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Objectives

The Increasing activity worldwide in many areas of marine engineering has brought In the
necessity of new ideas and methods which can effectively provide accurate numerical solutions
In affordable times.

The objectives of the Marine 2011 conference are to present and discuss state of the art,
mathematicai modeis,numerical methods and computational techniques for solving problems in
the field of marine engineering. Emphasis will be given to showing the potential of new
computational methods for solving practical marine engineering problems of industrial interest.

The first edition of these series of conferences was held on 27-29 June 2005 in Oslo, Norway,
the second one on 5-7 June 2007 in Barcelona, Spain and the third one on 15-17 June 2009 in
Trondheim, Norway. These editions attracted some 100 participants.

The conference goal is to make a step forward in the formulation and computational soiuticn of
marine engineering problems accounting for all the complex couplings invoived in the physical
description of the problems.
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Abstract. In this paper the use of an absorbing boundary condition (ABC) is inves-
tigated for the numerical simulation of regular and irregular waves in three dimensional
computational domains where Navier-Stokes equations describe the motion of the fluid.
The numerical implementation of the ABC using a staggered grid arrangement is explained
in detail. All of the numerical modifications are incorporated into the CFD simulation
tool ComFLOW which employs a volume-of-fluid (VOF) method. Numerical examples
are provided to demonstrate the performance of the ABC. The reflection character of the
ABC is observed and the results of the computations are discussed and compared.

i INTRODUCTION

The CFD simulation of ocean waves remains a challenge even today. Although highly
capable numerical features are at the disposal of researchers, particular aspects ofnumer-
ically solving wave problems in unbounded domains cause various bottlenecks. Typically
the phenomena of interest are local but embedded in a vast spatial domain. At this point,
the infinite domain, although sometimes it may not be truly unbounded, is truncated via
artificial boundaries, thus introducing a finite computational domain and a residual infi-
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nite domain. One of the aforementioned bottlenecks is developing a robust and efficient
boundary condition to be imposed on these artificial boundaries.

The Sommerfeld boundary condition [1] was the cornerstone of non-reflecting boundary
conditions. Engquist and Majda [2] presented a method to develop the first hierarchy
of absorbing boundary conditions. Higdon [3] generalized this theory and showed that
Engquist and Majda boundary condition is a subset of the Higdon operators. Since high
order boundary operators include high order derivatives both in time and space, Collino
and Joly [4] introduced the use of auxiliary variables to circumvent this difficulty. This
idea has found widespread interest and has been used by Grote and Keller [5], Givoli and
Neta [6], and Hagstrom and Warburton [7] among others. For a general review regarding
high order local non-reflecting boundary conditions, see [8].

In this paper we present the derivation of an absorbing boundary condition (ABC)
[9, 10] along with the numerical implementation of the analytical operator. The ABC is
applied in three dimensional computational domains where a regular Stokes wave and an
irregular JONSWAP spectrum wave are traveling under an angle of incidence. Here we
focus our attention specifically on the reflection behavior of the ABC for the duration of
the simulations. We end the paper with some concluding remarks.

2 STATEMENT OF THE PROBLEM

If we consider water as a homogeneous, incompressible, viscous fluid, we can describe
fluid motion in a three-dimensional domain Q (see Fig. 1) by the continuity equation and
the Navier-Stokes equations in a conservative form as,

fu.n dl' = 0, (1)

uT.n df = - pn - Vu.n) df + F dQ. (2)

In (1) and (2), Q denotes a volume with boundary f and normal vector n, u = (n,v,w)T
is the flow velocity, p is the fluid density, p is the pressure, is the dynamic viscosity, V
is the gradient operator and F = (Fr, F, FZ)T represents external body forces acting on
the fluid such as gravity.

To solve the above equations in Q, we impose four types of boundary conditions: a free
surface, a wall, an inflow and an absorbing boundary condition. On the west and south
boundaries l'w and Fs the incoming wave is prescribed. The incoming wave propagating
at an angle 0 (0 < O <r/2) with the x-axis can be simulated by using either a regular
wave such as Airy wave or Stokes wave, or an irregular wave such as a superposition of
Airy waves. In either case, at every time step starting from t = O free surface elevations,
values of the velocity components and the pressure are provided on l'w and l'sS At the
bottom FB we specify a no-slip no-penetration condition which is simply the Dirichlet
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(b)

Figure 1: A computational domain with FN and FE as artificial boundaries.

condition, i.e. u = O. At the free surface FFS resulting from the continuity of normal and
tangential stresses the following conditions are implemented for the velocity components
and the pressure,

(a au
at +)O.

p + 2i = Po + UK,
an

where n7, and t correspond to the normal and tangential component of the velocity,
respectively, Po is the atmospheric pressure, a is the surface tension and t is the total
curvature of the free surface. If we describe the position of the free surface by s (x, t) = O,
the displacement of the free surface can be computed via,

Ds 3s=+(u.V)s=O. (5)

We now introduce two artificial boundaries FN and FE, see Fig. 1. To complete the
statement of the problem we shall employ an ABC on these artificial boundaries. In this
study we will restrict ourselves for a discussion about the behavior of an ABC in wave
simulations where the Navier-Stokes are implemented as the governing equations.

3 ABSORBING BOUNDARY CONDITION (ABC)
Consider the following boundary operator on FE:

/ acosa+c)=O on FE. (6)

Higdon [3] showed that (6) is perfectly absorbing if a is equal to the angle of incidence
(see Fig. i(a)) for a wave described by the wave or velocity potential 1' and traveling

with phase speed e. Such a wave which satisfies the Laplace equation has the form

r1

3
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(C1e + C2e) sin (kxcos8 + kysinü - wt + ) , (7)

where k is the wave number, w is the wave frequency and b is its phase. The unknowns
C1 and C2 can be determined via the boundary conditions imposed on FFS and FB.

If we replace c in (6) by the dispersion relation, namely,

The boundary condition (9) is perfectly absorbing for this single component but recall
that any solution to the Laplace equation for the velocity potential can be represented
by a linear superposition of waves which will be referred to as an irregniar wave here
and elsewhere. Each individual component of this irregular wave has its own frequency,
amplitude, wave number and phase. Therefore, the boundary condition (9) cannot anni-
hilate all these wave components simply because it is evidently designed for only one of

them.
The corresponding velocity potential of such an irregular wave can be written as

= (Cieiz + C2ez) sin (kx cos 8 + ky sinG - wt + j), (10)

i=1

where N denotes the number of modes or components. All flow variables can be calculated
by taking derivatives of (10). At this point a question crosses one's mind: Is it possible
to develop a boundary condition which has the feature of allowing reflection only to an
acceptable threshold for all the wave components which all together form an irregular
wave? One can deduce from the way this question is asked that we expect some amount
of reflection for such a boundary condition but it will be restricted within certain limits.

Now we introduce the following rational expression which approximates the dispersion
relation (8),

a0 + ai(kh)2
Ca gh

+ b1(kh)2'

where a proper choice of coefficients a0, a1 and b1 would lead to a close approximation
for the largest possible range of kh values, see Fig. 2. Thus, reflection from the boundary
will be minimized over that specific range of kh values.

4

c = /gh ¡tanh(kh)
(8)

V kh

we can rewrite (6) as

+
tanh(kh)D"\ (I)=0 (9)

kh Dx)
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Figure 2: Approximation of the dispersion relation.

As a result of strong effect of dispersion especially in deep water any wave behaves as
the sum of a large number of wave components, each traveling at its own dispersive phase
speed. To compute these local velocities we will exploit the exponential behavior of (7)
and (10) in z direction. After straightforward algebraic manipulations one can derive the
following relation

(12)

By employing (12) the dependency of the boundary condition on the wave number is
removed since it is calculated using the velocity potential 1.

Finally we substitute (12) and (11) in (6) to reach the final form of the absorbing
boundary condition to be applied on FE

52 5 32 ¿(1 + b1h2
)

+ gh (ao + a1h2 Dz2)
Dx
=0 on FE. (13)

Following the same method it is rather easy to write the ABC on FN.

3.1 NUMERICAL ALGORITHM
Since (1) and (2) are specified as the governing equations, the ABC given in (13) must

be interpreted in terms of the velocity components and pressure. As we have a staggered
grid arrangement for the solution variables inside volume cells (see Fig. 3), the location
of the outflow boundary must also be specified appropriately.

We resort to the linearized Bernoulli equation to replace the time derivative of the
velocity potential in (13), namely, &1/Dt Pb - gzp. Here and elsewhere the subscript
b indicates that the quantity is defined at the outflow boundary and the subscript p
indicates that the quantity is evaluated at the elevation of the pressure point within the
cell. The spatial derivatives of the velocity potential give the x and ycomponents
of velocity, i.e. D/Dx = Ub and D/Dy = Vb, while a further time derivative gives the
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(a) Stencil of the ABC in x - z domain. (b) Stencil of the ABC in x - y domain (top
view).

Figure 3: Discretization of the ABC in space

acceleration. Here we will use mirror cells adjacent to the outflow boundary to obtain Pb
by linear interpolation (see Fig. 3(a)), i.e. Pb,k = (P,k + pi,')/2 for k = 1, ...,K. The
shaded area contains the mirror cells which have indices (I + 1, k) for k = 1, ..., K. The
outflow boundary is situated at the same position along xdirection as u, therefore we
can impose the following, Ub = u1. Note that velocity components and pressure are
discretized at the same position on the boundary and also at the same instant in time.

Utilizing the momentum equation (2), the velocity component at the new time step
can be written in terms of the pressure pfl+l and the intermediate velocity ui which

includes convective and diffusive effects [1 1. This modification is necessary to easily plug
the ABC into the pressure Poisson equation which is solved inside the computational
domain for the pressure at the new time step p'. As a result the ABC has the same
temporal character as the the pressure Poisson equation. Consequently, we obtain the
discrete form of the ABC to be prescribed on FE as follows

[c+

[cosa + aogf
At

+ (bih2 cosa + alh2\/gh
At

) ]2 Ax(I+1,k) 2 x(I+1,k) Z

osa_aoh At
+ (bih2cosa_alhVgfl At

)
O2]+i

(14)
2 Ax(I+l,k) 2 Ax(I+l,k) '

= (aogh + aih2gh) k - 9Zp(I+1,k) cosa on FE,

where

Ax(I+1,k) = x(I+1,k) - x(I,k) . (15)

Inflow (Ç) outflow (r0) I+1

l-1 I1 1+1i
Du
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Following the same steps, one can easily derive the ABC on FN. The discrete ABCs on FE
and FN are equations for the pressure values in the mirror cells outside the domain, see
Fig. 3(b). The stencil for is plotted by a double dashed line in Fig. 3(a). Observing
Figs. 3(a) and 3(b) we realize that a typical stencil for a pressure point encompasses 9
flow variables 6 of which reside in the computational domain whereas 3 can be associated
with the treatment of the boundary condition.

4 RESULTS AND DISCUSSIONS
We compare the results by introducing three error measures,

e(i,j) = 7]n(i,j) - llr(i,j),

I J

>(7ln(,j) i7(i,j))2,
i=1 j=1

je = max max { (i,j) -Ij=1,2,...,J

where ij is the free surface elevation. Here the subscript n indicates the numerical results
and the subscript r indicates the reference solution. For the regular wave simulation the
reference solution is the analytical results arising from the Stokes wave theory. For the
irregular wave simulation the reference solution is obtained by solving the problem in a
larger domain with the same discretization in space and time.

The pointwise error e (i, j) provides information at particular time instances through-
out the simulation. In addition, it demonstrates the exact location of the error in the
computational domain which is not the case for the other error measures. The common
property of the 2-norm !e2 and the infinity norm is that they display a complete
picture of the error behavior in a single plot. More particularly, we can examine the
length of the error vector using e2 whereas Ìlej captures the maximum value in the
error vector which is useful especially to check if a certain limit for the error is breached.

4.1 Results of the regular wave simulation
A fully developed fifth-order Stokes wave is generated and initialized everywhere in

the computational domain at t = O as depicted in Fig. 4. Since we know the exact
values of the solution variables for a fifth-order Stokes wave [12], we can compare the
numerical results with the theoretical results. The fifth-order Stokes wave with wave
height H = 9m, wave period T = lOs, wave length A = 161m, phase speed e = 16.lm/s is
simulated by performing 7143 time-steps at Lt = O.007s. The length and the width of the
computational domain is the same, l = li,, = 340m, and its depth is l, = 179m with the
water depth of h = 170m. The grid resolution is Lx x x /z = 2.26m x 2.26m x 0.95m
with 6% vertical stretching at the free surface.

7
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Figure 4: Initial condition for the simulation of the fifth-order Stokes wave. Angle of incidence û 45°.
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Figure 5: The absolute pointwise errors e (i, 3) between the numerical and theoretical results for the
simulation of the fifth-order Stokes wave. Errors are shown at times: t = 8.589s, t = 16.667s, t = 25.256s,
t = 33.334s, t = 42.427s and t = 49.994s.

Fig. 5 shows the absolute pointwise errors e (i, J) corresponding to times t = 8.589s,
t = 16.667s, t = 25.256s. t = 33.334s, t = 42.427s and t = 49.994s. The amplitudes of
the maximum errors increase in time although not substantially. The reflected waves from
the outflow boundaries travel back and perturb the solution in the entire computational
domain. Fig. 6 demonstrates the 2-norm eM2 and the infinity norm both of which
are normalized by the wave height. Observing Fig. 5 we notice that large errors are very
local whereas in the major part of the domain we have relatively small errors. This is
consistent with the fact that e2 has an oscillating character below the maximum value

= 0.559 = 10.607 t = 25,256
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of 2.5% throughout 5 wave periods. Evidently, shows a similar behavior but it
oscillates generally between the values of 9% and 4%. For the maximum values of
we believe we are encountering the effects of reconstruction of the free surface in the VOF
algorithm.

1k' 112
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Figure 6: The relative 2-norm kil2 and the infinity norm jlell in space as a function of time for the
regular wave simulation. Both error measures are normalized by the wave height H = 9m.

4.2 Results of the irregular wave simulation

We apply the discrete ABCs to a problem in a three dimensional computational domain
where an irregular wave is traveling under an angle of incidence, O = 450V The initial

k

r,

60

r'

(a) The initial condition for the irregular wave (b) Large domain 1L is considered
simulation. as the reference domain (top view).

Figure 7: The setup for the irregular wave simulations.

condition for the simulation of the irregular wave with 537 Fourier components is shown

9
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in Fig. 7(a). The domain length in x- and y-direction is the same, l = = 70m
whereas l = 8m with the water depth h = 5m. The grid resolution is Lx x ¿y x =
0.28rn. x 0.28m x 0.23m. A JONSWAP spectrum wave with L,. = lOs and H = 1.Om is
simulated by performing 3964 time-steps at Lt = 0.007s.

As mentioned before, we compute the reference solution by solving the problem iii a
large domain L which is twice the size of the small domain 2s in in x- and y-direction,
see Fig. 7(b) for the illustration of the problem. For each time step, the computational
solution in s is compared to the reference solution in L- In both 2s and L the
numerical parameters are the same. Since the flow behavior is highly nonlinear, the linear
theory fails to produce correct results under the current circumstances. Therefore, it is
not possible to make a comparison with the analytical solution for the irregular wave
simulation.

t 4504 S
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0 008
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Figure 8: The absolute pointwise errors e (i, j) between the numerical results in large and small domai:ìs

for the irregular wave simulation. Errors are shown at times: t = 4.504s, t = 9.008s, t = 13.504s,
t = 18.008s, t = 23.008s and t = 27.752s.

In Fig. 8 we demonstrate the absolute pointwise errors e (i, j) corresponding to times
t = 4.504s, t = 9.008s, t = 13.504s, t = 18.008s, t = 23.008s and t = 27.752s. Compared
to the regular wave simulation, large errors cover wider parts in the computational domain,
thus e9 has higher values, see Fig. 9. Grid resolution is more significant in irregular
wave simulations because short wave components may not be represented well on the grid.
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This is certainly undesirable as these components contribute to the amount of reflection.
The characters of and ejj2 are similar as they increase in time (Fig. 9). The error
norms show an exponential behavior contrary to the regular wave calculation in which
they are oscillatory. This is a result of the absence of a certain beating pattern in irregular
waves. Moreover, it should be mentioned that some amount of error is also present in the
reference solution although QL is relatively large. Overall, we find deviations of less than
9% for nearly three wave periods.

Figure 9: The relative 2-norm IleH2 and the infinity norm le in space as a function of time for the
irregular wave simulation. Both error measures are normalized by the wave height II 1.Orn.

5 CONCLUDING REMARKS

In this paper we have presented the derivation and the numerical implementation of
an ABC using the computational framework of the CFD simulation tool ComFLOW.
The ABC is applied in three dimensional free surface simulations of regular and irregular
waves propagating under an angle of incidence. For this purpose, a fifth-order Stokes
wave and a JONSWAP spectrum wave are generated at the inflow boundaries of the
computational domains. The results of the numerical computations are compared to
various reference solutions to provide sufficient information regarding the performance
of the proposed boundary condition. Additionally, the reflection character of the ABC
is monitored throughout the calculations and different error measures are exploited to
deliver a comprehensive picture for the error behavior.

Overall, the ABC demonstrated a good performance. In both regular and irregular
wave simulations we notice that reflections are less than acceptable thresholds. The
numerical results are in reasonable agreement with the reference solutions. Particularly
for the irregular wave simulation it would be insightful to observe error behaviors for a
longer duration of simulation which will be the subject of the future work.

11
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