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Abstract

Money laundering detection stands as one of the
most important challenges in the anti-financial
crime sector, given its grave repercussions on the
financial industry. The evolving nature of fraud
schemes and the increasing volume of financial
transactions impose limitations on the detection
capabilities of traditional anti-money laundering
(AML) systems. In the light of the recent break-
throughs in the field of graph machine learning,
graph neural networks (GNNs) and graph trans-
formers (GTs) have emerged as prominent solu-
tions to these limitations, achieving a remarkable
performance in detecting complex and broad fraud-
ulent patterns. However, fusing the powerful char-
acteristics of these classes of graph models into a
unified framework for fraud detection has been lit-
tle explored. In this paper, we address this gap by
presenting GraphFuse — a hybrid graph represen-
tation learning model tailored for money launder-
ing detection in financial transaction graphs. The
novel edge centrality and transaction signature en-
codings offer GraphFuse a slight advantage over
the best-performing GNN and GT models, improv-
ing upon the best GT baseline by 0.76 p.p. in F1
score. Additionally, we introduce three variants of
the Transformer-based component of GraphFuse,
each with a different level of computational com-
plexity. The competitive performance of Graph-
Fuse is supported by extensive experiments on
open-source, large-scale synthetic financial trans-
actions datasets. Our code is available at https:
//github.com/mfrija/aml-graphfuse.

1 Introduction
Money laundering represents a serious threat to the global
financial sector, causing significant financial losses, reputa-
tion damage, and regulatory penalties for financial institu-
tions. The UN estimate an amount equivalent to 2% - 5%
of the global GDP to be laundered annually [1]. In the ef-
fort of combating money laundering, the instated anti-money
laundering (AML) regulations mandate financial institutions
to deploy rule-based AML detection systems to support the
operations of financial fraud analysts. In the evolving finan-
cial and technological landscape, rule-based systems are fac-
ing major limitations such as high false alarm rates and inef-
ficiency when dealing with vast amounts of transaction data
that require fine-grained analysis. In the context of existing
challenges, machine learning techniques emerged as power-
ful solutions for streamlining and increasing the efficiency
of AML operations, providing well-grounded insights about
suspicious financial transactions.

The recent advances in the field of deep learning led to the
emergence of Graph Neural Networks (GNNs), which rev-
olutionized the processing of graph-structured data [2], [3],
[4], [5]. The message passing mechanism [6] that stands
at the core of GNNs allows the learning of rich represen-

tations that capture both the graph structure and the com-
plexity of the local interactions between various entities.
These characteristics make GNNs the perfect tool for finan-
cial fraud detection, given that financial transaction data can
naturally be represented as directed graphs, as illustrated in
Figure 1. Here each node represents a financial account and
each edge represents a financial transaction between two ac-
counts. Most GNN models, however, are designed with the
assumption that the underlying graph is simple i.e., nodes are
connected via single edges. This assumption limits their ap-
plicability to large financial networks, which are often mod-
eled as multigraphs with multiple transactions taking place
between two accounts. A comprehensive solution is pro-
posed by the MEGA-GNN [7] and Multi-GNN [8] frame-
works, which have demonstrated significant improvements in
financial fraud detection tasks.

Meanwhile, Graph Transformers [9], [10], [11], [12] have
emerged as powerful alternatives to traditional GNNs, lever-
aging the Transformer architecture [13] to model intricate de-
pendencies between the entities of a graph. The global at-
tention mechanism in Transformers [13] can capture implicit
inter-dependecies among accounts and transactions that are
not embodied by the graph structure, but could potentially
make a significant difference in detection performance. A
notable attention-based model - FraudGT [14], demonstrated
remarkable results in detecting money laundering activities
compared to existing state-of-the-art GNN architectures.

However, little attention was directed towards unifying the
local message passing and global attention mechanisms for
learning meaningful representations in the context of money
laundering detection. To this end, we propose a model that
integrates a Local Message Passing Module and a Global At-
tention Module allowing the architecture to jointly capture
localized financial graph structures and global implicit infor-
mation about transactions between accounts. As part of this
research, we also investigate the performance characteristics
of different global attention mechanisms — specifically, Lin-
ear, Full, and Sparse Attention to better understand the trade-
off between computational efficiency and fraud detection per-
formance.

Our contributions
In summary, this work’s main contributions are:

• We introduce a hybrid model framework for graph rep-
resentation learning tasks in the context of money laun-
dering detection.

• We propose three attention-based configurations aiming
to achieve a trade-off between money laundering detec-
tion performance and computational efficiency.

• We validate our framework on a synthetic dataset of fi-
nancial transactions in the supervised task of transac-
tion classification, surpassing the state-of-the-art finan-
cial crime detection models.
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Figure 1: Financial transactions in (a) tabular format and in (b) graph format. Transactions with IDs 1,4 and 6 depict a simple money
laundering cyclic pattern in which the money launderer agent E manages to obfuscate the origin of the illicit funds through a cycle of
financial transactions. Figures recreated by the authors, following the visualizations presented in [8].

2 Related Work
2.1 Graph Neural Networks
Graph Neural Networks (GNNs) [4], [5], [3], [2] have
emerged as a prominent class of deep learning models de-
signed for processing graph-structured data. Central to mod-
ern GNNs is the local message passing [6] mechanism, which
aggregates information from the neighborhood of each node
or edge to derive context-aware representations. This mecha-
nism is particularly relevant in anti-money laundering (AML)
scenarios, where the local topology of a transaction network
often reveals indicative patterns of illicit behavior (see Fig-
ure 1). In fraud detection, GNNs, especially the Principal
Neighborhood Aggregation model (PNA) [2], have shown
notable success in capturing suspicious transaction behav-
ior, with recent benchmarks establishing their competitive-
ness on realistic datasets [15]. More recent advancements
have focused on enhancing the message passing mechanism
for multigraphs. For example, Multi-GNN introduces the re-
verse message passing mechanism [8], while MEGA-GNN
enhances multi-edge aggregation to effectively handle multi-
graph settings [7]. These efforts highlight the adaptability of
GNNs to financial crime detection tasks and motivate their
integration in hybrid graph learning architectures.

2.2 Graph Transformers
Graph Transformers extend the powerful Transformer archi-
tecture [13], which has revolutionized the field of natural lan-
guage processing [16], [17], [18]. The cornerstone of Trans-
formers — the attention mechanism, enables the capture of
complex, long-range dependencies between the elements of
large sequential datasets. Unlike standard GNNs that rely
on the local message passing mechanism, Graph Transform-
ers leverage global attention to derive context-rich node and
edge embeddings across the entire graph. Pioneering mod-
els like Simple Graph Transformer [9], Graphormer [19] and
SGFormer [11] showcased a superior performance over tra-
ditional GNNs on diverse graph learning tasks. In the finan-
cial fraud domain, FraudGT [14] demonstrated the effective-
ness of the graph transformer architecture for fraud detection,
achieving superior results compared to multigraph-enhanced
GNNs. However, the existing attention-based models con-
sider the direct application of the global attention computa-
tion on node attributes, rather than on edge features. In money

laundering detection applications, this might lead to insuffi-
cient model expressivity given the edge-attributed nature of
financial multigraphs.

In summary, a general framework that unifies the lo-
cal message passing and global edge-aware attention mech-
anisms in the context of learning tasks on large financial
multigraphs has yet to be proposed. This work closes this
gap by introducing a novel hybrid model framework designed
for money laundering detection tasks in large-scale financial
transaction multigraphs.

3 Proposed model
In this section, we first present preliminaries on graph repre-
sentation of financial transaction networks. We proceed with
the preliminaries on Message-Passing Graph Neural Net-
works and Graph Transformers. Then, we introduce the ar-
chitecture and methodology of GraphFuse.

3.1 Preliminaries
Graph Representation of Financial Transaction Data A fi-
nancial transaction network can be represented as a directed
multigraph G = (V, E ,X,E), where the nodes v ∈ V repre-
sent accounts, and the directed edges e = (u, v) ∈ E repre-
sent transactions from u to v. If the graph is node-attributed,
the node attribute matrix X ∈ RN×dn assigns a set of ac-
count features xu to each node u; this could include the ac-
count number, bank ID and account balance. Additionally, if
the transaction graph is edge-attributed i.e., each transaction
has a set of associated transactions features, the edge attribute
matrix E ∈ RM×de assigns attributes to each edge. dn and de
are the dimensions of node and edge attributes, respectively.
The in and out degree of a node u are denoted by |Nin(u)|
and |Nout(u)|, where Nin(u),Nout(u) represent the sets of
incoming and outgoing neighbors of u. The size of the finan-
cial graph, as measured by the number of edges M = |E|,
can be arbitrarily large, ranging from thousands to billions.

Graph Neural Networks Modern GNNs employ the lo-
cal message passing mechanism to iteratively learn the rep-
resentation of the nodes and edges of G by aggregating the
representations of their neighbors. Let h(l)(vi) be the repre-
sentation of vi at the l-th layer and h(0)(eki) denote the input
features of a directed edge connecting vk to vi. Following the
definition from [8], when using edge features during the mes-
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Figure 2: Illustration of the proposed model GraphFuse and its data flow. The input embeddings of the nodes and the edges of the sampled
sub-graph are passed to the Local Message Passing (MP) Module (H̃(0)

e ,H
(0)
n ) and Global Attention Module (H(0)

e ). The edge embeddings
generated by the two modules are passed to the Late Fusion Layer which outputs the edge representations (H(f)

e ) for the downstream financial
fraud detection task.

sage passing, the updated node representation is computed as
follows:

h(l)(vi) = Update(h(l−1)(vi), a
(l)(vi)),where (1)

a(l)(vi) = Aggregate
(
{{(h(l−1)(vk), h

(0)(eki))|vk ∈ Nin(vi)}}
)

(2)
where Aggregate is a permutation-invariant function and
{{·}} denotes a multi-set. The goal of the Update function
is to fuse the information from the neighbors into the node
representation. By following a similar procedure, edge rep-
resentations can be derived by utilizing the information from
the associated source and destination vertices.

Graph Transformers The Transformer architecture [13],
that lies at the core of graph transformers, consists of a
chain of L encoder layers. Each encoder layer consists of
a multi-head attention (MHA) module and a position-wise
feed-forward network (FFN). Following the definition from
[14], let G be a graph with egde feature matrix E ∈ RM×de ,
where eij ∈ Rde is the feature vector of a directed edge
that connects nodes vi and vj . In each layer l(l > 0),
given the hidden feature matrix H

(0)
e = E, the MHA module

first linearly projects the input H(l−1)
e to the query, key and

value matrices Q(h,l),K(h,l),V(h,l) using the corresponding
weight matrices W(h,l)

Q ,W
(h,l)
K ,W

(h,l)
V ∈ Rde×dh . The lin-

ear projection is defined as follows:

Q(l,h) = H
(l−1)
e W

(h,l)
Q ,K(l,h) = H

(l−1)
e W

(h,l)
K ,V(l,h) = H

(l−1)
e W

(h,l)
Q

(3)
where Q(l,h),K(l,h),K(l,h) ∈ RM×dh . Then, multiple atten-
tion heads are used to compute the scaled dot-product self at-
tention, as shown in Equation 4, where the softmax function
is applied row-wise, W(l)

Oh
∈ Rde×de is a learnable weight

matrix, h = 1..H denotes the index of the different attention

heads and ∥ denotes the matrix concatenation operator.

MHA(H
(l−1)
e ) =

∥∥
h∈[1,H]

(
softmax(Q

(l,h)K(l,h)⊤
√
dh

)V(h,l)
)
W

(l)
Oh

(4)
By combining the result with additional residual connections
and normalization layers, the encoder layer updates hidden
features H(l−1)

e as follows:

Ĥ(l)
e = MHA(H(l−1)

e ) +H(l−1)
e , (5)

H(l)
e = FFN(Ĥ(l)

e ) +H(l)
e =

[
σ
(
Ĥ(l)

e W
(l)
1

)
W

(l)
2

]
+H(l)

e

(6)

where σ refers to the activation function, and W
(l)
1 ∈ Rde×df

and W
(l)
2 ∈ Rdf×de are trainable parameters in the feedfor-

ward network (FFN) layer. The final output H(L)
e ∈ RM×de

can be used as the updated edge representations for down-
stream tasks.

3.2 GraphFuse: Hybrid Graph Representation
Learning Model

In this section, we introduce GraphFuse — the hybrid graph
representation learning model which consists of new compo-
nents compared to existing models and combines traditional
Message Passing Neural Networks and the Graph Trans-
former paradigm. In order to increase the expressiveness of
the hybrid model and increase its performance for the money
laundering detection task, we introduce two structure- and
context-aware edge encodings: edge centrality and transac-
tion signature. The architecture of the proposed model is
presented in Figure 2, highlighting the main components of
the hybrid model: the Local Message Passing Module, the
Global Attention Module and the Late Fusion Layer. A de-
tailed description of each component is provided in the next
sub-sections.
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Incorporation of Structural and Contextual Information
In order to align with the intuition behind the original Trans-
former [13] which makes use of structural information about
the sequences that it processes, we devise a way of incor-
porating a similar structure-aware inductive bias into the at-
tention computation of our Global Attention Layer (see Fig-
ure 2). Given that money laundering analysis involves contex-
tual information about the accounts engaged in transactions,
we argue that enriching the hidden edge representations with
relevant account descriptors leads to a better detection capa-
bility of our model. We present the simple but effective de-
sign of these edge encodings in GraphFuse.

Edge Centrality
Centrality encoding which was introduced in the Graphormer
model [19], came to enhance the expressivity of the atten-
tion mechanism in the context of graph representation learn-
ing tasks. Derived using the degree centrality measure, node
centrality encodings manage to introduce an important sig-
nal into the self-attention computation, reflecting the relative
importance of a particular node based on its connectivity. A
more rigorous work which analyzes the topological and geo-
metrical properties of money laundering activities in financial
networks [20], highlighted the relevance of the Forman-Ricci
curvature [21] as a tool for detecting illicit patterns. Intu-
itively, the Forman-Ricci curvature assesses the importance
of an edge in terms of its connectivity to its neighbors, a mea-
sure which is tightly connected to the degree centrality of its
endpoints. The relevance of the latter mentioned geometrical
property of edges for the money laundering detection tasks,
stems from the fact that malicious agents prefer to engage in
few transactions with other agents in order to put their ac-
tivity out of sight [20]. Therefore, the paradigms introduced
in [19] and [20] coalesce into a novel edge centrality encod-
ing that introduces an important inductive bias in the context
of detecting money laundering transactions in large financial
graphs. Given the directed edge eij connecting the vertices vi
and vj , the edge centrality encoding is defined as follows:

ϵij = fEC (µi∥µj) ,where, (7)

µk =
1

2

(
log(deg−(vk)) + log(deg+(vk))

)
, (8)

where fEC represents a shallow neural layer (e.g. a lin-
ear feed-forward layer in our implementation), deg+(vk) and
deg−(vk) denote the in- and out-degree of a node vk and
∥ denotes the vector concatenation operator. Therefore, ϵij
quantifies an important intuition behind financial transaction
networks, mainly that nodes with a higher centrality (i.e., a
higher in- and out-degree) typically correspond to trusted ac-
counts in the financial network and are less likely to be in-
volved in chains of illicit transactions.

Transaction Signatures
Beyond the topological characteristics of money laundering
patterns, the behavior and the financial activity of an agent
provides an important implicit bias for detecting illicit trans-
actions associated with one’s account. The work conducted
in [22] and [23] underlines the significant correlation be-

tween the illicit status of a transaction and the specific be-
havioral patterns of its associated accounts, such as the use
of multiple currencies, large and irregular transfer amounts
and high transaction frequencies. All such characteristics
form an account signature for all the accounts in the fi-
nancial network. For our application, an account signature
consists of the following metrics: Currency Diversity, Re-
ceived Amount Median/Dispersion, Transferred Amount Me-
dian/Dispersion, Deposit/Transfer Frequency Rate and Sent
To Received Amount Ratio. Given the directed edge eij con-
necting the vertices vi and vj , the transaction signature is de-
fined as follows:

sij = σi∥σj , (9)
where σk denotes the account signature of a node vk and ∥
denotes the vector concatenation operator.

3.3 Input Layer
The input node and edge feature matrices are linearly pro-
jected to create multi-dimensional embeddings to be passed
to the Local Message Passing (MP) and Global Attention
(GA) modules. In order to separate the learning process and
increase the expressivity of the Global Attention module, we
create distinct initial edge embeddings with independent di-
mensionalities for the two modules. Therefore, the local MP
module receives the initial node and edge embeddings H(0)

n ,
H̃

(0)
e , while the Global Attention module operates on the sep-

arate edge embeddings H(0)
e (see Figure 2). Additionally, we

add the edge centrality and transaction signature encodings to
the edge embeddings H(0)

e to be passed to the Global Atten-
tion Module:

h′(0)
ij = fGA (eij∥sij) , (10)

h
(0)
ij = h′(0)

ij + αϵij (11)

where α ∈ R is a learnable scalar, ∥ denotes the vector con-
catenation operator and fGA denotes a shallow neural net-
work.

3.4 Local Message Passing Module
For the Local Message Passing Module (see Figure 2) we
adopt the MEGA-GNN framework introduced in [7], consid-
ering several message passing layers. Leveraging the power-
ful multi-edge aggregation mechanism, which was proven to
increase the expressivity of message passing neural networks,
the derived edge representations capture more nuanced infor-
mation about the local neighborhood of the financial trans-
actions. Given its superior performance [7], we consider the
message passing mechanism of the PNA model [2] for both
node- and edge-level aggregation. Additionally, consistent
with the multigraph enhancements introduced in [7] and [8],
we incorporate Ego IDs [24], which significantly increase the
capability of detecting cyclic patterns in graphs. Given the in-
put node and edge embeddings H(0)

n , H̃
(0)
e , and the adjacency

matrix of the sampled sub-graph A (see Figure 2), the output
edge representations of the Local MP module are computed
as:

H(GNN)
e = GNN(L) ◦ · · · ◦ GNN(1)

(
H(0)

n , H̃(0)
e ,A

)
(12)

4



3.5 Global Attention Module
In order to capture more intricate and globally-distributed
laundering patterns, the global attention module is designed
to operate over a larger (global) graph neighborhood. Com-
pared to the modus operandi of the Local Message Passing
(MP) Module, the Global Attention (GA) Module is respon-
sible for capturing implicit biases that arise from the indirect
and hidden relations between financial agents and their inter-
actions across the entire graph. Therefore, the global view of-
fered by the GA Module introduces subtle yet important sig-
nals that the Local MP Module alone can not detect. In con-
trast to existing GT models, we implement the attention com-
putation directly on the edge hidden representations. To the
best of our knowledge this is the first attention-based model
that operates on edges in the context of AML detection.

The proposed global attention layer follows the architec-
ture of the standard Transformer encoder layer described in
[13]. The core of the global attention layer is the multi-
head self-attention module that generates contextualized edge
representations by modeling all the pair-wise interactions be-
tween the edges of the sampled sub-graph. In addition, sim-
ilar to the Graphormer model [19] implementation, we ap-
ply the layer normalization (LN) before the multi-head self-
attention (MHA) block and the feed-forward blocks (FNN)
instead of after. This modification is preferred by the major-
ity of modern Transformer-based models because it leads to
a more effective optimization [25]. We formally characterize
the Global Attention Layer — GALayer as below:

H(l)
e = GALayer(H(l−1)

e ),where, (13)

Ĥ(l)
e = MHA(LayerNorm(H(l−1)

e )) +H(l−1)
e , (14)

H(l)
e = FNN(LayerNorm(Ĥ(l)

e )) + Ĥ(l)
e (15)

where H
(l)
e ,H

(l−1)
e ∈ RM×de . To align with the design

principles of the original Transformer architecture introduced
in [13], we set the dimensionality of the position-wise neu-
ral layers of the FFN to df = 4 · de, therefore balancing
model capacity and computational efficiency. Given the con-
straints imposed by the large scale of the financial transac-
tion graphs and the inherent quadratic complexity of the self-
attention mechanism, our work investigates the performance
of three different implementations of the multi-head self-
attention block MHA. The linear (MHALin), full (MHAFull)
and sparse (MHASparse) attention mechanisms are described
in the following sub-sections.

Linear Attention Mechanism
The simple global attention mechanism of the SGFormer
model [11] manages the reduction of the O(|E|2) computa-
tional complexity overhead of the vanilla softmax attention
from the original Transformer implementation [13]. While
offering a computation of attentive representations that can
be achieved in O(|E|), the linear attention function of SG-
Former also guarantees the expressivity to model all pair-
wise interactions between the edges in the sampled subgraph.
Given the proven efficiency in learning meaningful repre-
sentations and the reduced computational complexity of the

aforementioned mechanism, we adopt it for the global at-
tention layer of our Global Attention Module. Additionally,
the linear complexity advantage allows us to make use of
larger batch sizes which directly leads to a better capability
of the model for learning complex long-range dependencies
between the transactions in the sampled subgraphs. As the
original implementation considers a single-layer, single-head
attention-based model, we generalize and adapt it for a multi-
layer and multi-head attention computation while maintain-
ing the linear computational complexity. The resulting multi-
head linear attention function is defined as follows:

MHALin(H
(l−1)
e ) =

∥∥
h∈[1,H]

H(l, h)W(l)
Oh

,where, (16)

H(l, h) = (D(l,h))−1

[
V(l,h) +

1

M
Q̃(l,h)(K̃(l,h)⊤V(l,h))

]
,

(17)

D(l,h) = diag
(
1+

1

M
Q̃(l,h)(K̃(l,h)⊤1)

)
, and (18)

Q̃(l,h) =
Q(l,h)

∥Q(h,l)∥F
, K̃(l,h) =

K(l,h)

∥K(h,l)∥F
(19)

where ∥ · ∥ denotes the Frobenius norm, 1 is an M -
dimensional all-one column vector and the diag operation
changes the M -dimensional column vector into a M × M
diagonal matrix.

Full Attention Mechanism
Given that full (softmax) attention possesses provable expres-
sivity in the context of graph representation learning tasks
[26], we consider the multi-head scaled dot-product attention
function defined in Equation 4 as one of the alternative mech-
anisms for our Global Attention Layer:

MHAFull(H
(l−1)) =

∥∥
h∈[1,H]

(
softmax(Q

(l,h)K(l,h)⊤
√
dh

)V(h,l)
)
W

(l)
Oh

(20)
where Q(l,h),K(l,h),V(h,l) represent the the query, key and
value projections as introduced in Section 3.1. Consider-
ing the quadratic complexity of the full attention mechanism,
model configurations employing MHAFull within the Global
Attention Layers have a reduced scalability on large graphs.
As a consequence, such model configurations require more
computational resources for learning attentive edge represen-
tations over larger sub-graphs. In the context of our learn-
ing task which involves broad financial networks and limited
computational resources, this would would restrict the use of
multiple full attention layers with high dimensionalities and
therefore limit the ability of detecting long-range dependen-
cies between illicit transactions.

Sparse Attention Mechanism
In order to leverage the expressive power of full attention,
but reduce the associated quadratic computational overhead,
we employ a sparse attention mechanism. Inspired from
the clustered-attention paradigm introduced in the Cluster-
Former model [27], our sparse attention layer implementation
includes two stages during forward propagation, mainly the
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allocation of edges to clusters and the multi-head attentive-
computation within each of the clusters. Due to the large
scale of the considered graphs, we opt for the uniformly ran-
dom clustering of edges instead of similarity-preserving clus-
tering techniques, in order to avoid additional computational
overhead. The devised algorithm is defined as follows:

Algorithm 1 Clustered Sparse Attention Mechanism. For
clarity, the computation across multiple attention heads is
omitted from the pseudocode.

Require: Number of sampled edges Ne, Cluster size nor-
malization factor K, Input edge embeddings to the GA
Module H

(0)
e

Ensure: Attentive edge embeddings H(GA)
e

1: Compute number of clusters: C ← max(1, ⌈Ne/K⌉)
2: Randomly assign edges to clusters: clusters ∈
{0, 1, . . . , C − 1}Ne uniformly sampled

3: for each transformer layer l = 1 to L do
4: Linearly project the edge embeddings to the query,

key and value matrices Q(l),K(l),V(l)

5: for each cluster c = 0 to C − 1 do
6: Select edge indices in cluster c:

Ic ← {i | clusters[i] = c}
7: Extract Q(l)

c ,K
(l)
c ,V

(l)
c as Q(l)[Ic],K(l)[Ic],V(l)[Ic]

8: Compute the intra-cluster attention filter:

Ac ← softmax
(
QcK

⊤
c√

dk

)
9: Update the embeddings of the edges in cluster c:

H(l)
e [Ic]← AcVc

10: end for
11: end for
12: H(GA)

e ← H
(L)
e

13: return H(GA)
e

We summarize the layer-wise multi-head sparse attention
computation using the following expression:

MHASparse(H
(l−1)
e ) =

∥∥
h∈[1,H]

(
ClusterSoftmax

(
Q(l,h)K(l,h)⊤

√
dh

)
V(l,h)

)
W

(l)
Oh

(21)

Late Fusion Layer
In order to generate rich edge embeddings that capture both
the structure of the local graph neighborhood and the global
semantic context, we resort to a simple-yet-effective late fu-
sion layer that combines the edge embeddings propagated
from the Global Attention Module and the Local Message
Passing Module, as illustrated in Figure 2. The late fusion
layer is comprised of a simple single-layer feed-forward net-
work MLP(·) and a non-linear activation function σ. Let ∥
denote vector concatenation, and h

(GA)
ij and h

(GNN)
ij represent

the embeddings of a directed edge connecting vertices vi and
vj , as propagated from the aforementioned modules. The uni-

fied edge embedding obtained through fusion is

h
(f)
ij = σ

(
MLP

(
h
(GA)
ij ∥h(GNN)

ij

))
, (22)

By learning a projection over the combined edge represen-
tation, the model can adaptively integrate local- and global-
context features, effectively identifying which information is
most relevant for edge classification.

3.6 Training and Prediction
The aim of the model introduced in this paper is to gener-
ate meaningful edge embeddings that can be leveraged to de-
rive the fraud-indicative score of each financial transaction.
Therefore, the edge embeddings obtained after applying the
late fusion layer H

(f)
e are passed to the final classification

layer. Consistent with [7], [14], [8], the final classification
layer is composed of a simple feed-forward network MLP(·)
and a sigmoid function σ. The predicted anomaly score ŷij
for each edge between the nodes vi and vj is:

ŷij = σ
(

MLP(h(f)
ij )

)
, (23)

4 Experimental Setup and Results
This section presents our experiments designed to evaluate
the performance of the proposed hybrid late-fusion model in
the context of detecting illicit financial transactions through
edge classification. We provide a thorough description of the
datasets used in our experiments and the baselines against
which we compare our model. Furthermore, this section
presents the results achieved by the proposed model and of-
fers a comparison between the different model configurations
through ablation studies.

4.1 Experimental Setup
Datasets
Given the strict privacy regulations around financial data,
real-world datasets are not readily available. Besides the lim-
ited availability of data reflecting real scenarios of money
laundering and financial fraud, more than often these datasets
suffer from poor labeling, as many money laundering activi-
ties go undetected [1], [28]. Additionally, banks and financial
institutions often only keep records of the activity related to
their own accounts, therefore missing the broader context of
customer behavior across multiple institutions. These chal-
lenges motivate us to rely on existent synthetic money laun-
dering data [15]. These datasets correspond to large finan-
cial transaction networks, which are generated by modeling
agents (banks, companies and individuals) in a virtual finan-
cial environment. The generator takes into account several
well-established money laundering patterns in order to repli-
cate real-world fraudulent scenarios. We use two small-sized
datasets: one with a higher illicit ratio (HI) and one with
a lower illicit ratio (LI). We use a 60-20-20 temporal train-
validation-test split, i.e., we split the transactions after order-
ing them by their timestamps. A more detailed description of
the datasets is present in Appendix C.

6



Baselines
We compare GraphFuse against GNN models with edge fea-
tures and GT models. Consistent with prior work that ana-
lyzed the money laundering detection capability of graph rep-
resentation learning models [7], [8], [14], [15], the selected
baseline GNN model is PNA [2]. Additionally, the MEGA-
PNA model [7] is considered as the representative of the class
of state-of-the-art multigraph-enhanced GNN models. These
models are also employed within the Local Message Pass-
ing Module of our hybrid architecture (see Figure 2), there-
fore ensuring a fair comparison between standalone and in-
tegrated configurations. Multi-FraudGT [14] is selected as
the GT baseline, currently representing the best performing
Transformer-based model for financial fraud detection. Given
the size of the AML datasets, we use neighbourhood sam-
pling [3] for training the baseline and GraphFuse models.
Further details about the hyperparameters and experimental
setup are provided in Appendix A.

Evaluation and Scoring
Transactions that constitute money laundering instances rep-
resent a significantly small percentage of the total volume of
transactions that occur in the real world. Given their real-
istic characteristics, the used datasets are highly imbalanced
(see Appendix C), making popular metrics for measuring ac-
curacy unsuitable. Therefore, we use the minority class F1
score which is consistent with previous works [14], [7], [8]
and represents the de-factor metric used by banks and reg-
ulators for money laundering detection. More details about
the derivation of the F1 score are presented in Appendix B.
The reported test performance for each experiment is based
on the model checkpoint that achieved the highest validation
F1 score. To ensure statistical significance, each experiment
is repeated five times with different random seeds, and the
mean and standard deviation across these runs are reported.

4.2 Experimental Results
Classification Results
Table 1 presents the transaction classification results of the
selected baselines and GraphFuse variants across the con-
sidered datasets. Six different GraphFuse models are em-
ployed, covering all the combinations of the two message
passing layers (PNA and MEGA-PNA) and the three imple-
mented attention mechanisms. We make the following ob-
servations. First, the GraphFuse-PNA model demonstrates
significant improvements over the PNA baseline across both
datasets and for all attention configurations. The superior-
ity of the hybrid model is particularly evident on the highly-
imbalanced Small-LI dataset, achieving a 10.2%-14.3% im-
provement and therefore validating the effectiveness of lever-
aging global attention in synergy with local message pass-
ing. The model variant employing Linear Attention stands
out with higher detection scores, which can be attributed
to its inherent linear complexity enabling a deeper struc-
ture of the Global Attention Module (see Appendix A).
Second, the final multigraph-enhanced GraphFuse-MEGA-
PNA model achieves impressive results, managing to consis-
tently outperform the standalone MEGA-PNA model across

both datasets. The efficacy of the hybrid model incorporat-
ing edge encodings, specifically tailored for money launder-
ing detection, is underlined by its performance improvement
over the state-of-the-art (SOTA) Multi-FraudGT model. On
the Small-HI dataset, GraphFuse-MEGA-PNA outperforms
SOTA across all attention configurations, notably achieving a
gain of 0.76% over Multi-FraudGT. Additionally, the Linear
Attention model variant achieves the best F1 score on both the
Small-HI and Small-LI datasets. Overall, the results support
our proposed method, demonstrating the efficacy of a graph
model that unifies GNNs with GTs.

Ablation Study: Edge Encodings
We perform an ablation study on two of the components in-
troduced in GraphFuse, mainly the edge centrality and trans-
action signature edge encodings. Given the computational
complexity of the Full and Sparse attention model variants,
the study was performed using the GraphFuse-MEGA-PNA
configuration incorporating Linear attention. The results of
the F1 scores are presented in Table 1. We observe that in-
dividually adding the edge encodings does not have a sub-
stantial impact on model performance. However, when incor-
porating both encodings, we notice a performance increase
over the state-of-the-art Multi-FraudGT model across both
the Small-HI and Small-LI datasets. These results demon-
strate the synergistic effect of the novel edge encodings on
increasing the expressivity of GraphFuse in money launder-
ing detection tasks.

Training Efficiency and Fraud Detection Performance
Analysis
Table 2 compares the training and inference efficiency of
the model variants incorporating the three different atten-
tion mechanisms: Linear, Sparse and Full. All GraphFuse-
MEGA-PNA variants display a comparable detection score,
outperforming the SOTA Multi-FraudGT model by a small
yet noteworthy margin. However, in terms of efficiency,
the Linear Attention model variant achieved, on average, 3
times higher throughput and 2.5 times lower training time per
epoch, despite having a higher number of parameters than the
Sparse and Full Attention configurations. Therefore, due to
its favorable trade-off between scalability and detection capa-
bilities, the Linear Attention model configuration stands out
as a strong candidate for industry-level AML systems oper-
ating over large-scale financial transaction data. Note that
the resource and time constraints of this research disallowed
the investigation of more complex Sparse and Full Atten-
tion configurations. We argue that further investigation could
yield improved detection performance for the aforementioned
model configurations.

5 Conclusions and Future Work
In this paper, we introduced GraphFuse, a novel hybrid graph
representation learning model designed for money launder-
ing detection in large-scale financial transaction networks.
By leveraging the message passing mechanism of GNNs
in synergy with the powerful global attention mechanism
of Transformers, the devised model is able to capture in-
tricate and broad fraudulent patterns spanning across finan-
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Table 1: Classification performance (F1 score (%) ± std) on the selcted AML datasets. Standard deviations are calculated over 5 runs with
different random seeds. We highlight the best and second-best results.

AML Small-HI AML Small-LI
GNN Baseline
PNA [2] 61.20 ± 2.24 16.10 ± 2.38
MEGA-GNN Baseline
MEGA-PNA [7] 73.10 ± 1.46 44.87 ± 1.62
+ Ego IDs 73.74 ± 1.55 45.37 ± 1.45
GT Baseline
Multi-FraudGT [14] 76.13 ± 0.95 47.01 ± 2.22
GRAPHFUSE-PNA
Linear Attention 66.12 ± 2.29 30.39 ± 2.24
Sparse Attention 64.24 ± 2.06 28.83 ± 1.94
Full Attention 64.29 ± 3.07 26.30 ± 1.08
GRAPHFUSE-MEGA-PNA
Linear Attention (w/o EC,TS) 75.81 ± 1.14 46.66 ± 0.37
+ EC 75.86 ± 1.56 46.05 ± 1.06
+ TS 75.72 ± 0.85 47.13 ± 0.19
+ EC + TS 76.89 ± 0.88 47.56 ± 0.36
Sparse Attention 76.29 ± 0.99 47.47 ± 0.17
Full Attention 76.40 ± 0.28 46.93 ± 0.60

Table 2: Training and estimative inference efficiency comparison of the three GRAPHFUSE-MEGA-PNA model variants with different
Global Attention Module configurations. We report the number of parameters, average training epoch time, the average throughput and
the corresponding test F1 score achieved on the AML Small-HI dataset. The average throughput is defined as the number of processed
transactions per second (trans/s), computed by measuring the time required to process the transactions from the validation and test sets during
model training, excluding model updates. This represents a rough estimate intended for analytical comparison purposes.

Size (# params) Epoch time (s) Avg. Throughput (trans/s) Test F1 (%)
GRAPHFUSE-MEGA-PNA
Linear Attention 212.6 · 103 626.7± 4.0 ≈ 53 · 103 76.89± 0.88
Sparse Attention 162.5 · 103 1441.9± 23.9 ≈ 21 · 103 76.29± 0.99
Full Attention 112.2 · 103 1648.1± 2.9 ≈ 15 · 103 76.40± 0.28

cial graphs. The devised model incorporates novel structural
and contextual edge encodings that capture nuanced infor-
mation about the financial agents and their interactions. Ad-
ditionally, we proposed three powerful attention-wise model
configurations that achieve competitive results for a varying
availability of computational resources and performance con-
straints. The extensive evaluation on publicly-available large-
scale datasets alongside the leading GNN and GT baselines,
demonstrate that GraphFuse outperforms or matches the per-
formance of state-of-the-art fraud detection models. We’ve
shown that the hybrid model, enhanced with the proposed
edge encodings, leads to a 0.76 p.p. increase in minority
F1 score compared to the state-of-the-art. Furthermore, we
established the favorable training and inference efficiency of
the Linear Attention configuration of GraphFuse. In conclu-
sion, the empirical results demonstrate the effectiveness of the
devised model and its potential for serving as a baseline for
further research in increasing the money laundering detection
capabilities of graph machine learning models.

Future Work
There are several promising directions to further enhance the
proposed model. An important aspect to investigate would

be the incorporation of structure-aware positional encodings
(e.g. PEARL [29]) for increasing the expressivity of the
inherently position-agnostic transformer architecture. Fur-
thermore, to improve the model expressivity, one could con-
sider the reverse multigraph message passing mechanism in-
troduced in the Multi-GNN framework [8] and later refined
in the MEGA-GNN framework [7]. Additionally, given our
simplistic late fusion layer, more effective fusion mechanisms
could be investigated.

Another direction for future work involves assessing the
effectiveness of the model in real-world transactional data
enriched with additional contextual characteristics. Incor-
porating attributes such as the geographic origin and socio-
economic profile of financial agents, institutional risk scores,
and statistical summaries of historical transaction behavior
could substantially improve model performance and robust-
ness in production-grade fraud detection systems. More-
over, exploring the capacity of the model to identify well-
established money laundering patterns within financial net-
works would further validate its utility and generalizability
across use cases.
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6 Responsible Research
The work conducted as part of this research adheres to the
collective fight against financial crime by contributing with
novel GNN and Graph Transformer inspired methods to ana-
lyze financial transaction networks. By proposing a new hy-
brid architecture that achieves a higher performance on the
task of detecting illicit transactions, this research aims to in-
crease the efficiency of the regulators and reporting entities
and therefore lower the harmful impact of money laundering
on both the public and private financial sectors. Furthermore,
the presented work does not offer any opportunities for sub-
terfuge to malicious actors, as given the complexity of the
model, the feature importance and learned decision bound-
aries are hard to derive and therefore limit the potential eva-
sion of detection. Given that the dataset used for training
and evaluating the models included in this research is purely
synthetic, the conducted work does not lead to any privacy
concerns or legal compliance issues. As the simulated data
do not include any information about the characteristics and
nature of the individuals and entities involved in the finan-
cial transactions, no bias regarding the socio-economic pro-
file or the region of origin of the transactional agents is in-
jected into the trained model. However, due to the artificial
nature of the dataset used, the performance of the model is
not guaranteed to translate one-to-one to a real data scenario.
Therefore, it is the responsibility of the investigative entities
to assess the performance of the proposed model in a realistic
context before using it as a fraud detection tool. Moreover,
the proposed machine learning model for financial fraud de-
tection should be considered solely an aid for the decision-
making process, as it does not provide a legally binding de-
termination of a transaction’s legitimacy. In order to lever-
age the benefits of the ML-based detection model, one would
consider its integration into a broader Anti Money Launder-
ing solution. To ensure complete reproducibility of the re-
sults, the code and configurations used for training and eval-
uation were made open source and are publicly available at
https://github.com/mfrija/aml-graphfuse.

Use of Large Language Models
With respect to the instated policy on the use of Generative
AI tools, Large Language Models were leveraged for stylistic
and grammatical improvements of the written content. The
scope of application was limited to finding contextual syn-
onyms and fixing the grammatical and stylistic errors of indi-
vidual sentences, excluding the task of generating passages of
text. Some of the most representative prompts are presented
in Appendix D.
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A Implementation Details
A.1 Hyperparameter Values
For each GraphFuse model variant we used a distinct set of
hyperparameters in order to achieve a balance between model
performance and computational time. For each model config-
uration, we considered the same hyperparameter values for
both the Small-HI and Small-LI datasets. Table 3 presents
the hyperparameter values used for the GraphFuse model
variants. The values of the hyperparameters corresponding
to the (MEGA-)PNA layers within the Local Message Pass-
ing Module respected the settings from [7] and [8]. In both
datasets, we sampled 4-hop neighborhoods, selecting a dif-
ferent number of neighbors per hop for each model variant.

GRAPHFUSE-(MEGA-)PNA
Linear Sparse Full

lr 0.0006 0.0006 0.0006
h gnn 20 20 20
n gnn layers 2 2 2
do gnn 0.083 0.083 0.083
h attn 64 64 64
n attn layers 3 2 1
n attn heads 1 2 2
cluster size - 5000 -
do attn 0.2 0.2 0.2
num neighs (50,50,50,50) (50,50,25,25) (50,25,25,25)
batch size 512 256 128
w ce1, w ce2 1, 7.08 1, 7.08 1, 7.08
grad clip norm 1.0 1.0 1.0

Table 3: Hyperparameter settings of the GraphFuse model variants
used for our experiments.

A.2 Model Training Formalization
Our hybrid graph model is trained using a supervised learning
approach, which aims to minimize the weighted binary cross-
entropy loss between the predicted anomaly scores and the
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true labels of the transactions. Let yij be the true label of one
of the transactions between nodes vi and vj and ŷij be the
predicted anomaly score of this transaction. The weighted
binary cross-entropy loss L is defined as:

L = −
[
w+ · yij · log(ŷij) + w− · (1− yij) · log(1− ŷij)

]
(24)

where w+ and w− represent the weights for the positive
(fraudulent) and negative class respectively.

A.3 Resources
We implement our solutions using the PyTorch Geometric
framework [31]. All experiments were conducted on the
DAIC [30] - the TU Delft High Performance Computing
(HPC) Cluster, using an NVIDIA A40 GPU.

B Model Evaluation Metrics
The minority class F1 score is used as the model evaluation
metric in the context of financial fraud detection tasks and is
defined as follows:

F1 =
2 · Precision · Recall
Precision + Recall

, where (25)

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

where TP - number of correctly predicted laundering transac-
tions, FP - number of legitimate transactions incorrectly clas-
sified as illicit and FN - number of illicit transactions incor-
rectly predicted as benign. By employing the minority class
F1 score we are able to improve detection rates without over-
whelming false positive rates and therefore obtain a balance
between robustness and effectiveness.

C Datasets Information
The synthetic AML datasets [15] used for training and evalu-
ating the developed model, consist of realistic financial trans-
actions that span across 10 days. Details about the statistics
of the datasets are present in Table 4.

Dataset # accounts # transactions Illicit Ratio
AML Small HI 515K 5M 0.07%
AML Small LI 705K 7M 0.05%

Table 4: AML datasets statistics. HI indicates a higher illicit ratio
and LI indicates a lower illicit ratio

D Large Language Models Prompting
The following prompts were leveraged for finding the gram-
matical and stylistic errors in individual sentences and replac-
ing specific terms with contextual synonyms and reformula-
tions:

D.1 Prompt for Grammatical and Stylistic Review
”Please check the following sentence for grammatical errors
and stylistic inconsistencies. Indicate the exact errors and

suggest improvements.
Sentence: #sentence#”.

D.2 Prompt For Contextual Synonyms and
Reformulations

”Please suggest more natural or academically appropriate al-
ternatives for the following word or phrase, considering its
context within a formal scientific paper. Keep the meaning
intact but improve fluency or formality where possible.
Word or Phrase: #input#
Context: #context#”.
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