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Abstract

Stochastic resonance (SR) is a phenomenon where the performance of a nonlinear system
subjected to noise is better than it is without noise. This phenomenon can be found both in
natural and artificial systems, especially in threshold-based systems such as comparators or a
population of neurons. As noise always exists and interacts with the system, it is advantageous
to design a system that purposefully uses SR to boost its performance.

One possible use of SR is in the signal reconstruction. In this application, noise is added to
the input signal and is processed by a comparator to produce a 1-bit output signal. This
output can be averaged to recover the amplified input signal.

In this thesis, three challenges regarding the use of SR in signal reconstruction are addressed.
Firstly, to use SR not only to reconstruct the original signal, but also to implement mathe-
matical operators, specifically a multiplier and an adder, that take two or more input signals.
Secondly, to define the relevant metric(s) that can be used to measure the performance of the
operators. Lastly, to build a system out of the proposed SR-based operators.

The SR-based mathematical operators are implemented on the system level with a comparator
as its fundamental building block. To analyze the behavior of the operators, formulas for noise
and distortion power are derived. MATLAB simulation is then used to verify the theoretical
analysis. Finally, these SR-based mathematical operators are used to build a Teager Energy
Operator (TEO) for action potentials (APs) detection.

An SR-based multiplier and adder can be implemented with the use of an XNOR logic gate
and a binary half adder, respectively. The theoretical formulas are successful in predicting
the noise and distortion behavior of the operators. In conclusion, it is possible to implement
mathematical operators, specifically multipliers and adders, which use noise to boost their
performance. The noise and distortion behavior of these operators can be predicted math-
ematically. Signal-to-noise ratio (SNR) and signal-to-noise-and-distortion ratio (SNDR) are
used to measure the performance of the operators. Systems, specifically a TEO, can be built
using the SR-based operators.
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“Rather than make them our enemies, why not embrace them?”





Chapter 1

Introduction

Noise has been mostly considered as something undesirable in the world of signal processing.
When mixed with a signal, it is thought to obstruct the extraction of information contained
in the signal. However, the occurrence of a phenomenon called stochastic resonance shows
that the presence of noise can improve the performance of a system.

1-1 Background

Stochastic resonance (SR) is a phenomenon where the contribution of noise to a nonlinear
system can improve its performance. This phenomenon is found in various systems, both
natural and artificial. Inspired by SR in neurons, where noise is used to improve the in-
formation transmission in neural circuits, various attempts to do signal reconstruction in
threshold-based systems were made. Research found that by exploiting this phenomenon,
the quality of information going through a “poor” system can be boosted. In the field of
electronics engineering, this is an advantage in itself since these threshold-based systems can
act as both an amplifier and a 1-bit analog-to-digital converter (ADC). Figure 1-1 shows the
block diagram of an SR-based amplifier. The idea is to add noise (η) to the input signal (x)
and process it with a threshold-based device, which implements a signum function, such as a
clocked comparator to produce a 1-bit output signal (yo). This output can then be averaged
to recover the amplified input signal (yout).

−

+
yo

θ

fs
+

+x

η

〈 · 〉 yout

Figure 1-1: Block diagram of SR-based amplifier.
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2 Introduction

1-2 Research Questions

As mentioned in Section 1-1, SR can be used to improve the quality of signal information
going through a system. This leads to the question whether the preserved signal information
can be manipulated while still producing a 1-bit digital output. Therefore, the main research
question of this thesis is:

“Is it possible to use the stochastic resonance (SR) phenomenon to manipulate
information that is contained in the output signal?”

There are many ways to manipulate signals, the most obvious one is to perform mathematical
operations on them. Therefore, this research question leads to three subquestions:

1. Is it possible to implement mathematical operators using SR?
From so many mathematical operators, this thesis focuses on developing an alternative
for multipliers and adders on the system level. Thus, to answer this question, this thesis
develops a system-level alternative for signal multipliers and adders using SR.

2. How can one define and predict the performance of the operators?
To examine the quality of the operators, it is necessary to define how to measure their
performances. This thesis provides several performance metrics that are commonly used
in SR research based on literatures. From these, one metric that is the most suitable
for measuring the performance of the operators is chosen. After that, mathematical
formulas are provided to predict the performance.

3. Is it possible to build a system out of the SR-based math operators?
The proposed SR-based operators are used to implement the Teager Energy Operator
(TEO), an energy operator that can function as an action potential (AP) detection
system. The performance of the system is then examined.

1-3 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, a literature study on SR
and TEO is presented. In Chapter 3, the SR-based multiplier is proposed. The theoretical
background and its performance are also provided and analyzed. In Chapter 4, the SR-based
adder is proposed, as well as its theoretical background and performance. In Chapter 5, the
SR-based multiplier and adder are used to implement the TEO. In Chapter 6, the conclusions
and recommendations for future work are described.
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Chapter 2

Stochastic Resonance and Teager
Energy Operator: Definition and

Properties

The purpose of this chapter is to describe and explain the stochastic resonance (SR) phe-
nomenon and Teager Energy Operator (TEO) based on the conducted literature review.
This chapter is mainly divided into two sections. In Section 2-1, the literature review of SR
is discussed. The section covers the SR definition in Section 2-1-1, different types of SR in
threshold-based systems in Section 2-1-2, the commonly used performance metrics in Sec-
tion 2-1-3, and the performance comparison in Section 2-1-4 which discusses the best type
of SR. Based on the literature study, the most suitable performance metric is chosen in
Section 2-1-5. Section 2-2 discusses the review of a TEO. This consists of a definition of a
TEO (Section 2-2-1), the operator’s properties (Section 2-2-3), examples of well-known signals
when processed by a TEO (Section 2-2-2), the effect of noise on the TEO (Section 2-2-4), its
implementation (Section 2-2-5), and how a TEO can be used to detect action potentials (APs)
in neurons (Section 2-2-6). Lastly, the conclusions are summarized in Section 2-3.

2-1 Stochastic Resonance (SR)

2-1-1 Definition of Stochastic Resonance

The term stochastic resonance (SR) was first introduced by Benzi et al. in [4] to explain
the temperature “jump” between glacial and interglacial periods of approximately 10 K in
an ice age. While the period directly correlates to the earth’s orbital parameters, no existing
model could reproduce this drastic change in temperature using the external periodic forces
alone. The proposed model added a stochastic parameter based on a Wiener process in the
commonly-thought deterministic energy-balanced model. The model proved that the drastic
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4 Stochastic Resonance and Teager Energy Operator: Definition and Properties

temperature change is produced by the combination of external deterministic and internal
stochastic forces.

Several attempts have been made to examine the occurrence of SR in different systems.
Realizing that the system in [4] was modeled as a double-well potential, or in other words a
bistable system, early research tended to look for SR in bistable systems, such as a Schmitt
trigger [5] and a bidirectional ring laser [6]. It was not until 1993 when an SR occurrence was
found in a single mechanoreceptor cell of a crayfish (Procambarus clarkii) [7]. The research
was then taken further to prove that SR can occur in excitable systems [8]. In 1995, SR
is discovered in aperiodic subthreshold signals [9]. Moreover, by using different measures of
performance, it can also occur for aperiodic signal inputs which are strong enough to cross
the threshold of the system, i.e. a suprathreshold signal [2].

Although Benzi et al. argued that the term “resonance” is indeed relevant in this situation,
the use of the term has been thought as misleading due to the lack of resonant frequency
as commonly understood in electrical engineering and signal processing [4, 5, 10]. However,
McDonnell and Abbott in [11] pointed out that the term SR has been broadened and “reso-
nance” should not be interpreted as it is in the classical term. Considering the fact that SR
occurs not only in bistable systems with subthreshold periodic signals, a definition is proposed
as “a phenomenon where the performance of a nonlinear system subjected by noise is better
than it is without noise” [11]. The difference between the classical and stochastic resonance
is illustrated in Figure 2-1.

f0

frequency

Power

(a) Classical Resonance

σ0

noise intensity

SNR

(b) Stochastic Resonance

Figure 2-1: The difference between classical and stochastic resonance. (a) The classical reso-
nance where the maximum power of the output signal is achieved for a specific resonant frequency.
(b) The stochastic resonance where the optimal performance, in this case measured by the SNR,
is achieved for a specific amount of noise.

2-1-2 Stochastic Resonance in Threshold-Based Systems

Biological excitable systems (i.e. neurons) found in nature work with the same principle as
simple comparators to some extent. They both have low and high states, where the changes
in the states happen when the input signal crosses a predetermined threshold level. However,
comparators cannot mimic the refractory period characteristics of excitable systems. Despite
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2-1 Stochastic Resonance (SR) 5

Figure 2-2: Illustration of subthreshold SR. Without noise, the output remains constantly in the
low state. By adding noise, there are threshold-crossings happening when the signal is near the
threshold level resulting in changes between the high and low state. (Figure taken from [1].)

the difference, it is interesting that SR has been found to occur in both systems for both
subthreshold and suprathreshold signals [5, 7, 8, 9, 12].

Subthreshold Stochastic Resonance

Subthreshold SR occurs when a signal that is too small to cross the threshold level is subjected
to noise at the input of the system [13]. Obviously the signal contribution alone will not
produce anything (i.e. the change in states). However, the addition of noise, especially a
strong enough noise, can help the signal to cross the threshold level when it is near the
maximum value. This results in higher performance than that of a noiseless system. An
illustration of subthreshold SR can be seen in Figure 2-2.

Similar to other bistable systems (i.e. having double-well potential function), simple com-
parators have the average time required for the signal to travel from one stable point to the
other and back to the original point called Kramers time. The Kramers time, τk, is known to
be proportional to the exponent of both the height of the potential barrier and the reciprocal
of the noise variance [5, 13]. Mathematically,

τk = νk ∝ exp
(∆U
σ2

)
, (2-1)

where νk,∆U , and σ are the Kramers rate, the height of the potential barrier, and the noise
standard deviation, respectively. For a single sinusoidal input, the maximum signal-to-noise
ratio (SNR) occurs when the Kramers rate and the input frequency are in the same order [5].
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6 Stochastic Resonance and Teager Energy Operator: Definition and Properties

Suprathreshold Stochastic Resonance

Suprathreshold SR occurs when a suprathreshold signal is subjected to noise in arrays of
threshold devices or a filtered threshold system, as illustrated in Figure 2-3. It was originally
thought that SR could not occur for signals that already have enough power to cross the
threshold [2]. However, Stocks in [14] showed that the switching of states due to the addition
of the noise near the threshold can maximize the performance of the overall system. It was
also shown that the maximum performance is reached when all the threshold values are set
to the mean of the signal. An illustration of suprathreshold SR can be seen in Figure 2-4.

2-1-3 Performance Metrics of Stochastic Resonance

To indicate the occurrence of SR, it is necessary to decide on the performance metrics of the
system. A system might display different SR behaviors for different performance metrics. It
is also important to choose the metrics that really make sense in determining the performance
of the system.

Signal-to-Noise Ratio (SNR)

Signal-to-noise ratio (SNR) is a performance metric used to measure how corrupted a signal
in a system is compared to the perturbing noise. It is calculated by dividing the power of the
signal by its noise, usually expressed in decibel (dB) [15]. Mathematically,

SNRdB = 10 log10

(
Psignal
Pnoise

)
= 20 log10

(
Asignal
Anoise

)
,

(2-2)

where Psignal and Pnoise are signal and noise power, while Asignal and Anoise are root-mean-
square (RMS) amplitude of the signal and noise, respectively, over the signal bandwidth.

In the history of SR, SNR is the most frequently used metric to measure the performance of
the observed systems [5, 7, 8]. This comes simply from the fact that the signal used in the
experiments are mostly a single period sinusoid. The occurrence of SR implies that there can
be an SNR gain by adding noise to the system. This does not come as a surprise, since the
nonlinearity of the system will spread out the power of noise over other frequencies, making
the noise power in the bandwidth smaller than it would be in a linear system.

Though widely used in the electronics field, SNR gains are not necessarily effective in many
signal processing fields. For instance, it does not always give the information on how closely
the output signal resembles the input in terms of their shapes, which is important in signal re-
construction. One method to accommodate this pitfall is to use signal-to-noise-and-distortion
ratio (SNDR), where the distortion signifies how different the output signal is with the ideal
signal. Similar to SNR, SNDR is calculated by taking the quotient of the signal power with the
“undesired” power, in this case the noise power and the power contributed by the distortion.
Mathematically, it is formulated as

SNDRdB = 10 log10

(
Psignal, ideal

Pnoise + Pdistortion

)
, (2-3)
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Figure 2-3: Arrays of threshold devices subjected to noise. The parallelization of the threshold
systems works to average out the signal outliers, i.e. output noise. This arrangement can also be
changed by cascading a filter after a threshold device.

Figure 2-4: Illustration of suprathreshold SR. Without noise, the output is always in high state for
positive amplitude and vice versa. By adding noise, changes between states occur more frequently,
resulting in an output that, when integrated, more closely resembles the original signal. (Figure
taken from [1].)
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8 Stochastic Resonance and Teager Energy Operator: Definition and Properties

where Psignal, ideal, Pnoise, and Pdistortion are the ideal signal, noise, and distortion power. It
is important to distinguish the noise and distortion contribution, and this might be quite
difficult to do because this suggests that one needs to be able to distinguish the ideal output
signal, assuming the system is ideal, from the ideal “expected” output of the real system. It
should also be noted that Psignal in (2-2) is different from Psignal, ideal in (2-3). In (2-2), the
signal still contains the distortion while the one in (2-3) is only the input signal multiplied
by a certain gain or attenuation factor.

Mutual Information

One performance metric that can be used to quantify the similarity between two signals is
mutual information. Mutual information is the amount of information from the input that is
transmitted to the output, measured in bits. For a stochastic input and output with random
variables X and Y , respectively, the mutual information is formulated as

I(X,Y ) =
∫
X

∫
Y
fXY (x, y) log2

(
fXY (x, y)
fX(x)fY (y)

)
dx dy , (2-4)

where fX , and fY are the probability density function (PDF) of X and Y , while fXY is the
joint PDF of both random variables.
The mutual information can also be written as

I(X,Y ) = H(Y ) −H(Y |X), (2-5)

where H(·) is an information entropy, which is the average amount of information contained
in each signal, mathematically defined by

H(Y ) def= E [I(Y )]

= −
∫
Y
fY (y) log2 fY (y) dy .

(2-6)

Consequently, the conditional entropy can be calculated by substituting the random variable
Y in (2-6) with Y |X. The existence of two variables requires double integrals, which results
in

H(Y |X) = −
∫
X

∫
Y
fXY (x, y) log2

(
fXY (x, y)
fX(x)

)
dx dy . (2-7)

In the case of X and Y (i.e. the input and output signals) being statistically independent,
(2-7) will be equal to (2-6). Hence, I(X,Y ) will be equal to zero [16].
In threshold-based systems, a finite and countable number of output states make it similar
to a semi-infinite channel [17]. Therefore, (2-5) can be written as

I(X,Y ) = −
∑
Y

Pr(y) log2 Pr(y) −
(

−
∫
X
fX(x)

∑
Y

Pr(y |x) log2 Pr(y |x) dx
)
. (2-8)

The use of mutual information provides an advantage in quantifying the interdependence
between the input and output signals. It also gives an opportunity to effectively calculate the
performance for non-sinusoidal signals, especially signals with a given PDF. The maximum
value of I(x, y) is achieved when all information contained in X is transferred to Y , i.e.
H(Y ) = H(X). However, this is ineffective in the case of deterministic input signals since,
for deterministic signals, Pr(y |x) will be either 0 or 1.
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2-1 Stochastic Resonance (SR) 9

Correlation Coefficient

Another way to measure the similarity of input and output signals is by using the correlation
coefficient [12]. This is a more general measure of the normalized power norm, which was
proposed by Collins et al. in [9] to detect the occurrence of aperiodic SR in the FitzHugh-
Nagumo (FHN) neuron model. Instead of comparing the input signal with the mean firing
rate as in the normalized power norm, the correlation coefficient compares the input and
output signals directly through calculating the covariance. Therefore, it can be used for
non-excitable systems. The correlation coefficient is calculated as

ρx,y = cov[x, y]√
var[x]var[y]

= E[xy] − E[x]E[y]√
var[x]var[y]

,

(2-9)

where x and y are the input and output signals of the system, respectively. This is convenient
for signal reconstruction measures, because the correlation coefficient is bounded between −1
and +1. Similar to mutual information, for statistically independent input-output pairs, ρx,y
will be equal to zero.

Since the correlation coefficient is initially used to quantify the linear correlation of two data
(or, in this case, signals), it might seem strange to use this as a measure for SR, which can only
occur in nonlinear systems. However, McDonnell et al. argued that it just means that the ρx,y
can never be equal to one. Moreover, different from linear systems, where high correlation
means high information content, high ρx,y in nonlinear systems cannot be interpreted as high
mutual information [12].

2-1-4 Performance Comparison

For a simple threshold-based system with input signal x, threshold level θ, and subjected to
noise η, its output y can be formulated as

y = sgn[x+ η − θ], (2-10)

where sgn[·], i.e. the signum function, takes value of either +1 or −1 depending on whether
x+ η − θ ≥ 0 or not. From (2-10), it can be seen that, besides the signal itself, the intensity
of noise and the threshold level also determine the performance of the system.

Maximizing the performance of the system can be thought of as ensuring the frequency of the
combination of the signal and noise crossing the threshold level. In general, the performance
of subthreshold SR systems is lower than that of suprathreshold SR systems. This is due
to the fact that the probability of a subthreshold signal crossing the threshold level is much
lower than that of a suprathreshold signal. In other words, subthreshold SR systems will
preserve less information. When reconstructed, the decoded subthreshold signal might not
be able to resemble its input form for the part that is far from the threshold level, resulting
in smaller correlation coefficient. However, the performance for subthreshold SR systems can
be increased by minimizing the distance between the peak of the signal and the threshold
level. For instance, Collins et al. claimed that the normalized power norm, i.e. correlation
coefficient, of their FHN model could reach approximately 0.9 [9].
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10 Stochastic Resonance and Teager Energy Operator: Definition and Properties

Figure 2-5 illustrates the mutual information for various threshold levels θ and noise intensities
σ. The standard deviation of the input signal is set to one. It can be seen that the performance
drops as the threshold level increases. Moreover, SR occurs for higher noise intensity for every
increase in the threshold level. This is fairly logical since as the distance between the input
and threshold increases, more energy provided by the noise is necessary to switch the output
states.

Kawaguchi et al. in [3] simulate the change of mutual information in relation to a mixture
of subthreshold and suprathreshold stimuli in a population of neuron models, as shown in
Figure 2-6. RSL denotes the ratio of neurons that are stimulated by suprathreshold stimuli
to the total population of neurons, where RSL = 1.0 means that the entire population of
neurons is subjected to suprathreshold stimuli. The result of the research shows that the
maximum performance can be achieved by subjecting the entire population of neurons to
suprathreshold signals. Based on these findings, it can be concluded that suprathreshold
SR is more advantageous than subthreshold SR in achieving the maximum performance of a
system.

2-1-5 Choosing the Most Suitable Performance Metric for Mathematical Oper-
ators

From the explanations in Section 2-1-3, it can be concluded that there is no absolute best
metric to measure the performance of a system. Rather than that, it makes more sense to
choose the most suitable metric that can accurately quantify the performance of a system,
based on its purpose(s). Therefore, it is important to first examine the purpose of the system
of interest.

This thesis will focus on building mathematical operators based on the SR phenomenon as
mentioned in Chapter 1. Mathematical operators, such as adders and multipliers, take two
or more inputs and produce an output that corresponds to the property of the operation. For
example, a multiplier can take two inputs and generate an output that is a multiplication of
both inputs. It is not hard to argue that, especially for input signals in time domain, the
performance of mathematical operators are defined more in the resemblance of the shape of
the output signal rather than the information entropy. Thus, the mutual information is unfit
as a performance metric for mathematical operators.

Secondly, this research is conducted with a vision that the proposed designs can be imple-
mented in electronic circuits in the future. In electronics engineering, the terms SNR and
SNDR are far more familiar than the correlation coefficient as noises and distortions are
well-understood. Therefore, in this thesis, SNR and SNDR will be used as the measure of
performance for the next chapters.

2-2 Teager Energy Operator (TEO)

2-2-1 TEO as an Algorithm to Calculate the “Energy” of a Signal

The Teager Energy Operator (TEO) or Nonlinear Energy Operator (NEO) is an algorithm
to calculate the energy necessary to generate a signal [18]. It is inspired by the fact that
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2-2 Teager Energy Operator (TEO) 11

Figure 2-5: Illustration on mutual information I(x, y) as a function of noise intensity σ for
various threshold levels θ. Since the signal and noise have even PDFs, θ = +0.5 and θ = −0.5
produce the same performance. The further θ is from 0, the lower I(x, y) is. (Figure taken from
[2].)

Figure 2-6: Mutual information for different ratios of sub-threshold and suprathreshold stimuli
in a population of neuron models. RSL denotes the ratio of neurons that are stimulated by
suprathreshold stimuli to the total population of neurons and RSL = 1.0 means that the entire
population of neurons is subjected to suprathreshold stimuli. The performance of the population
of neurons decreases with the decrease of RSL. (Figure taken from [3].)
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12 Stochastic Resonance and Teager Energy Operator: Definition and Properties

the energy to generate a sinusoidal signal in a simple harmonic motion is proportional to the
square of its amplitude and frequency. The continuous-time TEO is defined by

ψ(x) def=
(dx(t)

dt

)2
− x(t)d2x(t)

dt2 (2-11)

and its discrete-time equivalent as

ψ[x] def= x2(n) − x(n− 1)x(n+ 1). (2-12)

From (2-11), it can be deduced that TEO does not only take into account the amplitude of
the signal, but also its derivatives. This means that the output of TEO for a more “active”
signal (e.g. signal with higher frequency) will be larger than a less “active” one.
The discrete-time TEO calculation in (2-12) will result in higher time resolution than the
conventional energy calculation since it only needs three samples (i.e. x(n), x(n − 1), and
x(n+ 1)). However, the use of x(n+ 1) in the equation implied that the system is noncausal,
which is is not possible for real-time calculation. Therefore, in the case of real-time discrete
calculation, the logical choice would be to calculate ψ[x(n−1)] instead of ψ[x(n)]. This means
that the output of the system would be delayed by one sample.

2-2-2 TEO for Well-Known Signals

Table 2-1 shows the TEO outputs for well-known signals. Most of the results are fairly logical
since TEO is defined as giving a constant output for sinusoidal signals. The TEO output of
multisine is not a constant and this is explained by the addition properties in Table 2-2. It is
due to the cross-interaction property that produces the second term as shown in Table 2-1.

2-2-3 Properties of TEO

Due to its nonlinearity, the common additivity property does not hold in the TEO. Therefore,
it is important to also define the interaction of two functions x(t) and y(t). The cross-
interaction TEO, ψc(x, y), has been defined in [19] by

ψc(x, y) def= dx
dt · dy

dt − x
d2y

dt2 .
(2-13)

It is important to notice that ψc is noncommutative, i.e. ψc(x, y) 6= ψc(y, x).
By defining the cross-interaction TEO, several important properties can be analyzed, as
extensively explained in [19] and summarized in Table 2-2.

2-2-4 The Effect of Noise on TEO

Consider that noise η is added to signal s at the input of TEO. For x = s+ η,

ψ(x) = (ṡ+ η̇)2 − (s+ η)(s̈+ η̈)
= (ṡ2 − ss̈) + (η̇2 − ηη̈) + 2ṡη̇ − sη̈ − ηs̈

= ψ(s) + ψ(η) + ψc(s, η) + ψc(η, s)
(2-14)
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Table 2-1: Teager Energy Operator outpus for various well-known signals.

Input Signal x(t) Output TEO ψ(x(t))

Sinusoid A sin(ωt+ φ)

A

0

time

x

A2ω2 A2ω2

time

ψ(x)

Exponent Ae−αt

A

0

time

x

0
0

time

ψ(x)

Exponentially
Damped Sinusoid Ae−αt sin(ωt+ φ)

A

0

time

x

A2ω2e−2αt

A2ω2

time

ψ(x)

Continued on the next page
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Table 2-1: continued

Input Signal x(t) Output TEO ψ(x(t))

Different
Frequency Sinusoid

A sin(ω1t+ φ1), t < t0

A sin(ω2t+ φ2), t > t0

A

0

time

x

A2ω2
1 , t < t0

A2ω2
2 , t > t0

A2ω2
2

A2ω2
1

0

time

ψ(x)

Multisine A1 sin(ω1t+ φ1)
+A2 sin(ω2t+ φ2) 0

time

x

A2
1ω

2
1 +A2

2ω
2
2

+A1A2×
[1 − cos(ω1 + ω2)]
× cos[(ω1 − ω2)t

+(φ1 − φ2)]

0
time

ψ(x)
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2-2 Teager Energy Operator (TEO) 15

Table 2-2: Properties of TEO

Properties Formula Higher Degree Formula

addition ψ(x+ y) = ψ(g) + ψ(h) + ψc(x, y) + ψc(y, x)
ψ(x+ y + z) = ψ(x) + ψ(y) + ψ(z)
+ψc(x, y) + ψc(y, x) + ψc(y, z) + ψc(z, y)
+ψc(x, z) + ψc(z, x)

product ψ(xy) = x2ψ(y) + y2ψ(x) ψ(xyz) = x2y2ψ(z) + x2z2ψ(y) + y2z2ψ(x)

quotient ψ(y/x) = x2ψ(y)−y2ψ(x)
x4 ψ(ẋ/x) = 1

x2

[
ψ (ẋ) −

(
ẋ
x

)2
ψ(x)

]
n-th power ψ(xn) = nx2n−2ψ(x)

reciprocal ψ(1/x) = −ψ(x)/x4

composite ψ(y(x(t))) = ẋ2
[(

dy
dx

)2
− y d2y

dx2

]
− y dy

dx ẍ

first time derivative ψ(ẋ) = −ψc(ẍ, x) = −ψc(x, ẍ)

integral ψ
( t∫

0
x dt

)
= x2 − ẋ

t∫
0
g dt

derivative of TEO ψ̇(x) = ψc(x, ẋ)

It can be seen that the terms ψ(η) +ψc(s, η) +ψc(η, s) will bias the ψ(s). The expected value
of TEO is

E[ψ(x)] = E[ψ(s) + ψ(η) + ψc(s, η) + ψc(η, s)]
= ψ(s) + E[ψ(η)]

(2-15)

provided that s and η are uncorrelated. In the case of η being a Gaussian noise, E[ψ(η)] is
equal to its variance [18].

2-2-5 Implementation of TEO

Figure 2-7 shows the block diagram of the continuous-time TEO. It can be seen that it needs
two differentiators, two multipliers, and one subtractor. Because of the use of multipliers that
might be expensive in implementation, it is more often implemented in the digital domain
using its discrete-time counterpart, i.e. (2-12). This block diagram is not the only way to
implement TEO, however. Hiseni et al. in [20] designed a TEO circuit for action poten-
tial (AP) detection purposes using the dynamic translinear principle. Due to its low power
consumption, compact circuit architecture, and analog implementation, it can be used in a
real-time recording system.

2-2-6 TEO as an Action Potential Detection Algorithm

As mentioned in Section 2-2-1, the output of the TEO is determined by both the amplitude
and activity of the signal. This becomes an advantage for an action potential (AP) detection

Master of Science Thesis Insani Abdi Bangsa



16 Stochastic Resonance and Teager Energy Operator: Definition and Properties

x(t) ×d
dt

×

d
dt

−
+ ψ(x)

Figure 2-7: Block diagram of a TEO. It can be seen that it needs two differentiators, two
multipliers, and one subtractor.

0 0.1 0.2
time [s]

x(t)

(a)

0 0.1 0.2
time [s]

ψ(x(t))

(b)

Figure 2-8: An example of an action potential recording subjected to TEO. (a) Action potential
recording. (b) The output of TEO. It can be seen that TEO emphasizes the signal when a spike
is detected, making it more prominent than the other parts of the signal.
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2-3 Conclusions 17

application, since it usually has considerably large amplitude and high activity compared to
the rest of the signal (and also the noise) [21]. An example of the output of the TEO for
an AP detection is shown in Figure 2-8b. Of course, since they are processed in the same
way, the APs that are smaller in amplitude will also have a smaller output. This could pose
a problem in the post-processing, especially for an automatic detection where the output of
TEO is thresholded with a certain threshold level. The smaller spike could go unnoticed,
resulting in a false negative.

2-3 Conclusions

In this chapter, an overview of SR and TEO was given. The definition of SR and how its
performance is usually measured was explained. Different types of SR were also introduced
and their performance was analyzed, which concludes that the suprathreshold SR has better
performance than the subthreshold SR. Due to the properties of mathematical operators and
the vision of the research, SNR and SNDR are chosen as the performance metrics.

The definition and properties of the TEO were also given, as well as its sensitivity to noise
and how it can be implemented. Finally, in biomedical applications, the TEO can be used to
detect APs of a population of neurons.
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Chapter 3

Signal Multiplier with Stochastic
Resonance-Based Systems

A signal multiplier is used to produce a multiplication of two or more signals. Suppose that
x1, x2, . . . , xK are input signals, the output of an ideal signal multiplier is x1x2 · · ·xK . In this
chapter, a signal multiplier with stochastic resonance (SR)-based fundamental building blocks
(as shown in Figure 1-1) using XNOR gates will be presented and discussed. The output of
the operator is a 1-bit signal that can be averaged to produce the multiplication of the input
signals.

3-1 XNOR in SR-Based Systems

An XNOR gate is one possible candidate to implement a signal multiplier. In Boolean logic,
the formula of an XNOR is xout = x1 · x2 + x̄1 · x̄2. This fits a multiplier especially for
comparators that produce +V as logic 1 and −V as 0. When the signals are either both 1
or both 0, an XNOR will produce output 1. Otherwise, it will produce output 0. The block
diagram of an XNOR in combination with SR-based fundamental building blocks is shown in
Figure 3-1, where x1 and x2 are input signals and η1 and η2 are independent white noise.

3-1-1 Output Signal Formula Derivation

As explained before in Chapter 2, SR-based systems use the help of noise to boost their
performance. Therefore, the output of the operator in Figure 3-1, while being binary, is not
deterministic. The probability of the output of the first comparator y1 = 1 given x1, as
derived in [2], is

Pr(y1 = 1 |x1) = Pr(x1 + η1 ≥ θ1 |x1)
= Pr(η1 ≥ θ1 − x1 |x1)
= 1 − Pr(η1 < θ1 − x1 |x1)
= 1 − Fη1(θ1 − x1),

(3-1)
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−

+

−

+

yo

y1

y2

θ1

θ2

fs

fs

+
+

x1

η1

+
+

x2

η2

Figure 3-1: XNOR gate in combination with SR-based fundamental building blocks. The output
of the operator is a binary signal, and can be averaged to produce the multiplication of both input
signals.

where Fη1 is the cumulative distribution function (CDF) of η1. Similarly, the probability of
y2 = 1 given x2 is Pr(y2 = 1|x2) = 1−Fη2(θ2−x2). Assuming that the inputs are independent,
the probability of yo = 1 given x1 and x2 is

Pr(yo = 1 |x1, x2) = Pr(y1 = 1 ∩ y2 = 1 |x1, x2) + Pr(y1 = 0 ∩ y2 = 0 |x1, x2)
= Pr(y1 = 1 |x1) Pr(y2 = 1 |x2) + Pr(y1 = 0 |x1) Pr(y2 = 0 |x2)
= (1 − Fη1(θ1 − x1))(1 − Fη2(θ2 − x2)) + Fη1(θ1 − x1)Fη2(θ2 − x2)

= 1 −
(
Fη1(θ1 − x1) + Fη2(θ2 − x2)

)
+ 2Fη1(θ1 − x1)Fη2(θ2 − x2).

(3-2)

Consequently, the probability of yo = 0 given x1 and x2 is

Pr(yo = 0 |x1, x2) = 1 − Pr(y0 = 1 |x1, x2)
= Fη1(θ1 − x1) + Fη2(θ2 − x2) − 2Fη1(θ1 − x1)Fη2(θ2 − x2).

(3-3)

The ideal reconstructed output ŷout can be determined by taking the expected value of yo, as
proposed in [22]. Therefore,

ŷout = E [yo |x1, x2]
= Pr(yo = 1 |x1, x2)(+V ) + Pr(yo = 0 |x1, x2)(−V )

= V − 2V
(
Fη1(θ1 − x1) + Fη2(θ2 − x2)

)
+ 4V Fη1(θ1 − x1)Fη2(θ2 − x2).

(3-4)

In Appendix A-2, it is proven that, for independent η1 and η2,

ŷout = E [y1 |x1] E [y2 |x2]
V

. (3-5)

This shows that the SR-based operator indeed behaves as a multiplier. This also means that
the performance of the multiplier depends on how good the E [y1 |x1] and E [y2 |x2] represent
x1 and x2, respectively.

For a system using Gaussian distributed noise inputs, the CDF of its noise inputs can be
approximated as

F (z) ≈ 1
2 + 1

σ
√

2π
(z). (3-6)
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Using (3-6) to approximate Fη1 and Fη2 in (3-4),

ŷout ≈ V − V

(
1 + 2√

π

θ1 − x1

σ1
√

2
+ 1 + 2√

π

θ2 − x2

σ2
√

2

)
+ V

(
1 + 2√

π

θ2 − x2

σ2
√

2
+ 2√

π

θ1 − x1

σ1
√

2
+ 2
π

(θ1 − x1)(θ2 − x2)
σ1σ2

)
= 2V
πσ1σ2

(θ1 − x1)(θ2 − x2).

(3-7)

To produce a “clean” multiplication, θ1 and θ2 should be set to 0. Assuming that σ1 = σ2 = σ,
the final formula is

ŷout ≈ 2V
πσ2x1x2. (3-8)

In the following sections, it will be assumed that the noise signals used have Gaussian distri-
bution and the same power.

3-1-2 Output Noise

In practice, the output signal will never be as noiseless as ŷout since the averaging is done
either by filtering or finite parallelization. The real final output will be

yout = ŷout + ηout, (3-9)

where ŷout is the expected output formulated by (3-4) and ηout is the output noise.
The nature of ηout comes from the fact that the probability of the output yo is determined
by inputs x1 and x2 as well as the noise. The noise contributes in bringing the value of the
inputs across the threshold, such that the state of yo changes. By rising the intensity of the
noise, the state of yo will be solely determined by the noise itself rather than the combination
of the inputs and noise and therefore it will lead to the generation of the output noise. In
other words, the smaller

∣∣∣∣θ − max |x|
σ

∣∣∣∣ is, the larger the output noise will be. Beside filtering,
the amount of noise can be decreased by finite parallelization. For N parallel systems, the
noise intensity σout will decrease by a factor of 1√

N
, as shown in Figure 3-2.

The conditional expected value of the squared distance is

E
[
(yo − ŷout)2

∣∣∣x1, x2
]

= (V − ŷout)2 Pr(y0 = 1 |x1, x2) + (V + ŷout)2 Pr(yo = 0 |x1, x2)

= V 2 − ŷ2
out.

(3-10)

The output noise power, denoted by Pnoise, is the expected value of (3-10) over x1 and x2. It
should be noted that, since the mean of the output noise is zero, the output noise power will
be equal to the output noise variance. Suppose that ŷout(n) has length M , the output noise
power can be written as

Pnoise = σ2
out = E

[
E
[
(yo − ŷout)2

∣∣∣x1, x2
]]

= 1
M

M−1∑
n=0

(
V 2 − ŷ2

out(n)
)
.

(3-11)
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1√
N

Figure 3-2: Standard deviation of output noise based on the number of parallelization N . The
standard deviation is normalized to σout,N=1. It follows the pattern of 1√

N
.

The overall noise power is

Pnoise,N = σ2
out,N = E

[
E
[
(yo − ŷout)2 ∣∣x1, x2

]]
N

= 1
MN

M−1∑
n=0

(
V 2 − ŷ2

out(n)
)
.

(3-12)

The simulated and predicted standard deviation and noise power in the case of two sinusoidal
inputs with a unity amplitude is presented in Figure 3-3. V is set to 1 and their phase
differences were arranged such that the correlation coefficients, ρ, vary from −1 to +1. The
first noise behavior that should be noted from this operator is: it saturates at σout,N=1 = V 2

for large σ. This behavior can be explained by looking at the distribution of the output noise.
As σ increases, the output of the multiplier decreases by a factor of 2V

πσ2 . For large σ, this
will become very small and ηout wil be approximately close to yo. Since yo only has a value of
either −V or +V and zero mean, it will have a standard deviation of V 2. The second noise
behavior that can be inferred is: input signals with ρ = ±1 generate smaller output noise.
This is because, for the same σ, they produce the largest, albeit distorted, max |ŷout|. Based
on (3-10), this will lead to smaller σout.

For white input noise sources with a large number of samples, the output noise is white and
bandlimited with a maximum frequency of half the sampling frequency [22]. Therefore, for
the averaging done by filtering, the noise power is determined by

Pnoise, filtered = σ2
out,filtered =

2σ2
out,N=1
fs

· ∆fENBW , (3-13)

where fs is the sampling frequency and ∆fENBW is the equivalent noise bandwidth (ENBW).
Figure 3-4 shows the result of the same case as the previous one, sampled with a sampling
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0.4
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0.8

1

σ

σout,N=1

ρ = 0, simulated
ρ = 0, predicted
ρ = ±0.5, simulated
ρ = ±0.5, predicted
ρ = ±1, simulated
ρ = ±1, predicted

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.4

0.6

0.8
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Pnoise,N=1
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(b)

Figure 3-3: The output noise for two sinusoidal inputs with a unity amplitude and frequency,
sampled with a sampling frequency of 1 kHz and subjected to a second order Butterworth LPF
with cut-off frequency of 20 Hz. V is set to 1. The asterisks mark the simulated results and
the solid lines are the predicted results based on the formula. (a) Standard deviation for N = 1.
(b) The noise power for N = 1. As σ goes up, the output noise becomes larger and its power
becomes closer to V 2.
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frequency of 1 kHz and subjected to a second order Butterworth LPF with a cut-off frequency
of 20 Hz. It can be seen that the simulated data falls within a reasonable range when compared
to the predicted value computed with (3-13). In the end, the noise power is

Pnoise,out =


1

MN

M−1∑
n=0

(
V 2 − ŷ2

out(n)
)

for parallelization

2∆fENBW
Mfs

M−1∑
n=0

(
V 2 − ŷ2

out(n)
)

for filtering
. (3-14)

The signal-to-noise ratio (SNR) for the multiplier can then be calculated. Figure 3-5 shows the
SNR of the previous case. It can be seen that the operator reaches its maximum performance
when not subjected to noise. Therefore, in this particular case, the stochastic resonance
phenomenon does not happen for SNR.

3-1-3 Distortion

The approximation done in Section 3-1-1 is true for
∣∣∣∣θ1 − x1
σ1

√
2

∣∣∣∣ ≈ 0 and
∣∣∣∣θ2 − x2
σ2

√
2

∣∣∣∣ ≈ 0. The
higher order approximation is

yout ≈ 2V
πσ2 (x1x2) − V

3πσ4 (x1x
3
2 + x3

1x2) + V

18πσ6x
3
1x

3
2 (3-15)

which contains fourth and sixth order harmonics. To decrease the harmonics influence (the
second and third terms), it is necessary to ensure that the second term is small enough, i.e.

V

3πσ4 << 1 =⇒ σ >>
4

√
V

3π . (3-16)

Unfortunately, this is only feasible to implement for systems with an incredibly good averaging
technique since, as explained in Section 3-1-2, the larger the input noise sources are, the higher
the output noise will be.
The second and third terms (and possibly other higher-order terms) in (3-15) also influ-
ence the gain of x1x2. Therefore, in general, it does not make sense to expect 2V

πσ2 as
the output gain of the multiplier, and calculating the distortion only by referring to those
two terms can be misleading. The better alternative is to introduce an ideal output sig-
nal with a certain gain Ĝ that produces the least-square distortion value. Suppose that
Ŷout = [ŷout(0) ŷout(1) · · · ŷout(M − 1)]T and X = [x1(0)x2(0) x1(1)x2(1) · · · x1(M −
1)x2(M−1)]T, using the least-square error (LSE) method, the linear gain Ĝ can be determined
as

Ĝ =
(
XTX

)−1
XTŶout (3-17)

The distortion power then can be calculated as

Pdistortion = 1
M

M−1∑
n=0

∣∣∣ŷout(n) − Ĝx1(n)x2(n)
∣∣∣2

= 1
M

M−1∑
n=0

∣∣∣∣ŷout(n) −
(
XTX

)−1
XTŶoutx1(n)x2(n)

∣∣∣∣2 .
(3-18)
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Figure 3-4: The output noise for two sinusoidal inputs with a unity amplitude and frequency,
sampled with a sampling frequency of 1 kHz and subjected to a second order Butterworth LPF
with cut-off frequency of 20 Hz. V is set to 1. The asterisks mark the simulated results and the
solid lines are the predicted results based on the formula. (a) The standard deviation. (b) The
noise power.
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Figure 3-5: Signal-to-noise ratio for two sinusoidal inputs with a unity amplitude and frequency,
sampled with a sampling frequency of 1 kHz and subjected to a second order Butterworth LPF
with cut-off frequency of 20 Hz. V is set to 1. The asterisks mark the simulated results and
the solid lines are the predicted results based on the formula. The stochastic resonance does not
happen since the performance is at maximum when σ = 0.

The plot of Ĝ in the same case as the previous one is shown in Figure 3-6a. As a reference,
the predicted linear gain is also presented. There are two things that can be derived from
this figure. Firstly, as σ goes up, the two values become closer and the difference becomes
approximately zero, which implies a decrease in distortion power as shown in Figure 3-6b.
This means that, as predicted, by increasing the noise intensity, the operator can operate in
the region that gives the best representation of an ideal multiplier. Secondly, the amount of
distortion varies by the correlation coefficient (ρ) of the input signals. Since XNOR multiplies
y1 and y2, the position of 1’s and 0’s in each signals determine the number of 1’s and 0’s
produced at yo. For ρ = +1, the signals tend to behave in a similar way, i.e. when y1
produces 1, it is most probable that y2 also produces 1, and vice versa. This raises the chance
of yo produces more 1 than 0. This results in the averaged output ŷout to have a high rate
near zero and then saturate near the maximum value. A similar thing happens for inputs with
ρ = −1. However, it will saturate near the minimum value instead. The minimum distortion
is achieved when the number of 1 and 0 are approximately the same, and this happens for
ρ = 0. In this case, ŷout will have zero mean and therefore the distortion near the extreme
values can be minimized.

The signal-to-noise-and-distortion ratio (SNDR) is calculated and shown in Figure 3-7. First
of all, an SNDR peak can be observed in the multiplier. Secondly, as expected, the best
performance is achieved for input signals with ρ = 0 since they produce the largest LSE gain
while having the smallest distortion power.
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Figure 3-6: The distortion for two sinusoidal inputs with a unity amplitude and frequency. V is
set to 1. (a) The LSE gain and the predicted linear gain. The gain depends on the correlation
coefficient of the input signals. (b) The distortion power. As σ goes up, the output becomes
more linear and the distortion power gets closer to zero.

3-2 Ternary Logic XNOR

As discussed in Section 3-1-3, the distortion is the worst for input signals with ρ = ±1. To
compensate for this, one proposed solution is to use ternary logic. In ternary logic, instead
of 1 and 0, the output of the system is divided into three states: +1 for HIGH, −1 for LOW,
and 0 for UNKNOWN. The existence of 0 is the key to help distribute the distortion of the
output signal. Figure 3-8 shows the block diagram of the multiplier, and based on Kleene’s
strong three-valued logics [23], the output is determined by

yo = max(min(x1, x2),min(−x1,−x2)). (3-19)

3-2-1 Output Signal Formula Derivation

Different from the binary comparator, a ternary comparator has two thresholds, denoted by
θL for the low threshold and θH for the high threshold. The comparator outputs +V or logic
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Figure 3-7: Signal-to-noise-and-distortion ratio for two sinusoidal inputs with a unity amplitude
and frequency, sampled with a sampling frequency of 1 kHz and subjected to a second order
Butterworth LPF with cut-off frequency of 20 Hz. V is set to 1. The asterisks mark the simulated
results and the solid lines are the predicted results based on the formula. The SNDR peaks can
be found at different σ’s for different ρ’s.

+1 if the input is larger than θH , −V or logic −1 if the input is smaller than θL, and 0 if it
is in-between the two thresholds. The probabilities of y1 given x1 are

Pr(y1 = +1 |x1) = Pr(x1 + η1 ≥ θH1 |x1)
= 1 − Fη1(θH1 − x1),

(3-20)

Pr(y1 = −1 |x1) = Pr(x1 + η1 ≤ θL1 |x1)
= Fη1(θL1 − x1),

(3-21)

and

Pr(y1 = 0 |x1) = Pr(θL1 ≤ x1 + η1 < θH1 |x1)
= Fη1(θH1 − x1) − Fη1(θL1 − x1).

(3-22)
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Figure 3-8: Ternary XNOR gate in combination with SR-based fundamental building blocks.
The output of the operator is a ternary signal. The black 4 is used to mark a ternary gate.

Following the same procedure as in Section 3-1-1,

Pr(yo |x1, x2) =



(1 − Fη1(θH1 − x1)) (1 − Fη2(θH2 − x2))
+ (Fη1(θL1 − x1)) (Fη2(θL2 − x2)) yo = +1

(Fη1(θH1 − x1) − Fη1(θL1 − x1))
+ (Fη2(θH2 − x2) − Fη2(θL2 − x2))
− (Fη1(θH1 − x1) − Fη1(θL1 − x1))
× (Fη2(θH2 − x2) − Fη2(θL2 − x2)) yo = 0

(1 − Fη1(θH1 − x1)) (Fη2(θL2 − x2))
+ (Fη1(θL1 − x1)) (1 − Fη2(θH2 − x2)) yo = −1

, (3-23)

and thus

ŷout = E[yo |x1, x2]
= V + V [Fη1(θL1 − x1) + Fη1(θH1 − x1)] [Fη2(θL2 − x2) + Fη2(θH2 − x2)]

− V [Fη1(θL1 − x1) + Fη1(θH1 − x1) + Fη2(θL2 − x2) + Fη2(θH2 − x2)] .
(3-24)

By setting the θL1 = θL2 = −δ, θH1 = θH2 = +δ, and σ1 = σ2 = σ, the higher degree Taylor
approximation for the Gaussian noises-induced system is

ŷout ≈ 2V
πσ2x1x2 − V

3πσ4x1x2
(
6δ2 + x2

1 + x2
2

)
+ V

18πσ6x1x2
(
3δ2 + x2

1

) (
3δ2 + x2

2

)
. (3-25)

It should be noticed that if δ = 0, (3-25) will be identical to (3-15), meaning that it becomes
a binary operator.
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3-2-2 Output Noise

The noise power of this multiplier can also be calculated with the same method as (3-14).
However, instead of (V 2 − ŷout), E

[
(yo − ŷout)2 ∣∣x1, x2

]
is formulated as

E
[
(yo − ŷout)2

∣∣∣x1, x2
]

= (V − ŷout)2 Pr(yo = +1 |x1, x2) + (−ŷout)2 Pr(yo = 0 |x1, x2)

+ (−V − ŷout)2 Pr(yo = −1 |x1, x2)
= 2V 2 Pr (yo = −1 |x1, x2) + V ŷout − ŷ2

out.

(3-26)

The behavior of the noise standard deviation and power for two sinusoidal inputs with various
ρ is shown in Figure 3-9. In this case, V is set to 1 and δ is set to 0.5. The ternary multiplier
produces smaller output noise compared to the binary multiplier due to the state 0.

The SNR of the ternary multiplier for the same case as Figure 3-5 is presented in Figure 3-10.
δ is also set to 0.5. Again, SR does not occur in this particular case.

3-2-3 Distortion

The LSE method is also used to measure the distortion in this operator. Figure 3-11 presents
the LSE gain and the distortion power when V and δ is set to 1 and 0.5, respectively. Although
the LSE gain is smaller than it is in the binary multiplier, the distortion power is also smaller.

The SNDR for the same case is shown in Figure 3-12. Compared to the performance in
Figure 3-7, the SNDR for signals with ρ = ±1 and ρ = ±0.5 are better. These findings are
expected since the distortion power is smaller. However, contrary to what is displayed in the
binary multiplier, the SNDR of signals with ρ = 0 is the smallest in the ternary multiplier.
This is due to the value of δ that does not match well in ensuring the maximum performance
for signals with ρ = 0. The effect of the value of δ is discussed in Section 3-2-4.

3-2-4 The Effect of δ

The performance of the ternary muliplier is not only determined by ρ, but the combination
of both ρ and δ. This is because the value of δ influences the probability of the output signal
of the comparators and the optimum probability depends on ρ. For example, for signals with
ρ = +1, the optimum probability is achieved when δ is set to half of the signal’s amplitude.
This is to make sure that the probability of the output of the comparators are equal for every
states and this leads to the probability of +1, 0, and −1 at the output of the XNOR being
1
2 , 1

2 , and 0. For signals with ρ = 0, the ratio of the probability of the states at the output of
the XNOR needs to be the same, i.e. Pr(+1) : Pr(0) : Pr(−1) = 1

3 : 1
3 : 1

3 . This corresponds
to a ratio of around 0.4 : 0.2 : 0.4 for the probability of each states at the output of the
comparators. This gives the indication of what the optimum value of δ will be. Figure 3-13
shows the various SNDR depending on the value of δ for input signals with ρ = 0. As
expected, the maximum performance is achieved when δ is set to be lower than 0.5, in this
case 0.2.
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Figure 3-9: The output noise of the ternary SR-based multiplier for two sinusoidal inputs with a
unity amplitude. V is set to 1 and δ is set to 0.5. The asterisks mark the simulated results and
the solid lines are the predicted results based on the formula. (a) Standard deviation for N = 1.
(b) The noise power for N = 1. The output noise is smaller than the output noise of the binary
multiplier.
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Figure 3-10: Signal-to-noise ratio of the ternary SR-based multiplier for two sinusoidal inputs
with a unity amplitude and frequency, sampled with a sampling frequency of 1 kHz and subjected
to a second order Butterworth LPF with cut-off frequency of 20 Hz. V is set to 1 and δ is set
to 0.5. The asterisks mark the simulated results and the solid lines are the predicted result based
on the formula. The stochastic resonance does not happen since the performance is at maximum
when η = 0.

3-3 Multiple Inputs Multiplier with XNOR

3-3-1 3 Inputs Multiplier

The diagram for three inputs SR-based multiplier is shown in Figure 3-14. It is basically
a cascade of two SR-based multipliers. Using the same procedure, the expected output is
derived as

ŷout = V − 2V
(
Fη1(θ1 − x1) + Fη2(θ2 − x2) + Fη3(θ3 − x3)

)
+ 4V

(
Fη1(θ1 − x1)Fη2(θ2 − x2) + Fη1(θ1 − x1)Fη3(θ3 − x3) + Fη2(θ2 − x2)Fη3(θ3 − x3)

)
− 8V Fη1(θ1 − x1)Fη2(θ2 − x2)Fη3(θ3 − x3).

(3-27)

When linearized using a Taylor approximation, (3-27) becomes

ŷout ≈
( 4V
π

√
2π

)
x1x2x3
σ3 , (3-28)

provided that θ1 = θ2 = θ3 = 0 and σ1 = σ2 = σ3 = σ.
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Figure 3-11: The distortion of the ternary SR-based multiplier for two sinusoidal inputs with a
unity amplitude. V is set to 1 and δ is set to 0.5. (a) The LSE gain and the predicted linear gain.
The gain depends on the correlation coefficient of the input signals. (b) The distortion power.
As σ goes up, the output becomes more linear and the distortion power gets closer to zero.
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Figure 3-12: Signal-to-noise-and-distortion ratio of the ternary SR-based multiplier for two sinu-
soidal inputs with a unity amplitude and frequency, sampled with a sampling frequency of 1 kHz
and subjected to a second order Butterworth LPF with cut-off frequency of 20 Hz. V is set to 1
and δ is set to 0.5. The asterisks mark the simulated results and the solid lines are the predicted
results based on the formula. The stochastic resonance occur around the same σ.
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δ = ±0.1, simulated
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Figure 3-13: Signal-to-noise-and-distortion ratio of the ternary SR-based multiplier for two sinu-
soidal inputs with a unity amplitude and frequency, sampled with a sampling frequency of 1 kHz
and subjected to a second order Butterworth LPF with cut-off frequency of 20 Hz for different
values of δ. V is set to 1. The asterisks mark the simulated results and the solid lines are the
predicted results based on the formula. The input signals are arranged such that ρ = 0.
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3-3-2 K Inputs Multiplier

The SR-based multipliers can be cascaded further, to accomodate K input signals as shown
in Figure 3-15. The expected value of its output is formulated as

ŷout,K = V + V
K∑
k=1

(−2)k
∑

1≤i1<···<ik≤K
Fηi1

(θi1 − xi1) . . . Fηik
(θik − xik), (3-29)

where the second term denotes the sum of all possible subproduct of Fη(θ − x). The Taylor
approximation is given by

ŷout,K ≈ V

(
−
√

2
π

)K K∏
k=1

θk − xk
σk

. (3-30)

The derivations of (3-29) and (3-30) are provided in Appendix A-3 and A-4, respectively.
Based on (3-30), it can be said that each stage of the multiplier will either amplify or attenuate
the input signals by a factor that is proportional to 1

σ . This means that at the same σ,
the output noise will be higher the larger K is. This is also demonstrated in Figure 3-16.
In general, the noise behavior can be predicted with (3-14). Moreover, going through the
pattern, the conditional expected value can also be calculated with (3-10).

The distortion behavior can be calculated with (3-18), where Ŷout and X are given by

Ŷout = [ŷout,K(0) ŷout,K(1) · · · ŷout,K(M − 1)]T

and

X =
[
K∏
k=1

xk(0)
K∏
k=1

xk(1) · · ·
K∏
k=1

xk(M − 1)
]T

.

(3-31)

The plot of the distortion behavior is presented in Figure 3-17. Since the LSE gain will
eventually be proportional to 1

σK
, after a certain point, Ĝ will roll off steeper the larger K

is. The distortion power also becomes higher the larger K is. This makes sense, since the
distortion that is contained in the output of the previous XNOR is transferred to the next
XNOR.
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Figure 3-14: Three inputs SR-based multiplier.

−

+

−

+

−

+

−

+

yo,K

yo,3

yo,2

y1

y2

y3

yK

θ1

θ2

θ3

θK

fs

fs

fs

fs

+
+

x1

η1

+
+

x2

η2

+
+

x3

η3

+
+

xK

ηK

. . .

Figure 3-15: SR-based multiplier for K inputs.
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Figure 3-16: The output noise for K identical sinusoidal inputs with a unity amplitude. V is set
to 1. The asterisks mark the simulated results and the solid lines are the predicted results based
on the formula. (a) Standard deviation for N = 1. (b) The noise power for N = 1.
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Gain Ĝ K = 2
K = 3
K = 4
K = 5

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

σ

Pdistortion K = 2
K = 3
K = 4
K = 5

(b)

Figure 3-17: The distortion for K identical sinusoidal inputs with a unity amplitude. V is set to
1. (a) The LSE gain. (b) The distortion power. For larger K, the distortion power is higher.
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3-4 Conclusions

In this chapter, the combination of an XNOR gate and SR-based fundamental building blocks
is proposed to produce a signal multiplier. From the theoretical approach, the expected value
of the output signal, the noise power, and the distortion power are formulated. The formulas
are proven by comparing them to the simulation results. Using SNDR as the performance
metric, a performance peak can be observed when the operator is subjected to noise.
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Chapter 4

Signal Adder with Stochastic
Resonance-Based Systems

Generating a binary signal that contains the information of the sum of two input signals can be
done just by adding the input signals in analog domain, e.g. using a summing amplifier, and
convert it using a 1-bit analog-to-digital converter (ADC). However, it can also be realized by
converting both inputs to binary signals and do a binary addition. This way, it will generate
an output that, when averaged, produces the sum of these inputs. The purpose of this chapter
is to explain the design and properties of a signal adder with stochastic resonance (SR)-based
systems.

4-1 SR-Based Adder in Binary Domain

The obvious choice for an SR-based adder is to use a binary half adder, shown in Figure 4-1.
The operator generates two binary outputs b0 and b1 that, when converted to decimal and
then averaged, represent the sum of both inputs.

−
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+

y1

y2
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θ2

b1
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fs

fs
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x1

η1

+
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Figure 4-1: The proposed SR-based adder using binary half adder.
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4-1-1 Output Signal Formula Derivation

For comparators producing outputs ±V , the total sum will have a maximum value of 2V .
The output yo can be determined by

yo = 2V (2b1 + b0) − 2V. (4-1)

The probabilities of yo given x1 and x2 are

Pr (yo = +2V |x1, x2) = Pr (b1 = 1 ∩ b0 = 0 |x1, x2)
= Pr (y1 = 1 ∩ y2 = 1 |x1, x2)
= Pr (y1 = 1 |x1, x2) Pr (y2 = 1 |x1, x2)
= (1 − Fη1 (θ1 − x1)) (1 − Fη2 (θ2 − x2))
= 1 −

(
Fη1 (θ1 − x1) + Fη2 (θ2 − x2)

)
+ Fη1 (θ1 − x1)Fη2 (θ2 − x2) ,

(4-2)

Pr (yo = 0 |x1, x2) = Pr (b1 = 0 ∩ b0 = 1 |x1, x2)
= Pr (y1 = 1 ∩ y2 = 0 ∪ y1 = 0 ∩ y2 = 1 |x1, x2)
= Pr (y1 = 1 |x1, x2) Pr (y2 = 0 |x1, x2)

+ Pr (y1 = 0 |x1, x2) Pr (y2 = 1 |x1, x2)
= (1 − Fη1 (θ1 − x1))Fη2 (θ2 − x2)

+ Fη1 (θ1 − x1) (1 − Fη2 (θ2 − x2))
=
(
Fη1 (θ1 − x1) + Fη2 (θ2 − x2)

)
− 2Fη1 (θ1 − x1)Fη2 (θ2 − x2) ,

(4-3)

and

Pr (yo = −2V |x1, x2) = Pr (b1 = 0 ∩ b0 = 0 |x1, x2)
= Pr (y1 = 0 ∩ y2 = 0 |x1, x2)
= Pr (y1 = 0 |x1, x2) Pr (y2 = 0 |x1, x2)
= Fη1 (θ1 − x1)Fη2 (θ2 − x2) .

(4-4)

Using (4-2), (4-3), and (4-4), the expected value of yo is

ŷout = E [yo |x1, x2] = Pr (yo = 2V |x1, x2) (+2V ) + Pr (yo = 0 |x1, x2) (0)
+ Pr (yo = −2V |x1, x2) (−2V )

= 2V
(
1 −

(
Fη1 (θ1 − x1) + Fη2 (θ2 − x2)

))
,

(4-5)

which is the sum of E [y1 |x1] and E [y2 |x2]. Using (3-6), the approximation of (4-5) for
Gaussian noise inputs is

ŷout ≈ 2V
(

1 −
(1

2 + θ1 − x1

σ1
√

2π
+ 1

2 + θ2 − x2

σ2
√

2π

))
= 2V

(
−
(
θ1 − x1

σ1
√

2π
+ θ2 − x2

σ2
√

2π

))
,

(4-6)
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which, for θ1 = θ2 = 0 and σ1 = σ2 = σ, becomes

ŷout ≈ 2V
σ

√
2π

(x1 + x2) . (4-7)

Due to generating a 2-bit output, it is difficult to place this operator at the beginning of an
SR-based system. For example, it is not possible to do an operation f(x) = x1(x2 + x3) only
by adding x2 and x3, then multiplying it by x1, because the SR-based multiplier cannot take
2-bit inputs. It is, however, easier to use the adder at the end of the system by rearranging
f = x1x2 + x1x3. In this case, the system operates x1 × x2 and x1 × x3 first, and then adds
the outputs of these multipliers, as shown in Figure 4-2. For this case, two multipliers are
required as opposed to the first case that only needs one multiplier.

×̃

×̃

+̃x1

x2

x3

b1
b0

Figure 4-2: Block diagram of a system that produces f = x1(x2 +x3). The ×̃’s and +̃ represent
SR-based operators.

4-1-2 Output Noise

The process of finding the output noise power is the same as in Section 3-1-2. The expected
value of the square of the difference between yo and ŷout given x1 and x2 is

E
[
(yo − ŷout)2

∣∣∣x1, x2
]

= Pr (yo = +2V |x1, x2) (2V − ŷout)2 + Pr (yo = 0 |x1, x2) (−ŷout)2

+ Pr (yo = −2V |x1, x2) (−2V − ŷout)2

=
( ŷout

2V + Pr (yo = −2V |x1, x2)
) (

4V 2 − 4V ŷout + ŷ2
out

)
+
(
1 − ŷout

2V − 2 Pr (yo = −2V |x1, x2)
) (
ŷ2
out

)
+ Pr (yo = −2V |x1, x2)

(
4V 2 + 4V ŷout + ŷ2

out

)
= 8V 2Fη1 (θ1 − x1)Fη2 (θ2 − x2) + 2V ŷout − ŷ2

out.

(4-8)
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The output noise is still white, hence the overall noise power is

Pnoise,out =


1

MN

M−1∑
n=0

(
E
[
(yo(n) − ŷout(n))2

∣∣∣x1(n), x2(n)
] )

for parallelization

2∆fENBW
Mfs

M−1∑
n=0

(
E
[
(yo(n) − ŷout(n))2

∣∣∣x1(n), x2(n)
] )

for filtering
.

(4-9)
Figures 4-3a and 4-3b show the output noise power for an SR-based adder without any
averaging and with filtering, respectively. The inputs are three sets of two sinusoidal signals
that are arranged such that their correlation coefficients are ρ = {0,+0.5,+1}. From both
figures, it can be seen that the output noise power for every case is the same. This makes
sense because, in the end, yo is equal to y1 + y2. Since the output noise for y1 and y2 is the
same for every sinusoidal input with the same amplitude and frequency regardless of their
phase differences, the output noise of the total system will be the same for every ρ.

With the reasoning stated above, it should be possible to derive (4-8) by calculating the
output noise power for each comparator’s output. Since the comparator generates a binary
output, (3-10) holds. ŷ1,out and ŷ2,out, derived in Appendix A-1, are formulated by (A-1).
The expected value of the square of the difference between yo and ŷout given x1 and x2 is

E
[
(yo − ŷout)2

∣∣∣x1, x2
]

= E
[
(y1 − ŷ1,out)2

∣∣∣x1
]

+ E
[
(y2 − ŷ2,out)2

∣∣∣x2
]

=
(
V 2 − ŷ2

1,out

)
+
(
V 2 − ŷ2

2,out

)
= 4V 2Fη1 (θ1 − x1) − 4V 2F 2

η1 (θ1 − x1)
+ 4V 2Fη2 (θ2 − x2) − 4V 2F 2

η2 (θ2 − x2)

= 4V 2
(
Fη1 (θ1 − x1) − F 2

η1 (θ1 − x1) + Fη2 (θ2 − x2) − F 2
η2 (θ2 − x2)

)
.

(4-10)

In Appendix A-5, it is proven that (4-8) and (4-10) are equivalent.

The plots of simulated and predicted signal-to-noise ratio (SNR) are shown in Figure 4-4.The
maximum SNR is achieved when the adder is noiseless.

4-1-3 Distortion

Similar to an SR-based multiplier, the distortion behavior of an SR-based adder can be
calculated with (3-18), where Ŷout and X are given by

Ŷout = [ŷout(0) ŷout(1) · · · ŷout(M − 1)]T

and
X = [x1(0) + x2(0) x1(1) + x2(1) · · · x1(M − 1) + x2(M − 1)]T .

(4-11)

Since X consists of an addition of two input matrices, Ĝ will always be the same for inputs
that only differ in phases (e.g. different correlation coefficients for sinusoidal inputs), as shown
in Figure 4-5a. As σ goes up, the adder becomes more linear and the gain approaches the
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Figure 4-3: The output noise for two sinusoidal inputs with a unity amplitude, sampled with a
sampling frequency of 1 kHz. V is set to 1. The asterisks mark the simulated results and the solid
lines are the predicted results based on the formula. (a) The noise power without any averaging.
(b) The noise power for the output signal filtered with a second order Butterworth LPF with a
cut-off frequency of 20 Hz. As σ goes up, the output noise becomes larger.

Master of Science Thesis Insani Abdi Bangsa



46 Signal Adder with Stochastic Resonance-Based Systems

10−1 100 101
−15

−10

−5

0

5

10

15

20

25

30

σ

SN
R

[d
B

]

ρ = 0, simulated
ρ = 0, predicted
ρ = +0.5, simulated
ρ = +0.5, predicted
ρ = +1, simulated
ρ = +1, predicted

Figure 4-4: Signal-to-noise ratio for two sinusoidal inputs with a unity amplitude and frequency,
sampled with a sampling frequency of 1 kHz and subjected to a second order Butterworth LPF
with cut-off frequency of 20 Hz. V is set to 1. The asterisks mark the simulated results and
the solid lines are the predicted results based on the formula. The stochastic resonance does not
happen since the performance is at maximum when σ = 0.

linear gain 2V
σ

√
2π

. Although the gains are the same for every case, the distortion powers are
different. Going through the definition of distortion power,

Pdistortion = E
[(
ŷout − Ĝ(x1 + x2)

)2
]

= E
[(

(ŷ1,out − Ĝx1) + (ŷ2,out − Ĝx2))
)2
]

= E
[(
ŷ1,out − Ĝx1

)2
]

+ E
[(
ŷ2,out − Ĝx2

)2
]

+ 2E
[
(ŷ1,out − Ĝx1)(ŷ2,out − Ĝx2)

]
.

(4-12)

For the case shown in Figure 4-5, the first and second terms are always the same. The third
term, however, changes depending on the phase difference of the input.

Figure 4-6 presents the SNDR for three sets of two sinusoidal inputs with a unity amplitude
and frequency that differ in phase, sampled with a sampling frequency of 1 kHz and subjected
to a second order Butterworth LPF with a cut-off frequency of 20 Hz. As in the case with
the SR-based multiplier in Chapter 3, SNDR peaks can be found for σ 6= 0.
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Figure 4-5: The distortion for two sinusoidal inputs with a unity amplitude, sampled with a
sampling frequency of 1 kHz. V is set to 1. (a) The LSE gain and the predicted linear gain.
The gains are the same for sinusoidal inputs regardless of their correlation coefficients. (b) The
distortion power. As σ goes up, the output becomes more linear and the distortion power gets
closer to zero.
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Figure 4-6: Signal-to-noise-and-distortion ratio for two sinusoidal inputs with a unity amplitude
and frequency, sampled with a sampling frequency of 1 kHz and subjected to a second order
Butterworth LPF with a cut-off frequency of 20 Hz. V is set to 1. The asterisks mark the
simulated results and the solid lines are the predicted results based on the formula. The SNDR
peaks can be found at different σ’s for different ρ’s.

4-2 SR-Based Subtractor

Subtracting y2 from y1 is the same as adding y1 to −y2. This means that a subtractor can be
constructed from an adder that takes two inputs: y1 and −y2. Since y2 has a value of ±V ,
getting the inverse of y2 can be achieved by putting an inverter in front of y2 or inverting the
input of the second comparator. The proposed SR-based subtractor is shown in Figure 4-7.
The expected value of yo, as derived in Appendix A-6, is

ŷout = 2V
(

−
(
Fη1 (θ1 − x1) − Fη2 (θ2 − x2)

))
= E [y1 |x1] − E [y2 |x2] .

(4-13)

Using (3-6), the approximation of (4-13) for Gaussian noise inputs with θ1 = θ2 = 0 and
σ1 = σ2 = σ is

ŷout ≈ 2V
σ

√
2π

(x1 − x2) . (4-14)
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Figure 4-7: An SR-based subtractor using an SR-based adder with inverted y2.

4-2-1 Output Noise and Distortion

Due to the SR-based subtractor fundamentally being an SR-based adder, the output noise
of the subtractor will behave the same as that of the adder, i.e. (4-10). Thus, for the same
case, the output noise power of the SR-based subtractor is also shown in Figure 4-3. It also
should be noted that for the SR-based subtractor, (4-8) and (4-10) are not equivalent since
the ŷout’s are different. The distortion power of two sets of two sinusoidal inputs with a unity
amplitude are presented in Figure 4-8. The case of ρ = +1 will have zero distortion power,
thus it is not included.
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Pdistortion ρ = 0
ρ = +0.5

Figure 4-8: The distortion power of the SR-based subtractor for two sinusoidal inputs with a
unity amplitude, sampled with a sampling frequency of 1 kHz. V is set to ±1. As σ goes up,

the output becomes more linear and the distortion power gets closer to zero.

4-3 Multiple Inputs Adder

4-3-1 3 Inputs Adder

Since the outputs of a two inputs SR-based adder are 2-bit signals, a 3 inputs SR-based adder
cannot be constructed by cascading two 2 inputs SR-based adders. The only option is to
construct an adder that produces the outputs based on a truth table. Table 4-1 shows the
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Figure 4-9: (a) Signal-to-noise ratio and (b) signal-to-noise-and-distortion ratio for two sinusoidal
inputs with a unity amplitude and frequency, sampled with a sampling frequency of 1 kHz and
subjected to a second order Butterworth LPF with a cut-off frequency of 20 Hz. V is set to 1.
The asterisks mark the simulated results and the solid lines are the predicted results based on the
formula. The stochastic resonance occurs in SNDR at different σ for different ρ.
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truth table of a 3 inputs adder and it can be formulated as boolean function

b0 = y1 ⊕ y2 ⊕ y3,

b1 = y1 · y2 ⊕ y2 · y3 ⊕ y1 · y3.
(4-15)

The 2-bit output can be converted to a decimal value with formula

yo = 2V (2b1 + b0) − 3V. (4-16)

since the maximum value of the output is +3V , its expected value is formulated as

ŷout = 3V − 2V
(
Fη1 (θ1 − x1) + Fη2 (θ2 − x2) + Fη3 (θ3 − x3)

)
, (4-17)

which can be approximated as

ŷout ≈ 2V
σ

√
2π

(x1 + x2 + x3) (4-18)

for Gaussian noise sources, θ1 = θ2 = 0, and σ1 = σ2 = σ.

Table 4-1: Truth table of a 3 inputs adder.

y1 y2 y3 b1 b0

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

The block diagram of a 3 inputs SR-based adder that satisfies (4-15) is shown in Figure 4-10.
It can be seen that the 3 inputs SR-based adder is way more complex than the 2 inputs
SR-based adder. Although still producing a 2-bit output, the 3 input adder requires 5 more
logic circuits compared to the 2 input adder that only needs 2 logic circuits. Fortunately,
(4-15) is not the only formula that satisfies Table 4-1. b1 is also equal to (y1 ⊕ y2) ·y3 +y1 ·y2,
therefore the 3 inputs SR-based adder can also be realized with the circuit in Figure 4-11.
This alternative is less costly since it only needs 5 logic circuits.

4-3-2 K Inputs Adder

As discussed previously, cascading SR-based adders does not work in constructing a K inputs
SR-based adder due to the increasing number of output bits. In fact, the number of bits
produced by the operator is equal to blog2Kc + 1, where bxc, the floor function, gives the
closest integer that is less than or equal to x. Therefore, it is more beneficial to hold onto
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Figure 4-10: Three inputs SR-based adder.
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Figure 4-11: Alternative of three inputs SR-based adder.
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the boolean function of the output bits rather than the strict block diagrams of the operator.
The boolean outputs are formulated as

b0 =
K⊕
k=1

yk,

b1 =
⊕

1≤i1<i2≤K
yi1 · yi2 ,

b2 =
⊕

1≤i1<i2<i3<i4≤K
yi1 · yi2 · yi3 · yi4 ,

·
·
·

bblog2 Kc =
⊕

1≤i1<···<i
2blog2 Kc ≤K

yi1 · · · · · yi
2blog2 Kc .

(4-19)

⊕
denotes the big operator for XOR and

K⊕
k=1

yk simply means y1 ⊕ y2 ⊕ · · · ⊕ yK . Regardless

of the complexity of the circuits, implementing K inputs adders can reduce the number of
required input channels of the digital signal processor from K to blog2Kc + 1.

Setting the output yo,K equal to 2V

blog2 Kc∑
k=0

2kbk

−KV , the expected value of yo,K is

ŷout,K = KV − 2V
K∑
k=1

Fηk
(θk − xk) , (4-20)

which can be approximated as

ŷout,K ≈ −2V√
2π

K∑
k=1

(
θk − xk
σk

)
. (4-21)

Equation (4-20) and (4-21) are proven in Appendix A-7.

It has been explained in Section 4-1-2 that the output noise of the SR-based adder is the sum
of output noise produced by the individual comparators. Therefore, the output noise power
for a K inputs SR-based adder can be calculated with (4-9), where

E
[
(yo − ŷout,K)2

∣∣∣x1, · · · , xK
]

= 4V 2
K∑
k=1

(
Fηk

(θk − xk) − F 2
ηk

(θk − xk)
)
. (4-22)

The standard deviation and output noise power for K identical sinusoidal inputs with a unity
amplitude are presented in Figure 4-12. Since the maximum output is proportional to K and
V 2, so is the noise power.
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The distortion power is calculated with (3-18), where

Ŷout = [ŷout,K(0) ŷout,K(1) · · · ŷout,K(M − 1)]T

and

X =
[
K∑
k=1

xk(0)
K∑
k=1

xk(1) · · ·
K∑
k=1

xk(M − 1)
]T

.

(4-23)

The LSE gain and distortion power for the same case as Figure 4-12 is shown in Figure 4-13.
Although the LSE gains are the same for every case, the distortion power increases because
the ideal output power itself increases.
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Figure 4-12: The output noise for K identical sinusoidal inputs with a unity amplitude. V is set
to 1. The asterisks mark the simulated results and the solid lines are the predicted results based
on the formula. (a) Standard deviation for N = 1. (b) The noise power for N = 1.
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Figure 4-13: The distortion for K identical sinusoidal inputs with a unity amplitude. V is set to
1. (a) The LSE gain. (b) The distortion power. For larger K, the distortion power is higher.

Insani Abdi Bangsa Master of Science Thesis



4-4 Conclusions 57

4-4 Conclusions

In this chapter, a binary half-adder is used in combination with SR-based fundamental build-
ing blocks to produce an SR-based adder. The properties of the operator consisting of the
expected value of the output, the output noise power, and the distortion power are formu-
lated and compared with the simulation results. An SR-based subtractor can be constructed
by inserting an inverter after one of the SR-based blocks. Using SNDR as the performance
measure, a performance peak can be observed when the operator is subjected to noise.

Master of Science Thesis Insani Abdi Bangsa



58 Signal Adder with Stochastic Resonance-Based Systems

Insani Abdi Bangsa Master of Science Thesis



Chapter 5

Implementing Stochastic
Resonance-based Operators in

Mathematical Functions

As mathematical operator building blocks, an adder, subtractor, and multiplier should also
function in building a system. This chapter discusses the feasibility of using stochastic reso-
nance (SR)-based mathematical operators that have been proposed in the previous chapters
to construct several systems. Ultimately, the SR-based mathematical operators are used to
construct a Teager Energy Operator (TEO) as an action potential (AP) detection system.

5-1 Implementation of f = x1(x2 + x3)

As explained in Chapter 4, it is easier to implement the SR-based adder at the end of the
system. In this case, the system can be written as f = x1x2 +x1x3. The implementation of f
by SR-based operators is presented in Figure 5-1. The important thing that should be noted
here is that two comparators are necessary to accomodate x1. Moreover, each noise must
be independent of each other. These are done such that y1, y2, y3, and y4 are conditionally
independent of each other, given the input signals. Otherwise, there is no guarantee that
the SR-based operators will work as desired. To simplify the analysis, Gaussian white noise
sources with identical powers are used.

As a test case, three sinusoidal signals with a unity amplitude and frequency are used, as
shown in Figure 5-2a. The three signals are: x1 = sin(2πt), x2 = sin

(
2πt− π

3
)
, and x3 =

sin
(
2πt− 2π

3

)
. The system is sampled with a sampling frequency of 100 kHz and filtered by

a second-order Butterworth LPF with a cut-off frequency of 20 Hz. The output value V and
input noise power σ2 are set as 1 and 0.64, respectively. This input noise power is set such
that the SNDR of the output is near its maximum.
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Figure 5-1: The proposed SR-based implementation of f = x1(x2 + x3).

While the calculation of the least-square error (LSE) gain and distortion power are trivial,
the output noise power is formulated as

Pnoise,out = 2∆fENBW
fs

(
E
[
V 2 −

(E[y1 |x1]E[y2 |x2]
V

)2]
+ E

[
V 2 −

(E[y4 |x1]E[y3 |x3]
V

)2])
.

(5-1)

The averaged, expected, and amplified ideal outputs are shown in Figure 5-2b. The LSE gain
and SNDR are 0.74 and 21 dB, respectively. Comparing the averaged output with the ideal
output both qualitatively and quantitatively, it can be said that, in this case, the SR-based
system manages to produce the desired output.

5-2 Implementation of TEO

In this thesis, an SR-based derivative is not designed. Thus, the TEO cannot be implemented
purely by SR-based operators. By substituting the multipliers and subtractor in Figure 2-7,
an SR-based TEO can be constructed. However, the amplitude of a derivative and second
derivative of an input x in most cases will be larger than the amplitude of x itself. For
example, a sinusoidal input with an amplitude and frequency of A1 and f0 will have a second
derivative of a sine with an amplitude of (2πf0)2A1. This big difference in amplitude will pose
problems since, for achieving an optimum performance, the amount of noise that should be
added to the system has to follow the largest input. This will result in an enormous amount
of output noise and thus a high performance averaging technique will be needed. To avoid
this, each differentiator is set to have a time constant τ of

(
1

2πf0

)
so that the derivative of

the input will be comparable in amplitude with the original input. The final block diagram
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Figure 5-2: Inputs and outputs of f = x1(x2 + x3) using the proposed SR-based system. The
sampling frequency, V , input noise power, and cut-off frequency of the second-order Butterworth
LPF are 100 kHz, 1, 0.64, and 20 Hz, respectively. (a) Input signals. (b) The averaged, expected,
and amplified ideal outputs.
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of the SR-based TEO is shown in Figure 5-3. This system will produce a TEO output that is

attenuated by a factor of
(

1
2πf0

)2
. In the following cases, the following parameters are set:

V = 1, the sampling frequency is 100 kHz, the averaging technique used is a second-order
Butterworth filter with a cut-off frequency of 10 Hz, and the simulation time is 2.5 s.
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Figure 5-3: The proposed SR-based implementation of the continuous-time TEO.

5-2-1 Case Study: Sinusoidal Signal

As a test case, input x = 0.1 sin(2πt) is used. This input is supposed to make the SR-based
TEO generates output ψ(x) = 0.01. σ = 0.1 is chosen as it results in a near-optimum SNDR.
The output of the TEO is presented in Figure 5-4, with Ĝ = 50, SNR= 28 dB, and SNDR= 24
dB.

Comparing the amplified ideal output with the expected output in Figure 5-4, it can be seen
that, instead of a constant, a sinusoidal ripple is present at the output. This is due to the
distortion at the output of each comparator. To decrease this distortion, uniformly distributed
white noise sources can be used instead of Gaussian distributed white noise sources, which is
discussed extensively in Appendix D.

To remove the distortion completely and produce a near-optimum SNDR, the noise power
should be chosen as the square of the maximum of the absolute value of the inputs over three,
i.e.

σ0 = 1√
3

max
{

|x|, 1
2πf0

∣∣∣∣dxdt
∣∣∣∣ , 1

(2πf0)2

∣∣∣∣∣d2x

dt2

∣∣∣∣∣
}
. (5-2)
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Figure 5-4: The averaged, expected, and amplified ideal outputs of the TEO of input x =
0.1 sin(2πt) subjected to Gaussian distributed white noise sources.
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Figure 5-5: The averaged, expected, and amplified ideal outputs of the TEO of input x =
0.1 sin(2πt) subjected to uniformly distributed white noise sources.
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In this case, σ0 = 0.1√
3

. The output of the TEO is presented in Figure 5-5. This output has

Ĝ = 100 and SNR=SNDR= 35 dB. As theorized, there is no distortion at the output, which
qualitatively can be seen by comparing the ideal with the expected output in Figure 5-5 and
quantitatively by comparing the SNR and SNDR.

5-2-2 Case Study: Exponentially Damped Sinusoidal Signal

In this case, input x = 0.1 exp(−t) sin(2πt) is used. This input corresponds to ψ = 0.01 exp(−2t).
Uniform white noise sources are used and σ0 is set as 0.1√

3
which makes Ĝ = 100. The output

of the TEO is presented in Figure 5-6. For this case, SNR and SNDR are not suitable to
measure the performance since a negative exponential signal (e.g. exp(−2t)) has zero average
power over infinite time. However, for a simulation time of 2.5 s, SNR=SNDR= 23 dB.

5-2-3 Case Study: Multisine Signal

For the last case study, a multisine input x = 0.1 sin(2πt)+0.05 sin(4πt) is used. The optimum
noise RMS value is

σ0 = 0.1 sin(2πt0) + 0.2 sin(4πt0), (5-3)

where t0 = 1
2π arccos

(
−1+

√
129

16

)
. The averaged, expected, and ideal outputs are presented in

Figure 5-7 where Ĝ = 13.4, SNR=SNDR= 24 dB.

From the three cases, it can be concluded that the proposed SR-based TEO can generate
outputs that resemble the outputs of the ideal TEO. The differences lie in the output noise
part, which can be minimized by using better averaging techniques.

5-3 SR-Based TEO as an Action Potential Detection System

The nature of an AP signal is different from that of the well-known signals that are used as test
cases in Section 5-2. Figure 5-8 shows an example of an AP, its first, and second derivatives
that are already amplified and sampled with a sampling frequency fs of 20 kHz. As can be
seen, there are huge differences in their maximum values such that τ in the SR-based TEO
has to be in the range of 5 × 10−5 to 1 × 10−4.

Since the required value of τ is close to 1/fs, it is possible to use the discrete-time version
of the TEO, as formulated by (2-12). In this formula, there is no need of differentiators and

the output is attenuated by
(

1
fs

)2
, thus an SR-based TEO can be constructed using delay

blocks in addition to two SR-based multipliers and a subtractor. However, as discussed in
Section 2-2-1, the system is impossible to be constructed since it is noncausal. This problem
can be solved by shifting the output of the system by one sample, and thus a discrete-time
SR-based TEO is proposed in Figure 5-9.

As the AP signal has a large bandwidth already, the output of its TEO will also have a
large bandwidth. In fact, the output signal power is distributed from zero Hz to fs/2. This
fact makes averaging using a filter impossible, and therefore the parallelization technique is
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Figure 5-6: The averaged, expected, and amplified ideal outputs of the TEO of input x =
0.1 exp(−t) sin(2πt) subjected to uniformly distributed white noise sources.
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Figure 5-7: The averaged, expected, and amplified ideal outputs of the TEO of input x =
0.1 sin(2πt) + 0.05 sin(4πt) subjected to uniformly distributed white noise sources.
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Figure 5-8: The difference in range of an AP signal and its derivatives.
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Figure 5-9: The proposed SR-based implementation of the discrete-time TEO.
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used. Figure 5-10a and Figure 5-10b present the output of the proposed SR-based TEO with
parallelizations of 10, 000 and 100, 000, respectively. There is no distortion present in either
output since a uniformly distributed white noise with σ = max |x|√

3
is used.

5-4 Quantifying the Performance of AP SR-Based TEO

Up to this point, signal-to-noise ratio (SNR) and signal-to-noise-and-distortion ratio (SNDR)
have been used to measure the performance of SR-based systems. However, in the case of the
SR-based TEO for AP detection applications, this proves to be misleading. Firstly, the SNDRs
for the proposed SR-based TEO with 10, 000 and 100, 000 are −7.5 and 2.5 decibel (dB),
respectively. This is very low, although not very surprising considering the average signal
power of an AP signal is fundamentally low. Despite that, looking at Figure 5-10, the spikes
can be distinguished rather easily from the noise. Therefore, a more practical performance
measure has to be used.

As an action potential detection system, the most important thing for this system is to
inform the user(s) whenever an AP occurs. Thus, the performance can be quantified by
counting how many APs are accurately detected by the system, or conversely: how many
APs are inaccurately detected by the system. The second approach is easier to interpret
since the better the system is, the closer to zero its inaccuracy is. In this section, two types
of inaccuracies are used. The first type of inaccuracy is a false positive (FP). In this type,
the system detects an AP when no AP is present. The second type is a false negative (FN).
Contrary to the first type, in this type, the system does not detect any AP when in reality an
AP activity occurs. Figure 5-11 illustrates the FP and FN in an AP detection system. From
these two quantities, the False Positive Value and sensitivity of the system can be calculated
[24]. These two metrics are formulated as

False Positive Value = FP
TP + FP × 100% (5-4)

and
Sensitivity = TP

TP + FN × 100%, (5-5)

where TP, the true positive, is how many APs that are supposed to be detected by the system.
The lower the False Positive Value and the higher the sensitivity, the better the system.

As a test case, an AP signal of an epileptic mouse from the Department of Neuroscience,
Erasmus Medical Center, Rotterdam, the Netherlands, is used. This signal is sampled with
a sampling frequency of 20 kHz for 5 s. At the time of the recording, 211 APs are detected
by the ideal TEO, and this is considered as the TP and the reference for the SR-based TEO.
The detection level for an AP occurence is set to be Ĝ · 4 × 10−3, where Ĝ is the LSE gain of
the system. The performance of the proposed system for different numbers of parallelizations
is presented in Table 5-1. From these two results, it can be concluded that, disregarding the
detection level contribution, increasing the parallelizations by ten times produces a far more
accurate system.
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Figure 5-10: The averaged and amplified ideal outputs of the TEO with an AP signal as the
input. (a) Parallelization of N = 10, 000. (b) Parallelization of N = 100, 000.
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Figure 5-11: The inaccuracies of AP detections systems. A false positive occurs when the system
detects an AP when there is no spike and a false negative occurs when the system does not detect
any AP when it is actually there.
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Table 5-1: Performance of the Proposed SR-based TEO as an AP detection system

FP FN False Positive Value (%) Sensitivity (%)

N=10,000 451 23 68.13 90.17
483 39 69.60 84.40
482 24 69.55 89.79
433 28 67.24 88.28
465 37 68.79 85.08

average 462.8 30.2 68.68 87.48

N=100,000 11 7 4.95 96.79
11 7 4.95 96.79
11 7 4.95 96.79
10 9 4.52 95.90
10 6 4.52 97.26

average 10.6 7.2 4.78 96.70

5-5 Conclusions

In this chapter, the SR-based multiplier, adder, and subtractor are used to implement several
functions. From the test cases, it can be concluded that the SR-based operators can be used to
build systems. By using uniformly distributed white noise sources, the distortion contribution
of a system can be removed and its performance is determined by how good the averaging
technique used is. As an AP detection system, a parallelization of 100,000 is necessary to get
a good performance.
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Chapter 6

Conclusions and Recommendations for
Future Work

6-1 Conclusions

The stochastic resonance (SR) phenomenon is able to boost the performance of a nonlinear
system, especially in threshold-based systems. Using a simple comparator subjected to noise,
a 1-bit analog-to-digital converter (ADC) can be built. In this thesis, the possibility of ma-
nipulating the information that is preserved by the stochastic resonance (SR)-based systems
are examined. The research subquestions are answered as follows:

1. Is it possible to implement mathematical operators using SR?
It is possible to implement SR-based multipliers and adders, as extensively discussed
in Chapters 3 and 4. The performance of the operators depends on how good the
information that is preserved by the SR-based fundamental building blocks is.

2. How can one define and predict the performance of the operators?
Based on the purpose of the operators and how the content of this thesis can be devel-
oped further in the electronics field, signal-to-noise ratio (SNR) and signal-to-noise-and-
distortion ratio (SNDR) are used as the performance metrics as discussed in Chapter 2.
The performance can be predicted by defining the output noise and distortion, which
is discussed in Chapters 3 and 4.

3. Is it possible to build a system out of the SR-based math operators?
It is possible to build a system from the SR-based operators, as demonstrated in Chap-
ter 5. Moreover, using the appropriate noise type and power, SR-based systems are not
only able to handle arbitrary input signals, but also physiological signals such as action
potentials (APs).

Therefore, the answer to the main research question “Is it possible to use the SR phe-
nomenon to manipulate information that is contained in the output signal?” is
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“Yes, it is possible. The performance of the information manipulators, namely
the mathematical operators, depend on the performance of the SR-based building
blocks themselves.”.

6-2 Contributions

In this thesis, the following contributions are made:

1. In Chapter 3, a new design of a system-level signal multiplier is proposed. This design
makes use of an independent randomness that is introduced in SR-based fundamental
blocks such that it only takes an XNOR gate to act as a multiplication operator. It is
shown mathematically that, as long as the noise sources are independent, the XNOR
itself will act as an ideal multiplier and thus, the performance of the total multiplier is
determined by the performance of the individual SR-based fundamental blocks;

2. In Chapter 4, a half-adder is used in combination with SR-based fundamental blocks
to produced an SR-based adder. With this configuration, an SR-based subtractor can
be designed. An observation is made that, compared to adding and subtracting them
digitally, processing the signals in the mixed-signal domain can decrease the number of
necessary input ports in the digital signal processor from K to blog2Kc + 1, where K is
the number of input signals. In Appendix B, a design of a 1-bit output SR-based adder
is proposed. It can approximate the properties of an adder, but the behaviors of the
operator are not sucessfully characterized;

3. In Chapter 5, the proposed SR-based operators in the previous chapters are used to
build several systems, specifically the Teager Energy Operator (TEO). Due to the 2-bit
output of the SR-based adder and subtractor, the configuration of a system might have
to be changed. However, it is shown that it is possible to build a system or mathemat-
ical functions out of these SR-based operators as they produced the expected outputs.
It is also shown that, by applying uniformly distributed noise signals as observed in
Appendix D, a nondistorted output can be acquired. In an AP detection application, a
large number of parallelization is necessary to get a system with a good performance.

6-3 Recommendations for Future Work

There are at least three directions that can be taken to continue the research in this thesis.

1. Going broad: investigate the possibility of other SR-based math operators
at the system level.
In this thesis, only the SR-based adder, subtractor, and multiplier have been successfully
designed. There are still the divider, differentiator, integrator, modulo operator, etc.
that can be investigated. Is it possible to build these operators? If so, how well do they
perform compared to the ideal operators? If not, why?
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2. Going deep: implement the SR-based operators and systems at the circuit
level.
As discussed in the previous chapters, this research is done with the vision that it can
provide alternative designs for mathematical operators in the electronics field. There-
fore, it is interesting to implement the proposed operators and systems at the circuit
level and investigate how well they perform. Is it possible to use the noise that is
omnipresent in electronic circuits, or should one build noise generators for this?

3. Going perfect: investigate how to improve the performance of the SR-based
block.
It has been repeatedly discussed that the performance of the math operators depends
on the performance of their SR-based blocks. Although it’s been pointed out that the
output noise can be reduced by the averaging technique while the distortion can be
reduced by either increasing the input noise power or using uniformly distributed noise,
these options are actually trade-offs of noise and distortion since input noise power
will also increase the output noise power. Then, to filter out the increased output
noise, a very good averaging technique is necessary, and it can be quite costly from an
engineering point of view. Is there a mechanism, such as a negative feedback, to filter
out the output noise using only a minimum-performance averaging technique? Also,
can the input noise be controlled such that it always gives the optimum power to ensure
the occurence of SR?
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Appendix A

Derivations and Proofs

A-1 Derivation of the Expected Value of a Fundamental SR-Based
Building Block

As described in (3-1), Pr (y = 1 |x) = 1 − Fη(θ − x). Therefore, the expected value of y is

ŷout = 2V Pr (y = 1 |x) − V

= V
(
1 − 2Fη(θ − x)

)
.

(A-1)

A-2 Proof of (3-5)

For η1 and η2 independent of each other, the left-hand side (LHS) is

ŷout = E [y1 � y2 |x1, x2]

= 2V
(

Pr (y1 � y2 = 1 |x1, x2)
)

− V

= 2V
(

Pr (y1 = 1 |x1) Pr (y2 = 1 |x2)

+ (1 − Pr (y1 = 1 |x1))(1 − Pr (y2 = 1 |x2))
)

− V

= V
(
1 − 2 (Pr (y1 = 1 |x1) + Pr (y2 = 1 |x2))

+ 4 Pr (y1 = 1 |x1) + Pr (y2 = 1 |x2)
)
,

(A-2)
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and the right-hand side (RHS) is

ŷ1,out × ŷ2,out
V

= E [y1 |x1] E [y2 |x2]
V

=

(
2V
(

Pr (y1 = 1 |x1)
)

− V

)(
2V
(

Pr (y2 = 1 |x2)
)

− V

)
V

=
(

2V
(

Pr (y1 = 1 |x1)
)

− V

)(
2
(

Pr (y2 = 1 |x2)
)

− 1
)

= V
(
1 − 2 (Pr (y1 = 1 |x1) + Pr (y2 = 1 |x2))

+ 4 Pr (y1 = 1 |x1) + Pr (y2 = 1 |x2)
)
.

(A-3)

The LHS and RHS are equivalent, therefore ŷout = E [y1 |x1] E [y2 |x2]
V .

A-3 Derivation of (3-29)

The probability of output yo,K = 1 given x1, x2, . . . , xK is

Pr(yo,K = 1|x1, . . . , xK) = Pr(yo,K−1 = 1|x1, . . . , xK) Pr(yK = 1|x1, . . . , xK)
+ Pr(yo,K−1 = 0|x1, . . . , xK) Pr(yK = 0|x1, . . . , xK)

= Pr(yo,K−1 = 1|x1, . . . , xK) Pr(yK = 1|x1, . . . , xK)

+
(
1 − Pr(yo,K−1 = 1|x1, . . . , xK)

)(
1 − Pr(yK = 1|x1, . . . , xK)

)
= 2 Pr(yo,K−1 = 1|x1, . . . , xK) Pr(yK = 1|x1, . . . , xK)

−
(

Pr(yo,K−1 = 1|x1, . . . , xK) + Pr(yK = 1|x1, . . . , xK)
)

+ 1

= 2 Pr(yo,K−1 = 1|x1, . . . , xK)
(
1 − FηK (θK − xK)

)
−
(

Pr(yo,K−1 = 1|x1, . . . , xK) + 1 − FηK (θK − xK)
)

+ 1.
(A-4)

Insani Abdi Bangsa Master of Science Thesis



A-3 Derivation of (3-29) 77

To make the writing more concise, Pr(yo,K = 1 |x1, x2, · · · , xK) and FηK (θK − xK) will be
denoted as Pr(K) and FηK , respectively, starting from now. Then, (A-4) can be written as

Pr(K) = 2 Pr(K − 1)(1 − FηK ) − (Pr(K − 1) + 1 − FηK ) + 1
= Pr(K − 1)(1 − 2FηK ) + FηK

=
(

Pr(K − 2)(1 − 2FηK−1) + FηK−1

)
(1 − 2FηK ) + FηK

= Pr(K − 2)(1 − 2FηK−1)(1 − 2FηK ) + FηK−1(1 − 2FηK ) + FηK

=
(

Pr(K − 3)(1 − 2FηK−2) + FηK−2

)
(1 − 2FηK−1)(1 − 2FηK ) + FηK−1(1 − 2FηK ) + FηK

=
(

Pr(K − 3)(1 − 2FηK−2)(1 − 2FηK−1)(1 − 2FηK ) + FηK−2(1 − 2FηK−1)(1 − 2FηK )

+ FηK−1(1 − 2FηK ) + FηK

= (1 − Fη1)
K∏
k=2

(1 − 2Fηk
) + Fη2

K∏
k=3

(1 − 2Fηk
) + Fη3

K∏
k=4

(1 − 2Fηk
) + · · ·

+ FηK−3

K∏
k=K−2

(1 − 2Fηk
) + FηK−2(1 − 2FηK−1)(1 − 2FηK−2)

+ FηK−1(1 − 2FηK ) + FηK

=

1 +
K∑
k=2

(−2)k−1 ∑
2≤i1<···<ik−1≤K

Fηi1
· · ·Fηik−1


− Fη1

1 +
K∑
k=2

(−2)k−1 ∑
2≤i1<···<ik−1≤K

Fηi1
· · ·Fηik−1


+ Fη2

1 +
K∑
k=3

(−2)k−2 ∑
3≤i1<···<ik−2≤K

Fηi1
· · ·Fηik−2


+ Fη3

1 +
K∑
k=4

(−2)k−3 ∑
4≤i1<···<ik−3≤K

Fηi1
· · ·Fηik−3

+ · · ·

+ FηK−3

1 +
K∑

k=K−2
(−2)k−(K−2)+1 ∑

K−2≤i1<···<ik−(K−2)+1≤K
Fηi1

· · ·Fηik−(K−2)+1


+ FηK−2

(
1 − 2(FηK−1 + FηK ) + 4FηK−1FηK

)
+ FηK−1(1 − 2FηK ) + FηK .

(A-5)
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The term
∑

n≤i1<···<ik−n≤K
denotes the possible subproduct of Fηik−n

. The summation from

the third until the last terms will result in every possible subproduct of Fηik
except for Fη1 ,

but with coefficient of (−2)k−2. Therefore, the (A-5) can be simplified as

Pr(K) = 1 +
K∑
k=2

(−2)k−1 ∑
2≤i1<···<ik−1≤K

Fηi1
· · ·Fηik−1

− Fη1

1 +
K∑
k=2

(−2)k−1 ∑
2≤i1<···<ik−1≤K

Fηi1
· · ·Fηik−1


+

K∑
k=2

(−2)k−2 ∑
2≤i1<···<ik−1≤K

Fηi1
· · ·Fηik−1

= 1 +
K∑
k=2

[
(−2)k−1 + (−2)k−2

] ∑
2≤i1<···<ik−1≤K

Fηi1
· · ·Fηik−1

− Fη1

1 +
K∑
k=2

(−2)k−1 ∑
2≤i1<···<ik−1≤K

Fηi1
· · ·Fηik−1


= 1 −

K∑
k=2

(−2)k−2 ∑
2≤i1<···<ik−1≤K

Fηi1
· · ·Fηik−1

− Fη1

1 +
K∑
k=2

(−2)k−1 ∑
2≤i1<···<ik−1≤K

Fηi1
· · ·Fηik−1


= 1 −

K∑
k=1

(−2)k−1 ∑
1≤i1<···<ik≤K

Fηi1
· · ·Fηik

.

(A-6)

The expected value of the output yo,K is

ŷout,K = 2V Pr(K) − V

= 2V − 2V
K∑
k=1

(−2)k−1

 ∑
1≤i1<···<ik≤K

Fηi1
· · ·Fηik

− V

= V + V
K∑
k=1

(−2)k
∑

1≤i1<···<ik≤K
Fηi1

(θi1 − xi1) · · ·Fηik
(θik − xik).

(A-7)
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A-4 Derivation of (3-30)

For Gaussian noise sources, the cumulative distribution function (CDF) can be approximated
with

F (z) ≈ 1
2 + 1

σ
√

2π
(z). (A-8)

Equation (A-6) can be written as

Pr(K) = 1 −
[ ∑

1≤i1≤K
Fηi1

− 2
∑

1≤i1<i2≤K
Fηi1

Fηi2
− 4

∑
1≤i1<i2<i3≤K

Fηi1
Fηi2

Fηi3
+ · · ·

(−2)K−1
K∏
k=1

Fηk

]
.

(A-9)

Substituting (A-8) to (A-9) will result in all possible subproduct of zk with coefficients that
correspond to the combination of K and k. In other words,

Pr(K) ≈ 1 −
[(

−1
2

K∑
k=1

(
K

k

)
(−1)k

)
+
(

1√
2π

K−1∑
k=0

(
K − 1
k

)
(−1)k

) ∑
1≤i1≤K

zi1

+
(

1
(
√

2π)2

K−2∑
k=0

(
K − 2
k

)
(−1)k

) ∑
1≤i1<i2≤K

zi1zi2 + · · ·

+
(

1
(
√

2π)K−1

1∑
k=0

(
1
k

)
(−1)k

) ∑
1≤i1<···<iK−1≤K

zi1 · · · ziK−1

+ (−2)K−1

(
√

2π)K
K∏
k=1

zk

]
.

(A-10)

The term
K∑
k=1

(
K

k

)
(−1)k is equal to −1, while the rest of the term except the last term is

equal to zero. The last term can be simplified as −1
2

(
−
√

2
π

)K
. Therefore,

Pr(K) ≈ 1 − 1
2 + 1

2

(
−
√

2
π

)K K∏
k=1

zk

= 1
2 + 1

2

(
−
√

2
π

)K K∏
k=1

zk.

(A-11)

The approximation of the expected value of yo,K is

ŷout,K = 2V Pr(K) − V

≈ 2V 1
2 + 2V 1

2

(
−
√

2
π

)K K∏
k=1

zk − V

= V

(
−
√

2
π

)K K∏
k=1

(
θk − xk
σk

)
.

(A-12)
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A-5 Proof that (4-8) is equivalent to (4-10)

Substituting (4-5) to (4-8),

8V 2Fη1 (θ1 − x1)Fη2 (θ2 − x2)
+2V ŷout − ŷ2

out = 8V 2Fη1 (θ1 − x1)Fη2 (θ2 − x2)

+ 2V
(
2V
(
1 −

(
Fη1 (θ1 − x1) + Fη2 (θ2 − x2)

)))
−
(
2V
(
1 −

(
Fη1 (θ1 − x1) + Fη2 (θ2 − x2)

)))2

= 8V 2Fη1 (θ1 − x1)Fη2 (θ2 − x2)
+ 4V 2 − 4V 2Fη1 (θ1 − x1) − 4V 2Fη2 (θ2 − x2)
− 4V 2 + 8V 2Fη1 (θ1 − x1) + 8V 2Fη2 (θ2 − x2)
− 4V 2F 2

η1 (θ1 − x1) − 4V 2F 2
η2 (θ2 − x2)

− 8V 2Fη1 (θ1 − x1)Fη2 (θ2 − x2)

= 4V 2
(
Fη1 (θ1 − x1) − F 2

η1 (θ1 − x1) + Fη2 (θ2 − x2) − F 2
η2 (θ2 − x2)

)
.

(A-13)

Therefore, (4-8) and (4-10) are equivalent.

A-6 Derivation of (4-13)

Using (4-1) to calculate yo, the probabilities of yo are

Pr (yo = +2V |x1, x2) = Pr (b1 = 1 ∩ b0 = 0 |x1, x2)
= Pr (y1 = 1 ∩ y2 = 0 |x1, x2)
= Pr (y1 = 1 |x1, x2) Pr (y2 = 0 |x1, x2)
= (1 − Fη1 (θ1 − x1))Fη2 (θ2 − x2)
= Fη2 (θ2 − x2) − Fη1 (θ1 − x1)Fη2 (θ2 − x2) ,

(A-14)

Pr (yo = 0 |x1, x2) = Pr (b1 = 0 ∩ b0 = 1 |x1, x2)
= Pr (y1 = 0 ∩ y2 = 0 ∪ y1 = 1 ∩ y2 = 1 |x1, x2)
= Pr (y1 = 0 |x1, x2) Pr (y2 = 0 |x1, x2)

+ Pr (y1 = 1 |x1, x2) Pr (y2 = 1 |x1, x2)
= Fη1 (θ1 − x1)Fη2 (θ2 − x2) +

(1 − Fη1 (θ1 − x1)) (1 − Fη2 (θ2 − x2)) ,

(A-15)

and
Pr (yo = −2V |x1, x2) = Pr (b1 = 0 ∩ b0 = 0 |x1, x2)

= Pr (y1 = 0 ∩ y2 = 1 |x1, x2)
= Pr (y1 = 0 |x1, x2) Pr (y2 = 1 |x1, x2)
= Fη1 (θ1 − x1) (1 − Fη2 (θ2 − x2))
= Fη1 (θ1 − x1) − Fη1 (θ1 − x1)Fη2 (θ2 − x2) .

(A-16)
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Therefore, ŷout can be calculated as

ŷout = E [yo |x1, x2] = Pr (yo = 2V |x1, x2) (+2V ) + Pr (yo = 0 |x1, x2) (0)
+ Pr (yo = −2V |x1, x2) (−2V )

= 2V
(

−
(
Fη1 (θ1 − x1) + Fη2 (θ2 − x2)

))
.

(A-17)

A-7 Proof of (4-20) and (4-21)

Suppose that (4-19) is proven, yo,K is the summation of each individual output of the com-
parators. In other words,

yo,K =
K∑
k=1

yk,o

ŷout,K =
K∑
k=1

E [yk,o |xk] .
(A-18)

Substituting (A-1) to (A-18),

ŷout,K =
K∑
k=1

E [yk,o |xk]

=
K∑
k=1

V
(
1 − 2Fηk

(θk − xk)
)

=
K∑
k=1

V − 2V
K∑
k=1

Fηk
(θk − xk)

= KV − 2V
K∑
k=1

Fηk
(θk − xk) .

(A-19)

Approximating (A-19) with (3-6),

ŷout,K = KV − 2V
K∑
k=1

Fηk
(θk − xk)

≈ KV − 2V
K∑
k=1

(1
2 + (θk − xk)

σk
√

2π

)

= KV − 2V
K∑
k=1

1
2 − 2V

K∑
k=1

(θk − xk)
σk

√
2π

= −2V
K∑
k=1

(θk − xk)
σk

√
2π

= −2V√
2π

K∑
k=1

(
θk − xk
σk

)
.

(A-20)
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Appendix B

1-Bit Binary Output Stochastic
Resonance-Based Adder

The process of determining a suitable system for the implementation of a stochastic resonance
(SR)-based adder begins by examining the binary outcome of the system. Table B-1 shows
the outcomes of every possible logic values generated by inputs y1 and y2. The outcomes when
the inputs are both 1 or both 0 are trivial since the sum of two positive values will be positive
while the sum of two negative values will also be negative. However, the problem comes
when the inputs have different logic values. In the analog domain, the sum of a positive and
negative values will depend on their absolute values, but the value of the sum will always be
in-between those values. However, binary systems do not have the symbol that can represent
the in-between value. One possible solution for this problem is to let the questionable output
be the same as the output of its previous sample. This way, when averaged, it will produce
the in-between value that cannot be represented in binary logic.

Table B-1: Truth table of SR-based adder.

y1 y2 yo

1 1 1
1 0 ??
0 1 ??
0 0 0

B-1 The Proposed System

One of the logic circuits that has the memory property is the gated S-R latch. Based on
the truth table of a gated S-R latch, the proposed system for an SR-based adder is shown in
Figure B-1 with its truth table presented in Table B-2.
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Figure B-1: The proposed SR-based adder using gated S-R latch.

Table B-2: Truth table of the proposed SR-based adder.

y1 y2 E S R yo(n)
1 1 1 1 0 1
1 0 0 1 1 yo(n− 1)
0 1 0 0 0 yo(n− 1)
0 0 1 0 1 0

The probability of yo(n) = 1 given x1 and x2 is

Pr (yo(n) = 1 |x1, x2) = Pr (S = 1 ∩R = 0 |x1, x2) + Pr (E = 0 ∩ yo(n− 1) = 1 |x1, x2)
= Pr (y1 = 1 ∩ y2 = 1 |x1, x2)

+ Pr ((y1 = 1 ∩ y2 = 0) ∪ (y1 = 0 ∩ y2 = 1) |x1, x2)
× Pr (yo(n− 1) = 1 |x1, x2)

= (1 − Fη1(θ1 − x1)) (1 − Fη2(θ2 − x2))
+ (Fη1(θ1 − x1) + Fη2(θ2 − x2) − 2Fη1(θ1 − x2)Fη2(θ2 − x2))
× Pr (yo(n− 1) = 1 |x1, x2)

= (1 − Fη1(θ1 − x2)Fη2(θ2 − x2))
+ (Fη1(θ1 − x1) + Fη2(θ2 − x2) − 2Fη1(θ1 − x2)Fη2(θ2 − x2))
× (Pr (yo(n− 1) = 1 |x1, x2) − 1) .

(B-1)

The expected value of yo(n) is

ŷout(n) =E [yo(n) |x1, x2]
=2V Pr (yo(n) = 1 |x1, x2) − V

=2V
[

(1 − Fη1(θ1 − x2)Fη2(θ2 − x2))

+ (Fη1(θ1 − x1) + Fη2(θ2 − x2) − 2Fη1(θ1 − x2)Fη2(θ2 − x2))

× (Pr (yo(n− 1) = 1 |x1, x2) − 1)
]

− V.

(B-2)
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From (B-2), it can be said that

ŷout(n− 1) =2V Pr (yo(n− 1) = 1 |x1, x2) − V

Pr (yo(n− 1) = 1 |x1, x2) = 1
2V (ŷout(n− 1) + V ) .

(B-3)

Substituting (B-3) to (B-2),

ŷout(n) =2V − 2V Fη1(θ1 − x2)Fη2(θ2 − x2)
+ (Fη1(θ1 − x1) + Fη2(θ2 − x2) − 2Fη1(θ1 − x2)Fη2(θ2 − x2))
× (ŷout(n− 1) − V ) − V

=V − V (Fη1(θ1 − x1) + Fη2(θ2 − x2))
+ (Fη1(θ1 − x1) + Fη2(θ2 − x2) − 2Fη1(θ1 − x2)Fη2(θ2 − x2))
× ŷout(n− 1).

(B-4)

Compared to (4-5), (B-4) differs in its second term. To have an actual adder, σ has to be
chosen such that E [(Fη2(θ2 − x2) − 2Fη1(θ1 − x2)Fη2(θ2 − x2)) × ŷout(n− 1)] = 0.

B-2 Output Noise

Since the output of the adder is a binary signal, (3-10) holds. For parallelization, the formula
in (4-9) can predict the output noise, as shown in Figure B-2a. However, due to the second
term in (B-4), the output noise is no longer white. In fact, its power spectral density (PSD)
resembles a low-pass filter (LPF) (due to yo(n − 1)) with a certain cut-off frequency that
changes depending on σ and the input signals. Figure B-2b shows that the output noise
power changes significantly compared to Figure B-2a.

B-3 Distortion

The distortion behavior is calculated using the exact same formulas that are explained in
Chapter 4. From Figure B-3a, it can be seen that Ĝ for various ρ converge slowly to one
value, meaning that as σ increases, the system also becomes more linear. However, the Ĝ
values are relatively smaller than the ones in Figure 4-5a, and comparing distortion power
shown in Figure B-3b with the ones in Figure 4-5b, this system is more nonlinear than the
SR-based adder proposed in Section 4-1.
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Figure B-2: The output noise for two sinusoidal inputs with unity amplitude, sampled with a
sampling frequency of 1 kHz. V is set to 1. The asterisks mark the simulated results and the
solid lines are the predicted results based on the formula. (a) The noise power for N = 1. (b)
The noise power for the output signal LPF with a second order Butterworth LPF with a cut-off
frequency of 20 Hz. As σ goes up, the output noise becomes larger.
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Figure B-3: The distortion for two sinusoidal inputs with unity amplitude, sampled with a
sampling frequency of 1 kHz. V is set to 1. (a) The LSE gain and the predicted linear gain.
The gains are the same for sinusoidal inputs regardless of their correlation coefficients. (b) The
distortion power. As σ goes up, the output becomes more linear and the distortion power gets
closer to zero.
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Appendix C

Converting 2-bit Outputs of
Stochastic Resonance-Based Adder to

Decimal Values

C-1 Conversion Using Analog Multiplexer

It has been discussed in Chapter 4 that the output of a 2 inputs stochastic resonance
(SR)-based adder is a 2-bit signal. Therefore, there needs to be a 2-bit to decimal converter
that converts b1 and b0 to yo. Such converter can be realized by a 2-to-1 analog multiplexer.
The complete block diagram of a converted SR-based adder is shown in Figure C-1. The 2-bit
output of the SR-based adder is decoded by a 2-bit to decimal decoder. The decoded signal
is used as a control for the corresponding switch.

Ideally, for the 2 inputs adder, it is not possible to have 11 output. Thus, the 11 port of
the decoder can be left floating. However, in practice, there is a chance that there is a large
noise at the output of the half-adder such that both b1 and b0 can generate 1 at the same
time. In case this happens, it is better to connect the 11 port to the +2V , 0, or −2V switch,
depending on the source of incorectness. For example, suppose that it is known that the noise
is likely to change the bit of b0. In this case, The 11 port should be connected to +2V switch
because there is a high chance that the logic 11 are actually a corrupted logic 10.

C-2 Alternative of 2 Inputs SR-Based Adder with a Decimal Out-
put

The configuration introduced in Chapter 4 and Section C-1 is convenient because it can be
easily generalized to a K inputs SR-based adder. However, it is not the most efficient design.
For a 2 inputs adder, the half-adder and 2-bits to decimal decoder can be combined and
simplified. The proposed alternative for a 2 inputs SR-based adder with a decimal output is
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Figure C-1: The complete block diagram of the SR-based adder with a decimal output.

presented in Figure C-2. This alternative only needs three digital gates in addition to the SR
fundamental blocks and the switching circuits.
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Figure C-2: The proposed alternative for a 2 inputs SR-based adder with a decimal output.
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Appendix D

Effects of Noise Distribution to the
Performance of Stochastic

Resonance-Based Fundamental
Building Blocks

Noise can be distinguished based on two characteristics: its distribution and power spectral
density. In this thesis, Gaussian white noise is mainly used because a Gaussian distribution is
the most abundant in real life, while white noise is usually found in electronics, well-defined,
and can be easily simulated. However, this certainly does not mean that a Gaussian white
noise is the best noise to use in stochastic resonance (SR)-based systems. In this appendix,
two types of white noise distributions, Gaussian and uniform, will be compared.

D-1 Transfer Function of an SR-based Fundamental Building Block
Subjected to a Gaussian or Uniformly Distributed Noise

Mathematically, the cumulative distribution function (CDF) of a Gaussian distributed signal
is formulated by

F (z) = 1
2

(
1 + erf

(
z

σ
√

2

))
(D-1)
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where erf(x) is the error function. Consecutively, the CDF of a uniformly distributed signal
is

F (z) =



0 z < −σ
√

3

1
2

(
1 + z

σ
√

3

)
−σ

√
3 ≤ z < σ

√
3

1 z ≥ σ
√

3

. (D-2)

By substituting (D-1) to (A-1), it can be found that, for θ = 0, the transfer function of the
SR-based fundamental building block is equal to the error function [22]. The method applies
to all CDFs, therefore it can also be done for the CDF of a uniformly distributed white noise.

Figure D-1 shows the transfer functions of an SR-based fundamental building block. The
transfer function of the Gaussian and uniformly distributed noises are plotted in red and
blue, respectively. There are several points that can be deduced from the graph. Firstly,
around x = 0, the slope of the Gaussian distributed noise-induced system is steeper than that
of the uniform CDF. This means that the gain produced by an SR-based system subjected to
a Gaussian noise will be larger than the one induced to a uniform noise. Secondly, the slope
of the uniformly distributed noise-induced system is linear, while the slope of the Gaussian
one changes over the range of −σ

√
3 ≤ x < σ

√
3. This means that, over the aforementioned

range, an SR-based system subjected to a uniform noise will produce constant gain at every
value of x, while the same system subjected to a Gaussian noise will amplify the signal with
different gains for different values of x. Finally, the uniformly distributed noise-induced system
saturates very abruptly once x is outside its linear region, while the Gaussian distributed noise-
induced system saturates more smoothly. Moreover, for the same value of σ, the uniformly
distributed noise-induced block will saturate faster than the Gaussian one. These three points
will affect the distortion behavior, and consequently the output noise of SR-based systems.

−σ
√

3 σ
√

3

−V

V

0
x

ŷout

Figure D-1: Transfer function of an SR-based fundamental building block subjected to Gaussian
distributed noise (in red) and uniformly distributed noise (in blue).
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D-2 Distortion

Figure D-2a shows the least-square error (LSE) gain for SR-based blocks that are subjected to
either Gaussian or uniform noise. The input signal is a sinusoid with a unity amplitude. The
purple and black dashed lines are the linear gain for each block, respectively. Conforming
with the analyses done in the previous paragraph, the Gaussian distributed noise-induced
system provides larger gains in the linear region but the uniformly distributed noise-induced
block becomes perfectly linear for σ ≥ 1√

3 . Due to the linearity of the uniformly distributed
noise-induced block, its distortion power is always equal to or lower than that of the Gaussian
distributed noise-induced block as shown in Figure D-2b.
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Figure D-2: The distortion for a sinusoidal input with a unity amplitude and frequency. V is set
to 1. (a) The LSE gain and the predicted linear gain. (b) The distortion power.

D-3 Output Noise

Since the color of both noises are white, the output noise power can be calculated with (3-14).
The noise power depends on the squared value of the output, and because the uniformly dis-
tributed noise-induced system provides smaller gains, it will have a larger noise power than
that of the Gaussian distributed noise-induced system, as shown in Figure D-3. The higher
noise power and smaller gain will make the signal-to-noise ratio (SNR) of a uniformly dis-
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tributed noise-induced system smaller than the SNR of a Gaussian distributed noise-induced
system, shown in Figure D-4.

D-4 Signal-to-Noise-and-Distortion Ratio (SNDR)

The SNDRs of both systems are presented in Figure D-5. The graph can be divided into
two regions: the lower and higher noise regions. In the lower noise region, the uniformly
distributed noise-induced system has an SNDR that is higher than or equal to that of the
Gaussian one, while the opposite is true in the higher noise region. It is worth noting that
the difference of SNDR peaks between the two systems is approximately 2 dB.

For Gaussian noise, a better averaging technique will result in shifting the SNDR peak to the
higher noise region. This is because, as the noise power goes down due to the averaging, the
system can afford to decrease the distortion power by increasing the noise, although this also
means that the signal power will go down.

Meanwhile, for uniform noise, the SNDR peak location will always be found near σ0 = max |x|√
3 .

At this point, the system is entirely linear and thus, its SNDR is equal to its SNR. Since
the SNR goes down as σ increases, better averaging techniques always makes the SNDR peak
location get closer to σ0 .

From these findings, It is relatively easy to determine the noise intensity σ that will provide
near-best performance for a uniform white noise. Provided that information about max |x|
can be obtained, it is a safe bet to set σ = max |x|√

3 since the SNDR peak location will be
around that value.
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Figure D-3: The output noise for a sinusoidal input with a unity amplitude and frequency,
sampled with a sampling frequency of 1 kHz. V is set to 1. The asterisks mark the simulated
results and the solid lines are the predicted results based on the formula. (a) The noise power of
the unparalleled system. (b) The noise power of the system filtered by a second order Butterworth
LPF with cut-off frequency of 20 Hz.
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Figure D-4: Signal-to-noise ratio for a sinusoidal input with a unity amplitude and frequency,
sampled with a sampling frequency of 1 kHz and filtered by a second order Butterworth LPF
with cut-off frequency of 20 Hz. V is set to 1. The asterisks mark the simulated results and the
solid lines are the predicted results based on the formula. For the majority of σ, the uniformly
distributed noise-induced system has lower SNR.
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Figure D-5: Signal-to-noise-and-distortion ratio for a sinusoidal input with a unity amplitude and
frequency, sampled with a sampling frequency of 1 kHz and filtered by a second order Butterworth
LPF with cut-off frequency of 20 Hz. V is set to 1. The asterisks mark the simulated results
and the solid lines are the predicted results based on the formula. In the lower noise region, the
uniformly distributed noise-induced system has SNDR that is higher than or equal to that of the
Gaussian one, while the opposite is true in the higher noise region.
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Glossary

List of Acronyms

SR stochastic resonance

ADC analog-to-digital converter

SNR signal-to-noise ratio

dB decibel

RMS root-mean-square

SNDR signal-to-noise-and-distortion ratio

PDF probability density function

TEO Teager Energy Operator

NEO Nonlinear Energy Operator

AP action potential

CDF cumulative distribution function

ENBW equivalent noise bandwidth

LPF low-pass filter

LSE least-square error

LHS left-hand side

RHS right-hand side

PSD power spectral density

FP false positive

FN false negative

TP true positive

Master of Science Thesis Insani Abdi Bangsa



100 Glossary

List of Symbols

Abbreviations
∆fENBW equivalent noise bandwidth
∆U height of the potential barrier
erf error function
η noise
Ĝ least-square error gain
ŷout expected value of the output signal
b·c floor function
E[·] expected value
νk Kramers rate
⊕ exclusive OR
Pr(·) probability∏

product notation
ψ(·) output of TEO
ρ correlation coefficient
σ standard deviation of noise∑

summation notation
τ time constant
τk Kramers time
cov[·] covariance
sgn[·] signum function
var[·] variance
θ threshold level
A amplitude
a(n) discrete-time signal
a(t) continuous-time signal
F (·) cumulative distribution function
f0 signal frequency in Hz
fs sampling frequency
fX probability density function of random variable X
H(·) information entropy
I(·) mutual information
P power
V output value of comparators
x input signal
y output signal
yout averaged output signal
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