
A Study into the Use of Version Locking in Gradle Projects

Joppe Boerop1

Supervisor(s): Sebastian Proksch1, Cathrine Paulsen1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Joppe Boerop
 Final project course: CSE3000 Research Project
Thesis committee: Sebastian Proksch, Cathrine Paulsen, Georgios Iosifidis

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Developers often use dependency managers to
make updating dependencies easier. These de-
pendency managers allow permissive declaration
strategies to be used which automatically keep de-
pendencies up-to-date. To prevent these automatic
updates from breaking projects, developers can use
version locking to lock specific versions in place.
To investigate how version locking is used we have
done research into version locking in projects us-
ing Gradle. We found that version locking is not
widely adapted, as only 0.34% of our sampled Gra-
dle projects contained a lock file. Our analysis into
the use of version ranges in projects using version
locking showed that only 29.5% to 44.4% of ana-
lyzed projects using version locking, used version
ranges. This is surprising as version locking is most
effective when using version ranges. Our research
into the effect of version locking showed that in
18.2% of the analyzed projects, version locking
prevented the build from failing. Looking into the
negative effects of version locking, we found that
9.8% of the dependencies are at risk of being a
vulnerability, as for these dependencies there are
newer versions available which might introduce se-
curity patches.

1 Introduction
In software development, developers often use open-source
code in their projects to avoid having to reinvent the wheel
and instead use well-documented and well-maintained code
for functionality that is not specific to their own project. Man-
aging these dependencies can become difficult, as dependen-
cies might use other dependencies themselves. These transi-
tive dependencies may intersect with other dependencies used
in the project, leading to version conflicts. Dependency man-
agers, such as Gradle, are tools designed to make managing
these dependencies easier by automatically resolving and in-
stalling dependencies. In most cases, dependencies continue
to be improved. Security issues may be discovered, for exam-
ple, which means a new version needs to be published to fix
the issue. It is therefore important to frequently update these
dependencies. Gradle allows developers to use permissive
version declarations to automatically use the latest version of
a dependency. However, sometimes these automatic updates
can break a project. This happens when an update contains
so-called breaking changes: changes to the interface of the
dependency which can break the project using it. Therefore,
Gradle recommends the use of “version locking” when using
permissive declaration strategies [1]. When version locking
is used, a lock file is generated, listing the specific version
used for every dependency. After this, during the build of a
project, Gradle uses the version listed in the lock file instead
of resolving the dependencies again, leading to reproducible
builds and preventing the project from unexpectedly break-
ing.

Semantic versioning was introduced as a way for devel-
opers to easily see if an update introduces breaking changes

[2]. In a version like X.Y.Z, X is called the major version,
Y the minor version and Z the patch version. According to
semantic versioning, only major version updates should in-
troduce breaking changes. However, research has shown that
this convention is often not followed and breaking changes
are also introduced in other updates [3; 4; 5]. This means that
developers cannot rely on semantic versioning to guarantee
reproducible builds, demonstrating the need for version lock-
ing when using permissive declaration strategies. Research
by Pashchenko et al. [6] confirms that the fact that updates
may introduce breaking changes is one of the key reasons
developers decide not to update their dependencies. Version
locking could be useful here, as it would allow developers to
use permissive declaration strategies, while still guaranteeing
reproducible builds. A recent study by Gamage et al. [7]
showed, however, that version locking is rarely used in Gra-
dle. They found that only 0.3% to 0.9% of the 323 projects
analyzed used version locking. In this paper, we will extend
this research by verifying the found adoption rate for a much
larger sample set and looking into the effects of the use of
version locking.
The research questions that will be investigated in this paper
are:
RQ1. How widespread is the use of version locking?
Version locking is a built-in feature in Gradle, but how often
is it actually used? Is it widely adopted or are there only a
few developers who use it? We sampled over 12,000 Gradle
projects from GitHub and found that only 0.34% of them used
version locking.
RQ2. How widespread is the use of version ranges in
projects that also use version locking?
Version locking is most useful when using version ranges. If
version ranges are not used, direct dependencies are pinned
to a specific version anyway and only transitive dependen-
cies can benefit from version locking. To find out if version
ranges are indeed used often in projects with version lock-
ing, we sampled 47 projects using version locking and ana-
lyzed how many of them used version ranges. Surprisingly,
we found that this was the case for only 29.5% to 44.4% of
these projects.
RQ3. How can we measure the effect of version locking?
The effect of version locking can be positive and negative.
Positive effects include not breaking a project when break-
ing changes are introduced in newer dependency versions.
Negative effects could occur when a newer version of a de-
pendency is released, but not used because the version is
locked to an older version. This version could, for exam-
ple, introduce security patches, which are now not adopted
in the project. To analyze the positive effects, we tried to
build the projects that we sampled after removing the lock
files. For 18.2% of the projects, version locking prevented
the build from failing, showing the need for version locking
in these projects. For the negative effects, we analyzed how
often projects had locked dependencies to an older version
and how big the difference between this older version and the
latest version was. We saw that 41.4% of the projects used
older versions of dependencies. Furthermore, we saw that at
most 9.8% of the dependencies used throughout the analyzed
projects contain vulnerabilities.

For our research we wrote several Python scripts to analyze
data. These scripts can be found in our GitHub repository [8].

It is worth noting that our original intention was to investi-
gate version locking in Maven. Version locking is not a built-
in feature in Maven, meaning a plugin is needed. We iden-
tified a plugin and investigated its adoption, but found that
it was used so rarely that a full research into projects using it
would be unfeasible. As we were unable to find another, more
frequently used plugin, we decided to switch to another de-
pendency manager. We chose Gradle as it uses Maven Central
for its dependencies, just like Maven. As version locking is a
built-in feature in Gradle, we expected that we would be able
to find a sufficient number of projects using version locking
when looking at Gradle projects.

2 Dependency Management in Gradle
Gradle provides a dependency management tool, which helps
developers by automating the resolution and installation of
dependencies. This section will give a short explanation of
the features that are relevant to this paper.

2.1 Dependency Declaration
Dependencies are declared in a build file (build.gradle)
written in either Kotlin or Groovy. A dependency declaration
consists of the dependency’s group, name and version and can
be written in the following ways:

• String notation: "group:name:version"

• Map notation: group = "group", name = "name",
version = "version"
(Note that this is the map notation written in Kotlin. In
Groovy, the =-signs are replaced by colons)

• Centralized dependencies: "libs.name"
Centralizing dependencies makes declaring dependen-
cies easier for projects with multiple build files. Spec-
ifying the versions of dependencies is done in a sepa-
rate libs.versions.toml file using the map notation.
In the build.gradle file you reference this version by
writing "libs.name" where name is the name you gave
to the version declaration in the libs.versions.toml
file.

The version can either be a specific version, in which case the
dependency will be pinned to that version, or a version range.

2.2 Version Ranges
In Gradle, version ranges can be declared using 3 methods:

• Using square brackets and parentheses. Square brack-
ets are inclusive bounds and parentheses are exclusive
bounds. Examples:

– [1.3, 1.8]
Includes all versions from version 1.3 up to and in-
cluding version 1.8

– [1.3, 1.8)
Includes all versions from version 1.3 up to (but not
including) 1.8

– [1.3, 1.8[
The same as above. [can be used as an alternative
for). Similarly,] can be used as an alternative for
(.

• Using prefix notation. By putting a plus sign (+) after
the first part of a version, all versions with that first part
will be included. Examples:

– 1.3.+
Includes 1.3.0, 1.3.1, 1.3.2, etc.

– 2.+
Includes 2.1, 2.2.4, 2.5, etc.

– +
Includes all versions. Similar to using latest nota-
tion (see below)

• Using latest notation. When using latest notation, Gra-
dle will resolve the newest version of this dependency.
There are two different latest notations:

– latest.version
Includes all released versions

– latest.integration
Includes all versions, including SNAPSHOT ver-
sions. SNAPSHOT versions are versions that are
still under development, which are not guaranteed
to be stable and could still be subject to change [9].

2.3 Version locking
Version locking in Gradle can be activated in the
build.gradle file [1]. Locking all configurations is done
by adding a dependencyLocking block:
dependencyLocking {

lockAllConfigurations()
}

Specific configurations can be locked with:
configurations {

compileClasspath {
resolutionStrategy

.activateDependencyLocking()
}

}

After locking has been activated, a lock file needs to be
generated. This is done by running the command gradle
dependencies --write-locks. Only when a lock file is
present and locking is activated, the locked versions will be
enforced.

3 Data Collection
This section explains how we created our datasets for the dif-
ferent research questions

3.1 General Dataset of Gradle Projects
For RQ1 we looked into how often version locking is used
in Gradle projects. For this, we needed a dataset of Gradle
projects so we could investigate how many of those use ver-
sion locking. To this end we sampled Java GitHub projects
using a repository mining tool [10]. We decided on the fol-
lowing filters for the mining tool:

• Minimum number of stars: 10
• Last commit after: 01-01-2024

The minimum number of stars were chosen to filter out toy-
projects. We believe these projects would skew our results
as most of them are created for experimentation purposes
and might therefore not reflect real-world dependency man-
agement practices. We excluded projects for which the last
commit was before 01-01-2024 because we were interested
in how much version locking is used at the current moment.

This resulted in a dataset of 29,210 repositories, which can
be found in our GitHub repository at data/repos.json [8].

3.2 Projects using Version Locking
The dataset described in Section 3.1 only considered projects
that were recently active, to investigate how widespread the
use of version locking is at the current moment. For research
questions 2 and 3 we looked into how version locking is used,
so we did not need to limit ourselves to recent projects. We
therefore decided to use a different method to also include
less recently updated projects, making sure we had as many
datapoints as possible.

When a project uses version locking, Gradle generates a
file called gradle.lockfile. We used the GitHub API to
find all files called gradle.lockfile on GitHub. Unfor-
tunately, due to restrictions on the Code Search endpoint of
the GitHub API, we could only access the first 1000 results.
To obtain even more results, we created two separate search
queries: one for lock files in the root folder of the project and
one for lock files in any other folder. Just like for research
question 1, we filtered out projects with less than 10 stars,
to not include any toy projects in our dataset. We stored the
found lock files and their corresponding build files in a text
file for later analysis. This resulted in a total of 327 different
lock files, from 48 different repositories. One of these repos-
itories (jjohannes/understanding-gradle) is a Gradle tutorial
and therefore not a representable project. We thus removed it
from our dataset, leaving us with 47 repositories.

The existence of a lock file alone does not necessarily mean
that version locking was used. Version locking needs to be ex-
plicitly enabled somehow. The method described by Gradle is
to enable it in the build.gradle file [1]. By manually look-
ing through the projects in our dataset, we saw that 33 out of
the 47 projects used this method and therefore definitely use
version locking. For the other 14 projects it is unsure if they
still use version locking, but since the lock file is there we
know they at least used it at some point in time. We therefore
decided it would still be interesting to include these projects
in the dataset.

4 Adoptation of Version Locking (RQ1)
Firstly, we are looking into how much version locking is used
in Gradle projects. Section 4.1 describes the methods used to
investigate this, while Section 4.2 presents the results.

4.1 Methodology
The mining tool gave us a JSON file with 29,210 GitHub
repositories (see Section 3.1). We wrote a script to filter
out the projects using Gradle and see how many of those

contained a lock file. Filtering out the projects using Gra-
dle was made easy by the metadata for each repository pro-
vided by the mining tool [10]. It provides an attribute called
“languages” for each repository, which lists all the languages
used. If Gradle was in this list, we knew it was a project using
Gradle.

To see if a repository contained a gradle.lockfile, we
used the Code Search endpoint of the GitHub API. This end-
point has a rate limit of 10 requests per minute. To speed
up the process we linked repositories together using the OR
operator, so we could check multiple repositories in one API-
request. According to the documentation,1 we only 5 oper-
ators per request are allowed and a “Validation Failed” mes-
sage will be returned for requests with more operators. How-
ever, while experimenting with the requests we found that this
was not correct as requests with more than 5 operators still
returned valid responses. The script therefore starts with 20
repositories per requests and breaks this number in half until
the API accepts the request. This significantly sped up the
process.

4.2 Results
After running the script on our dataset (see Section 3.1), we
found that 12,553 of the 29,210 repositories use Gradle. Out
of these repositories, only 43 (0.34%) contained a lock file.
These results can be found in Table 1. The results also show
that Gradle is quite often used in Java projects, with 42.98
percent of the sampled projects using it. We can conclude
that version locking is not used often at all, despite it being a
built-in feature in Gradle.

Metric Count Percentage
All repositories analyzed 29.210 100%
Gradle projects 12.553 42,98%
Projects using version locking 43 0,34% of Gradle projects

Table 1: Use of version locking in sampled projects

5 Version Ranges (RQ2)
Version locking was introduced in Gradle to ensure that
projects do not break when using permissive version decla-
rations, like version ranges [1]. We would therefore expect
projects using version locking to also use version ranges. This
section investigates if this is the case. In Section 5.1 the
methodology is laid out. Section 5.2 presents the results of
this investigation.

5.1 Methodology
To investigate how many of the projects using version locking
also use version ranges, we wrote a script to look through
the build files of projects using version locking. The script
uses regular expressions to match version declarations that
use one of the notations for version ranges (bracket notation,
prefix notation or latest notation). The different repositories
use different methods for declaring versions, so each of these
methods was checked (see Section 2.1).

1https://docs.github.com/en/rest/search/search#
limitations-on-query-length

https://docs.github.com/en/rest/search/search#limitations-on-query-length
https://docs.github.com/en/rest/search/search#limitations-on-query-length

The script keeps track of which dependencies use version
ranges and how many of the range declarations are in the
bracket, prefix or latest notation respectively. For a deeper
insight into how permissive the ranges were, the “maximal
variable part” of each dependency using version ranges is de-
termined. We define the maximal variable part as the highest
part of the version (major, minor or patch) that is allowed to
change. For example, the maximal variable part of 2.+ is mi-
nor, because only the major part is pinned. For [1.3, 2.5]
the maximal variable part is major, because the major version
can be 1 or 2. For the latest notation, the maximal variable
part is always major, as the version is not restricted in any
way.

5.2 Results

After running the script, we find that 16 (34.0%) out of the 47
repositories in our dataset use version ranges. If we restrict
ourselves to the repositories for which we are sure they are
using version locking, the number becomes 13 (39.3%) out of
33. When looking deeper into how these ranges are declared
(see Table 2), we see that most of the repositories using ranges
use the latest notation (68.8%), which is the most permissive
range declaration strategy.

Repository Brackets Prefix Latest
ajoberstar/gradle-git-publish 1 0 0
ajoberstar/gradle-stutter 1 0 0
bwaldvogel/base91 0 0 4
bwaldvogel/liblinear-java 0 0 10
bwaldvogel/log4j-systemd-journal-appender 0 0 5
bwaldvogel/mongo-java-server 0 0 12
cronn/cucumber-junit5-example 0 0 5
cronn/jira-sync 0 0 4
cronn/reflection-util 0 0 15
cronn/ssh-proxy 0 0 13
cronn/validation-file-assertions 0 0 6
DataDog/dd-trace-java 9 237 0
datastax/fallout 0 21 0
jonatan-ivanov/resourceater 0 3 3
jonatan-ivanov/teahouse 0 1 9
MovingBlocks/TerasologyLauncher 1 0 0
Total 12 262 86

Table 2: Frequency of different notations for version ranges

Looking into the maximal variable part of each detected
version range (see Table 3), we see that most repositories have
version ranges that are not pinned on any part of the version
and can therefore change in every part of the version (major,
minor, patch). This is to be expected from the results above as
the latest notation always has major as its maximal variable
part. 5 repositories have dependencies with minor as its max-
imal variable part and only 3 repositories have dependencies
with patch as its maximal variable part.

Repository Major Minor Patch
ajoberstar/gradle-git-publish 0 1 0
ajoberstar/gradle-stutter 0 0 1
bwaldvogel/base91 4 0 0
bwaldvogel/liblinear-java 10 0 0
bwaldvogel/log4j-systemd-journal-appender 5 0 0
bwaldvogel/mongo-java-server 12 0 0
cronn/cucumber-junit5-example 5 0 0
cronn/jira-sync 4 0 0
cronn/reflection-util 15 0 0
cronn/ssh-proxy 13 0 0
cronn/validation-file-assertions 6 0 0
DataDog/dd-trace-java 101 93 52
datastax/fallout 2 13 6
jonatan-ivanov/resourceater 3 3 0
jonatan-ivanov/teahouse 9 1 0
MovingBlocks/TerasologyLauncher 1 0 0
Total 190 111 59

Table 3: Maximal variable part of version range per repository

To answer our research question, we can put a lower and
upper bound on what percentage of repositories using ver-
sion locking also use version ranges. This is because for
some repositories, we are uncertain if they actually use ver-
sion locking (see Section 3.2). The lower bound is the case
where all of the uncertain repositories that also use ranges,
do not use version locking and the other uncertain reposito-
ries do. In this case 13 out of 44 repositories that use ver-
sion locking, also use ranges. The upper bound is the case in
which all of the uncertain repositories that use ranges, do use
version locking and the other uncertain repositories do not.
In that case 16 out of 36 repositories using locking also use
ranges. This means that the percentage of repositories using
version locking that also use version ranges is between 29.5
and 44.4 percent.

6 Effects of Version Locking (RQ3)
We now know more about how version locking is used, but
unclear is what the effects exactly are. To investigate this, we
conducted the research laid out in this section.

6.1 Methodology
Version locking can have positive and negative effects. A pos-
itive effect occurs when a newer version of a locked depen-
dency is released that would break the project. If this project
would not be using version locking, the build would fail. A
negative effect occurs when a newer version of a locked de-
pendency is released. This newer version could include secu-
rity patches, that are now not adopted by the project. To find
out how often these two effects occur, we investigated them
separately.

Positive effects
To see how often the positive effect occurs, we cloned the
repositories and tried to build each of them to see if the build
succeeded before removing the lock files. Because many
of the projects use different Java versions, we manually in-
spected the build.gradle files of every project and noted
down the Java version. We then wrote a script that, for every
repository, used the Java version we detected and then tried
to build the project. Then we removed the lock files of the

projects for which the build succeeded and tried to build the
project again to see if this would cause the build to fail.

Negative effects
For the negative effect, we again cloned the repositories. We
then copied all the lock files to a separate folder and resolved
the dependencies for each of the repositories. This overwrites
the old lock files with the newly generated ones. We then
wrote a script to compare the old lock files with these new
ones. The script detects per dependency, what happened to it
after re-resolving. The following results are possible:

• No change: the dependency version stays the same in
the new lock file

• Added: the dependency did not appear in the old lock
file, but does appear in the new one

• Removed: the dependency appeared in the old lock file,
but no longer appears in the new one

• Major: the dependency has a greater major version in
the new lock file than in the old one

• Minor: the dependency has a greater minor version in
the new lock file than in the old one

• Patch: the dependency has a greater patch version in the
new lock file than in the old one

Some of the repositories have multiple subdirectories each
with their own build.gradle and gradle.lockfile files.
Furthermore, in a single build.gradle file, the same de-
pendency can be set to different versions for different con-
figurations. Because of these two reasons, the same depen-
dency can have multiple different versions throughout a sin-
gle repository. This also means that different things can hap-
pen to a single dependency after re-resolving. For example,
a dependency could be removed in one lock file of a reposi-
tory and updated in another lock file of the same repository.
We could count all dependencies throughout all lock files in
a repository, but decided against this as some repositories use
many lock files, while others only have one. The reposito-
ries with many lock files would then be counted many times,
which would skew the results.

We therefore decided on ranking the different possible out-
comes for a dependency based on importance and only count-
ing the most important change per dependency per reposi-
tory. We chose the following order, from least to most impor-
tant: no change, added, patch, minor, major, removed. ‘No
change’ and ‘added’ both have no risk of introducing nega-
tive effects of version locking. For dependencies that did not
change, the latest possible version is already used. For added
dependencies, the version was not locked before so these also
use the latest possible version. Major, minor and patch up-
dates could have security issues if the newer version patches a
security risk. Removed dependencies are an interesting case,
as these also could have security risks. There are 2 reasons
for a dependency to be removed from the new lock file. (1)
The dependency could no longer be used by the repository we
are looking into or (2) the removed dependency was a transi-
tive dependency. In the first case there is no security risk as
the repository is not using that dependency anymore. In the
second case, however, the removed dependency is used by a

dependency that is locked to a version where it was still using
it. If the removed dependency has a security risk, it would
have been removed if the repository was not using version
locking, but now it is still being used.

6.2 Results
For this research question we first look into the positive effect
version locking can have: ensuring a build always succeeds,
even when breaking changes are introduced in newer versions
of dependencies. Then we look at the possible negative ef-
fects: a project is using an older version of a dependency that
possibly has security issues which are fixed in newer versions.

Positive effects
Because of various reasons (e.g. missing dependencies
or projects using private packages), we were not able to
build some of the projects at all. 11 out of the 47 projects
built successfully, so we can use these projects as a dataset
for this first part of the analysis. After the lock files were
removed from these projects, 9 projects (81.8%) still built
successfully and 2 projects (18.2%) fail the build. This
means that version locking prevented the build to fail for 2
out of 11 projects. For these 2 projects, the reason for the
unsuccessful build lies in the tests. We investigated these
2 projects further to understand the reason for the build to fail.

jonatan-ivanov/resourceater
This project failed because of a single test failing. The test
that failed is the following:

@SpringBootTest(webEnvironment = RANDOM_PORT)
class ResourceaterApplicationTests {

@Test void contextLoads() {}
}

Understanding exactly what happens here goes beyond the
scope of this paper, but in short, this project uses Spring Boot
to create a web-service.2 The test automates testing if the
web-service can start.3 If it fails, the web-service for some
reason cannot start, which is what happens here. If we look
into the error message of this test, we see:

’Spring Boot [3.5.0] is not compatible with
this Spring Cloud release train’, action =
’Change Spring Boot version to one of the
following versions [3.4.x]

If we look into the lock file of this repository, we in-
deed see that all Spring Boot dependencies were locked to
version 3.4.2. After the lock file was removed, the newest
version (3.5.0) was used, which according to the error
message is not compatible with other dependencies.

bwaldvogel/log4j-systemd-journal-appender
This project failed because of a compilation error in at least
one of the test files. Looking at the error message that Gradle
gave us, we see:

2https://spring.io/projects/spring-boot
3https://spring.io/guides/gs/testing-web

https://spring.io/projects/spring-boot
https://spring.io/guides/gs/testing-web

Execution failed for task ’:compileTestJava’.
> Compilation failed; see the compiler output
below.

In the compiler output we find:

import static org.mockito.Mockito.*;
ˆ

bad class file:
class file has wrong version 55.0,
should be 52.0

Please remove or make sure it appears
in the correct subdirectory of the
classpath.

A class file is the compiled version of a Java file. Version 55.0
is equivalent to Java 11 and version 52.0 to Java 8 [11]. The
test file is using Mockito, a Java framework used for testing.
Looking at the README of Mockito’s GitHub repository,
we see that Mockito uses Java 11 for major version 5, while
using Java 8 for major versions 3 and 4. If we look at the lock
file, we see that version 4.2.0 of Mockito is locked. After
we removed the lock file, Gradle resolved the newest version,
version 5.18.0. Since this version uses Java 11 and the project
uses Java 8, we get a compilation error.

Negative effects
As with building the projects, resolving the dependencies
does not succeed for all the projects. It succeeds for 29
out of the 47 projects, which means we can use those as a
dataset for this part of the research. After re-resolving the
dependencies, we found that the lock files stayed the same
for 16 out of the 29 repositories (55.2%). This means that
for these repositories, all dependencies were locked to the
version that were currently still the most recent version. Ta-
ble 4 shows what happened to each of the dependencies for
the other 13 repositories. What stands out are the results
from “DataDog/vulnerable-java-application” and “filibuster-
testing/filibuster-java-instrumentation”. These repositories
have many dependencies that no longer show up in the lock
file after re-resolving the dependencies, while the other repos-
itories have none or only a few. Because we are uncertain for
either of these repositories if they actually use version lock-
ing (see Section 3.2) and they obviously show very different
behavior, we removed them from the dataset. This left us
with 11 out of 27 repositories (41.4%) for which the lock file
changed after re-resolving the dependencies. Figure 1 shows
what happened to each of the dependencies after re-resolving
them. We see that the locked version for most of the depen-
dencies (89.1%) stays the same. 26 (1.0%) of the dependen-
cies got added, meaning they did not appear in the original
lock file. For these two categories (90.2%) there is no nega-
tive effect; the dependencies that did not change are locked to
the most recent version and the added dependencies are not
locked at all, meaning they will also use the most recent ver-
sion. For the rest of the dependencies (9.8%) negative effects
could occur if the updates include security patches. We can
therefore say the dependencies negatively affected by version
locking are at most 9.8 percent.

Figure 1: Result of re-resolving dependencies per dependency

7 Responsible Research
7.1 Reproducibility
Reproducibility is important for scientific research as it al-
lows for verification of the results. Therefore, we have paid
attention writing our methodology sections to ensure others
can replicate our research and get the same results. All scripts
used in our research our publicly available in our GitHub
repository [8]. One threat to reproducibility could be the fact
that the Code Search endpoint of the GitHub API, used to
create the dataset in Section 3.2, does not produce the same
response to the same request. We have countered this risk by
providing the output files of this script in our GitHub reposi-
tory. This means the same dataset can be used without using
the script to create it.

Another threat could be the fact that our dataset includes
active repositories. As the methodology for RQ3 includes
cloning the repositories, this could yield different results at a
later date if the build files or lock files have been changed.
We cloned all repositories in our dataset at June 17th, 2025.
Therefore, it is necessary to use the latest commit at that date
for every repository, when replicating this research. When
doing this, the research should yield the same results.

7.2 Integrity
In this research we maintained integrity by reporting all find-
ings in an objective manner, without manipulation. When
data points were removed from the tables or figures we men-
tioned this and argued why we believed this was reasonable.
Furthermore, we presented and discussed the limitations of
our research in Section 8.1.

7.3 Use of LLMs
In writing this paper we used Large Language Models only to
generate tables from data and for inspiration. The generated
tables were thoroughly checked for errors to make sure all
presented results are correct. No output was directly copied
and only general ideas, such as the structure of the paper,
were used.

Repository Removed Major Minor Patch Added No change
ajoberstar/gradle-stutter 0 0 0 12 3 3
bwaldvogel/liblinear-java 0 1 12 8 0 14
bwaldvogel/log4j-systemd-journal-appender 0 1 6 0 0 2
bwaldvogel/mongo-java-server 0 0 32 18 4 9
cronn/reflection-util 0 0 7 1 0 22
cronn/ssh-proxy 0 0 7 0 0 24
cronn/validation-file-assertions 0 0 14 0 0 3
DataDog/vulnerable-java-application 68 0 0 0 0 0
filibuster-testing/filibuster-java-instrumentation 227 0 0 0 0 24
google/nomulus 0 0 3 4 0 475
gwtproject/gwt-http 0 9 0 1 7 122
gwtproject/gwt-places 2 5 0 1 8 124
jonatan-ivanov/resourceater 1 2 57 41 4 35

Table 4: Result of re-resolving dependencies per repository

8 Discussion
The results of this paper show that version locking is not
widely adopted in projects using Gradle. Only 0.34% of the
analyzed projects used version locking. This confirms the re-
sults from Gamage et al. [7], who found a percentage of 0.3
to 0.9. This low adoption could be due to a lack of aware-
ness on the part of developers or a preference for up-to-date
dependencies, to ensure that bugs and security issues in de-
pendencies are fixed as soon as possible.

Furthermore, we found that version ranges are used in 29.5
to 44.4 percent of repositories using version locking. This
is surprisingly little, as using version locking while not us-
ing version ranges has little effect. If ranges are not used, all
direct dependencies are pinned to a specific version, meaning
only transitive dependencies benefit from the version locking.
This again could indicate a lack of awareness among develop-
ers about the use of version locking. The repositories that do
use version ranges overall use very permissive ranges, with
almost all of them (14/16) having dependencies with a maxi-
mal variable part of major, meaning they are not restricted to
a single major version. This is more in line with our expecta-
tions as these repositories benefit the most from using version
locking.

Looking into the effects that version locking has on the
projects we found that 18.2% of the projects did not build
after removing the lock files. This means that the vast ma-
jority of the projects (81.8%) did not benefit from locking at
the moment of our research. It could be that these projects
would fail without the lock files at a later point of time, es-
pecially when the lock files have recently been updated. It is
still interesting to see that version locking was unnecessary
at this point of time for most of the project. This could also
explain why so few of all Gradle projects use version lock-
ing. Perhaps developers choose to pay attention to updated
dependencies themselves when they build their projects and
immediately update their projects when a dependency update
causes their build to fail.

We also saw that for 41.4% of the projects, the lock files
changed after re-resolving the dependencies, meaning they do
not use the latest version allowed by the version declarations
in the build.gradle file. As expected, the 2 repositories

that failed the build after deleting the lock files are among
these, as it were updated dependencies that made these builds
fail. We concluded that at most 9.8% of all dependencies
throughout the repositories are negatively effected by version
locking. The locked versions of these dependencies may have
security issues that are fixed in the newer versions. Future
research could investigate how many of these actually have
newer versions with security patches. Due to time constraints
this was not included in this research.

8.1 Threats to Validity
Uncertainty about use of locking
For 14 out of the 47 projects from the dataset described in
Section 3.2, it was unsure if they use version locking or not.
A lock file was present, but locking was not activated in the
build.gradle file. This is a potential threat to internal va-
lidity. We have therefore looked into some of these repos-
itories to see what was happening. For some of them we
were able to identify the commit where the activation of lock-
ing was removed from the build.gradle file. For exam-
ple in DataDog/dd-trace-java, the dependencyLocking
block (see Section 2.3) was removed in commit 86a24ac and
moved to a separate plugin. For other dependencies (like
ajoberstar/gradle-git-publish), we were not able to
identify the activation of version locking anywhere in the
repository, not even in previous versions. However, the lock
file was still updated multiple times throughout the history
of the repository. This could be due to the developers up-
dating the lock file locally and maybe even using locking
when building the project, but for some reason choosing not
to include this on GitHub. Due to these uncertainties about
whether locking was (still) being used in these 14 reposito-
ries, we were only able to give a lower and upper bound for
RQ2. We still decided to include these projects as they had
either used version locking in the past, or were still using it
locally. We believe that these repositories therefore are still
interesting data points.

Selection bias
Another threat to internal validity is the fact that we could not
use the full dataset for RQ3. Because of the different setups of
the different repositories, not all projects could be built on our

machine. Similarly, resolving the dependencies also failed for
some of the projects. This introduces a risk of selection bias
as only the repositories that we managed to build or resolve
were used in that part of our research. However, because the
reasons for the build to fail were very diverse, we assume that
there is no correlation between these projects. We therefore
believe that the remaining projects still accurately represent
the real world.

Implementation errors
Most of the results in this research were obtained by means
of Python scripts that we wrote. We can never be entirely
sure these scripts are without errors; however, we have tried
to mitigate this risk by manually testing the scripts. For ex-
ample, for the script that detects the use of version ranges in
a build.gradle file, we randomly selected some of these
files and checked if there were no false positives or negatives
were detected by the script. Furthermore, all scripts used are
publicly available in our GitHub repository [8].

8.2 Future Work
While our research provides some interesting insights into the
use and effect of version locking, there are several areas that
could be investigated further. Our research shows that version
locking is not often used in Gradle projects, but it remains un-
clear why. Qualitative research involving interviews with de-
velopers could provide interesting insights into why version
locking is so rarely used.

Furthermore, our research shows that at most 9.8% of de-
pendencies are negatively affected by version locking, as they
might have newer versions introducing security patches. Fu-
ture research could investigate these dependencies and see if
a security patch was introduced between the locked version
and the newest version. This research could give more in-
sights into the security risks introduced by the use of outdated
dependencies in projects using version locking.

9 Conclusion
In this paper, we have investigated the use of version locking
in Gradle projects. Version locking is a dependency manage-
ment tool designed to ensure reproducible builds when using
permissive dependency declaration strategies [1]. We ana-
lyzed over 12,000 Gradle-based Java projects and found that
version locking is rarely used, with only 0.34% of the sam-
pled projects containing a lock file.

We also looked into how often version ranges were used
in projects using version locking. Only between 29.5% and
44.4% of the projects using version locking used version
ranges. This is surprising as version locking is most useful
when using version ranges. Without version ranges, depen-
dencies are pinned to a specific version in their declaration
so only transitive dependencies benefit from the version lock-
ing. This suggests that the optimal use of version locking
might not be fully understood by developers.

To investigate the effects of version locking, we looked
into how many of the projects benefited from using version
locking by analyzing for how many of them the build would
fail if version locking was not used. This was the case for
18.2% of the projects. On the other hand, up to 9.8% of the

dependencies used in projects with version locking could be
negatively affected by version locking, as there was a newer
version available, possibly introducing security fixes, which
was not used because the dependency was locked to an older
version.

Seeing this low adoption rate, we draw the conclusion that
there may be a need for better education on the benefits of
version locking to developers. Future work could investigate
the security implications further, which might also convince
more developers to adopt it, as little information about these
risks are currently known.

References
[1] Gradle, “Gradle Documentation.” https://docs.gradle.

org/current/userguide/dependency locking.html, 6
2025.

[2] T. Preston-Werner, “Semantic Versioning 2.0.0.” https:
//semver.org/.

[3] S. Raemaekers, A. van Deursen, and J. Visser, “Seman-
tic versioning and impact of breaking changes in the
maven repository,” Journal of Systems and Software,
vol. 129, pp. 140–158, 7 2017.

[4] M. Keshani, S. Vos, and S. Proksch, “On the relation
of method popularity to breaking changes in the maven
ecosystem,” Journal of Systems and Software, vol. 203,
p. 111738, 9 2023.

[5] D. Venturini, F. R. Cogo, I. Polato, M. A. Gerosa, and
I. S. Wiese, “I depended on you and you broke me:
An empirical study of manifesting breaking changes in
client packages,” ACM Transactions on Software Engi-
neering and Methodology, vol. 32, 5 2023.

[6] I. Pashchenko, D. L. Vu, and F. Massacci, “A qualitative
study of dependency management and its security impli-
cations,” Proceedings of the ACM Conference on Com-
puter and Communications Security, pp. 1513 – 1531,
10 2020.

[7] Y. Gamage, D. Tiwari, M. Monperrus, and B. Baudry,
“The design space of lockfiles across package man-
agers,” 2025.

[8] J. Boerop, “Scripts for research project.” https://github.
com/JBO393/CSE3000, 2025.

[9] J. Van Zyl and V. Siveton, “Maven Getting Started
Guide – Maven.” https://maven.apache.org/guides/
getting-started/#What is a SNAPSHOT version.3F, 11
2006.

[10] O. Dabic, E. Aghajani, and G. Bavota, “Sampling
projects in github for MSR studies,” in 18th IEEE/ACM
International Conference on Mining Software Reposito-
ries, MSR 2021, pp. 560–564, IEEE, 2021.

[11] M. Hoffmann, “Class File versions.” https:
//javaalmanac.io/bytecode/versions/, 2018.

https://docs.gradle.org/current/userguide/dependency_locking.html
https://docs.gradle.org/current/userguide/dependency_locking.html
https://semver.org/
https://semver.org/
https://github.com/JBO393/CSE3000
https://github.com/JBO393/CSE3000
https://maven.apache.org/guides/getting-started/#What_is_a_SNAPSHOT_version.3F
https://maven.apache.org/guides/getting-started/#What_is_a_SNAPSHOT_version.3F
https://javaalmanac.io/bytecode/versions/
https://javaalmanac.io/bytecode/versions/

	Introduction
	Dependency Management in Gradle
	Dependency Declaration
	Version Ranges
	Version locking

	Data Collection
	General Dataset of Gradle Projects
	Projects using Version Locking

	Adoptation of Version Locking (RQ1)
	Methodology
	Results

	Version Ranges (RQ2)
	Methodology
	Results

	Effects of Version Locking (RQ3)
	Methodology
	Results

	Responsible Research
	Reproducibility
	Integrity
	Use of LLMs

	Discussion
	Threats to Validity
	Future Work

	Conclusion

