

A similar result holds in the case A(t ) is in divergence form:

u′(t , x)+ (λ+ Adiv(t ))u(t , x) = ∑
|α|≤m

Dα fα(t , x), t ∈R, x ∈Rd (5.1.7)

where u, fα, g :R×Rd →CN . Here Adiv is the following differential operator of order
2m:

(Adiv(t )u)(x) = ∑
|α|≤m,|β|≤m

Dα
(
aαβ(t , x)Dβu(x)

)
, (5.1.8)

where aαβ : R×Rd →CN×N . Again we assume the same condition (C). We say that
u ∈ L1

loc(R×Rd ) is a weak solution of (5.1.7) if ∇mu ∈ L1
loc(R×Rd ) exists in the weak

sense and for all ϕ ∈C∞
c (R×Rd ),∫

Rd+1
−〈u,ϕ′〉+λ〈u,ϕ〉+ (−1)|α|〈aαβDβu,Dαϕ〉d(t , x)

=
∫
Rd+1

(−1)|α|〈 f ,Dαϕ〉d(t , x),

where we used the summation convention.

Theorem 5.1.4 (Divergence form). Let p, q ∈ (1,∞), v ∈ Ap (R), w ∈ Aq (Rd ), X0 =
Lq (Rd , w ;CN ) and X1/2 = W m,q (Rd , w ;CN ). Assume condition (C) holds for Adiv as in
(5.1.8). Then there exists an Ap -Aq -consistent constant λ0 such that for all λ≥λ0 and ev-
ery ( fα)|α|≤m in Lp (R, v ; X0) there exists a unique weak solution u ∈ Lp (R, v ; X 1

2
) of (5.1.7).

Moreover, there is an Ap -Aq -consistent constant C depending on v , w , p, q , d , m, κ,K
and ω such that ∑

|α|≤m
λ1− |α|

m ‖Dαu‖Lp (R,v ;X0) ≤C
d∑

j=1
λ

|α|
m ‖ fα‖Lp (R,v ;X0). (5.1.9)

5.2. GENERATION OF EVOLUTION FAMILIES

In this section we will show that in the case A(t ) has x-independent coefficient it
generates a strongly continuous evolution family S(t , s) (see Definition 3.3.2).
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5.2.1. On the sectoriality of the operator

First consider the case aαβ is time and space independent:

(Au)(x) = ∑
|α|=|β|=m

aαβDαDβu(x), (5.2.1)

The next result can be found in [77, Theorem 3.1], where the case of x-dependent
coefficients is considered as well.

Theorem 5.2.1. Let A be of the form (5.2.1) and assume there exist θ, κ > 0 and K > 0

such that A ∈ Ell(θ,κ,K). Let 1 < q < ∞ and w ∈ Aq and let X0 = Lq (Rd , w ;CN ). Then
there exists an Aq -consistent constant C depending on the parameters m,d ,κ,K , q such
that

‖λ1− |β|
m Dβ(λ+ A)−1‖L (X0) ≤C , |β| ≤ m, λ ∈Σπ−θ. (5.2.2)

Later on the above result will be applied to the operator A(t ) for fixed t ∈R. To
prove (5.2.2) it suffices to check that for every λ ∈ Σπ−θ, and |β| ≤ m, the symbol
M :Rd →C given by

M (ξ) =λ1− |β|
m ξβ(λ+ A#(ξ))−1

satisfies the following type of Mihlin’s condition: for every multiindex α ∈ Nd ,
there is a constant Cα which only depends on d ,α,θ,θ0,K ,κ such that

|ξ|α|DαM (ξ)| ≤Cα, ξ ∈Rd . (5.2.3)

Indeed, then the result is a consequence of the weighted version of Mihlin’s mul-
tiplier theorem as in [65, Theorem IV.3.9]. Note that this extends to the L (CN )-
valued case (see [19, Theorem 6.1.6] for the unweighted case). The proof of (5.2.3)
follows from elementary calculus and the following lemma taken from [56, Propo-
sition 3.1]. For convenience and in order to track the constants in the estimates, we
present the details.

Lemma 5.2.2. Let A ∈ Ell(θ0,κ,K) be of the form (5.2.1) with κ ∈ (0,1), K > 0 and θ0 ∈
(0,π). Let θ ∈ (θ0,π) be fixed. Then there is a positive constant C =C (κ,θ0,θ) such that

‖(A#(ξ)+λ)−1‖ ≤C (|ξ|m +|λ|)−1, (λ,ξ) ∈Σπ−θ\{0}×Rd , (5.2.4)

where A# is the principal symbol of A.

Proof. To start, we recall a general observation from [11, Lemma 4.1]. If B ∈L (CN )

with σ(B) ⊆ {z : |z| ≥ r } for some r > 0, then one has

‖B−1‖ ≤ ‖B‖nr−n−1, n ≥ 0. (5.2.5)
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Indeed, to show this it suffices to consider the case r = 1. Since ‖B∗B‖ = ‖B‖2, it is
sufficient to consider self-adjoint B . Let λmin,λmax ≥ 1 be the smallest and largest
eigenvalue of B respectively. The observation follows from

‖B−1‖ = 1

λmin
≤ 1 ≤ (λmax)n = ‖B‖n .

We then claim that with ε=
√

1−b
2 and b = |cos(θ−θ0)|,

|λ+µ| ≥ ε(|λ|+ |µ|), ∀ ξ ∈Rd , λ ∈Σπ−θ\{0}, µ ∈σ(A#(ξ)). (5.2.6)

To prove the claim, write µ = |µ|e iϕ with |ϕ| ≤ θ0 and λ = |λ|e iψ with |ψ| ≤ π− θ.
Clearly, |ψ−ϕ| ≤ π− (θ− θ0), from which we see cos(ψ−ϕ) ≥ −b. Therefore, the
claim follows from the elementary estimates

|λ+µ|2 = |λ|2 +|µ|2 +2Re(λµ) = |λ|2 +|µ|2 +2|λ| |µ|cos(ψ−ϕ)

≥ |λ|2 +|µ|2 −2b|λ| |µ| ≥ (1−b)(|λ|2 +|µ|2) ≥ ε(|λ|+ |µ|)2.

The assumptions on A# and homogeneity yield

σ(A#(ξ)) ⊆Σθ0 ∩ {z : |z| ≥ κ|ξ|2m}, ξ ∈Rd . (5.2.7)

This implies that for all (λ,ξ) ∈Σπ−θ\{0}×Rd with |λ|+ |ξ|2m = 1,

σ(λ+ A#(ξ)) ⊆ {z : |z| ≥ εκ}. (5.2.8)

Indeed, if µ ∈ A#(ξ), then from (5.2.7) and (5.2.6) we see that

|λ+µ| ≥ ε(|λ|+ |µ|) ≥ ε(|λ|+κ|ξ|2m) ≥ κε
( |λ|
κ

+|ξ|2m
)
≥ εκ

From (5.2.5) and (5.2.8) we can conclude ‖(λ+A#(ξ))−1‖ ≤ (εκ)−1, with (λ,ξ) ∈Σπ−θ\{0}×
Rd and |λ|+ |ξ|2m = 1. By homogeneity we obtain (5.2.4) with C = (εκ)−1.

As a consequence we obtain the following:

Corollary 5.2.3. Let λ0 > 0. Under the conditions of Theorem 5.2.1, the operator A on X0

with domain X1 =W 2m,q (Rd , w ;CN ) is closed and for every λ≥λ0,

c‖u‖X1 ≤ ‖(λ+ A)u‖X0 ≤ (2K +λ)‖u‖X1 ,

where c−1 is Aq -consistent and only depends on m,d ,θ0,θ,κ,K , q .
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5.2.2. Generation theorem

Consider A with time-dependent coefficients:

(A(t )u)(x) = ∑
|α|=|β|=m

aαβ(t )DαDβu(x), (5.2.9)

with A(t ) ∈ EllLH(κ,K) for some κ,K > 0 independent of t ∈ R. It follows from The-
orem 5.2.1 that A(t ) is a sectorial operator and by Corollary 5.2.3 the graph norm
of ‖u‖D(A(t )) is equivalent to the norm ‖u‖W 2m,q (Rd ,w ;CN ) with uniform estimates and
constants which only depend on w, q,d ,κ,K ,m.

The main result of this section is that (A(t ))t∈R generates a strongly continuous
evolution family (S(t , s))−∞<s≤t<∞ on Lq (Rd , w ;CN ) for all q ∈ (1,∞) and w ∈ Aq .
The precise definition of evolution family was given in Definition 3.3.2. Recall that
u(t ) = S(t , s)g if and only if

u′(t )+ A(t )u(t ) = 0, for almost all t ∈ (s,∞),

u(s) = g .
(5.2.10)

Theorem 5.2.4 (Generation of the evolution family). Let q ∈ (1,∞), w ∈ Aq and set
X0 = Lq (Rd , w ;CN ) and X1 = W 2m,q (Rd , w ;CN ). Assume that there exists κ,K > 0 such
that for each t ∈ R, A(t ) ∈ EllLH(κ,K). Then, the operator family (A(t ))t∈R with D(A(t )) =
X1 generates a unique strongly continuous evolution family (S(t , s))s≤t on X0. Moreover,
the evolution family satisfies the following properties.

1. (t , s) 7→ S(t , s) ∈L (X0) is continuous on {(t , s) : s < t }.

2. for all α ∈Nd there is a constant C such that

‖DαS(t , s)‖L (X0) ≤C |t − s|−|α|/(2m), s < t ,

where C only depends on q,d ,κ,K ,m and on w in an Aq -consistent way.

3. for all k ∈N, and multiindices α with |α| ≤ k,

DαS(t , s)u = S(t , s)Dαu, for all u ∈W k,q (Rd , w ;CN ), s < t .

4. The following weak derivatives exists for almost every s < t ,

D t S(t , s) =−A(t )S(t , s) on L (X0) (5.2.11)

Ds S(t , s) = S(t , s)A(s) on L (X1, X0). (5.2.12)

As far as we know the existence and uniqueness of the evolution family was
unknown even in the case w = 1 and q = 2. The main difficulty in obtaining the
evolution family is that the operators A(t ) and A(s) do not commute in general. If
they were commuting, then a more explicit formula for the evolution family exists
(see Example 3.3.3).
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Example 5.2.5. An example where the operators are not commuting can already
be given in the case m = d = 1, N = 2 by taking A(t ) = a(t )D2

1, where

a(t ) =
( 1 1(0,∞)(t )

1(−∞,0)(t ) 1

)
One can check that a(1) and a(−1) are not commuting. Furthermore, one can check
that the ellipticity condition (5.1.3) holds.

In the proof below we use Fourier multiplier theory. It turns out that the symbol
is only given implicitly as the solution to a system of differential equation. In order
to check the conditions of Mihlin’s theorem we apply the implicit function theorem
(see [47, Theorem 10.2.1]). The following simple lemmas will be needed.

Lemma 5.2.6 (Gronwall for weak derivatives). Let −∞ < s < T < ∞, f ∈ L1(s,T ),
a ∈ L∞(s,T ) and x ∈R. Assume u ∈W 1,1(s,T )∩C ([s,T ]) satisfies

u′(t ) ≤ a(t )u(t )+ f (t ), for almost all t ∈ (s,T ),

and u(s) = x. Let σ(t ,r ) = eatr and atr =
∫ t

r a(τ)dτ for s ≤ r < t ≤ T . Then

u(t ) ≤σ(t , s)x +
∫ t

s
σ(t ,r ) f (r )dr, t ∈ (s,T ).

This follows if one integrates the estimate d
dr

[
u(r )e−ar s

]≤ e−ar s f (r ) over (s, t ).

Proof. By the product rule for weak derivatives we find

d

dr

[
u(r )e−ar s

]= e−ar s [u′(r )−a(r )u(r )] ≤ e−ar s f (r ).

for almost all r ∈ (s,T ). Integrating over r ∈ [s, t ] we obtain

u(t )e−at s ≤ x +
∫ t

s
e−ar s f (r )dr.

from which the result follows.

The following existence and uniqueness result will be needed.

Lemma 5.2.7. Let X be a Banach space and p ∈ [1,∞). Let Q : R× X → X be measurable
and assume there are constants K1 and K2 such that for all t ∈ R and x, y ∈ X , ‖Q(t , x)−
Q(t , y)‖ ≤ K1‖x − y‖ and ‖Q(t , x)‖ ≤ K2(1+‖x‖). Let u0 ∈ X and f ∈ Lp (R; X ). Fix s ∈ R.
Then there is a unique function u ∈C ([s,∞); X ) such that

u(t )−u0 =
∫ t

s
Q(s,u(s))+ f (s)d s, t ≥ s.

Moreover, with λ= K1 +1, there is a C ≥ 0 independent of f and u0 such that

sup
t≥s

e−λ(t−s)‖u(t )‖ ≤C
(
1+‖u0‖+‖ f ‖Lp (s,∞;X )

)
.
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Proof. The uniqueness follows from Gronwall’s inequality. Indeed, let u and v be
solutions. Let w = u − v . Then

‖w ′(r )‖ ≤ ‖Q(r,u(r ))−Q(t , v(r ))‖ ≤ K1‖w(r )‖.

Therefore, integration over [s, t ] yields that

‖w(t )‖ ≤ K1

∫ t

s
‖w(r )‖dr,

since
∫ t

s |w ′(r )|dr = |w(t )−w(s)| and w(s) = u(s)−v(s) = u0−u0 = 0. Now the classical
integral form of Gronwall’s lemma gives w = 0.

The existence is a simple consequence of the Banach fixed point theorem. For
convenience we give the details. Fix λ > K1. Let Eλ be the space of continuous
functions u : [s,∞) → X for which ‖u‖Eλ = supt≥s e−λ(t−s)‖u(t )‖ <∞. Let L : Eλ → Eλ
be given by

L(u)(t ) = u0 +
∫ t

s
Q(r,u(r ))dr +

∫ t

s
f (r )dr.

We will show that the mapping L is a contraction on Eλ. Note that for u ∈ Eλ,

‖e−λ(t−s)L(u)(t )‖ ≤ e−λ(t−s)‖u0‖+e−λ(t−s)
∫ t

s
K2(1+‖u(r )‖)dr

+ (t − s)1/p ′
e−λ(t−s)‖ f ‖Lp (R;X )

≤ e−λ(t−s)(‖u0‖+ (t − s)1/p ′‖ f ‖Lp (R;X ))+e−λ(t−s)K2(t − s)

+e−λ(t−s)K2‖u‖Eλ

∫ t

s
eλ(r−s) dr

≤ e−λ(t−s)(‖u0‖+ (t − s)1/p ′‖ f ‖Lp (R;X ))+e−λ(t−s)K2(t − s)

+K2‖u‖Eλ
1

λ
,

and hence L(u) ∈ Eλ. Similarly,

e−λ(t−s)‖L(u)(t )−L(v)(t )‖ ≤ e−λ(t−s)
∫ t

s
K1‖u(r )− v(r )‖dr

≤ e−λ(t−s)K1‖u − v‖Eλ

∫ t

s
eλ(r−s) dr

≤ K1

λ
‖u − v‖Eλ .

Hence, ‖L(u)−L(v)‖Eλ ≤ K1
λ ‖u − v‖Eλ . Since λ> K1 it follows that L is a contraction.

Therefore, there is a unique u ∈ Eλ such that L(u) = u, from which we get that

u(t ) = u0 +
∫ t

s
Q(r,u(r ))dr, t ≥ s.
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Finally observe that

‖u‖Eλ = ‖L(u)‖Eλ ≤ ‖L(0)‖Eλ +‖L(u)−L(0)‖Eλ

≤ e−λ(t−s)‖u0‖+ (t − s)1/p ′
e−λ(t−s)‖ f ‖Lp (R;X ) +e−λ(t−s)K2(t − s)+ K1

λ
‖u‖Eλ

≤ ‖u0‖+ (λp ′)−
1

p′ ‖ f ‖Lp (R;X ) + K2

λ
+ K1

λ
‖u‖Eλ .

Hence
‖u‖Eλ ≤

[
‖u0‖+ (λp ′)−

1
p′ ‖ f ‖Lp (R+;X ) + K2

λ

] λ

λ−K1
.

Taking λ= K1 +1, yields the required result.

Remark 5.2.8. One can also allow f ∈ L1(R; X ). In this case, as before we get

‖u‖Eλ ≤ |u0|+ 1

λ
‖ f ‖L1(R;X ) +

K2

λ
+ K1

λ
‖u‖Eλ .

Now we can prove the generation result.

Proof of Theorem 5.2.4. The proof is divided in several steps. Let B =CN×N with the
operator norm and let Rd∗ =Rd \ {0}.

Step 1: Fix s ∈ R. Let I denote the N ×N identity matrix. We will first construct
the operators S(t , s) and check that (2) holds for |α| = 0. For this we show that the
function v given by

vt (t ,ξ)+ A#(t ,ξ)v(t ,ξ) = 0,

v(s,ξ) = I ,
(5.2.13)

is an Lq (Rd , w ;CN )-Fourier multiplier by applying a Mihlin multiplier theorem for
weighted Lq -spaces (see [65, Theorem IV.3.9] for the case N = 1). The solution u to
(5.2.10) is then given by

u(t ) = S(t , s)g =F−1(v(t , ·)ĝ ),

where ĝ denotes the Fourier transform of g . Note that by Lemma 5.2.7 for each
ξ ∈ Rd∗ there exists a unique solution v(·,ξ) ∈ C ([s,∞);B) of (5.2.13). Conversely,
if S(t , s) is an evolution family for A(t ), then by applying the Fourier transform,
one sees that F (S(t , s)) has to satisfy (5.2.13) for almost all t > s. This yields the
uniqueness of the evolution family.

To check the conditions of the multiplier theorem it suffices to prove the fol-
lowing claim: It holds that v(t , ·) ∈ C∞(Rd∗ ;B) and for all multiindices γ ∈ Nd , and
j ≥ 0,

‖Dγv(t ,ξ)‖B ≤C |ξ|−|γ|, ξ ∈Rd
∗ , (5.2.14)

where C only depends γ, d , m, κ and K . The estimate (5.2.14) will be proved by
induction on the length of γ by using the implicit function theorem.
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Step 2: As a preliminary result we first prove an estimate for the problem

vt (t ,ξ)+ A#(t ,ξ)v(t ,ξ) = f (t ,ξ),

v(s,ξ) = M ,
(5.2.15)

where f : (s,∞)×Rd∗ → B is measurable and for each ξ ∈ Rd∗ , f (·,ξ) ∈ L2(s,∞;B) and
M ∈ B . Note that the existence and uniqueness of a solution v(·,ξ) ∈ W 1,2(s,T ;B)∩
C ([s,T ];B) for fixed ξ 6= 0 and T > s follows from Lemma 5.2.7. Moreover, since
v(·,ξ) is obtained from a sequential limiting procedure in the Banach fixed point
theorem, the function v is measurable on [s,T ]×Rd∗ . Choosing T arbitrary large, it
follows that there is a unique measurable v : [s,∞)×Rd∗ → B for which the restriction
to [s,T ] satisfies v(·,ξ) ∈W 1,2(s,T ;B)∩C ([s,T ];B) and is a solution to (5.2.15).

Fix ξ ∈Rd∗ , ε ∈ (0,κ) and x ∈RN . From the ellipticity condition (5.1.3) and (5.2.15)
we infer that

1

2
D t |v(t ,ξ)x|2 =−Re

(〈v(t ,ξ)x, A#(t ,ξ)v(t ,ξ)x〉)+Re
(〈v(t ,ξ)x, f (t ,ξ)x〉)

≤−κ|ξ|2m |v(t ,ξ)x|2 +|v(t ,ξ)x| | f (t ,ξ)x|

≤ (ε−κ)|ξ|2m |v(t ,ξ)x|2 + 1

4ε
|ξ|−2m | f (t ,ξ)x|2,

where we used 2ab ≤ a2 +b2 on the last line. Thus Lemma 5.2.6 yields:

|v(t ,ξ)x|2 ≤ e2(ε−κ)|ξ|2m (t−s)|M x|2 + 1

2ε

∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|−2m | f (r,ξ)x|2 dr.

Taking the supremum over all |x| ≤ 1, we find that

‖v(t ,ξ)‖2 ≤ e2(ε−κ)|ξ|2m (t−s)‖M‖2 + 1

2ε

∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|−2m‖ f (r,ξ)‖2 dr. (5.2.16)

Note that if f = 0, then the second term vanishes and we can take ε= 0 in (5.2.16).
In this case ‖v(t ,ξ)‖ ≤ e(ε−κ)|ξ|2m (t−s) ≤ 1 and hence (5.2.14) holds for |γ| = 0. Also
note that if v j is the solution to (5.2.15) with (M , f ) replaced by (M j , f j ) for j = 1,2,
then by the previous estimates also

‖v1(t ,ξ)− v2(t ,ξ)‖2 ≤ ‖M1 −M2‖2 + 1

2ε
|ξ|−2m‖ f1(·,ξ)− f2(·,ξ)‖2

L2((s,∞);B).

Consequently, since D t v1 −D t v2 =−A#(t ,ξ)(v1 − v2)+ ( f1 − f2) we deduce that

‖v1(·,ξ)− v2(·,ξ)‖W 1,2(s,T ;B)

≤C (1+|ξ|2m)‖M1 −M2‖+C
1∑

j=−1
|ξ| j m‖ f1(·,ξ)− f2(·,ξ)‖L2((s,∞);B),

where C does not depend on ξ ∈ Rd∗ . Thus the solution depends in a Lipschitz
continuous way on the data.
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Step 3: Fix T > 0. Define Ψ :Rd∗ ×W 1,2(s,T ;B) → L2(s,T ;B)×B by

(Ψ(ξ)v)(t ) := (v ′(t )+ A#(t ,ξ)v(t ), v(s)).

Clearly, v is a solution to (5.2.15) if and only if Ψ(ξ)v(t ) = ( f , M). Therefore, by the
previous step for each ξ 6= 0, Ψ(ξ) is an homeomorphism and Ψ(ξ)−1( f , M) = v(t ,ξ).

For fixed M ∈ B and f ∈C∞(Rd∗ ;L2(R;B)), let

Φ f ,M :Rd
∗ ×W 1,2(s,T ;B) → L2(s,T ;B)×B

be given by
Φ f ,M (ξ, v) := (Ψ(ξ)v)− ( f (ξ), M).

Now for fixed ξ ∈ Rd∗ , Φ f ,M (ξ, v) = 0 holds if and only if v is a solution to (5.2.15).
Therefore, by the previous step there exists a unique (ξ, v) ∈ Rd∗ ×W 1,2(s, t ;B) such
that Φ f ,M (ξ̄, v̄) = 0. The Fréchet derivative with respect to the second coordinate
satisfies

D2Φ
f ,M (ξ̄, v̄)v = (

v ′(t )+ A#(t ,ξ)v(t ), v(s)
)= (Ψ(ξ)v)(t ,ξ). (5.2.17)

Thus, also D2Φ
f ,M (ξ̄, v̄) is an homeomorphism. Moreover, since A#(t , ·) and f are

C∞ on Rd∗ , it follows that for every v ∈ W 1,2(s,T ;B), ξ 7→ Φ f ,M (ξ, v) is C∞ on Rd∗ .
Now by the implicit function theorem (see [47, Theorem 10.2.1]) there exists a
unique continuous mapping ζ : Rd∗ → W 1,2(s,T ;B) such that ζ(ξ) = v(·,ξ), (ξ,ζ(ξ)) ∈
Rd∗ ×W 1,2(s,T ;B) and Φ f ,M (ξ,ζ(ξ)) = 0 for every ξ ∈Rd∗ . From this we obtain that the
unique solution of (5.2.15) can be expressed by

v(·,ξ) := ζ(ξ) =Ψ(ξ)−1( f , M).

Moreover, by the implicit function theorem ζ is C∞ on Rd∗ as an W 1,2(s,T ;B)-valued
function and

Dξ j ζ(ξ) =−(Ψ(ξ))−1 ◦Ψ f ,M
ξ j

(ξ,ζ(ξ))) =Ψ(ξ)−1
(

f̃ ,0
)
,

where f̃ (t ,ξ) = −Dξ j A#(t ,ξ)y(ξ) + Dξ j f (t ,ξ) and where we applied (5.2.17). This
means that Dξ j ζ(ξ) is a solution to (5.2.15) with M = 0 and f replaced by f̃ (t ,ξ)

and that by (5.2.16) the following estimate holds

‖Dξ j ζ(ξ)(t )‖2 ≤ 1

2ε

∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|−2m‖ f̃ (r,ξ)‖2 dr. (5.2.18)

Step 4. We are now in position to do the induction step. Assume that ∀ |γ| ≤ n

the problem
v ′
γ(t ,ξ)+ A#(t ,ξ)vγ(t ,ξ) = f (t ,ξ)

vγ(s,ξ) = M ,
(5.2.19)
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has a unique solution given by vγ(t ,ξ) = Dγv(t ,ξ), where M = 0 if |γ| ≥ 1, M = I if
|γ| = 0 and f is given by

f (t ,ξ) =− ∑
η1+η2=γ
η2 6=γ

cη1,η2 Dη1 A#(t ,ξ)Dη2 v(t ,ξ)

and assume that ∀ |γ| ≤ n,
‖Dγv(t ,ξ)‖ ≤Cγ|ξ|−|γ|. (5.2.20)

Of course these assertions hold in the case |γ| = 0, by Step 2.
Fix |γ| = n +1 and write γ = γ̃+β, with |γ̃| = n, |β| = 1. By Step 3, the function

w = Dβvγ satisfies
w ′(t ,ξ)+ A#(t ,ξ)w(t ,ξ) = f̃ (t ,ξ)

w(s,ξ) = 0,
(5.2.21)

and for suitable c̃η1,η2 ,

f̃ (t ,ξ) =− ∑
η1+η2=γ
η2 6=γ

c̃η1,η2 Dη1 A#(t ,ξ)Dη2 v(t ,ξ)

Moreover, by (5.2.18), the fact that ξ 7→ Dη1 A#(t ,ξ) is a (2m−|η1|)-homogenous poly-
nomial, |η1|+ |η2| = n +1, and (5.2.20) we find

‖Dγv(t ,ξ)‖2 ≤ 1

2ε

∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|−2m‖ f̃ (r,ξ)‖2 dr

≤ 1

2ε

∑
η1+η2=γ
η2 6=γ

c̃η1,η2

∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|2m−2|η1|‖Dη2 v(r,ξ)‖2 dr

≤ C̃γ|ξ|−2|γ|
∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|2m dr ≤Cγ|ξ|−2|γ|.

This completes the induction step and hence (5.2.14) follows.

Step 5: To prove (2) for general α, fix k ≥ 0. Since ‖v(t )‖ ≤ e2(ε−κ)|ξ|2m (t−s), there is
a constant C such that

‖v(t )‖ ≤C |ξ|−2mk |t − s|−k , t ≥ s.

Now if we replace the induction hypothesis (5.2.20) by

‖Dγv(t ,ξ)‖ ≤Cγ|ξ|−|γ|−2mk |t − s|−k , s < t ,ξ 6= 0 (5.2.22)

for all |γ| ≤ n, then for γ= γ̃+β with |γ̃| = n and |β| = 1, we find

‖Dγv(t ,ξ)‖2 ≤ 1

2ε

∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|−2m‖ f̃ (r,ξ)‖2 dr
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≤ 1

2ε

∑
η1+η2=γ
η2 6=γ

c̃η1,η2

∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|2m−2|η1|‖Dη2 v(r,ξ)‖2 dr

≤ C̃γ|ξ|−2|γ|
∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|2m |ξ|−4mk (r − s)−2k dr

≤ C̃γ|ξ|−2|γ|−4mk (t − s)−2k
∫ t

s
e2(ε−κ)|ξ|2m (t−r )|ξ|2m dr

≤Cγ̃|ξ|−2|γ|−4mk (t − s)−2k .

Hence by induction, (5.2.22) holds for all integers n ≥ 0.
By (5.2.22), w(t ,ξ) = (−iξ)αv(t ,ξ) satisfies the conditions of the Mihlin multiplier

theorem, with constant . (t − s)−|α|/(2m) and therefore we find that

‖DαS(t , s)‖X0 ≤C (t − s)−|α|/(2m),

which proves (2). The identity in (3) is a direct consequence of the fact that
v(t ,ξ)(−iξ)α = (−iξ)αv(t ,ξ).

Step 6: Next we prove that S(t , s) is a strongly continuous evolution family for
A(t ), i.e. that it satisfies Definition 3.3.2. The identities S(t , t ) = I and S(t , s)S(s,r ) =
S(t ,r ) are clear from the definition of v and Lemma 5.2.7. To prove strong continu-
ity of the evolution family, consider (t , s) 7→ S(t , s)g =F−1(vs (t )ĝ ) for g ∈ X1, where
vs is the solution to (5.2.13). Setting f (r ) =−A(r )S(r, s)g it follows from (3) that for
all r ≥ s, ‖ f (r )‖X0 ≤C‖g‖X1 . Moreover,

S(t , s)g − g =F−1(vs (t , ·)ĝ − ĝ ) =F−1
(∫ t

s
f̂ (r )dr

)
=

∫ t

s
f (r )dr

in S ′(Rd ;CN ) and hence in X0. This proves Definition 3.3.2 (iii). Moreover, we find

‖S(t , s)g − g‖X0 ≤ (t − s) sup
r∈[s,t ]

‖ f (r )‖X0 ≤C (t − s)‖g‖X1

which implies the continuity of (t , s) 7→ S(t , s)g for g ∈ X1. The general case follows
by approximation and the uniform boundedness of S(t , s). It remains to prove
Definition 3.3.2 (iv) and this will be done in the next step.

Step 7: To prove (5.2.11) fix r ∈ (s, t ). Note that by (2), f = S(r, s)g ∈W `,q (Rd , w ;CN )

for any ` ∈N. Therefore, it follows from the previous step and (3) that

S(t , s)g −S(r, s)g = S(t ,r ) f − f =−
∫ t

r
A(τ)S(τ,r ) f dτ

=− ∑
|α|=|β|=m

∫ t

r
aα,βDαS(τ,r )Dβ f dτ

(5.2.23)

and since by (2), ‖DαS(τ,r )‖ ≤C (τ− r )−1/2 for |α| = m we find that

‖S(t , s)g −S(r, s)g‖X0 ≤C
∫ t

r
(τ− r )−1/2(r − s)−1/2 dτ‖g‖X0
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≤C (t − r )1/2(r − s)−1/2‖g‖X0 .

This implies that t 7→ S(t , s) ∈L (X0) is Hölder continuous on [s+ε,∞) for any ε> 0.
Moreover, since A is strongly measurable also τ 7→ A(τ)S(τ, s) is a strongly measur-
able function. By (2), ‖A(τ)S(τ, s)‖ ≤C (τ− s)−1 and hence it is locally integrable on
[s,∞) as an L (X0)-valued function. Therefore, (5.2.23) implies that for s < r < t ,

S(t , s)−S(r, s) =−
∫ t

r
A(τ)S(τ, s)dτ

and thus D t S(t , s) =−A(t )S(t , s) in L (X0) for almost all s < t .
To prove (5.2.12) we use a similar duality argument as in [4, Section 6] and [2,

Proposition 2.9]. Fix t0 ∈ R. Clearly, A(t0 −τ)∗ has symbol A#(t0 −τ,ξ)∗ and hence
generates a strongly continuous evolution family, (W (t0;τ, s))s≤τ. Now as in [2,
Proposition 2.9] one can deduce S(t , s)∗ =W (t ; t − s,0). Therefore, applying (5.2.11)
to W (t ; t − s,0), we see that for almost all s < t

Ds S(t , s)∗ = DsW (t ; t − s,0) = A(t − (t − s))∗W (t ; t − s,0) = A(s)∗S(t , s)∗,

and hence for almost all s < t ,

Ds S(t , s) = (A(s)∗S(t , s)∗)∗ on L (X0). (5.2.24)

Now the result follows since the identity (A(s)∗S(t , s)∗)∗ = S(t , s)A(s) holds on X1.
In particular, we find that for g ∈ X1,

S(t , s)g −S(t , s −ε)g =
∫ t

s
S(t ,r )A(r )S(s, s −ε)g dr

and letting ε ↓ 0, yields

S(t , s)g − g =
∫ t

s
S(t ,r )A(r )g dr

from which we obtain Definition 3.3.2 (iv).
From the above construction and the properties of W one sees that Ds S(t , s) is

locally integrable on (−∞, t ), and that s 7→ S(t , s) ∈ L (X0) is Hölder continuous on
(−∞,−ε+ t ) for any ε> 0. Combining this with the Hölder continuity of t 7→ S(t , s),
we see that (t , s) 7→ S(t , s) ∈L (X0) is continuous on {(t , s) : s < t }.

5.3. PROOFS THEOREMS 5.1.3 AND 5.1.4

To prove Theorems 5.1.3 and 5.1.4 we check the conditions of Theorem 3.3.8. We
remark that in these conditions we now need to replace the scalar field by H =CN .
In particular, we will need to use the notion of `s

H -boundedness, as defined in
Section 4.1.2.

We first consider the case in which the coefficients of A are x-independent.
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Proposition 5.3.1. Let q ∈ (1,∞), w ∈ Aq and set X0 = Lq (Rd , w ;CN ) and
X1 = W 2m,q (Rd , w ;CN ). Assume A is of the form (5.2.9). Let κ,K > 0 be such that for
all t ∈ R, A(t ) ∈ Ell(κ,K). Let A0 := δ(−∆)m IN for δ ∈ (0,κ) fixed. Then the following
properties hold:

1. A0 has a bounded H∞-calculus of any angle σ ∈ (0,π/2).

2. A(t )− A0 ∈ Ell(κ−δ,K+δ) and generates a unique evolution family T (t , s) with the
property that

‖T (t , s)‖L (Lq (Rd ,w ;CN )) ≤C , s ≤ t ,

where C is Aq -consistent.

3. T (t , s) commutes with e−r A0 for all s ≤ t and r ≥ 0.

Proof. (1): The symbol of A0 is δ|ξ|2m I , where I is the N ×N identity matrix and the
fact that the operator A0 has a bounded H∞-calculus follows from the weighted
version of the Mihlin multiplier theorem (see [104, Example 10.2b] for the un-
weighted case).

(2): For |ξ| = 1 and x ∈CN ,

Re(〈x, (A#(ξ)−δ|ξ|2m)x〉) ≥ (κ−δ)‖x‖2.

Also the coefficients of the symbol of A0 are δ or 0, so indeed Ell(κ−δ,K+δ) and the
required result follows from Theorem 5.2.4.

(3) From the proof of Theorem 5.2.4 we see that T (t , s) is given by a Fourier mul-
tiplier operator. Also e−r A0 is given by a Fourier multiplier with symbol e−r |ξ|2m

IN .
This symbol clearly commutes with any matrix in CN×N , and hence with the sym-
bol of T (t , s). Therefore, the operators T (t , s) and e−r A0 commute.

Proof of Theorem 5.1.3. Step 1: First assume A is of the form (5.2.9), i.e. it has x-
independent coefficients. Then by Theorem 4.3.12 and Proposition 5.3.1, the con-
ditions of Theorem 3.3.8 are satisfied. Therefore, the existence and uniqueness
result and (5.1.6) follow for any fixed λ0 > 0 and the constant in (5.1.6) is Ap -Aq -
consistent.

Step 2: In order to complete the proof, one can repeat the argument of Theo-
rem 3.4.5 by replacing the scalar field by CN . Note that to apply the localization
argument and to include the lower order terms, one has to use the interpolation
estimate from Theorem 5.2.1.

Proof of Theorem 5.1.4. Step 1: First assume A is of the form (5.2.9) again. Now we
use the result from Theorem 5.1.3 in the x-independent case in a similar way as
in [102, Theorem 4.4.2]. Let λ ≥ λ0, where λ0 > 0 is fixed. For each |α| ≤ m, let
vα ∈W 1,p (R, v ; X0)∩Lp (R, v ; X1) be the unique solution to

v ′(t , x)+ (λ+ A(t ))v(t , x) = fα(t , x), t ∈R, x ∈Rd .
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Then by Theorems 5.2.1 and 5.1.3

∑
|β|≤m

λ1− |β|
2m ‖Dβ+αv‖Lp (R,v ;X0) ≤Cλ

|α|
2m ‖ fα‖Lp (R,v ;X0).

Therefore, setting u =∑
|α|≤m Dαvα and using the fact Dα and A commute in distri-

butional sense, we find that u is a weak solution to (5.1.7) and that (5.1.9) holds.
Uniqueness follows from (5.1.9) as well.

Step 2: To obtain the result for general A, one can use a localization argument
with weights and extrapolation as in Theorem 3.4.5 in the non-divergence form
case. This argument works in the divergence form case as well (see [102, Section
13.6] for the elliptic setting).

5.3.1. Consequences for the initial value problem

In this section we consider the initial value problem{
u′(t , x)+ A(t )u(t , x) = f (t , x), t ∈ (0,T ), x ∈Rd ,

u(0, x) = u0(x), x ∈Rd ,
(5.3.1)

where A is in non-divergence form and satisfies the same condition (C) as in The-
orem 5.1.3. A function u : R×Rd → CN is a strong solution of (5.3.1) when all the
above derivatives (in the sense distributions) exist, (5.3.1) holds almost everywhere
and for all bounded sets Q ⊆Rd , u(t , ·) → u0 in L1(Q;CN ).

In order to make the next result more transparent we only consider power
weights in the time variable, as in Section 3.3.4 (see remark before Example 3.3.19).

Theorem 5.3.2. Let T ∈ (0,∞). Let p, q ∈ (1,∞), γ ∈ [0, p −1), vγ(t ) = tγ, w ∈ Aq (Rd ),
X0 = Lq (Rd , w ;CN ) and X1 = W 2m,q (Rd , w ;CN ). Assume condition (C) holds and let s =
2m

(
1− 1+γ

p

)
. Then for every f ∈ Lp (0,T, vγ; X0) and every u0 ∈ B s

q,p (Rd , w) there exists
a unique strong solution u ∈ W 1,p (0,T, vγ; X0)∩Lp (0,T, vγ; X1)∩C ([0,T ];B s

q,p (Rd , w)) of
(5.3.1). Moreover, there is a constant C depending on γ, w , p, q , d , m, κ, K , ω and T

such that
‖u‖Lp (0,T,vγ;X1)+‖u‖W 1,p (0,T,vγ;X0) +‖u‖C ([0,T ];B s

q,p (Rd ,w))

≤C‖ f ‖Lp (0,T,vγ;X0) +C‖u0‖B s
q,p (Rd ,w).

Proof. Substituting v(t , ·) = e−λt u(t , ·) it follows that we may replace A by λ+ A for
an arbitrary λ. Therefore, extending f as zero outside (0,T ), by Theorem 5.1.3 we
may assume that A has maximal Lp

v -regularity as defined in Definition 3.3.10 for
any v ∈ Ap . Recall from [71, Example 9.1.7] that vγ ∈ Ap .

By [129] and the maximal Lp -regularity estimate from Theorem 5.1.3 (also see
Section 3.3.4), we need that u0 ∈ (X0, X1)

1− 1+γ
p ,p

to obtain the well-posedness re-

sult and the estimate. The latter real interpolation space can be identified with
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B s
q,p (Rd , w). Indeed, in the case w = 1, this follows from [19, Theorem 6.2.4] or [148,

Remark 2.4.2.4]. In the weighted setting this follows from the inhomogeneous case
of [24, Theorem 3.5].





6
MAXIMAL Lp -REGULARITY FOR PARABOLIC

EQUATIONS WITH GENERAL BOUNDARY CON-
DITIONS

This short chapter is devoted to the study of maximal Lp -regularity for systems
of parabolic PDEs on the upper half-space with homogeneous general boundary
conditions. The proof is an application of the characterization of maximal Lp -
regularity introduced in Chapter 3. The main result Theorem 6.2.4 is based on the
assumption that the system of operators under consideration generates an evolu-
tion family which is bounded on weighted Lq -spaces. In Section 6.4 we show as
an example that this condition is satisfied by a second-order elliptic differential
operator. The results in this chapter are based on an ongoing research project with
Mark Veraar.

6.1. PRELIMINARIES: WEIGHTS ON d -DIMENSIONAL INTERVALS

In this chapter we will consider Ap -weights in which the supremum in the Ap -
constant is taken over d-dimensional intervals, instead of cubes. The reason is
that in this case the Ap constant is invariant under dilations w(x) 7→ w(δx), δ =
(δ1, . . . ,δd ) ∈ (R+)d . This property will be needed in the proof of our main result
Theorem 6.2.4. We introduce these weights below, and we refer the reader to [65,
IV.6] for details.

Let R be the family of all bounded d-dimensional intervals

R = [a1,b1]× [a2,b2]×·· ·× [ad ,bd ].

Define the strong maximal function by

MS f := sup
x∈R∈R

1

|R|
∫

R
| f (y)d y.

The following proposition is a combination of the results in [65, IV.6]

Proposition 6.1.1. The following properties hold.

(i) For p ∈ (1,∞), MS is a bounded operator from Lp (Rd ) to itself.

115



116 6. MAXIMAL Lp -REGULARITY WITH GENERAL BOUNDARY CONDITIONS

(ii) MS ( f δ) = (MS f )δ, with δ= (δ1, . . . ,δd ) ∈ (R+)d and f δ(x) = f (δ(x)) = f (δ1x1, . . . ,δd xd )

(iii) MS f (x) ≤ M 1 ◦ . . .◦M d f (x), where for every j = 1, . . . ,d , M j denotes the one dimen-
sional Hardy-Littlewood maximal operator

M j f (x) = sup
a<x j <b

1

b −a

∫ b

a
| f (x1, . . . , x j−1, y, x j+1, . . . , xd )|d y

Moreover, the convolution and approximation result stated in [86, Proposition
2.3.9] holds with the strong maximal function. This will be needed in Section 6.4.

In the following, we define a class of Ap -weights in which we consider d-
dimensional rectangles instead of cubes.

Definition 6.1.2. Let w(x) be a weight in Rd . For p ∈ [1,∞], we say that w ∈ A∗
p (Rd )

if wδ ∈ Ap (Rd ) uniformly in δ= (δ1, . . . ,δd ) ∈ (R+)d , i.e. sup
δ

[wδ]Ap (Rd ) <∞.

Since dilations by δ= (δ1, . . . ,δd ) ∈ (R+)d trasform cubes in arbitrary d-dimensional
intervals, a change of variables proves that, for p ∈ (1,∞), w ∈ A∗

p (Rd ) if and only if

[w]A∗
p

:= [w]p∗ := sup
R∈R

( 1

|R|
∫

R
w(x)d x

)( 1

|R|
∫

R
w(x)−

1
p−1 d x

)p−1 <∞.

It follows directly from the definition that the A∗
p constant is invariant under di-

lations w(x) 7→ w(δx). Observe that in the case of the half-space Rd+, the above
definition hold if one replace the d-dimensional rectangle R with R ∩Rd+.

The following properties hold. We refer to [65, Theorem IV.6.2] for the proof.

Theorem 6.1.3. Given a weight w(x) in Rd and p ∈ (1,∞), the following are equivalent:

(i) w ∈ A∗
p (Rd );

(ii) there exists C > 0 such that for every j = 1,2, . . . ,n we have

[w(x1, x2, . . . , x j−1, ·, x j+1, . . . , xd )]Ap (R) ≤C

for a.e. (x1, x2, . . . , x j−1, x j+1, . . . , xd ) ∈Rd−1;

(iii) MS is a bounded operator from Lp (Rd , w) to itself.

Therefore, there is an equivalence between A∗
p and the one-dimensional Ap -

condition on each variable (uniformly in the remaining variables). Moreover, as
stated in [65, Theorem IV.6.9], the well-known extrapolation theorem of Rubio de
Francia (see e.g. [65, Theorem IV.5.19] and [32, Theorem 3.9]) and the weighted ver-
sion of the Mihlin multiplier theorem [65, Theorem IV.3.9] hold with w ∈ A∗

p (Rd ).
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6.2. ASSUMPTIONS AND MAIN RESULT

Let p, q ∈ (1,∞), v ∈ Ap (R) and w ∈ A∗
q (Rd+). Let A be a 2m-th order differential

operator given by
A(t ) = ∑

|α|≤2m
aα(t , x)Dα, (6.2.1)

where D =−i (∂1, . . . ,∂d ), aα :R×Rd+ →CN×N .
For j = 1, . . . ,m and m j ∈ {0, . . . ,2m − 1}, we consider the boundary differential

operators B j of order m j given by

B j u = ∑
|β|≤m j

b jβDβu, b jβ ∈C.

Define

W 2m,q
B (Rd

+, w ;CN ) := {u ∈W 2m,q (Rd
+, w ;CN ) : B j u = 0, j = 0. . . ,m}.

Set X0 = Lq (Rd+, w ;CN ) and X1 = W 2m,q
B (Rd+, w ;CN ). Consider the system of PDEs

with boundary condition{
u′(t , x)+ (λ+ A(t ))u(t , x) = f (t , x) in R×Rd+
B j u(t , x)

∣∣
x1=0 = 0 on R×Rd−1 j = 1, . . . ,m,

(6.2.2)

where u, f : R×Rd+ → CN . A function u : R×Rd → CN is called a strong solution to
(6.2.2) when all the above derivatives (in distributional sense) exist in L1

loc(R×Rd+)

and (6.2.2) holds almost everywhere.
Recall the following definition from Section 5.1.1.

Definition 6.2.1. We say that A is uniformly elliptic of angle θ ∈ (0,π) if there exists
a constant κ ∈ (0,1) such that

σ(A#(ξ)) ⊆Σθ∩ {ξ : |ξ| ≥ κ},ξ ∈Rd , |ξ| = 1, (6.2.3)

where A#(ξ) denotes the pryncipal symbol of A, and there is a constant K ≥ 1 such
that ‖aα‖ ≤ K for all |α| ≤ 2m. In this case we write A ∈ Ell(θ,κ,K).

For t ≥ s we introduce the operator S(t , s) so that for g ∈ C∞
0 (Rd+), u(t ) = S(t , s)g

is the solution to the initial boundary valued problem
u′(t , x)+ A(t )u(t , x) = 0, in (s,∞)×Rd+
B j u(t , x)

∣∣
x1=0 = 0 on R×Rd−1 j = 1, . . . ,m,

u(s, x) = g (x).

(6.2.4)

In this case we say that S(t , s) is the evolution family generated by A(t ). The precise
definition of an evolution family for (A(t ))t∈R was given in Definition 3.3.2.
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For A of the form (6.2.1) and t0 ∈R and x0 ∈Rd+ let us introduce the notation

A(t0, x0) := ∑
|α|≤2m

aα(t0, x0)Dα.

for the operator with constant coefficients. The principal part of A(t0, x0) is denoted
by A#(t0, x0).

In what follows we denote as IN the N×N identity matrix and we set D1 =−i∂x1 .
We assume the following conditions on the coefficients of A:

(C) Let A be given by (6.2.1) and assume each aα : R×Rd+ → CN×N is measurable.
We assume there exist θ0 ∈ [0,π/2), κ and K such that for all t0 ∈R and x0 ∈Rd+,
A(t0, x0) ∈ Ell(θ0,κ,K). Assume there exists an increasing function ω : (0,∞) →
(0,∞) with the property ω(ε) → 0 as ε ↓ 0 and such that

|aα(t , x)−aα(t , y)| ≤ω(|x − y |), t ∈R, x, y ∈Rd
+.

We assume the following condition on the operator family (A(t ))t∈R:

(T) Let A0 := δ(
∑d

j=2 D2
j )m IN , δ ∈ (0,κ). For every x = x0 ∈ Rd+ fixed assume that

A#(t , x0)− A0 generates a strongly continuous evolution family T (t , s) which
is `s-bounded on Lq (Ω, w ;CN ) for every q ∈ (1,∞) and w ∈ A∗

q (Rd+).

We moreover impose the following maximal regularity condition for the time
independent situation. The definition of maximal Lp

v -regularity was given in Defi-
nition 3.3.10.

(MR) Let p, q ∈ (1,∞). Fix w ∈ A∗
q (R+). We assume that the problem{

u′(t , x)+ (λ+ (−∆)m IN )u(t , x) = f (t , x) in R×Rd+
B j u(t , x)|x1=0 = 0 on R×Rd−1, j = 1, . . . ,m,

(6.2.5)

has the property of maximal Lp
v -regularity on R for every v ∈ Ap (R) and ev-

ery f ∈ Lq (Rd+, w ;CN ). Moreover, we assume that the operator (−∆)m IN has a
bounded H∞-functional calculus for any angle <π/2.

Example 6.2.2. Let B j = D j−1
x1

, j = 1, . . . ,m. Then, the (MR)-condition is satisfied
by the parabolic problem (6.2.5) with the Dirichlet boundary condition B j u = 0.
This result is well known in the literature. An example can be found in [104, Sec-
tion 7.18]. The (MR)-condition holds also if one assumes more general boundary
conditions, for instance of Lopatinskii–Shapiro type. See for example [40, Part II].

Before stating the main result, we need the following lemma.

Lemma 6.2.3. Let p ∈ (1,∞), α̃= (m,0, . . . ,0), v ∈ Ap (R), w ∈ A∗
q (Rd+). Let X0 = Lq (Rd+, w ;CN )

and X1 = W 2m,q
B (Rd+, w ;CN ). Assume (MR) to hold. Let Ã(t ) = aα̃α̃(t )D2m

1 and assume
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that aα̃α̃ : R→ CN×N is measurable. Assume moreover that for every t = t0 ∈ R fixed,
σ(Ã#(t0,ξ)) ⊆ Σθ ∩ {ξ : |ξ| ≥ κ},ξ ∈ Rd , |ξ| = 1, and there is a constant K ≥ 1 such that
‖aα̃α̃‖ ≤ K . Then there exists λ0 = λ0(m,d , q, p,K ,θ0, [v]p , [w]q∗ ) > 0 such that for every
λ≥λ0 and every u ∈W 1,p (R, v ; X0)∩Lp (R, v ; X1) satisfying{

u′(t , x)+ (λ+ Ã(t ))u(t , x) = f (t , x) in R×Rd+
B j u(t , x)

∣∣
x1=0 = 0 on R×Rd−1 j = 1, . . . ,m,

where f ∈ Lp (R, v ; X0), we have

λ‖u‖Lp (R,v ;X0) +‖u‖W 1,p (R,v ;X0) +‖u‖Lp (R,v ;X1) ≤C‖ f ‖Lp (R,v ;X0) +C
d∑

j=2
‖D2m

j u‖Lp (R,v ;X0),

with a constant C = (m,d , q, p,K ,θ0, [v]p , [w]q∗ ) > 0.

As an alternative proof of Lemma 6.2.3 one could apply Theorem 3.3.8, with a
proper choice of A0. This will not be treated here. We consider instead the follow-
ing clearer argument.

Proof. By the extrapolation theorem of Rubio de Francia [32, Theorem 3.9] it suf-
fices to take p = q . We then proceed by steps.

Step 1. We apply a substitution argument to reduce to the case aα̃α̃(t ) ≡ 1. Let

φ(t ) =
{∫ t

0 aα̃α̃(τ)dτ, t ≥ 0

−∫ 0
t aα̃α̃(τ)dτ, t < 0

Observe that φ is invertible and φ′(t ) = aα̃α̃(t ). Consider

ũ(s, x) = u(φ−1(s), x).

Then a simple calculation shows that ũ satisfies the problem{
ũ′(s, x)+ (λ+ (D2m

1 )IN )ũ(s, x) = f̃ (s, x) in R×Rd+
B j ũ(s, x)

∣∣
x1=0 = 0 on R×Rd−1 j = 1, . . . ,m,

(6.2.6)

where f̃ (s, x) = f (φ−1(s), x)/(aα̃α̃(φ−1(s), x)). Moreover, we get the weighted trans-
formation ṽ = v(φ−1(s)) ∈ Ap (R) with [ṽ]p ' [v]p .

Step 2. By adding the term (
∑d

j=2 D2m
j )IN ũ on both sides of (6.2.6) we get{

ũ′(s, x)+ (λ+ (−∆)m IN )ũ(s, x) = g̃ (s, x) in R×Rd+
B j ũ(s, x)

∣∣
x1=0 = 0 on R×Rd−1 j = 1, . . . ,m,

(6.2.7)

where g̃ (s, x) = f̃ (s, x)+ (
∑d

j=2 D2m
j )IN ũ. By the (MR)-assumption it holds that

λ‖ũ‖Lp (R,v ;X0) +‖ũ‖W 1,p (R,v ;X0) +‖ũ‖Lp (R,v ;X1) ≤C‖g̃‖Lp (R,v ;X0)

≤C‖ f̃ ‖Lp (R,v ;X1) +C
d∑

j=2
‖D2m

j ũ‖Lp (R,v ;X1).
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Step 3. Substituting back to u and observing that the norms are equivalent, we
obtain the required estimate.

The first main result is on the maximal Lp
v -regularity for (6.2.2).

Theorem 6.2.4. Let p, q ∈ (1,∞), v ∈ Ap (R) and w ∈ A∗
q (Rd+). Let X0 = Lq (Rd+, w ;CN ) and

X1 = W 2m,q
B (Rd+, w ;CN ). Assume conditions (C) and (T) on A. Assume condition (MR)

to holds. Then there exists a constant λ0 = λ0(d , p, q,m,κ,K ,θ0,ω, [v]p , [w]q∗ ) > 0 such
that for all λ≥ λ0 and for every f ∈ Lp (R, v ; X0) there exists a unique strong solution u ∈
W 1,p (R, v ; X0)∩Lp (R, v ; X1) of (6.2.2). Moreover, there is a constant C =C (d , p, q,m,κ,K ,

θ0,ω, [v]p , [w]q∗ ) such that

λ‖u‖Lp (R,v ;X0)) +‖u‖W 1,p (R,v ;X0) +‖u‖Lp (R,v ;X1) ≤C‖ f ‖Lp (R,v ;X0). (6.2.8)

In the same way as Corollary 4.3.9 follows from Theorem 4.3.5, the following
corollary can be derived from Theorem 6.2.4.

We assume the following condition on the operator family (A(t ))t∈R:

(T’) Let A0 := δ(
∑d

j=2 D2
j )m IN , δ ∈ (0,κ). For every x = x0 ∈ Rd+ fixed assume that

A#(t , x0)− A0 generates a strongly continuous evolution family T (t , s) such
that for every q ∈ (1,∞) and w ∈ A∗

q (Rd+),

‖T (t , s)‖L (Lq (Rd+,w)) ≤C ,

where C is A∗
q -consistent.

Corollary 6.2.5. Let p, q ∈ (1,∞), v ∈ Ap (R) and w ∈ A∗
q (Rd+). Let X0 = Lq (Rd+, w ;CN )

and X1 = W 2m,q
B (Rd+, w ;CN ). Assume condition (C) and (T’) on A. Assume condition

(MR) to hold. Then there exists a constant λ0 = λ0(d , p, q,m,κ,K ,θ0,ω, [v]p , [w]q∗ ) such
that for all λ≥ λ0 and for every f ∈ Lp (R, v ; X0) there exists a unique strong solution u ∈
W 1,p (R, v ; X0)∩Lp (R, v ; X1) of (6.2.2). Moreover, there is a constant C =C (d , p, q,m,κ,K ,

θ0,ω, [v]p , [w]q∗ ) such that

λ‖u‖Lp (R,v ;X0)) +‖u‖W 1,p (R,v ;X0) +‖u‖Lp (R,v ;X1) ≤C‖ f ‖Lp (R,v ;X0).

6.3. PROOF OF THEOREM 6.2.4

The proof of Theorem 6.2.4 will be done as an application of Theorem 3.3.8 and
standard PDE arguments such as localization procedure and method of continuity.

Proof of Theorem 6.2.4. Let f ∈ Lp (R, v ; X1) and such that f has support on the finite
interval [a,b]. The general case f ∈ Lp (R, v ; X0) follows from a density argument as
in the proof of Theorem 3.3.8.

Without loss of generality, we may assume the lower order terms of A to be
all zero. In fact, they can be added later on via interpolation arguments, as in the
proof of Theorem 3.4.5
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We assume first the coefficients of A to be x-independent. To show the maximal
regularity estimate (6.2.8) we proceed by steps.

Step 1: We first want to apply Theorem 3.3.8 to obtain that

‖D2m
j u‖Lp (R,v ;X0) ≤C‖ f ‖Lp (R,v ;X0), ∀ 2 ≤ j ≤ d . (6.3.1)

For this, we check that the assumptions of Theorem 3.3.8 are satisfied. Observe
that the norm equivalence

C−1‖x‖x1 ≤ ‖x‖X0 +‖A(t )x‖X0 ≤C‖x‖X1

for C > 0 follows by taking a suitable extension operator and applying Corollary
3.4.3. Let now

A0 := δ(
d∑

j=2
D2

j )m IN , δ ∈ (0,κ).

The principal symbol of A0 is given by δ|ξ′|2m IN , where ξ′ ∈ Rd−1. By the (MR)-
assumption, A0 has an H∞-functional calculus for any angle < π/2. Observe now
that for |ξ| = 1 and x ∈CN ,

Re(〈x, (A](ξ)−δ|ξ′|2m x〉) ≥ (κ−δ)‖x‖2

and the coefficients of the symbol of A0 are δ or 0. So, A(t )− A0 ∈ Ell(θ,κ−δ,K +δ).
Since by assumption A(t )− A0 generates an evolution family T (t , s) which is `s-
bounded on Lq (Rd+, w), then by Theorem 4.3.5 we get the R-boundedness condition
of Theorem 3.3.8. Moreover, e−r A0 commutes with T (t , s) for all s ≤ t and r ≥ 0. All
the conditions of Theorem 3.3.8 are thus satisfied. Therefore, the existence and
uniqueness result and (6.3.1) follow for any fixed λ0 > 0 and the constant C is Ap -
A∗

q -consistent.

Step 2: We now state a mixed-norm estimate, which constitute a key result for
the proof. For simplicity of notation we consider N = 1, but the general case follows
in the same way. Here we use the same method as in [51, Proposition 1].

Lemma 6.3.1. LetΩ=Rd orΩ=Rd+ and w ∈ A∗
q (Ω) for q ∈ (1,∞). For all u ∈W 2m,q (Ω, w)

and all ε> 0, there exists a constant C =C ([w]q∗ ) such that for k = 0, . . . ,2m −1 it holds

‖Dk
1 D2m−k

x′ u‖Lq (Ω,w) ≤Cε2m‖D2m
1 u‖Lq (Ω,w) +Cε−2m

d∑
j=2

‖D2m
j u‖Lq (Ω,w).

Proof. Without loss of generality we can focus on Ω=Rd , since the proof for Ω=Rd+
directly follows by using a suitable extension operator. In fact, let u ∈W 2m,q (Rd , w)

be a suitable extension for u (see e.g. [5, Theorem 5.5.19]), where w ∈ A∗
q (Rd ) is such
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that w = w if x ∈ Rd+ and w = 1 elsewhere. Now if the case Ω=Rd holds, then

‖Dk
1 D2m−k

x ′ u‖Lq (Rd+,w) ≤ ‖Dk
1 D2m−k

x′ u‖Lq (Rd ,w)

≤Cε2m‖D2m
1 u‖Lp (Rd ,w) +Cε−2m

d∑
j=2

‖D2m
j u‖Lq (Rd ,w)

= 2Cε2m‖D2m
1 u‖Lp (Rd+,w) +2Cε−2m

d∑
j=2

‖D2m
j u‖Lq (Rd+,w).

To prove the caseΩ=Rd , let m(ξ) = ξk
1 (ξ′)2m−k

|ξ|2m , ξ= (ξ1,ξ′) ∈Rd , with ξ′ := (ξ2, . . . ,ξd ) ∈
Rd−1. This defines an Lq (Rd , w)-Fourier multiplier. In fact,

Tm f := Dk
1 D2m−k

x′ f =F−1
(ξk

1 (ξ′)2m−k

|ξ|2m f̂ (ξ)
)

and since m(ξ) is in C∞(Rd \{0}) and it is homogeneous of degree zero, i.e. m(ρξ) =
ρm(ξ) for every ξ ∈ Rd and ρ > 0, it satisfies the Mihlin’s condition |ξ|γ|Dγ

ξ
m(ξ)| ≤

Cγ,d for all multi-indices γ ∈Nd (see e.g. [104, Lemma 6.3] and [55, Example 8.8.12]).
Then, also the dilation

(ξ1,ξ′) 7→ mε(ξ1,ξ′) := m(εξ1,ε−1ξ′) = ξk
1 (ξ′)2m−k

ε2mξ2m
1 +ε−2m |ξ′|2m

is an Lq (Rd , wε)-multiplier, where wε(x) = w(εx1,ε−1x ′) ∈ A∗
q (Rd ) is such that [w]q∗ =

[wε]q∗ , since weights in the class A∗
q are dilation invariant. By the weighted version

of Mihlin’s multiplier theorem [65, Theorem IV.3.9] it holds that

‖Tmε f ‖Lq (Rd ,w) = ‖Tm fε‖Lq (Rd ,wε) ≤C[wε]q∗ ‖F−1 f̂ε‖Lq (Rd ,wε)

Choosing now h such that h(x) = f (εx1,ε−1x ′) and (ε2mξ2m
1 +ε−2m |ξ′|2m)ĥ = f̂ε, we

get

‖F−1 f̂ε‖Lq (Rd ,wε) = ‖F−1((ε2mξ2m
1 +ε−2m |ξ′|2m)ĥ)‖Lq (Rd ,wε)

≤C[wε]q∗ ‖(ε2mD2m
1 +ε−2m

d∑
j=2

D2m
j )h‖Lq (Rd ,wε)

=C[w]q∗ ‖(ε2mD2m
1 +ε−2m

d∑
j=2

D2m
j ) f ‖Lq (Rd ,w),

which yields

‖Dk
1 D2m−k

x′ ‖Lq (Rd ,w) ≤C[w]q∗ ‖(ε2mD2m
1 +ε−2m

d∑
j=2

D2m
j ) f ‖Lq (Rd ,w)
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Step 3: We now follow a procedure as in [51, Theorem 4]. We move all the
spatial derivatives except aα̃α̃(t )D2m

1 u, α̃ = (m,0, . . . ,0), to the right-hand side of
(6.2.2) and we consider{

u′+ (λ+aα̃α̃(t )D2m
1 )u = F (t , x) in R×Rd+

B j u(t , x)
∣∣

x1=0 = 0 on R×Rd−1, j = 1, . . . ,m,

where F = f −∑
|α|=2m,α6=2α̃ aα(t )Dαu. By Lemma 6.2.3 we get the estimate

λ‖u‖Lp (R,v ;X0) +‖u‖W 1,p (R,v ;X0) +‖u‖Lp (R,v ;X1) ≤C‖F‖Lp (R,v ;X0) +C
d∑

j=2
‖D2m

j u‖Lp (R,v ;X0),

(6.3.2)
for any λ≥λ0 > 0. Observe that by Lemma 6.3.1 the norm of F can be estimated as

‖F‖Lp (R,v ;X0) ≤ ‖ f ‖Lp (R,v ;X0) +
∑

|α|=2m
α6=2α̃

‖Dαu‖Lp (R,v ;X0)

≤ ‖ f ‖Lp (R,v ;X0) +Cε2m‖D2m
1 u‖Lp (R,v ;X0) +Cε−2m

d∑
j=2

‖D2m
j u‖Lp (R,v ;X0).

Now by Step 1 we find

λ‖u‖Lp (R,v ;X0) +‖u‖W 1,p (R,v ;X0) +‖u‖Lp (R,v ;X1) ≤Cε‖ f ‖Lp (R,v ;X0) +Cε2m‖D2m
1 u‖Lp (R,v ;X0).

By choosing now ε > 0 such that Cε2m = 1
2 , we can incorporate D2m

1 u on the left-
hand side of (6.3.2) and we obtain the estimate

λ‖u‖Lp (R,v ;X0) +‖u‖W 1,p (R,v ;X0) +‖u‖Lp (R,v ;X1) ≤C‖ f ‖Lp (R,v ;X0).

Step 4: In order to complete the proof, one can repeat word by word the argument
of Theorem 5.1.3.

6.4. AN EXAMPLE

In this section we show that if A is a second order elliptic differential operator with
x-independent coefficients and zero lower order terms, then it generates a strongly
continuous evolution family on Lq (Rd+, w), for all q ∈ (1,∞), w ∈ A∗

q (Rd+), for the
parabolic problem with the Dirichlet boundary condition, satisfying a weighted
norm estimate.

Let A be a second order differential operator of the form

A(t )u =
d∑

i , j=1
ai j (t )Di D j u. (6.4.1)
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with ai j : R→ C measurable. Assume that for every fixed t = t0 ∈ R, A(t0) is uni-
formly elliptic, i.e. there exists costants K > 1,κ ∈ (0,1) such that for all ξ ∈ Rd we
have the ellipticity condition

κ|ξ|2 ≤
d∑

i , j=1
ai j (t0)ξiξ j ≤ K |ξ|2,

It follows from Theorem 5.2.1, with N = 1 there, that A(t ) is a sectorial operator.
The following proposition is on the evolution family SD (t , s) generated by A(t ).
Recall u(t ) = SD (t , s)g if and only if

u′(t , x)+ A(t )u(t , x) = 0 in (s,∞)×Rd+
u(t ,0, x ′) = 0 on (s,∞)×Rd−1

u(s, x) = g (x)

(6.4.2)

Let W 2,q
D (Rd+, w) := {u ∈W 2m,q (Rd+, w) : u(t ,0, x ′) = 0, t ∈R, x ′ ∈Rd−1}.

Proposition 6.4.1. Let q ∈ (1,∞), w ∈ A∗
q (Rd+), X0 = Lq (Rd+, w) and X1 = W 2,q

D (Rd+, w).
Assume that there exists θ ∈ [0,π/2) and κ,K > 0 such that A(t ) ∈ Ell(θ,κ,K). Assume that
the operator family (A(t ))t∈R with D(A(t )) = X1 generates a strongly continuous evolution
family (SD (t , s))s≤t on X0 for the problem (6.4.2) such that

|SD (t , s)g (x)| ≤C MS g 0(x), (6.4.3)

where C =C (q,d ,κ,K ) and

g 0(x) =
{

g (x) x1 ≥ 0

0 x1 < 0.

Then, for q ∈ (1,∞) and any w ∈ A∗
q (Rd+) there is a constant C depending only on q,d ,κ,K

and on w in an A∗
q -consistent way, such that

‖SD (t , s)‖L (Lq (Rd+,w)) ≤C , s < t . (6.4.4)

Proof. By assumption (6.4.3), taking the Lq (Rd+, w)-norms on both sides for w ∈
A∗

q (Rd+) and applying the weighted boundedness of the strong maximal function
stated in Theorem 6.1.3 we get

‖SD (t , s)g‖Lq (Rd+,w) ≤C‖MS g 0‖Lq (Rd+,w) ≤C‖g 0‖Lq (Rd+,w) =C‖ f ‖Lq (Rd+,w),

with C =C (q,d ,κ,K , [w]A∗
q

).

Lemma 6.4.2. Let q ∈ (1,∞), w ∈ A∗
q (Rd+), X0 = Lq (Rd+, w) and X1 = W 2,q

D (Rd+, w). As-
sume that there exists θ ∈ [0,π/2) and κ,K > 0 such that A(t ) ∈ Ell(θ,κ,K). Then the
operator family (A(t ))t∈R with D(A(t )) = X1 generates a strongly continuous evolution
family (SD (t , s))s≤t on X0 for the problem (6.4.2) that satisfies (6.4.3).
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Proof. Following the lines of the proof of [142, Proposition 2.3] one can directly
show that the operator A(t ) generates a strongly continuous evolution family SD (t , s)

with the integral representation

SD (t , s)g (x) =
∫
Rd+
ΓD (t , s, x, y)g (y)d y,

where ΓD denotes the Green’s Kernel in the half-space with the Dirichlet boundary
condition. Moreover, by [142, Theorem 2.3] it holds that ΓD satisfies a Gaussian
estimate, i.e.,

|ΓD (t , s, x, y)| ≤C (t − s)−d/2e−b |x−y |2
t−s ,

with constants C ,b > 0. Then, the estimate (6.4.3) follows directly by [86, Proposi-
tion 2.3.9] (see also [70, Theorem 2.1.10]).

Remark 6.4.3. (i) The results in [142] are stated in the setting of the whole space Rd .
However, as it is stated in [142, Remark 1.4 (iv)] this general set-up can be slightly
modified in order to treat also initial boundary value problems with the Dirichlet
boundary condition. As an example in the time-independent setting one can con-
sider [36, Theorem 3.2.7 and Corollary 3.2.8]. Details are still under investigation.

(ii) As it can be evinced from the above proofs, the main ingredient to show the
weighted boundedness of the evolution family generated by A(t ) is that its Green’s
kernel satisfies certain Gaussian estimates. We believe that the same method as
[142] could give new informations on Gaussian estimates for higher-order differ-
ential operators with coefficients measurable in time and more general boundary
conditions. In the time-independent setting, positive results for second-order el-
liptic operators were given by Arendt-ter Elst in [15] where they showed that the
assertions of [36, Theorem 3.2.7] remains true also for more general type of bound-
ary conditions. In the non-autonomous case, if the dependence on time is assumed
to be Hölder-continuous, then it is a result of [90] and [140] that second order op-
erators satisfying boundary conditions of Lopatinskii–Shapiro type generate an
evolution family whose kernel satisfies a Gaussian bound. This will be subject of
further investigation.

(iii) In the case of systems of differential operators, different methods need to
be discovered to prove both the existence of the evolution family and the weighted
estimates.
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7
HIGHER ORDER ELLIPTIC AND PARABOLIC

EQUATIONS WITH VMO ASSUMPTIONS AND

GENERAL BOUNDARY CONDITIONS

In this chapter we prove mixed Lp (Lq )-estimates, with p, q ∈ (1,∞), for higher order
elliptic and parabolic equations on the half space Rd+1+ with general boundary con-
ditions of Lopatinskii-Shapiro type. We assume that the elliptic operators A have
coefficients in the class of vanishing mean oscillation both in the time variable and
in the space variable. In the proof, we apply and extend the technique developed
by Krylov in [100] as well as Dong and Kim in [51] to produce mean oscillation
estimates for equations on the half space with general boundary conditions. The
results here presented are based on [48].

7.1. PRELIMINARIES

7.1.1. Function spaces and notation

In this section we introduce some function spaces and notation to be use through-
out the chapter.

We denote

Rd+1
+ =R×Rd

+.

The parabolic distance between X = (t , x) and Y = (s, y) in Rd+1+ is defined by ρ(X ,Y ) =
|x − y |+ |t − s| 1

2m . For a function f on D ⊂Rd+1+ , we set

( f )D = 1

|D|
∫
D

f (t , x)d x d t =−
∫
D

f (t , x)d x d t .

For m = 1,2, . . . fixed depending on the order of the equations under considera-
tion, we denote by

Q+
r (t , x) = ((t − r 2m , t )×Br (x))∩Rd+1

+ (7.1.1)

the parabolic cylinders, where

Br (x) = {
y ∈Rd : |x − y | < r

}⊂Rd

129
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denotes the ball of radius r and center x. We use Q+
r to indicate Q+

r (0,0). We also
define

B+
r (x) = Br (x)∩Rd

+.

We define mean oscillations of f on a parabolic cylinder as

osc( f ,Q+
r (t , x)) :=−

∫
Q+

r (t ,x)

∣∣∣ f (s, y)− ( f )Q+
r (t ,x)

∣∣∣d s d y

and we denote for R ∈ (0,∞),

( f )]R := sup
(t ,x)∈Rd+1

sup
r≤R

osc( f ,Q+
r (t , x)).

Next, we introduce the function spaces which will be used in the chapter. Due to
the multitude of parameters needed, we will use a different notation than the one
use previously in this thesis, i.e. we will use subscript Lp instead of Lp . We give
the precise definitions below.

For p ∈ (1,∞) and k ∈N0, we define the standard Sobolev space as

W k
p (Rd

+) = {
u ∈ Lp (Rd

+) : Dαu ∈ Lp (Rd
+) ∀|α| ≤ k

}
.

where Lp (Rd+) = { f :Rd →C : ‖ f ‖Lp (Rd+) = (
∫
Rd+

| f (x)|p d x)1/p <∞}.
For p, q ∈ (1,∞), we denote

Lp (Rd+1
+ ) = Lp (R;Lp (Rd

+))

and mixed-norm spaces

Lp,q (Rd+1
+ ) = Lp (R;Lq (Rd

+)).

For parabolic equations we denote for k = 1,2, . . .,

W 1,k
p (Rd+1

+ ) =W 1
p (R;Lp (Rd

+))∩Lp (R;W k
p (Rd

+))

and mixed-norm spaces

W 1,k
p,q (Rd+1

+ ) =W 1
p (R;Lq (Rd

+))∩Lp (R;W k
q (Rd

+)).

We will use the following weighted Sobolev spaces. For v ∈ Ap (R) and w ∈
Aq (Rd+), we denote

Lp,q,v,w (Rd+1
+ ) = Lp (R, v ;Lq (Rd

+, w))

and
W 1,k

p,q,v,w (Rd+1
+ ) =W 1

p (R, v ;Lq (Rd
+, w))∩Lp (R, v ;W k

q (Rd
+, w)),

where by f ∈ Lp,q,v,w (Rd+1+ ) we mean

‖ f ‖Lp,q,v,w (Rd+1+ ) :=
(∫
R

(∫
Rd+

| f (t , x)|q w(x)d x
)p/q

v(t )d t
)1/p

<∞.
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7.1.2. Interpolation and trace

The following function spaces from the interpolation theory will be needed. For
more information and proofs we refer the reader to [117, 147, 148].

For p ∈ (1,∞) and s = [s]+ s∗ ∈ R+\N0, where [s] ∈ N0, s∗ ∈ (0,1), we define the
Slobodetskii space W s

p by real interpolation as

W s
p = (W [s]

p ,W [s]+1
p )s∗,p .

For m ∈N and s ∈ (0,1] we consider anisotropic spaces of the form

W s,2ms
p (Rd+1

+ ) =W s
p (R;Lp (Rd

+))∩Lp (R;W 2ms
p (Rd

+)).

For p ∈ (1,∞), q ∈ [1,∞], r ∈R, and X a Banach space, we introduce the X -valued
Triebel–Lizorkin space F r

p,q (Rd , X ) as defined below.

Definition 7.1.1. Let Φ(Rd ) be as in Section 2.1. Given (ϕk )k≥0 ∈ Φ(Rd ), we define
the X -valued Triebel–Lizorkin space as

F r
p,q (Rd , X )

= {
f ∈S ′(Rd , X ) : ‖ f ‖F r

p,q (Rd ,X ) := ‖(2kr F−1(ϕ̂k f̂ ))k≥0‖Lp (Rd ,`q (X )) <∞}
.

Observe that by Fubini’s theorem Br
p,p (Rd ) = F r

p,p (Rd ), where Br
p,p denotes the

Besov space as in Definition 2.1.1 Moreover, we have the following equivalent def-
inition of Slobodetskii space

W s
p (Rd ) =

{
W k

p (Rd ), s = k ∈N
Bs

p,p (Rd ), s ∈R+\N0.

Later on we will consider X -valued Triebel-Lizorkin spaces on an interval (−∞,T ) ⊂
R. We define these spaces by restriction.

Definition 7.1.2. Let T ∈ (−∞,∞] and let X be a Banach space. For p ∈ (1,∞), q ∈
[1,∞) and r ∈ R we denote by F r

p,q ((−∞,T ); X ) the collection of all restrictions of
elements of F r

p,q (R; X ) on (−∞,T ). If f ∈ F r
p,q ((−∞,T ); X ) then

‖ f ‖F r
p,q ((−∞,T );X ) = inf‖g‖F r

p,q (R;X )

where the infimum is taken over all g ∈ F r
p,q (R; X ) whose restriction on (−∞,T )

coincides with f .

The following spatial traces and interpolation inequalities will be needed in
our proofs. For full details, we refer the reader respectively to [41, Lemma 3.5 and
Lemma 3.10] (see also [117, Lemma 1.3.11 and Lemma 1.3.13]).
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Theorem 7.1.3. Let p ∈ (1,∞), m ∈N, and s ∈ (0,1] so that 2ms ∈N. Then the map

trx1=0 : W s,2ms
p (Rd+1

+ ) ,→W
s− 1

2mp ,2ms− 1
p

p (R×Rd−1)

is continuous.

Lemma 7.1.4. Let p ∈ (1,∞) and let m ∈N and s ∈ [0,1) be given. Then for every ε > 0,
for β ∈Nn

0 with s + |β|
2m + 1

2mp < 1, it holds that for u ∈W 1,2m
p (R×Rd+),

‖trΩ∇βu‖W s,2ms
p (R×Rd−1) ≤ ε‖D2mu‖Lp (R×Rd+) +ε‖ut‖Lp (R×Rd+) +Cε‖u‖Lp (R×Rd+).

The following results for p, q ∈ (1,∞) will be important tools in the proof of
Theorem 7.2.4.

Theorem 7.1.5. Let p, q ∈ (1,∞). Let for j = 1, . . . ,m and m j ∈ {0, . . . ,2m − 1}, k j =
1−m j /(2m)−1/(2mq). Then the map

trx1=0 : W
1− m j

2m
p (R;Lq (Rd

+))∩Lp (R;W
2m−m j
q (Rd

+))

,→ F
k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1))

is continuous.

Proof. The proof is essentially contained in the proof of [41, Proposition 6.4], so we
only give a sketched proof for the sake of completeness. Let

u ∈ Lp (R;W
2m−m j
q (Rd

+)).

Taking traces in x1 and applying [148, Theorem 2.9.3] (applied pointwise almost
everywhere in time), we get

u|x1=0 ∈ Lp (R;B
2m−m j − 1

q
q,q (Rd−1)).

For the time regularity, let u ∈W 1,2m
p,q (R×Rd+) and define B as in [41, Proposition 6.4]

by

B = (∂t )
1

2m with D(B) =W
1

2m
p (R;Lq (Rd

+)).

Set u j = B 2m−m j −1u. Then, u j ∈W
1

2m
p (R;Lq (Rd+))∩Lp (R;W 1

q (R+;Lq (Rd−1))). Following
the line of the proof of [41, Proposition 6.4], one can show that

u j |x1=0 ∈ F
1

2m − 1
2mq

p,q (R;Lq (Rd−1)).

This yields
Dm j u|x1=0 ∈ F

k j
p,q (R;Lq (Rd−1)),

which completes the proof.
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Lemma 7.1.6. Let p, q ∈ (1,∞) and let m ∈N and s ∈ [0,1) be given. Then for every ε> 0,
for β ∈Nn

0 with s + |β|
2m + 1

2mq < 1, it holds that for u ∈W 1,2m
p,q (Rd+1+ ),

‖tr
Rd+

∇βu‖F s
p,q (R;Lq (Rd−1))∩Lp (R,v ;B2ms

q,q (Rd−1))

≤ ε‖D2mu‖Lp (R;Lq (Rd+)) +ε‖ut‖Lp (R;Lq (Rd+)) +Cε‖u‖Lp (R;Lq (Rd+)).

The proof follows the line of [41, Lemma 3.10], by considering p 6= q there and
applying Theorem 7.1.5.

7.1.3. Anisotropic Sobolev embedding theorem

We will use the following parabolic Sobolev embedding theorem. Details about
the proof can be found in [20, Section 18.12].

We denote

W k,2m,h
t ,x1,x′;p (Rd+1

+ ) =W k
p (R;Lp (Rd

+))∩Lp (R;W 2m
p (R+;Lp (Rd−1)))

∩Lp (R;Lp (R+;W h
p (Rd−1))).

Theorem 7.1.7. Let p ∈ (1,∞) and m ∈N. Then it holds for k,h sufficiently large that

W k,2m,h
t ,x1,x′;p (Q+

1 ) ,→C
2m−1/p

2m ,2m−1/p (Q+
1 ).

Moreover,
‖u‖

C
2m−1/p

2m ,2m−1/p (Q+
1 )

≤C‖u‖
W k,2m,h

t ,x1,x′ ;p (Q+
1 )

,

with C > 0 independent of u.

7.1.4. Maximal function theorems on mixed Lp (Lq )-spaces

The classical Hardy–Littlewood maximal function theorem and the Fefferman–
Stein theorem (see [71, Theorem 9.1.9 and Corollary 7.4.6]) have been recently gen-
eralized to mixed Lp (R, v ;Lq (Rd+, w)) spaces by Dong and Kim in Corollaries 2.6 and
2.7 of [52]. Their proofs are based on the extrapolation theorem of Rubio de Francia
(see [132–134], or [65, Chapter IV]), that allows one to extrapolate from weighted
Lp -estimates for a single p ∈ (1,∞) to weighted Lq -estimates for all q ∈ (1,∞). These
results will play an important role in the proof of Theorem 7.2.4, and thus we state
them below for completeness.

Let Q+
r (t , x) be a parabolic cylinder as in (7.1.1) and let Q = {Q+

r (t , x) : (t , x) ∈
Rd+1+ , r ∈ (0,∞)}. Define for p, q ∈ (1,∞) the parabolic maximal function and sharp
function of a function f ∈ Lp (R;Lq (Rd+)) by

M f (t , x) = sup
Q∈Q

(t ,x)∈Q

−
∫

Q
| f (s, y)|d y d s
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and
f ](t , x) = sup

Q∈Q
(t ,x)∈Q

−
∫

Q
| f (s, y)− ( f )Q |d y d s.

Theorem 7.1.8 (Corollary 2.6 of [52]). Let p, q ∈ (1,∞), v ∈ Ap (R) and w ∈ Aq (Rd+).
Then for any f ∈ Lp (R, v ;Lq (Rd+, w)), we have

‖M f ‖Lp,q,v,w (Rd+1+ ) ≤C‖ f ‖Lp,q,v,w (Rd+1+ ),

where C =C (d , p, q, [v]p , [w]q ) > 0.

Theorem 7.1.9 (Corollary 2.7 of [52]). Let p, q ∈ (1,∞), v ∈ Ap (R) and w ∈ Aq (Rd+).
Then for any f ∈ Lp (R, v ;Lq (Rd+, w)), we have

‖ f ‖Lp,q,v,w (Rd+1+ ) ≤C‖ f ]‖Lp,q,v,w (Rd+1+ ),

where C =C (d , p, q, [v]p , [w]q ) > 0.

7.2. ASSUMPTIONS AND MAIN RESULTS

In this section let p, q ∈ (1,∞), m = 1,2, . . . and consider a 2m-th order elliptic differ-
ential operator A given by

Au = ∑
|α|≤2m

aα(t , x)Dαu,

where aα :R×Rd+ →C. For j = 1, . . . ,m and m j ∈ {0, . . . ,2m−1}, consider the boundary
differential operators B j of order m j given by

B j u = ∑
|β|=m j

b jβDβu + ∑
|β|<m j

b jβ(t , x)Dβu,

where b jβ ∈C if |β| = m j , and b jβ :R×Rd+ →C if β| < m j .
In this section we will give conditions on the operators A and B j under which

there holds Lp (Lq )-estimates for the solution to the parabolic problemut (t , x)+ (A+λ)u(t , x) = f (t , x) in R×Rd+
B j u(t , x)

∣∣∣
x1=0

= g j (t , x) on R×Rd−1 j = 1, . . . ,m,
(7.2.1)

and to the elliptic problem(A+λ)u = f in Rd+
B j u

∣∣∣
x1=0

= 0 on Rd−1, j = 1, . . . ,m,
(7.2.2)

where, for the elliptic case, the coefficients of the operators involved are functions
independent on t ∈R, i.e., defined on Rd+.
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7.2.1. Assumptions on A and B j .

We first introduce a parameter–ellipticity condition in the sense of [40, Definition
5.1]. Here A](t , x,ξ) =∑

|α|=2m aα(t , x)ξα denotes the principal symbol of the operator
A.

(E)θ Let θ ∈ (0,π). For all t ∈R, x ∈Rd+ it holds that

σ(A](t , x,ξ)) ⊂Σθ, ∀ ξ ∈Rn , |ξ| = 1,

for the spectrum of the operator A](t , x,ξ), where Σθ = {z ∈C\{0} : |arg(z)| < θ}

and arg :C\{0} → (−π,π].

The following (LS)θ-condition is a condition of Lopatinskii–Shapiro type. Be-
fore stating it, we need to introduce some notation.

Denote by

A](t , x,D) := ∑
|α|=2m

aα(t , x)Dα and B j ,](D) := ∑
|β|=m j

b jβDβ

the principal part of A(t , x) and B j respectively. Let t0 ∈ R and x0 be in a neighbor-
hood of ∂Rd+1+ of width 2R0, i.e., x0 ∈ B2R0 (x ′)∩Rd+ for some x ′ ∈ ∂Rd+, and consider
the operator A](t0, x0,D). Taking the Fourier transform Fx′ with respect to x ′ ∈Rd−1

and letting v(x1,ξ) :=Fx′ (u(x1, ·))(ξ), we obtain

A](t0, x0,ξ,Dx1 )v :=Fx ′ (A](t0, x0,D)u(x1, ·))(ξ)

=
2m∑
k=0

∑
|β|=k

a(β,k)(t0, x0)ξβD2m−k
x1

v

and

B j ,](ξ,Dx1 )v :=Fx′ (B j ,](D)u(x1, ·))(ξ) =
m j∑
k=0

∑
|γ|=k

b(γ,k) jξ
γD

m j −k
x1

v.

where we denote Dx1 =−i ∂
∂x1

.

(LS)θ Let θ ∈ (0,π). For each (h1, . . . ,hm)T ∈ Rm and each ξ ∈ Rd−1 and λ ∈Σπ−θ, such
that |ξ|+ |λ| 6= 0, the ODE problem in R+λv + A](t0, x0,ξ,Dx1 )v = 0, x1 > 0,

B j ,](ξ,Dx1 )v
∣∣∣

x1=0
= h j , j = 1, . . . ,m

(7.2.3)

admits a unique solution v ∈C∞(R+) such that limx→∞ v(x) = 0.

We now introduce a regularity condition on the leading coefficients, where ρ is
a parameter to be specified.
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Assumption 7.2.1 (ρ). There exist a constant R0 ∈ (0,1] such that (aα)]R0
≤ ρ.

Throughout the chapter, we impose the following assumptions on the coeffi-
cients of A and B j .

(A) The coefficients aα are functions R×Rd+ →C and satisfy Assumption 7.2.1 (ρ)
with a parameter ρ ∈ (0,1) to be determined later. Moreover there exists a
constant K > 0 such that ‖aα‖ ≤ K , |α| ≤ 2m, and there exists θ ∈ (0, π2 ) such
that A satisfies condition (E)θ .

(B) For each j = 1, . . . ,m, the coefficients b jβ are such that{
b jβ ∈C if |β| = m j ,

b jβ :R×Rd+ →C if |β| < m j ,

and for |β| < m j , b jβ ∈C 1− m j
2m ,2m−m j (Rd+1+ ) and there exists K > 0 such that

‖b jβ‖
C

1−
m j
2m ,2m−m j

≤ K .

Remark 7.2.2. The (LS)θ-condition is essentially of algebraic nature, as it can be
reformulated as a condition on the roots of a homogeneous polynomial. For fur-
ther details, we refer the reader to [155] and [131]. It is not difficult to verify this
condition in applications. For instance, see [42, Section 3] or [117, Section 5.2].

Example 7.2.3. (i) Assume A has order 2m and B j = D j−1
x1

, j = 1, . . . ,m. Then, the
Dirichlet boundary condition B j u|x1=0 = g j on ∂Rd+ satisfies the (LS)θ-condition. We
refer the reader to [6, Section I.2] for the proof. We remark that the complementing
condition in [6] is equivalent to the (LS)θ-condition.

(ii) Let A =∑
|α|=2 aαDα, with aα ∈C and let B =∑

|β|=1 bβDβ with 0 6= b(1,0,...,0) ∈C.
Then the (LS)θ-condition is equivalent to the algebraic condition that for each ξ ∈
Rd−1 and λ ∈Σπ−θ such that |ξ|+ |λ| 6= 0, the characteristic polynomial

a0(ξ)µ2 +a1(ξ)µ+a0(ξ)+λ= 0

of (7.2.3), has two distinct roots µ± with Imµ+ > 0 > Imµ−, where ak (ξ) =∑
|α|=k a(k,α)ξ

α.
The proof follows the line of [104, Section 7.4].

We can now state our main result.

Theorem 7.2.4. Let T ∈ (−∞,∞], p, q ∈ (1,∞). Let v ∈ Ap ((−∞,T )) and w ∈ Aq (Rd+).
There exists

ρ = ρ(θ,m,d ,K , p, q, [v]p , [w]q ,b jβ) ∈ (0,1)

such that under the assumptions (A), (B), and (LS)θ for some θ ∈ (0,π/2), the following
hold.
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(i) Assume the lower-order terms of B j to be all zero and g j ≡ 0, with j = 1, . . . ,m. Then
there exists λ0 =λ0(θ,m,d ,K , p, q,R0, [v]p , [w]q ,b jβ) ≥ 0 such that for every λ≥λ0, for

u ∈W 1
p ((−∞,T ), v ;Lq (Rd

+, w))∩Lp ((−∞,T ), v ;W 2m
q (Rd

+, w))

satisfying (7.2.1) on (−∞,T )×Rd+, where f ∈ Lp ((−∞,T ), v ;Lq (Rd+, w)), it holds that

‖ut‖Lp ((−∞,T ),v ;Lq (Rd+,w)) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lp ((−∞,T ),v ;Lq (Rd+,w))

≤C‖ f ‖Lp ((−∞,T ),v ;Lq (Rd+,w)), (7.2.4)

with a constant C =C (θ,m,d ,K , p, q, [v]p , [w]q ,b jβ) > 0.
(ii) Let v = w = 1. Then there exists λ0 = λ0(θ,m,d ,K , p, q,R0,b jβ) ≥ 0 such that for

every λ≥λ0, for

u ∈W 1
p ((−∞,T );Lq (Rd

+))∩Lp ((−∞,T );W 2m
q (Rd

+))

satisfying (7.2.1) on (−∞,T ), where f ∈ Lp ((−∞,T );Lq (Rd+)) and

g j ∈ F
k j
p,q ((−∞,T );Lq (Rd−1))∩Lp ((−∞,T );B

2mk j
q,q (Rd−1))

with k j = 1−m j /(2mq)−1/(2mq), it holds that

‖ut‖Lp ((−∞,T );Lq (Rd+)) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lp ((−∞,T );Lq (Rd+))

≤C‖ f ‖Lp ((−∞,T );Lq (Rd+)) +C‖g j ‖
F

k j
p,q ((−∞,T );Lq (Rd−1))∩Lp ((−∞,T );B

2mk j
q,q (Rd−1))

, (7.2.5)

with a constant C =C (θ,m,d ,K , p, q,b jβ) > 0.

From the a priori estimates for the parabolic equation in Theorem 7.2.4, we
obtain the a priori estimates for the higher-order elliptic equation as well, by using
the arguments in [52, Theorem 5.5] and [100, Theorem 2.6]. The key idea is that
the solutions to elliptic equations can be viewed as steady state solutions to the
corresponding parabolic cases.

We state below the elliptic version of Theorem 7.2.4. Here, the coefficients of A

and B j are now independent of t .

Theorem 7.2.5. Let q ∈ (1,∞) and w ∈ Aq (Rd+). There exists

ρ = ρ(θ,m,d ,K , q, [w]q ) ∈ (0,1)

such that under assumptions (A), (B), and (LS)θ for some θ ∈ (0,π/2), the following hold.
(i) Assume the lower-order terms of B j to be all zero and consider homogeneous bound-

ary conditions. Then, there exists λ0 = λ0(θ,m,d ,K , q,R0, [v]q ,b jβ) ≥ 0 such that for
u ∈W 2m

q (Rd+; w) satisfying (7.2.2) where f ∈ Lq (Rd+, w), it holds that∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lq (Rd+,w) ≤C‖ f ‖Lq (Rd+,w), (7.2.6)
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with a constant C =C (θ,m,d ,K , q, [w]q ,b jβ) > 0.
(ii) Let w = 1. Then there exists λ0 = λ0(θ,m,d ,K , q,R0,b jβ) ≥ 0 such that for every

λ≥λ0, for u ∈W 2m
q (Rd+) satisfying(A+λ)u = f in Rd+

B j u
∣∣∣

x1=0
= g j on Rd−1,

where f ∈ Lq (Rd+) and g j ∈B
2mk j
q,q (Rd−1), with k j = 1−m j /(2m)−1/(2mq), it holds that∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lq (Rd+) ≤C‖ f ‖Lq (Rd+) +C‖g j ‖
B

2mk j
q,q (Rd−1)

, (7.2.7)

with a constant C =C (θ,m,d ,K , q,b jβ) > 0.

Remark 7.2.6. (i) In Theorems 7.2.4 and 7.2.5 we focus only on the a priori estimates.
The solvability of the corresponding equations will be derived in Section 7.5.

(ii) For notational simplicity, in this chapter we focus only on the scalar case.
However, similar to [40], with the same proofs both Theorems 7.2.4 and 7.2.5 hold
if one considers systems of operators, i.e., the coefficients aα and b jβ are N × N

complex matrix-valued functions.

7.3. MEAN OSCILLATION ESTIMATES FOR ut AND Dαu , 0 ≤ |α| ≤
2m, EXCEPT D2m

1 u

The main result of this section is stated in Lemma 7.3.5, and it shows mean oscil-
lation estimates for ut and Dαu, for all 0 ≤ |α| ≤ 2m except D2m

x1
u. The proof of this

lemma is the main novelty of the chapter, and it generalizes some results in [52] to
general boundary conditions.

For a function f defined on D ⊂Rd+1+ , we set

[ f ]
C

ν
2m ,ν(D)

= sup
(t ,x),(s,y)∈D

(t ,x)6=(s,y)

| f (t , x)− f (s, y)|
|t − s| ν

2m +|x − y |ν
.

Throughout the section, we assume that A and B j consist only of their principal
part. Let

A0 =
∑

|α|=2m
āαDα

be an operator with constant coefficients satisfying |aα| ≤ K for a constant K > 0

and satisfying condition (E)θ with θ ∈ (0,π/2).
We first prove an auxiliary estimate, which is derived from a result in [41].

Lemma 7.3.1. Let T ∈ (−∞,+∞] and p, q ∈ (1,∞). Let A0 and B j be as above. Assume
that for some θ ∈ (0,π/2) the (LS)θ-condition is satisfied. Then for every f ∈ Lp,q ((−∞,T )×
Rd+) and

g j ∈ F
k j
p,q ((−∞,T );Lq (Rd−1))∩Lp ((−∞,T );B

2mk j
q,q (Rd−1))
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with j ∈ {1, . . . ,m}, m j ∈ {0, . . . ,2m−1}, k j = 1−m j /(2m)−1/(2mq) and u ∈W 1,2m
p,q ((−∞,T )×

Rd+) satisfying ut (t , x)+ (λ+ A0)u(t , x) = f (t , x) in (−∞,T )×Rd+
B j u(t , x)

∣∣∣
x1=0

= g j (t , x) on (−∞,T )×Rd−1,
(7.3.1)

with λ≥ 0, we have

‖ut‖Lp,q ((−∞,T )×Rd+) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lp,q ((−∞,T )×Rd+)

≤C‖ f ‖Lp,q ((−∞,T )×Rd+) +
m∑

j=1
‖g j ‖

F
k j
p,q ((−∞,T );Lq (Rd−1))∩Lp ((−∞,T );B

2mk j
q,q (Rd−1))

, (7.3.2)

with C =C (θ,m,d ,K , p, q,b jβ) > 0. Moreover, for any λ> 0, f ∈ Lp,q ((−∞,T )×Rd+) and

g j ∈ F
k j
p,q ((−∞,T );Lq (Rd−1))∩Lp ((−∞,T );B

2mk j
q,q (Rd−1))

with j ∈ {1, . . . ,m}, m j ∈ {0, . . . ,2m−1}, k j = 1−m j /(2m)−1/(2mq), there exists a unique
solution u ∈W 1,2m

p,q ((−∞,T )×Rd+) to (7.3.1).

Proof. We divide the proof into several steps. First we assume that T =∞.
Step 1. Let u ∈W 1,2m

p,q (R+×Rd+) be a solution to
ut (t , x)+ (λ+ A0)u(t , x) = f (t , x) in R+×Rd+
B j u(t , x)

∣∣∣
x1=0

= g j (t , x) on R+×Rd−1, j = 1, . . . ,m

u(0, x) = 0 on Rd+,

(7.3.3)

with λ> 0. By applying [41, Proposition 6.4] to (7.3.3), it holds that

‖ut‖Lp,q (R+×Rd+) +‖D2mu‖Lp,q (R+×Rd+)

≤C‖ f ‖Lp,q (R+×Rd+) +C
m∑

j=1
‖g j ‖

F
k j
p,q (R+;Lq (Rd−1))∩Lp (R+;B

2mk j
q,q (Rd−1))

,
(7.3.4)

with C = C (λ,θ,m,d ,K , p, q,b jβ). We remark that although the estimate is not ex-
plicitly stated in this reference, it can be extracted from the proofs there. We want
to show that the estimate (7.3.4) also holds when λ= 0.

For this, observe that in [41, Proposition 6.4], the coefficients of the operators
under consideration are time and space dependent. In our case, since A0 has con-
stant coefficients, using a scaling t →λ−1t , x →λ−1/2m x, we obtain that the estimate
(7.3.4) holds for any λ ∈ (0,1) and with constant C uniform in λ. In fact, for a general
λ ∈ (0,1), let v(t , x) := u(λ−1t ,λ−1/2m x). Then v satisfies

vt (t , x)+ A0v(t , x)+ v(t , x) = f̃ (t , x) in R+×Rd+
B j v(t , x)

∣∣∣
x1=0

= g̃ j (t , x) on R+×Rd−1

v(0, x) = 0 on Rd+.

(7.3.5)
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where
f̃ (t , x) =λ−1 f (λ−1t ,λ−1/2m x)

and
g̃ j (t , x) =λ−m j /2m g j (λ−1t ,λ−1/2m x).

Applying (7.3.4) with λ= 1 to (7.3.5) we get that

‖vt‖Lp,q (R+×Rd+) +‖D2m v‖Lp,q (R+×Rd+)

≤C‖ f̃ ‖Lp,q (R+×Rd+) +C
m∑

j=1
‖g̃ j ‖

F
k j
p,q (R+;Lq (Rd−1))∩Lp (R+;B

2mk j
q,q (Rd−1))

,
(7.3.6)

with C = C (θ,m,d ,K , p, q,b jβ). Now, scaling back and using the definition of the
Besov space and Triebel–Lizorkin space, it is easily seen

‖ut‖Lp,q (R+×Rd+) +‖D2mu‖Lp,q ((0,∞)×Rd+)

≤C‖ f ‖Lp,q (R+×Rd+) +C
m∑

j=1
‖g j ‖

F
k j
p,q (R+;Lq (Rd−1))∩Lp (R+;B

2mk j
q,q (Rd−1))

,
(7.3.7)

where C is independent of λ ∈ (0,1). Sending λ→ 0, we obtain that the estimate
(7.3.4) holds when λ= 0. Finally, by applying a procedure of S. Agmon as in [100,
Theorem 4.1], from (7.3.4) with λ= 0 it follows that when λ> 0,

‖ut‖Lp,q (R+×Rd+) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lp,q (R+×Rd+)

≤C‖ f ‖Lp,q (R+×Rd+) +C
m∑

j=1
‖g j ‖

F
k j
p,q (R+;Lq (Rd−1))∩Lp (R+;B

2mk j
q,q (Rd−1))

,
(7.3.8)

with constant C =C (θ,m,d ,K , p, q,b jβ).
Step 2. Take η ∈ C∞(R) such that η = 1 for t > 1 and η = 0 for t < 0. Define

un = η(t +n)u. From (7.3.1), we see that un satisfies
(un)t (t , x)+ (λ+ A0)un(t , x) = fn(t , x) in (−n,∞)×Rd+
B j un(t , x)

∣∣∣
x1=0

= gn, j (t , x) on (−n,∞)×Rd−1

un(−n, x) = 0 on Rd+,

(7.3.9)

for j = 1, . . . ,m, where λ> 0 and

fn = η(t +n) f +uηt (t +n) and gn, j (t , x) = η(t +n)g j (t , x).

By applying (7.3.8) to (7.3.9), we get that

‖(un)t‖Lp,q ((−n,∞)×Rd+) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαun‖Lp,q ((−n,∞)×Rd+)
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≤C‖ fn‖Lp,q ((−n,∞)×Rd+)

+C
m∑

j=1
‖gn, j ‖

F
k j
p,q ((−n,∞);Lq (Rd−1))∩Lp ((−n,∞);B

2mk j
q,q (Rd−1))

, (7.3.10)

with C =C (θ,m,d ,K , p, q,b jβ). Now, taking the limit as n →∞ yields (7.3.2), i.e., for
any λ> 0,

‖ut‖Lp,q (R×Rd+) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lp,q (R×Rd+)

≤C‖ f ‖Lp,q (R×Rd+) +C
m∑

j=1
‖g j ‖

F
k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1))

,

with C =C (θ,m,d ,K , p, q,b jβ).
Step 3. For the solvability, let f ∈ Lp,q (Rd+1+ ) and

g j ∈ F
k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1)), j = 1. . . ,m.

For integer n > 0, define

fn = η(t +n) f and gn, j = η(t +n)g j

so that fn → f in Lp,q (Rd+1+ ) and

gn, j → g j in F
k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1)).

Now let un ∈W 1,2m
p,q ((−n,∞)×Rd+) be the solution to the initial-boundary value prob-

lem with fn and gn, j and zero initial value at t =−n, the existence of which is guar-
anteed by [41, Proposition 6.4]. We extend un to be zero for t <−n. It is easily seen
that un satisfies (7.3.1) with fn and gn, j in place of f and g j , respectively. Applying
the a priori estimate obtained in the argument above to um −un , we get that {un} is
a Cauchy sequence. Then the limit u ∈W 1,2m

p,q (Rd+1+ ) is a solution to (7.3.1).
Step 4. For general T <∞, we may assume T = 0 by shifting the t-coordinate.

We first take the even extensions of u with respect to t = 0. Then u ∈W 1,2m
p,q (R×Rd+).

Next we take the even extension of f and g j with respect to t = 0. Let v ∈W 1,2m
p,q (R×

Rd+) be the solution tovt (t , x)+ (λ+ A0)v(t , x) = f (t , x) in Rd+1+
B j v(t , x)

∣∣∣
x1=0

= g j (t , x) on R×Rd−1, j = 1, . . . ,m,

the existence of which is guaranteed by the argument above. Observe that w :=
u − v ∈W 1,2m

p,q (R×Rd+) satisfieswt (t , x)+ (λ+ A0)w(t , x) = 0 in (−∞,0)×Rd+
B j w(t , x)

∣∣∣
x1=0

= 0 on (−∞,0)×Rd−1, j = 1, . . . ,m.
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We claim that w = 0 on t < 0. Indeed, for any T1 < 0, we solve the equation of w in
(T1,∞)×Rd+ with the zero initial data to get w1, and extend w1 = 0 for t < T1. It is
easily seen that the extended function w1 satisfies the same equation of w in R×Rd+.
By the uniqueness of the solution, w = w1. Therefore, w = 0 when t < T1 for any
T1 < 0. Then,

‖ut‖Lp,q ((−∞,0)×Rd+) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lp,q ((−∞,0)×Rd+)

= ‖vt‖Lp,q ((−∞,0)×Rd+) +λ1− |α|
2m ‖Dαv‖Lp,q ((−∞,0)×Rd+)

≤C‖ f ‖Lp,q (R×Rd+) +
m∑

j=1
‖g j ‖

F
k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1))

=C‖ f ‖Lp,q ((−∞,0)×Rd+) +
m∑

j=1
‖g j ‖

F
k j
p,q ((−∞,0);Lq (Rd−1))∩Lp ((−∞,T );B

2mk j
q,q (Rd−1))

.

The solvability is obtained by taking the even extension of g j and f , and then solve
the equation in R×Rd+. The uniqueness follows from the a priori estimate.

Remark 7.3.2. In Lemma 7.3.1 as well as Theorem 7.2.4, we assumed θ ∈ (0,π/2).
However, in [41, 117], it is shown that in the case of operators with constant lead-
ing coefficients, or operators with uniformly continuous leading coefficients in a
bounded domain, it is enough that the conditions (E)θ and (LS)θ are satisfied for
θ = π/2, which are slightly weaker. The condition (E)π/2 is also referred to as nor-
mal ellipticity condition.

From Lemma 7.3.1, we obtain the following Hölder estimate.

Lemma 7.3.3. Let 0 < r1 < r2 <∞. Let v ∈W 1,2m
p (Q+

r2
) be a solution to the homogeneous

problem vt + A0v = 0 in Q+
r2

B j v
∣∣∣

x1=0
= 0 on Qr2 ∩ {x1 = 0}, j = 1, . . . ,m.

(7.3.11)

Assume that for some θ ∈ (0,π/2) the (LS)θ-condition is satisfied. Then there exists a
constant C =C (θ,K , p,d ,m,r1,r2,b jβ) > 0 such that

‖vt‖Lp (Q+
r1

) +‖D2m v‖Lp (Q+
r1

) ≤C‖v‖Lp (Q+
r2

). (7.3.12)

Furthermore, for ν= 1− 1
p ,

[vt ]
C

ν
2m ,ν(Q+

r1
)
+ [D2m−1Dx′v]

C
ν

2m ,ν(Q+
r1

)
≤C‖vt‖Lp (Q+

r2
) +C‖D2m v‖Lp (Q+

r2
), (7.3.13)

with C =C (θ,K , p,d ,m,r1,r2,b jβ) > 0.
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Proof. Set R0 = r1 and Ri = r1 + (r2 − r1)(1−2−i ), for i = 1,2, . . .. For each i = 0,1,2, . . .,
take ηi ∈C∞

0 (Rd+1+ ) satisfying{
ηi = 1 in Q+

Ri

ηi = 0 outside (−R2m
i ,R2m

i )×BRi+1

and
|Dkηi | ≤C 2ki (r2 − r1)−k , |(ηi )t | ≤C 22mi (r2 − r1)−2m (7.3.14)

where k = 0,1, . . . ,2m. It is easily seen that vηi ∈W 1,2m
p (Rd+1+ ) satisfies

(vηi )t + A0(vηi ) = f in Rd+1+
B j (vηi )

∣∣∣
x1=0

= trx1=0G j on ∂Rd+1+ , j = 1, . . . ,m

(vηi )(−r 2m
2 , ·) = 0,

(7.3.15)

where

f = v(ηi )t +
∑

|α|=2m

∑
|γ|≤2m−1

(
α

γ

)
aα(t0, x0)DγvDα−γηi

and

G j =
∑

|β|=m j

∑
|τ|≤m j −1

(
β

τ

)
b jβDτvDβ−τηi , j = 1, . . . ,m.

Thus we extended (7.3.11) to a system on R×Rd+ without changing the value of v

on Q+
r1

. Now let

g j = trx1=0G j ∈W
1− m j

2m − 1
2mp ,2m−m j − 1

p
p (R×Rd−1).

By applying Lemma 7.3.1 with p = q , we get

‖(vηi )t‖Lp (Rd+1+ ) +‖D2m(vηi )‖Lp (Rd+1+ )

≤C‖ f ‖Lp (Rd+1+ ) +C
m∑

j=1
‖g j ‖

W
1−

m j
2m − 1

2mp ,2m−m j − 1
p

p (R×Rd−1)

,

where C =C (θ,K ,d ,m, p,b jβ).
By Theorem 7.1.3 with s = 1− m j

2m ∈ (0,1], m j ∈ {0, . . . ,2m −1}, we have

‖g j ‖
W

1−
m j
2m − 1

2mp ,2m−m j − 1
p

p (R×Rd−1)

≤C‖G j ‖
W

1−
m j
2m ,2m−m j

p (Rd+1+ )

.

Observe that

‖ f ‖Lp (Rd+1+ ) ≤C‖(ηi )t v‖Lp (Rd+1+ ) +C
∑

|α|=2m

∑
|γ|≤2m−1

‖DγvDα−γηi‖Lp (Rd+1+ )
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and

‖G j ‖
W

1−
m j
2m ,2m−m j

p (Rd+1+ )

≤C
∑

|β|=m j

∑
|τ|≤m j −1

‖DτvDβ−τηi‖
W

1−
m j
2m ,2m−m j

p (Rd+1+ )

,

where the constant C = C (θ,K , p,d ,m) may vary from line to line. By (7.3.14), it
holds that

‖(ηi )t v‖Lp (Rd+1+ ) ≤C 22mi (r2 − r1)−2m‖v‖Lp (Q+
r2

).

By (7.3.14) and interpolation inequalities (see e.g. [102] and the proof of [50, Lemma
3.2]), for ε> 0 small enough and |γ| ≤ 2m −1 we get

‖DγvDα−γηi‖Lp (Rd+1+ ) ≤ ‖Dγ(vηi+1)Dα−γηi‖Lp (Rd+1+ )

≤C 2(2m−|γ|)i (r2 − r1)−(2m−|γ|)‖Dγ(vηi+1)‖Lp (Rd+1+ )

≤ ε‖D2m(vηi+1)‖Lp (Rd+1+ ) +Cε22mi (r2 − r1)−2m‖v‖Lp (Q+
r2

),

where Cε =Cε
|γ|

|γ|−2m . Moreover, by Lemma 7.1.4 and (7.3.14), for ε> 0 small enough
and |τ| ≤ m j −1 we get

‖DτvDβ−τηi‖
W

1−
m j
2m ,2m−m j

p (Rd+1+ )

≤C 2(m j −|τ|)i (r2 − r1)−(m j −|τ|)‖Dτ(vηi+1)‖
W

1−
m j
2m ,2m−m j

p (Rd+1+ )

≤ ε‖D2m(vηi+1)‖Lp (Rd+1+ ) +ε‖(vηi+1)t‖Lp (Rd+1+ ) +Cε22mi (r2 − r1)−2m‖v‖Lp (Q+
r2

)

where Cε =Cε
2m+|τ|−m j

|τ|−m j .
Combining the above inequalities yields

‖(vηi )t‖Lp (Rd+1+ ) +‖D2m(vηi )‖Lp (Rd+1+ ) ≤ (C +Cε)22mi (r2 − r1)−2m‖v‖Lp (Q+
r2

)

+Cε‖D2m(vηi+1)‖Lp (Rd+1+ ) +Cε‖(vηi+1)t‖Lp (Rd+1+ ).

We multiply both sides by εi and we sum with respect to i to get

∞∑
i=0

εi
(
‖(vηi )t‖Lp (Rd+1+ ) +‖D2m(vηi )‖Lp (Rd+1+ )

)
≤ (C +Cε)(r2 − r1)−2m

∞∑
i=0

(22mε)i‖v‖Lp (Q+
r2

)

+C
∞∑

i=1
εi

(
‖D2m(vηi )‖Lp (Rd+1+ ) +‖(vηi )t‖Lp (Rd+1+ )

)
.

We choose ε= 2−2m−1 and observe that the above summations are finite. Then, the
above estimate gives

‖(vη0)t‖Lp (Rd+1+ ) +‖D2m(vη0)‖Lp (Rd+1+ ) ≤C (r2 − r1)−2m‖v‖Lp (Q+
r2

). (7.3.16)
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Since the left-hand side of (7.3.16) is greater than that of (7.3.12), we can conclude

‖vt‖Lp (Q+
r1

) +‖D2m v‖Lp (Q+
r1

) ≤C (r2 − r2)−2m‖v‖Lp (Q+
r2

),

with C =C (θ,K , p,d ,m,b jβ).
To show the Hölder estimate for v , we proceed as follows. First, observe that

from (7.3.12) and interpolation inequalities, it holds that

‖v‖W 1,2m
p (Q+

r1
) ≤C‖v‖Lp (Q+

r2
). (7.3.17)

Observe now that for k,h > 0, the derivatives Dk
t Dh

x′v satisfy the same equation
as v . Hence, from (7.3.17) and a standard bootstrap argument, it holds that v ∈
W k,2m,h+2m

t ,x1,x′;p (Q+
r1

) with
‖v‖

W k,2m,h+2m
t ,x1,x′ ;p (Q+

r1
)
≤C‖v‖Lp (Q+

r2
).

Observe that Theorem 7.1.7 implies for ν= 1− 1
p ,

v, D2m−1v ∈C
ν

2m ,ν(Q+
r1

)

and

[v]
C

ν
2m ,ν(Q+

r1
)
+ [D2m−1v]

C
ν

2m ,ν(Q+
r1

)
≤C‖v‖

W k,2m,h+2m
t ,x1,x′ ;p (Q+

r1
)
≤C‖v‖Lp (Q+

r2
). (7.3.18)

Since vt satisfies the same equation as v , we have

[vt ]
C

ν
2m ,ν(Q+

r1
)
≤C‖vt‖Lp (Q+

r2
). (7.3.19)

In order to show (7.3.13), we need to apply the following Poincaré type inequality
for solutions to equations satisfying the Lopatinskii–Shapiro condition. Its proof
is postponed to the end of this section.

Lemma 7.3.4. There exists a polynomial P of order 2m−2 such that v−P satisfies (7.3.11)
and there exists a constant C =C (d ,m, p,K ,b jβ,r2) > 0 such that

‖Dα(v −P )‖Lp (Q+
r2

) ≤C‖D2m−1v‖Lp (Q+
r2

) (7.3.20)

for |α| ∈ {0, . . . ,2m −2}.

By (7.3.18) and Lemma 7.3.4 there exists a polynomial P of order 2m −2 such
that

[D2m−1v]
C

ν
2m ,ν(Q+

r1
)
= [D2m−1(v −P )]

C
ν

2m ,ν(Q+
r1

)

≤ ‖v −P‖Lp (Q+
r2

) ≤C‖D2m−1v‖Lp (Q+
r2

),

from which, since Dx′v satisfies the same equation as v , we get that

[D2m−1Dx′v]
C

ν
2m ,ν(Q+

r1
)
≤C‖D2m v‖Lp (Q+

r2
).

Together with (7.3.19), the above inequality yields (7.3.13).
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Similar to [51, Corollary 5], from Lemma 7.3.3 we obtain the following mean
oscillation estimates for ut and Dαu, for all 0 ≤ |α| ≤ 2m except D2m

x1
u.

Lemma 7.3.5. Let κ ≥ 16 and p ∈ (1,∞). Let f ∈ Lp,loc (Rd+1+ ), X0 = (t0, x0) ∈ Rd+1+ , and

λ≥ 0. Assume that for r ∈ (0,∞), u ∈W 1,2m
p,loc (Rd+1+ ) satisfies ut + (A0 +λ)u = f in Q+

κr (X0)

and B j u|x1=0 = 0 on Qκr (X0)∩ {x1 = 0}, j = 1, . . . ,m. Assume that for some θ ∈ (0,π/2) the
(LS)θ-condition is satisfied. Then

(|ut − (ut )Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m
α1<2m

λ1− |α|
2m (|Dαu − (Dαu)Q+

r (X0)|)Q+
r (X0)

≤Cκ−(1− 1
p ) ∑

|α|≤2m
λ1− |α|

2m (|Dαu|p )
1
p

Q+
κr (X0)

+Cκ
d+2m

p (| f |p )
1
p

Q+
κr (X0)

, (7.3.21)

where the constant C =C (θ,d ,m,K , p,b jβ) > 0.

Proof. Using a scaling argument, it suffices to prove (7.3.21) only for r = 8/κ. In-
deed, assume that the inequality (7.3.21) holds true for r = 8/κ. For a given r ∈
(0,∞), let r0 = 8/κ, R = r /r0 and v(t , x) = u(R2m t ,Rx). Then v satisfies B j v = 0 on
Q+
κr0

(Z0)∩ {x1 = 0} and

vt (t , x)+ ∑
|α|=2m

aα(R2m t0,Rx0)Dαv(t , x)+λR2m v(t , x) = R2m f (R2m t ,Rx) (7.3.22)

on Q+
κr0

(Z0), where Z0 = (R−2m t0,R−1x0) ∈Rd+1+ . Then, by (7.3.21) applied to (7.3.22),
we have

(|vt − (vt )Q+
r0

(Z0)|)Q+
r0

(Z0) +
∑

|α|≤2m
α1<2m

λ1− |α|
2m R2m−|α|(|Dαv − (Dαv)Q+

r0
(Z0)|)Q+

r0
(Z0)

≤Cκ−(1− 1
p ) ∑

|α|≤2m
λ1− |α|

2m R2m−|α|(|Dαv |p )
1
p

Q+
κr0

(Z0)
+Cκ

d+2m
p R2m(| f |p )

1
p

Q+
κr0

(Z0)
.

Note that

(Dαv)Q+
r0

(Z0) = R |α|(Dαu)Q+
r (X0) and (vt )Q+

r0
(Z0) = R2m(ut )Q+

r (X0),

so the above inequality implies (7.3.21) for arbitrary r ∈ (0,∞).
We now assume r = 8/κ and consider two cases, where we denote by x1

0 the
first coordinate of x0.

Case 1: x1
0 ≥ 1. In this case, Q+

κr /8(X0) = Qκr /8(X0). The proof of (7.3.21) then
follows from [52, Lemma 5.7], with κ ≥ 2 instead of κ ≥ 8 there. Note that in this
case, the (LS)θ-condition is not needed.

Case 2: x1
0 ∈ [0,1]. We denote Y0 := (t0,0, x ′

0) and we set Q ′
κr (Y0) := (t0−(κr )2m , t0)×

Bκr (x ′
0). Observe that

Q+
r (X0) ⊂Q+

2 (Y0) ⊂Q+
4 (Y0) ⊂Q+

6 (Y0) ⊂Q+
κr (X0).
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To prove (7.3.21), we proceed by three steps.
Step 1. We assume for simplicity Y0 = (0,0), since a translation in t and x ′ then

gives the result for general Y0. Decompose u = v +w where:

• w ∈W 1,2m
p (Rd+1+ ) is the solution to the inhomogeneous problem

wt + (A0 +λ)w = f ζ in R×Rd+
B j w

∣∣∣
x1=0

= 0 on ∂Rd+1+ , j = 1, . . . ,m

w(−62m , ·) = 0.

(7.3.23)

where ζ ∈C∞
0 (Rd+1+ ) satisfies ζ= 1 in (−42m ,0)×B4 and ζ= 0 outside (−62m ,62m)×

B6.

• v ∈W 1,2m
p,l oc (Rd+1+ ) is the solution to the homogeneous problem

vt + (A0 +λ)v = 0 in Q+
4

B j v
∣∣∣

x1=0
= 0 on Q4 ∩ {x1 = 0}, j = 1, . . . ,m.

(7.3.24)

Step 2. It follows directly from Lemma 7.3.1 with g j ≡ 0 that there exists a
unique solution w ∈W 1,2m

p (Rd+1+ ) of (7.3.23) that satisfies

‖wt‖Lp (Rd+1+ ) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαw‖Lp (Rd+1+ ) ≤C‖ f ζ‖Lp (Rd+1+ )

≤C‖ f ‖Lp (Q+
6 ) ≤C‖ f ‖Lp (Q+

κr (X0)), (7.3.25)

where C =C (θ,K ,d ,m, p,b jβ). In particular,

(|wt |p )1/p
Q+

r
+ ∑

|α|≤2m
λ1− |α|

2m (|Dαw |p )1/p
Q+

r
≤Cκ

d+2m
p (| f |p )1/p

Q+
κr

. (7.3.26)

Step 3. We claim that there exists a constant C =C (θ, p,K ,d ,m,b jβ) such that

(|vt − (vt )Q+
r
|)Q+

r (X0) +
∑

|α|≤2m
α1<2m

λ1− |α|
2m (|Dαv − (Dαv)Q+

r (X0)|)Q+
r (X0)

≤Cκ−ν
∑

|α|≤2m
λ1− |α|

2m (|Dαv |p )1/p
Q+
κr (X0)

. (7.3.27)

To show the claim, we first assume λ = 0. We apply Lemma 7.3.3 with the choice
r1 = 2 and r2 = 4, and we get

[vt ]
C

ν
2m ,ν(Q+

2 )
+ [D2m−1Dx′v]

C
ν

2m ,ν(Q+
2 )

≤C‖vt‖Lp (Q+
4 ) +C‖D2m v‖Lp (Q+

4 ), (7.3.28)

where ν= 1− 1
p and C =C (θ, p,K ,d ,m,b jβ).
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For λ> 0 we follow the proof of [51, Lemma 3], based on an idea by S. Agmon.
Consider for y ∈R,

ζ(y) = cos(λ
1

2m y)+ sin(λ
1

2m y).

Note that
D2m

y ζ(y) =λζ(y), ζ(0) = 1, |D2m−|α|ζ(0)| =λ1− |α|
2m .

Denote by (t , z) = (t , x, y) ∈Rd+2+ , where z = (x, y) ∈Rd+1+ with x ∈Rd+, and set

ṽ(t , z) = v(t , x)ζ(y), Q̃+
r = (−r 2m ,0)×{|z| < r, z ∈Rd+1

+
}
.

Since v satisfies (7.3.24) on Q+
4 , ṽ satisfies{

ṽt + A0ṽ +D2m
y ṽ = 0 in Q̃+

4

B j ṽ |x1=0 = 0 on Q̃+
4 ∩ {x1 = 0}.

Thus, we can proceed as in (7.3.28) and get for r = 8/κ, κ ≥ 16, and |α| ≤ 2m with
α1 < 2m,

[ṽt ]
C

ν
2m ,ν(Q̃+

2 )
+ [D2m−|α|

y Dαṽ]
C

ν
2m ,ν(Q̃+

2 )
≤C‖ṽt‖Lp (Q̃+

4 ) +C‖D2m ṽ‖Lp (Q̃+
4 ). (7.3.29)

Since |D2m−|α|ζ(0)| =λ1− |α|
2m ,

λ1− |α|
2m [Dαv]

C
ν

2m ,ν(Q+
2 )

≤ [D2m−|α|
y Dαṽ]

C
ν

2m ,ν(Q̃+
2 )

.

Observe now that

(|Dαv − (Dαv)Q+
r (X0)|)Q+

r (X0) ≤Cκ−ν[Dαv]
C

ν
2m ,ν(Q+

r (X0))

≤Cκ−ν[Dαv]
C

ν
2m ,ν(Q+

2 )

and the same holds for vt . This implies that

(|vt − (vt )Q+
r (X0)|)Q+

r (X0) +λ1− |α|
2m (|Dαv − (Dαv)Q+

r (X0)|)Q+
r (X0)

≤Cκ−ν[vt ]
C

ν
2m ,ν(Q+

2 )
+Cκ−νλ1− |α|

2m [Dαv]
C

ν
2m ,ν(Q+

2 )

≤Cκ−ν[ṽt ]
C

ν
2m ,ν(Q̃+

2 )
+Cκ−ν[D2m−|α|

y Dαṽ]
C

ν
2m ,ν(Q̃+

2 )
.

Therefore, the left-hand side of (7.3.27) is bounded by that of (7.3.29).
Since D2m ṽ is a linear combination of terms such as

λ
1
2 − k

2m cos(λ
1

2m y)Dk
x u(t , x), λ

1
2 − k

2m sin(λ
1

2m y)Dk
x u(t , x), k = 0, . . . ,2m,

we have
‖D2m ṽ‖Lp (Q̃+

4 ) ≤
∑

|α|≤2m
λ1− |α|

2m ‖Dαv‖Lp (Q+
κr (X0)).
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This together with vt =−A0v yields

Cκ−ν‖ṽt‖Lp (Q̃+
4 ) +Cκ−ν‖D2m ṽ‖Lp (Q̃+

4 ) ≤Cκ−ν
∑

|α|≤2m
λ1− |α|

2m ‖Dαv‖Lp (Q+
κr (X0)),

which shows that the right-hand side of (7.3.29) is bounded by that of (7.3.27).
Step 4. Since u = w + v , by (7.3.26) and (7.3.27) we get

(|ut − (ut )Qr |)Q+
r (X0) +

∑
|α|≤2m,α1<2m

λ1− |α|
2m (|Dαu − (Dαu)Q+

r (X0)|)Q+
r (X0)

(i )≤ C (|ut − (vt )Qr |)Q+
r (X0) +C

∑
|α|≤2m,α1<2m

λ1− |α|
2m (|Dαu − (Dαv)Q+

r (X0)|)Q+
r (X0)

≤C (|vt − (vt )Qr |)Q+
r (X0) +C

∑
|α|≤2m,α1<2m

λ1− |α|
2m (|Dαv − (Dαv)Q+

r (X0)|)Q+
r (X0)

+C (|wt |p )1/p
Q+

r (X0)
+C

∑
|α|≤2m,α1<2m

λ1− |α|
2m (|Dαw |p )1/p

Q+
r (X0)

≤Cκ−ν
∑

|α|≤2m,α1<2m
λ1− |α|

2m (|Dαv |p )1/p
Q+
κr (X0)

+Cκ
d+2m

p (| f |p )1/p
Q+
κr (X0)

(i i )≤ Cκ−ν
∑

|α|≤2m,α1<2m
λ1− |α|

2m (|Dαu|p )1/p
Q+
κr (X0)

+Cκ
d+2m

p (| f |p )1/p
Q+
κr (X0)

,

where in (i) we used the fact that for any constant c1,c2 it holds

(|ut − (ut )Q+
r (X0)|)Q+

r (X0) ≤ 2(|ut − c1|)Q+
r (X0),

(|Dαu − (Dαu)Q+
r (X0)|)Q+

r (X0) ≤ 2(|Dαu − c2|)Q+
r (X0),

and we took c1 = (vt )Q+
r (X0), c2 = (Dαv)Q+

r (X0), while in (ii) we used v = u − w and
(7.3.25).

We now use the idea of freezing the coefficients as in [52, Lemma 5.9], to ob-
tain the following mean oscillation estimate on Q+

r (X0) for operators with variable
coefficients when r is small.

Lemma 7.3.6. Let λ≥ 0 and κ≥ 16. Assume that A and B j , j = 1, . . . ,m, satisfy conditions
(A), (B), and (LS)θ for some θ ∈ (0,π/2), and assume the lower-order coefficients of A

and B j to be all zero. Let µ,ς ∈ (1,∞), 1
ς + 1

µ = 1. Then, for r ∈ (0,R0/κ], X0 ∈ Rd+1+
and u ∈ W 1,2m

pµ,loc (Rd+1+ ) satisfying ut + (A(t )+λ)u = f in Q+
κr (X0) and B j u|x1=0 = 0 on

Qκr (X0)∩ {x1 = 0}, j = 1, . . . ,m, where f ∈ Lp,l oc (Rd+1+ ), we have

(|ut − (ut )Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m
α1<2m

λ1− |α|
2m (|Dαu − (Dαu)Q+

r (X0)|)Q+
r (X0)

≤Cκ−(1− 1
p ) ∑

|α|≤2m
λ1− |α|

2m (|Dαu|p )
1
p

Q+
κr (X0)

+Cκ
d+2m

p (| f |p )
1
p

Q+
κr (X0)
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+Cκ
d+2m

p ρ
1

pς (|D2mu|pµ)
1

pµ

Q+
κr (X0)

,

where C =C (θ,d ,m,µ,K , p,b jβ) > 0.

Proof. Fix (t0, x0) ∈Rd+1+ . For any (s, y) ∈Q+
κr (t0, x0), set

As,y u = ∑
|α|=2m

aα(s, y)Dαu.

Then u satisfies {
ut + (As,y +λ)u = g in Q+

κr

B j u|x1=0 = 0 on Q+
κr ∩ {x1 = 0},

where
g := f + ∑

|α|=2m
(aα(s, y)−aα(t , x))Dαu.

Note that when x1
0 ≤ R0, we have y1 ≤ 2R0 so that the (LS)θ-condition is satisfied for

As,y and B j . It follows from Lemma 7.3.5 that

(|ut − (ut )Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m,α1<2m
λ1− |α|

2m (|Dαu − (Dαu)Q+
r (X0)|)Q+

r (X0)

≤Cκ−(1− 1
p ) ∑

|α|≤2m
λ1− |α|

2m (|Dαu|p )
1
p

Q+
κr (X0)

+Cκ
d+2m

p (|g |p )
1
p

Q+
κr (X0)

, (7.3.30)

where C =C (θ,d ,m,K , p,b jβ). Note that

(|g |p )
1
p

Q+
κr (X0)

≤ (| f |p )
1
p

Q+
κr (X0)

+ I
1
p , (7.3.31)

where
I = (|(aα(s, y)−aα(t , x))Dαu|p )Q+

κr (X0).

Take now the average of I with respect to (s, y) in Q+
κr (X0). By Hölder’s inequality

it holds that(
−
∫

Q+
κr (X0)

I d s d y
) 1

p ≤
(
−
∫

Q+
κr (X0)

(|(aα(s, y)−aα(t , x))Dαu|p )Q+
κr (X0) d s d y

) 1
p

≤
(
−
∫

Q+
κr (X0)

(|(aα(s, y)−aα(t , x))|pς)
1
ς

Q+
κr (X0)

d s d y
) 1

p
(|D2mu|pµ)

1
pµ

Q+
κr (X0)

.

Moreover, by the boundedness of the coefficients aα, the assumption r ≤ R0/κ and
Assumption 7.2.1 (ρ), we get(

−
∫

Q+
κr (X0)

(|(aα(s, y)−aα(t , x)|pς)Q+
κr (X0))

1
ς

) 1
p

≤
(
−
∫

Q+
κr (X0)

(|aα(s, y)−aα(t , x)|)Q+
κr (X0) d s d y

) 1
pς

≤C (osc(aα,Q+
κr ))

1
pς ≤C ((aα)]R0

)
1

pς ≤Cρ
1

pς .
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This together with (7.3.30) and (7.3.31) gives the desired estimate. When x1
0 > R0,

the results follows directly by [51, Lemma 5], since in this case there are no bound-
ary conditions involved.

We conclude this section with the proof of Lemma 7.3.4.

Proof of Lemma 7.3.4. Without loss of generality we can take r2 = 1. We take for
simplicity the center X0 of Q+

1 to be (0,0). A translation of the coordinates then
gives the result for general X0 ∈ ∂Rd+1+ .

Assume that the polynomial P has the form

P = ∑
|α|≤2m−2

cα
α!

xα, x = (x1, x ′) ∈Rn
+, α! =α1! · · ·αd !

and satisfies the boundary conditions

B j P
∣∣∣

x1=0
= ∑

|β|=m j

b jβDβP
∣∣∣

x1=0
= 0, (7.3.32)

where j = 1, . . . ,m and 0 ≤ m j ≤ 2m −1. Since P is of order 2m −2, we only need to
consider the boundary conditions whose order is m j ≤ 2m −2.

Assume that the (LS)θ-condition is satisfied. Then, the boundary operators
B1, . . . ,Bm are linearly independent, and so are their tangential derivatives Dγ

x′B j .
To determine the coefficients cα of the polynomial, we proceed by induction on

the value of |α|. For this, we introduce two subgroups of multi-indices:

I|α| := {
α ∈Nd

0 : cα are determined using the boundary conditions
}

J|α| := {
α ∈Nd

0 : cα are determined using the condition (DαP )Q+
1
= (Dαv)Q+

1

}
.

Step 1. Let |α| = 2m −2 and m j ≤ 2m −2. We will first determine the coefficients
cα and then prove the Poincaré type inequality

‖Dα(v −P )‖Lp (Q+
1 ) ≤C‖D2m−1v‖Lp (Q+

1 ). (7.3.33)

For this, we take the 2m − 2−m j -th tangential derivatives of each boundary
condition in (7.3.32) and setting x ′ = 0 we get a system of equations of the form∑

|β|=m j

b jβcβ+γ = 0, (7.3.34)

each γ satisfying |γ| = 2m −2−m j , so that |β+γ| = 2m −2, and γ1 = 0.
We rewrite the above system as the product of the r ×n matrix B= [bi ,`

jβ ]r,n
i=1,`=1

of the coefficients b jβ by the vector C = (c`α : |α| = 2m − 2)n
`=1 of the coefficients

cα, where n denotes the number of the unknown cα’s and r the number of the
equations in (7.3.34).
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By the (LS)θ-condition, the r rows of B are linearly independent. This implies
that there exists an r×r submatrix B1 of B such that r ank(B1) = r . Define B2 :=B−B1.
Consider the vectors C1 := (c i

α : α ∈ I2m−2)r
i=1 and C2 := (ck

α : α ∈ J2m−2)n−r
k=1 .

We then rewrite the equation BC= 0 as B1C1 =−B2C2, and we get

C1 =−B−1
1 B2C2.

From this we obtain that the coefficients cα with α ∈ I2m−2 depends on the coeffi-
cients cα with α ∈ J2m−2.

We determine the last ones by requiring

(DαP )Q+
1
= (Dαv)Q+

1
, α ∈ Jmathcal J2m−2.

We then apply the interior Poincaré inequality as in [50, Lemma 3.3] and we get

‖Dα(v −P )‖Lp (Q+
1 ) ≤C0‖D2m−1(v −P )‖Lp (Q+

1 )

=C0‖D2m−1v‖Lp (Q+
1 ),

(7.3.35)

with α ∈ J2m−2 and C0 =C0(d ,m, p).
Now let Dα(v −P ) be the vector of the derivatives Dα(v −P ) for any multi-index

α, B(v −P ) be the vector with components B j (v −P ), and Dγ

x′B(v −P ) be the vector
with components Dγ

x′B j (v −P ). Observe that

BDα(v −P ) = Dγ

x′B(v −P ), (7.3.36)

where |γ|+m j = |α| = 2m −2.
Furthermore, let Dα

I (v −P ) and Dα
J (v −P ) denote the vectors with components

Dα(v −P ) with respectively α ∈ I2m−2 and α ∈ J2m−2. Observe that the order of their
components depends respectively on the order of the components in the vectors
C1 and C2 defined above. Thus, for B1 and B2 introduced above, it holds that

BDα(v −P ) =B1Dα
I (v −P )+B2Dα

J (v −P ).

This, combined with (7.3.36), implies that

B1Dα
I (v −P ) = Dγ

x′B(v −P )−B2Dα
J (v −P ). (7.3.37)

Since Dγ

x′B j (v −P ) = 0 on the boundary, we can apply the boundary Poincaré
inequality and we get

‖Dγ

x′B j (v −P )‖Lp (Q+
1 ) ≤C1‖D2m−1v‖Lp (Q+

1 ), C1 =C1(d ,m, p,K ). (7.3.38)

By (7.3.37) and combining (7.3.35) and (7.3.38), we get

‖Dα(v −P )‖Lp (Q+
1 ) ≤ (det(B1))−1C2‖D2m−1v‖Lp (Q+

1 ), α ∈ I2m−2,
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where C2 =C2(d ,m, p,K ). Since B1 has dimension r ×r and r ank(B1) = r , det(B1) 6= 0.
Thus, there exists δ> 0 small enough and depending on b jβ, such that det(B1) > δ.
Therefore, we obtain (7.3.33), i.e.,

‖Dα(v −P )‖Lp (Q+
1 ) ≤C‖D2m−1v‖Lp (Q+

1 ), |α| = 2m −2,

with C depending only on d ,m, p,K and b jβ.

Step 2. Let |α| = 2m −3 and m j ≤ 2m −3. By taking the (2m −3−m j )-th tangen-
tial derivatives of each boundary condition in (7.3.32) and setting x ′ = 0 we get a
system of equation of the form ∑

|β|=m j

b jβcβ+γ = 0,

each γ satisfying |γ| = 2m −3−m j , so that |β+γ| = 2m −3, and γ1 = 0. As before,
we determine the coefficients cα with α ∈ I2m−3 in terms of the coefficients cα with
α ∈ J2m−3. The last one are determined as in the previous step by requiring

(DαP )Q+
1
= (Dαv)Q+

1
, α ∈ J2m−3.

Observe that in the average condition there are coefficients cα with |α| = 2m − 2,
but they have been already determined in Step 1. From this, proceeding as in Step
1 and applying the PoincarPoincaré type inequality (7.3.33) we get

‖Dα(v −P )‖Lp (Q+
1 ) ≤C‖D2m−2(v −P )‖Lp (Q+

1 ) ≤C‖D2m−1v‖Lp (Q+
1 ),

with |α| = 2m −3 and C depending only on d ,m, p,K and b jβ.

Step k. Let |α| = 2m −1−k and m j ≤ 2m −1−k. We proceed by induction.
By taking the (2m −1−k −m j )-th tangential derivatives of each boundary con-

dition in (7.3.32) and setting x ′ = 0 we get a system of equation of the form∑
|β|=m j

b jβcβ+γ = 0,

each γ satisfying |γ| = 2m −1−k −m j , so that |β+γ| = 2m −1−k, and γ1 = 0. Pro-
ceeding as before, we determine the coefficients cα, α ∈ I2m−1−k in terms of the
coefficients cα, α ∈ J2m−1−k . The last ones are determined by requiring

(DαP )Q+
1
= (Dαv)Q+

1
, α ∈ J2m−1−k .

Observe that by induction we have determined the coefficients cα, |α| ∈ {2m −
2, . . . ,2m − k}. Therefore, proceeding as in Step 1, using induction for |α| ∈ {2m −
2, . . . ,2m−k} and applying the Poincaré type inequalities obtained at any induction
step, we get

‖Dα(v −P )‖Lp (Q+
1 ) ≤C‖D2m−k (v −P )‖Lp (Q+

1 ) ≤ ·· · ≤C‖D2m−1v‖Lp (Q+
1 ),
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with |α| = 2m −1−k and C depending only on d ,m, p,K and b jβ.

Step 2m-1. Let |α| = 0. If P (x)|x1=0 = 0 is a boundary condition, then c0 = 0.
Otherwise, we determine c0 by using the average condition (P )Q+

1
= (v)Q+

1
.

This concludes the construction of the required polynomial P . Moreover, by
induction we get (7.3.20).

To conclude the proof, observe that the polynomial P satisfies the boundary
conditions. In fact, by the construction above, at each step one can show by induc-
tion that the tangential derivatives of the boundary conditions are equal to zero.
Since the boundary conditions are satisfied at the origin x ′ = 0, they must then be
satisfied for any x ′ ∈Rd−1. The assertion follows.

7.4. Lp (Lq )-ESTIMATES FOR SYSTEMS WITH GENERAL BOUNDARY

CONDITION

We are now ready to prove Theorem 7.2.4. For this, we will follow the procedure of
[52, Theorem 5.4] and we will need two intermediate results. The first one follows
from Lemma 7.3.6.

Lemma 7.4.1. Let p, q ∈ (1,∞), v ∈ Ap (R), w ∈ Aq (Rd+), λ ≥ 0 and t1 ∈ R. Assume that
A and B j , j = 1, . . . ,m, satisfy conditions (A), (B), and (LS)θ for some θ ∈ (0,π/2), and
assume the lower-order coefficients of A and B j to be all zero. Then, there exists constants
R1,ρ ∈ (0,1), depending only on θ, m, d , K , p, q , [v]p , [w]q , and b jβ, such that for
u ∈W 1,2m

p,q,v,w (Rd+1+ ) vanishing outside (t1−(R0R1)2m , t1)×Rd+ and satisfying (7.2.1) in Rd+1+ ,
where f ∈ Lp,q,v,w (Rd+1+ ), it holds that

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w (Rd+1+ ) ≤C‖ f ‖Lp,q,v,w (Rd+1+ ), (7.4.1)

where C =C (θ,d ,m,K , p, q, [v]p , [w]q ,b jβ) > 0.

Proof. For the given v ∈ Ap (R) and w ∈ Aq (Rd+), using reverse Hölder’s inequality
(see [71, Corollary 9.2.4 and Remark 9.2.3]) we find σ1 =σ1(p, [v]p ), σ2 =σ2(q, [w]q )

such that p −σ1 > 1, q −σ2 > 1 and

v ∈ Ap−σ1 (R), w ∈ Aq−σ2 (Rd
+).

Take p0,µ ∈ (1,∞) satisfying p0µ= min
{ p

p −σ1
,

q

q −σ2

}
> 1. Note that

v ∈ Ap−σ1 ⊂ Ap/(p0µ) ⊂ Ap/p0 (R),

w ∈ Aq−σ2 ⊂ Aq/(p0µ) ⊂ Aq/p0 (Rd
+).

Then it holds that
u ∈W 1,2m

p0µ,loc(Rd+1
+ ), f ∈ Lp0µ,loc(Rd+1

+ ).
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Indeed, by [52, Lemma 3.1], for any g ∈ Lp0µ,loc and for any half-ball B+
1 ⊂ Rd+ and

interval B2 ⊂R,

1

|B+
1 ||B2|

∫
B+

1 ×B2

|g |p0µd x d t = 1

|B2|
∫

B2

1

|B+
1 |

∫
B+

1

|g |p0µd x d t

≤ 1

|B2|
∫

B2

( [w]q/(p0µ)

w(B+
1 )

∫
B+

1

|g |q w(x)d x
) p0µ

q
d t

≤
( [v]p/(p0µ)

v(B2)

∫
B2

( [w]q/(p0µ)

w(B+
1 )

∫
B+

1

|g |q w(x)d x
) p

q
v(t )d t

) p0µ
p

.

Let κ≥ 16 be a large constant to be specified. For u ∈W 1,2m
p0µ,loc(Rd+1+ ), if r > R0

κ , since

u vanishes outside (t1 − (R0R1)2m , t1)×Rd+, for 0 ≤ |α| ≤ 2m, we have

(|Dαu − (Dαu)Q+
r (X0)|)Q+

r (X0) ≤ 2(Dαu)Q+
r (X0)

≤ 2(I(t1−(R0R1)2m ,t1)(s))
1− 1

p0

Q+
r (X0)

(|Dαu|p0 )
1

p0

Q+
r (X0)

≤Cd ,m,p0κ
2m(1− 1

p0
)
R

2m(1− 1
p0

)

1 (|Dαu|p0 )
1

p0

Q+
r (X0)

.

(7.4.2)

If r ∈ (0,R0/κ], then by Lemma 7.3.6 with p = p0, there exists a constant
C =C (θ,d ,m,µ,K , p0,b jβ) such that, for 1

µ + 1
ς = 1,

(|ut − (ut )Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m,α1<2m
λ1− |α|

2m (|Dαu − (Dαu)Q+
r (X0)|)Q+

r (X0)

≤Cκ
−(1− 1

p0
) ∑
|α|≤2m

λ1− |α|
2m (|Dαu|p0 )

1
p0

Q+
κr (X0)

+Cκ
d+2m

p0 (| f |p0 )
1

p0

Q+
κr (X0)

+Cκ
d+2m

p0 ρ
1

p0ς (|D2mu|p0µ)
1

p0µ

Q+
κr (X0)

.

(7.4.3)

Combining (7.4.2) and (7.4.3) we get

(|ut − (ut )Q+
r (X0)|)Q+

r (X0) +
∑

|α|≤2m,α1<2m
λ1− |α|

2m (|Dαu − (Dαu)Q+
r (X0)|)Q+

r (X0)

≤C (κ
2m(1− 1

p0
)
R

2m(1− 1
p0

)

1 +κ−(1− 1
p0

)
)

∑
|α|≤2m

λ1− |α|
2m (|Dαu|p0 )

1
p0

Q+
κr (X0)

+Cκ
d+2m

p0 (| f |p0 )
1

p0 +Cκ
d+2m

p0 ρ
1

p0ς (|D2mu|p0µ)
1

p0µ

Q+
κr (X0)

.

Observe that

(ut )](t , x)+ ∑
|α|≤2m,α1<2m

λ1− |α|
2m (Dαu)](t , x) ≤ sup(|ut − (ut )Q+

r (X0)|)Q+
r (X0)

+ sup
∑

|α|≤2m,α1<2m
λ1− |α|

2m (|Dαu − (Dαu)Q+
r (X0)|)Q+

r (X0),
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where the supremum is taken over all the Q+
r (X0) with (t , x) ∈Q+

r (X0). This implies

(ut )](t , x)+ ∑
|α|≤2m,α1<2m

λ1− |α|
2m (Dαu)](t , x)

≤C (κ
2m(1− 1

p0
)
R

2m(1− 1
p0

)

1 +κ−(1− 1
p0

)
)

∑
|α|≤2m

λ1− |α|
2m [M (|Dαu|p0 )(t , x)]

1
p0

+Cκ
d+2m

p0 [M (| f |p0 )(t , x)]
1

p0 +Cκ
d+2m

p0 ρ
1

p0ς [M (|D2mu|p0µ)(t , x)]
1

p0µ .

(7.4.4)

By taking the Lp,q,v,w (Rd+1+ )-norms on both sides of (7.4.4) and applying Theorems
7.1.8 and 7.1.9, we get for C =C (θ,d ,m,K , p, q, [v]p , [w]q ,b jβ),

‖ut‖Lp,q,v,w (Rd+1+ ) +
∑

|α|≤2m,α1<2m
λ1− |α|

2m ‖Dαu‖Lp,q,v,w (Rd+1+ )

≤Cκ
d+2m

p0 ‖ f ‖Lp,q,v,w (Rd+1+ ) +Cκ
d+2m

p0 ρ
1

p0ς ‖D2mu‖Lp,q,v,w (Rd+1+ )

+C (κ
2m(1− 1

p0
)
R

2m(1− 1
p0

)

1 +κ−(1− 1
p0

)
)

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w (Rd+1+ ),

(7.4.5)

where we used

‖[M (D2mu)p0µ]
1

p0µ ‖Lp,q,v,w (Rd+1+ ) = ‖M (D2mu)p0µ‖
1

p0µ

Lp/(p0µ),q/(p0µ),v,w (Rd+1+ )

≤C‖(D2mu)p0µ‖
1

p0µ

Lp/(p0µ),q/(p0µ),v,w (Rd+1+ )
=C‖D2mu‖Lp,q,v,w (Rd+1+ ),

with C =C (d , p/(p0µ), q/(p0µ), [v]p , [w]q ).
It follows from the equation that

aα̃α̃(t , x)D2m
x1

u = f −ut −
∑

|α|=2m,α1<2m
aα(t , x)Dαu −λu,

where α̃= (m,0, . . . ,0). Thus, by taking the Lp,q,v,w -norms and by the assumptions
on the coefficients, it holds that for C =C (θ,d ,m,K , p, q, [v]p , [w]q ),

‖D2m
x1

u‖Lp,q,v,w (Rd+1+ ) ≤C‖ f ‖Lp,q,v,w (Rd+1+ ) +C‖ut‖Lp,q,v,w (Rd+1+ )

+C
∑

|α|≤2m,α1<2m
λ1− |α|

2m ‖Dαu‖Lp,q,v,w (Rd+1+ ). (7.4.6)

Combining (7.4.5) and (7.4.6), we get∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w (Rd+1+ )

≤Cκ
d+2m

p0 ‖ f ‖Lp,q,v,w (Rd+1+ ) +Cκ
d+2m

p0 ρ
1

p0ς ‖D2mu‖Lp,q,v,w (Rd+1+ )

+C (κ
2m(1− 1

p0
)
R

2m(1− 1
p0

)

1 +κ−(1− 1
p0

)
)

∑
|α|≤2m, α1≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w (Rd+1+ ).
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Finally by first taking κ≥ 16 sufficiently large and then ρ and R1 sufficiently small
such that

Cκ
−(1− 1

p0
) ≤ 1

6
, Cκ

2m(1− 1
p0

)
R

2m(1− 1
p0

)

1 ≤ 1

6
, and Cκ

d+2m
p0 ρ

1
p0ς ≤ 1

6
,

we get (7.4.1).

From Lemma 7.4.1 and using a partition of unity argument with respect to only
the time variable, we can prove the second intermediate result.

Proposition 7.4.2. Assume that A and B j , j = 1, . . . ,m, satisfy conditions (A), (B),
and (LS)θ for some θ ∈ (0,π/2), and assume the lower-order terms of B j to be all zero.
Then there exists ρ = ρ(θ,m,d ,K , p, q, [v]p , [w]q ,b jβ) ∈ (0,1) such that for λ ≥ 0, f ∈
Lp,q,v,w (Rd+1+ ) and u ∈W 1,2m

p,q,v,w (Rd+1+ ) satisfying (7.2.1), we have

∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w (Rd+1+ )

≤C1‖ f ‖Lp,q,v,w (Rd+1+ ) +C2
∑

|α|≤2m−1
‖Dαu‖Lp,q,v,w (Rd+1+ ), (7.4.7)

where

C1 =C1(θ,d ,m,K , p, q, [v]p , [w]q ,b jβ),

C2 =C2(θ,d ,m,K , p, q, [v]p , [w]q ,R0,b jβ).

Proof. Without loss of generality, we can assume the lower-order coefficients of A

to be zero. To see this, just move the terms
∑

|α|<2m aα(t , x)Dα to the right-hand side
of (7.2.1), i.e., consider

ut +
∑

|α|=2m
aα(t , x)Dαu = f − ∑

|α|≤2m−1
aα(t , x)Dαu

and recall that the lower-order coefficients of A are bounded by K , so that∑
|α|≤2m−1

‖aαDαu‖Lp,q,v,w (Rd+1+ ) ≤CK
∑

|α|≤2m−1
‖Dαu‖Lp,q,v,w (Rd+1+ ).

If (7.4.7) holds for A =∑
|α|=2m aα(t , x)Dα, we thus get∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lp,q,v,w (Rd+1+ )

≤C1‖ f ‖Lp,q,v,w (Rd+1+ ) +C1CK
∑

|α|≤2m−1
‖Dαu‖Lp,q,v,w (Rd+1+ )

+C2
∑

|α|≤2m−1
‖Dαu‖Lp,q,v,w (Rd+1+ )

≤C1‖ f ‖Lp,q,v,w (Rd+1+ ) +C2
∑

|α|≤2m−1
‖Dαu‖Lp,q,v,w (Rd+1+ ).
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Take now R1 ∈ (0,1) from Lemma 7.4.1 and fix a non-negative infinitely differen-
tiable function ζ(t ) defined on R such that ζ(t ) vanishes outside (−(R0R1)2m ,0) and∫

R
ζ(t )p d t = 1.

Then, u(t , x)ζ(t − s) satisfies
(u(t , x)ζ(t − s))t + (λ+ A)(u(t , x)ζ(t − s))

= ζ(t − s) f (t , x)+ζt (t − s)u(t , x) on Rd+1+
B j (u(t , x)ζ(t − s))

∣∣∣
x1=0

= 0 on R×Rd−1.

(7.4.8)

For each s ∈R, since u(t , x)ζ(t − s) vanishes outside (s − (R0R1)2m , s)×Rd+, by Lemma
7.4.1 applied to (7.4.8) we get∑

|α|<2m
λ1− |α|

2m ‖Dα(uζ(·− s))‖Lp,q,v,w (Rd+1+ )

≤C‖ f ζ(·− s)‖Lp,q,v,w (Rd+1+ ) +C‖uζt (·− s)‖Lp,q,v,w (Rd+1+ ), (7.4.9)

where C =C (d ,m,K , p, q, [v]p , [w]q ,b jβ). Note that

‖Dαu(t , ·)‖p

Lq,w (Rd+)
=

∫
R
‖Dαu(t , ·)‖p

Lq,w (Rd+)
ζ(t − s)p d s

=
∫
R
‖Dαu(t , ·)ζ(t − s)‖p

Lq,w (Rd+)
d s.

Thus, by integrating with respect to t ,

‖Dαu‖p

Lp,q,v,w (Rd+1+ )
=

∫
R
‖Dα(uζ(·− s))‖p

Lp,q,v,w (Rd+1+ )
d s.

From this and (7.4.9) it follows that∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w (Rd+1+ ) ≤C1‖ f ‖Lp,q,v,w (Rd+1+ ) +C2‖u‖Lp,q,v,w (Rd+1+ ),

where C1 = C1(θ,d ,m,K , p, q, [v]p , [w]q ,b jβ) > 0 and C2 depends on R0R1 and the
same parameters as C1 does.

Now Theorem 7.2.4 follows from Proposition 7.4.2.

Proof of Theorem 7.2.4. It suffices to consider T =∞. For the general case when T ∈
(−∞,∞], we can follow the proof of Lemma 7.3.1 with the obvious changes in the
weighted setting, so we omit the details.

(i) In Proposition 7.4.2 we take λ0 ≥ 0 depending only on C2 such that

1

2

∑
|α|≤2m−1

λ1− |α|
2m ≤ ∑

|α|≤2m−1

(
λ1− |α|

2m −C2

)
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for any λ≥λ0. By (7.4.7) we get

1

2

∑
|α|≤2m−1

λ1− |α|
2m ‖Dαu‖Lp,q,v,w (Rd+1+ ) +‖D2mu‖Lp,q,v,w (Rd+1+ )

≤C‖ f ‖Lp,q,v,w (Rd+1+ )

and thus ∑
|α|≤2m

λ1− |α|
2m ‖Dαu‖Lp,q,v,w (Rd+1+ ) ≤C‖ f ‖Lp,q,v,w (Rd+1+ ). (7.4.10)

Finally, the estimate of ‖ut‖Lp,q,v,w (Rd+1+ ) follows by noting that ut = f − (A +λ)u and
(7.4.10). This proves (7.2.4).

(ii) As in the proof of Proposition 7.4.2, we can assume the lower-order coeffi-
cients of A to be zero. Let

A(0,0)u := ∑
|α|=2m

aα(0,0)Dα.

By Lemma 7.3.1, we first solve∂t u1 + (λ+ A(0,0))u1 = 0 in Rd+1+∑
|β|=m j

b jβDβu1

∣∣∣
x1=0

=−∑
|β|<m j

b jβ(t , x)Dβu
∣∣∣

x1=0
+ g j on R×Rd−1,

and by Theorem 7.1.5 we get

‖∂t u1‖Lp (R;Lq (Rd+)) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu1‖Lp (R;Lq (Rd+))

≤C‖ ∑
|β|<m j

b jβDβu‖
W

(2m−m j ) 1
2m

p (R;Lq (Rd+))∩Lp (R;W
2m−m j
q (Rd+))

+‖g j ‖
F

k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1))

. (7.4.11)

Next u2 = u −u1 satisfies the equation∂t u2 + (λ+ A)u2 = f − (A− A(0,0))u1 in Rd+1+∑
|β|=m j

b jβDβu2

∣∣∣
x1=0

= 0 on R×Rd−1,

to which we can apply statement (i) with v = w = 1 to get

‖∂t u2‖Lp (R;Lq (Rd+)) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu2‖Lp (R;Lq (Rd+))

≤C‖ f ‖Lp (R;Lq (Rd+)) +C‖(A− A(0,0))u1‖Lp (R;Lq (Rd+))

≤C‖ f ‖Lp (R;Lq (Rd+)) +CK ‖D2mu1‖Lp (R;Lq (Rd+)),

(7.4.12)
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with λ ≥ λ0, where λ0 depends only on the constant C2 from Proposition 7.4.2.
Now, since u = u1 +u2, by (7.4.12) and (7.4.11),

‖ut‖Lp (R;Lq (Rd+)) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu‖Lp (R;Lq (Rd+))

≤ ‖∂t u1‖Lp (R;Lq (Rd+)) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu1‖Lp (R;Lq (Rd+))

+‖∂t u2‖Lp (R;Lq (Rd+)) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu2‖Lp (R;Lq (Rd+))

≤ ‖∂t u1‖Lp (R;Lq (Rd+)) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαu1‖Lp (R;Lq (Rd+))

+CK ‖D2mu1‖Lp (R;Lq (Rd+)) +C‖ f ‖Lp (R;Lq (Rd+))

≤C‖ f ‖Lp (R;Lq (Rd+)) +CK ‖g j ‖
F

k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1))

+CK ‖ ∑
|β|<m j

b jβ(t , x)Dβu‖
W

(2m−m j ) 1
2m

p (R;Lq (Rd+))∩Lp (R;W
2m−m j
q (Rd+))

(i)≤ C‖ f ‖Lp (R;Lq (Rd+)) +CK ‖g j ‖
F

k j
p,q (R;Lq (Rd−1))∩Lp (R;B

2mk j
q,q (Rd−1))

+CK (Cε‖D2mu‖Lp (R;Lq (Rd+)) +Cε‖ut‖Lp (R;Lq (Rd+)) +Cε‖u‖Lp (R;Lq (Rd+))),

where (i) follows from the smoothness the coefficients b jβ(t , x) for |β| < m j and by
using interpolation estimates as in Lemma 7.1.6. Now, taking ε small enough so
that CK Cε≤ 1/2 and λ such that λ≥ max{λ0,2CK Cε}, we get (7.2.5).

From Theorem 7.2.4, we now prove Theorem 7.2.5.

Proof of Theorem 7.2.5. (i) Take ζ ∈ C∞
0 (R) and set v(t , x) = ζ(t/n)u(x), n ∈ Z, which

satisfies, in Rd+1+ vt (t , x)+ (A+λ)v(t , x) = h in R×Rd+
B j v(t , x)

∣∣∣
x1=0

= 0 on R×Rd−1,
(7.4.13)

with h := 1
n ζt ( t

n )u(x)+ζ( t
n ) f . If we now apply Theorem 7.2.4 to (7.4.13) with v = 1

we get ∑
|α|≤2m

λ1− |α|
2m ‖Dαv‖Lp (R;Lq,w (Rd+)) ≤C‖h‖Lp (R;Lq,w (Rd+)), (7.4.14)

with C =C (θ,m,d ,K , p, q,R0, [w]q ,b jβ). Observe now that

‖h‖Lp (R;Lq,w (Rd+)) ≤
1

n

(∫
R

∣∣ζt (t/n)
∣∣p d t

)1/p
‖u‖Lq,w (Rd+)

+
(∫

R

∣∣ζ(t/n)
∣∣p d t

)1/p
‖ f ‖Lq,w (Rd+),
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and

‖Dαv‖Lp (R;Lq,w (Rd+)) =
(∫

R

∣∣ζ(t/n)
∣∣p d t

)1/p

‖Dαu‖Lq,w (Rd+).

Thus, combining the above estimates with (7.4.14) and letting n → +∞, we get
(7.2.6). (ii) The estimate (7.2.7) follows in the same way from (7.2.5).

7.5. EXISTENCE OF SOLUTIONS

The a priori estimates of Theorems 7.2.4 and 7.2.5 can be used to derive the exis-
tence of solutions to the corresponding equations. In this section we focus on the
solvability of the parabolic problem (7.2.1). The elliptic case follows in the same
way from the a priori estimates in Theorem 7.2.5.

As in the proof of Lemma 7.3.1, via a standard argument it suffices to consider
T = ∞ (see e.g. [100, Theorem 2.1]). Under the conditions in Theorem 7.2.4(ii),
from the a priori estimate (7.2.5), the standard method of continuity (see [68, Theo-
rem 5.2]) combined with Lemma 7.3.1, yields existence and uniqueness of a strong
solution to (7.2.1).

We now assume that the conditions in Theorem 7.2.4(i) are satisfied and we
show the solvability of (7.2.1) via a density argument as in [52, Section 8]. By
reverse Hölder’s inequality and the doubling property of Ap -weights, one can find
a sufficiently large constant p1 and small constants ε1,ε2 ∈ (0,1) depending on d , p,
q , [v]p , [w]q such that

1− p

p1
= 1

1+ε1
, 1− q

p1
= 1

1+ε2
,

and both v1+ε1 and w1+ε2 are locally integrable and satisfy the doubling property,
i.e. for every r > 0, t0 ∈R, x0 ∈Rd+,∫

I2r (t0)
v1+ε1 d t ≤C0

∫
Ir (t0)

v1+ε1 d t , (7.5.1)∫
B+

2r (x0)
w1+ε1 d t ≤C0

∫
B+

r (x0)
w1+ε1 d t , (7.5.2)

where C0 is independent of r, t0, x0 and Ir (t0) = (t0−r 2m , t0+r 2m) denotes an interval
in R. By Hölder’s inequality, any function f ∈ Lp1 (Rd+1+ ) is locally in Lp,q,v,w (Rd+1+ )

and for any r > 0,
‖ f ‖Lp,q,v,w (Q+

r ) ≤C‖ f ‖Lp1 (Q+
r ), (7.5.3)

where Q+
r = ((−r 2m ,r 2m)×Br )∩Rd+1+ , with Br being a ball of radius r in Rd , and C

depends also on r .
Now if f ∈ Lp,q,v,w (Rd+1+ ), by the denseness of C∞

0 (Rd+1+ ) in Lp,q,v,w (Rd+1+ ), we can
find a sequence of smooth functions { fk }k=0,1,... with bounded supports such that

fk → f in Lp,q,v,w (Rd+1
+ ) as k →∞. (7.5.4)
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Since for each k, fk ∈ Lp1 (Rd+1+ ), by the solvability in the unweighted setting of
Theorem 7.2.4(ii) with p1 instead of p = q , zero lower-order coefficients for B j and
g j ≡ 0, there exists a unique solution uk ∈W 1,2m

p1
(Rd+1+ ) to(uk )t (t , x)+ (A+λ)uk (t , x) = fk (t , x) in R×Rd+

B j uk (t , x)
∣∣∣

x1=0
= 0 on R×Rd−1, j = 1, . . . ,m,

provided that λ≥λ1(θ,m,d , p1,K ,R0,b jβ) and ρ ≤ ρ1(θ,m,d , p1,K ,b jβ).
We claim that if λ≥ max{λ0,λ1}, then uk ∈W 1,2m

p,q,v,w (Rd+1+ ). If the claim is proved,
it follows from the a priori estimate (7.2.4) and from (7.5.4) that {uk } is a Cauchy
sequence in W 1,2m

p,q,v,w (Rd+1+ ). Let u be its limit. Then, by taking the limit of the
equation for uk , it follows that u is the solution to (7.2.1).

In order to prove the claim, we fix a k ∈N and we assume that fk is supported
in Q+

R for some R ≥ 1. By (7.5.3) we have

‖Dαuk‖Lp,q,v,w (Q+
2R ) <∞, 0 ≤ |α| ≤ 2m (7.5.5)

and
‖(uk )t‖Lp,q,v,w (Q+

2R ) <∞. (7.5.6)

For j ≥ 0, we take a sequence of smooth functions η j such that η j ≡ 0 in Q+
2 j R

, η j ≡ 1

outside Q+
2 j+1R

and

|Dαη j | ≤C 2− j |α|, |α| ≤ 2m, |(η j )t | ≤C 2−2m j .

Observe that ukη j ∈W 1,2m
p1

(Rd+1+ ) satisfies∂t (ukη j )+ (A+λ)(ukη j ) = f j in Rd+1+
B j (ukη j )

∣∣∣
x1=0

= trx1=0G j on ∂Rd+1+ , j = 1, . . . ,m,

where by Leibnitz’s rule

f j = uk (η j )t +
∑

1≤|α|≤2m

∑
|γ|≤|α|−1

(
α

γ

)
aαDγuk Dα−γη j

and

G j =
∑

|β|=m j

∑
|τ|≤m j −1

(
β

τ

)
b jβDτuk Dβ−τη j .

Now let

g j = trx1=0G j ∈W
1− m j

2m − 1
2mp1

,2m−m j − 1
p1

p1
(R×Rd−1).

By applying the a priori estimate (7.2.5), with p1 instead of p = q there, to ukη j , we
get
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‖∂t (ukη j )‖Lp1 (Rd+1+ ) +
∑

|α|≤2m
λ1− |α|

2m ‖Dα(ukη j )‖Lp1 (Rd+1+ )

≤C‖ f j ‖Lp1 (Rd+1+ ) +C
m∑

j=1
‖g j ‖

W
1−

m j
2m − 1

2mp1
,2m−m j − 1

p1
p1

(R×Rd−1)

,

with a constant C =C (θ,m,d ,K , p1,b jβ) > 0. By Theorem 7.1.3 with s = 1−m j /(2m) ∈
(0,1], m j ∈ {0, . . . ,2m −1}, we have

‖g j ‖
W

1−
m j
2m − 1

2mp1
,2m−m j − 1

p1
p1

(R×Rd−1)

≤C‖G j ‖
W

1−
m j
2m ,2m−m j

p1
(Rd+1+ )

.

Observe that

‖ f j ‖Lp1 (Rd+1+ ) ≤C‖(η j )t uk‖Lp1 (Rd+1+ ) +C
∑

1≤|α|≤2m

∑
|γ|≤|α|−1

‖Dγuk Dα−γη j ‖Lp1 (Rd+1+ )

and

‖G j ‖
W

1−
m j
2m ,2m−m j

p1
(Rd+1+ )

≤C
∑

|β|=m j

∑
|τ|≤m j −1

‖Dτuk Dβ−τη j ‖
W

1−
m j
2m ,2m−m j

p1
(Rd+1+ )

.

This implies that

‖∂t (ukη j )‖Lp1 (Rd+1+ ) +
∑

|α|≤2m
λ1− |α|

2m ‖Dα(ukη j )‖Lp1 (Rd+1+ )

≤C‖(η j )t uk‖Lp1 (Rd+1+ ) +C
∑

1≤|α|≤2m

∑
|γ|≤|α|−1

‖Dγuk Dα−γη j ‖Lp1 (Rd+1+ )

+C
∑

|β|=m j

∑
|τ|≤m j −1

‖Dτuk Dβ−τη j ‖
W

1−
m j
2m ,2m−m j

p1
(Rd+1+ )

,

from which it follows that

‖(uk )t‖Lp1 (Rd+1+ \Q+
2 j+1R

) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαuk‖Lp1 (Rd+1+ \Q+
2 j+1R

)

≤C 2− j ‖uk‖Lp1 (Q+
2 j+1R

\Q+
2 j R

) +C 2− j
∑

1≤|α|≤2m

∑
|γ|≤|α|−1

‖Dγuk‖Lp1 (Q+
2 j+1R

\Q+
2 j R

)

+C 2− j
∑

|β|=m j

∑
|τ|≤m j −1

‖Dτuk‖
W

1−
m j
2m ,2m−m j

p1
(Q+

2 j+1R
\Q+

2 j R
)

.

By standard interpolation inequalities (see e.g. [102]),

‖Dγuk‖Lp (Q+
2 j+1R

\Q+
2 j R

) ≤C‖D2muk‖Lp (Q+
2 j+1R

\Q+
2 j R

) +C‖uk‖Lp (Q+
2 j+1R

\Q+
2 j R

),

and by the interpolation estimates as in Lemma 7.1.4,

‖Dτuk‖
W

1−
m j
2m ,2m−m j

p (Q+
2 j+1R

\Q+
2 j R

)
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≤C‖D2muk‖Lp (Q+
2 j+1R

\Q+
2 j R

) +C‖(uk )t‖Lp (Q+
2 j+1R

\Q+
2 j R

) +C‖uk‖Lp (Q+
2 j+1R

\Q+
2 j R

).

Thus, we get

‖(uk )t‖Lp1 (Q+
2 j+2R

\Q+
2 j+1R

) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαuk‖Lp1 (Q+
2 j+2R

\Q+
2 j+1R

)

≤C 2− j (‖(uk )t‖Lp1 (Q+
2 j+1R

\Q+
2 j R

) +‖D2muk‖Lp1 (Q+
2 j+1R

\Q+
2 j R

)

+‖uk‖Lp1 (Q+
2 j+1R

\Q+
2 j R

)).

By induction, we obtain for each j ≥ 1,

‖(uk )t‖Lp1 (Q+
2 j+1R

\Q+
2 j R

) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαuk‖Lp1 (Q+
2 j+1R

\Q+
2 j R

)

≤C j 2−
j ( j−1)

2 (‖(uk )t‖Lp1 (Q+
2R ) +‖D2muk‖Lp1 (Q+

2R ) +‖uk‖Lp1 (Q+
2R )). (7.5.7)

Finally, by Holder’s inequality, (7.5.1), (7.5.2) and (7.5.7), we get for each j ≥ 1,

‖(uk )t‖Lp,q,v,w (Q+
2 j+1R

\Q+
2 j R

) +
∑

|α|≤2m
λ1− |α|

2m ‖Dαuk‖Lp,q,v,w (Q+
2 j+2R

\Q+
2 j+1R

)

≤ ‖v‖
1
p

L1+ε1 (I
2 j+1R

)‖w‖
1
q

L1+ε2 (B+
2 j+1R

)

(
‖(uk )t‖Lp1 (Q+

2 j+2R
\Q+

2 j+1R
)

+‖D2muk‖Lp1 (Q+
2 j+1R

\Q+
2 j R

) +‖uk‖Lp1 (Q+
2 j+1R

\Q+
2 j R

)

)
≤CC j (1+ 1

p + 1
q )2−

j ( j−1)
2

(
‖(uk )t‖Lp1 (Q+

2R ) +‖D2muk‖Lp1 (Q+
2R ) +‖uk‖Lp1 (Q+

2R )

)
.

The above inequality together with (7.5.5) and (7.5.6) implies that uk ∈W 1,2m
p,q,v,w (Rd+1+ ),

which proves the claim.

Remark 7.5.1. Under certain compatibility condition, the solvability of the corre-
sponding initial-boundary value problem can also be obtained. See, for instance,
[102, Sect. 2.5] and [41] for details.



REFERENCES

[1] H. Abels and Y. Terasawa. On Stokes operators with variable viscosity in
bounded and unbounded domains. Math. Ann., 344(2):381–429, 2009.

[2] P. Acquistapace, F. Flandoli, and B. Terreni. Initial-boundary value problems
and optimal control for nonautonomous parabolic systems. SIAM J. Control
Optim., 29(1):89–118, 1991.

[3] P. Acquistapace and B. Terreni. A unified approach to abstract linear nonau-
tonomous parabolic equations. Rend. Sem. Mat. Univ. Padova, 78:47–107,
1987.

[4] P. Acquistapace and B. Terreni. Regularity properties of the evolution op-
erator for abstract linear parabolic equations. Differential Integral Equations,
5(5):1151–1184, 1992.

[5] R.A. Adams and J.J.F. Fournier. Sobolev spaces, volume 140 of Pure and Ap-
plied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, sec-
ond edition, 2003.

[6] S. Agmon, A. Douglis, and L. Nirenberg. Estimates near the boundary for
solutions of elliptic partial differential equations satisfying general bound-
ary conditions. II. Comm. Pure Appl. Math., 17:35–92, 1964.

[7] D. Albrecht, X.T. Duong, and A. McIntosh. Operator theory and harmonic
analysis. In Instructional Workshop on Analysis and Geometry, Part III (Canberra,
1995), volume 34 of Proc. Centre Math. Appl. Austral. Nat. Univ., pages 77–136.
Austral. Nat. Univ., Canberra, 1996.

[8] H. Amann. Linear and quasilinear parabolic problems. Vol. I, Abstract linear the-
ory, volume 89 of Monographs in Mathematics. Birkhäuser Boston Inc., Boston,
MA, 1995.

[9] H. Amann. Maximal regularity for nonautonomous evolution equations.
Adv. Nonlinear Stud., 4(4):417–430, 2004.

[10] H. Amann. Maximal regularity and quasilinear parabolic boundary value
problems. In Recent advances in elliptic and parabolic problems, pages 1–17.
World Sci. Publ., Hackensack, NJ, 2005.

[11] H. Amann, M. Hieber, and G. Simonett. Bounded H∞-calculus for elliptic
operators. Differential Integral Equations, 7(3-4):613–653, 1994.

165



166 REFERENCES

[12] K.F. Andersen and R.T. John. Weighted inequalities for vector-valued maxi-
mal functions and singular integrals. Studia Math., 69(1):19–31, 1980/81.

[13] W. Arendt, R. Chill, S. Fornaro, and C. Poupaud. Lp -maximal regularity for
non-autonomous evolution equations. J. Differential Equations, 237(1):1–26,
2007.

[14] W. Arendt, D. Dier, H. Laasri, and E.M. Ouhabaz. Maximal regularity for
evolution equations governed by non-autonomous forms. Adv. Differential
Equations, 19(11-12):1043–1066, 2014.

[15] W. Arendt and A. F. M. ter Elst. Gaussian estimates for second order elliptic
operators with boundary conditions. J. Operator Theory, 38(1):87–130, 1997.

[16] D. G. Aronson. Non-negative solutions of linear parabolic equations. Ann.
Scuola Norm. Sup. Pisa (3), 22:607–694, 1968.

[17] P. Auscher, A. McIntosh, and A. Nahmod. Holomorphic functional calculi
of operators, quadratic estimates and interpolation. Indiana Univ. Math. J.,
46(2):375–403, 1997.

[18] J. Bastero, M. Milman, and F.J. Ruiz. On the connection between weighted
norm inequalities, commutators and real interpolation. Mem. Amer. Math.
Soc., 154(731):viii+80, 2001.

[19] J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag,
Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften,
No. 223.

[20] O.V. Besov, V.P. Il′in, and S.M. Nikol′skiı̆. Integral representations of functions
and imbedding theorems. Vol. II. V. H. Winston & Sons, Washington, D.C.;
Halsted Press [John Wiley & Sons], New York-Toronto, Ont.-London, 1979.
Scripta Series in Mathematics, Edited by Mitchell H. Taibleson.

[21] J. Bourgain. Extension of a result of Benedek, Calderón and Panzone. Ark.
Mat., 22(1):91–95, 1984.

[22] J. Bourgain. Vector valued singular integrals and the H 1-BMO duality. In
Israel seminar on geometrical aspects of functional analysis (1983/84), pages XVI,
23. Tel Aviv Univ., Tel Aviv, 1984.

[23] Yu.A. Brudnyı̆ and N.Ya. Krugljak. Interpolation functors and interpolation
spaces. Vol. I, volume 47 of North-Holland Mathematical Library. North-
Holland Publishing Co., Amsterdam, 1991.

[24] H.Q. Bui. Weighted Besov and Triebel spaces: interpolation by the real
method. Hiroshima Math. J., 12(3):581–605, 1982.



REFERENCES 167

[25] A.-P. Calderón. Intermediate spaces and interpolation, the complex method.
Studia Math., 24:113–190, 1964.

[26] R. Chill and A. Fiorenza. Singular integral operators with operator-valued
kernels, and extrapolation of maximal regularity into rearrangement invari-
ant banach function spaces. J. Evol. Equ., pages 1–34, 2014.

[27] Ph. Clément, B. de Pagter, F.A. Sukochev, and H. Witvliet. Schauder decom-
positions and multiplier theorems. Studia Math., 138(2):135–163, 2000.

[28] Ph. Clément and S. Li. Abstract parabolic quasilinear equations and ap-
plication to a groundwater flow problem. Adv. Math. Sci. Appl., 3(Special
Issue):17–32, 1993-1994.

[29] Ph. Clément and J. Prüss. Global existence for a semilinear parabolic
Volterra equation. Math. Z., 209(1):17–26, 1992.

[30] T. Coulhon and D. Lamberton. Régularité Lp pour les équations d’évolution.
In Séminaire d’Analyse Fonctionelle 1984/1985, volume 26 of Publ. Math. Univ.
Paris VII, pages 155–165. Univ. Paris VII, Paris, 1986.

[31] M. Cowling, I. Doust, A. McIntosh, and A. Yagi. Banach space operators with
a bounded H∞ functional calculus. J. Austral. Math. Soc. Ser. A, 60(1):51–89,
1996.

[32] D.V. Cruz-Uribe, J.M. Martell, and C. Pérez. Weights, extrapolation and the
theory of Rubio de Francia, volume 215 of Operator Theory: Advances and Appli-
cations. Birkhäuser/Springer Basel AG, Basel, 2011.

[33] G. Da Prato and P. Grisvard. Sommes d’opérateurs linéaires et équations
différentielles opérationnelles. J. Math. Pures Appl. (9), 54(3):305–387, 1975.

[34] G. David and J.-L. Journé. A boundedness criterion for generalized
Calderón-Zygmund operators. Ann. of Math. (2), 120(2):371–397, 1984.

[35] G. David, J.-L. Journé, and S. Semmes. Opérateurs de Calderón-Zygmund,
fonctions para-accrétives et interpolation. Rev. Mat. Iberoamericana, 1(4):1–56,
1985.

[36] E. B. Davies. Heat kernels and spectral theory, volume 92 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 1990.

[37] L. de Simon. Un’applicazione della teoria degli integrali singolari allo studio
delle equazioni differenziali lineari astratte del primo ordine. Rend. Sem.
Mat. Univ. Padova, 34:205–223, 1964.



168 REFERENCES

[38] R. Denk, G. Dore, M. Hieber, J. Prüss, and A. Venni. New thoughts on old
results of R. T. Seeley. Math. Ann., 328(4):545–583, 2004.

[39] R. Denk, M. Geissert, M. Hieber, J. Saal, and O. Sawada. The spin-coating
process: analysis of the free boundary value problem. Comm. Partial Differ-
ential Equations, 36(7):1145–1192, 2011.

[40] R. Denk, M. Hieber, and J. Prüss. R-boundedness, Fourier multipliers and
problems of elliptic and parabolic type. Mem. Amer. Math. Soc., 166(788),
2003.

[41] R. Denk, M. Hieber, and J. Prüss. Optimal Lp -Lq -estimates for parabolic
boundary value problems with inhomogeneous data. Math. Z., 257(1):193–
224, 2007.

[42] R. Denk, J. Prüss, and R. Zacher. Maximal Lp -regularity of parabolic
problems with boundary dynamics of relaxation type. J. Funct. Anal.,
255(11):3149–3187, 2008.

[43] D. Dier. Non-autonomous maximal regularity for forms of bounded varia-
tion. J. Math. Anal. Appl., 425(1):33–54, 2015.

[44] D. Dier and R. Zacher. Non-autonomous maximal regularity in Hilbert
spaces. Online first in J. Evol. Equ., 2016.

[45] J. Diestel, H. Jarchow, and A. Tonge. Absolutely summing operators, volume 43
of Cambridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1995.

[46] J. Diestel and J.J. Uhl, Jr. Vector measures. American Mathematical Society,
Providence, R.I., 1977. With a foreword by B. J. Pettis, Mathematical Surveys,
No. 15.

[47] J. Dieudonné. Foundations of modern analysis. Academic Press, New York-
London, 1969. Enlarged and corrected printing, Pure and Applied Mathe-
matics, Vol. 10-I.

[48] H. Dong and C. Gallarati. Higher order elliptic and parabolic equations with
VMO assumptions and general boundary conditions. Submitted. See arxiv
preprint server, https://arxiv.org/abs/1702.03254, 2017.

[49] H. Dong and D. Kim. Parabolic and elliptic systems with VMO coefficients.
Methods Appl. Anal., 16(3):365–388, 2009.

[50] H. Dong and D. Kim. Higher order elliptic and parabolic systems with vari-
ably partially BMO coefficients in regular and irregular domains. J. Funct.
Anal., 261(11):3279–3327, 2011.



REFERENCES 169

[51] H. Dong and D. Kim. On the Lp -solvability of higher order parabolic and
elliptic systems with BMO coefficients. Arch. Ration. Mech. Anal., 199(3):889–
941, 2011.

[52] H. Dong and D. Kim. On Lp -estimates for elliptic and parabolic equations
with Ap weights. To appear in Trans. Amer. Math. Soc., 2017.

[53] G. Dore. Maximal regularity in Lp spaces for an abstract Cauchy problem.
Adv. Differential Equations, 5(1-3):293–322, 2000.

[54] G. Dore and A. Venni. On the closedness of the sum of two closed operators.
Math. Z., 196(2):189–201, 1987.

[55] J. Duoandikoetxea. Fourier analysis, volume 29 of Graduate Studies in Mathe-
matics. American Mathematical Society, Providence, RI, 2001.

[56] X.T. Duong and G. Simonett. H∞-calculus for elliptic operators with nons-
mooth coefficients. Differential Integral Equations, 10(2):201–217, 1997.

[57] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equa-
tions, volume 194 of Graduate Texts in Mathematics. Springer-Verlag, New
York, 2000.

[58] S. Fackler. The Kalton-Lancien theorem revisited: maximal regularity does
not extrapolate. J. Funct. Anal., 266(1):121–138, 2014.

[59] S. Fackler. J.-L. Lions’ problem concerning maximal regularity of equations
governed by non-autonomous forms. To appear in Ann. Inst. H. Poincaré Anal.
Non Linéaire, 2016.

[60] A. Friedman. Partial differential equations of parabolic type. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 1964.

[61] A. Fröhlich. The Stokes operator in weighted Lq -spaces. II. Weighted resol-
vent estimates and maximal Lp -regularity. Math. Ann., 339(2):287–316, 2007.

[62] C. Gallarati, E. Lorist, and M.C. Veraar. On the `s-boundedness of a family
of integral operators. Rev. Mat. Iberoam., 32(4):1277–1294, 2016.

[63] C. Gallarati and M.C. Veraar. Evolution families and maximal regularity for
systems of parabolic equations. To appear in Adv. Differential Equations, 2016.

[64] C. Gallarati and M.C. Veraar. Maximal regularity for non-autonomous equa-
tions with measurable dependence on time. Online first in Potential Analysis,
2016.



170 REFERENCES

[65] J. García-Cuerva and J.L. Rubio de Francia. Weighted norm inequalities and re-
lated topics, volume 116 of North-Holland Mathematics Studies. North-Holland
Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical
Notes], 104.

[66] M. Geissert, M. Hess, M. Hieber, C. Schwarz, and K. Stavrakidis. Maximal
Lp -Lq -estimates for the Stokes equation: a short proof of Solonnikov’s theo-
rem. J. Math. Fluid Mech., 12(1):47–60, 2010.

[67] M. Giaquinta and L. Martinazzi. An introduction to the regularity theory for el-
liptic systems, harmonic maps and minimal graphs, volume 11 of Appunti. Scuola
Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore
di Pisa (New Series)]. Edizioni della Normale, Pisa, second edition, 2012.

[68] D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second
order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the
1998 edition.

[69] M. Girardi and L. Weis. Criteria for R-boundedness of operator families. In
Evolution equations, volume 234 of Lecture Notes in Pure and Appl. Math., pages
203–221. Dekker, New York, 2003.

[70] L. Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in Mathe-
matics. Springer, New York, second edition, 2008.

[71] L. Grafakos. Modern Fourier analysis, volume 250 of Graduate Texts in Mathe-
matics. Springer, New York, second edition, 2009.

[72] P. Grisvard. Espaces intermédiaires entre espaces de Sobolev avec poids.
Ann. Scuola Norm. Sup. Pisa (3), 17:255–296, 1963.

[73] B. H. Haak and El-M. Ouhabaz. Maximal regularity for non-autonomous
evolution equations. Math. Ann., 363(3-4):1117–1145, 2015.

[74] B.H. Haak and M. Haase. Square function estimates and functional calculi.
arXiv preprint arXiv:1311.0453, 2013.

[75] B.H. Haak and P.C. Kunstmann. Admissibility of unbounded operators and
wellposedness of linear systems in Banach spaces. Integral Equations Operator
Theory, 55(4):497–533, 2006.

[76] M. Haase. The functional calculus for sectorial operators, volume 169 of Operator
Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2006.

[77] R. Haller, H. Heck, and M. Hieber. Muckenhoupt weights and maximal Lp -
regularity. Arch. Math. (Basel), 81(4):422–430, 2003.



REFERENCES 171

[78] R. Haller-Dintelmann and J. Rehberg. Maximal parabolic regularity for
divergence operators including mixed boundary conditions. J. Differential
Equations, 247(5):1354–1396, 2009.

[79] T.S. Hänninen and T. Hytönen. The A2 theorem and the local oscillation de-
composition for Banach space valued functions. J. Operator Theory, 72(1):193–
218, 2014.

[80] G.H. Hardy, J.E. Littlewood, and G. Pólya. Inequalities. Cambridge Mathe-
matical Library. Cambridge University Press, Cambridge, 1988. Reprint of
the 1952 edition.

[81] H. Heck and M. Hieber. Maximal Lp -regularity for elliptic operators with
VMO-coefficients. J. Evol. Equ., 3(2):332–359, 2003.

[82] K. Hoffman. Banach spaces of analytic functions. Dover Publications, Inc., New
York, 1988. Reprint of the 1962 original.

[83] T. Hytönen. An operator-valued T b theorem. J. Funct. Anal., 234(2):420–463,
2006.

[84] T. Hytönen. The vector-valued nonhomogeneous Tb theorem. Int. Math. Res.
Not. IMRN, (2):451–511, 2014.

[85] T. Hytönen, J.M.A.M. van Neerven, M.C. Veraar, and L. Weis. Analysis in
Banach Spaces. Volume II. Probabilistic Methods and Operator Theory. In prepa-
ration.

[86] T. Hytönen, J.M.A.M. van Neerven, M.C. Veraar, and L. Weis. Analysis in
Banach spaces. Volume I. Martingales and Littlewood-Paley theory. Ergebnisse
der Mathematik und ihrer Grenzgebiete, Springer-Verlag, 2016.

[87] T. Hytönen and M.C. Veraar. R-boundedness of smooth operator-valued
functions. Integral Equations Operator Theory, 63(3):373–402, 2009.

[88] T. Hytönen and L. Weis. A T 1 theorem for integral transformations with
operator-valued kernel. J. Reine Angew. Math., 599:155–200, 2006.

[89] T. Hytönen and L. Weis. Singular convolution integrals with operator-
valued kernel. Math. Z., 255(2):393–425, 2007.
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SUMMARY

The subject of this thesis is the study of maximal Lp -regularity of the Cauchy prob-
lem

u′(t )+ A(t )u(t ) = f (t ), t ∈ (0,T ),

u(0) = x.
(1)

We assume (A(t ))t∈(0,T ) to be a family of closed operators on a Banach space X0,
with constant domain D(A(t )) = X1 for every t ∈ (0,T ). Maximal Lp -regularity
means that for all f ∈ Lp (0,T ; X0), the solution of the evolution problem (1) is
such that u′, Au are both in Lp (0,T ; X0). In the autonomous setting, using a new
vector-valued Mihlin multiplier theorem, Lutz Weis in [152] characterize the max-
imal Lp -regularity property of an operator in terms of R-sectoriality. In the non-
autonomous setting, maximal Lp -regularity holds if t 7→ A(t ) is assumed to be
continuous and each operator A(t0) has maximal regularity for t0 ∈ (0,T ) fixed, as
showed by Prüss and Schnaubelt in [128]. The disadvantage is that continuity in
time is not a natural assumption in the Lp -setting.

In the first part of the thesis, we introduce a new operator-theoretic approach to
maximal Lp -regularity in the case the dependence t 7→ A(t ) is just measurable. This
approach is based on the Lp -boundedness of a new class of vector-valued singular
integrals of non-convolution type and the R-boundedness of a family of integral
operators. In our main result we consider the more general case of maximal Lp -
regularity on R and weighted Lp -spaces, and we also give results for the initial
value problems. We then extend the result of Clément and Li [28] and Köhne,
Prüss and Wilke [97] on quasilinear equations to the time-dependent setting.

The abstract method is then applied to concrete parabolic PDEs. As a first ap-
plication, we show that an elliptic differential operator of even order, with coeffi-
cients measurable in the time variable and continuous in the space variables, en-
joys maximal Lp -regularity on Lq (Rd ), for every p, q ∈ (1,∞). The proof is an appli-
cation of our abstract result, combined with standard PDE techniques as the local-
ization procedure and the method of continuity. This gives an alternative approach
to several PDE results obtained by Krylov, Dong and Kim in [51, 96, 101, 102],
where only the cases p = q or q ≤ p were considered.

In order to apply the abstract result in the space-independent setting, we need
a sufficient condition for the R-boundedness of a certain family of integral opera-
tors. Such a condition is obtained, in the generalized setting of `s-boundedness, in
the first part of this work.

In the second part, we apply the abstract method to systems of elliptic opera-
tors. For this, we construct the evolution family S(t , s) on Lq (Rd ,CN ) generated by
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A(t ) in the case the coefficients are space-independent.
The last part of this thesis is devoted to the study of maximal Lp -regularity

on Lq (Rd+) of an elliptic operator A with coefficients in the class of VMO (Vanish-
ing Mean Oscillation) in the time and the space variables, and Lopatinskii-Shapiro
assumptions on the boundary. The proof is based on a different approach, in par-
ticular it is an application of the results obtained by Denk, Hieber and Prüss in
[40, 41], and an extension of the techniques of Dong and Kim [51, 52].



SAMENVATTING

Het onderwerp van dit proefschrift is de studie van maximale Lp -regulariteit van
het Cauchy probleem

u′(t )+ A(t )u(t ) = f (t ), t ∈ (0,T ),

u(0) = x.
(1)

We nemen aan dat (A(t ))t∈(0,T ) een familie is van gesloten operatoren op een Ba-
nach ruimte X0, met constant domein D(A(t )) = X1 voor elke t ∈ (0,T ). Maximale
Lp -regulariteit betekent dat voor alle f ∈ Lp (0,T ; X0), de oplossing van het evolu-
tieprobleem (1) zodanig is dat u, Au beide in Lp (0,T ; X0) zijn. In de niet-autonome
setting, geldt maximale Lp -regulariteit als t 7→ A(t ) continu is en elke operator A(t0)

maximale regulariteit heeft voor t0 ∈ (0,T ) vast, zoals aangetoond door Prüss and
Schnaubelt in [128]. Het nadeel is dat continuïteit in tijd niet een natuurlijke aan-
name is in de Lp -setting.

In het eerste deel van dit proefschrift introduceren we een nieuwe operatorthe-
oretische benadering voor maximale Lp -regulariteit in het geval de afhankelijkhaid
t 7→ A(t ) slechts meetbaar is. Deze benadering is gebaseerd op de Lp -begrensdheid
van een nieuwe klasse van vectorwaardige singuliere integraloperatoren van niet-
convolutietype en de R-begrensdheid van een familie van integraaloperatoren.
In ons hoofdresultaat beschouwen we het meer algemene geval van maximale Lp -
regulariteit op R en gewogen Lp -ruimten, and we geven ook resultaten voor begin-
waardeproblemen. We breiden dan de resultaten van Clément en Li [28] en Köhne,
Prüss en Wilke [97] over quasilineaire vergelijkingen uit naar de tijdsafhankelijke
setting.

De abstracte methode wordt vervolgens toegepast op concrete parabolische
PDVen. Als een eerste toepassing laten we zien dat een elliptische operator van
even grod, met coefficienten meetbaar in de tijdsvariabele en continu in de ruim-
tevariabelen, maximale Lp -regulariteit op Lq (Rd ) heeft, voor elke p, q ∈ (1,∞). Het
bewijs is een toepassing van ons abstracte resultaat, gecombineerd met standaard
PDV-technieken als de localisatieprocedure en de methode van continuiteit. Dit
geeft een alternatieve benadering voor verscheidene resultaten voor PDVen ver-
kregen door Krylov, Dong en Kim in [51, 96, 101, 102], waar enkel de gevallen
p = q of q ≤ p worden beschouwd.

Om het abstracte resultaat toe te passen in de ruimteonafhankelijke setting,
hebben we een voldoende voorwarde nodig voor de R-begrensdheid van een ze-
kere familie van integraaloperatoren. Een dergelijke voorwaarde wordt ook ver-
kregen, in de veralgemeniseerde setting van `s-begrensdheid, in het eerste deel
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van dit werk.
In het tweede gedeelte, passen we de abstracte methode toe op systemen van

elliptische operatoren. Hiervoor construeren we de evaluatiefamilie S(t , s) op Lq (Rd ,

CN ) voortgebracht door A(t ) in het geval dat de coefficiënten ruimteonafhankelijk
zijn.

Het laaste gedaalte van dit proefschrift wordt dat gewijd aan de studie van
maximale Lp -regulariteit op Lq (Rd+) van een elliptische operator A met coefficiën-
ten in de klasse van VMO (Vanishing Mean Oscillation) in de tijds- en ruimteva-
riabelen, en Lopatinskii-Shapiro aannamen op de rand. Het bewijs is gebaseerd
op een andere benadering, in het bijzonder is het een toepassing van de resulta-
ten verkregen door Denk, Hieber en Prüss in [40, 41] en een uitbreiding van de
technieken van Dong en Kim [51, 52].
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