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A B S T R A C T

In this paper, the vibrations of a string are considered. At one end of the string, a smooth
obstacle is placed and the other end of the string is attached to a fixed point. The contact
between the string and the obstacle varies in time, and leads to a linear, moving boundary value
problem for the string vibrations. By applying a boundary fixing transformation, the problem
is transformed from a linear problem with a moving boundary, to a nonlinear problem with
fixed boundaries. It is assumed that the vibrations around the stationary position of the string
are small. Explicit approximations of the solution are obtained by using a multiple time-scales
perturbation method. Depending on the parameters in the problem, it turns out that three
different cases for the obstacle boundary condition have to be considered, that is, Dirichlet,
or Neumann, or Robin type of boundary conditions. To avoid an infinite-dimensional system of
ordinary differential equations that occurs in the analysis of the modal interactions of the string
vibrations, characteristic coordinates are used together with a multiple time-scales approach to
analyze the string dynamics in terms of traveling waves in opposite directions. A comparison
between a direct numerical integration of the PDE problem and the results obtained by using
the aforementioned perturbation approach shows an excellent agreement in the results.

. Introduction

Problems for one dimensional string vibrations are classical problems and are studied intensively since the 18th century. In its
implest form, the string is attached to fixed endpoints. However, in some applications for musical instruments, a smooth obstacle
ay be present at one endpoint of the string, causing the contact of the string to the obstacle to change in time. This leads to a
oving boundary problem for the wave equation.

A lot of research in the past has been done to study string vibrations with moving boundaries. One of the initial studies is done
y Balazs [1] who considered a wave problem with constantly expanding domain. In the case of musical instruments, where the
resence of an obstacle disturbs the vibrations, some studies are using a modal approach [2], general integral transforms [3], and
’Alembert’s formula [4] to investigate the problem. These kind of problems have also been studied as phenomena for collisions
etween a string and an obstacle (see [5,6]). However, these studies considered the obstacle position to be in the middle of the
omain. Whereas for the musical instruments, the obstacle is positioned at one of the boundaries. Vyasarayani et al. [7] considered a
odel for a Sitar instrument. Mandal and Wahi studied this model in terms of its vibration modes [8] and the occurring mode-locking

∗ Corresponding author.
E-mail address: jmtuwankotta@itb.ac.id (J.M. Tuwankotta).
vailable online 27 January 2024
022-460X/© 2024 Elsevier Ltd. All rights reserved.

ttps://doi.org/10.1016/j.jsv.2024.118311
eceived 2 October 2023; Received in revised form 26 January 2024; Accepted 26 January 2024

https://www.elsevier.com/locate/jsvi
https://www.elsevier.com/locate/jsvi
mailto:jmtuwankotta@itb.ac.id
https://doi.org/10.1016/j.jsv.2024.118311
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2024.118311&domain=pdf
https://doi.org/10.1016/j.jsv.2024.118311


Journal of Sound and Vibration 576 (2024) 118311A.F. Ihsan et al.
Fig. 1. Illustration of the model.

phenomena [9]. The problem can be extended to consider vibrations in other dimensions as doubly curved obstacles are considered
(see [10,11]).

In this study, we consider a generalization of the problem derived by Vyasaravani et al. [7]. While many studies about constrained
string vibration consider the obstacle to be parabolic-shaped (see [2,8–12]), we take more general shapes for the obstacle with some
additional curvature properties. In case of a parabolic obstacle, our study here is some sort of refinement of the work of Mandal
and Wahi [8] with somewhat different approaches. In [8], the solution is assumed to take a specific form without proof. This paper
provides a rigorous mathematical derivation of the solution and validates the assumptions made in [8]. Furthermore, we construct
a diagram in the parameter space to indicate different types of boundary conditions depending on the parameters. This diagram in
the parameter space provides a good insight in the relation between the physical parameters and the type of simplified boundary
conditions, which are used as approximations. Lastly, we propose an analysis using characteristic coordinates. Implementation of this
approach has the benefit of avoiding truncation problems in the infinite series representations for the solutions, which is notorious
in problems described by wave equations.

We organized this paper as follows. In Section 2, some transformations are introduced which are used to reformulate the problem
in a nonlinear problem for a fixed domain. In Section 3, the dependence on the moving boundary variable will be removed to obtain
a general form for a nonlinear boundary value problem. We also provide a derivation of the problem for some specific examples of
obstacle shapes. In the further analysis of the problem, we focus specifically on the problem with a parabolic obstacle.

In Section 4, we apply first a naive perturbation method to obtain an approximate solution, which confirms what has been
obtained in [8]. To further refine the approximations on longer time-scales, we also apply a two time-scales perturbation method
to the problem. By eliminating so-called secular terms in the higher order problems, we obtain corrections to the solution of the
lower order problems, which will be also dependent on the slow-time variable. However, we will arrive at an infinite-dimensional
system of modal interactions. This infinite-dimensional system cannot be truncated because all modes are interacting. In that case,
characteristic coordinates are used as an alternative (see also for instance [13]). As in [13] it is shown in Appendix A of this paper
that this infinite Fourier series approach and the approach with characteristic coordinates are equivalent when one wants to remove
secular terms in the approximations. In Section 5, a system of traveling waves obtained by the characteristic coordinate approach
will be solved numerically to obtain the complete dynamics of the problem. We also compare these results with the approximations
obtained from the naive perturbation expansions. Finally, in Section 6 of this paper, we draw some conclusions.

2. Model formulation for general obstacle problem

Consider a horizontal domain with length 𝐿. Let us denote the horizontal axis along this domain as 𝑋. At 𝑥 = 0, an obstacle of
length 𝐵 is placed with geometry defined by a continuously differentiable function 𝑅𝐵(𝑋) that satisfies (i) 𝑅𝐵(0) = 𝑅𝐵(𝐵) = 0, (ii)
𝑅𝐵(𝑋) > 0 at 0 < 𝑋 < 𝐵, and (iii) 𝑅𝐵(𝑋) has exactly one point at 0 < 𝑋 < 𝐵 where its first derivative is zero. At 𝑥 = 𝐿, the string
is attached to a point of height 𝐻 from the horizontal axis. The value of 𝐻 is not restricted to have only positive values.

A string with tension 𝑇 and length-density 𝜌 is then attached to the left-side of the obstacle, and to the tip of the right holder
at the other end. The displacement of the string from the horizontal axis will be denoted as 𝑈 . It is assumed that the string is only
attached to the obstacle for 0 ≤ 𝑋 < 𝑆(𝜏) < 𝐵, where 𝑆(𝜏) is an unknown function, which depends on the vibrations of the string.
Here, 𝜏 is time. The illustration of this problem is shown in Fig. 1.

The dynamics of the string is governed by the following wave equation:

𝑈𝜏𝜏 −
𝑇
𝜌
𝑈𝑋𝑋 = 0, 𝑆(𝜏) < 𝑋 < 𝐿, 𝜏 > 0. (1a)

The string satisfies the following boundary conditions:

𝑈 (𝑆(𝜏), 𝜏) = 𝑅𝐵(𝑆(𝜏)), 𝜏 > 0, (1b)

𝑈 (𝐿, 𝜏) = 𝐻, 𝜏 > 0, (1c)

𝑈𝑋 (𝑆(𝜏), 𝜏) = 𝑅𝐵
′(𝑆(𝜏)), 𝜏 > 0. (1d)

where the prime indicates differentiation with respect to its argument. Initially, the displacement and the velocity of the strings are:

𝑈 (𝑋, 0) = 𝐹 (𝑋), 𝑅𝐵(𝑆(0)) < 𝑋 < 𝐿, (1e)

𝑈𝜏 (𝑋, 0) = 𝐺(𝑋), 𝑅𝐵(𝑆(0)) < 𝑋 < 𝐿. (1f)

We introduce first some transformations.
2
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2.1. Dimensionless variables and reduction of parameters

We define a new set of dimensionless variables:

𝑥̄ = 𝑋
𝐿
, 𝑢̄(𝑥̄, 𝜏) =

𝑈 (𝑋, 𝜏)
𝐿

, 𝜏 = 𝜏
√

𝑇
𝜌𝐿2

, 𝑠(𝜏) =
𝑆(𝜏)
𝐿

,

𝑟𝑏(𝑥̄) =
𝑅𝐵(𝑋)
𝐿

𝑓 (𝑥̄) =
𝐹 (𝑋)
𝐿

, 𝑔̄(𝑥̄) =
𝐺(𝑋)
𝐿

√

𝜌𝐿2

𝑇
,

nd parameters:

𝑎 = 𝐻
𝐿
, 𝑏 = 𝐵

𝐿
.

ubstituting these parameters and dimensionless variables into (1a)–(1f), one obtains:

𝑢̄𝑥̄𝑥̄(𝑥̄, 𝜏) = 𝑢̄𝜏𝜏 (𝑥̄, 𝜏), 𝑠(𝜏) < 𝑥̄ < 1, 𝜏 > 0, (2a)

𝑢̄(𝑠(𝜏), 𝜏) = 𝑟𝑏(𝑠(𝜏)), 𝜏 > 0, (2b)

𝑢̄(1, 𝜏) = 𝑎, 𝜏 > 0, (2c)

𝑢̄𝑥̄(𝑠(𝜏), 𝜏) = 𝑟′𝑏(𝑠(𝜏)), 𝜏 > 0, (2d)

𝑢̄(𝑥̄, 0) = 𝑓 (𝑥̄), 𝑠(𝜏) ≤ 𝑥̄ ≤ 1, 𝜏 > 0, (2e)

𝑢̄𝜏 (𝑥̄, 0) = 𝑔̄(𝑥̄), 𝑠(𝜏) ≤ 𝑥̄ ≤ 1, 𝜏 > 0. (2f)

It can be seen now from (2a)–(2f) that the problem only depends on two independent parameters, i.e. 𝑎 and 𝑏. Furthermore, the
roblem depends on the shape of the obstacle, and on the initial conditions.

.2. From a time-dependent spatial interval to a fixed interval

The time-dependent spatial domain can be transformed to a fixed spatial domain in 𝑥 by introducing the following transforma-
ions:

𝑥 =
𝑥̄ − 𝑠(𝜏)
1 − 𝑠(𝜏)

, 𝑢(𝑥, 𝜏) = 𝑢̄(𝑥̄, 𝜏), 𝑓 (𝑥) = 𝑓 (𝑥̄), 𝑔(𝑥) = 𝑔̄(𝑥̄) + 𝑓𝑥̄(𝑥̄)
𝑠′(0)(1 − 𝑥̄)
1 − 𝑠(0)

.

Substituting this transformation into (2a)–(2f) yields
[

1 − ((𝑥 − 1)𝑠′(𝜏))2
]

𝑢𝑥𝑥 = (1 − 𝑠(𝜏))2𝑢𝜏𝜏 + 2(𝑥 − 1)(1 − 𝑠(𝜏))𝑠′(𝜏)𝑢𝑥𝜏 + (𝑥 − 1)
[

2(𝑠′(𝜏))2 + (1 − 𝑠(𝜏))𝑠′′(𝜏)
]

𝑢𝑥, (3a)

for 0 < 𝑥 < 1, 𝜏 > 0, subject to the boundary conditions

𝑢(0, 𝜏) = 𝑟𝑏(𝑠(𝜏)), 𝜏 > 0, (3b)

𝑢(1, 𝜏) = 𝑎, 𝜏 > 0, (3c)

𝑢𝑥(0, 𝜏) = (1 − 𝑠(𝜏))𝑟′𝑏(𝑠(𝜏)), 𝜏 > 0, (3d)

and subject to the initial conditions

𝑢(𝑥, 0) = 𝑓 (𝑥), 0 < 𝑥 < 1, (3e)

𝑢𝜏 (𝑥, 0) = 𝑔(𝑥), 0 < 𝑥 < 1. (3f)

. Removal of the time dependent attachment–detachment point 𝒔(𝝉) from the problem

To obtain a simpler problem, we will remove 𝑠(𝜏) explicitly from the problem (3a)–(3f). First we differentiate (3b) with respect
o 𝜏 to obtain 𝑢𝜏 (0, 𝜏) = 𝑟′𝑏(𝑠(𝜏))𝑠

′(𝜏). From this expression and (3d), we can remove 𝑟′𝑏(𝑠(𝜏)), yielding

𝑢𝜏 (0, 𝜏)
𝑢𝑥(0, 𝜏)

= 1
1 − 𝑠(𝜏)

𝑠′(𝜏)

Integrating this expression with respect to 𝜏 from 𝜏 = 0 to 𝜏 = 𝜏 yields:

𝑠(𝜏) = 1 −𝐾𝐸(𝜏), (4)

where

𝑊 (𝜏) =
𝑢𝜏 (0, 𝜏) , 𝐸(𝜏) = exp

(

−
𝜏
𝑊 (𝜃)𝑑𝜃

)

,

3

𝑢𝑥(0, 𝜏) ∫0
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and 𝐾 = 1 − 𝑠(0). To obtain the boundary condition without 𝑠(𝜏), we substitute (4) into one of the BCs (3b) or (3d). For instance,
e take (3b) and we have

𝑢(0, 𝜏) = 𝑟𝑏(1 −𝐾𝐸(𝜏)). (5)

Now, to obtain a partial differential equation (PDE) without 𝑠(𝜏), we substitute again the explicit form for 𝑠(𝜏) given by (4) into
3a) and obtain

𝑢𝑥𝑥 = (𝐾𝐸(𝜏))2
[

(𝑥 − 1)2𝑊 (𝜏)2𝑢𝑥𝑥 + 𝑢𝜏𝜏

+ 2𝑊 (𝜏)(𝑥 − 1)𝑢𝑥𝜏 + (𝑥 − 1)(𝑊 (𝜏)2 +𝑊 ′(𝜏))𝑢𝑥
]

. (6)

The PDE (6) with boundary conditions (5) and (3c) forms the problem formulation for the general obstacle problem. In the next
ubsection, we show how we can derive the explicit problems for some specific choices for 𝑟𝑏(𝑥).

.1. Some obstacle functions 𝑟𝑏(𝑥) and the corresponding nonlinear BC at 𝑥 = 0

1. A parabolic obstacle: 𝑟𝑏(𝑥) = 𝑥(𝑏 − 𝑥).
In this case, by using (4) the boundary condition (3b) becomes:

𝑢(0, 𝜏) = (𝑏 − 1) + (2 − 𝑏)𝐾𝐸(𝜏) −𝐾2𝐸(𝜏)2.

If we solve this for 𝐸(𝜏), we obtain

𝐸(𝜏) = 1
𝐾

(

1 − 𝑏
2
+
√

𝑏2
4

− 𝑢(0, 𝜏)

)

.

From the definition of 𝐸(𝜏), we have that

exp
(

−∫

𝜏

𝑐

𝑢𝜃(0, 𝜃)
𝑢𝑥(0, 𝜃)

𝑑𝜃
)

= 1
𝐾

(

1 − 𝑏
2
+
√

𝑏2
4

− 𝑢(0, 𝜏)

)

,

and by differentiation with respect to 𝜏 one obtains:

−
𝑢𝜏 (0, 𝜏)
𝑢𝑥(0, 𝜏)

= 𝑢𝜏 (0, 𝜏)

⎛

⎜

⎜

⎜

⎝

1

1 − 𝑏
2 +

√

𝑏2
4 − 𝑢(0, 𝜏)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

−1

2
√

𝑏2
4 − 𝑢(0, 𝜏)

⎞

⎟

⎟

⎟

⎠

.

After some algebraic manipulations, we obtain the following condition:
(

2𝑢(0, 𝜏) + 𝑢𝑥(0, 𝜏) −
𝑏2

2

)2
= 4

(

1 − 𝑏
2

)2 ( 𝑏2

4
− 𝑢(0, 𝜏)

)

. (7)

Observe also that by the definition of 𝐸(𝜏), we have that 𝑊 (𝜏) = − 𝐸̇(𝜏)
𝐸(𝜏) . Substituting both 𝐸(𝜏) and 𝑊 (𝜏) into (6) gives us

the following PDE:

𝑢𝑥𝑥 =
(

𝜆(𝑥 − 1)
(

2𝑢𝜏 (0, 𝜏) + 𝑢𝑥𝜏 (0, 𝜏)
))2 𝑢𝑥𝑥 + (1 − 𝜆(𝑏 − 2𝑢(0, 𝜏) − 𝑢𝑥(0, 𝜏)))2𝑢𝜏𝜏

− 2(𝑥 − 1)(1 − 𝜆(𝑏 − 2𝑢(0, 𝜏) − 𝑢𝑥(0, 𝜏)))𝜆(2𝑢𝜏 (0, 𝜏) + 𝑢𝜏𝜏 (0, 𝜏))𝑢𝑥𝜏 + (𝑥 − 1)
[

2𝜆2(2𝑢𝜏 (0, 𝜏) + 𝑢𝑥𝜏 (0, 𝜏))2

−𝜆(1 − 𝜆(𝑏 − 2𝑢(0, 𝜏) − 𝑢𝑥(0, 𝜏)))(2𝑢𝜏𝜏 (0, 𝜏) + 𝑢𝑥𝜏𝜏 (0, 𝜏))
]

𝑢𝑥, (8)

where 𝜆 = 1
2−𝑏 .

2. A sinusoidal obstacle: 𝑟𝑏(𝑥) = 𝐴 sin
(

𝜋𝑥
𝑏

)

for some positive constant 𝐴.
In this case, the boundary condition (3b) and (3d) become

𝑢(0, 𝜏) = 𝐴 sin
(

𝜋(1 −𝐾𝐸(𝜏))
𝑏

)

,

and

𝑢𝑥(0, 𝜏) =
𝐴𝜋
𝑏
𝐾𝐸(𝜏) cos

(

𝜋(1 −𝐾𝐸(𝜏))
𝑏

)

.

By using the fact that sin2(𝛼) + cos2(𝛼) = 1, it follows from these 𝐵𝐶𝑠 that

𝐸(𝜏) =
𝑏𝑢𝑥(0, 𝜏)

𝐾𝜋
√

𝐴2 − 𝑢2(0, 𝜏)
.

From the definition of 𝐸(𝜏), we can derive the boundary condition at 𝑥 = 0:
𝑢𝑥𝜏 (0, 𝜏)
𝑢𝜏 (0, 𝜏)

+
𝑢(0, 𝜏)𝑢𝑥(0, 𝜏)
𝐴2 − 𝑢2(0, 𝜏)

= −1.

Since 𝐸 and 𝑊 are now known explicitly, we then also can determine the PDE from (4)–(6) which 𝑢(𝑥, 𝜏) has to satisfy.
4



Journal of Sound and Vibration 576 (2024) 118311A.F. Ihsan et al.

g
f

3. A half-circular obstacle: 𝑟𝑏(𝑥) = (𝑥(𝑏 − 𝑥))
1
2 .

In this case, the boundary condition (3d) becomes

𝑢𝑥(0, 𝜏) =
1
2
𝑏 − 2𝑠(𝜏)
𝑢(0, 𝜏)

.

By using (4), 𝐸(𝜏) then can be explicitly obtained as

𝐸(𝜏) = 1
𝐾

(

1 − 1
4

[

𝑏 + 2 +
√

16𝑢(0, 𝜏)𝑢𝑥(0, 𝜏) + (𝑏 − 2)2
])

.

After applying some algebraic manipulations, we obtain the following nonlinear BC:

0 = 4[𝑢(0, 𝜏)]4 + 8[𝑢(0, 𝜏)]3𝑢𝑥(0, 𝜏) + [𝑢(0, 𝜏)]2(4[𝑢𝑥(0, 𝜏)]2 − 𝑏2 − 4𝑏 + 4) − 2𝑏2𝑢(0, 𝜏)𝑢𝑥(0, 𝜏) + 𝑏2(𝑏 − 1).

In all of the above computations, any choice for positive or negative signs is made based on the values of the parameters.

3.2. The stationary solution

Let 𝑢(𝑥, 𝜏) = 𝑦(𝑥) + 𝜀𝑣(𝑥, 𝜏), where 𝑦(𝑥) is the stationary solution of the problem, 𝑣(𝑥, 𝜏) is the oscillating part, and 𝜀 is a small
positive parameter representing a measure of the small amplitude oscillations around the equilibrium. We can compute 𝑦(𝑥) by the
eometry of the problem. The stationary string solution, or equivalently the time 𝜏 independent solution of (6), should be a linear
unction in 𝑥. The stationary solution 𝑦(𝑥) is then obtained from (3b)–(3d) yielding

𝑦(𝑥) = 𝑎 + (1 − 𝑠𝑦)(𝑥 − 1)𝑟𝑏′(𝑠𝑦), (9)

where 𝑠𝑦 follows from

𝑟𝑏(𝑠𝑦) + (1 − 𝑠𝑦)𝑟𝑏′(𝑠𝑦) − 𝑎 = 0. (10)

This shows how the stationary solution for an arbitrarily shaped obstacle can be obtained. However, Eq. (9) is not the true
stationary solution in the sense of the original problem, because the spatial variable 𝑥 in this case is the transformed variable that
depends on 𝑠(𝜏). We can obtain the true time-independent solution by transforming it back to the original variable by using the
stationary attachment point 𝑠𝑦, i.e.

𝑦̄(𝑥̄) = 𝑎 + (𝑥̄ − 1)𝑟𝑏′(𝑠𝑦).

In the further analysis, we will focus on the case of a parabolic obstacle.

3.3. Approximations of the boundary condition at 𝑥 = 0

For a parabolic shaped obstacle, we consider the PDE (8) subject to the boundary condition (7) at 𝑥 = 0, and the boundary
condition (3c) at 𝑥 = 1. From Section 3.2 it follows that the stationary solution in this case is:

𝑦(𝑥) = 𝑎 + (1 − 𝑠𝑦)(𝑏 − 2𝑠𝑦)(𝑥 − 1).

where 𝑠𝑦 follows from (10) and is given by:

𝑠𝑦 = 1 −
√

1 + 𝑎 − 𝑏.

In this case, we can also derive an additional condition 𝑏(𝑏 − 1) < 𝑎 < 𝑏 because 0 < 𝑠𝑦 < 𝑏. The boundary value problem for the
time-dependent part 𝑣(𝑥, 𝜏) is given by:

[1 − ((𝑥 − 1)𝜆𝜀v′)2]𝑣𝑥𝑥 = (1 − 𝑠𝑦 + 𝜆𝜀v)2𝑣𝜏𝜏 − 2(𝑥 − 1)(1 − 𝑠𝑦 + 𝜆𝜀v)𝜆𝜀v′𝑣𝑥𝜏

+ (𝑥 − 1)[2𝜀(𝜆v′)2 − (1 − 𝑠𝑦 + 𝜆𝜀v)𝜆v′′] × ((1 − 𝑠𝑦)(𝑏 − 2𝑠𝑦) + 𝜀𝑣𝑥), (11a)

(2 + 𝑏 − 4𝑠𝑦)𝑣(0, 𝜏) = (2𝑠𝑦 − 𝑏)𝑣𝑥(0, 𝜏) − 𝜀v2, (11b)

𝑣(1, 𝜏) = 0, (11c)

where 𝜆 = (2 − 𝑏)−1 and v(𝜏) = 2𝑣(0, 𝜏) + 𝑣𝑥(0, 𝜏)
If we look at BC (11b), we derive three types of approximate boundary conditions depending on the parameter values of 𝑏 and

𝑎.

1. If the height of the right boundary is equal to the top of the bridge (obstacle), i.e.

𝑎 = 𝑏2

4
+ (𝜀) or 𝑠𝑦 =

𝑏
2
+ (𝜀),

then condition (11b) becomes a Dirichlet-type of boundary condition, i.e., 𝑣(0, 𝜏) = (𝜀).
5
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Fig. 2. The separation of regions in the parameter space based on the type of boundary conditions at 𝑥 = 0. The first (upper-left) and second image (upper-right)
represent the separation in the (𝑏, 𝑠𝑦) and (𝑏, 𝑎) parameter space, respectively. The third image represents separation only in terms of the single parameter 𝑐.

2. If

𝑎 = 𝑏2

16
+ 3

4
𝑏 − 3

4
+ (𝜀), or equivalently, 𝑠𝑦 =

𝑏 + 2
4

+ (𝜀),

then condition (11b) becomes a Neumann-type, i.e., 𝑣𝑥(0, 𝜏) = (𝜀). Because 𝑎 < 𝑏2

4 , this case implies that the height of the
right boundary is lower than the top of the bridge-obstacle. Observe also that in this case 1

2 < 𝑠𝑦 < 𝑏, so that this condition
will be satisfied if 1 > 𝑏 > 2

3 .
3. Otherwise, by default the BC is a Robin-type of boundary condition, i.e.,

𝑣𝑥(0, 𝜏) =
2 + 𝑏 − 4𝑠𝑦
2𝑠𝑦 − 𝑏

𝑣(0, 𝜏) + (𝜀).

We visualize these separate cases in the parameter space as shown in Fig. 2. These separate cases for the types of boundary
condition can be simplified in terms of the new parameter

𝑐 =
𝑏 − 2𝑠𝑦
𝑏 − 2

. (12)

Using this single parameter, the boundary condition becomes 𝑐𝑣𝑥(0, 𝜏) = (1 − 2𝑐)𝑣(0, 𝜏), which is of Dirichlet-type if 𝑐 = 0, of
Neumann-type if 𝑐 = 1

2 , and of Robin-type otherwise.

4. Approximating the solution by means of perturbation method

In this section, we will use perturbation methods to construct approximations of the solutions 𝑣(𝑥, 𝜏) of the initial–boundary
value problem (11a)–(11c). We start in Section 4.1 with a naive or straightforward perturbation expansion. Such expansions lead
to secular terms in the approximations. For that reason, we will introduce in Section 4.2 a two time-scales perturbation approach.
Solving the problem in ‘‘Fourier series form’’ will lead to a system of infinitely many coupled ordinary differential equations. This
system cannot be truncated. For that reason, we will introduce in Section 4.3 characteristic coordinates. With this approach the
problem can be reduced to a simplified problem, which can (relatively easy) be integrated numerically in Section 5.

4.1. Approximating the solutions by means of perturbation methods

We define the perturbation expansion for 𝑣 as follows:

𝑣(𝑥, 𝜏) = 𝑣[0](𝑥, 𝜏) + 𝜀𝑣[1](𝑥, 𝜏) + (𝜀2),
6
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and v(𝜏) = v[0](𝜏) + 𝜀v[1](𝜏) +(𝜀2). We introduce also a time rescaling for simplification: 𝑡 = 𝜏(1 − 𝑠𝑦). Substituting these expansions
into (11a)–(11c) and collecting the (1) terms, we obtain:

𝑣[0]𝑥𝑥 − 𝑣
[0]
𝑡𝑡 = (𝑥 − 1)

2𝑠𝑦 − 𝑏
2 − 𝑏

v[0]𝑡𝑡 , (13a)

(2 + 𝑏 − 4𝑠𝑦)𝑣[0](0, 𝑡) = (2𝑠𝑦 − 𝑏)𝑣[0]𝑥 (0, 𝑡), (13b)

𝑣[0](1, 𝑡) = 0. (13c)

Problem (13a)–(13c) can be solved directly by using the method of separation of variables. The solution can be written as follows:

𝑣(𝑥, 𝑡) =
∞
∑

𝑛=1

[

𝐶1𝑛 sin
(

𝑛𝜋𝜏
1 − 𝑠𝑦

)

+ 𝐶2𝑛 cos
(

𝑛𝜋𝜏
1 − 𝑠𝑦

)]

[

sin(𝑛𝜋𝑥) +𝐾𝑛(𝑥)
]

+ (𝜀), (14)

here

𝐾𝑛(𝑥) =

⎧

⎪

⎨

⎪

⎩

0, Dirichlet case;
𝑛𝜋(1 − 𝑥), Neumann case; and
𝑛𝜋

𝑏−2𝑠𝑦
2(1−𝑠𝑦)

(1 − 𝑥), Robin case,

and where the constants 𝐶1𝑛 and 𝐶2𝑛 are determined by the initial conditions. By using (4) and the approximation for 𝑢(𝑥, 𝜏), we can
also obtain the time-dependent part of the moving boundary variable 𝑠(𝜏), which we will denote as 𝑠𝑣(𝜏), where 𝑠(𝜏) = 𝑠𝑦 + 𝜀𝑠𝑣(𝜏),
nd

𝑠𝑣(𝑡) =
𝜋

(2 − 𝑏)(𝑐 − 1)

∞
∑

𝑛=1
𝑛𝜑𝑛(𝑡) + (𝜀). (15)

oth (14) and (15) derived here lead to the same (1)-results as obtained in [8]. The difference here is that our solution approach
till has higher order terms in 𝜀 due to our naive perturbation expansions.

To simplify the problem further, we introduce the transformation (for 𝑖 = 0 and 1):

𝑣[𝑖](𝑥, 𝑡) = 𝑣̃[𝑖](𝑥, 𝑡) +

⎧

⎪

⎨

⎪

⎩

0, 𝑐 = 0,
𝑐(1−𝑥)
1−𝑐

(

𝑣̃[𝑖]𝑥 (0, 𝑡) − 𝑖 (𝑣
[0](0,𝑡))2

(2−𝑏)𝑐3

)

, 𝑐 ≠ 0,
(16)

where 𝑐 is defined by (12). With this transformation (16), we obtain a problem with homogeneous boundary conditions of
Dirichlet-type:

(1) ∶ 𝑣̃[0]𝑡𝑡 − 𝑣̃[0]𝑥𝑥 = 0, (17a)

𝑣̃[0](0, 𝑡) = 𝑣̃[0](1, 𝑡) = 0, (17b)

(𝜀) ∶ 𝑣̃[1]𝑡𝑡 − 𝑣̃[1]𝑥𝑥 = 𝑝̃(𝑥, 𝑡), (17c)

𝑣̃[1](0, 𝑡) = 𝑣̃[1](1, 𝑡) = 0,… , (17d)

where

𝑝̃(𝑥, 𝑡) = 1
(1 − 𝑐)2(2 − 𝑏)2

[

2𝑣̃[0]𝑥 (0, 𝑡)𝑣̃[0]𝑡𝑡 − (𝑥 − 1)
[

2𝑣̃[0]𝑥𝑡 (0, 𝑡)𝑣̃
[0]
𝑥𝑡 + 𝑣̃

[0]
𝑥𝑡𝑡(0, 𝑡)𝑣̃

[0]
𝑥

]]

for given parameters 𝑐 ∈ (−1, 1) and 𝑏 ∈ (0, 1). For simplicity we introduce the parameter 𝜆 defined by:

𝜆 = 1
(1 − 𝑐)2(2 − 𝑏)2

.

ince the straightforward perturbation expansions lead to unbounded (or secular) terms in 𝑣̃[1], we now introduce the two time-scales
erturbation method.

.2. The two time-scales perturbation expansions

We introduce two time variables 𝑡0 = 𝑡 and 𝑡1 = 𝜀𝑡, and 𝑣̃ = 𝑣̃(𝑥, 𝑡0, 𝑡1) can be expanded in 𝑣̃[0](𝑥, 𝑡0, 𝑡1) + 𝜀𝑣̃[1](𝑥, 𝑡0, 𝑡1) +(𝜀2). The
roblem then becomes

(1) ∶ 𝑣̃[0]𝑡0𝑡0 − 𝑣̃
[0]
𝑥𝑥 = 0,

𝑣̃[0](0, 𝑡0, 𝑡1) = 𝑣̃[0](1, 𝑡0, 𝑡1) = 0,

(𝜀) ∶ 𝑣̃[1]𝑡0𝑡0 − 𝑣̃
[1]
𝑥𝑥 = 𝑝̄(𝑥, 𝑡0, 𝑡1),

𝑣̃[1](0, 𝑡0, 𝑡1) = 𝑣̃[1](1, 𝑡0, 𝑡1) = 0,
7
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where 𝑝̄(𝑥, 𝑡0, 𝑡1) = 2𝑣̃[0]𝑡0𝑡1 + 𝑝̃(𝑥, 𝑡0, 𝑡1). By using the method of separation of variables, we can solve the (1) problem and the solution
is given by:

𝑣̃[0](𝑥, 𝑡0, 𝑡1) =
∞
∑

𝑛=1
sin(𝑛𝜋𝑥)𝜙[0]

𝑛 (𝑡0, 𝑡1), (18)

where 𝜙[0]
𝑛 (𝑡0, 𝑡1) = 𝐴𝑛(𝑡1) sin(𝑛𝜋𝑡0) + 𝐵𝑛(𝑡1) cos(𝑛𝜋𝑡0). The still arbitrary functions 𝐴𝑛(𝑡1) and 𝐵𝑛(𝑡1) can be used to eliminate secular

terms in the equation of the (𝜀)-problem. Using the method of separation of variables, we write the solution of the (𝜀) problem
as

𝑣̃[1](𝑥, 𝑡0, 𝑡1) =
∞
∑

𝑛=1
sin(𝑛𝜋𝑥)𝜙[1]

𝑛 (𝑡0, 𝑡1).

Substituting this series into the (𝜀)-problem gives us

𝜕2

𝜕𝑡20
𝜙[1]
𝑘 (𝑡0, 𝑡1) + (𝑘𝜋)2𝜙[1]

𝑘 (𝑡0, 𝑡1) = −2𝑝̂𝑘(𝑡0, 𝑡1),

where

𝑝̂𝑘(𝑡0, 𝑡1) =
𝜕2𝜙[0]

𝑘
𝜕𝑡0𝜕𝑡1

+ 𝜆
∞
∑

𝑛=1
𝑛𝜋

[(

1
2
𝜕𝜙[0]

𝑛
𝜕𝑡0

𝜕𝜙[0]
𝑘

𝜕𝑡0
− 𝜋2

(

𝑘2 + 𝑛2

4

)

𝜙[0]
𝑛 𝜙

[0]
𝑘

)

−
∞
∑

𝑚≠𝑘

𝑘𝑚
(𝑚2 − 𝑘2)

(

2
𝜕𝜙[0]

𝑛
𝜕𝑡0

𝜕𝜙[0]
𝑚

𝜕𝑡0
− 𝑛2𝜋2𝜙[0]

𝑛 𝜙
[0]
𝑚

)]

.

For now, we are not interested to find the complete solution 𝜙[1]
𝑘 or 𝑣[1], but to find differential equations for 𝐴𝑛 and 𝐵𝑛 which

an be obtained by avoiding secular terms in the order 𝜀 solution 𝜙[1]
𝑘 (𝑡0, 𝑡1). So, we just need to look for any resonant terms in 𝑝̂𝑘,

.e., for terms which are solutions of the homogeneous equation. Setting all coefficients of the resonant terms equal to zero, gives
s

𝑑𝐴𝑘
𝑑𝑡1

= 𝜆𝜋2

2

[

4𝑘2
(

𝐵2𝑘𝐵𝑘 + 𝐴2𝑘𝐴𝑘
)

+
∑

𝑛<𝑘
𝑛
(

𝐵𝑛
(

(𝑛 + 𝑘)𝐵𝑛+𝑘 + (𝑘 − 𝑛)𝐵𝑘−𝑛
)

+𝐴𝑛
(

(𝑛 + 𝑘)𝐴𝑛+𝑘 − (𝑘 − 𝑛)𝐴𝑘−𝑛
)

)

+
∑

𝑛>𝑘
𝑛
(

𝐵𝑛
(

(𝑛 + 𝑘)𝐵𝑛+𝑘 + (𝑛 − 𝑘)𝐵𝑛−𝑘
)

+𝐴𝑛
(

(𝑛 + 𝑘)𝐴𝑛+𝑘 + (𝑛 − 𝑘)𝐴𝑛−𝑘
)

)]

, (19a)

𝑑𝐵𝑘
𝑑𝑡1

= 𝜆𝜋2

2

[

4𝑘2
(

𝐴𝑘𝐵2𝑘 − 𝐵𝑘𝐴2𝑘
)

+
∑

𝑛<𝑘
𝑛
(

𝐴𝑛
(

(𝑛 + 𝑘)𝐵𝑛+𝑘 − (𝑘 − 𝑛)𝐵𝑘−𝑛
)

− 𝐵𝑛
(

(𝑛 + 𝑘)𝐴𝑛+𝑘 + (𝑘 − 𝑛)𝐴𝑘−𝑛
)

)

+
∑

𝑛>𝑘
𝑛
(

𝐴𝑛
(

(𝑛 + 𝑘)𝐵𝑛+𝑘 − (𝑛 − 𝑘)𝐵𝑛−𝑘
)

−𝐵𝑛
(

(𝑛 + 𝑘)𝐴𝑛+𝑘 − (𝑛 − 𝑘)𝐴𝑛−𝑘
)

)]

. (19b)

It is clear that the equation for 𝐴𝑘 and 𝐵𝑘 are coupled to the equations for 𝐴𝑗 and 𝐵𝑗 for 𝑗 = 2𝑘, 𝑛 + 𝑘, 𝑛 − 𝑘, and 𝑛. Thus, the
system consisting of (19a)–(19b) for all values of 𝑘 is an infinite-dimensional coupled system of differential equation, which usually
cannot be solved explicitly. Furthermore, the coupling terms are such that the system cannot be truncated to a finite dimensional
one. Sometimes indirect approaches such as characteristic coordinates might help. Characteristic coordinates can produce somewhat
simpler equations to describe the dynamics of a nonlinear wave problem, as shown by Darmawijoyo et al. [14] and also Malookani
et al. [13].

If we compare the results obtained so far with previous work of Mandal and Wahi [8], then it should be observed that in [8],
it is directly assumed that the solution is a combination of a stationary and a time-dependent part, without introducing proper
perturbation expansions or a mathematical derivation. The assumed form of the solution is a truncated Fourier series and is
substituted into the PDE to obtain the modal interaction. Because truncation is done initially, a lot of modal interactions are neglected
in [8]. In comparison, we rather apply a more analytic approach and multiple time-scales, as we have shown in the previous sections.
By using perturbation expansions and multiple-time scales, we arrive at an ODE system (19a)–(19b) which represents the interactions
between all wave modes in the (1)-part of the approximations of the solution of the problem.

4.3. Characteristic coordinates

In this section we will use another approach to simplify and to solve the problem. A combination method based on characteristic
coordinates and multiple time-scales will be used. We define 𝜉 = 𝑥− 𝑡0 and 𝜂 = 𝑥− 𝑡0. By introducing characteristic coordinates, we
have to extend our problem domain to the whole real line by introducing odd and 2-periodic function extensions in 𝑥.

We consider again the problem formulations in its Dirichlet form (17a)–(17d). To make every term of 𝑝̃ odd and 2-periodic in
𝑥, we only have to extend (1 − 𝑥) by using its Fourier sine series. Then, the function 𝑝̃ becomes

𝑝̃(𝑥, 𝑡 ) = 𝜆
[

2𝑣̃[0](0, 𝑡 )𝑣̃[0] + 𝑅(𝑥)
[

2𝑣̃[0] (0, 𝑡 )𝑣̃[0] + 𝑣̃[0] (0, 𝑡)𝑣̃[0]
]]

, (20)
8
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where

𝑅(𝑥) =
∞
∑

𝑛=1

2 sin(𝑛𝜋𝑥)
𝑛𝜋

.

The problem domain is now extended to the whole real line while preserving its validity in the original domain [0, 1], including
satisfying the BCs. We set 𝑣̃(𝑥, 𝑡0, 𝑡1) = 𝑤(𝜉, 𝜂, 𝑡1). To avoid too many recomputations, we also define the perturbation expansion for
𝑤, as:

𝑤 = 𝑤[0] + 𝜀𝑤[1] + (𝜀2),

where 𝑣[0] = 𝑤[0] and 𝑣[1] = 𝑤[1]. Thus, we have the following problems

(1) ∶ 4𝑤[0]
𝜉𝜂 = 0, (21a)

𝑤[0](𝜉, 𝜉, 0) = 𝑓 (𝜉), (21b)

− 𝑤[0]
𝜉 (𝜉, 𝜉, 0) +𝑤[0]

𝜂 (𝜉, 𝜉, 0) = 𝑔(𝜉), (21c)

(𝜀) ∶ 4𝑤[1]
𝜉𝜂 = 2𝑤[0]

𝜂𝑡1
− 2𝑤[0]

𝜉𝑡1
+ 𝑃 (𝜉, 𝜂, 𝑡1), (21d)

𝑤[1](𝜉, 𝜉, 0) = 0, (21e)

− 𝑤[1]
𝜉 (𝜉, 𝜉, 0) +𝑤[1]

𝜂 (𝜉, 𝜉, 0) = −𝑤[0]
𝑡1
(𝜉, 𝜉, 0), (21f)

where 𝑃 (𝜉, 𝜂, 𝑡1) = 𝑝̄(𝑥, 𝑡0, 𝑡1). The (1)-problem can easily be solved, yielding

𝑤[0](𝜉, 𝜂, 𝑡1) = 𝜑(𝜉, 𝑡1) + 𝜓(𝜂, 𝑡1),

where 𝜑 and 𝜓 are arbitrary function in 𝑡1 satisfying

𝜑(𝜉, 0) = 1
2

(

𝑓 (𝜉) − ∫

𝜉

𝜉0
𝑔(𝑧)𝑑𝑧

)

, 𝜓(𝜂, 0) = 1
2

(

𝑓 (𝜂) + ∫

𝜂

𝜂0
𝑔(𝑧)𝑑𝑧

)

. (22)

oreover, 𝜑 and 𝜓 , and also their derivatives are 2-periodic in their first arguments. The functions 𝜑 and 𝜓 can be obtained
ompletely by removing secular terms in the (𝜀)-problem. The detailed computations are presented in Appendix A, where it is
hown that 𝜑 and 𝜓 can be obtained by solving the following system of PDEs:

𝜑𝑡1 (𝜉, 𝑡1) =
𝜆
2

(

𝜑2
𝜉 (𝜉, 𝑡1) − ∫

1

0
[𝜑𝜁𝜁 (𝜁, 𝑡1) + 𝜑𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜑(2𝜁 − 𝜉, 𝑡1)𝑑𝜁

)

, (23a)

𝜓𝑡1 (𝜂, 𝑡1) = −𝜆
2

(

𝜓2
𝜂 (𝜂, 𝑡1) − ∫

1

0
[𝜓𝜁𝜁 (𝜁, 𝑡1) + 𝜓𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜓(2𝜁 − 𝜂, 𝑡1)𝑑𝜁

)

. (23b)

Because the exact solution of this system may not be available, we will apply a numerical method in the next section to obtain
𝜑 and 𝜓 from (23a)–(23b).

5. Numerical integration

5.1. Characteristic system

To compute the functions 𝜑 and 𝜓 from (23a)–(23b) numerically, we apply a Lax–Wendroff method for which the detailed
scheme is derived and can be found in Appendix B.1. We set the domain for 𝑣̃[1] as follows

𝐷𝜑 = [−1, 1] × [0, 1], 𝐷𝜓 = [0, 2] × [0, 1].

For the initial conditions, we take 𝑓 (𝑥) = 𝛿 sin(𝜋𝑥), where 𝛿 is some constant, and 𝑔(𝑥) = 0. It should be noted that the quadratic
terms in both 𝜑 and 𝜓 in (23a)–(23b) may cause difficulties in achieving numerical stability. We overcome these difficulties by
having a trial-and-error search for many combinations of the constants involved to obtain stable results. The influencing constants
include 𝑐, 𝑏, 𝛿, 𝛥𝑡1, and 𝛥𝜉.

It turned out that the values of 𝜆 and 𝛿 influence the stability highly. The coefficient 𝜆 itself depends on two problem-defined
constants 𝑐 and 𝑏. Smaller 𝜆 and 𝛿 values give better stability results. Firstly, we set 𝛿 = 0.4, 𝑏 = 0.05, and 𝑐 = 0. For the discretization
setup, we use 𝛥𝜉 = 𝛥𝜂 = 0.02 and 𝛥𝑡1 = 0.001. The results can be seen as time snapshots in Fig. 3 and as a map in Fig. 4.

5.2. Numerical results for different values of 𝑐

The value of 𝑐 determines the type of boundary condition at 𝑥 = 0 as has been explained in Section 3.3. Considering this
observation, we compute the numerical approximations of the solutions of (23a)–(23b) for different values of 𝑐 (and 𝑏). As we have
computed these approximations for the Dirichlet-case in the previous subsection, we will consider two other cases, i.e., the Robin
condition with 𝑐 = −0.2 and 𝑏 = 0.5, and the Neumann condition with 𝑐 = 0.5 and 𝑏 = 0.75. The resulting solution maps for these
9
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Fig. 3. Numerical plots of the functions 𝜑 and 𝜓 as solutions of (23a)–(23b) for 𝑡1 = 0, 0.25,… , 0.9.

Fig. 4. Numerical plots of the functions 𝜑 and 𝜓 as solutions of (23a)–(23b).

Fig. 5. Numerical approximations (based on (23a)–(23b)) of the solution 𝑣 in the Dirichlet case.

cases are shown in Figs. 5–7, respectively. We can see how the solution at the boundary point 𝑥 = 0 is changing for different values
of 𝑐.

Observe that in the Robin and in the Neumann case, the profile of the initial wave does not correspond to the initial condition
𝑓 (𝑥), which should have for instance the value 0 at 𝑥 = 0. This is due to the correction done directly by the first iteration in the
numerical scheme to make sure every boundary condition is met. To satisfy all boundary conditions correctly, the initial wave profile
then is corrected accordingly.

5.3. Comparison of results

We will compare the numerical results for the characteristic system (23a)–(23b) with numerical results for the original system
(3a)–(3d). A detailed derivation of the numerical scheme can be found in Appendix B.2. For further comparison, we also simulate
the analytical approximation which is obtained from the straightforward perturbation expansion (14). We plot some snapshots
10
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Fig. 6. Numerical approximations (based on (23a)–(23b)) of the solution 𝑣 in the Neumann case.

Fig. 7. Numerical approximations (based on (23a)–(23b)) of the solution 𝑣 in the Robin case.

of the wave profiles computed by using different approaches at some fixed times. We compare 3 approaches, i.e., the analytical
approximation (Eq. (14)), the numerical approximation of the characteristic system (23a)–(23b), and the numerical approximation
of the original system (3a)–(3d). In these computations, we use 𝜀 = 0.1, 𝑐 = −0.3 and 𝑏 = 0.5 for the Robin case; 𝑐 = 0 and 𝑏 = 0.3
for the Dirichlet case; and lastly, 𝑐 = 0.5 and 𝑏 = 0.75 for the Neumann case. The plots for each case are shown in Figs. 8–10.
The behavior of the map in Fig. 7 around 𝑥 ≈ 0.18 may seem strange for the Robin condition, where it always has value 0 around
𝑥 ≈ 0.18. This is due to the fact that 𝑣 is not the only time-dependent part in terms of the original domain. In the original coordinates
(see Fig. 10), this abnormality does not occur anymore. All approximations are computed up to 𝑡 = 9. So, the approximations are
all close to each other. For longer 𝑡 values, only the approximations of the characteristic system and the numerical approximations
of the original system turn out to remain close.

6. Conclusion

In this paper, a detailed description and validation are given on how to construct approximation of solutions for a vibrating string
problem, where the string is in contact with an obstacle at one of its ends. Perturbation methods as well as numerical methods are
used to construct accurate approximations of the solutions of the problem. It is shown how a nonlinear boundary value problem on
a fixed interval can be obtained for a rather general, but smooth shape of the obstacle. For a specific case with a parabolic-shaped
obstacle, it is explicitly shown in diagrams what kind of simplified boundary conditions at the obstacle attachment–detachment point
are obtained in the parameter space. By using characteristic coordinates, a two time-scales perturbation method, and a Lax–Wendroff
numerical method, the dynamics of the string is successfully analyzed and simulated. The applicability of the presented approach
opens possibilities for future research on even more complicated constrained string problems.

The presented approach opens also the possibility to determine which frequencies become more (or less) important in time.
By using the fast-Fourier-transform to the obtained approximations in characteristic coordinates, the approximation at fixed times
can be decomposed into (amplitude of) oscillation modes and their corresponding frequencies. In this was the change in sound of
musical instrument can be studied (see [12]).
11
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Fig. 8. Standing wave profile snapshots in the Dirichlet case.

Fig. 9. Standing wave profile snapshots in the Neumann case.

Fig. 10. Standing wave profile snapshots in the Robin case.
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ppendix A. Computing the characteristic system

In this appendix, a detailed derivation of the characteristic system will be presented. Consider the (𝜀)-problem (21d)–(21f). We
ant to recognize and to remove the unbounded (or secular) terms in the solution. We integrate first the (𝜀)-problem with respect

o 𝜂 and obtain

∫

𝜂

𝜉
4𝑤[1]

𝜉𝜂̄ (𝜉, 𝜂̄, 𝑡1)𝑑𝜂̄ = 2∫

𝜂

𝜉

(

𝑤[0]
𝜂̄𝑡1

−𝑤[0]
𝜉𝑡1

)

𝑑𝜂̄ + ∫

𝜂

𝜉
𝑃 (𝜉, 𝜂̄, 𝑡1)𝑑𝜂̄. (A.1)

n order to detect any secular terms, we need to look at 𝑃 (𝜉, 𝜂, 𝑡1) explicitly in terms of characteristic coordinates. For that matter,
e rewrite (20) as follows

𝑝̃(𝑥, 𝑡0, 𝑡1) = 𝜆
[

2𝐺𝑠(𝑥, 𝑡0, 𝑡1) + 𝐹𝑠(𝑥, 𝑡0, 𝑡1)
]

, (A.2)

here 𝐺𝑠 = 𝑣̃[0]𝑥 (0, 𝑡0, 𝑡1)𝑣̃
[0]
𝑡0𝑡0

, and 𝐹𝑠(𝑥, 𝑡0, 𝑡1) = 𝑅(𝑥)
[

2𝑣̃[0]𝑥𝑡 (0, 𝑡0, 𝑡1)𝑣̃
[0]
𝑥𝑡 + 𝑣̃

[0]
𝑥𝑡𝑡(0, 𝑡0, 𝑡1)𝑣̃

[0]
𝑥

]

. In characteristic coordinates, 𝐺𝑠 can be
ritten as 𝐺𝑠 = (𝜓𝜂𝜂 + 𝜑𝜉𝜉 )𝐺̄𝑠, where

𝐺̄𝑠(𝜉, 𝜂, 𝑡1) =
∞
∑

𝑛=1
𝑛𝜋

[

𝐴𝑛 sin
(

𝑛𝜋(𝜂 − 𝜉)
2

)

+ 𝐵𝑛 cos
(

𝑛𝜋(𝜂 − 𝜉)
2

)]

.

For the integration with respect to 𝜂 it should be observed that the term 𝜑𝜉𝜉𝐺̄𝑠 in 𝐺𝑠 does not lead to unbounded terms, and so

𝐺𝑠 = 𝜓𝜂𝜂𝐺̄𝑠 + 𝑛.𝑠.𝑡.,

where 𝑛.𝑠.𝑡. stands for non-secular terms. For 𝐹𝑠, we will separate the terms in secular and nonsecular terms in the following way.
Recall from (18) that we have 𝑣̃[0](𝑥, 𝑡0, 𝑡1) =

∑∞
𝑛=1 𝜙𝑛(𝑡0, 𝑡1) sin(𝑛𝜋𝑥). Observe then that

𝑅(𝑥)𝑣̃[0]𝑥𝑡0 (0, 𝑡0, 𝑡1)𝑣̃
[0]
𝑥𝑡0

= 2
∞
∑

𝑘=1

∞
∑

𝑛=1

∞
∑

𝑚=1

𝑚𝑛
𝑘
𝜋 sin(𝑘𝜋𝑥) cos(𝑛𝜋𝑥)

𝜕𝜙𝑚
𝜕𝑡0

𝜕𝜙𝑛
𝜕𝑡0

,

𝑅(𝑥)𝑣̃[0]𝑥𝑡0𝑡0 (0, 𝑡0, 𝑡1)𝑣̃
[0]
𝑥 = −2

∞
∑

𝑘=1

∞
∑

𝑛=1

∞
∑

𝑚=1

𝑚3𝑛
𝑘
𝜋3 sin(𝑘𝜋𝑥) cos(𝑛𝜋𝑥)(𝜙𝑚)(𝜙𝑛),

which can be combined to

𝐹𝑠(𝑥, 𝑡0, 𝑡1) = 2
∞
∑

𝑛=1

∞
∑

𝑚=1

∞
∑

𝑘=1

𝑚𝑛
𝑘
𝜋 sin(𝑘𝜋𝑥) cos(𝑛𝜋𝑥)

[

2
𝜕𝜙𝑚
𝜕𝑡0

𝜕𝜙𝑛
𝜕𝑡0

− (𝑚𝜋)2(𝜙𝑚)(𝜙𝑛)
]

.

Terms in the above equation will lead to secular terms in 𝑤[1] only if 𝑘 = 𝑚, 𝑘 = ±(2𝑛 − 𝑚) or 𝑘 = 2𝑛 + 𝑚. Separating these terms,
we obtain 𝐹𝑠 = 2𝐹 (𝑥, 𝑡0, 𝑡1) + 𝑛.𝑠.𝑡, where

𝐹 (𝑥, 𝑡0, 𝑡1) =
𝜋
2

∞
∑

𝑛=1

∞
∑

𝑚=1
𝑚𝑛

[

sin((𝑚 + 3𝑛)𝜋𝑥) + sin((𝑚 + 𝑛)𝜋𝑥)
2𝑛 + 𝑚

−
sin((𝑚 − 3𝑛)𝜋𝑥) + sin((𝑚 − 𝑛)𝜋𝑥)

2𝑛 − 𝑚

+
sin((𝑚 + 𝑛)𝜋𝑥) + sin((𝑚 − 𝑛)𝜋𝑥)

𝑚

] [

2
𝜕𝜙𝑚
𝜕𝑡0

𝜕𝜙𝑛
𝜕𝑡0

− (𝑚𝜋)2(𝜙𝑚)(𝜙𝑛)
]

.

o, in terms of characteristic coordinates, Eq. (A.2) above becomes

𝑃 (𝜉, 𝜂, 𝑡1) = 2𝜆
[

𝜓𝜂𝜂𝐺̄𝑠 + 𝐹
]

+ 𝑛.𝑠.𝑡.,

here 𝐹 (𝜉, 𝜂, 𝑡1) = 𝐹 (𝑥, 𝑡0, 𝑡1). Integration of Eq. (A.1) leads to

2 ||
|

𝑤[1]
𝜉 (𝜉, 𝜂̄, 𝑡1)

|

|

|

𝜂

𝜉
= ∫

𝜂

𝜉
𝜓𝜂̄𝑡1𝑑𝜂̄ − (𝜂 − 𝜉)𝜑𝜉𝑡1 + 𝜆

[

∫

𝜂

𝜉
𝜓𝜂̄𝜂̄𝐺̄𝑠𝑑𝜂̄ + ∫

𝜂

𝜉
𝐹 𝑑𝜂̄ + 𝑛.𝑠.𝑡.

]

. (A.3)

To find the secular terms, we look for terms that are linear in 𝑡 = 𝜂−𝜉
2 . To check the integrals inside the square brackets, we will use

the Fourier series for 𝜑 and 𝜓 . From (18), we derive that

𝜑(𝜉, 𝑡1) =
1

∞
∑

(𝐴𝑛 cos(𝑛𝜋𝜉) + 𝐵𝑛 sin(𝑛𝜋𝜉)),
13

2 𝑛=1
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O

d
o
f
o
a

𝜓(𝜂, 𝑡1) =
1
2

∞
∑

𝑛=1
(−𝐴𝑛 cos(𝑛𝜋𝜂) + 𝐵𝑛 sin(𝑛𝜋𝜂)).

We then see that

𝐺̄𝑠𝜓𝜂𝜂 = −1
2

∞
∑

𝑛=1

∞
∑

𝑚=1
𝑚𝑛2𝜋3

[

𝐴𝑚 sin
(

𝑚𝜋(𝜂 − 𝜉)
2

)

+ 𝐵𝑚 cos
(

𝑚𝜋(𝜂 − 𝜉)
2

)]

[

−𝐴𝑛 cos(𝑛𝜋𝜂) + 𝐵𝑛 sin(𝑛𝜋𝜂)
]

.

bserve that terms for which 𝑚 ≠ 2𝑛, are not secular. Thus, we separate the terms in 𝐺̄𝑠𝜓𝜂𝜂 = 𝐺̄ + 𝑛.𝑠.𝑡., where

𝐺̄ = −
∞
∑

𝑛=1
(𝑛𝜋)3(𝐴2𝑛 sin(𝑛𝜋(𝜂 − 𝜉)) + 𝐵2𝑛 cos(𝑛𝜋(𝜂 − 𝜉)))(−𝐴𝑛 cos(𝑛𝜋𝜂) + 𝐵𝑛 sin(𝑛𝜋𝜂)).

The integrals of 𝐹 and 𝐺̄ become secular terms when the integral over its periodic interval does not vanish. Thus, we split this term
as follows

∫

𝜂

𝜉
𝐹 𝑑𝜂̄ = ∫

𝜂

𝜉

[

𝐹 − 1
2 ∫

2

0
𝐹 𝑑𝜁

]

𝑑𝜂̄ +
𝜂 − 𝜉
2 ∫

2

0
𝐹 𝑑𝜁.

We apply a similar step to the integral of 𝐺̄. Setting all secular terms to zero, we obtain

𝜑𝜉𝑡1 = 𝜆
2 ∫

2

0
[𝐹 (𝜉, 𝜁 , 𝑡1) + 𝐺̄(𝜉, 𝜁 , 𝑡1)]𝑑𝜁. (A.4)

By computing the integrals, the PDE (A.4) in Fourier series form becomes

𝜑𝜉𝑡1 = −𝜆𝜋
3

2

∞
∑

𝑛=1
𝑛

{

𝑛2[(𝐴2𝑛𝐴𝑛 + 𝐵2𝑛𝐵𝑛) sin(𝑛𝜋𝜉) + (𝐴2𝑛𝐵𝑛 − 𝐵2𝑛𝐴𝑛) cos(𝑛𝜋𝜉)]

+
∞
∑

𝑚=1

𝑚
2

[

(𝑚 + 𝑛)[(𝐵𝑚𝐵𝑛 − 𝐴𝑚𝐴𝑛) sin((𝑚 + 𝑛)𝜋𝜉) + (𝐴𝑚𝐵𝑛 + 𝐴𝑛𝐵𝑚) cos((𝑚 + 𝑛)𝜋𝜉)]

+ (𝑚 − 𝑛)[(𝐴𝑚𝐵𝑛 − 𝐴𝑛𝐵𝑚) cos((𝑚 − 𝑛)𝜋𝜉) + (𝐴𝑚𝐴𝑛 + 𝐵𝑚𝐵𝑛) sin((𝑚 − 𝑛)𝜋𝜉)]
]

}

. (A.5)

Similarly, the PDE for 𝜓 can be obtained by integrating (A.3) with respect to 𝜉, i.e.

𝜓𝜂𝑡1 = 𝜆𝜋3

2

∞
∑

𝑛=1
𝑛

{

𝑛2[(𝐴2𝑛𝐴𝑛 + 𝐵2𝑛𝐵𝑛) sin(𝑛𝜋𝜂) − (𝐴2𝑛𝐵𝑛 − 𝐵2𝑛𝐴𝑛) cos(𝑛𝜋𝜂)]

+
∞
∑

𝑚=1

𝑚
2

[

(𝑚 + 𝑛)[(𝐵𝑚𝐵𝑛 − 𝐴𝑚𝐴𝑛) sin((𝑚 + 𝑛)𝜋𝜂) − (𝐴𝑚𝐵𝑛 + 𝐴𝑛𝐵𝑚) cos((𝑚 + 𝑛)𝜋𝜂)]

+ (𝑚 − 𝑛)[(𝐴𝑚𝐴𝑛 + 𝐵𝑚𝐵𝑛) sin((𝑚 − 𝑛)𝜋𝜂) − (𝐴𝑚𝐵𝑛 − 𝐴𝑛𝐵𝑚) cos((𝑚 − 𝑛)𝜋𝜂)]
]

}

. (A.6)

The PDE (A.5) or (A.6) obtained by removing secular terms using characteristic coordinates should be equivalent to the infinite-
imensional coupled system (19a) and (19b). By multiplying both sides of (A.5) with sin(𝑘𝜋𝜉) and by integrating with respect to 𝜉
ver the interval [0, 2], we will obtain the same equation as (19a). Similarly, we multiply again (A.5) with cos(𝑘𝜋𝜉) and integrate
rom 𝜉 = 0 to 𝜉 = 2. The result is (19b). Our goal is to find a solution in terms of characteristic coordinates. To do so, we have to
btain a system of PDEs that only involve 𝜑 and 𝜓 . We actually can use directly the secular terms from Eq. (A.3) or (A.4). Observe
gain that these terms are

𝜑𝜉𝑡1 = 𝜆
2 ∫

2

0

[

𝜓𝜂̄𝜂̄
[

𝜑𝜉 + 𝜓𝜂̄
]

𝜉=−𝜂
+

∞
∑

𝑛=1

1
𝑛𝜋

sin
(

𝑛𝜋(𝜉 + 𝜂̄)
2

)[

2𝜓𝜂̄𝜂̄
[

−𝜙𝜉𝜉 + 𝜓𝜂̄𝜂̄
]

𝜉=−𝜂

+𝜓𝜂̄
[

𝜙𝜉𝜉𝜉 + 𝜓𝜂̄𝜂̄𝜂̄
]

𝜉=−𝜂

]]

𝑑𝜂̄.

To simplify the PDE for 𝜑 further, we integrate (A.5) with respect to 𝜉 and obtain

𝜑𝑡1 = 𝐾1(𝑡1) +
𝜆𝜋2

2

∞
∑

𝑛=1
𝑛

{

𝑛(𝐴2𝑛𝐴𝑛 + 𝐵2𝑛𝐵𝑛) cos(𝑛𝜋𝜉) − (𝐴2𝑛𝐵𝑛 − 𝐵2𝑛𝐴𝑛) sin(𝑛𝜋𝜉)

+
∞
∑

𝑚=1

𝑚
2

[

(𝐵𝑚𝐵𝑛 − 𝐴𝑚𝐴𝑛) cos((𝑚 + 𝑛)𝜋𝜉) − (𝐴𝑚𝐵𝑛 + 𝐴𝑛𝐵𝑚) sin((𝑚 + 𝑛)𝜋𝜉)

− (𝐴𝑚𝐵𝑛 − 𝐴𝑛𝐵𝑚) sin((𝑚 − 𝑛)𝜋𝜉) + (𝐴𝑚𝐴𝑛 + 𝐵𝑚𝐵𝑛) cos((𝑚 − 𝑛)𝜋𝜉)
]

}

, (A.7)
14
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i
𝜑

N

h
c

𝑎

o
(

for some function 𝐾1(𝑡1). Observe that the second series in (A.7) can be reduced to

𝑛𝑚𝜋2

2

∞
∑

𝑛=1

∞
∑

𝑚=1
(𝐴𝑛 sin(𝑛𝜋𝜉) − 𝐵𝑛 cos(𝑛𝜋𝜉))(𝐴𝑚 sin(𝑚𝜋𝜉) − 𝐵𝑚 cos(𝑚𝜋𝜉))

= 1
2

(

𝑛𝜋
∞
∑

𝑛=1
(−𝐴𝑛 sin(𝑛𝜋𝜉) + 𝐵𝑛 cos(𝑛𝜋𝜉))

)2

= 1
2
𝜑2
𝜉 (𝜉, 𝑡1).

Every series in the form ∑∞
𝑛=1 𝑎𝑛 cos(𝑛𝜋𝑥) + 𝑏𝑛 sin(𝑛𝜋𝑥) can be rewritten in ∑∞

𝑛=−∞ 𝑐𝑛 exp(𝑖𝑛𝜋𝑥), where 𝑐𝑛 = 1
2 (𝑎𝑛 − 𝑖𝑏𝑛) and

𝑐−𝑛 = 𝑐𝑛. Using this exponential form of the Fourier series, the first series in Eq. (A.5) becomes 𝜋2

2
∑

𝑛∈Z 𝑛
2𝐶𝑛𝑒𝑖𝑛𝜋𝜉 , where 𝐶𝑛 =

1
2 [(𝐴2𝑛𝐴𝑛 + 𝐵2𝑛𝐵𝑛) + 𝑖(𝐴2𝑛𝐵𝑛 − 𝐵2𝑛𝐴𝑛)] =

1
2 (𝐴2𝑛 − 𝑖𝐵2𝑛)(𝐴𝑛 + 𝑖𝐵𝑛).

We will use the convolution theorem to factorize the first series in (A.7). We rewrite first 𝜑 and 𝜓 in exponential form,
.e., 𝜑(𝜉, 𝑡1) =

∑

𝑛∈Z 𝜑̂𝑛𝑒
𝑖𝑛𝜋𝜉 and 𝜓(𝜂, 𝑡1) =

∑

𝑛∈Z 𝜓̂𝑛𝑒
𝑖𝑛𝜋𝜉 , where 𝜑̂𝑛 = 1

4 (𝐴𝑛 − 𝑖𝐵𝑛) and 𝜓̂𝑛 = 1
4 (𝐴𝑛 + 𝑖𝐵𝑛). Next, denoting 𝑃 (𝜉, 𝑡1) =

𝜉𝜉

(

𝜉
2 , 𝑡1

)

+ 𝜑𝜉𝜉
(

𝜉+2
2 , 𝑡1

)

, we find 𝑃 (𝜉) = ∑

𝑛∈Z 𝑃𝑛𝑒
𝑖𝑛𝜋𝜉 , where 𝑃𝑛 =

1
2 𝑛

2𝜋2(𝐴2𝑛 − 𝑖𝐵2𝑛). We then obtain

1
2
𝑛2𝜋2𝐶𝑛 =

1
4
𝑛2𝜋2(𝐴2𝑛 − 𝑖𝐵2𝑛)(𝐴𝑛 + 𝑖𝐵𝑛) =

1
2
𝑃𝑛𝜓̂𝑛.

ow, we can apply the convolution theorem in the following way:
𝜋2

2
∑

𝑛∈Z
𝑛2𝐶𝑛𝑒

𝑖𝑛𝜋𝜉 = 1
4
∑

𝑛∈Z
2𝑃𝑛𝜓̂𝑛𝑒𝑖𝑛𝜋𝜉 =

1
4
(𝑃 ∗ 𝜓)(𝜉)

= 1
4 ∫

2

0

[

𝜑𝜁𝜁

(

𝜁
2
, 𝑡1

)

+ 𝜑𝜁𝜁

(

𝜁 + 2
2

, 𝑡1

)]

𝜓(𝜉 − 𝜁, 𝑡1)𝑑𝜁

= 1
2 ∫

1

0
[𝜑𝜁𝜁 (𝜁, 𝑡1) + 𝜑𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜓(𝜉 − 2𝜁, 𝑡1)𝑑𝜁.

Wrapping up, we obtain

𝜑𝑡1 (𝜉, 𝑡1) = 𝐾1(𝑡1) +
𝜆
2

(

𝜑2
𝜉 (𝜉, 𝑡1) + ∫

1

0
[𝜑𝜁𝜁 (𝜁, 𝑡1) + 𝜑𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜓(𝜉 − 2𝜁, 𝑡1)𝑑𝜁

)

. (A.8a)

Applying the same procedure to (A.6) yields a similar equation for 𝜓 , i.e.,

𝜓𝑡1 (𝜂, 𝑡1) = 𝐾2(𝑡1) −
𝜆
2

(

𝜓2
𝜂 (𝜂, 𝑡1) + ∫

1

0
[𝜓𝜁𝜁 (𝜁, 𝑡1) − 𝜓𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜑(𝜂 − 2𝜁, 𝑡1)𝑑𝜁

)

. (A.8b)

We can see that the PDEs for 𝜑 and 𝜓 are similar to transport equations with opposing directions. The differences here are that we
ave a quadratic advection term and an additional, coupled convolution term. Odd symmetry of 𝜑 and 𝜓 , i.e. 𝜑(𝑎, 𝑡1) = −𝜓(−𝑎, 𝑡1),
an be used to decouple the PDEs (A.8a) and (A.8b), so that

𝜑𝑡1 (𝜉, 𝑡1) = 𝐾1(𝑡1) +
𝜆
2

(

𝜑2
𝜉 (𝜉, 𝑡1) − ∫

1

0
[𝜑𝜁𝜁 (𝜁, 𝑡1) + 𝜑𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜑(2𝜁 − 𝜉, 𝑡1)𝑑𝜁

)

, (A.9a)

𝜓𝑡1 (𝜂, 𝑡1) = 𝐾2(𝑡1) −
𝜆
2

(

𝜓2
𝜂 (𝜂, 𝑡1) − ∫

1

0
[𝜓𝜁𝜁 (𝜁, 𝑡1) + 𝜓𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜓(2𝜁 − 𝜂, 𝑡1)𝑑𝜁

)

. (A.9b)

To compute 𝐾1 and 𝐾2, we can use the periodicity properties of 𝜑 and 𝜓 . Observe that computing (A.9a) at 𝜉 = 𝑎 for arbitrary
∈ (0, 1) yields

−𝜓𝑡1 (−𝑎, 𝑡1) = 𝐾1 +
𝜆
2

(

𝜓2
𝜂 (−𝑎, 𝑡1) − ∫

1

0
[𝜓𝜁𝜁 (𝜁 + 1, 𝑡1) + 𝜓𝜁𝜁 (𝜁, 𝑡1)]𝜓(𝑎 + 2𝜁, 𝑡1)𝑑𝜁

)

. (A.10a)

On the other hand, computing (A.9b) at 𝜂 = −𝑎 gives us

𝜓𝑡1 (−𝑎, 𝑡1) = 𝐾2 −
𝜆
2

(

𝜓2
𝜂 (−1, 𝑡1) − ∫

1

0
[𝜓𝜁𝜁 (𝜁, 𝑡1) + 𝜓𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜓(2𝜁 + 𝑎, 𝑡1)𝑑𝜁

)

. (A.10b)

Adding up (A.10a) and (A.10b) gives us 𝐾1+𝐾2 = 0 or equivalently 𝐾1(𝑡1) = −𝐾2(𝑡1). We can assign to 𝐾1 any arbitrary function
f 𝑡1 since in the function 𝑤[0] it will not play any role (𝐾1 +𝐾2 = 0). For convenience, we will set 𝐾1 = 0, and so we obtain system
23a)–(23b)

To check the correctness of this derivation, we resubstitute

𝜑(𝜉, 𝑡1) =
1
2

∞
∑

𝑛=1
(𝐴𝑛 cos(𝑛𝜋𝜉) + 𝐵𝑛 sin(𝑛𝜋𝜉)),

into (A.9a). The second term of (A.9a) directly yields the second series of (A.7). For the third term, we compute

− 1 0
[𝜑𝜁𝜁 (𝜁, 𝑡1) + 𝜑𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜑(2𝜁 − 𝜉, 𝑡1)𝑑𝜁
15

2 ∫−1
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w

S

𝜉
𝛥

= 𝑛2𝜋2

2

∞
∑

𝑛=1
((𝐴2𝑛𝐴𝑛 + 𝐵2𝑛𝐵𝑛) cos(𝑛𝜋𝜉) − (𝐴2𝑛𝐵𝑛 − 𝐴𝑛𝐵2𝑛) sin(𝑛𝜋𝜉)),

which equals to the first series in (A.7). Thus, Eq. (A.9a) is equivalent with (A.7). Further derivation with respect to 𝜉 gives us (A.5).
Applying the Galerkin projection as has done in Section 4.2 leads again to system (19a)–(19b).

Appendix B. Setup of the numerical scheme

B.1. The Lax–Wendroff method for the characteristic system (23a)–(23b)

In this section we will describe the numerical scheme to be applied to system (23a)–(23b). To construct this scheme, we expand
first 𝜑 in a second order Taylor series around 𝑡1, so that

𝜑(𝜉, 𝑡1 + 𝛥𝑡1) = 𝜑(𝜉, 𝑡1) + 𝛥𝑡1𝜑𝑡1 (𝜉, 𝑡1) +
(𝛥𝑡1)2

2
𝜑𝑡1𝑡1 (𝜉, 𝑡1) + ((𝛥𝑡1)3). (B.1)

Let

𝛷(𝜉, 𝑡1) = ∫

1

0
[𝜑𝜁𝜁 (𝜁, 𝑡1) + 𝜑𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜑(2𝜁 − 𝜉, 𝑡1)𝑑𝜁.

From (23a), we then obtain

𝜑𝑡1𝑡1 (𝜉, 𝑡1) =
𝜆
2

(

𝜆(2𝜑2
𝜉𝜑𝜉𝜉 − 𝜑𝜉𝛷𝜉 ) −𝛷𝑡1

)

, (B.2)

here

𝛷𝜉 = ∫

1

0
[𝜑𝜁𝜁 (𝜁, 𝑡1) + 𝜑𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜑𝜉 (2𝜁 − 𝜉, 𝑡1)𝑑𝜁,

𝛷𝑡1 = ∫

1

0

{

[𝜑𝜁𝜁𝑡1 (𝜁, 𝑡1) + 𝜑𝜁𝜁𝑡1 (𝜁 + 1, 𝑡1)]𝜑(2𝜁 − 𝜉, 𝑡1)

+ [𝜑𝜁𝜁 (𝜁, 𝑡1) + 𝜑𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜑𝑡1 (2𝜁 − 𝜉, 𝑡1)
}

𝑑𝜁.

ubstituting (23a) and (B.2) into (B.1) yields

𝜑(𝜉, 𝑡1 + 𝛥𝑡1) = 𝜑(𝜉, 𝑡1) +
𝛥𝑡1𝜆
2

(

𝜑2
𝜉 (𝜉, 𝑡1) −𝛷(𝜉, 𝑡1)

)

+
𝜆(𝛥𝑡1)2

4

(

𝜆(𝜑2
𝜉𝜑𝜉𝜉 − 𝜑𝜉𝛷𝜉 ) −𝛷𝑡1

)

+ ((𝛥𝑡1)3). (B.3)

We solve (23a) for 𝜑 numerically in a domain 𝐷𝜑 = [𝜉𝑚𝑖𝑛, 𝜉𝑚𝑎𝑥] × [0, 𝑇1]. Let 𝛥𝑡1 and 𝛥𝜉 be lengths of small interval slices in 𝑡1 and
direction. We construct a discrete domain of size 𝑁𝜉 × 𝑁𝑡1 , which divides the real domain into finite countable grids with size
𝜉 × 𝛥𝑡1 where 𝛥𝜉 = 𝜉𝑚𝑎𝑥−𝜉𝑚𝑖𝑛

𝑁𝜉
and 𝛥𝑡1 =

𝑇1
𝑁𝑡1

. Using this discretization, we denote 𝜑𝑛𝑖 = 𝜑(𝜉𝑚𝑖𝑛 + 𝑖𝛥𝜉, 𝑛𝛥𝑡1). To discretize (B.3), we use
the following forward time and center space derivative approximations:

𝜑𝑡1 ≈
𝜑𝑛+1𝑖 − 𝜑𝑛𝑖

𝛥𝑡1
, 𝜑𝜉 ≈

𝜑𝑛𝑖+1 − 𝜑
𝑛
𝑖−1

2𝛥𝜉
, 𝜑𝜉𝜉 ≈

𝜑𝑛𝑖+1 − 2𝜑𝑛𝑖 + 𝜑
𝑛
𝑖−1

(𝛥𝜉)2
.

For the convolution integral, we use the following Riemann sum:

∫

𝑏

𝑎
𝐹 (𝜁 )𝐺(𝜉 − 𝜁 )𝑑𝜁 ≈

𝑗𝑏−𝑗𝑎
∑

𝑗=0
𝐹𝑗+𝑗𝑎𝐺𝑗+𝑗𝑎−𝑗𝜉𝛥𝜁,

where 𝑗𝑐 denotes the grid index of 𝜉 = 𝑐. Here, we also use the same discretization of 𝜁 as for 𝜉, so that 𝛥𝜁 = 𝛥𝜉. Thus, the derivatives
of 𝛷 can be written as follows

𝛷𝜉 =
𝑗1−𝑗0
∑

𝑗=0
𝑃 𝑛𝑗

𝜑𝑛2𝑗+𝑗0−𝑖−1 − 𝜑
𝑛
2𝑗+𝑗0−𝑖+1

2𝛥𝜉
𝛥𝜁 = 1

2

𝑗1−𝑗0
∑

𝑗=0
𝑃 𝑛𝑗 (𝜑

𝑛
2𝑗+𝑗0−𝑖−1

− 𝜑𝑛2𝑗+𝑗0−𝑖+1)

𝛷𝑡1 =
𝑗1−𝑗0
∑

𝑗=0

⎡

⎢

⎢

⎣

𝑃 𝑛+1𝑗 − 𝑃 𝑛𝑗
𝛥𝑡1

𝜑𝑛2𝑗+𝑗0−𝑖𝛥𝜁 + 𝑃
𝑛
𝑗

𝜑𝑛+12𝑗+𝑗0−𝑖
− 𝜑𝑛2𝑗+𝑗0−𝑖
𝛥𝑡1

𝛥𝜁
⎤

⎥

⎥

⎦

=
𝛥𝜉
𝛥𝑡1

𝑗1−𝑗0
∑

𝑗=0
(𝑃 𝑛+1𝑗 − 𝑃 𝑛𝑗 )𝜑

𝑛
2𝑗+𝑗0−𝑖

+ 𝑃 𝑛𝑗 (𝜑
𝑛+1
2𝑗+𝑗0−𝑖

− 𝜑𝑛2𝑗+𝑗0−𝑖),

where

𝑃 𝑛 =
𝜑𝑛𝑗+𝑗0+1 − 2𝜑𝑛𝑗+𝑗0 + 𝜑

𝑛
𝑗+𝑗0−1 +

𝜑𝑛𝑗+𝑗1−1 + 2𝜑𝑛𝑗+𝑗1 + 𝜑
𝑛
𝑗+𝑗1−1 .
16

𝑗 (𝛥𝜁 )2 (𝛥𝜁 )2
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𝛥

(

T

t
(
𝑣

t

A similar equation can be derived for the computation of 𝜓 in the domain 𝐷𝜂 = [𝜂𝑚𝑖𝑛, 𝜂𝑚𝑎𝑥] × [0, 𝑇1], that is, 𝜓𝑛𝑖 = 𝜓(𝜂𝑚𝑖𝑛 + 𝑖𝛥𝜂, 𝑛𝛥𝑡1),
𝜂 = 𝜂𝑚𝑎𝑥−𝜂𝑚𝑖𝑛

𝑁𝜂
, and

𝜓(𝜉, 𝑡1 + 𝛥𝑡1) = 𝜓(𝜉, 𝑡1) −
𝛥𝑡1𝜆
2

(

𝜓2
𝜉 (𝜉, 𝑡1) − 𝛹 (𝜉, 𝑡1)

)

+
𝜆(𝛥𝑡1)2

4

(

𝜆(𝜑2
𝜉𝜑𝜉𝜉 − 𝜑𝜉𝛹𝜉 ) + 𝛹𝑡1

)

+ ((𝛥𝑡1)3), (B.4)

where

𝛹𝑡1 (𝜂, 𝑡1) = ∫

1

0
[𝜓𝜁𝜁 (𝜁, 𝑡1) + 𝜓𝜁𝜁 (𝜁 + 1, 𝑡1)]𝜓(2𝜁 − 𝜂, 𝑡1)𝑑𝜁.

We use the same grid setup for 𝜂 as for 𝜉, i.e. 𝛥𝜂 = 𝛥𝜉. The schemes are applied up to time step 𝑁𝑡1 using the initial conditions

𝜑0
𝑖 = 𝜑(𝜉, 0), 𝜓0

𝑖 = 𝜓(𝜉, 0),

and the boundary conditions

𝜑𝑛𝑗0 = 𝜑𝑛𝑗2 , 𝜓𝑛𝑗0 = 𝜓𝑛𝑗2 . (B.5)

The initial conditions can be computed by using (22), yielding

𝜑0
𝑖 =

1
2

(

𝑓 (𝑖𝛥𝜉) −
𝑗𝑖
∑

𝑗=0
𝑔(𝑗𝛥𝜉)

)

, 𝜓0
𝑖 = 1

2

(

𝑓 (𝑖𝛥𝜂) +
𝑗𝑖
∑

𝑗=0
𝑔(𝑗𝛥𝜂)

)

. (B.6)

It should be kept in mind that the spatial indices of 𝜑 or 𝜓 , especially in the Riemann sum, may have values outside the defined
𝑥, 𝑡) discretization domain. In this case, we can use the periodicity properties, i.e. 𝜑𝑛𝑗𝑎 = 𝜑𝑛𝑗𝑎+𝑗2 , to make sure that the computations

are correct inside the defined domain.
We also want to obtain the numerical solution for 𝑣̃[1], which satisfies

𝑣̃[1](𝑥, 𝑡0, 𝑡1) = 𝜑(𝑥 − 𝑡0, 𝑡1) + 𝜓(𝑥 + 𝑡0, 𝑡1).

o compute 𝑣̃[1] in a domain 𝐷𝑣 = [0, 𝑋] × [0, 𝑇 ], we have to compute 𝜑 and 𝜓 in the following domain

𝐷𝜑 = [−𝑇 ,𝑋] × [0, 𝑇1], 𝐷𝜓 = [0, 𝑇 +𝑋] × [0, 𝑇1]. (B.7)

Wrapping up, we formulate the following procedure:

1. compute 𝜑0
𝑖 and 𝜓0

𝑖 using (B.6) for all values of 𝑖 in the respective domains;
2. for all values of 𝑛 = 0…𝑁𝑡 − 1,

(a) compute 𝜑𝑛+1𝑖 and 𝜓𝑛+1𝑖 using (B.3) and (B.4) for 𝑖 from 1 to 𝑁𝜉 − 1 or 𝑁𝜂 − 1;
(b) set values for the boundary points 𝑁𝜉 and 𝑁𝜂 using (B.5);

3. for 𝑖 = 0…𝑁𝜉 and 𝑗 = 0…𝑁𝜂 ,

(a) introduce indices for the discretization of (B.7);
(b) transform the (𝜉, 𝜂)-coordinates back to the (𝑥, 𝑡)-coordinates;
(c) compute 𝑣̃[0](𝑥, 𝑡0, 𝑡1) from 𝑤[0](𝜉, 𝜂, 𝑡1).

B.2. The forward-time center-space method for the original system (3a)–(3d)

Consider the original system (3a)–(3d). Recall that actually 𝑢(𝑥, 𝜏) = 𝑦(𝑥) + 𝜀𝑣(𝑥, 𝜏) and 𝑡 = 𝜏(1 − 𝑠𝑦). Our goal is to compare
he numerical results for 𝑣 by using the characteristic coordinates with the numerical results for the original system. Thus, our
𝑥, 𝑡)-computation domain now should be 𝐷𝑣 = [0, 1] × [0, 𝑇 ]. We apply a similar domain of discretization as before. We denote
𝑛
𝑖 = 𝑣(𝑖𝛥𝑥, 𝑛𝛥𝑡) and 𝑠𝑛 = 𝑠(𝑛𝛥𝑡). We apply center finite difference scheme and obtain an explicit equation for 𝑣𝑛+1𝑖 . Boundary

conditions and initial conditions are treated in the usual way. Also, the function 𝑠(𝑡) is treated as an unknown function satisfying
he given initial conditions.

Wrapping up, we can compute 𝑣 and 𝑠 for each 𝑖 and 𝑛 by the following procedure:

1. Compute 𝑣0𝑖 = 𝑓 (𝑖𝛥𝑥) for 𝑖 = 0…𝑁𝑥 − 1;
2. Compute 𝑠1 and 𝑣1𝑖 by using the boundary and initial conditions for 𝑖 = 1…𝑁𝑥 − 1;
3. For all values of 𝑛 = 1…𝑁𝑡 − 1,

(a) determine the boundary points 𝑣𝑛0 and 𝑣𝑛𝑁𝑥 by using the boundary conditions;
(b) compute 𝑠𝑛+1 by using a time-step 𝛥𝑡;

𝑛+1
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(c) compute 𝑣𝑖 by using a time-step 𝛥𝑡 for 𝑖 = 1…𝑁𝑥 − 1.
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