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Shear loading on structures has been recognized as 
one of the most relevant actions determining structural 
safety since the 19th century. In the case of reinforced 
concrete structures, despite the great efforts that have 
been made through experimental and theoretical 
research over many years, the nature of the shear 
failure process of a reinforced concrete beam without 
shear reinforcement has always, for a substantial part, 
remained a riddle. The present research work takes a 
new look at this old problem. The mechanism of flexural 
shear failure for a reinforced concrete beam without 
shear reinforcement is explained fundamentally, based 
on which a new failure criterion is proposed. The study 
leads to a shear evaluation procedure that is in excellent 
agreement with test results.
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Summary 

 
 
 

Shear loading on structures has been recognized as one of the most relevant 
actions determining structural safety since the 19th century. A systematic theo-
retical study on the shear behaviour of structural members was already carried 
out by Jourawski in 1856. In the case of reinforced concrete structures, despite 
the great efforts that have been made through experimental and theoretical 
research over many years, the nature of the shear failure process of a reinforced 
concrete beam without shear reinforcement has always, for a substantial part, 
remained a riddle. Consequently, empirical formulas have been derived and 
widely applied in design practice for such structures in order to guarantee 
structural safety.  

In the recent years, an increasing number of existing structures approach the 
end of their technical service life. Their bearing capacity needs to be evaluated 
accurately against the current traffic load, to determine whether or not 
strengthening or even demolishing of these existing structures is needed. On the 
other hand, with the development of numerical methods, the internal forces of a 
structure can be calculated more accurately, which allows the design of more 
complex and larger scale new structures. The shear capacity of such structures 
has to be estimated accurately as well. In both cases, complex loading conditions 
and material properties are encountered. Without a solid physical background, 
the conventional empirical methods may be inapplicable in many situations. A 
better understanding of the nature of the shear failure of reinforced concrete 
members seems to be more urgent than ever. The research work presented in 
this dissertation concentrates on this task. Based on the results of the experi-
mental research program, the dissertation presents the researcher’s philosophy 
on the failure mechanism of reinforced concrete structural members without 
shear reinforcement induced by the opening of an inclined crack in the critical 
shear span. 

Contrary to the various theories on shear known from literature, the present 
research work takes a new look at this old problem. It builds its theory funda-
mentally on the study of the cracking behaviour of a concrete beam. With the 
help of fracture mechanics and non-linear finite element analysis, the develop-
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ment of the crack pattern in a beam is simulated with regard to spacing, height 
and profile of the flexural cracks. The simulation of the crack pattern enables the 
study of the contribution of the different shear transfer mechanisms of a cracked 
section under given kinematic conditions for any assumed failure mechanism. 
On the basis of the study it was concluded that the opening of a critical inclined 
crack at shear failure is attributed to the unstable development of secondary 
cracks along the tensile reinforcement and/or the compression zone. Further-
more, the failure criterion is assumed to be related to the shear displacement 
between the crack faces of a flexural shear crack. Finally, the bearing capacity of 
the residual structure bounded by the inclined crack is evaluated, which pro-
vides a criterion to establish whether the opening of such an inclined crack will 
result in immediate failure or not. 

To be of practical relevance, the possibility of converting a theory into a 
simplified evaluation procedure is considered to be equally important in the 
research. Therefore, efforts have been made to develop an evaluation procedure 
for practical use. The resultant evaluation procedure can be considered as a 
reference for future design code development. It is based on a critical section 
defined by a simplified crack profile at a predefined section close to the loading 
point. A simplified evaluation method is developed in order to calculate the 
contribution of aggregate interlock, tension softening and dowel action to the 
shear force transfer along the simplified cracked profile with a given shear 
displacement . From an inverse analysis of the results of shear tests reported in 
literature, the critical shear displacement cr was derived. That leads to a shear 
evaluation procedure for simply supported beams subjected to point loads. A 
comparison of the calculated shear capacities with experimental results from a 
database known from literature containing 176 carefully selected results (König 
& Fischer 1995) showed that the proposed evaluation procedure is able to 
deliver a very consistent prediction in general, with a coefficient of variation of 
only 12.2%. Owing to its solid physical background, the evaluation procedure is 
more generally applicable than the conventional empirical methods when 
dealing with complex design situations. As examples, several special topics have 
been dealt within the scope of the presented evaluation procedure. With the 
physical meaning of each component in the evaluation procedure known, a 
logical adjustment can be made for the corresponding components in the for-
mula according to the specific situations considered. That conclusion was 
further confirmed by comparing the model predictions with experimental 
results of tests that were carried out by the author at TU Delft, and reported in 
literature investigating these topics. The effects of the special aspects covered are 
listed in the sequel: 
 Fracture of aggregate in high strength concrete or lightweight aggregate 

concrete beams (Chapter 4); 

 iii 
 

 Rebar configurations (Chapter 4); 
 Scaling effect with regard to the height of the structural member (Chapter 

4); 
 Complex loading and supporting conditions of  the structural member 

(Chapter 5); 
 Spatial variability of the material properties, such as concrete strength 

(Chapter 6); 
 Width of a one-way slab (Chapter 6). 
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Samenvatting 
 
 
 
De afschuifbelasting op constructies wordt als sinds de 19e eeuw gezien als een 
van de meest relevante inwerkingen die de constructieve veiligheid bepalen. 
Een systematische theoretische studie omtrent het gedrag van op afschuiving 
belaste constructieve elementen werd al uitgevoerd door Jourawski in 1856. In 
het geval van betonconstructies geldt, dat de manier waarop een gewapend 
betonnen balk zonder schuifwapening op afschuiving bezwijkt, nog steeds 
raadselachtige aspecten kent. Dat verklaart, waarom empirische formules zijn 
afgeleid en op grote schaal worden gebruikt om de constructieve veiligheid van 
constructies te garanderen.  

Gedurende de laatste jaren naderen een toenemend aantal bestaande con-
structies het einde van hun technische levensduur. Het draagvermogen van 
deze constructies moet worden geëvalueerd met betrekking tot de huidige 
verkeersbelasting, om vast te kunnen stellen of versterken, of zelfs afbreken, 
noodzakelijk is. Daarnaast kan door de ontwikkeling van numerieke analyse-
methoden het krachtsverloop in de constructie nauwkeuriger worden 
vastgesteld dan voorheen, waardoor het mogelijk wordt meer complexe en 
grootschalige constructies te ontwerpen. Het afschuifdraagvermogen van zulke 
constructies moet eveneens zo nauwkeurig mogelijk worden vastgesteld. In 
beide gevallen krijgt men te maken met complexe belastingcondities en bijzon-
dere materiaaleigenschappen. De beschikbare empirische relaties zijn, door het 
ontbreken van een degelijke fysische achtergrond, in veel situaties niet toepas-
baar. Een beter begrip van de fysische achtergrond van het afschuifdraagver-
mogen van gewapend betonnen constructiedelen is daarom relevanter dan ooit. 
Het onderzoek, beschreven in deze dissertatie, richt zich op deze problematiek. 
Op grond van de resultaten van het uitgevoerde onderzoeksprogramma, wordt 
in de dissertatie een nieuwe filosofie ontwikkeld voor de beschrijving van het 
afschuifdraagvermogen van elementen zonder schuifwapening, op grond van 
de opening van een schuine scheur in het kritische deel van het element.  

In tegenstelling tot de diverse theorieën die bekend zijn uit de literatuur, 
wordt in de voorliggende dissertatie een theoretisch model ontwikkeld op basis 
van het scheuropeningsgedrag van een betonnen balk. Met behulp van breuk-

 v 
 

mechanische overwegingen en een niet-lineaire eindige-elementenanalyse, 
wordt de ontwikkeling van het scheurenpatroon in de balk gesimuleerd, waarbij 
rekening wordt gehouden met de afstand, de hoogte en het profiel van de 
buigscheuren. Deze simulatie van het scheurenpatroon geeft de mogelijkheid de 
grootte van de diverse componenten die aan het afschuifdraagvermogen bijdra-
gen te berekenen, rekening houdend met de kinematische condities behorend bij 
het aangenomen breukmechanisme. Op basis van de uitgevoerde studie werd 
geconcludeerd dat de opening van de kritische schuine scheur bij het optreden 
van afschuifbreuk is gerelateerd aan de instabiele ontwikkeling van de secun-
daire scheuren langs de langswapening en/of de betondrukzone. Verder wordt 
aangenomen dat het breukcriterium gerelateerd is aan de parallelverplaatsing 
tussen de scheurvlakken van de afschuifbuigscheur. Uiteindelijk wordt het 
draagvermogen van het hoofdgedeelte van de constructie bepaald, dat begrensd 
is door de schuine scheur. Dit levert een criterium, op basis waarvan vastgesteld 
kan worden of het openen van een dergelijke schuine scheur zal resulteren in 
onmiddellijke breuk. 

Om de praktische toepassing van de ontwikkelde theorie te ondersteunen is 
in het onderzoek nagegaan of het ontwikkelde model kan worden omgewerkt 
naar een vereenvoudigde evaluatieprocedure. Daarom is getracht een evalua-
tieprocedure voor praktisch gebruik te ontwikkelen. De hieruit resulterende 
evaluatieprocedure kan worden beschouwd als grondslag voor de ontwikkeling 
van een toekomstige generatie dimensionerings- en evaluatierichtlijnen. De 
procedure is gebaseerd op een kritische doorsnede vastgelegd door een ver-
eenvoudigd scheurprofiel ter plaatse van een bij voorbaat aangewezen 
doorsnede dicht bij het punt waar de geconcentreerde last aangrijpt. Een ver-
eenvoudigde evaluatiemethode is ontwikkeld om de bijdragen van 
scheurwrijving, tension-softening en deuvelwerking langs het vereenvoudigde 
scheurprofiel aan het afschuifdraagvermogen vast te stellen als functie van de 
parallelverschuiving van de scheurvlakken. Door het uitvoeren van een inverse 
analyse van de resultaten van afschuifproeven, ontleend aan de literatuur, werd 
de kritische parallelverplaatsing van de scheurvlakken vastgesteld. Dit resul-
teerde in een evaluatieprocedure voor statisch bepaalde balken onderworpen 
aan puntlasten. Een vergelijking tussen de berekende waarden van het af-
schuifdraagvermogen en resultaten uit experimenten, ontleend aan een 
zorgvuldig samengestelde databank met 175 proefresultaten (König en Fischer, 
1995) toonde aan dat de voorgestelde evaluatieprocedure in staat is om een zeer 
consistente voorspelling van het afschuifdraagvermogen te geven, met een 
variatiecoëfficiënt van slechts 12,2%. Op grond van het ontwikkelde fysische 
model is de evaluatieprocedure in bredere zin bruikbaar dan de conventionele 
empirische methoden, indien het gaat om meer complexe ontwerpsituaties. Als 
illustratie zijn diverse speciale gevallen behandeld, uitgaande van de in dit 
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onderzoeksproject ontwikkelde evaluatieprocedure. Omdat de fysische beteke-
nis van elke component in de evaluatieprocedure bekend is, kan een logische 
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2  1.1 Do We Need Another Analytical Model for Shear? 
 

 

1.1 DO WE NEED ANOTHER ANALYTICAL MODEL FOR SHEAR? 

The so-called shear failure is usually considered as one of the most critical struc-
tural failure modes for reinforced concrete structures, especially for the structural 
members without shear reinforcement. Unlike other failure modes like flexural 
failure, almost no warning occurs, signalizing that the structure is at the onset of 
failing in shear. Therefore, shear failures of structural elements usually lead to 
catastrophic, loss of casualties and properties, and shall be prevented at high 
priority. 

 
Fig. 1.1. Distribution of number of research programs in terms of date of publication 

in the past sixty years (Collins et al. 2008). 

Good understanding of the shear behaviour of concrete structures is essential 
to design against shear failure. The fundamentals of shear design of reinforced 
concrete beams have been established since the beginning of the last century, 
when Mörsch proposed the first model for concrete beams in shear (Mörsch 
1909). At that time it was already assumed that the shear problem had been 
more or less solved. Thus, not so much research had been done after that until 
the last fifty years, when two roofs of U.S. air force bases collapsed under their 
self-weight in 1955 and 1956. The total collapsed area in those cases was more 
than 900 m2. (Stamenkovic 1977; Delatter 2009). Both collapses were due to the 
shear failure of the reinforced concrete girders under the roof. The failure 
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occurred in the part of girders without shear reinforcement. Investigations 
showed that in both cases, the design, material and fabrication of the structures 
were up to date to the design standards of that time. Engineers and researchers 
at that time had to admit that their knowledge about shear capacity of reinforced 
concrete structures was still rather limited. 

Consequently, lots of attempts have been made to generate a better under-
standing of the shear carrying behaviour of reinforced concrete structures. 
Different new models and design methods have been proposed by researchers, a 
brief review of which is given in Chapter 2. As an indication, the amount of tests 
on the shear capacity of concrete structures reported in literature in the past 60 
years is plotted in Fig. 1.1 (Collins, Bentz et al. 2008). A clear increment on the 
amount of experiments is observed. Thanks to that, the knowledge of shear has 
been greatly improved. Besides, advanced non-linear finite element methods 
have been developed for modelling the fracture behaviour of concrete structures, 
like Atena (Červenka & Jendele 2009) and Diana (TNO-DIANA 2011). All these 
aspects seem to indicate that the old problem of shear capacity of reinforced 
concrete members has been solved. We have already obtained enough models to 
describe this phenomenon.  

Yet, it is still too early to draw such a conclusion. Structural failures caused 
by shear can still not be fully prevented. Besides, there are more questions from 
practice, which cannot be solved by the models available. On September 30th 
2006, a portion of the de la Concorde Overpass in Laval, Québec, Canada col-
lapsed, resulting in five casualties, see Fig. 1.2. The investigation afterwards led 
to the conclusion that the collapse was due to the shear failure of the main 
bridge girders which fulfilled the design regulations when it was designed 40 
years earlier (Commission of Inquiry 2007). Further investments resulted in the 
demolishment of 28 similar bridges, and the strengthening of 25 others. All those 
bridge girders were reinforced concrete beams without shear reinforcement. 

 

 
 
Fig. 1.2. Collapse of the de la Concorde Overpass (Commission of Inquiry 2007). 
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In the case of the Netherlands, a large portion of the concrete bridges in the 
Dutch highway system were constructed in the 1960s and 1970s based on the 
expected traffic loads at that time (Klatter & van Noortwijk 2003). They mostly 
contain concrete slab decks without shear reinforcement. In 2008, a preliminary 
analyses carried out by the Dutch Ministry of Infrastructure and Environment 
(Rijkswaterstaat) with the Eurocode provision (Eurocode 2 2004) showed that 
many of those bridge decks did not fulfil the code requirements on shear any-
more under the actual heavier traffic load. This would mean a national 
renovation of all those bridges, which is really costly for the country. Neverthe-
less, traffic is still running on those bridges with no significant damage reported 
yet. 

In both cases the present design methods led to a conclusion which is oppo-
site to the observations in practice. This undoubtedly indicates that up till now 
our models cannot predict the shear carrying behaviour of concrete beams 
without shear reinforcement with sufficient accuracy yet. As will be presented 
later in Chapter 2, the available models show fundamental disagreement on the 
mechanisms causing shear failure. In case of non-linear finite element methods, 
the difficulty lies in the modelling of the shear stress in cracks taking into ac-
count both normal and tangential stress as observed in experiments, which 
results in unsymmetrical constitutive matrices. Simplifications have been made 
to solve this difficulty, which means that calibrations are always needed to get a 
proper prediction of the overall behaviour by FEM methods. 

Taking the aspects listed above into account, the answer to the question 
raised in the title of the section is still YES. The old problem of the shear behav-
iour of concrete members without shear reinforcement remains to be solved. In 
fact, more challenges are encountered. With the structural elements becoming 
larger and more complex, a model which is more accurate in describing the size 
effect of the structure capacities and more capable to handle non-conventional 
loading conditions and material properties is needed. Such a model can only be 
derived based on a solid understanding of the mechanisms behind the phe-
nomenon. 

For the 50 to 60 years old concrete bridge decks, a more accurate assessment 
procedure for the structural shear capacity is in demand to deal with the spatial 
variability of concrete properties, loading history and complex load combina-
tions under traffic loads. Therefore, the Dutch Ministry of Infrastructure and 
Environment started a research project investigating the residual shear capaci-
ties of existing concrete bridges. The work presented in this dissertation is based 
on the research carried out by the author in the past 4 years at Delft University of 
Technology within the scope of that project. It is hoped that this work may 
contribute to the knowledge of shear design of concrete structures. 
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1.2 SCOPE OF THE RESEARCH 

The large number of experimental research programs in the last sixty years has 
shown that the shear capacity of reinforced concrete structures can be effected by 
lot of factors (Regan 1993; ACI-ASCE Committee 445 1998; Collins, Bentz et al. 
2008). Within this research, the author would like to restrain his research to the 
following aspects: 

First of all, only the shear behaviour of reinforced concrete elements without 
shear reinforcement is addressed. This includes concrete beams, wide one-way 
concrete slabs loaded by a line load in width direction, etc. There should be no 
internal shear reinforcement such as stirrups, or any other external reinforce-
ment along the depth direction of the elements. The elements are not prestressed. 
Besides, the reinforcing bars are conventional steel rebars. Fibre Reinforced 
Polymer (FRP) or any other types of reinforcing bars are studied in this research 
because of the different bond properties. This type of structure is often consid-
ered as shear critical in structural design. They can be found in many places, 
such as concrete slab decks, strip footings, underground tunnel roofs or walls, 
thick concrete transfer floors in buildings, etc. 

Secondly, the structural elements are made of normal concrete mixtures. 
Although special types of concrete such as high strength concrete and light-
weight aggregate concrete are also discussed in this research work, they are only 
included in general examples to illustrate the function of certain mechanisms 
such as aggregate interlock. The effect of using a specific special concrete type 
will not be investigated in this research. Also, the shear behaviour of fibre 
reinforced concrete elements is not discussed in this research either, since fibres 
can be considered as a type of shear reinforcement as well. 

Third, although the influence of the position of the load on the shear capacity 
(Kani 1964) is one of the important aspects to be studied in this research, loads 
very close to the support have not been regarded in this research program. In 
that case, the load is directly transferred to the support through a different 
mechanism. Within this research, a criterion will be given to distinguish when 
the direct load transfer mechanism is dominating. It is considered as the 
boundary conditions for this research. However, further study on the direct load 
transfer mechanism is not considered as the emphasis of this research because of 
the limited time and resources. 

Furthermore, preliminary studies have shown that with regard to the shear 
capacity of concrete slab bridges, there are several aspects which have been 
ignored or inaccurately implemented in the design codes, such as the distribu-
tion effect of a point load close to the slab support (Regan & Rezai-Jorabi 1988; 
Lantsoght et al. 2011; Lantsoght 2013), the compressive membrane action in 
slabs (Rankin & Long 1997; Amir 2012), the long term effect on the shear be-
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haviour of concrete structures (Sarkhosh 2012) etc. Many of them are included in 
the other parts of the Rijkswaterstaat research project. For those topics reference 
is made to corresponding reports. 

 

1.3 EXPERIMENTAL PROGRAM AND OTHER RESEARCH METHODOLOGY 

As mentioned above, the research is based on experimental work carried out at 
the Stevin Laboratory at Delft University of Technology with several different 
topics assigned by Rijkswaterstaat between 2009 and 2012. Not all of those ex-
periments are closely related. Nevertheless, they are all developed and carried out 
based on the same philosophy about the shear phenomenon of concrete structures 
supported by the author and his colleagues. Therefore, it is decided that this 
dissertation is mainly dedicated to the presentation of this general philosophy on 
the shear behaviour of reinforced concrete structures, and its application in design 
practice. The explanation of the theory is mainly proceeded by reasoning on what 
is shear failure in this dissertation. The details of the experiments and the findings 
from the experiments are treated as examples or proofs of the theory. For readers 
who are willing to learn more on the details of the experiments, several Stevin 
reports submitted to Rijkswaterstaat are referred to, where the large amount of 
experimental results derived from the measurement equipment and the evalua-
tion of the results are explained in great detail. These experimental programs and 
the relating reports are listed below: 
 Experimental Work on Comparing the Shear Capacities of 50-Years Old 

and New Concrete Beams (simply supported), 2009-2010 (den Uijl & Yang 
2009; Yang 2009; Yang 2009; Yang & Den Uijl 2010); 

 Experimental Research on Shear Capacity of Beams Close to Intermediate 
Supports, 2010-2011 (Yang & den Uijl 2011); 

 Study on Shear Capacity of Old Concrete Beams with Continuous Sup-
ported Conditions, 2011-2012 (Yang & Den Uijl 2012); 

 Experiments on Concrete Slabs with Weak Spots along the Width Direction, 
2012 (Yang & den Uijl 2012); 

Besides, non-linear Finite Element Method (FEM) Models are used in the re-
search program. Most of the experimental programs have been developed 
incorporating FEM simulations. The results derived are evaluated with FEM 
models afterwards so that experiences are gained for a better selection of mate-
rial properties for the simulation of the behaviour of similar structures in the 
future. The FEM models with material models and calculation procedures that 
were validated by previous experimental results are also used in simulating 
tests which could actually not be conducted. Other than that a special algorism 
called Sequential Linear Analysis is used in Chapter 3 to calculate the crack path 
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expression. The two FEM packages that have been used within this research 
work are Atena (Červenka & Jendele 2009) and Diana (TNO-DIANA 2011). 

1.4 OUTLINE 

In total, this dissertation includes 7 chapters. As a guide for the readers, a brief 
introduction of each chapter is provided here. 

Chapter 2 provides the state of the art of the research on the shear capacity of 
concrete members without shear reinforcement, in which the terminology on the 
shear failure modes is clarified first. Flexural shear failure is distinguished from 
the other failure modes. The mechanisms that have been agreed by most re-
searchers as the basic shear force transferring mechanisms in concrete beams 
with flexural cracks are discussed. The most influential theories are presented 
afterwards. They are categorised by the dominating failure mechanisms from 
which they were derived. As shown in Chapter 2, fundamental differences still 
exist between different theories about what is the dominating shear failure. It 
shows the necessity of investigating the failure process again. By the end of the 
chapter, the available shear databases are reviewed. 

Chapter 3 is dedicated to exploring the shear failure process of a reinforced 
concrete beam fundamentally. The author tries to explain the reason why the 
flexural cracks in a reinforced concrete beam start to incline under a given shear 
force and bending moment combination, and more importantly, what is the 
cause of shear failure at a specific inclined crack profile observed in laboratory 
tests. Therefore, the profile of major flexural cracks is studied first. A general 
function is proposed with the help of FEM analysis, which describes the spacing, 
height and profiles of the major flexural crack pattern at given boundary condi-
tions of a beam. With the crack profile expressed, the main shear transfer 
mechanisms along a free body formed by any flexural crack with known cross 
sectional force are studied, so that the driving forces for shear failure at a specific 
crack profile are checked. By exploring the ultimate cause of shear failure step 
by step, a new mechanism on shear failure shows up. By the evaluation of the 
residual capacity after the opening of the critical inclined crack, it is also possible 
to distinguish the two failure modes observed in the experiments. 

The intention of Chapter 4 is to translate the shear failure mechanism derived 
in the previous chapter into an applicable design method. A new failure crite-
rion is formulated with simplified assumptions, and calibrated by experimental 
data. The new design method is further implemented by taking into account the 
influence of reinforcement configuration, concrete type and size effect. The 
proposed method prevails regarding its accuracy, flexibility and practical 
relevance over existing shear models. 
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Chapter 5 treats the influence of complex boundary conditions to the shear 
capacity of concrete structures. The consideration is that for most real structures, 
the boundary conditions are more complex than the laboratory conditions, 
based on which the design formulas are derived. Thus those design formulas 
derived from simplified boundary conditions shall always be validated in more 
realistic scenarios. In this chapter, three criteria are proposed to evaluate the 
applicability of the new design method on new boundary conditions. Adjust-
ments are suggested when necessary. The approach is evaluated in three specific 
loading conditions. Those are continuous beams with point loads, simply 
supported beams with uniformly distributed load, and continuous beam with 
uniformly distributed load. Recommendations regarding the proposed design 
method for these loading conditions are given. 

In Chapter 6, the spatial variability of material properties is studied with the 
shear failure mechanism proposed in this study. The consideration of spatial 
variability becomes especially important when assessing the residual capacity of 
existing structures. This problem is decomposed into longitudinal (length) 
direction, vertical (depth) direction and transverse (width) direction in this 
chapter. The evaluation in each direction is validated by experimental research 
programs related to practical questions. Similarly, recommendations are made 
to deal with specific situations under the respective scenarios. 

Chapter 7 summarizes the shear failure mechanisms and the corresponding 
design method proposed in the research with respect to all the situations pre-
sented in the preceding chapters. Moreover, several special topics are regarded 
which do not fully reflect the experimental observations or seeming to be con-
sistent with other current theories. Based on the discussion further experimental 
and theoretical input for the model is suggested. 

As a general guidance, for readers who are more interested in the develop-
ment of the theory and how it is translated into the design procedure, Chapter 3 
and 4 form a self-consistent part. They explain the basics of the whole theory, 
thus can be read independently, or with the implementation of Chapter 2. 
Chapter 5 and 6 serve as extensions of the theory to special applications. They 
are written for the readers who have specific interests in the related topics. 
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2.1 INTRODUCTION 

Although after the first initiatives taken by Mörsch (Mörsch 1909), research on 
the behaviour of concrete members loaded in shear has been carried out for 
more than 100 years, a consistent definition of shear failure of reinforced con-
crete beams without shear reinforcement does not exist yet. A commonly 
accepted phenomenological definition of shear failure is that it is a brittle failure 
occurring under a shear force, with diagonal cracks developing in the span. The 
most important elements in this type of failure are the shear force and the 
diagonal cracks in the span. According to the classic beam theory (de 
Saint-Venant 1856; Jourawski 1856), the maximum shear stress locates at the 
neutral axis of a linear elastic beam section. As a result the direction of the first 
principal stress is in the diagonal direction. When diagonal cracks are observed 
in concrete members at the neutral axis of the cross section, researchers linked 
those cracks to the principal stress distribution described in classic beam theory. 
They thought it was the maximal shear stress close to the neutral axis that results 
in opening of the diagonal cracks. Thus, this type of failure is denoted as shear 
failure. 

However, diagonal crack opening as a result of the principal stress exceeding 
the concrete tensile strength at mid-height of the specimen section only occurs in 
a limited number of structural elements, like prestressed hollow core slabs or T 
beams, in which the flexural cracking is limited, and the width of the 
cross-section is small at mid-height of the cross section, see Fig. 2.1. 

 

 
 
Fig. 2.1. Diagonal tension failure of a hollow core slab (Walraven & Mercx 1983). 
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Fig. 2.2. Crack pattern of beam with flexural shear failure (diagonal tension failure 
according to some literature). 

 
 

Fig. 2.3. Crack pattern of beam with shear compression failure. 

For a reinforced prismatic beam, the failure type ‘shear failure’ actually 
stands for more than one type of failure mode. Depending on whether the 
opening of the diagonal crack results in the collapse of the beam or not, two 
failure modes can be distinguished. In some literature (Regan 1993; Nawy 2009), 
those failure modes are called ‘Diagonal Tension failure’ and ‘Shear Compres-
sion failure’. The crack patterns corresponding to the two typical failure modes 
are illustrated in Fig. 2.2 and Fig. 2.3 respectively. In Fig. 2.3, the diagonal crack, 
marked as ‘splitting crack of concrete strut’ developed after the concrete strut 
crushed, as a secondary effect of failure. However, what has to be clarified is that 
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only the failure mode shown in Fig. 2.1 is truly caused by the tensile stress in the 
diagonal direction, thus can be named by diagonal tension failure. The 
so-called diagonal cracks in most reinforced concrete beams are actually in-
clined flexural cracks due to the shear force, or flexural shear cracks as 
described in (ACI-ASCE Committee 426 1973). To be able to distinguish the 
failure modes shown in Fig. 2.1 and Fig. 2.2, it is more appropriate to denote the 
latter one as ‘flexural shear failure’ in relation to its origin from a flexural shear 
crack. Besides, those inclined flexural cracks are called inclined cracks to be 
distinguished from the real diagonal cracks such as shown in Fig. 2.1. Since the 
real diagonal tension failure only occurs under special conditions it is not 
discussed anymore in this study. With respect to shear failure modes, only 
flexural shear failure and shear compression failure are discussed in the study. 

Apparently, these two failure modes reflect the different dominating load 
transfer mechanisms in beams. Fenwick and Paulay (Fenwick & Paulay 1968) 
suggest that for a beam the transfer of the shear force can be attributed to two 
general mechanisms: 
 Variation in internal forces acting over a constant lever arm; 
 Constant internal forces acting over a variable lever arm. 

The first load transfer mechanism relates to flexural shear failure, which is 
often found in beams with large spans. The maximum shear forces corre-
sponding to this failure mode are usually lower than that found with the other 
load transfer mechanism. Since the loading condition of a concrete member is 
not always known in advance, the lower bound of its shear capacity defined by 
the flexural shear failure mode is crucial. Therefore, this research work mostly 
focuses on the first mechanism and the failure process according to that mecha-
nism. 

When the variation of the lever arm is the dominating shear transfer mecha-
nism, this shear force transfer mechanism is also denoted as ‘Arch Action’ 
(Fenwick & Paulay 1968). In that case, the behaviour of the structure can be 
simulated by the Strut and Tie method, representing the flow of forces with 
concrete struts and steel tensile ties. The method was proposed in the 1980s 
(Marti 1985; Schlaich et al. 1987). It has been shown to be able to estimate the 
bearing capacities of beams having the failure mode of shear compression 
failure with sufficient accuracy (Walraven & Lehwalter 1989; Walraven & 
Lehwalter 1994; Wight & Parra-Momtesinos 2003; Collins et al. 2008). The 
method has been implemented in most concrete design codes by now: 
(AASHTO 2004; ACI Committee 318 2004; CSA 2004; Eurocode 2 2004; fib 2012). 
Alternatively, Mihaylov et al. proposed the Two-Parameter Kinematic Theory 
for the shear design of deep beams in (Mihaylov et al. 2013), which will be 
discussed further in section 3.5.3.  
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In general, extensive literature is available on this subject, therefore no fur-
ther discussions on the ultimate capacity of beams with shear compression 
failure will be included in this research. Only the shear cracking of deep beams 
is studied in this research as an extension of the research on slender beams. 

2.2 MECHANISMS OF SHEAR TRANSFER IN BEAMS CRACKED IN FLEXURE 

2.2.1 Overview 

Given the fact that the tensile strength of concrete is lower than its compressive 
strength, flexural cracks are generally present in a normal reinforced concrete 
member before shear failure. Although there are still discussions on the mecha-
nism of the failure process in beams with flexural cracks, it has been widely 
accepted that there are four types of mechanisms that can transfer the shear 
force in a cracked concrete beam since 1970s (ACI-ASCE Committee 426 1973; 
ACI-ASCE Committee 445 1998). They are: 
 
 Shear stress in the uncracked concrete zone; 
 Aggregate interlock caused by tangential displacement of the crack faces; 
 Residual tensile stress occurring at limited normal opening of the cracks; 
 Dowel action caused by the longitudinal reinforcing bars. 
 
The research on the four mechanisms in literature is introduced briefly in the 
following sections. In Chapter 3, a more detailed treatment of the mechanisms 
will be given, based on which the shear failure process is analysed. 

2.2.2 Shear Stress in Uncracked Concrete 

In the uncracked part of a reinforced concrete cross section, the stress distribu-
tion still follows the theory of elasticity. Once the boundary conditions of the 
uncracked concrete are known, the shear stress transferred in the uncracked 
concrete compression zone can be calculated. Taking into account that an exact 
description of the boundary conditions is almost impossible, approximations 
have to be made. Depending on whether the height of the compression zone 
varies along the beam axis or not, the simplification shall be done differently.  

In the part of a beam with varying depth of the compression zone, the shear 
force is transmitted mainly by the inclination of the principal stress. That com-
plies with the second shear transfer method, explained in 2.1, for which the use 
of the strut and tie method is suggested. Such a part of the beam is usually 
defined as a D (disturbed) region according to (Schlaich, Schäfer et al. 1987).  

When the compression zone of the beam is more or less constant, the simpli-
fication of the boundary conditions of that zone has to regard the comb-like 
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teeth structure formed by the flexural cracks. A simplified expression of the 
shear stress distribution has been given by Mörsch in the early 1900s (Mörsch 
1909), assuming a parabolic shear stress distribution above the neutral axis, see 
Fig. 2.4. The basic principle has not been changed since then. Reineck (Reineck 
1991) adopted the same expression for the calculation of the shear force contri-
bution in the compression zone Vc. Hamadi and Regan (Hamadi & Regan 1980), 
Taylor (Taylor 1974) suggested a change of the shear stress distribution curve. 
Fenwick and Paulay (Fenwick & Paulay 1968) derived a complex formula based 
on experimental results of beams eliminating aggregate interlock. Sherwood, 
Bentz and Collins measured differences of the compressive strain distribution in 
the compression zone in experiments, and convert them into a shear force 
(Sherwood et al. 2007) with the classical principle of shear force transfer pro-
posed by (Jourawski 1856). The comparison showed that the shear force 
calculated based on Mörsch’s formula provides sufficient accuracy on the Vc 
prediction with measured value: Vc = 24%V and Mörsch’s formula: Vc = 21%V. 
Those more complex expressions seem not necessary, since the simplified 
Mörsch’s formula can already provide a very good accuracy. A similar conclu-
sion was drawn by Taylor on the basis of his tests (Taylor 1974). 

2.2.3 Aggregate Interlock 

The term ‘Aggregate Interlock’ stands for the effect that generates shear stress 
as a result of the relative tangential displacement  of two cracked surfaces. The 
name implies that the cause of this effect is the friction or contacting forces 
between the protruded aggregate particles in the crack.  

Fenwick and Paulay (Fenwick & Paulay 1968) showed the importance of the 
crack surface roughness firstly by comparing the shear capacity of specimens 
with smoothened cracks and naturally developed cracks. They proposed an 
aggregate interlock formula based on a regression analysis. Gambarova pro-
posed a more refined model assuming that aggregate interlock is generated by 
slip of two rough surfaces (Bažant & Gambarova 1980; Gambarova 1981). It 
relates the four components involved in the shear transfer process of a crack, 

 
Fig. 2.4. Parabolic shear stress distribution assumed by Mörsch (Mörsch 1909). 
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which are: shear stress, normal stress, tangential displacement and normal 
displacement.  

 
 

Fig. 2.5. Schematic model for the mechanism of aggregate interlock (Walraven 1981). 

The most comprehensive experimental research on aggregate interlock was 
carried out by Walraven (Walraven et al. 1979; Walraven 1980). In his experi-
mental program, all the four basic components mentioned above were taken into 
account in the same test. In total, 32 tests were carried out on concrete cracks not 
intersected by reinforcement, which covered most variables influencing the 
aggregate interlock effect. Based on the numerous test data, a mechanical model 
was proposed (Walraven 1980; Walraven 1981). The model will be explained 
further in Chapter 3. In the model, the aggregates particles are simplified by 
rigid spheres with random diameters and locations. The cement matrix crushes 
upon contact with the aggregates. Slip and crushing at the interface between the 
two components at the contact area generate shear stresses and normal stresses. 
A schematic model is shown in Fig. 2.5. The model reflects the physical back-
ground of aggregate interlock to a certain extent. In the meantime it is able to 
reproduce the experimental results accurately. This was approved further by 
Millard and Johnson in their tests (Millard & Johnson 1984; Millard & Johnson 
1985). Other than the crack surface displacements, the main variables in the 
model are the concrete strength fc and the maximum aggregate size Dmax. It has 
to be pointed out that the assumptions of rigid aggregate particles in Walraven’s 
model should be considered as a way to simplify the roughness of the crack 
surfaces. In high strength concrete and lightweight aggregate concrete members, 
however, the aggregates break at the crack, as such reducing the shear resistance. 
It was shown in (Walraven & Stroband 1999) that for high strength concrete fc = 
110 MPa, the model still describes aggregate interlock properly with a reduction 
factor if the aggregate fracture is introduced. 

Based on a regression analysis of Walraven’s test results, Vecchio and Collins 
derived a simplified formula (Vecchio & Collins 1986):  
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and 
s : is the normal stress in the crack surface, in N/mm2; 
tmax : is the maximum allowable shear stress, in N/mm2; 
w :  is the crack width in the normal direction to the crack profile. 

 
Fig. 2.6. Comparison between Walraven's model (upper bound) and Vecchio and 

Collins' model. 

Eq. (2.2) is an approximation of the maximum shear stress level derived from 
Walraven’s tests. A comparison between the upper bound of Walraven’s model 
and Vecchio and Collins’ simplification is given in Fig. 2.6. It shows that the later 
one tends to give a higher value for max at smaller value of w than Walraven’s 
model. 

The drawback of Eq. (2.2) is that the calculation of the shear stress has to rely 
on the normal stress rather than the tangential displacement , which is sup-
posed to be the resultant of the total displacements in both directions according 
to most physical models. That makes the formula not practical in beams without 
transverse reinforcement, in which the normal stress cannot be determined due 
to the complex stress state. To solve the problem, Eq. (2.1) was further simplified 
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by eliminating the normal stress terms by Bentz et al. (Bentz et al. 2006) in the 
Simplified Modified Compressive Field (SMCF) theory. The final simplified 
equation is only related to the crack width. It is employed in many constitutive 
equations (CSA 2004; Červenka & Jendele 2009; fib 2012) as the failure criterion 
for the crack surface. Apparently, compared to Eq. (2.2), it significantly under-
estimates the maximum shear stress of the crack at a given crack width. Despite 
the obvious inconsistency the equations utilizing the criterion have been shown 
to give reasonably accurate approximations. 

To explain this, the failure criterion formula in SMCF theory should be un-
derstood in a different way. This can be revealed by comparing the SMCF 
equations with Walraven’s model, see Fig. 2.7. The intersection points of the 
SMCF theory and Walraven’s model indicate the tangential displacements  of 
the crack at given crack widths w and shear stresses . The comparison shows 
that the ratio of /w seems to remain constant at around 0.55. Thus, the SMCF 
criterion actually limits the maximum tangential displacement  under a given 
crack width w implicitly to:  ≤ 0.55 w. 

 
Fig. 2.7. Comparison between Simplified Modified Compression Field (SMCF) theory 

and Walraven's model for the same crack widths and shear stresses. 
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by eliminating the normal stress terms by Bentz et al. (Bentz et al. 2006) in the 
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Fig. 2.7. Comparison between Simplified Modified Compression Field (SMCF) theory 

and Walraven's model for the same crack widths and shear stresses. 
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2.2.4 Residual Tensile Stress 

Further than by aggregate interlock, tensile stresses can be transmitted across 
cracks when the crack width is smaller than 0.1 mm. The tensile stress – crack 
width relationship was firstly measured in 1960s by Evans and Marathe (Evans 
& Marathe 1968). The importance of the concrete softening relationship in 
structural analysis was not recognized, until Hillerborg introduced his Fictitious 
Crack Model simulating the bending behaviour of concrete beams (Hillerborg et 
al. 1976; Petersson 1981). Since then, systematic research on the tension softening 
behaviour of concrete has been carried out. A widely accepted tensile stress – 
crack width relationship is the exponential relationship proposed by Hordijk 
and Reinhardt in (Reinhardt & Hordijk 1986; Hordijk 1991). Significant progress 
has been made in the last few decades regarding to concrete fracture mechanics. 
Comprehensive overviews are given in (ACI Committee 446 1989; Shah et al. 
1995; Bažant & Planas 1998; van Mier 2013). 

With respect to the shear behaviour of concrete beams, the function of tensile 
stress after cracking is not agreed yet between researchers. In the shear modes 
based on fracture mechanics, the tensile stress across the crack is the major 
mechanism for shear transfer. Examples of such models are Jenq and Shah’s 
model (Jenq & Shah 1990), or Gustafsson and Hillerborg’s model (Gustafsson & 
Hillerborg 1988). More explanations on fracture mechanics approaches will be 
given in 2.3.3. According to other researchers the significance of tensile stress in 
shear cracks is very limited. Reineck mentioned in the discussion of (Reineck 
1991) that the concrete tensile stress is only activated in the fracture zone near 
the tip of the crack, thus it is only relevant in very shallow beams. 

2.2.5 Dowel Action 

A dowel force is generated as a result of the interaction between the reinforcing 
bars and the surrounding concrete when there is differential tangential dis-
placement in the crack plane of the concrete. For beams without shear 
reinforcement, dowel action occurs at the longitudinal reinforcement at the 
bottom of the beam. The dowel action at that location is different from the 
interaction between stirrups and concrete normally measured in push off tests 
(Millard & Johnson 1984; Pruijssers 1988). A large rebar area can be expected 
locally, thus a large tensile force may be expected, due to the rotation of the 
crack faces under bending. Krefeld and Thurston firstly investigated the mech-
anism of dowel action on specimens with configuration approximating the 
condition in beams (Krefeld & Thurston 1966), see Fig. 2.8. With similar a test 
configuration, Baumann and Rüsch (Baumann & Rüsch 1970) carried out an 
extensive experimental program on dowel action of longitudinal reinforcement. 
In their tests, the post peak behaviour was measured as well. They showed that 
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extensive experimental program on dowel action of longitudinal reinforcement. 
In their tests, the post peak behaviour was measured as well. They showed that 
even for beams without shear reinforcement, a large plastic deformation can be 
expected after the peak load. They derived a regression formula based on their 
test results, which will be discussed further in Section 3.3.2.2 in Chapter 3. 
Taylor carried out dowel action tests with similar configurations but with 
different specimen dimensions in (Taylor 1971). Houde and Mirza evaluated the 
dowel behaviour of longitudinal rebars in a different configuration in (Houde & 
Mirza 1974). The latter two research programs resulted into relationships with a 
quite comparable maximum dowel force as following from Baumann and 
Rüsch’s equation. However, regarding the transverse displacement  at maxi-
mum dowel force, there are larger disagreements. The measured values of  
vary from about 0.01 mm to 0.1 mm. 
 

 
 
Fig. 2.8. Dowel action test setup of Krefeld and Thurston (Krefeld & Thurston 1966). 

Theoretically, Vintzeleou and Tassios categorised the failure of dowel action 
into two modes: Crushing of Concrete and Concrete Splitting, and derived 
theoretical models for both modes (Vintzeleou & Tassios 1986). Their formula 
for Mode II is in principle the same as Baumann and Rüsch’s formula. For 
concrete beams without shear reinforcement, Mode II is dominating. 

Since the shear force contribution of longitudinal rebars is usually small 
compared to the overall shear capacity, typically about 15-25% according to 
Regan (Regan 1993), the function of dowel action was not recognized by many 
researchers. Chana showed for the first time the importance of dowel action 
(Chana 1987). He measured the change of crack widths of the critical inclined 
crack during the shear failure of beams with crack gauges at a high sampling 
rate. The measurement showed that dowel cracking along a longitudinal rebar 
always starts first before the opening of the critical inclined crack. Based on this 
observation, he concluded that: ‘the mechanism of shear failure is closely asso-
ciated with the loss of the dowel force.’ However, how to link the dowel 
cracking to the overall shear force remained an open question. 
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2.3 SHEAR FAILURE FROM DIFFERENT PERSPECTIVES 

Although the basic mechanisms that enable shear force transfer in beams with 
flexural cracks have been recognized and studied thoroughly, without a clear 
vision on the interaction between the basic mechanisms and the failure mecha-
nism, the discussion about the shear capacity of concrete beams will continue. 
Therefore, there is still no general agreement on the reason of shear failure 
among researchers. Fundamentally different explanations on the mechanism of 
shear failure can be distinguished in literature, based on which different ap-
proaches have been proposed to calculate the shear capacity of concrete beams 
without shear reinforcement. Recently several researchers were trying the 
evaluate the contributions of the basic shear transfer mechanisms through 
experimental measurement on the kinematics of a critical crack, examples of 
such researches are (Yang et al. 2010; Campana et al. 2013). However, because 
the opening of a critical inclined crack happens in a very short time, in the 
meantime, the critical cracks cannot always be foreseen, measurement of the 
kinematic of a critical major crack during the failure process seems to be very 
difficult. For that reason, direct experimental proof is not yet available to sup-
port any of these approaches. In this section, a selection of representative 
approaches is presented in several categories, depending on the failure mecha-
nism they are based on. 

2.3.1 Prelude 

The attempts of formulating the shear capacity of a concrete beam started with 
Mörsch’s truss model (Mörsch 1909). The model assumes a truss structure in a 
reinforced concrete beam with shear reinforcement. To transfer the shear force, 
the tensile force is carried by the shear reinforcement, while the compression 
force is taken by the concrete. To explain the shear capacity of concrete beams 
without shear reinforcement, the tensile stress in the concrete has to replace 
somehow the role of shear reinforcement. Therefore, Mörsch related the shear 
capacity of concrete beams without shear reinforcement to the tensile strength of 
concrete. The contribution of shear resistance from concrete tensile strength was 
treated as an additional term, denoted as shear resistance by the concrete in his 
model. This can be considered as the common root of both the empirical meth-
ods and physical models on the shear capacity of concrete beams. 

2.3.2 Empirical Methods 

The empirical methods stand for a design approach based mainly on formulas 
derived from regression analysis of experimental results. The main difference 
between the various empirical methods lies in the choice of the variables that are 
taken into account in the formulation, and the structure of the formula. There is 
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not necessarily a physical explanation behind the formula. This type of approach 
has been the major practice for the derivation of code formulas in the past. 
Numerous empirical expressions have been proposed meanwhile. A compre-
hensive review is given in (ACI-ASCE Committee 426 1973) by ACI-ASCE 
Committee 426. Among them only a few most representative ones are discussed 
here, including the ACI shear formula and the Eurocode formula. 

The ACI shear design method is inherited from Mörsch’s model (ACI 
Committee 318 2004). The shear capacity of a shear reinforced concrete beam is 
split into the contribution of shear reinforcement and the contribution of con-
crete tension. The later one is also used to represent the shear capacity of 
concrete beams without shear reinforcement: 
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with  
fcm : is the mean concrete strength; 
u : is the ultimate shear stress in the beam cross-section at failure. 
 

According to the ACI formula Eq. (2.3), the shear capacity is only related to the 
square root of the concrete compressive strength. The formula shows a clear 
influence from Mörsch. However, based on the knowledge developed after the 
formula was proposed, one may find that several key elements are missing in 
the formula. Those are the configuration of the longitudinal reinforcement, the 
beam height and the loading condition. Because of that, the accuracy of the 
formula is poor compared to experimental results. The formula can be seen as an 
indication of the lower bound of the shear capacity. 

The Eurocode formula (Eurocode 2 2004) represents a significant improve-
ment compared to the ACI code. The basic structure of the Eurocode equation is: 
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where  
kh: is the size effect factor, 1 200 /

h
k d= + , with d in mm; 

CRd:  is a regression factor to be determined by test results; 
s: is the reinforcement ratio, s = As/bd. 
 
For the prediction of the mean value of the shear capacity, the factor CRd is 

replaced by CRm. The value of CRm was firstly determined by Regan as CRm = 0.15. 
Later, König & Fischer evaluated the formula with 176 carefully selected shear 
tests in (König & Fischer 1995). In their analysis the mean calculated shear 
resistance is 0.92 smaller than the reported test results, thus increasing the value 
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of CRm to 0.163 results in better fitting according to their database. This result 
was used to derive the design equation as found in the Eurocode for Concrete 
Structures (Eurocode 2 2004), assuming a reliability index equal to 3.8. On this 
basis, the factor CRd = 0.12 was found, suggested as a default value in the code. 
Moreover, the influence of the shear slenderness ratio (av/d, with av being the 
ratio between the edge of the loading plate and the edge of the support), is 
included in the Eurocode formula by introducing a reduction factor on the load 
applied at a distance smaller than 2.0av. A reduction factor of (av/d)/2 is used to 
reduce the load in that case. In this research, when the Eurocode formula is 
addressed, the roundup value from Regan CRm = 0.15 is chosen and the shear 
slenderness factor is changed to a = 2/(M/Vd) to including continuous beams. 
The factor a is added to Eq. (2.4), so that it is turned into a capacity-increasing 
factor. 

Another interesting empirical method is the TNO-IBBC method, which is 
based on experimental research on beams with complex boundary conditions 
loaded by a uniformly distributed load (IBBC-TNO 1977c; IBBC-TNO 1985). The 
method treats the failure of the two shear transfer mechanisms explained in 
Section 2.1 separately. The capacity according to the two failure modes is de-
noted as 1 and 2, the values of which are expressed by formulas relating to the 
varying ratio M/V along the beam. By comparing the values of 1 and 2 at each 
section of the beam, the maximum shear force and the critical section are de-
termined. The method works well for concrete members with complex 
boundary conditions, such as cut-and-cover tunnel segments. 

A more recent empirical method was proposed by Bažant and Yu (Bažant & 
Yu 2005; Bažant & Yu 2005). The expression is based on Bažant’s size effect 
theory derived from fracture mechanics (Bažant & Planas 1998; Bažant 2005). 
The factors in the formula were determined by regression analysis: 
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where 
d0 : is a constant, 2/3
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gregate size Dmax is known, otherwise kB = 3.330. 
 
Since the formula itself is not derived from a specific mechanism with a 

physical meaning, it still falls into the category of empirical formulae according 
to the definition given in the beginning of this section. On the other hand, the 
basic relationship is based on fracture mechanics. It indicates that the fracturing 
process of the critical inclined crack determines the shear failure of the beam 
according to the formula. 
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The problem of most empirical methods is that they are purely based on the 
experimental results available when the formula was derived. Since they do not 
reflect the fundamental nature of the shear failure process, the formulas cannot 
be extended outside the scope of the tests and do not always match design 
situations encountered in practice. 

2.3.3 Methods Based on Fracture Mechanics 

As explained above, Bažant’s equation can be considered as a semi fracture 
mechanics approach. There are several more researchers attributing the flexural 
shear failure to the fracturing process of the critical inclined crack. Because of the 
complex expressions for the fracturing behaviour of concrete in tension, analyt-
ical expressions for the shear capacity based on fracture mechanics approach are 
seldom. Therefore the principles of fracture mechanics are mostly used in 
combination with finite element analysis, or regression analysis. Most analytical 
expressions relating to fracture mechanics are determined from regression 
methods. To be distinguished from the empirical method, in the fracture me-
chanics approach the derivation of the formula is still based on the analysis of 
the fracturing of a specified crack path, although the final expression is similar to 
an empirical formula. Thus, the method usually needs to specify a crack path or 
failure mechanism in advance. 

Gustafsson and Hillerborg were the first to model the fracturing process of 
the critical inclined crack with concrete fracture mechanics (Gustafsson & 
Hillerborg 1988). They assumed a parabolic crack path in a beam, and calculated 
the fracturing process of the crack with their Fictitious Crack Model, see Fig. 2.9. 
Based on the simulation results, they derived a shear capacity formula.  

Jenq and Shah employed the concept of fracture mechanics with another 

 
Fig. 2.9. Fictitious crack model for shear cracking simulation (Gustafsson & 

Hillerborg 1988). 
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approach. In their two-parameter model, the formulation of Linear Elastic 
Fracture Mechanics (LEFM) was adopted for the fracture of concrete (Jenq & 
Shah 1985; Shah, Stuart et al. 1995). To model flexural shear cracking, a straight 
diagonal crack path with inclination angle  was assumed. Subsequently, the 
force needed to open the crack was calculated with their model (Jenq & Shah 
1990). 

A common feature in the models discussed above is that to simulate the 
fracture process, a simplified crack path has to be assumed. It is necessary that 
the derivation of the model should be based on a crack path assumption re-
flecting the experimental observation properly. On the other hand, to derive an 
applicable calculation method requires a simple crack path expression. The two 
conflicting requirements cannot be solved within the scope of the approach. 
Besides, by definition, the fracture mechanics approach assumed for the frac-
turing of the critical inclined crack is the dominating shear failure mechanism, 
while the other shear transfer mechanisms such as aggregate interlock and shear 
stress transfer in compressive zone are mostly ignored in a typical fracture 
mechanics models. In slender beams with relatively high reinforcement ratio, 
the critical shear crack may develop from pure flexural cracks, such as observed 
in the tests reported by Yang (Yang et al. 2012), see also Section 5.3.5 in this 
research work. In that case, the critical crack is composed of the flexural crack 
and secondary crack branch developing further along the compression zone and 
the longitudinal reinforcement. Because of this crack shape, the shear stress 
generated by aggregate interlock under a tangential displacement of the flexural 
crack faces cannot be ignored anymore. 

2.3.4 Teeth Model 

The problem addressed in case of fracture mechanics methods is basically 
nothing else than addressed already before by the Teeth Models. They represent 
one of the first attempts towards a totally rational explanation of the flexural 
shear failure mode. The first of this type of models was proposed by Kani in his 
well-known paper ‘The Riddle of Shear Failure and Its Solution’ (Kani 1964). In 
Kani’s model, he focused on the shear capacity of a beam with a fully developed 
flexural crack pattern. The flexural cracks shape the beam into a teeth-like 
structure, see Fig. 2.11. Taking a single teeth apart, it is loaded like a corbel by 
the shear force generated by the longitudinal reinforcement at the tensile side 
and a compression force in the concrete compression zone. Kani assumed that 
the shear failure of such a beam occurring due to breaking off of the concrete 
corbel under the local shear forces. With the teeth model and an arch analogy, 
Kani explained the influence of shear slenderness ratio to the shear capacity, 
which is often referred as Kani’s Valley (Fig. 2.10) by other researchers. The 
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model regards the initiation of inclined cracks from a different perspective, 
which turns out to be inspiring till now.  

Fenwick and Paulay evaluated Kani’s model in (Fenwick & Paulay 1968) by 
experiments on beams with manually arranged teeth structures with and with-
out aggregate interlock. They showed that aggregate interlock cannot be ignored 
in a teeth structure. Taylor (Taylor 1974) came to a similar conclusion on the 
basis of his tests. He suggested that dowel action should also be taken into 
account. These experimental observations cannot be explained by the fracture 
mechanics models either. 

Kani’s model was further improved by MacGregor and Walters (MacGregor 
& Walters 1967) introducing a simplified dowel action expression and shear 
stress distribution between cracks. Both simplified relationships were not 
validated by experiments yet. However, they showed that the development of 
the inclined crack is due to the bending of the concrete teeth. 

Hamadi and Regan (Hamadi & Regan 1980) implemented the teeth model 
with a more complex shear stress distribution in the compression zone, and the 
rebar dowel force was calculated based on experimental results in their paper. 
Regarding the shear stress distribution in the crack, a simple bilinear shear stress 
distribution was assumed. 

Reineck (Reineck 1991) derived a simplified aggregate interlock relationship 
derived from Walraven’s research (Walraven 1980), assuming there is no com-
pressive normal stress in the crack due to aggregate interlock. Under that 
condition, the maximum shear stress according to Walraven’s model determines 
the capacity of aggregate interlock, which determines the shear capacity of the 
whole cross section. The teeth inclination is assumed to be 60º in Reinecks’s 

 

Fig. 2.10. Influence of a/d on the beam capacity 
known as Kani's Valley (Kani 1964). 

Fig. 2.11. Illustration of Kani's 
teeth model (Kani 1964). 
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model. Other assumptions are that the height of the concrete compression zone 
is 0.4d, the average crack spacing is 0.42d, etc. According to his study, the tensile 
stress of concrete at small crack width can be neglected. Although some of his 
simplifications mentioned above still need experimental evidence, the accuracy 
of the model prediction is comparable with that of empirical formulas. 

Based on the teeth model, the shear failure mechanism has evolved from the 
break of the teeth to the failure of aggregate interlock between the crack surfaces. 
The teeth analogy still turns out to be a reasonable framework to include the 
basic shear transfer mechanisms as previously discussed in Section 2.2. 

2.3.5 Crack Width Based Models 

The studies on the shear transfer mechanism based on teeth models eventually 
evolved towards shear failure criteria based on aggregate interlock. Since the 
shear stress generated by aggregate interlock is determined by the displacement 
of the crack faces in normal and tangential direction, the failure of aggregate 
interlock can be related to the crack width of the critical section. It is logical to 
relate the overall shear capacity to the crack width directly. This possibility has 
been validated by Lubell et al. in (Lubell et al. 2009) and Muttoni (Muttoni 2003). 
Typical models that rely on the crack width of the beams are the Modified 
Compressive Field Theory (MCFT) proposed by Collins et al. (Vecchio & Collins 
1986; Adebar & Collins 1996; Bentz, Vecchio et al. 2006) and the Critical Shear 
Crack Theory (CSCT) proposed by Muttoni (Muttoni & Ruiz 2008). Besides, 
Reineck’s model (Reineck 1991) discussed in the previous section also relates the 
shear capacity partly to the crack width. 

Among the crack width based models discussed above, the CSCT proposes 
that the shear capacity of a beam can be completely related to the crack width at 
a predefined critical cross section. It defines the critical section at a distance of 
d/2 from the loading point for point loading, and relates the crack width of the 
cross-section to the longitudinal strain of the beam at 0.6d from the top surface. 
By comparing the longitudinal strain of test results reported in literature at 
failure load with the average cross sectional shear stress, the following regres-
sion formula was derived: 
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ex : is the average strain calculated at the critical point. 
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It has been shown that the formula is able to provide an accurate prediction of 
the shear capacity in general (Muttoni & Ruiz 2008; Caldentey et al. 2012). In 
principle, it is still an empirical approach, since Eq. (2.6) can hardly be traced 
back to a rational explanation of the failure mechanisms, so that the failure 
criterion is generally nothing more than the definition of a certain maximum 
crack opening at a critical section. 

The modified compressive field theory approaches the problem from a quite 
different perspective. It was firstly proposed by Collins as Compressive Field 
Theory in (Collins 1978). The theory was derived to determine the principal 
direction of the compressive stress in shear reinforced concrete specimens as an 
alternative for Mörsch’s truss analogy. Eq. (2.1) was later added to take into 
account aggregate interlock in the improved theory called modified compressive 
field theory, suggested by Vecchio and Collins (Vecchio & Collins 1986). The 
theory was extended to beams without shear reinforcement by Adebar and 
Collins (Adebar & Collins 1996). In case of beams without shear reinforcement, 
the shear capacity along the crack is directly related to the shear stress trans-
ferred across flexural cracks: 
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The equation has been discussed before in 2.2.3. It was derived by removing the 
normal stress across the crack surface. Thus, in principle, it should be equivalent 
to the equation proposed by Reineck. Bentz, Vecchio and Collins further simpli-
fied the procedure of calculating the direction of the principal compressive stress 
in (Bentz, Vecchio et al. 2006), which yields the following expression for the 
shear capacity: 
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ex : is the longitudinal strain of the beam at mid-height of the predefined 

critical section. 
 
The advantage of the model is that it is able to unify the design of beams with 

and without shear reinforcement within the same framework. Besides, com-
paring to the CSCT a link between the formulation and the specific failure 
mechanism can be traced. As explained before, the advantage of a physical 
model is its possibility of extending to more general conditions. This has been 
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approved in case of large, lightly reinforced beams by experiments (Collins & 
Kuchma 1999; Collins, Bentz et al. 2008; Lubell, Bentz et al. 2009), in which cases 
empirical formulas such as Eurocode and ACI provisions give less conservative 
predictions according to (Collins et al. 2008; Lubell, Bentz et al. 2009). Because of 
the advantages stated above, the theory has been implemented into design 
provisions such as the Canadian CSA code (CSA 2004), and the new fib Model 
Code 2010 (fib 2012). 

In crack width based models, the basic assumption is that the failure of ag-
gregate interlock determines the shear failure of the beam. Regarding to the 
capacity of aggregate interlock, a common assumption is that there is no normal 
stress perpendicular to the cracks. This assumption is questionable, since the 
uncracked concrete parts at both sides of the crack remain solid elements con-
nected by the longitudinal reinforcement and the uncracked concrete 
compression zone. Thus the displacement perpendicular to the crack plane is 
still limited, especially at the region close to the tip of the crack. As pointed out 
by Bažant and Yu in (Bažant & Yu 2005), in that case the allowable shear stress in 
the crack should be much higher than what was observed in most shear tests. On 
the other hand, as shown in Fig. 2.7, the shear failure criterion in the MCFT is 
equivalent to a limitation of the transverse displacement with respect to a given 
crack width being  ≤ 0.55 w. That may be considered as a rational explanation 
for the criterion on the shear stress in the crack. It makes sense to investigate 
whether this criterion can be improved in order to make a further step towards a 
complete solution to the riddle of shear capacity. 

2.3.6 Secondary Crack Models 

The term secondary crack represents the dowel crack along the longitudinal 
reinforcenet and the splitting crack in the concrete compression zone. 

Although it has already been pointed out by Bresler and MacGregor in 
(Bresler & MacGregor 1967), Chana has firstly shown with tests that the opening 
of the flexural shear crack is initiated by the development of a dowel crack along 
the longitudinal rebar at the bottom of a beam (Chana 1987). This observation 
opened another possibility to explain the mechanism of shear failure, which is 
the development of a dowel crack in the horizontal direction. The importance of 
dowel cracking along the longitudinal rebar was further confirmed by Kim and 
Wight through their comprehensive test program in (Kim & White 1999). 

Kim and White derived the first shear cracking formula based on the dowel 
crack development along the longitudinal rebar in (Kim & White 1991). In their 
model, they related the initiation of the dowel crack to the maximum bond stress 
between rebar and concrete, and compared the cross-sectional cracking moment 
with the development of maximum bond stress to derive the inclined cracking 
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load. The formula is comparable with the empirical formula proposed by Zsutty 
(Zsutty 1971) according to Kim and White. An equation to predict the position of 
the flexural crack was given as well in this research. However, relating the 
opening of the dowel crack to maximum bond stress is questionable. First of all, 
Baumann and Rüsch’s tests (Baumann & Rüsch 1970) showed that the opening 
of the dowel crack along a longitudinal rebar is a plastic process. Sudden open-
ing of the flexural shear crack cannot be related to the dowel crack solely. 
Moreover, in the experiments executed by Kim and White (Kim & White 1999) 
they compared the shear capacity of test series disabling the bond between 
concrete and steel in two different ways: introducing a PVC tube or removal of 
concrete locally. The two approaches generated completely opposite results. 
Thus the shear stress cannot be the only reason of shear failure. 

Gastebled and May established their theory upon the same mechanism 
through a different approach (Gastebled & May 2001). The concept from fracture 
mechanics was employed. However, unlike the conventional fracture mechanics 
methods introduced in 2.3.3, the formulation avoided the calculation of the 
tensile stress in concrete. It is based on the total energy balance of an assumed 
crack pattern in the beam. They derived a rather simple formula which was 
comparable to the Eurocode formula Eq. (2.4). In their model a straight diagonal 
crack with 45º inclination is assumed. Xu et al. further developed the model by 
replacing the mode I fracture energy Gf,I as used by Gastebled and May with 
mode II fracture energy Gf,II (Xu et al. 2012). 

The two methods discussed in the section show the significance of relating 
shear failure to the opening of a dowel crack along the longitudinal reinforce-
ment. However, the common questions that have to be solved for shear design 
methods that attribute dowel cracking as failure mechanism are the following: 
 How to take into account the other shear transfer mechanisms, which have 

been proven to be influential to the overall shear capacity from experi-
mental observations? 

 What is the criterion to determine the abrupt opening of the flexural shear 
crack observed in experiments? 

Further to the two aforementioned methods, Zararis proposed a totally dif-
ferent rational method in (Zararis & Papadakis 2001; Zararis & Zararis 2009), in 
which he suggested that the flexural shear crack is initiated by the development 
of a splitting crack in the concrete compressive zone. He divides the critical 
inclined crack into two branches, the first part of which is the flexural crack, 
whose height is stabilized quickly due to cross sectional force equilibrium. The 
second branch develops along the centre of the compressive strut towards the 
loading point, the opening stress of which is the secondary tensile stress due to 
the Poisson’s effect in the strut. The distribution of the stress along the centroid 
of the strut is assumed to be similar to the one in a splitting cylinder test. The 
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method provides an interesting perspective in explaining the opening of the 
flexural shear crack close to the loading point. An apparent deviation from 
experimental observation is that the tips of flexural cracks are usually not in the 
centroid of the compressive strut. A similar approach was also followed by Choi 
et al. in (Choi & Park 2007; Choi et al. 2007). The difference lies in the way the 
two-dimensional stress state in the concrete compressive zone was treated. 

2.3.7 Missing Links 

The shear capacity of reinforced concrete beams without shear reinforcement is 
one of the most interesting research topics in the whole structural concrete 
theory. This is already clearly demonstrated in this short review of the theories 
proposed in the last 50 years. With respect to the same phenomenon, hundreds 
of papers have been published (ACI-ASCE Committee 426 1973; ACI-ASCE 
Committee 445 1998; Collins, Mitchell et al. 2008), in which different theories 
have been proposed. However, there is still fundamental disagreement on the 
governing mechanisms in the shear failure process. As a summary to the pre-
sented theories, shear failure can be attributed to: 
 Fracturing process of the critical inclined crack; 
 Breaking of concrete teeth formed by flexural cracks; 
 Loss of aggregate interlock capacity; 
 Dowel cracking along the longitudinal rebar; 
 Splitting cracking in the concrete compression zone. 
There are even more theories that have been reported in literature based on 
other failure criteria, such as the plasticity theory proposed by Zhang (Zhang 
1997), etc. 

As mentioned before, none of them is able to give a sound explanation yet. 
Thus the biggest challenge in the field of shear research remains unchanged: to 
find a model that is able to explain the fundamental mechanism of flexural shear 
failure. Nevertheless, the understanding of the phenomenon denoted as flexural 
shear failure has been pushed forward indeed with regard to various 
sub-mechanisms. How to link the knowledge that is available is a crucial chal-
lenge towards the final solution of the problem. The following aspects have been 
learnt from the exploring works discussed in this section: 
 The pure regression analysis of experimental data shows that the major 

variables that influence the shear capacity of concrete beams are: the con-
crete strength fc, the effective beam height d, the reinforcement configura-
tion and the load configuration. 

 The development of the critical inclined crack follows the laws of the 
fracture mechanics. 
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 The inclination of the flexural crack should be related to the bending of the 
concrete teeth. 

 To model the shear capacity properly, it is necessary to take into account all 
the shear transfer mechanisms in the teeth model: the conclusion holds true 
for the other models as well. 

 The longitudinal strain x or alternatively the crack width w, is proven to be 
strongly related to the shear capacity of concrete beams by the comparison 
of test results. That indirectly indicates that the aggregate interlock cannot 
be ignored. 

 However, aggregate interlock cannot be the governing criterion of shear 
failure either. Instead, the tangential displacement of the crack faces can be 
used as a failure criterion to calculate the critical shear stress in the cracks. 

 The development of secondary cracks in the longitudinal direction at both 
ends of the flexural cracks is important in the shear failure process. 
 

2.4 SHEAR DATABASES 

The previous section about shear capacity theories has clearly shown that most 
of the shear design methods still rely on regression analysis of test results in 
order to determine the factors included in the theoretical models they represent. 
Hence, a collection of shear tests data is essential. Most researchers collect their 
own database for their models, such as (Rafla 1971; Zsutty 1971). However, this 
may become a problem when comparing different models derived from differ-
ent data collections. The procedures to select the data and to process it were 
different, such as the choice of concrete strength between cylinder strength and 
cube strength, whether or not the self-weight of the specimen is taken into 
account. To avoid such problems, several researchers have been working on 
collecting as much shear test data as possible, and process them in a uniform 
manner, so that the difference introduced by the person who analyses the set of 
data is minimized. 

One of the noticeable databanks is the collection reported by Collins and 
Bentz in (Collins, Bentz et al. 2008), in which 1849 shear tests have been included. 
The databank includes the maximum aggregate size, and type if known. The 
loading plate sizes are included as well. Another databank with a large collec-
tion is Reineck’s Database collected by Reineck et al. in (Reineck et al. 2003). It 
was extended further to the ACI-DAfStb Database reported in (Reineck et al. 
2013). The database includes 1365 shear tests with point loading and 128 tests 
with distributed loading. In the ACI-DAfStb Database, more detailed longitu-
dinal reinforcement information is included. Both test databases are used in this 
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research work with certain selection criteria depending on the specific require-
ment in the research. 

However, as pointed out by Bažant in (Bažant 2004; Bažant & Yu 2005), try-
ing to fit a formula with an entire database with the parameter variation of the 
test data not well distributed, or including other types of failure modes which 
are not corresponding to the model will lead to incorrect results. As shown in 
Fig. 2.12, most shear tests reported in literature were carried out on a laboratory 
scale, and were heavily reinforced to guarentee shear failure, moreover, a large 
percentage of the specimens have a concrete strength lower than 45 MPa, which 
are apparently quite different from the current design practice. A formula which 
fits best with a database mostly composed of such tests is not necessarily to be 
the best fitting formula for all conditions. A proper selection of the test data is 
important. Taking that into account, König and Fischer evaluated the Eurocode 
formula with a small database with a carefull selection (König & Fischer 1995). It 
is composed of 176 tests with only flexural shear failures. Tests with higher 
concrete strength and larger cross-sectional depth take up a reasonable per-
centage in the collection, see the comparison in Fig. 2.12. That database is 
therefore used as an evaluation tool to compare the accuracy of different model 
predictions. 
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Fig. 2.12. Comparison of data distribution between databases. 
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3.1 INTRODUCTION 

The central issue of this chapter is to explain the failure process of a reinforced 
concrete beam without shear reinforcement under shear loading. The survey of 
literature in Chapter 2 has shown that there is general agreement on the mecha-
nisms which contribute to the shear capacity of a reinforced concrete beam with 
flexural cracks, namely, shear resistance in the uncracked compressive zone, 
residual tensile stress through the crack, aggregate interlock and dowel action. 
Nevertheless, there is no agreement yet on how those components influence the 
overall shear failure process, and which one is the governing mechanism in the 
failure process. 

In this chapter the shear failure process is explored by studying the formation 
of a critical inclined crack generated by the combination of the flexural moment 
and shear force at a given cross section. The study starts from the opening of a 
crack under the local cracking moment Mcr. Key aspects relating to the crack 
pattern, including the crack spacing, crack height and profile are involved in the 
study. Corresponding expressions are given. Along a given crack, a part of the 
beam specimen is regarded as a free body, the forces applied on this body are 
analysed, which includes the aforementioned effects such as the aggregate 
interlock, dowel action, and direct shear transfer in the compressive zone. By 
quantifying those components through equilibrium and kinematic conditions, 
the failure process of a beam under shear force is explained step by step. Based 
on that, a new type of shear failure criterion is proposed which can be used to 
develop a new model for the shear capacity of structural members. By the end of 
this chapter, the behaviour of the structural member after the opening of a 
critical inclined crack is discussed. That is presented as the governing loading 
bearing mechanism at that stage. It is shown that the capacity of the structural 
member in that stage determines the shear failure mode. 

In order to simplify the research question, within this chapter, the study is 
strictly confined by certain boundary conditions. A standard structural member 
is defined, which is a prismatic beam with a cross-section of 300500 mm. It is 
simply supported and loaded by a single point load, where the closer cen-
tre-to-centre distance between the support and the point load is the span length 
denoted as a. The span length a may vary in different cases. The longitudinal 
reinforcement at the tensile side of the beam consists of three ribbed rebars of 
Ø32 mm. They are properly anchored at the edge of the beam. No shear rein-
forcement is present in the shear span. It is assumed that the amount of 
reinforcement is always sufficient to guarantee shear failure. The concrete cover 
is assumed to be 25 mm, which makes the effective height of the beam d about 
460 mm. The concrete strength is assumed to be fc = 40 MPa, with a maximum 
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aggregate size of 16 mm. This configuration is partly based on the specimens of 
the experimental research reported in (Yang & den Uijl 2011; Yang et al. 2011). 

 

3.2 CRACK DEVELOPMENT UNDER THE CRACKING MOMENT 

In this section the development of cracks under the combination of a bending 
moment M and a shear force V is studied. It is of interest why and how a certain 
crack pattern forms in a beam under given loading condition. The term crack 
pattern stands for the height, spacing and profiles of the cracks. Experimental 
research has been shown that the shear capacity of a reinforced concrete beam is 
strongly related to the development of the critical inclined crack in the shear 
span (Yang et al. 2011; Yang, den Uijl et al. 2012), which is certainly the most 
essential part of the whole crack pattern. Therefore the first step to understand 
the shear phenomenon should be to explain how cracks, especially inclined 
cracks develop. 

3.2.1 Stability of Crack Height under Flexural Moment 

Before cracks develop, the beam follows the theory of elasticity, which says that 
for an uncracked concrete beam with a rectangular cross section, the crack will 
always initiate from the ultimate tensile fibre of the specimen due to the moment 
at the cross-section when the tensile stress there reaches the tensile strength of 
the concrete. At the ultimate fibre of the beam, the tensile stress reaches the 
maximum value in x direction, while the shear stress is zero there. It is assumed 
that the direction of the crack faces is perpendicular to the maximum principal 
stress direction. Due to the tension softening character of the concrete, the 
opening process of the crack is quite unstable. This can be illustrated by a 
simplified layered model. 
 

 
 
Fig. 3.1. Illustration of layered model 
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The simulation of the cracking process with a layered model was proposed 

by Hordijk in (Hordijk 1991). The basis of the model is dividing the vertical plain 
of the cross-section into multiple horizontal layers. The stress-strain (crack 
opening) relationship of concrete is assigned to each layer. The deformation in 
the height direction is assumed to be linear. The crack width is converted into 
strain by a characteristic length lch. In this model the value of lch is chosen to be 
250 mm, which is half the beam height according to Hordijk (Hordijk 1991). For 
any given curvature , by solving two equations describing the equilibrium of 
forces and moment, the height of the neutral axis z0, and the external moment 
that applies on the cross-section is calculated. Since the model is rather easy to 
be implemented, it has been widely applied to study the propagation of a crack 
in tension-softening materials such as concrete. 
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where, 
hi :  is the position of node i in the cross section; 
σi : is the stress at a given node i, it is calculated by the strain of the layer, 

with the constitutive relationship of the material; 
εi : is the strain at a given node i, εi = κ (hi – z0); 
κ : is the curvature of the cross section. 
 
The prototype beam specified in Section 3.1 is modelled here. The reinforce-

ment area is chosen as the variable. Three reinforcement configurations are 
specified, being 1 Ø32 mm, 2 Ø32 mm, 3 Ø32 mm. The corresponding reinforce-
ment ratios are s = 0.59%, 1.18% and 1.77%. The concrete tensile strength in the 
model is fctm = 2.9 MPa, a fracture energy of Gf = 0.0579 N/mm is chosen (fib 
1993), and a linear softening curve for the post cracking behaviour of concrete is 
adopted to keep the simplicity of the whole model. For each beam by assuming a 
curvature the height of the cracked concrete layers is calculated as well as the 
cross-sectional moment M. The relationship between crack height from the level 
or the reinforcement s and moment M that can be resisted by the cracked 
cross-section is plotted in Fig. 3.2. 

Comparing the crack height of the concrete cross-section and the cor-
responding maximum moment in Fig. 3.2, one may find that shortly after the 
moment is higher than the cracking moment Mcr (see point 1 in Fig. 3.2), further 
development of crack height will result in the reduction of the moment re-
sistance over the cross section. This means that once the moment applied at the 

CH3 Failure Process of a Reinforced Concrete Beam without Shear 
Reinforcement 

39 

 

 

cross-section is higher than that value M1, or the crack height is larger than s1, 
further development of the crack height does not ask for any additional loading. 
The crack opening will become unstable until the moment resistance of the 
cross-section gets higher than the previous peak point (see point 2 in Fig. 3.2): 
the crack height becomes stable after reaching the level s2. The values s1, s2 and 
M1 depend on the reinforcement ratio and the fracture energy Gf of the concrete 
and the beam height. A higher reinforcement ratio and larger fracture energy 
result in a lower stabilized crack height s2 and a lower critical moment M1. Other 
than that the height of the beam affects the values of s and M1 as well, due to the 
constant lch for a specific concrete type. It is usually denoted as the size effect in 
literature. This has been proven by Walraven in (Walraven 1978). Further 
discussions on this topic will be given in Section 4.7. 

Fig. 3.2 also shows that, between the points 1 and 2, the equilibrium of the 
internal forces does not balance with the external load, thus, in principle it is not 
possible to acquire the exact value of the stress distribution around the crack tip 
with conventional equilibrium methods. The same conclusion holds true for 
conventional non-linear finite element methods, with which the inner force 
equilibrium has to be balanced with the external force as well. 
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further development of the crack height does not ask for any additional loading. 
The crack opening will become unstable until the moment resistance of the 
cross-section gets higher than the previous peak point (see point 2 in Fig. 3.2): 
the crack height becomes stable after reaching the level s2. The values s1, s2 and 
M1 depend on the reinforcement ratio and the fracture energy Gf of the concrete 
and the beam height. A higher reinforcement ratio and larger fracture energy 
result in a lower stabilized crack height s2 and a lower critical moment M1. Other 
than that the height of the beam affects the values of s and M1 as well, due to the 
constant lch for a specific concrete type. It is usually denoted as the size effect in 
literature. This has been proven by Walraven in (Walraven 1978). Further 
discussions on this topic will be given in Section 4.7. 

Fig. 3.2 also shows that, between the points 1 and 2, the equilibrium of the 
internal forces does not balance with the external load, thus, in principle it is not 
possible to acquire the exact value of the stress distribution around the crack tip 
with conventional equilibrium methods. The same conclusion holds true for 
conventional non-linear finite element methods, with which the inner force 
equilibrium has to be balanced with the external force as well. 
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After the crack height has reached s2, the curve becomes almost flat. This in-
dicates that a further increase of the moment over the cross-section will not 
change the crack length significantly. The crack height approaches to a constant 
value in the ultimate state. The stabilized crack height scr can be calculated from 
the equilibrium of forces expressed by Eq. (3.1), assuming that there is no tensile 
stress in the concrete. The value of scr is expressed by  

 ( )21 2 ( )
cr s e s e s e

s n n n dr r r= + - +   

where 
s : is the reinforcement ratio As/bwd; 
ne : is the ratio between Es and Ec. 

 
Eliminating the smaller term sne2, the ultimate crack height scr may be estimated 
by (Braam 1990): 

 0.45(1 1.05( ) )
cr s e

s n dr= -  (3.2) 

Thus, assuming the height of the compressive zone zc = d – scr, the internal level 
arm of a given cross-section z can be calculated with scr by  

 2 1

3 3 cr
z d s= +  (3.3) 

For beams with a relatively large effective height, the critical moment M1 is 
quite close to the cracking moment Mcr. Moreover the cracking height in vertical 
direction is mostly related to the stress distribution in longitudinal direction, 
thus to the moment in the cross section. It is reasonable to conclude that for a 
cracked cross-section in a reinforced concrete beam, once the moment reaches 
the cracking moment, a crack with a height scr is formed. The crack height scr may 
be considered to be independent to the shape of the crack. In the case of the 
beam example presented previously, with 3-Ø32 mm reinforcement, the height 
of the crack will be scr = 297.4 mm 

3.2.2 Crack Spacing 

With the load applied on the concrete member increases, there will be multiple 
cracks over the span where the moment is higher than Mcr locally. The distribu-
tion of the cracks is of interest here. Once a crack is formed, the stresses in the 
region adjacent to the crack are significantly released. Consequently, it is not 
possible to develop sufficient stresses to generate another crack adjacent to the 
first one. Therefore, cracks are always developed at certain distances. 
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The study of crack spacing is closely related to the crack width control in 
most studies in literature, see (Noakowski 1985; Frosch 1999; Borosnyói & Balázs 
2005). Thus the crack spacing is mostly of concern at the level of reinforcement. 
For flexural members, the surface reinforcement and an effective concrete area 
Ac,eff surrounding it, can be considered together as a tensile member. The tensile 
deformation is mainly localized in the tensile reinforcement. The tensile stress in 
the concrete surrounding the reinforcement is developed through the bond 
stress between concrete and reinforcement. Despite the different definitions of 
the average bond stress bm from different theories, the minimum crack spacing lt, 
also defined as transfer length, is calculated by: 
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where: 
tbm : is the average friction between rebars and concrete; 
reff : is the effective reinforcement ratio, eff = As/Ac,eff ; 
f : is the diameter of the rebar; 
fctm  : is the mean tensile strength of the concrete. 

 
The mean crack spacing lcr at the level of tensile reinforcement, on the other 
hand, is lcr = slt. The value of s varies from 1.3 to 1.5 in different publications, 
while for the maximum crack spacing lcr,max, the value of s is always 2.0. 

However, concrete beams with reinforcing bars only located at the tensile 
side behave differently from tensile members. With the increase of the depth of 
the member the gradient of deformation from the level of reinforcement to the 
other edge cannot be neglected. Accordingly, the stressed area of the uncracked 
concrete has to build up again from the region adjacent to the reinforcement 
level at the crack face towards the whole cross-section along a certain length. 
The boundary of the stressed area in the stress recovery length can be simplified 
by a stress line, see Fig. 3.3. According to Krips’ FEM study (Krips 1985), the 
inclination of the stress line is 52º, which gives kc = 1.28.In the CUR report (CUR 
1978) it is simplified to 45º, with kc = 1.0. 

The stress line defines the part of the beam where stress can develop, accord-
ing to which it is clear that not all the cracks at the reinforcement level can 
actually develop till the neutral axis. This conclusion applies in more general 
conditions, Bažant et al. (Bažant & Ohtsubo 1977; Bažant & Wahab 1980) have 
shown that in the case of a parallel crack system, it is not possible that all the 
cracks have the same height in order to fulfil the stability condition of the whole 
system.  
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Fig. 3.3. Stress lines and crack patterns of tension members with reinforcing bars in 

the middle (left) and at the bottom (right). 

Therefore, it is important to make a difference between cracks that can de-
velop up to scr as defined in Section 3.2.1 after Mcr, and cracks that cannot. Only 
the former ones are critical to the shear capacity of the beam. They are denoted 
as the major cracks. As described previously, the spacing of the major cracks 
cannot be defined by the crack spacing theory based on a tensile member any-
more. Instead, it is more related to the stress line starting from the crack face. 

Assuming a perfect bond between the reinforcement and the concrete, with 
the increase of the tensile strain along the reinforcement, a self-similar crack 
pattern is formed in the concrete member. The increase of strain along the 
reinforcement only results in new cracks between the existing ones. The tips of 
the cracks fall in the stress lines starting from the crack faces. An illustration of 
such a crack pattern is given in Fig. 3.3. The spacing of the major cracks (the 
ones in the mid height of the beam) is defined by: 
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The expression indicates that the spacing of the major cracks is only dependent 
on the crack height scr, and the inclination of the stress line kc, whereas it is 
independent of the load level applied on the specimen, the reinforcement ratio 
or the bonding between reinforcement and concrete.  

The increase of the load applied on the member will only result in the de-
velopment of new cracks at the reinforcement level in case of perfect bond. If the 
bond-slip relationship between concrete and steel bars is taken into account, this 
process stops when the crack spacing at the reinforcement level is between lt and 
2.0lt. Further increase of the load level only increases the crack width.  

Taking into account the relative displacement between rebar and concrete 
will not change the inclination of the stress line, thus does not influence the crack 
spacing. This is validated by the comparison of FEM models. Two analyses are 
carried out with Atena2D. The concrete is modelled with a perfect linear elastic 
material, and the reinforcement is modelled by bar elements. In the reference 
model, the reinforcement and the concrete have perfect bond, while the other 
model takes into account the bond stress displacement relationship between 
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concrete and steel according to fib Model Code 1990 (fib 1993). A tensile force of 
10 kN is introduced at the level of the reinforcement. Moreover the displacement 
of the whole specimen is confined in x and y direction along the other edge. One 
may compare the principle stress distribution shown in Fig. 3.4.  

To validate eq.(3.5), the beam specimen proposed in Section 3.2.1 is regarded. 
kc = 1.28 is used in the equation. That will result in a crack spacing of 232 mm at 
mid height of the beam. The results compare well with the experimental find-
ings reported in (Yang & den Uijl 2011). An example is given in Fig. 3.5, in which 
an average crack spacing of 214 mm is measured. 

Another example is shown in Fig. 3.6, whereas, the crack patterns of three 
shear tests carried out by Shioya (Shioya 1989) are shown. The specimens were 
designed to evaluate the size effect on the shear capacity of concrete beams. 
Therefore, the concrete strength, the reinforcement ratio and the loading condi-
tions of them are all proportional. The heights of the specimens vary from 100 
mm to 3000 mm. According to Eq. (3.2) and Eq. (3.5), the height and the spacing 
of the major cracks should be proportional to the beam effective depth d. Fig. 3.6 
shows that the major crack patterns of beams with 3000 mm and 1000 mm 
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Fig. 3.4. Comparison of principal stress distribution of reinforcement-concrete inter-
action with perfect bond model (left) or with the bond mode model according to 
(fib 1993) (right), calculated by Atena2D. 

Fig. 3.5. Crack pattern after failure of test C2a154 and C2b151 in (Yang & den Uijl 
2011). 

1500 mm

Average crack spacing is about: 1500/7 = 214.3 mm
C2b151 C2a154
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effective heights are more or less the same. Whereas the cracks at the rein-
forcement level are quite different, in case of the beam with a height of 3000 mm, 
the cracks at reinforcement level only form at a very limited height of the beam 
comparing the total effective height of the beam, whereas for the beam with d = 
1000 mm, the cracks developed at the reinforcement level proceed to a larger 
height. This clearly confirms the theory on the distribution of major cracks 
presented above.  

On the other hand, the beam with d = 100 mm has a different crack pattern. In 
that case, because of the smaller beam height, the maximum strain of the beam at 
the tensile side is smaller, so do the crack widths. As a result, the crack opening 
in this case is significantly influenced by the tension softening behaviour of the 
concrete. It indicates that Eq. (3.2) and Eq. (3.5) are not valid any more. Accord-
ing to Bažant (Bažant & Planas 1998), the influence of tension softening 
behaviour becomes pronounced when the beam height is smaller than 70 mm in 
case of three point bending. That can be used as a reference for shear tests as 
well. The result has been confirmed as well by the size effect tests on shear 
capacity of reinforced concrete beams from Bažant an Kazemi (Bažant & Kazemi 
1991). Taking into account the observation of Shioya’s tests shown in Fig. 3.6, 100 

Specimen No. 1, d = 100 mm

Specimen No. 4, d = 1000 mm

Specimen No. 7, d = 3000 mm

Fig. 3.6. Crack patterns of tests specimens with various effective depths (Shioya 1989), 
the effective heights of the specimens from the top are 100 mm, 1000 mm and 3000 
mm respectively. 
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mm seems to be appropriate as a lower bound of the effective height that the 
crack pattern of the major cracks is influenced by the tension softening behav-
iour of the concrete. 

3.2.3 Inclination of a Flexural Crack under Shear 

 What is the Reason of Crack Inclination? 3.2.3.1

With the height and spacing of the major cracks known, the following step is to 
derive the profiles of the major cracks. However, before that the basic question 
to be answered is “What is the Reason of Crack Inclination?” One of the popular 
deductions on the reason of crack inclination is as follows: Experimental obser-
vations show that for reinforced concrete beams, cracks start to incline when a 
shear load has to be transferred through a cross section. Usually, for an 
uncracked beam, the maximum shear stress is located at the height of neutral 
axis, where only shear stress exists. From the theory or elasticity, the principal 
stress of a solid block under pure shear in x and z direction should incline to 45º 
of the main axis. Since the crack follows the maximum principal stress direction, 
a crack path should follow the trajectories of the maximum principal stress lines 
as well. It seems to be natural to conclude that the shear stress at mid-height of 
the beam results in the inclination of flexural cracks. 

 

  
 
Fig. 3.7. Crack patterns of specimens with different crack initiating location in Jenq 

and Shah's tests (Jenq & Shah 1988). The notations of the dimensions are according 
to the original paper. The values of them can be found in the original paper. 
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However, this logic is questionable if one regards the process of crack growth 
more carefully. The development of cracks changes the stress distribution of the 
beam continuously. Thus, the stress state has already changed when the crack 
tip moves to the location where a change of principal stress direction was 
expected before cracking. Apparently, the change of stress state due to the 
cracking process is quite significant in plain concrete beams. Since in plain 
concrete beams, the assumption proposed previously shall work exactly, in 
reinforced concrete, the crack shape should follow the principal stress trajec-
tories. That conclusion is not supported by experimental results. The shear test 
series carried out on plain concrete beams by Jenq and Shah (Jenq & Shah 1988) 
showed only straight crack paths in most cracking locations, see Fig. 3.7. The 
specimens are loaded by three point bending. Notches are made in different 
locations regarding to the loading point. 

 

 
 
Fig. 3.8. Indication of stress distribution in Kani's Teeth model. 

On the other hand, in reinforced concrete specimens, the inclination of cracks 
is always observed in experiments. The only possible conclusion is that the 
existence of longitudinal reinforcement influences the crack development in the 
shear failure process. This influence can be illustrated by Kani’s teeth model 
(Kani 1964). The background of the model has been explained in Chapter 2. The 
model says that the flexural cracks develop perpendicular to the longitudinal 
rebars dividing the reinforced concrete beam into a teeth-like structure. The 
difference of tension between two cracks generates a secondary bending mo-
ment along the vertical direction in the teeth. The stress distribution of such a 
structure is demonstrated in Fig. 3.8. Kani assumed that only when z at the 
crack tip reaches fctm, the corbel in the teeth structure breaks, and the structure 
fails. However, the process is more complex than that. Earlier than z reaches fctm, 
a large difference in z between the both sides of the crack tip already forms, as 
is clearly shown in Fig. 3.8. That results in a localized shear stress in the crack tip. 
Together with the normal stress x, this shear stress influences the propagation 
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during the cracking process. Moreover, the cracking process itself is also influ-
enced by many other effects, such as the variation of material properties, 
directional stability of crack (Melin 1992; Xu & Needleman 1994; Broberg 1999). 
An estimation of the stress state with a proper theoretical background and 
sufficient accuracy is of more practical importance. As a brittle material, the 
fracture of concrete follows Tresca’s criterion in principle. Thus, at a given crack 
height s, only the direction in which the maximum principal stress is oriented at 
the tip of a crack is of interest. That determines the direction of the crack when it 
develops further. To determine the direction of the principal stresses, concepts 
from Linear Elastic Fracture Mechanics (LEFM) are adopted here. Before that, 
several simplifications are needed.  
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occurs shortly in an unstable process. Ignoring the additional moment 
needed to achieve M1 stated in Fig. 3.2, it is reasonable to assume that when 
the crack is opening, the remote forces that drive the growth of the crack tip 
are constant, with the cross sectional moment M = Mcr.  

 Another aspect is that, during crack opening, the relative shear displace-
ment between two teeth is usually small, especially at the beginning when 
the direction of the crack is vertical. According to the experimental research 
carried out by Walraven (Walraven 1980), the shear stress that may be 
generated in the crack is negligible.  

 Since the remaining part of the structure stays uncracked, the uncracked 
concrete outside the crack tip region is assumed to behave as a linear elastic 
material. 

 In the crack tip region, the concrete behaves as a quasi-brittle material with 
a large tension softening strength after cracking. The inelastic zone accord-
ing to Irwin’s plastic zone correction (Irwin 1958) is not negligible com-
pared to the size of the structure itself according to (Bažant & Planas 1998). 
Thus direct application of LEFM will lead to a considerable deviation from 
experimental observation quantitatively. Nevertheless, only regarding the 
fracture processing zone in concrete, see Fig. 3.9, the direction of the crack 
propagation can still be considered to coincide with the direction of the 
principal stress. Moreover, in a quasi-brittle material like concrete, the crack 
processing zone is actually much more localized than would be the case in 
the other materials. Thus, considering the aim set previously, it is correct to 
assume that the stress distribution determined by LEFM still appropriately 
represents the stress distribution surrounding the end of the fracture pro-
cess zone. 

 Stress State at Crack Tip 3.2.3.3

Depending on the type of loading, the fracture processes of a solid are catego-
rized into three modes. In this section Mode I (tension) and Mode II (shear) 
fracture are of interest. The assumption of linear elastic behaviour allows su-
perposition of load cases of the same mode. The stress distribution of Mode I 
and Mode II in the vicinity of the crack tip can be formulated with the method of 
Westergaard (Westergaard 1939). 
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where,  
KI and KII : are the stress intensity factors related to the fracture mode. They 

are determined regarding the boundary conditions of the fracture 
specimens; 

r, : are coordinates in a polar coordinate system with the origin at the tip 
of the crack and the principal axis along the axis of the crack; 

O(x): are higher order terms that can be ignored. 
 

Eq. (3.6) and Eq. (3.7) show that the two variables in the equations  and r are 
independent of each other. It implies that the direction where the maximum 
principal stress rises is independent of the distance r. This enables the possibility 
of using the Westergaard equations to search for the crack direction even in a 
quasi-brittle material like concrete. 

In mixed mode fracture problems (Mode I and Mode II), several criteria have 
been proposed by researchers to determine the direction of the crack propagat-
ing direction. The criteria are summarized in (Bergkvist & Guex 1979; Bažant & 
Planas 1998; Broberg 1999). The three most popular principles are: 
 Crack propagation perpendicular to the direction of the maximum princi-

pal stress (Erdogan & Sih 1963); 
 Crack propagation in the direction of minimum strain energy density (Sih 

1974); 
 Crack propagation in the direction of the maximum strain energy release 

rate (Strifors 1974). 
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It was not possible to validate through experiments so far which of those 

principles is the most realistic. Nevertheless, Bergkvist and Guex show that all 
the principles provide almost equivalent criteria within a certain accuracy 
(Bergkvist & Guex 1979). Regarding for example the first principle, it is possible 
to find the direction where the shear stress in the polar systerm is equal to r = 0 
in the stress field. Converting Eq. (3.6) and Eq. (3.7) from Cartesian coordinates 
into cylindrical coordinates generates 

 ( )cos / 2
sin (3 cos 1)

2 2
r I II

K K
r

q

q
t q q

p
= + -  (3.8) 

By taking r = 0, the increment of the cracking direction  where the maximum 
principal stress is oriented is derived by solving Eq. (3.8). For a small change of 
the crack inclination the solution is simplified into 
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Therefore, once the stress intensity factors KI and KII are known, it is possible to 
determine the change of crack inclination  = dx/ds, which results in 
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Here, x and s are the distances to the crack initiation location in longitudinal and 
vertical directions respectively. 

 Crack Path Function 3.2.3.4

It has been shown that to determine the crack path function of a mixed mode 
fracture the stress intensity factors KI and KII are necessary. Thus, they are 
discussed first under given loading conditions. 

KI Function 

Isolating a part of the concrete beam surrounding a developing crack, two 
fracturing modes can be examined separately. 

In the case of Mode I fracture, the model proposed by Carpinteri is employed 
(Carpinteri 1984; Bosco & Carpinteri 1992), in which the load applied at the 
concrete part of the reinforced concrete beam is simplified into the eccentric 
crack closing force Ts given by the reinforcement, and the remaining bending 
moment M applied at the concrete cross section, see Fig. 3.10. 
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Fig. 3.10. Forces applied on the concrete part of RC beams. Adapted from Carpinteri 
(Bosco & Carpinteri 1992). 

According to LEFM, the KI of both load cases is found by sound analytical 
solutions (Tada et al. 2000): 
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where 
h : is the height of the beam; 
c : is the thickness of the concrete cover; 
b : is the width of the beam; 
x : is the ratio between crack height s and beam height h, x = s/h; 
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Both yM and yT are regression functions. The overall KI factor of a reinforced 
concrete beam becomes 
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According to the assumptions given previously, during the crack formation 
process, the moment applied at the cross-section is M = Mcr, in Eq. (3.11). The 
value of Ts is still unknown. As shown in 3.2.1, the cracking process is unstable 
for a reinforced concrete cross section. At the snap back branch the external 
moment cannot be balanced by the internal force. What can be anticipated is the 
value of Ts before cracking and after the crack stabilizes. As a rough estimation 
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where 
h : is the height of the beam; 
c : is the thickness of the concrete cover; 
b : is the width of the beam; 
x : is the ratio between crack height s and beam height h, x = s/h; 
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Ts is calculated from balancing the external moment with the internal level arm z 
derived from crack height s. So Eq. (3.11) becomes:  
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Here the expression for KI is combined into one formula, whereas the other 
geometry related functions yM, yT etc. are put together as a general function yI, 
which is independent of the load condition. 

KII Function 

Based on the experience of KI, it is hoped that a similar formulation can be 
formed with regard to KII. The load applied at the concrete relating Mode II 
fracture is illustrated in Fig. 3.11. The forces applied at the concrete include the 
remote shear force V, the local dowel shear force Vd, and the change of the 
tension force in reinforcement Ts. As shown in Section 3.2.3.1, the influence of 
the remote shear force V to the cracking process is quite limited compared to the 
other effects, thus it is not considered here. At the crack opening stage, the 
relative displacement between the two crack surfaces is negligible, thus the 
component of Vd is neglected at this stage as well.  

 
Fig. 3.11. Forces applied at the concrete part of a RC beam 

Unlike the Mode I case, other than the load case of Vd, there is no analytical 
solution for the other Mode II load cases yet. It is not the intention of this re-
search to derive one either. Nevertheless the general form of the KII factor of 
concrete under Ts can still be estimated by checking the energy dissipation 
during the crack progressing process. Assuming that the concrete teeth can be 
considered as beams, the strain energy stored can be estimated by beam theory 
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(Timoshenko 1956). Upon its release, the strain energy release rate GII can be 
estimated with: 

 
2 2

, 2 3
,

12
s

II est

cr m

T s
G

Eb l
=   

The stress intensity factor KII is therefore determined with KII2 = GIIE. Consider-
ing that it is a rough estimation of KII, the deviation between the estimation and 
reality is included in the function yII. KII and is expressed as: 
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with 
Ts: the difference of tensile force in reinforcement between two major 

cracks. 
 
Ts is related to the shear force V in the span by Ts = Vlcr,m/z between the 

major cracks. In the crack progressing section, the same problem of determining 
the value of Ts locally comes across. A similar approach as was used for deter-
mining KI is used here, which results in an expression for KII 
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Substituting Eq. (3.14) into Eq. (3.13) generates 
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Here x0 = scr/h, where scr is the stabilized crack height given by Eq. (3.2) 

Basic Differential Equation 

Having derived the expressions for KI and KII, the differential equations given by 
Eq. (3.10) can be expressed analytically. Substituting Eq. (3.12) and Eq. (3.15) into 
Eq. (3.10), and replacing the value of lcr,m by Eq. (3.5) generates: 
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Ts is calculated from balancing the external moment with the internal level arm z 
derived from crack height s. So Eq. (3.11) becomes:  

 
3/2 3/2

3/2

3
( ) ( , )

(2 )(1 )

( , )

cr cr
I M T

cr
I

M M c
K

c hh b h b
h

M c

hh b

y x y x
x

y x

= -
+ -

=

 (3.12) 

Here the expression for KI is combined into one formula, whereas the other 
geometry related functions yM, yT etc. are put together as a general function yI, 
which is independent of the load condition. 

KII Function 

Based on the experience of KI, it is hoped that a similar formulation can be 
formed with regard to KII. The load applied at the concrete relating Mode II 
fracture is illustrated in Fig. 3.11. The forces applied at the concrete include the 
remote shear force V, the local dowel shear force Vd, and the change of the 
tension force in reinforcement Ts. As shown in Section 3.2.3.1, the influence of 
the remote shear force V to the cracking process is quite limited compared to the 
other effects, thus it is not considered here. At the crack opening stage, the 
relative displacement between the two crack surfaces is negligible, thus the 
component of Vd is neglected at this stage as well.  

 
Fig. 3.11. Forces applied at the concrete part of a RC beam 

Unlike the Mode I case, other than the load case of Vd, there is no analytical 
solution for the other Mode II load cases yet. It is not the intention of this re-
search to derive one either. Nevertheless the general form of the KII factor of 
concrete under Ts can still be estimated by checking the energy dissipation 
during the crack progressing process. Assuming that the concrete teeth can be 
considered as beams, the strain energy stored can be estimated by beam theory 
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(Timoshenko 1956). Upon its release, the strain energy release rate GII can be 
estimated with: 
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The stress intensity factor KII is therefore determined with KII2 = GIIE. Consider-
ing that it is a rough estimation of KII, the deviation between the estimation and 
reality is included in the function yII. KII and is expressed as: 
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with 
Ts: the difference of tensile force in reinforcement between two major 

cracks. 
 
Ts is related to the shear force V in the span by Ts = Vlcr,m/z between the 

major cracks. In the crack progressing section, the same problem of determining 
the value of Ts locally comes across. A similar approach as was used for deter-
mining KI is used here, which results in an expression for KII 
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Substituting Eq. (3.14) into Eq. (3.13) generates 
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Here x0 = scr/h, where scr is the stabilized crack height given by Eq. (3.2) 

Basic Differential Equation 

Having derived the expressions for KI and KII, the differential equations given by 
Eq. (3.10) can be expressed analytically. Substituting Eq. (3.12) and Eq. (3.15) into 
Eq. (3.10), and replacing the value of lcr,m by Eq. (3.5) generates: 
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In Eq. (3.16), the second term in the brackets is much smaller than the first one. 
Taking the prototype beam proposed in Section 3.1 as an example, the second 
term is only about 2.5% of the first one at the location which is about 2.0d from 
the support. Thus, the second term can be neglected, which leads to a simplified 
expression of the basic differential equation for the crack path 
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In Eq. (3.17) the beam height h is replaced by the effective height d. The influ-
ences of kc, x, x0 and c are covered by a function y in general. 

Eq. (3.17) reveals how a crack path is inclined under the influence of the 
loading condition and the geometry of a reinforced concrete beam. It turns out 
that for a given structural member, the value of M/Vd at the cross-section will 
directly influence the inclination of the crack generated at the section. It also 
shows that for a simply supported beam loaded by point loads, the crack pattern 
is independent of the actual location of the loading points. Other than the cracks 
in the vicinity of the loading point, in most cases, the crack path function is only 
related to the value of M/Vd locally. For beams loaded by point loads, the value 
of M/Vd is equal to the distance to the location where the moment equals to 
zero.  

The other influencing factors include the beam height h, the concrete cover c, 
the inclination of stress relief line k, the height of the stabilized major crack x0 = 
scr/h and the height of a developing crack x = s/h. They are all included in the 
function y. Among them, the values of c and x0 do not vary significantly in 
practice. 

However, as stated previously, due to the complexity of the problem, even 
with the significant simplifications stated during the derivation, it is still rather 
difficult to get an analytical solution for y that can be easily handled in practice. 
Besides, the expressions for yM and yT in Eq. (3.11) are results of a regression 
analysis with a certain inaccuracy already. The multiplication of these expre-
ssions will increase this inaccuracy inevitably. Taking these aspects into account, 
numerical simulations are employed in this research. Instead of trying to de-
termine the complex expressions of yI and yII, the value of y is directly derived 
from the study of the numerical simulations. 

3.2.4 FEM Models 

 Introduction 3.2.4.1

In the previous section, the crack path was formulated by the differential equa-
tion Eq. (3.17). However, it is rather difficult to derive an expression for the 
function y analytically. Even if it exists, the possible solution would be too 
complex for practical application. An alternative solution is to calculate a crack 
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path numerically with a model following exactly the same assumptions needed 
to determine an analytical model, and derive an expression for the crack path 
directly from the numerical solutions, eventually determining an expression for 
y. 

Following this strategy, a Non-Linear Finite Element analysis is set-up taking 
into account the variables defined previously. The analysis of Eq. (3.17) previ-
ously showed that the main influencing factors of y are the crack height x and 
the height of the beam h. Thus, they are the main variables in the study. Other 
than that, the value of M/Vd is certainly a main variable as well. The expected 
output of the numerical studies is the value of d2x/ds2 expressed by Eq. (3.17).  

Several special requirements are asked for in the analysis. Firstly, it is nec-
essary to determine the crack path explicitly. This cannot be done by the 
conventional smeared crack approach used in engineering practice, which can 
only be used to indicate certain cracked area by smearing the crack opening over 
a ‘cracked’ element. Secondly, since the second derivative of the crack path is 
needed, it is more convenient to make the calculated crack path as continuous as 
possible. Thirdly, to investigate the variables discussed within the scope of the 
teeth model, the crack path has to develop at specific location, in addition, other 
than the specified crack, no other crack can develop in the model. To fulfil all 
these requirements Sequentially Linear Analysis with Crack Propagation 
Algorithm is utilized in this study. 

 Sequentially Linear Analysis (SLA) with Crack Propagation Algorithm 3.2.4.2
(CPA) 

Sequentially Linear Analysis 

Fig. 3.2 has demonstrated that for a reinforced concrete element, its cracking 
process can be considered as a snap-back process (between point 1 and 2 in Fig. 
3.2). When the moment at the cross-section reaches M1, the crack will always 
jump from point 1 to point 2 even if the load or the displacement of the structure 
is kept constant at that moment. This behaviour cannot be simulated by the 
conventional non-linear finite element methods with the most widely used 
solving strategies such as the Newton-Raphson method, which approaches the 
solution of an equation system by solving the whole system at designated 
load/displacement steps. In each iteration, the Newton-Raphson method solves 
the stress field of the structure as a whole. Then, it simply tags all the integration 
points as cracked where the calculated principal strain level is higher than the 
crack strain. This procedure neglects the influence of the existing crack path to 
its future development within a single iteration. When the development of the 
crack follows the increase of the load or displacement, this strategy can ap-
proximate the crack development quite well. However, when the whole crack 
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path numerically with a model following exactly the same assumptions needed 
to determine an analytical model, and derive an expression for the crack path 
directly from the numerical solutions, eventually determining an expression for 
y. 

Following this strategy, a Non-Linear Finite Element analysis is set-up taking 
into account the variables defined previously. The analysis of Eq. (3.17) previ-
ously showed that the main influencing factors of y are the crack height x and 
the height of the beam h. Thus, they are the main variables in the study. Other 
than that, the value of M/Vd is certainly a main variable as well. The expected 
output of the numerical studies is the value of d2x/ds2 expressed by Eq. (3.17).  

Several special requirements are asked for in the analysis. Firstly, it is nec-
essary to determine the crack path explicitly. This cannot be done by the 
conventional smeared crack approach used in engineering practice, which can 
only be used to indicate certain cracked area by smearing the crack opening over 
a ‘cracked’ element. Secondly, since the second derivative of the crack path is 
needed, it is more convenient to make the calculated crack path as continuous as 
possible. Thirdly, to investigate the variables discussed within the scope of the 
teeth model, the crack path has to develop at specific location, in addition, other 
than the specified crack, no other crack can develop in the model. To fulfil all 
these requirements Sequentially Linear Analysis with Crack Propagation 
Algorithm is utilized in this study. 

 Sequentially Linear Analysis (SLA) with Crack Propagation Algorithm 3.2.4.2
(CPA) 

Sequentially Linear Analysis 

Fig. 3.2 has demonstrated that for a reinforced concrete element, its cracking 
process can be considered as a snap-back process (between point 1 and 2 in Fig. 
3.2). When the moment at the cross-section reaches M1, the crack will always 
jump from point 1 to point 2 even if the load or the displacement of the structure 
is kept constant at that moment. This behaviour cannot be simulated by the 
conventional non-linear finite element methods with the most widely used 
solving strategies such as the Newton-Raphson method, which approaches the 
solution of an equation system by solving the whole system at designated 
load/displacement steps. In each iteration, the Newton-Raphson method solves 
the stress field of the structure as a whole. Then, it simply tags all the integration 
points as cracked where the calculated principal strain level is higher than the 
crack strain. This procedure neglects the influence of the existing crack path to 
its future development within a single iteration. When the development of the 
crack follows the increase of the load or displacement, this strategy can ap-
proximate the crack development quite well. However, when the whole crack 
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develops within one iteration, it is not possible to derive an accurate crack path 
correctly anymore, which is the case for the unstable crack development at M1. 
Similar problems will be faced even with the other solving strategies like the 
Arc-Length method, which tags cracked integration points in the same way. 

To take into account the whole evolution process of the crack at Mcr, the 
definition of the load step shall be based on the increase of the crack length. 
Therefore crack path tracking calculation in this section uses sequential linear 
analysis (SLA) proposed by Rots et al. (Rots & Invernizzi 2004; Rots et al. 2008) 
to replace the conventional Newton-Raphson method. With the SLA, the non-
linear behaviour of a structure is captured by applying a series of scaled linear 
elastic analyses up to predefined ‘critical events’ at the most critically loaded 
integration point of the model. The critical events are defined by crack initiation 
and crack propagation. For quasi brittle materials such as concrete, its crack 
propagation is related to a post tension softening law (tensile stress – crack 
opening relationship). In SLA, the crack opening is smeared out over the cracked 
element like other smeared crack FEM models, while the softening curve is 
discretised by a saw-tooth constitutive law. Each node on the saw-tooth curve is 
defined as a critical event. On the other hand, it is still possible to discretise the 
structure using standard elastic continuum elements. Thus, unlike the lattice 
models (Schlangen & van Mier 1992; Schlangen & Garboczi 1996), which was 
also widely used to simulate the fracture process of concrete, it is more conven-
ient to interpolate the crack path between the integration points in continuum 
elements. The calculation process is summarized according to (Rots, Belletti et al. 
2008) as follows 
 Add the external load as a unit load. 
 Perform a linear-elastic analysis. 
 Extract the ‘critical integration point’ from the results. The ‘critical integra-

tion point’ is located in a element for which the stress level divided by its 
current strength is the highest in the whole structure. 

 Calculate the ratio between the strength and the stress level in the critical 
element: this ratio provides the ‘global load factor’. The present solution 
step is obtained rescaling the ‘unit load elastic solution’ times the ‘global 
load factor’. 

 Increase the damage in the critical integration pointby reducing its stiffness 
and strength, i.e. Young’s modulus E and tensile strength ft, according to a 
saw-tooth constitutive law extracted from the constitutive law of the target 
material. This corresponds to a local damage ‘event’. 

 Repeat the previous steps for the new configuration. Trace the next critical 
saw-tooth in some element, repeat this process till the damage has spread 
into the structure to the desired level. 
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Fig. 3.12. Examples of a saw-tooth descritised law on the concrete softening law, left: 

linear softening, right: exponential softening (Rots, Belletti et al. 2008). 

Two examples of saw-tooth discretisation on concrete softening laws are 
shown in Fig. 3.12. The basic principle is that the initial stiffness E, the tensile 
strength ft and the fracture energy Gf (the area covered by the curve) shall remain 
the same after the discretization. As is illustrated in Fig. 3.12, the more saw-teeth 
are used, the more accurate the discretised constitutive law is, but at the mean-
time, the calculation time is increased enormously. This method has been 
successfully applied by Slobbe, Hendriks et al. in (Slobbe et al. 2012) to simulate 
the shear failure of reinforced concrete beams without shear reinforcement. 

The drawback of such type of analysis is that for some reinforced concrete 
structures with multiple cracks, the unloading and reloading stiffness of the 
cracked concrete cannot be represented anymore, while this type of behaviour 
can be critical in concrete structures with a multiple crack system. However, as 
will be shown later, in the model presented in this section, only one cracking 
process is modelled. It is assumed that there is no reloading during the cracking 
process. 

Delayed C1 - Continuous Propagation Algorithm  

In addition to the SLA, the analysis presented in this chapter also includes a 
Crack Propagation Algorithm (CPA) as proposed by Slobbe et al. in (Slobbe et al. 
2014). The algorithm was developed to solve the problem of mesh induced 
directional bias addressed by Slobbe et al. in (Slobbe et al. 2013). Instead of 
having the crack opening smeared out over the element according to the con-
ventional smeared crack method, the algorithm calculates the propagation of the 
crack path explicitly. In addition, the algorithm ensures C1 continuous to the 
calculated crack path. An illustration of the crack propagation algorithm is given 
in Fig. 3.13. The algorithm works as follows. 
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also widely used to simulate the fracture process of concrete, it is more conven-
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 Extract the ‘critical integration point’ from the results. The ‘critical integra-
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current strength is the highest in the whole structure. 

 Calculate the ratio between the strength and the stress level in the critical 
element: this ratio provides the ‘global load factor’. The present solution 
step is obtained rescaling the ‘unit load elastic solution’ times the ‘global 
load factor’. 

 Increase the damage in the critical integration pointby reducing its stiffness 
and strength, i.e. Young’s modulus E and tensile strength ft, according to a 
saw-tooth constitutive law extracted from the constitutive law of the target 
material. This corresponds to a local damage ‘event’. 

 Repeat the previous steps for the new configuration. Trace the next critical 
saw-tooth in some element, repeat this process till the damage has spread 
into the structure to the desired level. 
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Fig. 3.12. Examples of a saw-tooth descritised law on the concrete softening law, left: 

linear softening, right: exponential softening (Rots, Belletti et al. 2008). 

Two examples of saw-tooth discretisation on concrete softening laws are 
shown in Fig. 3.12. The basic principle is that the initial stiffness E, the tensile 
strength ft and the fracture energy Gf (the area covered by the curve) shall remain 
the same after the discretization. As is illustrated in Fig. 3.12, the more saw-teeth 
are used, the more accurate the discretised constitutive law is, but at the mean-
time, the calculation time is increased enormously. This method has been 
successfully applied by Slobbe, Hendriks et al. in (Slobbe et al. 2012) to simulate 
the shear failure of reinforced concrete beams without shear reinforcement. 

The drawback of such type of analysis is that for some reinforced concrete 
structures with multiple cracks, the unloading and reloading stiffness of the 
cracked concrete cannot be represented anymore, while this type of behaviour 
can be critical in concrete structures with a multiple crack system. However, as 
will be shown later, in the model presented in this section, only one cracking 
process is modelled. It is assumed that there is no reloading during the cracking 
process. 

Delayed C1 - Continuous Propagation Algorithm  

In addition to the SLA, the analysis presented in this chapter also includes a 
Crack Propagation Algorithm (CPA) as proposed by Slobbe et al. in (Slobbe et al. 
2014). The algorithm was developed to solve the problem of mesh induced 
directional bias addressed by Slobbe et al. in (Slobbe et al. 2013). Instead of 
having the crack opening smeared out over the element according to the con-
ventional smeared crack method, the algorithm calculates the propagation of the 
crack path explicitly. In addition, the algorithm ensures C1 continuous to the 
calculated crack path. An illustration of the crack propagation algorithm is given 
in Fig. 3.13. The algorithm works as follows. 
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Fig. 3.13. Illustration of a propagating crack path in the delayed C1 - continuous 

propagation algorithm and the corresponding labelled element (Slobbe, Hendriks 
et al. 2014).  

Firstly a crack path initiates from one of the root elements predefined in the 
mesh, which are usually located at the edges of the mesh, excluding the elements 
within rexcl from an already cracked root element, see Fig. 3.13. For a propagating 
crack path, the potential trajectory of the crack path is calculated as damage path 
in the damage path elements in front of the already fixed crack path. Only when 
the relative stiffness reduction of the damage path elements is larger than the 
predefined threshold dcrit,crk, the part of the damage path is fixed as crack path. 

Within a damage path element, the position and the direction of the starting 
point of the crack path is defined by the intersection of the crack path calculated 
from the previous cracked element. The crack propagation directions are firstly 
evaluated at the Gauss Points of the elements as the orthogonal direction of the 
principal strain direction. The propagation directions at the Gauss Points are 
then used to calculate a crack path propagation field within the elements. The 
procedure basically extrapolates the directions calculated at the Gauss Points 
into a linear distribution of crack directions including a weight function that take 
into account the damage level of the material at different Gauss Points. The 
crack path is than calculated by simulating the streamline of a particle in a 
two-dimensional steady flow field with Euler method. As shown here, the 
calculation procedure is based on the crack directions; therefore it guarantees C1 
continuous for the crack path intrinsically, although the outputs of the crack 
path are the intersection points of the crack path and the element boundaries. 
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The described procedure have been demonstrated in (Slobbe, Hendriks et al. 
2014) that it is able to evaluate the crack paths of mixed mode cracking speci-
mens under complex loading conditions with very good accuracy. 

 Model Configurations 3.2.4.3

The analysis is carried out with a code developed in the TNO Diana platform. 
The finite element mesh is generated by the pre/post processor iDiana. Thus 
some of the terminologies used here are in accordance with the aforementioned 
software package. 

Boundary Conditions 

The crack path is modelled in a simply supported beam with two point loads 
applied in the middle of the span. Taking advantage of the symmetric configu-
ration, only half of the beam is modelled. The cross-section of the beam is the 
same as is described in Section 3.1 for the reference specimens. A sketch of the 
beam model is given in Fig. 3.14.  

 
Fig. 3.14. Sketch of the model configuration. 

Since the actual location of the loading point is not influencing the crack path 
according to the theory described in the preceding section, a rather long span is 
taken, so that relatively more M/Vd situations can be studied with more or less 
the same configuration. The centre-to-centre distance between the loading point 
and the support is 4000 mm. The centre of the reinforcement to the tensile edge 
of the beam is 40 mm. It allows the maximum M/Vd to be 8.0.  

The boundary conditions described in Section 3.2.3.4 are realized in the fol-
lowing manner. The existing flexural cracks are modelled by an opening gap in 
the beam. At the location of the reinforcement, the gap is kept connected by steel 
bars. In this way a crack without residual tensile stress is modelled. The height 
of the existing crack is 300 mm, which is 65% of the effective beam height, from 
the observation of experiments. The propagating crack path to be evaluated, is 
initiated at 200 mm from the existing crack. The distance of 200 mm is an esti-
mation derived from on the average crack space lcr,m, see Section 3.2.2. The 
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Fig. 3.13. Illustration of a propagating crack path in the delayed C1 - continuous 
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mesh, which are usually located at the edges of the mesh, excluding the elements 
within rexcl from an already cracked root element, see Fig. 3.13. For a propagating 
crack path, the potential trajectory of the crack path is calculated as damage path 
in the damage path elements in front of the already fixed crack path. Only when 
the relative stiffness reduction of the damage path elements is larger than the 
predefined threshold dcrit,crk, the part of the damage path is fixed as crack path. 

Within a damage path element, the position and the direction of the starting 
point of the crack path is defined by the intersection of the crack path calculated 
from the previous cracked element. The crack propagation directions are firstly 
evaluated at the Gauss Points of the elements as the orthogonal direction of the 
principal strain direction. The propagation directions at the Gauss Points are 
then used to calculate a crack path propagation field within the elements. The 
procedure basically extrapolates the directions calculated at the Gauss Points 
into a linear distribution of crack directions including a weight function that take 
into account the damage level of the material at different Gauss Points. The 
crack path is than calculated by simulating the streamline of a particle in a 
two-dimensional steady flow field with Euler method. As shown here, the 
calculation procedure is based on the crack directions; therefore it guarantees C1 
continuous for the crack path intrinsically, although the outputs of the crack 
path are the intersection points of the crack path and the element boundaries. 
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The described procedure have been demonstrated in (Slobbe, Hendriks et al. 
2014) that it is able to evaluate the crack paths of mixed mode cracking speci-
mens under complex loading conditions with very good accuracy. 

 Model Configurations 3.2.4.3

The analysis is carried out with a code developed in the TNO Diana platform. 
The finite element mesh is generated by the pre/post processor iDiana. Thus 
some of the terminologies used here are in accordance with the aforementioned 
software package. 

Boundary Conditions 

The crack path is modelled in a simply supported beam with two point loads 
applied in the middle of the span. Taking advantage of the symmetric configu-
ration, only half of the beam is modelled. The cross-section of the beam is the 
same as is described in Section 3.1 for the reference specimens. A sketch of the 
beam model is given in Fig. 3.14.  

 
Fig. 3.14. Sketch of the model configuration. 

Since the actual location of the loading point is not influencing the crack path 
according to the theory described in the preceding section, a rather long span is 
taken, so that relatively more M/Vd situations can be studied with more or less 
the same configuration. The centre-to-centre distance between the loading point 
and the support is 4000 mm. The centre of the reinforcement to the tensile edge 
of the beam is 40 mm. It allows the maximum M/Vd to be 8.0.  

The boundary conditions described in Section 3.2.3.4 are realized in the fol-
lowing manner. The existing flexural cracks are modelled by an opening gap in 
the beam. At the location of the reinforcement, the gap is kept connected by steel 
bars. In this way a crack without residual tensile stress is modelled. The height 
of the existing crack is 300 mm, which is 65% of the effective beam height, from 
the observation of experiments. The propagating crack path to be evaluated, is 
initiated at 200 mm from the existing crack. The distance of 200 mm is an esti-
mation derived from on the average crack space lcr,m, see Section 3.2.2. The 
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location of the crack path is fixed by manually assigning an exceptionally low 
material strength fct to the root element at a specific location. Other than that, the 
value of rexcl is set to be longer than the length of the specimen, to supress the 
opening of any other crack in the model according to the delayed C1 - continuous 
propagation algorithm described previously. The distance between the prede-
fined root element (crack root in Fig. 3.14) and the support is denoted by x0. x0 is 
equivalent to the value of M/Vd at the cross section. It varies from 300 mm to 
1900 mm, which results in variation of M/Vd between 0.66 and 4.14 in this 
study. 

Mesh 

Quadrilateral 8 nodes elements are used to model the concrete. 33 integration 
points (Gauss Point) are used with each element. The reinforcement is modelled 
by 3 nodes truss elements. The nodes of the truss elements are connected to the 
nodes of the quadrilateral elements. Thus perfect bond is assumed between the 
reinforcement and the concrete. To simulate the reinforcement in the existing 
crack modelled by the gap, a 2 nodes straight truss element is used to connect 
the nodes of the two adjacent concrete elements. A demonstration of the ele-
ments is shown in Fig. 3.15. Besides, an example of the mesh configuration is 
given in Fig. 3.16.  

The mesh is refined within 250 mm from the existing crack, where the mesh 
size is 10 mm. Thus there are about 50 elements over the height of the beam. A 
mesh sensitivity study has been carried out by enlarging the mesh size twice in 
the refined zone, which will be discussed further in Section 3.2.4.4. The resulting 
crack path is not influence by the mesh configuration. Thus it may be concluded 
that there is no significant mesh dependency in the analysis described in this 
study, which can be understood as the benefit of the crack propagation algo-
rithm as well. 

 
 
Fig. 3.15. Detail of elements at the existing crack, the name of the elements being 

defined in Diana, see Diana Manual (TNO-DIANA 2011). 
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Fig. 3.16. Mesh configuration and boundary conditions of model with x0 = 700 mm. 

Material Properties 

The uncracked concrete is modelled as a linear elastic material, with an initial 
modulus of elasticity equal to Ec = 34 GPa. The reinforcement is assumed to be a 
linear elastic material. The modulus of elasticity of the steel is assumed to be Es = 
210 GPa. 

The cracking behaviour of the concrete is modelled by means of smeared 
crack elements. The tensile strength of the concrete is fctm = 2.8 MPa. The fracture 
energy is Gf = 7.08·10-4 Nm/m, which is calculated based on fib Model Code 
1990 (fib 1993). Hordijk’s curve (Hordijk 1991) is used to define the tension 
softening law. The softening curve is discretised by 25 saw teeth to make use of 
the SLA method. The shear retention factor is assumed to be 0.05, so that the 
reduction of shear stiffness of the element due to cracking is taken into account. 
For the root element of the propagating crack path, the tensile strength and the 
fracture energy are 10 times smaller than in the other elements. That element is 
used to introduce the crack path at the specific location in the model. 

Calculation Scheme 

In the SLA used in this study, 6000 load steps were applied in the evaluation of a 
single model. The number of steps is based on the estimated length of the crack. 
With 9 integration points per element and 25 teeth for each integration point, 225 
steps are needed to completely crack an element.  

With regard to the CPA, preliminary analysis (Slobbe, Hendriks et al. 2014) 
showed that the delayed procedure did not have significant influence on the 
crack path when the shear stress at the crack tip is large. Therefore dcrit,crk, is set to 
be 1.0 in the simulation. 

 Results 3.2.4.4

With the analytical procedure described before, it is possible to calculate the 
crack path initiated at any given cross-section under the idealized boundary 
conditions. As an example, two simulated crack paths are plotted in Fig. 3.17. 
The contour plot of the maximum principal strain is shown in Fig. 3.19, where 
the crack path is also indicated by large local strains. Both plots show that the 
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location of the crack path is fixed by manually assigning an exceptionally low 
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Fig. 3.16. Mesh configuration and boundary conditions of model with x0 = 700 mm. 
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The uncracked concrete is modelled as a linear elastic material, with an initial 
modulus of elasticity equal to Ec = 34 GPa. The reinforcement is assumed to be a 
linear elastic material. The modulus of elasticity of the steel is assumed to be Es = 
210 GPa. 

The cracking behaviour of the concrete is modelled by means of smeared 
crack elements. The tensile strength of the concrete is fctm = 2.8 MPa. The fracture 
energy is Gf = 7.08·10-4 Nm/m, which is calculated based on fib Model Code 
1990 (fib 1993). Hordijk’s curve (Hordijk 1991) is used to define the tension 
softening law. The softening curve is discretised by 25 saw teeth to make use of 
the SLA method. The shear retention factor is assumed to be 0.05, so that the 
reduction of shear stiffness of the element due to cracking is taken into account. 
For the root element of the propagating crack path, the tensile strength and the 
fracture energy are 10 times smaller than in the other elements. That element is 
used to introduce the crack path at the specific location in the model. 

Calculation Scheme 

In the SLA used in this study, 6000 load steps were applied in the evaluation of a 
single model. The number of steps is based on the estimated length of the crack. 
With 9 integration points per element and 25 teeth for each integration point, 225 
steps are needed to completely crack an element.  

With regard to the CPA, preliminary analysis (Slobbe, Hendriks et al. 2014) 
showed that the delayed procedure did not have significant influence on the 
crack path when the shear stress at the crack tip is large. Therefore dcrit,crk, is set to 
be 1.0 in the simulation. 

 Results 3.2.4.4

With the analytical procedure described before, it is possible to calculate the 
crack path initiated at any given cross-section under the idealized boundary 
conditions. As an example, two simulated crack paths are plotted in Fig. 3.17. 
The contour plot of the maximum principal strain is shown in Fig. 3.19, where 
the crack path is also indicated by large local strains. Both plots show that the 
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simulated crack paths seem quite comparable with crack paths observed in 
experiments. By defining the exact crack path with CPA it is possible to refine 
the calculation of the smeared crack over multiple elements more effectively. 
Thus it improves the mesh bias if the crack path is skewed or close to the 
boundary of the element. The two crack paths shown in Fig. 3.17 are simulated 
by two models with the same boundary conditions but different mesh sizes. The 
mesh size of the right model is two times larger than that of the left one. The 
differences of the two crack paths are negligible. This demonstrates that when 
the mesh presented in Section 3.2.4.3 is fine enough, the simulated crack path is 
mesh-independent. 

However, Fig. 3.17 also shows that when the crack height increases further 
the crack path becomes more unrealistic. This is due to the simplification of the 
existing crack with a gap which ignores the tension softening of concrete at small 
crack width. This effect should be taken into account. Therefore, only a part of 
the calculated crack path which is less influenced by this simplification is used in 
the study. 

In Fig. 3.18, the relationship between the load factor for the SLA step and the 
deflection at the loading point is plotted for a crack generated at a cross-section 
with M/Vd = 2.6. As explained previously, in SLA, the load factor applied per 
load step reflects the external load on the structure. At large M/Vd the crack 
path is comparable with straight cracks orthogonal to the longitudinal direction 
being simplified in Section 3.2.1, accordingly, the presented results are con-
sistent to the layered model analysis at the cross sectional level shown in Fig. 3.2. 

 
 

Fig. 3.17. Influence of mesh size to simulated crack paths from SLA (x0 = 600 mm). 
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Fig. 3.18. Load factor - deflection for a model with x0 = 1200 mm. 

Crack Path Expression 

According to Eq. (3.17), the curvature of a crack path developed at a given 
cross-section is strongly influenced by the value of M/Vd locally. Thus, the 
value of M/Vd is considered to be the major variable in the study. With the 
model presented above, the crack paths generated from x0 = 200 mm to 1800 mm 
are calculated; they are plotted in Fig. 3.21. The detailed information of each 
simulation and the results are listed in Appendix II. 

To evaluate the crack paths derived from the numerical analysis, the crack 
paths shown in Fig. 3.21 are plotted together with the cracks marked from 
experiments. It has to be remarked that unlike the marked cracks from experi-
ments, the black lines shown in Fig. 3.21 and Fig. 3.20 are simply the assembly of 
the calculated crack path from different FEM models like the one shown in Fig. 
3.16. Therefore, in these models, only a single crack is simulated at each time.  
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Fig. 3.19. Distribution of maximum principal strain of model with x0 = 600 mm. 
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Fig. 3.18. Load factor - deflection for a model with x0 = 1200 mm. 
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Fig. 3.19. Distribution of maximum principal strain of model with x0 = 600 mm. 
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Fig. 3.20. Comparison between simulated crack path and marked ones from experi-
ments. The grey lines in the figures are marked cracks in experiments, the black 
lines are the assembly of the simulated crack paths from different models. 
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Fig. 3.21. Simulated crack paths with x0 from 200 mm to 1800 mm. 

The plotted crack paths do not imply that the cracks have to develop to the 
height and the location as they are indicated in Fig. 3.20. Instead, it should be 
understood in such a way that if there is a major crack developing at the location 
where the crack path is simulated with a height scr, then its profile looks like the 
one plotted in the figure up to the crack height scr.  

Four beams from the continuous beam test series (the test program with be 
explained in Section 5.3.2) are selected and their crack patterns after failure are 
plotted in Fig. 3.20. The dimensions and the reinforcement configurations of the 
test specimens are in general the same as the models. Among them, three 
specimens are simply supported and loaded with a single point load, while the 
last one was loaded in a way to simulate a continuous supported moment 
distribution. The point of inflection is marked in Fig. 3.20. 

Despite the roughness of the crack path due to variation of material proper-
ties, the direct comparison clearly shows that the crack paths simulated with 
SLA models are capable to represent the crack pattern of reinforced concrete 
beams without shear reinforcement with a quite reasonable accuracy. It also 
works in case of continuous supported beams with more complex moment 
distribution. Besides, the comparison clearly shows that there is in principle no 
difference regarding to the crack profile in beams with different loading condi-
tion as long as the crack is initiated from the cross-section with the same M/Vd.  

Here, the second inclined crack in C15a154 shall be treated separately, since it 
is developed after the beam was heavily damaged by the first inclined crack at 
lower load level. That results in a significantly stress redistribution in the span. 
Thus, the boundary conditions applied in the models are not valid any more. 
The other point that has to be noticed is that for cracks with a large M/Vd, the 
crack paths from simulation could be slightly overestimate the inclination of the 
crack. 

The crack paths calculated from numerical simulations are then utilized as 
original data to derive a more general expression of the crack path in accordance 
to the expression explained in Section 3.2.3.4. Before that, the crack paths are 
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Fig. 3.20. Comparison between simulated crack path and marked ones from experi-
ments. The grey lines in the figures are marked cracks in experiments, the black 
lines are the assembly of the simulated crack paths from different models. 
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Fig. 3.21. Simulated crack paths with x0 from 200 mm to 1800 mm. 
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re-formulated with a dimensionless expression with the beam height, and the 
coordinates are reversed. In addition, the value of  =x/h shall be limited to 0.16 
(x0 < 80 mm). This is necessary to limit the influence of the local effect due to the 
simplification of the existing crack as discussed previously. Another reason is 
that Fig. 3.18 shows that a further increase of the crack length requires a larger 
increase of the external load, which is in conflict with the assumption made in 
Section 3.2.3.2: only crack development at M close to Mcr is studied. With the 
treatment mentioned above, a regression analysis is applied for the crack paths. 

The analysis shows that in most cases a quadratic function is able to express 
the crack path with sufficient accuracy. Two examples of the results are given in 
Fig. 3.22. In both cases the value of R2 is larger than 0.99. The same level of 
accuracy holds for the other 9 analyses, see Table 3.1. Besides, Table 3.1 also 
confirms that the curvature of the crack paths is indeed strongly related to the 
value of M/Vd at the considered cross-section. The numerical analysis clearly 
proves that Eq. (3.17) describes the crack path properly. The results of all the 
other models can be found in Appendix II. 

Fig. 3.22. Regression analysis of two crack paths. Left: x0 = 1400 mm. Right: x0 = 200 
mm. 
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longitudinal axis, which is apparently inappropriate. The existing crack should 
have a similar expression as well. However, because most cracks still start 
perpendicular to the axis of the member, at a lower level the simplification of a 
vertical crack face remains a good approximation. The comparison shown in Fig. 
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proaches scr. In that case the simulated cracks start to become parallel, because 
the influence of the imposed vertical crack used in the simulation stopped the 
further development of the crack towards the loading point. In the experiments, 
the cracks develop more freely towards the existing cracks, as is shown in Fig. 
3.20, and even alignment of two cracks is possible. Nevertheless, the influence of 
this difference is limited since that part of the crack branch has been discarded in 
the analysis, as explained before. 

Since the crack path can be expressed by a quadratic function, the function y 
in Eq. (3.17) becomes a constant independent of the value of . This indicates that 
the ratio between KII and KI remains constant during the development of the 
crack. This might be attributed to the constantly changing crack inclination, 
because it changes the boundary conditions that influence the crack tip stress 
state under the same moment shear force combination. From the results derived 
from regression analysis, it is possible to calculate the values y for each crack 
path, see Table 3.1. They are plotted against M/Vd in Fig. 3.23. 

 
Table 3.1. Summary of regression analysis. 

x0 M/Vd dx2/d2z R2 y 

[mm] [-] [-] [-] [-] 
200 0.43 1.6660 0.9949 1.4487 
400 0.87 1.3120 0.9977 2.2817 
600 1.30 1.0540 0.9987 2.7496 
800 1.74 0.9184 0.9992 3.1944 

1000 2.17 0.8533 0.9994 3.7100 
1200 2.61 0.7715 0.9991 4.0252 
1400 3.04 0.7100 0.9994 4.3217 
1600 3.48 0.6248 0.9914 4.3464 
1800 3.91 0.5836 0.9961 4.5673 

 
Combining the regression results of y as shown in Fig. 3.23 and Eq. (3.17), an 

expression for the crack path under the specific condition described in this 
section can be derived: 

 
0.5

21.22
M
Vd

z x
-æ ö÷ç ÷= ç ÷ç ÷çè ø

 (3.18) 

The validation of this equation to more general boundary conditions has to 
be checked with more parametric studies. 
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Fig. 3.22. Regression analysis of two crack paths. Left: x0 = 1400 mm. Right: x0 = 200 
mm. 
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proaches scr. In that case the simulated cracks start to become parallel, because 
the influence of the imposed vertical crack used in the simulation stopped the 
further development of the crack towards the loading point. In the experiments, 
the cracks develop more freely towards the existing cracks, as is shown in Fig. 
3.20, and even alignment of two cracks is possible. Nevertheless, the influence of 
this difference is limited since that part of the crack branch has been discarded in 
the analysis, as explained before. 

Since the crack path can be expressed by a quadratic function, the function y 
in Eq. (3.17) becomes a constant independent of the value of . This indicates that 
the ratio between KII and KI remains constant during the development of the 
crack. This might be attributed to the constantly changing crack inclination, 
because it changes the boundary conditions that influence the crack tip stress 
state under the same moment shear force combination. From the results derived 
from regression analysis, it is possible to calculate the values y for each crack 
path, see Table 3.1. They are plotted against M/Vd in Fig. 3.23. 

 
Table 3.1. Summary of regression analysis. 

x0 M/Vd dx2/d2z R2 y 

[mm] [-] [-] [-] [-] 
200 0.43 1.6660 0.9949 1.4487 
400 0.87 1.3120 0.9977 2.2817 
600 1.30 1.0540 0.9987 2.7496 
800 1.74 0.9184 0.9992 3.1944 

1000 2.17 0.8533 0.9994 3.7100 
1200 2.61 0.7715 0.9991 4.0252 
1400 3.04 0.7100 0.9994 4.3217 
1600 3.48 0.6248 0.9914 4.3464 
1800 3.91 0.5836 0.9961 4.5673 

 
Combining the regression results of y as shown in Fig. 3.23 and Eq. (3.17), an 

expression for the crack path under the specific condition described in this 
section can be derived: 
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 (3.18) 

The validation of this equation to more general boundary conditions has to 
be checked with more parametric studies. 
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Fig. 3.23. Resulting y from simulated crack paths 

Other Variables 

In addition to the major variable M/Vd, other aspects or variables may influence 
the development of the cracks. Some of the variables are also included in the 
expression for y in Eq. (3.17). They are summarized below. Regarding to each 
variable, several models are set-up. Most of the parametric studies are based on 
the reference model with x0 = 600 mm. The most important variables are sup-
posed to be:  
 Reinforcement ratio s. 
 Tensile strength fct, fracture energy Gf and shear retention factor of concrete. 
 Beam height h, (size effect). 
 Thickness of concrete cover c. 
 Crack spacing lcr.m. 
 Height of the existing crack 0 = scr/h. 

Comparing the models with different variables with the reference models 
shows that not all the variables have a significant influence on the crack path 
development. Among them, the concrete properties such as tensile strength ft, 
fracture energy Gf, shear retention factor, and the height of the specimen h have 
almost no influence on the crack path. The concrete cover determines where the 
crack inclination starts, however, since the difference of c is usually rather small 
compared to the beam height, this effect is almost negligible. 
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The height of the existing crack 0 only affects the crack path when the value 
of 0 is very small. In that case, the crack becomes considerably steeper. This 
effect is demonstrated in Fig. 3.24, where four simulated crack paths with 
different existing crack height 0 are plotted. The crack path with existing crack 
height scr = 100 mm (0 = 0.2) is clearly different from the other three, while the 
other three crack paths are quite close to each other. Since the flexural crack 
heights of normal reinforced concrete beams are usually higher than 0.5h, the 
effect of crack height 0 can be neglected as well. This actually shows that it is 
necessary of having an existing crack to make the flexural crack inclined as was 
concluded previously in Section 3.2.3.1. 

 
Fig. 3.24. Influence of existing crack height 0 to the crack path. 

The reinforcement ratio has a similar effect on the crack path as the height of 
the existing crack 0. Its stiffness affects the crack opening under a certain 
moment, thus it influences the crack path. However, such an influence is only 
pronounced if the number of rebars is very low. In practice, the reinforcing steel 
will yield upon the cracking of the specimen. Therefore, one may assume that 
the reinforcement ratio  does not affect the crack path. 

The crack spacing, on the other hand, has the most significant effect on the 
crack path. As already shown by Eq. (3.15), the value of KII is related to crack 
spacing lcr. A similar regression analysis is carried out to check the effect of lcr. 
Models are set-up with a crack spacing of 100 mm, 200 mm and 300 mm. lcr is 
normalized by specifying cr = lcr/h. It is found that y is related to 1.2cr-0.2. 
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3.2.5 Conclusions 

The application of Sequentially Linear Analysis with a Crack Propagation 
Algorithm makes it possible to calculate the crack path explicitly under ideal-
ized boundary conditions. That makes it possible to derive a generalized crack 
path expression. The crack paths simulated from numerical analysis are used 
directly to approach an estimation of the crack path based on fracture mechanics. 
This process makes the complex stress field analysis usually needed to derive 
stress intensity factors superfluous. A rather simple expression for the crack 
path is derived by combining the analysis of other variables and Eq. (3.18).  
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  (3.19) 

where 
 = x/d : is the normalized coordinate of the crack in the longitudinal di-

rection 
 = s/d : is the normalized coordinate of the crack in the height direction 
 = lcr/d : is the normalized crack spacing 

 
Because the value of the concrete cover c is usually much smaller than the beam 
height h and the effective height d = h - c, h is approximated by d in Eq. (3.19). 
Taking into account the large variation of material properties in a concrete beam, 
the derived crack path expression offers sufficient accuracy for further analysis. 

 

3.3 EQUILIBRIUM SYSTEM OF A CRACK 

3.3.1 Free Body Element Formed by a Crack 

In the previous study a crack pattern was derived mainly dependent on the 
location where the crack is initiated. It is assumed that at a given cross section, as 
soon as the moment locally reaches the cracking moment Mcr, a major flexural 
crack will spontaneously develop up to a certain height scr, with a predefined 
shape expressed by Eq. (3.19) if there is no other major crack located at about lcr,m 
from that section. Based on that assumption, it is possible to cut the concrete 
member along the predefined crack at any location including the compressive 
zone. The concrete part closer to the support together with the longitudinal 
rebar is considered as a free body. The free body element and the forces applied 
on it are shown in Fig. 3.25. In this free body element, the equilibrium conditions 
and kinematic conditions have to be fulfilled. 

In Fig. 3.25, the beam is loaded from its top surface, thus the direction of the 
load is denoted as the vertical direction. Respectively, the direction of the beam 
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axis is denoted as the horizontal direction or the longitudinal direction; besides 
the beam is in tension at the bottom side and in compression at the top side, thus 
within this chapter, the term ‘bottom side’ of the beam means the tensile side of 
the member in a more general case, and the ‘top side’ stands for the com-
pressive side of the member.  

The forces applied on the free body shown in Fig. 3.25 include the following 
components: 

 
V :  is the reaction force, which is equal to the shear force at the cracked 

cross section; 
Vc, Nc : are the shear component and the normal component of the forces 

in the uncracked concrete; 
Vai, Nai : are the total vertical and horizontal components of the aggregate 

interlock effect along the crack. They are calculated by the shear stress 
ai and normal stress ai distribution along the shear crack; 

Vd : is the shear force transmitted through dowel action perpendicular to 
the rebars; 

Ts : is the tensile force in the rebars. 
 
In addition, the following terms can be found in Fig. 3.25 as well. Some of 

them have already been defined before. The distance between Nc and Ts is 
defined as the internal level arm z. The longitudinal component of the total force 
derived from aggregate interlock Nai is applied at a distance of zai from Nc. The 
height of the crack is defined as scr, and the height of the compressive zone in the 
concrete is referred as zc. 

For the convenience of the formulation, within this section, the longitudinal 
and vertical directions of the beam are defined as x and y direction respectively. 

 
 

Fig. 3.25. Part of a reinforced concrete member (free body) cut along a crack (x0 = d) 
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where 
 = x/d : is the normalized coordinate of the crack in the longitudinal di-

rection 
 = s/d : is the normalized coordinate of the crack in the height direction 
 = lcr/d : is the normalized crack spacing 
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Taking into account the large variation of material properties in a concrete beam, 
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In x direction, the distance between the centroid of the support and the initial 
location of the crack is x0. The horizontal distance between the bottom and the 
tip of the crack is defined as xcr. For the vertical component of the aggregate 
interlock force Vai, its horizontal distance to the start of the crack at the bottom is 
xai. This is not indicated in Fig. 3.25. 

 Equilibrium Conditions 3.3.1.1

The forces applied on the free body element have to be in equilibrium in all 
directions for a stable structure. In vertical direction the force equilibrium 
equation is formulated as: 

 
c ai d

V V V V= + +  (3.20) 

The longitudinal force equilibrium is achieved by: 

 0
c ai s

N N T+ + =  (3.21) 

The moment equilibrium is calculated around the position where Nc is applied. 
As a result, the equation is formulated as follows: 

 
0

( )
cr d cr ai ai s ai ai

V x x V x V x T z N z+ = + + -  (3.22) 

Here the longitudinal component of the aggregate interlock effect is assumed to 
be compression along the crack. 

 Kinematic Conditions 3.3.1.2

For any crack generated in the loading process, the study of the crack pattern has 
shown that after the crack development stage, it can hardly have any further 
extension in vertical direction. Further increase of the external load may result in 
the opening of the crack mouth or the development of a crack in longitudinal 
direction. Consequently, the possible movement of the two surfaces along the 
crack curve can only be the rotation  around the crack tip, or the relative 
displacement  in vertical direction. The corresponding displacements are 
demonstrated in Fig. 3.26. For the convenience of the formulation, a coordinate 
system is set within this section with the origin at the tip of the crack, the posi-
tive directions of x and y are indicated in Fig. 3.26. Another simplification in the 
analysis is that the uncracked concrete adjacent to the crack faces is assumed as 
rigid body; therefore the crack profile is not influenced by the local forces. This 
simplification will be further discussed in Chapter 4. 
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Fig. 3.26. Kinematic conditions of a crack. 

For any points along a random crack curve expressed by the function y = s(x), 
the rotation and relative displacement of the crack curve are basically the rota-
tion and translation of the coordinate system. Thus, the new coordinates after 
movement can be expressed as follows: 
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 (3.23) 

For the free body element formed by a crack defined in this section, the values of 
the translated displacements are x = 0, and y = 0, with 0 being the vertical 
displacement at the tip of the crack. For a crack in a concrete structural element, 
its opening in longitudinal and vertical directions (w and ) at the level of 
reinforcement are directly measureable variables, therefore they are of more 
interest than the rotation and vertical displacement at the tip. They can be 
expressed by w = x′ - x,  = y′ - y. The two types of movements are therefore 
converted to crack opening parameters in two directions with Eq. (3.23) by 
further assuming x = xcr, y = scr according to the kinematic conditions shown in 
Fig. 3.26: 
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On the other hand, for a crack curve moved by  and  from its original po-
sition, the tangential and normal displacement of each point along the curve can 
be derived from the relative displacement in x and y direction. The relationship 
between (dx, dy) and (n,t) is illustrated in Fig. 3.26. It can be calculated by: 
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Rotation θ
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displacement Δ0

crack opening 
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Δ = Δ0 + Δθ
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The value of (n,t) is directly linked to the normal and shear stress along the crack 
due to the aggregate interlock effect. The vertical and longitudinal displacement 
of the crack bottom is related to the dowel action and the tensile force in the 
rebar. The constitutive relations of the effects referred to are given in the fol-
lowing section. 

3.3.2 Constitutive Relations 

 Shear Force Component in the Concrete Compressive Zone 3.3.2.1

In the stabilized cracking stage, the stress distribution of the concrete com-
pressive zone can be well described by the classic beam theory. Since the 
compressive zone is dominating the uncracked area of the concrete beam, see 
Fig. 3.27, it is reasonable to assume the shear force in the concrete compressive 
zone to be a close estimation of the contribution of the whole uncracked area 
concrete. The amount of shear force transferred in the compressive zone has 
been estimated by Mörsch in (Mörsch 1909), and has been approved by experi-
ments(Sherwood, Bentz et al. 2007). A simplified derivation is repeated here. 

Examining a concrete block formed by two following cracked concrete cross 
sections at x1 and x2, and the neutral axis in Fig. 3.27 (assuming that the neutral 
axis keeps constant between the two cracks), the difference of the resultant 
compressive forces is generated by the shear stresses along the neutral axis. The 
average shear stress m along the neutral axis turns out to be m = dN/dx. Based 
on the beam theory, the maximum shear stress at the neutral axis equals m, that 
gives for the total shear force carried by the concrete compressive zone: 

 
 
Fig. 3.27. Stress distribution in concrete compressive zone. Adopted from (Reineck 

1991). 
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Since the compressive force in the cross-section can be estimated by Nc,i = Mi /z, 
this gives: 

 1
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dM V
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t = =  

By substituting this into the previous expression, the shear force carried by the 
concrete compressive zone can be expressed by 
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z
=  (3.26) 

with  
zc : the height of the compressive zone, zc = d –scr; 
z : the internal level arm expressed by Eq. (3.3). 
 

 Force in Rebars 3.3.2.2

In a cracked concrete beam, the forces carried by the rebars include the tensile 
force Ts in longitudinal direction and the dowel action Vd in vertical direction. 
The two components are discussed in this section. 

Tensile Force  

In most cases, the rebars in a concrete beam are in the linear elastic stage, thus 
the tensile force Ts can be calculated directly by the strain of the reinforcement Ts 
= sAsEs. On the other hand, the crack width w at the reinforcement level is 
calculated by: 
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where 
lcr : is the average crack spacing, which equals lcr =slt, where lt is calcu-

lated by Eq. (3.4); 
esm, ecm : are the average strains in reinforcement and concrete between 

two adjacent major cracks respectively; 
sr : is the cracking stress of reinforcement at the onset of the formation of a 

new crack, and is expressed by: 



74  3.3 Equilibrium System of a Crack 
 

 

 
sin cos d

cos sin d

n x

t y

a a
a a

æ ö æ öæ ö-÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç=÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è øè ø
 (3.25) 

The value of (n,t) is directly linked to the normal and shear stress along the crack 
due to the aggregate interlock effect. The vertical and longitudinal displacement 
of the crack bottom is related to the dowel action and the tensile force in the 
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lowing section. 
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axis keeps constant between the two cracks), the difference of the resultant 
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zc : the height of the compressive zone, zc = d –scr; 
z : the internal level arm expressed by Eq. (3.3). 
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where 
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two adjacent major cracks respectively; 
sr : is the cracking stress of reinforcement at the onset of the formation of a 

new crack, and is expressed by: 
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The crack width will be large if the dowel action results in the detachment of the 
longitudinal reinforcement due to the dowel cracking in the concrete along the 
longitudinal reinforcement. This phenomenon will be discussed in the following 
sections. 
 

 
 

Fig. 3.28. Shear displacement — dowel force relationship of tests carried out by 
Baumann and Rüsch, adapted from (Baumann & Rüsch 1970). 

Dowel Action 

For the dowel action, Baumann and Rüsch’s model is employed (Baumann & 
Rüsch 1970). Their experiments show that the relationship between vertical 
displacement along the crack opening and the shear resistance from dowel 
action can be assumed to be linear elastic before the maximum shear force Vdmax 
is reached. After that, the shear resistance provided by dowel action becomes 
constant with respect to any further shear displacement. The load – displace-
ment relationship for tests specimens without shear reinforcement is given in 
Fig. 3.28. 

The maximum shear force which can be carried by dowel action is: 
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where 
bn : is the clear width of the beam (b - n). 
 

The vertical displacement  at the peak shear force was found to be 0.08 mm in 
the experiments (Baumann & Rüsch 1970). Thus, the linear relation before 
yielding is expressed by: 
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For the maximum vertical displacement, a large scatter is found between dif-
ferent experiments. Taylor reports 0.013 mm in (Taylor 1971). Further 
investigation is needed regarding to the failure displacement of dowel action. 

 Residual Stresses in Cracks 3.3.2.3

The fact that there are stresses in a crack in concrete structures has been well 
accepted. From a general perspective, two types of phenomena are possible. 
They are the tension softening effect and the aggregate interlock effect. As was 
shown in Chapter 2, both effects have been well studied in literature. With given 
(n,t), the stresses (,) that are transmitted across the crack can be calculated. 

Aggregate Interlock 

The so-called aggregate interlock effect describes the relationship between the 
shear stress, the compressive normal stress (,) and the normal and tangential 
displacement along a crack (n,t). The model proposed by Walraven (Walraven 
1980; Walraven 1981) is utilized here. It has been validated by extensive exper-
imental results, and has been implemented in several models (Vecchio & Collins 
1986; Reineck 1991) describing the shear phenomenon. The original formula 
cannot be evaluated analytically, therefore numerical integration is asked for: 
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where  
spu : is the crushing strength of the cement matrix under confinement,

0.566.39
pu c

fs = ; 
: is the coefficient of the friction between aggregate and the matrix ma-

terial; 
D : is the diameter of the aggregate; 
Ax, Ay : are the projected contact areas for a unit crack length, which are 

functions of the normal and tangential displacement (n,t) of the two 
crack faces. Their expressions are: 
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where  
spu : is the crushing strength of the cement matrix under confinement,
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Ax, Ay : are the projected contact areas for a unit crack length, which are 
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Because of the complexity in formulation, it is not possible to apply the for-
mula into design practice analytically. In most cases the formula is simplified. 
One of the well-known examples is the equation proposed by Vecchio and 
Collins in (Vecchio & Collins 1986), explained in Section 2.2.3.  

The stress distribution along the crack curve is then decomposed in x and y 
direction by: 
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where, the positive directions of  and  are given in Fig. 3.25. The resultant 
forces and their locations are then calculated by integration along the crack 
curve: 
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 (3.31) 

Due to the complexity of the problem, the integration has to be carried out 
numerically. Nevertheless, the resultant forces Vai = Fy, Nai = Fx and their loca-
tions xai = xcr-xx , zai = z – xy are functions of crack opening w and . For a crack 
initiated at x0 = 2d, a beam with d = 465 mm, b = 300 mm, the relationship be-
tween (w, ), and the resultant forces (Vai, Nai) are plotted in Fig. 3.29. 

 
Fig. 3.29. Relationship between resultant forces in x, y direction and crack bottom 

displacements (w, ) of a concrete beam. 

Fig. 3.29 shows that the aggregate interlock effect predicted by Walraven’s 
model actually provides significantly higher shear forces than what is really 
measured in usual shear beam tests. Further to that, to reach that shear force, an 
even larger normal force is needed. That normal force should not be neglected in 
the moment equilibrium equation Eq. (3.22).  
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where, the positive directions of  and  are given in Fig. 3.25. The resultant 
forces and their locations are then calculated by integration along the crack 
curve: 
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Due to the complexity of the problem, the integration has to be carried out 
numerically. Nevertheless, the resultant forces Vai = Fy, Nai = Fx and their loca-
tions xai = xcr-xx , zai = z – xy are functions of crack opening w and . For a crack 
initiated at x0 = 2d, a beam with d = 465 mm, b = 300 mm, the relationship be-
tween (w, ), and the resultant forces (Vai, Nai) are plotted in Fig. 3.29. 

 
Fig. 3.29. Relationship between resultant forces in x, y direction and crack bottom 

displacements (w, ) of a concrete beam. 

Fig. 3.29 shows that the aggregate interlock effect predicted by Walraven’s 
model actually provides significantly higher shear forces than what is really 
measured in usual shear beam tests. Further to that, to reach that shear force, an 
even larger normal force is needed. That normal force should not be neglected in 
the moment equilibrium equation Eq. (3.22).  
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Fig. 3.30. Relationship between resultant forces from tension softening effect in x, y 

direction and crack bottom displacement (w, ). 

Tension Softening 

With respect to the normal stress in the crack, other than aggregate interlock, 
which provides compressive stresses across the crack, when the crack width is 
small, a crack can also transmit tensile stress, which is defined as the tension 
softening effect. The tension softening behaviour of concrete has been studied 
extensively by bending tests or direct tension tests (Hillerborg, Modeer et al. 
1976; Hordijk 1991). Experimental research carried out by Keuser and Walraven 
(Keuser & Walraven 1989) shows that when the crack width is smaller than 0.2 
mm, and the tangential displacement is smaller than the normal displacement, it 
is possible to neglect the influence of aggregate interlock to the tension softening 
relationship. Nevertheless, when the shear displacement is smaller than the 
crack width, the normal stress is very small according to Walraven’s model 
anyway. On the other hand, if the shear displacement is comparable or even 
larger than the crack width, it is very difficult to generate such type of shear 
crack from a plain concrete according to (van Mier et al. 1991). The other alter-
native is to open a crack first and the close it to very small crack width; in that 
case, the tension softening stress is significantly reduced. The latter case is 
possible with regard to the tip of the flexural cracks when a secondary crack 
develops in the horizontal direction due to increasing shear forces. To simplify 
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the calculation process, it is assumed that it is possible to superpose the two 
effects, since the normal stress due to aggregate interlocking at that stage is very 
small anyway. A linear softening relationship is adopted as explained pre-
viously. 

Similar to the aggregate interlock effect, the normal stress in the crack is de-
composed in vertical and longitudinal directions, and integrated along the crack 
curve as expressed in Eq. (3.31). Similarly, the resultant shear and normal forces 
in the crack are dependent on the crack opening at the bottom of the crack. The 
relationship between (Vts, Nts) and (w, ) of the same crack in the beam config-
uration specified previously is plotted in Fig. 3.30. Compared to the aggregate 
interlock effect, the contribution of tension softening force to the shear resistance 
is about 10 times smaller, thus it can be neglected when the crack width is larger 
than 0.1 mm. Similarly, the tensile force generated by the tension softening 
stresses is relatively small. 

In general both effects are considered as residual stresses in a crack. The re-
sultant forces are functions of crack bottom displacement (w, ), and are 
calculated by summation of both effects. Moreover, without considering redis-
tribution, the normal force in longitudinal direction seems to be substantial, so 
that it should not be neglected in the equilibrium formula. 

 

3.4 FAILURE MECHANISM 

3.4.1 Assemble of Equilibrium Equations 

By applying the constitutive relations described in 3.3.2, the equilibrium equa-
tions Eq. (3.20) and Eq. (3.22) become: 
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Here the two equations are dependent on the vertical and longitudinal direc-
tions of crack opening (w, ). If the crack profile is given, by introducing a total 
shear force V, the crack opening in both directions (w, ) can be solved with the 
set of equations, vice versa.  

The set of equations cannot be solved directly due to the complexity of the 
problem. Instead, the two variables are solved by iterations. The whole process 
is illustrated in Fig. 3.31. The relationship between the maximum allowable 
shear force calculated from the sets of equations and the crack opening in 
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Fig. 3.30. Relationship between resultant forces from tension softening effect in x, y 

direction and crack bottom displacement (w, ). 
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is about 10 times smaller, thus it can be neglected when the crack width is larger 
than 0.1 mm. Similarly, the tensile force generated by the tension softening 
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In general both effects are considered as residual stresses in a crack. The re-
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calculated by summation of both effects. Moreover, without considering redis-
tribution, the normal force in longitudinal direction seems to be substantial, so 
that it should not be neglected in the equilibrium formula. 
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shear force V, the crack opening in both directions (w, ) can be solved with the 
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The set of equations cannot be solved directly due to the complexity of the 
problem. Instead, the two variables are solved by iterations. The whole process 
is illustrated in Fig. 3.31. The relationship between the maximum allowable 
shear force calculated from the sets of equations and the crack opening in 
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vertical and horizontal direction (w, ) is determined, with which the failure 
process of a reinforced concrete beam is studied as follows.  
 

 
 

Fig. 3.31. Procedure to solve equation system Eq. (3.32) and Eq. (3.33). 

3.4.2 Failure Criteria 

To understand the failure process, the most important question to be answered 
is: what triggers the collapse of a concrete beam at a given cracked section under 
a shear force? An attempt is made in this section to search for an answer on this 
research question. It starts with the most basic mechanism: the opening of a 
crack around its tip. 

 Crack Opening around Its Tip 3.4.2.1

Due to the curved shape of a major crack, the rotation of the crack around its tip 
will generate a tangential displacement locally, which activates aggregate 
interlock and dowel action. By assuming only rotation of the two cracked 
surfaces, the shear force that is carried by aggregate interlock and dowel action 
is plotted in Fig. 3.32 versus the crack width. Crack curves for M/Vd of 1.0 and 
2.0 are taken as two examples. 

The comparison shows that the magnitude of the shear force that can be 
transmitted by the crack depends on the shape of the crack. The shear force Vai in 
the crack generated at M/Vd = 1.0 is more than 3 times larger than that in the 
crack at M/Vd = 2.0. However, for a crack generated in most moderated loca-
tions, the shear resistance raised in the crack is not sufficient to compensate the 
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shear force at the cross-section even at relatively small crack width. The force 
equilibrium in vertical direction described by Eq. (3.33) cannot be fulfilled. 
Besides, in all cases, Vai drops quickly with the increase of the crack opening w. 
Both observations are contradictory to the experimental findings, thus the 
assumed crack opening mechanism cannot guarantee a stable system along the 
cross section. Additional shear resistance has to be provided by another mecha-
nism. 

Fig. 3.32. Relationship between crack width and shear force carried by aggregate 
interlock Vai and dowel action Vd (left: M/Vd = 1.0, right: M/Vd = 2.0). 

 Vertical Crack Opening 3.4.2.2

Since it is not possible to achieve equilibrium only with rotation of the crack 
faces around the tip, the other possible movement of the two crack faces is 
translation in vertical direction according to the kinematic conditions described 
in Fig. 3.26. It is shown in Fig. 3.29 that the increase of vertical crack opening  
quickly increases the shear force and the normal force that is carried by the crack. 
Therefore to generate the magnitude of shear resistance as observed in experi-
ments, the additional displacement of the two crack surfaces in vertical direction 
 is necessary. 

In this study, it is assumed that the vertical displacement  can be super-
posed onto the rotation  of the same crack in the free body analysis. Only when 
the vertical displacement is introduced, it becomes possible to solve Eq. (3.33) 
under the most realistic shear force V and M/Vd combinations. As an example, 
the crack opening combinations of the beam cross sections used in Section 3.3.2.3 
under shear force values from 100 kN to 300 kN with M/Vd varying from 1.0 to 
4.0 are plotted in Fig. 3.33. Experimental results of the specimens with the same 
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vertical and horizontal direction (w, ) is determined, with which the failure 
process of a reinforced concrete beam is studied as follows.  
 

 
 

Fig. 3.31. Procedure to solve equation system Eq. (3.32) and Eq. (3.33). 
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shear force at the cross-section even at relatively small crack width. The force 
equilibrium in vertical direction described by Eq. (3.33) cannot be fulfilled. 
Besides, in all cases, Vai drops quickly with the increase of the crack opening w. 
Both observations are contradictory to the experimental findings, thus the 
assumed crack opening mechanism cannot guarantee a stable system along the 
cross section. Additional shear resistance has to be provided by another mecha-
nism. 

Fig. 3.32. Relationship between crack width and shear force carried by aggregate 
interlock Vai and dowel action Vd (left: M/Vd = 1.0, right: M/Vd = 2.0). 
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quickly increases the shear force and the normal force that is carried by the crack. 
Therefore to generate the magnitude of shear resistance as observed in experi-
ments, the additional displacement of the two crack surfaces in vertical direction 
 is necessary. 

In this study, it is assumed that the vertical displacement  can be super-
posed onto the rotation  of the same crack in the free body analysis. Only when 
the vertical displacement is introduced, it becomes possible to solve Eq. (3.33) 
under the most realistic shear force V and M/Vd combinations. As an example, 
the crack opening combinations of the beam cross sections used in Section 3.3.2.3 
under shear force values from 100 kN to 300 kN with M/Vd varying from 1.0 to 
4.0 are plotted in Fig. 3.33. Experimental results of the specimens with the same 
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configuration (Yang & den Uijl 2011) showed that the ultimate shear capacity of 
such specimens varies between 150 kN and 300 kN. 

Fig. 3.33. Crack opening combination of cracks generated at M/Vd from 1.0 to 4.0 
under different shear forces (left: crack opening w in longitudinal direction; right: 
crack opening  in vertical direction). 

In simply supported beams, the value of M/Vd is equivalent to x0/d of the 
cracked cross section, therefore, Fig. 3.33 actually indicates the relationship 
between the shear resistance, the crack openings and the location of the cracked 
section to be evaluated. It shows that w always increases with the crack location, 
whereas  has the lowest value at sections with M/Vd between 1 and 2. From 
that location any other cracked sections closer to or farther from to the support 
of the beam will generate a larger vertical displacement  at the same shear force. 
The increase of  with respect to the decrease of M/Vd is because of the larger 
inclination of the crack profile, while when the cracked section moves further 
from the support, the increase of  is due to the larger cross sectional moment, 
which is less steep than in the other situation.  

On the other hand, regarding the shear force, it is always possible to find a 
crack opening combination in both directions when increasing the shear force V. 
Recalling to the simulation results of Fig. 3.29, it turns out that the shear re-
sistance that is generated by increasing the value  of the crack can reach an 
extraordinary high value. This is obviously in conflict with the experimental 
findings in the laboratory. The maximum shear resistance found from laboratory 
experiments is close to 150 kN for specimens with M/Vd larger than 2.0 (10 
times smaller than the maximum shear resistance according to Fig. 3.29). Once 
the shear force reaches that level, the width of one of the flexural cracks grows 
rapidly, meanwhile the force that can be applied on the beam drops. That 
defines the failure of the beam. The crack pattern of such a specimen is demon-
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strated in Fig. 3.34, in which the crack width can reach centimetres at failure. 
However, according to the model presented in this chapter, if the longitudinal 
reinforcement does not yield, the value of w is more or less stable in certain 
range. In that situation, further increase of shear force level can easily be com-
pensated by the increase of . Besides, when the maximum value of the shear 
force is reached, it remains constant with the increase of , which means that it is 
not possible to obtain an unstable failure as shown in Fig. 3.34. The only expla-
nation to this is that the mechanisms described in this chapter are not sufficient 
to describe the failure process. Additional mechanisms have to be included into 
the system to allow the unstable displacement along the crack curve. 

 

 
 
Fig. 3.34. Crack pattern of a concrete beam with M/Vd = 3.0 after failure. Specimen 

C2b151 from continuous beam tests, from (Yang & den Uijl 2011). 

 Dowel Cracking due to Dowel Force 3.4.2.3

To reduce the shear force generated by aggregate interlock, an additional in-
crease of the crack width w has to be allowed. This can be done by introducing a 
horizontal crack at the reinforcement level, and in the compression zone, in 
which the first one allows the detachment of the rebar from the concrete beam. 
Consequently, the crack width of the major flexural crack shall be calculated 
directly from the elongation of the detached longitudinal reinforcement instead 
of Eq. (3.27). The crack width can increase more than one order of magnitude. 
This additional mechanism allowing catastrophic opening of the critical crack is 
related to the dowel action. 

For most reinforced concrete beams the concrete cover of the rebars is rela-
tively small at the side, thus the dominating failure mechanism of the dowel 
action is splitting of the concrete cover across the width of the beam (Vintzeleou 
& Tassios 1986). Based on the experimental observations of Bauman and Rüsch 
(Baumann & Rüsch 1970), after the maximum dowel force Vd,max is reached, 
plastic behaviour is expected, see Fig. 3.28. With respect to the propagation of 
the dowel crack, as long as the shear force applied at the rebar can be kept 
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configuration (Yang & den Uijl 2011) showed that the ultimate shear capacity of 
such specimens varies between 150 kN and 300 kN. 

Fig. 3.33. Crack opening combination of cracks generated at M/Vd from 1.0 to 4.0 
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crack opening  in vertical direction). 
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The increase of  with respect to the decrease of M/Vd is because of the larger 
inclination of the crack profile, while when the cracked section moves further 
from the support, the increase of  is due to the larger cross sectional moment, 
which is less steep than in the other situation.  
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crack opening combination in both directions when increasing the shear force V. 
Recalling to the simulation results of Fig. 3.29, it turns out that the shear re-
sistance that is generated by increasing the value  of the crack can reach an 
extraordinary high value. This is obviously in conflict with the experimental 
findings in the laboratory. The maximum shear resistance found from laboratory 
experiments is close to 150 kN for specimens with M/Vd larger than 2.0 (10 
times smaller than the maximum shear resistance according to Fig. 3.29). Once 
the shear force reaches that level, the width of one of the flexural cracks grows 
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strated in Fig. 3.34, in which the crack width can reach centimetres at failure. 
However, according to the model presented in this chapter, if the longitudinal 
reinforcement does not yield, the value of w is more or less stable in certain 
range. In that situation, further increase of shear force level can easily be com-
pensated by the increase of . Besides, when the maximum value of the shear 
force is reached, it remains constant with the increase of , which means that it is 
not possible to obtain an unstable failure as shown in Fig. 3.34. The only expla-
nation to this is that the mechanisms described in this chapter are not sufficient 
to describe the failure process. Additional mechanisms have to be included into 
the system to allow the unstable displacement along the crack curve. 
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C2b151 from continuous beam tests, from (Yang & den Uijl 2011). 
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which the first one allows the detachment of the rebar from the concrete beam. 
Consequently, the crack width of the major flexural crack shall be calculated 
directly from the elongation of the detached longitudinal reinforcement instead 
of Eq. (3.27). The crack width can increase more than one order of magnitude. 
This additional mechanism allowing catastrophic opening of the critical crack is 
related to the dowel action. 

For most reinforced concrete beams the concrete cover of the rebars is rela-
tively small at the side, thus the dominating failure mechanism of the dowel 
action is splitting of the concrete cover across the width of the beam (Vintzeleou 
& Tassios 1986). Based on the experimental observations of Bauman and Rüsch 
(Baumann & Rüsch 1970), after the maximum dowel force Vd,max is reached, 
plastic behaviour is expected, see Fig. 3.28. With respect to the propagation of 
the dowel crack, as long as the shear force applied at the rebar can be kept 
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constant, the crack can keep propagating until it reaches the support where the 
compressive stress stops the further opening of the crack. In most cases, the 
maximum dowel force is relatively small compared to the other actions. Thus, its 
limit of linear elastic behaviour can easily be reached. After that, the opening 
process is dependent on the energy balance of the whole system. During the 
propagation of the dowel crack, when the energy releasing rate of the system is 
larger than the fracture energy of the crack propagation, the process is unstable. 

Assuming that the dowel crack has reached the support, the length of the 
detached reinforcement equals to x0, so the width of the major crack is expressed 
by: 
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Fig. 3.35. Dowel cracking initiated from the root of a major crack under shear. 

At the compressive side of the beam, the shear displacement  of the crack 
path also accompanies with the development of a secondary crack branch at the 
crack tip towards the loading point. Similarly, the development of the horizontal 
crack branch in the compressive zone is an unstable process, which continues 
until it reaches the loading point. The progress of the crack tip in the concrete 
compressive zone results in an increase of xcr in Eq. (3.32), see Fig. 3.35. Eventu-
ally the value of xcr will be xcr = a – x0, when a being the centre to centre distance 
between the support and the loading point. In that case the reinforcing bars 
become a tension chord in the beam system. The load applied on it shall be 
calculated at the loading point. Thus the value of Ts can be formulated by 
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where,  
Mai : is the moment raised by the aggregate interlock effect to the centre of 

Nc under the loading point. 
 

Fig. 3.36. Shear force crack bottom displacement relationship according to Eq. (3.34) 
(left: crack opening w in longitudinal direction; right: crack opening  in vertical 
direction). 

Both cracks discussed in this section are denoted as secondary cracks caused 
by the increase of shear displacement of the major crack. The consequence of 
these cracks described by Eq. (3.34) and Eq. (3.35) are introduced into the pro-
gram to simulate the cracking process, with which the failure process is 
illustrated. It is demonstrated in Fig. 3.36, where the openings of the crack in 
both directions are plotted against the shear force applied in the span. The 
cracking behaviour after the development of the dowel crack is quite different. 
As stated before, the additional crack opening caused by the secondary cracks 
reduces the maximum shear force in the crack enormously. The shear force 
transferred through the cracks cannot always be increased further by generating 
more vertical displacement anymore. Besides, comparing to Fig. 3.33 the 
vertical crack opening  occurring after the dowel crack has developed is more 
than 100 times larger at the same load level which indicates a large reduction of 
the member stiffness. 

That explained the observation of a typical flexural shear failure of a normal 
reinforced concrete beam: the secondary crack branches propagate at both sides 
of a cracked beam section accompanied by a significant increase of the width of 
the relating major crack. The unstable opened crack is defined as the critical 
inclined crack, and the shear force level under which the process described in 
this section develops is defined as the inclined cracking load. 
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constant, the crack can keep propagating until it reaches the support where the 
compressive stress stops the further opening of the crack. In most cases, the 
maximum dowel force is relatively small compared to the other actions. Thus, its 
limit of linear elastic behaviour can easily be reached. After that, the opening 
process is dependent on the energy balance of the whole system. During the 
propagation of the dowel crack, when the energy releasing rate of the system is 
larger than the fracture energy of the crack propagation, the process is unstable. 

Assuming that the dowel crack has reached the support, the length of the 
detached reinforcement equals to x0, so the width of the major crack is expressed 
by: 
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Fig. 3.35. Dowel cracking initiated from the root of a major crack under shear. 

At the compressive side of the beam, the shear displacement  of the crack 
path also accompanies with the development of a secondary crack branch at the 
crack tip towards the loading point. Similarly, the development of the horizontal 
crack branch in the compressive zone is an unstable process, which continues 
until it reaches the loading point. The progress of the crack tip in the concrete 
compressive zone results in an increase of xcr in Eq. (3.32), see Fig. 3.35. Eventu-
ally the value of xcr will be xcr = a – x0, when a being the centre to centre distance 
between the support and the loading point. In that case the reinforcing bars 
become a tension chord in the beam system. The load applied on it shall be 
calculated at the loading point. Thus the value of Ts can be formulated by 

 ( )0

1
( )

s d ai
T Va V a x M

z
= - - -  (3.35) 

 

splitting cracking 

x0 xcrw = x0Ts/AsEs

Δ 

reinforcement

CH3 Failure Process of a Reinforced Concrete Beam without Shear 
Reinforcement 

87 

 

 

where,  
Mai : is the moment raised by the aggregate interlock effect to the centre of 

Nc under the loading point. 
 

Fig. 3.36. Shear force crack bottom displacement relationship according to Eq. (3.34) 
(left: crack opening w in longitudinal direction; right: crack opening  in vertical 
direction). 

Both cracks discussed in this section are denoted as secondary cracks caused 
by the increase of shear displacement of the major crack. The consequence of 
these cracks described by Eq. (3.34) and Eq. (3.35) are introduced into the pro-
gram to simulate the cracking process, with which the failure process is 
illustrated. It is demonstrated in Fig. 3.36, where the openings of the crack in 
both directions are plotted against the shear force applied in the span. The 
cracking behaviour after the development of the dowel crack is quite different. 
As stated before, the additional crack opening caused by the secondary cracks 
reduces the maximum shear force in the crack enormously. The shear force 
transferred through the cracks cannot always be increased further by generating 
more vertical displacement anymore. Besides, comparing to Fig. 3.33 the 
vertical crack opening  occurring after the dowel crack has developed is more 
than 100 times larger at the same load level which indicates a large reduction of 
the member stiffness. 

That explained the observation of a typical flexural shear failure of a normal 
reinforced concrete beam: the secondary crack branches propagate at both sides 
of a cracked beam section accompanied by a significant increase of the width of 
the relating major crack. The unstable opened crack is defined as the critical 
inclined crack, and the shear force level under which the process described in 
this section develops is defined as the inclined cracking load. 
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3.4.3 Discussion 

In the study up to this section the contributions to the shear resistance have been 
investigated from the corresponding mechanisms along a crack in a reinforced 
concrete beam, such as the aggregate interlock and dowel action. It reveals that, 
although the aggregate interlock contributes for a substantial proportion to the 
shear resistance, the final failure is eventually triggered by the development of a 
dowel crack relating to the dowel action of the reinforcement. Only when the 
dowel cracking is taken into account, the following steps in the failure process 
are possible. Thus to evaluate the inclined cracking load of a reinforced concrete 
beam, the development of this type of crack can be considered as the failure 
criterion as pointed out by Chana in (Chana 1987). 

 Unstable Opening of the Dowel cracks 3.4.3.1

Experimental results have shown that the force needed to open the dowel crack 
is constant after the linear elastic limit has been reached. Besides, the shear 
resistance contributed by the dowel action is quite limited, so that during the 
loading process, the maximum dowel action force is easily reached while the 
development of the dowel crack remains stable. Therefore the force criterion is 
not suitable to determine the moment at which the development of the dowel 
crack becomes unstable. On the hand, the vertical crack opening or to be more 
general: the shear displacement of the crack faces at the tensile reinforcement 
level (the term is simplified as shear displacement in the remaining part of the 
dissertation)  always increases with the cross sectional shear force, and it is 
directly linked to the other shear resistance effects such as the aggregate inter-
lock. Thus, it is logic to relate the moment at which the unstable dowel cracking 
process starts to  instead.  

In principle, the development of the dowel crack always has to correspond to 
the general energy balance, based on which, the critical shear displacement cr 
should be determined. Considering the cracked beam as a whole system, the 
energy releasing rate per crack length G has to be no smaller than the fracture 

 
 

Fig. 3.37. Detachment of a tension bar attached to a deep beam. 
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energy Gf to allow the crack to develop. In the most simplified manner, the 
detachment of the longitudinal reinforcement can be considered as the devel-
opment of a crack between a tensile bar and a large beam as shown in Fig. 3.37: 

With the length of the crack expressed by , the energy release rate of the 
tensile bar can be expressed by G = dU */d. Neglecting the complimentary 
strain energy in the large beam, the additional U * due to the elongation of the 
crack can be expressed analytically with classic mechanics such as (Timoshenko 
1956). The complementary strain energy U * and the strain energy U are: 
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Assuming that during the dowel cracking process, the tensile force in the rebar 
Ts and the shear force Vd are constant, the energy release rate G may be ex-
pressed by: 
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Here the value of w is expressed by Eq. (3.27). When the energy releasing rate G 
becomes is larger than the fracture energy Gf along the longitudinal rebar, 
unstable crack development of the dowel crack starts. In the case of pure tension 
in the bar, the value of Gf should be the mode II fracture energy Gf,II. The cross 
sectional moment in a normal reinforced concrete beam at the cracking surface is 
normally large, so that a large Ts is expected. According to Eq. (3.36), if Ts is large 
enough, it is possible to obtain a sufficiently large energy releasing rate to get 
unstable crack development along the longitudinal rebar. That explains why 
some researchers are able to simulate the dowel crack with rebars only modelled 
as a truss element (no transverse stiffness) in Non Linear Finite Element pro-
grams (Slobbe, Hendriks et al. 2012). As it is shown below, depending on the 
stiffness of the rebar itself, this simplification underestimates the total energy 
releasing rate G. 

In this very simplified case, the reinforcing bars are considered as pure ten-
sion elements, whereas their flexural stiffness is neglected. When the flexural 
stiffness of the rebars is taken into account, the additional strain energy intro-
duced by the dowel shear force Vd is : 
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With the energy of the flexural stiffness of the rebar taken into account, Eq. (3.36) 
is updated to: 
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detachment of the longitudinal reinforcement can be considered as the devel-
opment of a crack between a tensile bar and a large beam as shown in Fig. 3.37: 
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As shown previously, only before the horizontal branch of the flexural cracks 
develops, the vertical crack opening  and the horizontal crack opening w are 
related to each other. Since the development of that horizontal branch is always 
needed for slender beams, the value of  has to be determined independently. 

The two examples shown above are quite simplified models. Considering the 
components acting along the cracked surface as inner forces, the construction of 
the energy release rate G of the critical inclined crack has to involve more aspects. 
Being inspired by Griffith (Griffith 1921), an attempt is made to formulate the 
energy balance of the whole cracked beam based on the vertical displacement  
and the total shear force V. In the system, the uncracked concrete can be con-
sidered as a linear elastic material. Nevertheless, the energy dissipated by the 
aggregate interlocking effect cannot be neglected. That makes the basic energy 
balance equation (Shah, Stuart et al. 1995) as follows: 
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In the energy balance equation, the total shear force V is composed of three 
components, among which Vc remains constant with respect to the crack de-
velopment, thus its derivation against d is made zero. The contribution of the 
longitudinal rebars: dUd*= Vdd – dUd can be estimated with Eq. (3.38). The 
additional component in the energy balance equation is the aggregate interlock-
ing component. Here the expression applied to solid materials: U* = Fu - U is not 
valid anymore, since a large part of the deformation under Vai goes to friction 
between the aggregates. It is a highly nonlinear process. The remaining part, 
stored as strain energy in the uncracked concrete, does not equal the comple-
mentary strain energy. Taking into account the complex expression of Vai and 
the uncertainty in crack trajectory, an analytical solution of cr is not practical. 

The idea of introducing the energy balance principle into the crack propagat-
ing process has been employed by Gastebled and May in (Gastebled & May 
2001). In their study, they linked the value of w and  in Eq. (3.38) by forcing the 
crack profile to a 45º straight line, relating the shear displacement of crack faces 
at the longitudinal rebars  to the shear deformation of the bars linearly and 
neglecting the aggregate interlocking effect. As shown in the preceding discus-
sion in this study, some of these simplifications can still be criticized. 
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 Location of the Critical Inclined Crack 3.4.3.2

With  as a failure criterion, the remaining question is which crack will develop 
into the critical shear crack? The relationship between the shear displacement  
and the shear force V presented in Fig. 3.33 is examined again. It shows that 
under the same load level, the minimum vertical displacement is close to the 
cracks developed under M/Vd = 2.0. Under the same shear force, the values of  
increase with M/Vd when the value of M/Vd is larger than the one at the lower 
point. That indicates that at the same shear force the shear displacement  of 
cracked sections closer to the loading point will always reach cr earlier. Never-
theless, a certain distance between the crack tip and the centre of the loading 
point is still necessary to guarantee a sufficient length of the horizontal branch to 
generate  at the crack tip. When the shear span is large, this distance can be 
neglected, because the difference between the shear resistances of sections with 
large M/Vd values is small according to experimental observations. 

On the other hand, when the value of M/Vd at the cracked section is smaller 
than that of the lowest point in Fig. 3.33 (left),  increases with the decrease of 
M/Vd due to the larger inclination of the crack profile. That implies that the 
cracks that are initiated at sections closer to the support can carry less shear force 
than the ones further away when the M/Vd is very small. Assuming a constant 
critical shear displacement cr along the span, the shear force that is needed to 
make  = cr for the corresponding crack initiated at x0 from the support can be 
indicated as the shear resistance of the section. It is indicated as the solid line in 
Fig. 3.38 qualitatively. 

It sounds contradictory to the experimental observation that the shear re-
sistance of the cracked sections closer to the support become lower, because 
most experiments show that for simply supported beams with smaller shear 
slenderness ratio a/d, the shear capacity is higher than the ones with larger a/d. 
An explanation is that for cross sections located closer to the support, despite 
that the shear capacity of an inclined crack is smaller, as long as the crack does 
not develop, the shear force is still carried by the whole uncracked cross section, 
which will give a much higher shear resistance than a cracked section. Therefore, 
the decisive factor in this case is whether a fully developed major crack can be 
formed in the section or not. This effect can be explained in a very simplified 
manner. Assuming that the major crack forms immediately when the moment M 
reaches the cracking moment Mcr, the section located at x0 from the support 
needs the shear force to be Vcr,m to generate a crack 
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The value of Vcr,m against the location of the cross-section is plotted in Fig. 3.38 as 
the cracking shear force line. The part of the shear resistance line between the 
loading point and the cracking shear force line actually indicates the shear 
resistance. After the intersection point, the cracking shear force line replaces the 
other one as the shear resistance line. The position of the lowest point of the 
curve decides where the critical inclined crack is found.  

For beams with large shear slenderness ratio a/d, it is appropriate to assume 
that the critical section is in the vicinity of the loading point and evaluate the 
shear force required to cause  = cr at that section. Once the shear capacity of 
the crack close to the loading point Vcr is known, it is also necessary to check the 
uncracked span from the support a0 for the specimen. 
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When a0 is very small, the chance that the critical crack is located at the other end 
of the curve is very high. 
 

 
 

Fig. 3.38. Illustration of shear resistance versus cracking shear force line at shear 
failure. 

It has to be remarked that the shear capacity discussed here defines the load 
level under which a crack in the shear span opens unstably under the shear force. 
Considering the fact that the crack is mostly inclined in experiment, this shear 
force is defined as the inclined cracking load Vcr. Nevertheless, it is not neces-
sarily the ultimate capacity of the beam. 
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3.5 RESIDUAL CAPACITY 

3.5.1 Arch Structure Formed by Inclined Crack 

For beams with a relatively large shear span, section 3.4 has shown that the 
development of the dowel crack along the longitudinal reinforcement results in 
a significant reduction of shear resistance of the cracked section, and the overall 
beam stiffness. This phenomenon is defined as the reason for the final failure. 
However, the questions being raised constantly before are actually still valid 
here. Is that really the ultimate failure of the beam? What happens afterwards? If 
we have a second look at the beam after the opening of the dowel crack, we 
might find a bearing mechanism in the damaged beam. The debonding of the 
reinforcing bars results in a great increase of the opening of the critical inclined 
crack. Consequently, the shear force due to aggregate interlock reduces signifi-
cantly across the crack. In some cases, it can even be neglected completely. The 
remaining uncracked part of the concrete beam has to carry the entire load. On 
the other hand, the longitudinal rebar can be considered as a tension chord. The 
uncracked concrete part and the fully detached rebar forms a sort of arch-like 
structure. An illustration of such a structure is shown in Fig. 3.39. In theory, it 
can still resist the bending moment and the shear force. Thus, it is not necessary 
that the beam collapses after the opening of the inclined crack.  
 

 
 
Fig. 3.39. Load bearing structure of a beam after inclined crack developed. 

Only when the remaining arch structure is not able to resist the load which 
causes the opening of the inclined crack, then a catastrophic failure occurs. The 
tensile chord of the structure is mainly composed of the longitudinal reinforce-
ment, which will not change with the cracking of the concrete beam. Before 
yielding, the uncracked concrete part of the beam actually determines the 
residual capacity after the inclined crack develops. If the uncracked concrete 
part is able to resist the load level that is higher than the load causing the  
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The value of Vcr,m against the location of the cross-section is plotted in Fig. 3.38 as 
the cracking shear force line. The part of the shear resistance line between the 
loading point and the cracking shear force line actually indicates the shear 
resistance. After the intersection point, the cracking shear force line replaces the 
other one as the shear resistance line. The position of the lowest point of the 
curve decides where the critical inclined crack is found.  

For beams with large shear slenderness ratio a/d, it is appropriate to assume 
that the critical section is in the vicinity of the loading point and evaluate the 
shear force required to cause  = cr at that section. Once the shear capacity of 
the crack close to the loading point Vcr is known, it is also necessary to check the 
uncracked span from the support a0 for the specimen. 
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When a0 is very small, the chance that the critical crack is located at the other end 
of the curve is very high. 
 

 
 

Fig. 3.38. Illustration of shear resistance versus cracking shear force line at shear 
failure. 

It has to be remarked that the shear capacity discussed here defines the load 
level under which a crack in the shear span opens unstably under the shear force. 
Considering the fact that the crack is mostly inclined in experiment, this shear 
force is defined as the inclined cracking load Vcr. Nevertheless, it is not neces-
sarily the ultimate capacity of the beam. 
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can still resist the bending moment and the shear force. Thus, it is not necessary 
that the beam collapses after the opening of the inclined crack.  
 

 
 
Fig. 3.39. Load bearing structure of a beam after inclined crack developed. 

Only when the remaining arch structure is not able to resist the load which 
causes the opening of the inclined crack, then a catastrophic failure occurs. The 
tensile chord of the structure is mainly composed of the longitudinal reinforce-
ment, which will not change with the cracking of the concrete beam. Before 
yielding, the uncracked concrete part of the beam actually determines the 
residual capacity after the inclined crack develops. If the uncracked concrete 
part is able to resist the load level that is higher than the load causing the  
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Fig. 3.40. Formation of arch structure by inclined cracks in beams with different shear 

span, and their influence to the load-deflection relationship. The specimens are 
C2b151 (see also Fig. 3.5 and Fig. 3.34), C3b121 and C4b091 from the continuous 
beam test series. 
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development of the inclined crack, the beam may have a higher capacity after 
the inclined crack develops. Reflecting on the load-deflection relationship, a 
certain increment of deflection with constant load can be found in the diagram. 
Three examples are shown in Fig. 3.40. It includes three load deflection rela-
tionships derived from experiments as well as the crack patterns of the 
specimens after failure. 

Fig. 3.40 shows three typical situations. For beams with a = 3.30 d (C5a151 in 
the tests series explained in Chapter 4), the inclined crack formed at a certain 
distance from the loading point, that resulted in a relatively long horizontal 
branch in the compressive zone. The remaining structure could not resist the 
load causing the inclined crack, thus the structure failed immediately after the 
formation of the inclined crack. In the second case, a = 2.64 d, the tip of the 
inclined crack reached the loading point already, thus the remaining uncracked 
structure is stronger than in the previous case. On the other hand, the bottom of 
the inclined crack is still at a certain distance from the support. Consequently, 
the opening of the dowel crack results in a clear reduction of the overall stiffness. 
A large deformation was observed in the load deflection relationship after the 
inclined crack developed. Nonetheless, the remaining structure was able to 
resist a load that is larger than that causing the inclined crack. The ultimate 
capacity of the beam was defined by the capacity of the arch structure formed by 
the inclined crack at a higher load level. The last beam had the shortest shear 
span with a = 1.98 d. When dowel crack developed, the length of the tension 
chord was so small that an almost negligible increment of deflection was ob-
served regarding the load-deflection relationship. The last case is usually 
denoted as shear compression failure in literature, see Chapter 2. 

The profile of a critical inclined crack consists of the part formed shortly after 
M = Mcr (defined as the major cracks before further development), and those 
parts that propagates at V = Vcr (the secondary cracks). Because of the non-
linearity of concrete behaviour at higher compressive strain, the height of the 
compressive zone zc reduces. It results in the secondary crack moving towards 
the loading point in the compressive zone. Nonetheless, regarding the strength 
of the concrete arch, the height of the compressive zone where the secondary 
crack starts to develop is of more importance. It defines the starting point of the 
horizontal crack branch. From there, a crack path with limited curvature is 
expected. The uncracked part of the concrete beam formed by the secondary 
crack can be considered as a cantilever loaded by shear force Vc and compressive 
force Nc, as illustrated in Fig. 3.39. Since the height of the cantilever cannot vary 
as much as the remaining part of the concrete arch, the starting point of the 
horizontal branch with the largest moment is then considered to be the critical 
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development of the inclined crack, the beam may have a higher capacity after 
the inclined crack develops. Reflecting on the load-deflection relationship, a 
certain increment of deflection with constant load can be found in the diagram. 
Three examples are shown in Fig. 3.40. It includes three load deflection rela-
tionships derived from experiments as well as the crack patterns of the 
specimens after failure. 

Fig. 3.40 shows three typical situations. For beams with a = 3.30 d (C5a151 in 
the tests series explained in Chapter 4), the inclined crack formed at a certain 
distance from the loading point, that resulted in a relatively long horizontal 
branch in the compressive zone. The remaining structure could not resist the 
load causing the inclined crack, thus the structure failed immediately after the 
formation of the inclined crack. In the second case, a = 2.64 d, the tip of the 
inclined crack reached the loading point already, thus the remaining uncracked 
structure is stronger than in the previous case. On the other hand, the bottom of 
the inclined crack is still at a certain distance from the support. Consequently, 
the opening of the dowel crack results in a clear reduction of the overall stiffness. 
A large deformation was observed in the load deflection relationship after the 
inclined crack developed. Nonetheless, the remaining structure was able to 
resist a load that is larger than that causing the inclined crack. The ultimate 
capacity of the beam was defined by the capacity of the arch structure formed by 
the inclined crack at a higher load level. The last beam had the shortest shear 
span with a = 1.98 d. When dowel crack developed, the length of the tension 
chord was so small that an almost negligible increment of deflection was ob-
served regarding the load-deflection relationship. The last case is usually 
denoted as shear compression failure in literature, see Chapter 2. 

The profile of a critical inclined crack consists of the part formed shortly after 
M = Mcr (defined as the major cracks before further development), and those 
parts that propagates at V = Vcr (the secondary cracks). Because of the non-
linearity of concrete behaviour at higher compressive strain, the height of the 
compressive zone zc reduces. It results in the secondary crack moving towards 
the loading point in the compressive zone. Nonetheless, regarding the strength 
of the concrete arch, the height of the compressive zone where the secondary 
crack starts to develop is of more importance. It defines the starting point of the 
horizontal crack branch. From there, a crack path with limited curvature is 
expected. The uncracked part of the concrete beam formed by the secondary 
crack can be considered as a cantilever loaded by shear force Vc and compressive 
force Nc, as illustrated in Fig. 3.39. Since the height of the cantilever cannot vary 
as much as the remaining part of the concrete arch, the starting point of the 
horizontal branch with the largest moment is then considered to be the critical 
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section. The stress at the top fibre of that section defines the ultimate capacity of 
the beam: 
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where 
ac : is the length of the secondary branch; 
zc : is the height of the compressive zone at the starting point of the sec-

ondary branch. 
Vc: is the shear force component in the concrete compressive zone, see Eq. 

(3.26). 
Nc: is the resultant compressive force in the concrete compressive zone. 
ec: is the offset of the resultant compressive force to the centroid of the 

compressive zone. The value of ec is mostly negligible. Accordingly, 
the third item in the equation may be neglected. 

 

 
 
Fig. 3.41. Maximum principal stress distributions and crack patterns of FEM models 

of arch structure with different horizontal crack branches profiles. 

The influence of height variation of the concrete arch due to the variation of 
secondary crack profile has to be investigated. Because the limited curvature of 
the secondary cracks, it is assumed that it only rotation around its tip, thus no 
shear displacement is expected there. Fig. 3.41 illustrates four results of numer-
ical simulations with the nonlinear FEM software package Atena2D using 
smeared cracking elements. Four possible arch structures of a reinforced con-
crete beam after the formation of an inclined crack are constructed. A half beam 
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is modelled. The reinforcement is modelled by external rebars, thus no interac-
tion between concrete and rebar is expected between the ends of the rebars. The 
models are based on the standard structural members introduced in Section 3.1. 
The dimensions of the models are summarized in Fig. 3.41 as well. The crack 
paths of all the four models are initiated at 1.5d from the support. The profile of 
the major cracks are calculated by Eq. (3.19). Other than the last model, the 
heights of the cracks are calculated by scr from Eq. (3.2). It results in a constant 
height of the concrete arch zc at the root of the cantilever. The height of the 
cantilever under the loading point zc′ is the main variable, see Fig. 3.41. In the 
first three models, the height of the cantilever varies linearly, while in the last 
one, the cantilever branch of the concrete arch is formed by the extension of the 
crack profile calculated by Eq. (3.19).  

The simulations show that despite the variation of the secondary crack 
branch, the maximum shear forces that can be reached in the first three models 
are quite close. Only when zc is reduced, a significantly smaller shear force is 
expected. The crack patterns shown in Fig. 3.41, together with the maximum 
shear force at failure, confirms the conclusion derived previously, that it is the 
moment capacity at the starting point of the horizontal crack that defines the 
ultimate capacity of the beam. Besides, the simulations show that Eq. (3.42) may 
be utilized to judge the failure mode of a beam. 

3.5.2 Critical Compressive Zone 

The analysis of the residual structure formed by the critical inclined crack 
implies that under the shear force level where the inclined crack develops, a 
critical compressive zone can be defined. If the tip of the inclined crack is 
located within ac,c from the loading point, the stress of the top fibre of the beam is 
always smaller than the tensile strength of the concrete, thus a stable arch 
structure can still form after the opening of the inclined crack. Otherwise, if it is 
possible to develop a crack with its tip located at ac > ac,c, one may expect the 
collapse of the beam directly after the development of the inclined crack. It has 
to be remarked that unlike the other cases discussed in this research, here the 
definition of ac,c starts from the edge of the loading plate if the point load is 
introduced through a plate, which can be considered as the support of the 
concrete cantilever. The value of ac,c is determined by making c = fct in Eq. (3.42), 
and is expressed by 
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In Eq. (3.43), ec is neglected. Besides, since fctbwzc is always much smaller than Nc, 
this term is neglected as well.  
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is modelled. The reinforcement is modelled by external rebars, thus no interac-
tion between concrete and rebar is expected between the ends of the rebars. The 
models are based on the standard structural members introduced in Section 3.1. 
The dimensions of the models are summarized in Fig. 3.41 as well. The crack 
paths of all the four models are initiated at 1.5d from the support. The profile of 
the major cracks are calculated by Eq. (3.19). Other than the last model, the 
heights of the cracks are calculated by scr from Eq. (3.2). It results in a constant 
height of the concrete arch zc at the root of the cantilever. The height of the 
cantilever under the loading point zc′ is the main variable, see Fig. 3.41. In the 
first three models, the height of the cantilever varies linearly, while in the last 
one, the cantilever branch of the concrete arch is formed by the extension of the 
crack profile calculated by Eq. (3.19).  

The simulations show that despite the variation of the secondary crack 
branch, the maximum shear forces that can be reached in the first three models 
are quite close. Only when zc is reduced, a significantly smaller shear force is 
expected. The crack patterns shown in Fig. 3.41, together with the maximum 
shear force at failure, confirms the conclusion derived previously, that it is the 
moment capacity at the starting point of the horizontal crack that defines the 
ultimate capacity of the beam. Besides, the simulations show that Eq. (3.42) may 
be utilized to judge the failure mode of a beam. 

3.5.2 Critical Compressive Zone 

The analysis of the residual structure formed by the critical inclined crack 
implies that under the shear force level where the inclined crack develops, a 
critical compressive zone can be defined. If the tip of the inclined crack is 
located within ac,c from the loading point, the stress of the top fibre of the beam is 
always smaller than the tensile strength of the concrete, thus a stable arch 
structure can still form after the opening of the inclined crack. Otherwise, if it is 
possible to develop a crack with its tip located at ac > ac,c, one may expect the 
collapse of the beam directly after the development of the inclined crack. It has 
to be remarked that unlike the other cases discussed in this research, here the 
definition of ac,c starts from the edge of the loading plate if the point load is 
introduced through a plate, which can be considered as the support of the 
concrete cantilever. The value of ac,c is determined by making c = fct in Eq. (3.42), 
and is expressed by 
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this term is neglected as well.  
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Before further elaboration, it has to be clarified that the height of the 
uncracked part in the compressive zone should have been slightly higher than zc 
in theory, when taking into account the tension softening behaviour of concrete. 
However, the observations from experiments always show a smaller uncracked 
zone than the calculated zc because the 2-dimensional stress state at the crack tip 
generates a gradual transition between the major crack and the secondary crack 
rather than a kink. Thus the value of zc used in Eq. (3.43) may need to be reduced 
by zczc. Besides, when the possible secondary crack branch is really long, 
buckling has to be regarded as a possible failure mode, that also introduces a 
certain reduction of the maximum allowable length of ac,c. Before further cali-
bration this effect is not taken into account, thus zc = 1.0. Nevertheless, the 
aforementioned reductions will not influence the conclusion significantly, 
therefore will not be discussed in detail. 

Eq. (3.43) can be further simplified by taking into account that Nc = M/z and 
regarding Eq. (3.26). It becomes 
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where  
M, V : are the moment and shear force at the loading point; 
zc : is a reduction factor for the compressive zone. 
 
The beam specimens shown in Fig. 3.40 of this section can be taken as an 

example. The maximum values of M/Vd of the spans are 3.30, 2.64 and 1.98. The 
lengths of the critical compressive zone of the beams are 379.5 mm, 308.25 mm 
and 227.75 mm. The value of zc in the specimens are zc = d-scr = 157.6 mm. The 
maximum crack height is then smax = h – zczc = 373.9 mm. With a beam height h 
= 500 mm it is found that  = 0.748. For each beam, it is assumed that the crack 
may develop at any location of the span. If all the cracks can reach the crack 
height  as calculated here. The distance between the crack tip and the support 
xtip can be calculated with Eq. (3.19). The value of xtip/d of a crack is plotted 
against the location x0/d where the same crack initiates, see Fig. 3.42, which is 
independent of the load cases as long as the beam is loaded by point loads. In 
Fig. 3.42, the boundaries of the critical compressive zones of the three beams are 
plotted as well. For each loading case, if the crack tip enters ac,c from the loading 
point, it is possible to form a stable arch structure, even after the opening of the 
inclined crack. In Fig. 3.42 it means that the curve is higher than the boundaries 
of the corresponding loading case.  
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Fig. 3.42. Relationship of crack tip location and crack initiation location according to 

Eq. (3.19). 

Fig. 3.42 clearly shows that with the configuration presented in this example, 
if the shear slenderness ratio of the beam is a/d = 1.98, the crack will always 
enter the critical compressive zone. Therefore it is not possible to have the 
so-called flexural shear failure for that loading case. On the other hand, for the 
specimen with a/d = 3.30, any crack that initiates between x0 = 0.10d and 1.93d 
from the support can become a critical inclined crack, the opening of which will 
result in the collapse of the whole structure directly. 

In the case of a/d = 2.64, it is more complicated. Fig. 3.42 indicates that if the 
crack initiates at 1.31d or closer to the support the beam will fail immediately 
after the crack opens. However, considering the tensile strength of the concrete, 
the cracking moment of the beam is Mcr = 61.3 kNm (fctm = 4.9 MPa). At the 
measured Vcr = 132.4 kN, the crack only starts to develop at 1.01d from the 
support. Taking that into account, the length of the actual zone along the axis of 
the beam where a critical inclined crack may develop is about 138 mm. However, 
the average crack spacing lcr,m of the major cracks is 232 mm according to Eq. (3.5) 
or 214 mm based on measurement in Fig. 3.5. Both are larger than 138 mm. It 
means that a principal inclined crack will not always develop within this region. 
Depending on whether the crack will develop or not, the shear failure mode may 
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and 227.75 mm. The value of zc in the specimens are zc = d-scr = 157.6 mm. The 
maximum crack height is then smax = h – zczc = 373.9 mm. With a beam height h 
= 500 mm it is found that  = 0.748. For each beam, it is assumed that the crack 
may develop at any location of the span. If all the cracks can reach the crack 
height  as calculated here. The distance between the crack tip and the support 
xtip can be calculated with Eq. (3.19). The value of xtip/d of a crack is plotted 
against the location x0/d where the same crack initiates, see Fig. 3.42, which is 
independent of the load cases as long as the beam is loaded by point loads. In 
Fig. 3.42, the boundaries of the critical compressive zones of the three beams are 
plotted as well. For each loading case, if the crack tip enters ac,c from the loading 
point, it is possible to form a stable arch structure, even after the opening of the 
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switch. Indeed, both failure patterns were observed in the experimental pro-
gram of continuous beams.  

As a complement to Fig. 3.40, the crack pattern of a beam with the same a/d 
but different failure mode is shown in Fig. 3.43. It has to be mentioned that the 
boundary conditions and the geometry of both beam C3b121 and C12a121 are 
identical, except that the reinforcement ratio of the two beams are different, see 
Table 5.1. That difference might introduce a certain difference in behaviour. 
Nevertheless an impression on the influence of the crack pattern may be derived 
from the comparison. In beam C12a121, the critical inclined crack developed at a 
distance of about 1.0d from the support. Consequently the arch structure formed 
by the crack was not able to withstand the load directly after the development of 
the major inclined crack. After a considerable deformation, the load level was 
able to be increased again to a slightly higher level by virtue of the top rein-
forcement. The position of the inclined crack clearly influences the failure modes 
in the two cases shown here.  

If the theory presented here reflects the mechanism properly, another con-
clusion that can be drawn is that for beams with the same a/d but with smaller 
concrete tensile strength fctm, the area where a critical inclined crack may develop 
becomes larger. When the length of the critical cracking zone is larger than the 
average crack spacing, the chance of having flexural shear failure will be 100%. 

Another conclusion that can be derived by the theory is that it is the profile of 
the inclined crack that forms the arch structure. If it is possible to affect the shape 
of the inclined crack or even construct the shape of the arch structure manually 
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rather than letting the inclined cracks do so, the shear capacity of the beam can 
be improved. It will be the strength of the concrete arch that defines the capacity 
eventually. This conclusion has been proven by Beeby by experiments reported 
in (Walraven 2007). Beeby designed a reinforced concrete beam with a part of 
the concrete at mid span replaced by polystyrene. The remaining concrete and 
rebar forms a simple arch structure similar to what can be expected after the 
formation of the inclined crack. The artificially formed arch structure has a 
larger slope than that normally formed by cracking (Fig. 3.39), which was 
limited by the compressive force distribution. The test results showed that the 
specimen with an artificially formed arch structure is about 60% stronger than 
the reference beam with normal rectangular section (more concrete) and the 
same amount of reinforcement: 202 kN for Beeby’s beam versus 129 kN (average) 
for the reference beams. The configurations of Beeby’s arch-like beam and the 
reference are shown in Fig. 3.44. 

 

 
 

Fig. 3.44. Configurations of Beeby's beams adopted from (Walraven 2007). 

3.5.3 Shear Force in Concrete Compressive Zone 

The shear force in the concrete compressive zone of a concrete beam with 
flexural cracks was discussed in Section 3.3.2.1. The shear force was calculated 
by the shear stress distribution as proposed by Mörsch (Mörsch 1909). For the 
remaining arch structure after the opening of the inclined crack, that formula 
was still utilized in the previous sections. However, whether the formula is still 
valid or not is not clarified yet. Apparently the arch-like structure formed by the 
inclined crack and the longitudinal crack along the rebar is quite different from 
the teeth structure of a reinforced concrete beam with only flexural cracks. For 
that reason the same topic is picked-up again in this part of study. The assump-
tions presented in Section 3.3.2.1 are re-examined and adapted if necessary. 

An obvious difference between the two situations is the opening of the hor-
izontal crack branch. It removes the interaction between the concrete 
compressive zone and the tension zone. The opening direction of the crack is 
perpendicular to the longitudinal direction of the beam. No tangential dis-
placement can develop along the crack, thus no shear stress is expected along 
the crack. While in a beam with only flexural cracks, the maximum shear stress 
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is expected at the neutral axis, the proposed stress distribution shown in Fig. 
3.27 is not applicable anymore to the arch structure. Since no shear stress is 
expected through the crack, the shear force in the cantilever remains constant. It 
is governed by the shear force that is at the tip of the crack. 

Here two possibilities may be expected. If teeth structures can still be formed 
by other major cracks between the tip of the secondary crack branch and the 
loading point, for example the crack patterns for a/d = 3.30 and 2.64 as shown in 
Fig. 3.40 and Fig. 3.43, the Mörsch’s shear stress distribution may still describe 
the stress state properly. Vc can still be calculated by Eq. (3.26). On the other 
hand, if the crack tip already reaches the loading point, a rather complex stress 
state is generated there. In principle the uncracked compressive zone of the arch 
structure shall carry all the shear force that is not transmitted through the 
aggregate interlock effect and dowel action. Thus, depending on the crack 
profile this contribution may approach to 100% V. In that case the value of ac,c 
has to be adjusted, the lower bound of which is determined by replacing Vc with 
V in Eq. (3.43). It delivers: 
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In principal, the components of the region with an inclined crack can be 
schematized by Fig. 3.45. Before the crack tip reaches the loading point, the shear 
force available in the compressive zone Vc is limited by the shear stress distri-
bution in the flexural cracked zone. After the crack tip reaches the loading point, 
the value of Vc is not limited anymore. The stiffness of the different components 
in the system shown in Fig. 3.45 determines the distribution of the shear force. 

 

 
Fig. 3.45. Shear resisting components in an inclined cracked region of a reinforced 

concrete beam. 

The uncracked concrete part has a varying cross section, so that under a unit 
load, the deflection of it has to be calculated by solving the differential equation: 

Vai~Δ
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where  
I : is the moment of inertia of the cross-section above the crack;  
y :  is the deflection of the beam. 

 
Since the crack profile varies along the longitudinal direction, I is a function of x 
as well:  

 ( )331 1
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with,  
s(x) : is the expression of the crack profile; 
h: the height of the beam. 

 
The value of s(x) is defined by Eq. (3.19), it is expressed as follows: 
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With the boundary conditions known, Eq. (3.46) can be solved in theory. How-
ever, due to the complexity of Eq. (3.47), the solution is not analytical. To get a 
general impression for the stiffness of the remaining arch structure, Eq. (3.47) is 
further simplified by replacing the expression of s(x) by a linear crack path: s(x) 
= h – tc x, where tc defines the inclination of the crack path, tc = scr/xcr. With the 
simplified expression, Eq. (3.46) can be solved analytically, resulting in: 
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The values of C1 to C3 are solved assuming the following boundary conditions 
y(xcr) = 0, y(0)′ = 0, and y(xcr)″ = 0. With the expression of y(x) known, the stiff-
ness of the residual structure can be expressed: 
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where  
I : is the moment of inertia of the cross-section above the crack;  
y :  is the deflection of the beam. 

 
Since the crack profile varies along the longitudinal direction, I is a function of x 
as well:  
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s(x) : is the expression of the crack profile; 
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The values of C1 to C3 are solved assuming the following boundary conditions 
y(xcr) = 0, y(0)′ = 0, and y(xcr)″ = 0. With the expression of y(x) known, the stiff-
ness of the residual structure can be expressed: 
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The structure of Eq. (3.49) is quite simple, in which the length of the crack in 
longitudinal direction can be subtracted from the remaining equation. The same 
formulation structure can be extended to a more general scaling rule. For any 
beam like structure with a given expression of cross sectional function in its 
longitudinal direction, its vertical deflection stiffness is proportion to the 3rd 
power of the length of the beam xcr. 

When the shear span of the beam a is small, the length of the crack in longi-
tudinal direction is related to the shear span. Assuming that xcr is proportional to 
a, kr is proportional to (a/d)-3. For beams with smaller shear slenderness ratios, 
the analysis presented in this section shows that after the opening of the critical 
inclined crack, the proportion of Vc within the total shear resistance increases 
tremendously, being proportional to (a/d)-3. Thus the study of the shear force 
that can be carried by the residual concrete arch structure will deliver sufficient 
information on the ultimate capacity of the member. 

Such a analysis can be carried out by strut and tie models as proposed by 
(Marti 1985; Schlaich, Schäfer et al. 1987; Walraven & Lehwalter 1989; Collins, 
Bentz et al. 2008). Alternatively, Mihaylov et.al. proposed the theory called 
Two-Parameter Kinematic Theory (2PKT) in (Mihaylov, Bentz et al. 2013) 
shortly before the present thesis work was finished. Similar to the theory pro-
posed in this thesis, the shear displacement of the critical major crack, is adapted 
as a criterion for the shear failure. The theory showed remarkable accuracy in 
comparison with the conventional strut and tie method. However, it has to be 
clarified that the shear displacement in the 2PKT is mainly caused by the shear 
deformation of the concrete arch close to the loading plate when the concrete is 
crushed there. 

 

3.6 CONCLUSIONS 

This chapter focuses on giving a rational description of the shear failure process 
of a simply supported prismatic reinforced concrete beam without shear rein-
forcement loaded by a point load. Considering inclined cracks as the most 
prominent feature of shear failure, the study is subdivided into three parts, 
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namely: the pattern of the major cracks before inclined cracking, the mechanism 
of the opening of the critical inclined crack and the residual structure after 
inclined cracking. The mechanism in each stage of the failure process is studied 
and formulated, so that it can be extended to more general cases. What has been 
learnt is summarized in this section. 

Formation of the Major Crack Pattern 

Because of the equilibrium condition of the forces in the cross section, the height 
of a crack becomes stabilized quickly after the cross sectional moment M has 
exceeded Mcr. By then, the height of the cracks can be approximated by scr. Thus, 
the shape of the crack is determined at M ≈ Mcr. If the height of the crack can 
reach scr it is defined as major crack and is important for the shear resistance of 
the member. 

The spacing of the major cracks occurs mainly determined by the crack 
height scr when the height of the member is larger than 100 mm. 

For a major crack, its inclination occurs mainly because of the normal and 
shear stresses at its tip during the propagation process, among which shear 
stresses in the crack tip are generated by the bending of the concrete corbel in the 
teeth model formed by two adjacent major cracks by the longitudinal reinforce-
ment.  

During the crack propagation, the change of the crack inclination is strongly 
influenced by the value of M/Vd in the cross-section where the crack initiated, 
according to LEFM analysis. 

By applying a Sequentially Linear Analysis (SLA) with Crack Propagation 
Algorithm (CPA), it is shown that the crack path can be approximated by a 
quadratic function. The major factors of the function are M/Vd and crack spac-
ing. 

Opening of the Critical Inclined Crack 

Once the shape of the crack is known, it is possible to cut a part of the concrete 
beam along a given crack, considering it as a free body and evaluating the forces 
that apply on it. The study is aimed at revealing what is the reason of the sudden 
opening of a certain crack. 

If the major cracks stay as what they were at their formation, and only allow 
opening by rotation around the tip, the shear resistance that can be generated 
along the crack path is not sufficient to balance the shear force.  

A secondary crack branch starting from the original tip of the major crack in 
the longitudinal direction is necessary to generate additional tangential dis-
placement  along the crack. This results in the increase of shear resistance by 
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aggregate interlock, which can balance the additional shear force that is higher 
than the resistance that can be generated from the original crack path. 

If the crack width in the longitudinal direction w remains the same, the 
maximum shear force that can be resisted by aggregate interlock in a given crack 
is far beyond the normally expected shear capacity. Besides, the failure mode is 
plastic, rather than characterized by a sudden break as observed in experiments. 

The sudden loss of the shear resistance can only be explained when the sig-
nificant increase of the crack width due to the detachment of the longitudinal 
rebar under a dowel force is taken into account. It is suggested to take the shear 
displacement of the crack faces at the level of longitudinal reinforcement  as the 
criterion for the initiation of the dowel cracks. The shear force at which the 
sudden opening of the dowel crack along the longitudinal rebar starts is defined 
as the inclined cracking load Vcr. 

The critical shear displacement (simplified from the critical shear displace-
ment of crack faces at reinforcement level) cr should be determined by the 
overall energy balance of the whole beam. For a beam with known cr, both the 
bending moment of the crack and the profile of the crack influence the value of  
in the crack at a given shear force. The crack with the largest vertical displace-
ment  will become the critical inclined crack. Its position is either close to the 
loading point (when a/d is large), or to the support. 

Residual Structure after Inclined Cracking 

After the dowel crack along the longitudinal rebar has been developed, an arch 
structure is formed by the uncracked concrete and the detached longitudinal 
rebar. 

The stiffness and the capacity of the remaining arch structure determine the 
behaviour of the beam after the opening of the inclined crack. 

Whether or not the beam can withstand a larger load after the inclined 
cracking load is determined by the location of the tip of the major crack when it 
is stabilized after M > Mcr. If the crack tip is located within the critical com-
pression zone defined by ac,c according to Eq. (3.44) from the edge of the loading 
plate, a higher residual capacity is expected. 

Artificially influencing the shape and position of the critical inclined crack 
may influence the ultimate shear capacity of the beam. 

The stiffness of the concrete arch structure is highly dependent on the profile 
of the inclined crack. When the crack reaches the loading plate directly, the 
stiffness also determines the portion of Vc in the concrete compressive zone. The 
magnitude of Vc is proportional to (a/d)-3, thus increases quickly with a reduc-
tion of the shear span. 
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aggregate interlock, which can balance the additional shear force that is higher 
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stiffness also determines the portion of Vc in the concrete compressive zone. The 
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4.1 INTRODUCTION 

This chapter presents the possibility to translate the shear failure mechanism 
described in Chapter 3 into an evaluation procedure which is applicable in 
engineering practice as most design codes, with comparable or even better 
accuracy, but wider applicability. 

Chapter 3 has shown that the failure of a given cracked section under a shear 
force is due to the opening of the dowel cracks along the longitudinal reinforce-
ment and the compression zone. Furthermore, it was assumed that the 
phenomenon occurs when the shear displacement of one of the major cracks 
reaches the critical displacement cr. That assumption indicates that the calcula-
tion of the inclined cracking load can be related to the shear displacement 
between the crack faces of a major crack. 

Although the crack profile expression Eq. (3.19) has been greatly simplified, 
to calculate all the forces acting on such a parabolic profile is still far too complex 
for engineering calculation. A logical and safe solution is to focus on the simpli-
fied evaluation procedure for the most dangerous situation. Regarding the 
critical section, Chapter 3 showed that for beams with a larger shear slenderness 
ratio, the shear capacity of a crack being closer to the loading point is often lower 
than that of others (see Fig. 3.38), where the influence of the crack profile by 
M/Vd is minimized as well. Therefore it is appropriate to choose a crack profile 
at a section with very large M/Vd as the standard crack profile, and develop the 
shear evaluation procedure based on such a crack. 

In a cracked section of a beam, the total shear force is carried by three differ-
ent mechanisms: the shear forces in the uncracked compression zone Vc, the 
aggregate interlock between the crack faces Vai, and the dowel action at the 
longitudinal reinforcement Vd, see Fig. 4.1. The three mechanisms can be con-
sidered as a paralell system carrying the total shear force V. Among them, Vc is 
related to the height of the compressive zone, and the total shear force V. It can 
be evaluated with Eq. (3.26). The value of Vd has already reached Vd,max ex-

 
 

Fig. 4.1. Scheme of inclined crack evaluation, where the items in the boxes have to be 
evaluated. 
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pressed by Eq. (3.28) before  = cr. The part of the shear force carried by ag-
gregate interlock Vai is essential to determine the total shear resistance V. To 
calculate Vai at the inclined cracking load, it is necessary to derive a relationship 
between Vai and for a given crack profile, and to determine the critical shear 
displacement cr. The two issues are dealt with in section 4.2 and 4.3 respectively. 
Based on that, an evaluation procedure for the inclined cracking load of a 
concrete member without shear reinforcement is provided in section 4.4. 

The basic evaluation procedure is extended in section 4.5 - 4.7, where three 
special topics are dealt with respectively. They are the fracture of aggregate, the 
reinforcement configuration and the size effect. 

 

4.2 SHEAR FORCE-DISPLACEMENT RELATIONSHIP 

The principle of calculating Vai under given w and  has been demonstrated in 
Chapter 3. The value of Vai can be calculated by integrating the shear and normal 
stress under given displacement distribution along the crack profile with 
Walraven’s formula Eq. (3.30). That procedure asks for a specific crack profile, 
which is dependent on the location of the cross-section where the crack initiates 
and the loading condition. In some load cases, when the critical section of the 
member cannot be determined, the shear resistance of each section of the mem-
ber has to be evaluated. On the other hand, because Eq. (3.30) has to be solved 
with numerical integration, on a parabolic crack profile, the displacements in 
two directions are strongly coupled, which makes the solution of Vai under given 
cr not always possible. Both aspects are not practical when the procedure 
introcduced in Chapter 3 is applying in engineering practice directly. A simpli-
fied relationship between Vai, w and  is needed. Such a relationship can be 
based on the most common crack profile, and can be applied with a relatively 
simple calculation procedure.  

4.2.1 Simplified Crack Profile 

Fig. 3.33 has shown that for cracks initiated at a section with a relatively large 
M/Vd, the influence of the crack profile on the shear crack opening  is quite 
limited. For cross sections with a large M/Vd, the effect of the moment distribu-
tion in the longitudinal axis is dominating, the curvature of the crack profile at 
that condition is very small, thus the crack can be treated as a plane perpendic-
ular to the longitudinal axis at Mcr. For the major cracks, after their formation, 
further increase of the external load can hardly increase the crack height scr in 
vertical direction, while the increase of the shear force in the cross-section will 
increase the stress y in the beam height direction. The crack direction changes 
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towards the longitudinal direction forming a secondary crack branch towards 
the loading point. Only after that, additional vertical displacement between the 
crack faces is possible, thus a larger shear force can be transferred through the 
vertical crack plane. 

Taking that in to account, a potential critical inclined crack before shear fail-
ure shall be composed of a vertical major crack and a more or less horizontal 
secondary branch. An example of such a crack is shown in Fig. 4.2 (a). The crack 
pattern is derived from test D18a121 (in the test series discussed in Chapter 5) at 
failure. It can be approximated by a straight line connected to a parabolic curve 
as is shown in Fig. 4.2 (b). 

The crack pattern shown Fig. 4.2 (a) can be described by the simplified for-
mulation: 
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With this assumed crack profile, the shear displacement  and the crack width w 
are determined by the length of the parabolic branch and the rotation of the 
crack. The shear force transferred through the crack path due to aggregate 
interlock is calculated by making the crack rotate around the crack tip. As an 
example, assuming that the length of the parabolic branch is 20 mm, the height 
of which is 10 mm, and the crack width is 0.045 mm, the stresses generated by 
aggregate interlock can be calculated. The component of Vai along the height 
direction is plotted in Fig. 4.3. The shaded area in the figure shows the contri-
bution of the secondary branch. A peak is developed at the end of the straight 
crack path. The large normal stress increases further after that point, see Fig. 4.4. 
Despite of that, the shear force degrades to zero quickly in that branch. Com-
pared with the shear force carried by the major crack, the contribution of the 
secondary crack branch is rather limited. On the other hand, the randomness of 
the material properties generates a large variation in the crack path anyway. The 

 
 
Fig. 4.2. Crack profile simplifications, based on the crack profile found in test 

D18a121 (see Fig. 5.13). 
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contribution of a perfect crack path with regard to the accuracy of prediction for 
the shear force-displacement relationship is limited. 

Based on the consideration mentioned before, the design crack profile is 
simplified further. A straight line is used to describe the secondary crack branch. 
The simplified crack path is shown in Fig. 4.2 (c). With this simplification, the 
shear force transferred through the secondary crack can be neglected, see Fig. 4.3. 
With the slope of the crack branch given, the relationship between the shear 
displacement  and the crack width wt at the top of the major crack is fixed: 

 
t s

w k= D  (4.1) 

where 
ks : is the slope of the secondary crack branch. 
 
The adoption of linear simplification of the crack profile can considerably 

simplify the calculation of Vai. In this way, the value of Vai.is directly related to 
the shear stress  calculated from Walraven’s formula, thus the curve integration 
expressed by Eq. (3.31) is simplified into the integration of  over the crack 
height. The curvature dependant calculation based on the integration of  and  
along a complex crack profile is not needed anymore: 
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In addition, because the critical vertical displacement cr is predetermined as 
failure criterion, the crack width at the tip of the vertical crack path is known as 
well with Eq. (4.1). Wheras, the crack width at the reinforcement level is related 
to the reinforcement strain. Once the crack width distribution along the crack 
height s is known, conbining with the crack widths at the boundary of the crack 
makes the formulation of Vai is possible. The choice of crack width distribution is 
discussed in the next section. 
 

 
 

Fig. 4.5. Normal stress/force 
distribution along crack 
height. 

Fig. 4.6. Measurement of the crack opening of a 
major crack (C3b121). 
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the simplification of the crack profile, it actually stands for the crack opening in 
the longitudinal direction of the beam. 

In the aforementioned analysis this problem was neglected by assuming the 
uncracked concrete as a rigid body. That implies that the crack opening changes 
linearly along the beam height. That assumption is not totally true in reality, 
because considering the crack profile as the boundary of the uncracked concrete, 
the deformation of the concrete under loading will certainly influence the crack 
profile. Taking the simplified crack profile described above as an example, the 
normal compressive stress distribution obtained from aggregate interlock is 
plotted along the vertical crack in Fig. 4.5. The normal stress rises due to the 
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dilatancy effect with aggregate interlock, and the large localized force trans-
ferred through the reinforcement may change the crack opening. 

Laboratory measurements of the crack width distribution show that before a 
failure mechanism develops the crack width distribution is basically linear. An 
example is given in Fig. 4.6, where the crack opening of a major crack is meas-
ured by a photogrammetric measurement. Such a measurement was carried out 
over the surface of the critical shear span in all the tests of the series of contin-
uous beams loaded by point loads discussed in Chapter 5. More details can be 
found in the separate report written by the author (Yang 2009). The crack 
opening is calculated by checking the displacement of measurement targets 
glued on the beam surface. In Fig. 4.6, the target crack and related measurement 
markers are shown. The crack opening distribution of the target crack is plotted 
in Fig. 4.7. It shows that the tensile force applied through the rebar has a con-
siderable influence on the crack profile locally. Nevertheless, the influenced area 
is quite limited. When the crack height becomes larger than 120 mm, the crack 
opening becomes linear again. The influence of the level of the reinforcement is 
dependent on the reinforcement ratio and the beam height. At the reinforcement 
level, the crack opening is already rather large, thus the shear force that can be 

 
Fig. 4.7. Crack profile measured by photogrammetric measurement (Crack marked in 

Fig. 4.6) 
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transferred there is rather limited. Whereas the linear crack width distribution is 
still valid at the crack tip. 

On the other hand, the influence of the crack dilatancy effect is very difficult 
to be determined. The crack opening at the crack tip is mostly too small to 
measure.  However, since a large proportion of the normal stress from aggregate 
interlock is localized at the tip of the major crack, see Fig. 4.5, these stresses can 
be replaced by a localized force applied at the major crack tip. The magnitude of 
this force merely has an effect on the crack opening at the tip, which enlarges the 
crack width there so that the tension softening effect is weakened. Based on that 
consideration, neither the influence of the dilatancy effect or the tension soften-
ing of concrete on the crack shape is taken into account. 

Taking the discussions above into account, in this study, the crack width is 
assumed to be a linear function of the crack height s. The crack opening at the 
level of the tensile reinforcement (defined as bottom side here) is estimated by 
neglecting the smaller cracks develop due to the confinement of the tensile 
reinforcement: 

 
,b cr m s

w l e=  (4.3) 

where  
lcr,m : is the crack spacing of the major cracks, see Eq. (3.5); 
es : is the average strain of reinforcement at that cross section. 
 

This simplification may lead to an overestimation of the value of Vai at the same 
. However it significantly simplifies the calculation procedure, since the esti-
mation of the influencing height of the reinforcement is not necessary with this 
formulation. 

The crack width at the top of the crack, on the other hand, is related to the 
critical vertical crack opening cr, because of the simplification of the secondary 
crack branch. As a rough estimation, the value of wt is predefined to be wt = 0.01 
mm, which is of the same order of magnitude as the value of cr according to 
(Baumann & Rüsch 1970; Vintzeleou & Tassios 1986). 

4.2.3 Simplified Shear Force Displacement Relationship  

With the simplified crack width distribution and the crack profile, the total shear 
force applied over the crack still has to be calculated through integration with Eq. 
(4.2). This procedure can be further simplified for practical application. 

Taking the simplified crack profile into account, the shear displacement  is 
constant along the vertical crack, and it is predefined in the calculation. The 
value of cr is between 0 and 0.1 mm. That limit will be refined further in the next 
section.  
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On the other hand, the crack opening w is linearly distributed along the 
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Fig. 4.8. Shear stress as a function of crack width w at  = 0.02 mm. 

The integration term in Eq. (4.4) is only dependent on the crack width dis-
tribution. At a given shear displacement , the aggregate interlock shear stress is 
shown in Fig. 4.8. This can be also considered as the shear stress distribution 
over the crack height. The shear stress is significantly higher when the crack 
width is small, where a larger contacted area is expected according to 
Walraven’s theory. This distribution clearly indicates that the largest proportion 
of the shear force Vai is actually determined by the shear stress at the part of the 
crack with small crack width. 

The crack width wb0 = 0.04 mm is taken as a lower bound. The crack width of 
a reinforced concrete beam at failure is usually larger than that value. For beams 
with a larger crack width at failure, the contribution of the crack width larger 
than wb0 is assumed to be zero. Since the crack width at the top of the crack is 
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Fig. 4.8. Shear stress as a function of crack width w at  = 0.02 mm. 
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fixed at 0.01 mm at failure, for any cracks with edge crack width wb larger than 
0.04, the boundaries of w in the integration of Eq. (4.4) is constant, which makes 
this term only dependent on the shear displacement. Therefore, the expression 
of Vai can be further simplified to: 
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In Eq. (4.5), vai is a function of a single variable  and the expression of vai 
cannot be solved analytically. Since  only varies within a quite limited range, it 
is not necessary to calculate the equation of Walraven’s aggregate interlock 
equation every time. A more simplified relationship based on regression analy-
sis can make the process much simpler. Therefore, the expression of vai()is 
simplified to: 

 2( ) 978 85 0.27
ai

v D = - D + D-  (4.6) 

This expression is valid when  varies from 0.005 mm to 0.04 mm. It is compared 
with the results calculated by Walraven’s formula in Fig. 4.9. After substitution 
of Eq. (4.6) into Eq. (4.5), a simplified formula for the value of Vai is derived.  

 0.56 20.03
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0.01ai c cr
b
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-

 (4.7) 

With Eq. (4.7), the shear force transferred through the simplified crack profile 
example presented in 4.2.1 is calculated at  = 0.02 mm. The result is plotted in 
Fig. 4.10 together with the prediction from Walraven’s formula. In Fig. 4.10, the 
crack width wb varies from 0.02 mm to 0.1 mm. The comparison shows that the 
simplified formula gives close estimations to the shear force transferred through 
aggregate interlock when the crack width is larger than 0.04 mm. From that 
crack width, the simplified equation is valid. As is expected, Eq. (4.7) under-
estimates the value of Vai by neglecting the contribution of the part of the crack 
with large crack width. The percentage of underestimation increases when the 
value of wb increases. On the other hand, when the bottom crack width wb is 
smaller than 0.04, Eq. (4.7) tends to overestimate the value of Vai. The error is 
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acceptable if the crack width is not smaller than 0.03 mm, which under most 
circumstances is reached before the failure of a beam. 

As an alternative, for beams with expected crack width smaller than 0.03 mm, 
such as beams with very small heights, or very large reinforcement ratios, it is 
still necessary to calculate the value of Vai through the full integration over the 
simplified crack profile Eq. (4.4). It is supposed to reflect the relationship be-
tween Vai,  and w better, which has been done in the most part of this 
dissertation for a better accuracy. 

Fig. 4.9. Relationship between vai and  
derived from Walraven’s formula and 
the simplified relationship. 

Fig. 4.10. Relationship between Vai and wb 
derived from Walraven's formula and 
simplified formula at  = 0.02 mm. 

 

4.3 CRITICAL SHEAR DISPLACEMENT 

4.3.1 Determination of cr from Test Results 

With the expression Eq. (4.7) for Vai derived in Section 4.2, it is possible to 
calculate the shear displacement at the cracked cross-section under any given 
shear force V. Once the critical shear displacement cr is known, the maximum 
shear capacity may be calculated. However, in literature, the values of cr vary in 
a rather large range. 

According to Baumann & Rüsch (Baumann & Rüsch 1970), the value of cr 
may vary between 0.06 mm and 0.16. They took the average value of cr = 0.08 
mm in their formula, while Taylor (Taylor 1971) reports that it should be about 
0.01 mm, which is almost 10 times smaller. His test series consists of several 
specimens with smaller sizes than used in Baumann & Rüsch’s tests. Besides, the 
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fixed at 0.01 mm at failure, for any cracks with edge crack width wb larger than 
0.04, the boundaries of w in the integration of Eq. (4.4) is constant, which makes 
this term only dependent on the shear displacement. Therefore, the expression 
of Vai can be further simplified to: 

 
( ) ( )

1
0

0

0.56

, ( ) , ( )

0.03
6.39 ( )

b t
ai pu cr x y

b t

c cr ai
b t

w w
V b s A w s A w s ds

w w

f b s v
w w

s m
-

¢ ¢ ¢= D - D
-

= D
-

ò
 (4.5) 

with 

 
( ) ( )
( ) ( )

1

0
0.01

0.04

( ) , ( ) , ( )

, ,

ai x y

x y

v A w s A w s ds

A w A w dw

m

m

¢ ¢ ¢D = D - D

= D - D

ò
ò

 

In Eq. (4.5), vai is a function of a single variable  and the expression of vai 
cannot be solved analytically. Since  only varies within a quite limited range, it 
is not necessary to calculate the equation of Walraven’s aggregate interlock 
equation every time. A more simplified relationship based on regression analy-
sis can make the process much simpler. Therefore, the expression of vai()is 
simplified to: 
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This expression is valid when  varies from 0.005 mm to 0.04 mm. It is compared 
with the results calculated by Walraven’s formula in Fig. 4.9. After substitution 
of Eq. (4.6) into Eq. (4.5), a simplified formula for the value of Vai is derived.  
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With Eq. (4.7), the shear force transferred through the simplified crack profile 
example presented in 4.2.1 is calculated at  = 0.02 mm. The result is plotted in 
Fig. 4.10 together with the prediction from Walraven’s formula. In Fig. 4.10, the 
crack width wb varies from 0.02 mm to 0.1 mm. The comparison shows that the 
simplified formula gives close estimations to the shear force transferred through 
aggregate interlock when the crack width is larger than 0.04 mm. From that 
crack width, the simplified equation is valid. As is expected, Eq. (4.7) under-
estimates the value of Vai by neglecting the contribution of the part of the crack 
with large crack width. The percentage of underestimation increases when the 
value of wb increases. On the other hand, when the bottom crack width wb is 
smaller than 0.04, Eq. (4.7) tends to overestimate the value of Vai. The error is 
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load condition of the dowel action tests cannot fully represent the load condition 
in a beam specimen. At failure, a smaller tensile force is present in those tests 
compared to normal beams. Since there is no applicable result from literature, it 
is decided to derive the critical vertical displacement directly from the shear 
tests in literature. 

The shear database collected by Collins et al. (Collins, Bentz et al. 2008) is 
used to derive the value of cr. The database includes 1849 tests from 114 publi-
cations. Among them, 410 tests are selected. The advantage of the database is 
that the maximum aggregate size is collected in the database. The following 
selection criteria have being applied: 
 The observed failure mode of the specimen has to be shear failure; 
 The concrete strength is smaller than 80 MPa; 
 The cross-section of the beam is rectangular, which means that the effective 

width of the beam is equal to the maximum width of the beam; 
 The width-effective depth ratio b/d is smaller than 2.0; 
 The value of maximum M/Vd in the critical shear span is at least 3.0. 

The first three criteria are defined to guarantee that the derived formulas are 
still applicable. The criterion for the strength of concrete has been formulated to 
make sure that fracture of aggregate, as often observed in experiments 
(Walraven & Stroband 1999) does not have any significant influence on the value 
of Vai. Further discussions on the fracture of aggregate will be given in Section 
4.5. For specimens with different cross sectional configuration, such as I-beams 
or inverse T-beams, the dowel crack may develop at the bottom of the web 
instead of at the level of the longitudinal reinforcement. The fourth criterion 
excludes one-way slabs, which will be discussed separately in Section 6.4. The 
last criterion guarantees that the evaluation is carried out on the design crack 
profile. 

Since in Collins’ database only the reinforcement ratio is provided, and not 
all the rebar configuration can be found back from the origin literature, the 
diameter and the number of the bars is estimated in the calibration process. 
However, the influence of rebar configuration will be discussed further in 
section 4.6 with the ACI-DAfStb database (Reineck, Bentz et al. 2013). The first 
assumption is that a beam has three rebars, the diameter of which is calculated 
from the reinforcement ratio. For unrealistic diameters, the number of the rebars 
is increased or decreased accordingly. 

For all the test data, the measured shear force Vu from the database is applied 
on a cracked surface at lcr,m from the loading point. The shear displacement cr at 
Vu is calculated as follows: 
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Step 1: Calculate the shear component in the compressive zone and the 
maximum dowel force with: 

 2

3
c

c

z
V V

z
=  (3.26) 

 
3

max
1.64

d n c
V b ff=

 (3.28) 

Step 2: Get the shear force component by the aggregate interlock effect: 
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Step 3: Calculate the moment at the critical cross-section M according to 
Section 3.4.3 and thus the bottom crack width wb: 
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Step 4: Calculate the critical shear displacement cr under Vu by updating Vai 
with varying  iteratively with Eq. (4.4), until the total shear force con-
verges to Vu. The value of Vai is calculated for the simplified crack pro-
file and crack width distribution described in 4.2.2 and 4.2.3: 
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4.3.2 Calibration of the Results 

The shear displacement  under the measured Vu of all 410 test results reported 
in the data base is calculated with the procedure described above. The derived 
cr varied between 0.0048 mm and 0.0444 mm. As explained in Section 2.3, 
reliable measurement of the kinematics of a critical major crack during the 
failure process is very limited. The calculated cr can hardly be compared sys-
tematically with experimental data yet. Before that, it can only be considered as 
an intermediate variable during the calculation process. Nevertheless, compar-
ing to the values of cr reported by dowel action tests in the literature, the 
calculated cr is of the same order of magnitude, but at the lower side. That is 
probably because of the underestimation of the crack width introduced by 
simplifying the crack width distribution to a linear function discussed in 4.2.2, 
and the overestimation of the aggregate interlock stress with smaller crack 
width at the major crack tip. 

There is a relatively large scatter among the calculated values of cr. This can 
partly be attributed to the fact that the information of the reinforcement config-
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4.3.2 Calibration of the Results 

The shear displacement  under the measured Vu of all 410 test results reported 
in the data base is calculated with the procedure described above. The derived 
cr varied between 0.0048 mm and 0.0444 mm. As explained in Section 2.3, 
reliable measurement of the kinematics of a critical major crack during the 
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an intermediate variable during the calculation process. Nevertheless, compar-
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probably because of the underestimation of the crack width introduced by 
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There is a relatively large scatter among the calculated values of cr. This can 
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uration is missing. Nevertheless, it is still clear that the value of cr is influenced 
by the effective height d of the specimen. In Fig. 4.11,cr is plotted against d. The 
graph clearly shows that cr increases with d. That tendency is more pronounced 
with specimens with smaller d. Possible explanations are that for specimens with 
a smaller height, the influencing height of the crack width by the localized force 
due to the reinforcement is more significant. On the other hand, Section 3.2.1 has 
pointed out that the tension softening behaviour of concrete has an effect on the 
crack pattern. These effects are corrected through a linear regression analysis 
between cr and d. From the analysis, the value cr is expressed by  

 
53.3555 10 0.005

/ 29800 0.005 0.025
cr

d
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» + £
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where  
d : is the effective height of the specimen.  
 
An additional requirement is that the value of cr shall not be larger than 

0.025 mm, which limits the effect of the specimen size to a certain extent, since 
the influence of the crack width distribution from the reinforcement is more 
limited in beams with larger height. 

 
Fig. 4.11. Calculated critical vertical displacement against effective height. 
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4.4 EVALUATION PROCEDURE 

4.4.1 Evaluation Procedure 

With a shear force-displacement relationship and failure criterion, the eval-
uation procedure described in Section 4.1 becomes possible. In this section, the 
relationships explained previously are assembled together to form a calculation 
procedure that evaluates the shear capacity of a reinforced concrete beam 
without shear reinforcement under point loads. The evaluation of beams with 
more complex loading conditions will be discussed separately in other chapters. 

When it is applicable, the evaluation cross-section of the structure to be 
evaluated is at the loading point according to Section 3.4.3. Although a more 
accurate estimation would be at lcr,m from the loading point to guarantee the 
possibility of sufficient shear displacement  between the crack surfaces, that 
choice has been made to guarantee the consistency of the results at small shear 
span. The evaluation procedure of a beam with known loading position is 
described as follows: 
 
Step 1: Calculate the maximum shear force carried by dowel action: 

 3
max

1.64
d n c

V b ff=  (3.28) 

 
Step 2: Start with a shear force value Vu, calculate the moment at the design 

cross section, and the crack width wb at that cross section: 
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Step 3: Determine the critical shear displacement cr: 
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Step 4: Evaluate the shear force carried by aggregate interlock effect with the 
calculated cr and wb: 

 0.56 20.03
( 978 85 0.27)

0.01ai c cr w
b

V f s b
w

= - D + D-
-

 (4.7) 

Or alternatively: 
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Step 5: Calculate the shear force carried in the concrete compressive zone: 
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uration is missing. Nevertheless, it is still clear that the value of cr is influenced 
by the effective height d of the specimen. In Fig. 4.11,cr is plotted against d. The 
graph clearly shows that cr increases with d. That tendency is more pronounced 
with specimens with smaller d. Possible explanations are that for specimens with 
a smaller height, the influencing height of the crack width by the localized force 
due to the reinforcement is more significant. On the other hand, Section 3.2.1 has 
pointed out that the tension softening behaviour of concrete has an effect on the 
crack pattern. These effects are corrected through a linear regression analysis 
between cr and d. From the analysis, the value cr is expressed by  
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where  
d : is the effective height of the specimen.  
 
An additional requirement is that the value of cr shall not be larger than 

0.025 mm, which limits the effect of the specimen size to a certain extent, since 
the influence of the crack width distribution from the reinforcement is more 
limited in beams with larger height. 

 
Fig. 4.11. Calculated critical vertical displacement against effective height. 
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Step 6: Update the overall shear force Vu of the whole cross section, and repeat 
this from Step 2 to Step 6 till the value of Vu converges. 

 
u c d ai

V V V V= + +  

The evaluation of the maximum allowable shear force needs iteration since 
the load applied on the beam is not known in advance. This procedure can also 
be used for a safety check if the load applied on the beam is known. In this case, 
the known shear force V is assumed in Step 1, and is compared with Vu calcu-
lated in Step 6. 

In addition, as shown in Fig. 4.10, the simplified aggregate interlocking 
equation Eq. (4.7) is an estimation of the integration expressed by Eq. (4.4). For a 
more accurate prediction, the original Eq. (4.4) is suggested to be used in step 4. 
The calculation procedure incorporating Eq. (4.4) has been implemented with a 
Matlab code attached in Appendix I. 

4.4.2 Comparison with Test Results 

The accuracy of the procedure described here has to be evaluated with the 
experimental results reported in literature. Other than that, the Eurocode 
(Eurocode 2 2004) has been used as a reference. The comparison is based on the 
shear database collected by König and Fischer (König & Fischer 1995) based on 
which the Eurocode shear formula was calibrated. The adoption of a different 
database is to avoid the usage of the same set of data in both deriving the for-
mula and evaluating it. 176 tests are included in the database, which were 
selected in such a way that the key parameters influencing the shear capacity 
like the beam sizes, concrete strength and reinforcement ratio are distributed 
evenly over a practical range. All the specimens selected have a shear slender-
ness ratio (a/d) of at least 3.0. 

The calculated shear capacity is denoted as Vcal. The mean calculated cross 
sectional shear stresses Vcal/bd are compared with test results Vu/bd in Fig. 4.12. 
In addition the distribution of Vcal/Vu is plotted as well. The comparison clearly 
shows that the own cr model provides a consistent prediction over the full 
mean shear stress range. The mean value of Vcal/Vu of the model is 1.06, with a 
Coefficient of Variation (COV) of 14.6%. For the Eurocode, the mean value of 
VEC/Vu is 0.87, with a COV of 16.0%. The comparison shows that the cr model 
can already give a reasonably accurate prediction even compare to the current 
design codes.  However, it has to be remarked that regarding to the Eurocode 
formula, the lower mean value and the larger scatter is partly due to the limita-
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tion on the size effect factor k ≤ 2.0, which was applied for additional safely of 
the structures. Without that limitation, the mean value of VEC/Vu becomes 0.91 
with COV(VEC/Vu) = 13.1%. Note that the calculation with the own model was 
carried out with the exact aggregate interlock method Eq. (4.4) in step 4. When 
Eq. (4.7) is used, the mean value and COV of the prediction becomes 0.99 and 
16.4%, which indicates that there are certain number of tests with small crack 
widths see Section 4.2.3. They are mostly small beams. Nevertheless, it still gives 
quite reasonable results. 

Compared to the Eurocode, Fig. 4.12 also shows that when the mean shear 
stress is large, the model seems to overestimate the shear capacity. The reason is 
that for high strength concrete, the reduction of the aggregate interlocking effect 
due to the fracture of aggregates is not taken into account in this model. This 
effect will be discussed in the next section. 
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that for high strength concrete, the reduction of the aggregate interlocking effect 
due to the fracture of aggregates is not taken into account in this model. This 
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Fig. 4.12. Comparison of predicted shear capacities and test results based on König 
and Fischer’s shear database. From top to bottom: results of own cr model, Euro-
code and Eurocode without limitation on k ≤ 2.0. 
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4.5 CORRECTION FOR AGGREGATE FRACTURE 

4.5.1  Influence of Aggregate Fracture on Aggregate Interlock 

The study carried out in Chapter 3 has clearly shown the role that aggregate 
interlock action plays in a cracked section of a beam loaded by a shear force. In 
the simplified design procedure presented in this chapter, the aggregate inter-
lock force Vai is calculated with Walraven’s formula, which was derived based 
on experiments carried out on concrete specimens with cylinder strength be-
tween 10 and 50 MPa. One of the basic assumptions in the derivation of the 
formula according to (Walraven 1980) is that the aggregates do not fracture. 
Thus cracks only occur in the cement matrix and the interface between cement 
and aggregate. The shear force is generated by the contact between aggregates 
and cement matrix. Such an assumption may not be valid anymore for concrete 
specimens with high strength concrete or lightweight aggregate concrete. In 
both cases, the strength of the cement matrix may be stronger than the aggre-
gates. As a result, cracks may develop through the aggregates. This effect has to 
be considered in evaluating the shear capacity of corresponding concrete struc-
tures.  

 
Fig. 4.13. Influence of concrete strength to fractured surface roughness, adapted from 

(Perera & Mutsuyoshi 2013). 

Perera and Mutsuyoshi scanned the cracked surface of concrete splitting 
tensile specimens with different strength using a laser confocal microscope in 
(Perera & Mutsuyoshi 2013), see Fig. 4.14. The surface roughness index Rs = 
Ai/Ap is calculated from the measurement, where, Ai is the measured frac-
tured surface area, and Ap is the projected surface area. They have shown that 
the surface roughness of the crack is related to the concrete strength when the 
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4.5 CORRECTION FOR AGGREGATE FRACTURE 
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maximum aggregate size is constant, see Fig. 4.13. It indicates that more aggre-
gates may fracture when structures with a higher concrete strength crack. 
Consequently, the fracture surface is smoother. This is related to the elastic 
strain energy stored in the concrete at fracture. Fracturing at higher tensile 
strength, means more strain energy is released, which will result a in a faster 
crack propagating speed, and a smoother crack surface. Similar results have 
been reported by Mechtcherine and Müller in (Mechtcherine & Müller 2002; 
Mechtcherine 2009) 

Many research programs have been reported in literature regarding the shear 
transfer across cracks in reinforced concrete or plain concrete. Walraven 
(Walraven & Reinhardt 1981), Mattock, Li and Wang(Mattock et al. 1976), Emiko 

 
Fig. 4.14. Fractured surfaces of splitting tensile tested specimen; the names of the 

specimens are according to the original paper (Perera & Mutsuyoshi 2013). 

NSC40 fc = 36 MPa, Rs = 1.269 HA 80 fc = 81 MPa, Rs = 1.171

HA100 fc = 114 MPa, Rs = 1.096 HA120 fc = 138 MPa, Rs = 1.073

LA120 fc = 155 MPa, Rs = 1.060 HA160 fc = 183 MPa, Rs = 1.047
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et al.(Emiko et al. 2011), Hamadi and Regan (Hamadi & Regan 1980), have 
carried out push-off tests on reinforced lightweight aggregate specimens. They 
have shown that the maximum shear stress that can be transferred across a crack 
in reinforced lightweight concrete specimens is indeed smaller. Besides, more 
transverse displacement is needed in lightweight aggregate concrete specimens. 
Similar observations have been done in push-off tests on high strength concrete 
specimens executed by Walraven, Frénay and Pruijssers (Walraven et al. 1987), 
Walraven and Stroband (Walraven & Stroband 1994). This indicates that a 
reduction of the calculated Vai might be needed. However, as pointed out by 
Walraven and Reinhardt in (Walraven & Reinhardt 1981), the result of shear 
transfer in reinforced concrete cannot be applied to shear transfer of cracks in 
plain concrete. 

The evaluation of Vai on beams shall be based on the test results of shear 
stress transfer across cracks in plain concrete. However, very few experimental 
research programs have been carried out to investigate the shear force trans-
ferred across cracks in plain concrete with high strength concrete or lightweight 
aggregate concrete. To adjust Walraven’s formula for different types of aggre-
gate, results of similar tests are needed. Walraven and Stroband reported a 
comparative study between concrete specimen with fc,cube = 59.1 MPa and fc,cube = 
110 MPa in (Walraven & Stroband 1999). They found that the measured shear 
stress in cracks of high strength specimen is only 35% of the predicted value 
given by Walraven’s formula for concrete with unbroken aggregates. It indicates 
that for plain concrete, the fracture of aggregate has a significant influence on the 
aggregate interlock effect.  

 

  
Fig. 4.15. Relationship between shear stress, normal stress, shear displacement and 

normal displacement of a crack in a plain concrete specimen (left: fc = 59.1 MPa, 
right: fc = 110 MPa), adopted from (Walraven & Stroband 1999). 
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4.5.2  Effect of Aggregate Fracture on Overall Shear Capacity 

High Strength Concrete 

According to the failure process described in Chapter 3, the reduction of aggre-
gate interlock action due to the fracture of coarse aggregate will eventually 
influence the overall shear capacity of the structure. To evaluate that effect, a 
database of shear test results covering both high strength and low strength 
concrete specimens is compared. 

Many of the concrete structures nowadays use concrete with a compressive 
strength of 60 MPa or higher and have a the cross sectional height larger than 
500 mm. A pre-selection has to be done to guarantee that the parameters of the 
tested specimens are balanced within a practically relevant range. The selected 
database is based on the database collected by König and Fischer in (König & 
Fischer 1995). It also comprises several additional experimental data reported 
after 1995, in which specimens with higher concrete strengths and large beam 
sizes are included. The database is described in Appendix III. 

To compare the influence of aggregate fracturing with the increase of con-
crete strength, the ratio between the tested shear capacity and the prediction 
given by the proposed formula is plotted against the concrete strength in Fig. 
4.16. In the figure, it is clear that, when the concrete strength is higher than 60 
MPa, the proposed cr method may overestimate the overall shear capacity. The 
tendency is more pronounced with the increase of the concrete strength. For 
structures with a concrete strength higher than 100 MPa, the predictions with 
the proposed evaluation procedure can overestimate the test results significantly. 
It shows that the fracturing of aggregate of high strength concrete has to be dealt 
with. 

Fig. 4.16. Influence of concrete strength to the shear capacity prediction. (left: without 
aggregate fracture correction, right: with aggregate fracture correction). 
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As was already pointed out before, the reduction of aggregate interlock ac-
tion in high strength concrete can be explained as follows. In high strength 
concrete structures, the course aggregates fracture together with the cement 
matrix. Because of the fracture of aggregate, the amount of additional contact 
area within the crack that can be used to generate aggregate interlock is reduced. 
In Eq. (3.30) this is expressed by Ax and Ay. Thus, the influence of aggregate 
fracture to aggregate interlock action can be counted as a reduction of Ax and Ay. 

For a rough cracked surface, it is logic that the values of Ax and Ay are related 
to the crack roughness. Based on that consideration, an assumption is made here 
to take into account the reduction of contact surface due to aggregate fracture. It 
is assumed that the value of Ax and Ay are proportional to the additional area 
due to the roughness Rs-1. When the cracked surface is perfectly smooth (Rs-1 = 
0), no aggregate interlock action is possible. Assuming that the fracture of 
aggregates occurs when the concrete strength is larger than 65 MPa (according 
to the regression analysis explained later), the values of Ax and Ay are reduced 
by a factor Ra. 
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Regarding the roughness index Rs, the test results of Perera & Mutsuyoshi 
reported in (Perera & Mutsuyoshi 2013) are employed as a preliminary analysis. 
Since they did not test any cracked surface between fc = 36 MPa and fc = 81 MPa, 
it is not clear from which concrete strength the crack surface roughness starts to 
reduce, which is defined as the lower bound of the Ra - fc reinlationship. There-
fore, a regression analysis is carried out by assuming that only when the 
concrete strength is higher than the lower bound the course aggregate starts to 
crack. It shows that the lower bound of fc when the Rs reduction starts from fc = 
65 MPa, with the increase of concrete strength, the roughness of the cracked 
surfaces can be estimated with the following equation (see Fig. 4.13):  
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With Eq. (4.11) and Eq. (4.12), the value of Ra can be evaluated. Here, Rs0 = 1.269 
at fc = 65 MPa. If fc > 65 MPa, Ra is expressed by: 
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Accordingly, Eq. (4.4) and Eq. (4.6) have to be updated by multiplying Ra 
with Vai. With the correction of Ra, the data set presented in Fig. 4.16 (left) is 
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4.5.2  Effect of Aggregate Fracture on Overall Shear Capacity 

High Strength Concrete 

According to the failure process described in Chapter 3, the reduction of aggre-
gate interlock action due to the fracture of coarse aggregate will eventually 
influence the overall shear capacity of the structure. To evaluate that effect, a 
database of shear test results covering both high strength and low strength 
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Many of the concrete structures nowadays use concrete with a compressive 
strength of 60 MPa or higher and have a the cross sectional height larger than 
500 mm. A pre-selection has to be done to guarantee that the parameters of the 
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database is based on the database collected by König and Fischer in (König & 
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sizes are included. The database is described in Appendix III. 

To compare the influence of aggregate fracturing with the increase of con-
crete strength, the ratio between the tested shear capacity and the prediction 
given by the proposed formula is plotted against the concrete strength in Fig. 
4.16. In the figure, it is clear that, when the concrete strength is higher than 60 
MPa, the proposed cr method may overestimate the overall shear capacity. The 
tendency is more pronounced with the increase of the concrete strength. For 
structures with a concrete strength higher than 100 MPa, the predictions with 
the proposed evaluation procedure can overestimate the test results significantly. 
It shows that the fracturing of aggregate of high strength concrete has to be dealt 
with. 

Fig. 4.16. Influence of concrete strength to the shear capacity prediction. (left: without 
aggregate fracture correction, right: with aggregate fracture correction). 
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updated. The comparison of calculated shear capacity taking into account the 
aggregate fracture and the test results are plotted in Fig. 4.16 (right). Compared 
to the original formula, the tendency of overestimation of the shear capacity of 
beams of higher strength concrete is corrected. 

The proposed method provides a workable evaluation procedure to take into 
account the reduction of the aggregate interlock effect with a proper physical 
background. However, it has to be remarked that the formula of the surface 
roughness index Rs was derived from cracks generated by splitting tests. The 
loading condition is not exactly the same as for the cracks generated in beams. 
Only one type of concrete mixture was used at each category of concrete 
strength. Besides, the amount of test date available is quite limited. Therefore, 
additional validations regarding a more realistic loading condition and a larger 
variety of concrete/aggregate types are still needed before the resultant regres-
sion formula can be applied in design practice. 

Since the fracture of aggregate is not only related to the concrete strength but 
also the strength of the aggregate, while regarding the aggregate, a large varia-
tion can be expected. For example in the Netherlands, the fracture of aggregate 
only starts when fc is larger than 80 MPa with glacial river aggregates, while 
according to Sherwood (Sherwood, Bentz et al. 2007) the influence of aggregate 
fracture starts from fc = 60 MPa already. A safe strategy to handle this large 
variation is to simply limit the concrete strength to a constant value when the 
concrete strength is higher, in calculating Vai with Eq. (4.7) or Eq. (4.4). That 
method has been applied in some design codes. In the Canadian Code, the 
concrete strength that is used to calculate the aggregate interlocking force cannot 
be higher than 64 MPa. The argument is that the shear force due to aggregate 
interlock does not increase with the increase of concrete strength when the 
strength of the cement matrix becomes stronger than that of the course aggre-
gate. With that principle, the data collection presented above is evaluated. The 
calculated results using a limiting strength fc of 45 MPa are shown in Fig. 4.17. 
When the concrete strength is smaller than 150 MPa this correction is quite 
effective. The mean value of Vcal/Vu becomes 0.99. However, the limiting 
strength of 45 MPa is a rather low value. An extensive study showed that it can 
be raised up to 60 MPa without influencing the overall accuracy significantly. In 
that case, the mean value of Vcal/Vu is 1.04.  

However, only limiting the concrete strength to a constant value cannot fully 
cover the reduction of aggregate interlock caused by the reduction of contact 
area in crack generated in concrete with very high strength, as discussed pre-
viously. This has been shown in Fig. 4.17 already. As the concrete strength of the 
specimens becomes smaller (close to 80 MPa), the procedure with concrete 
strength limitation underestimates the test results. When the concrete strength is 
very high, it still overestimates the test results. The reductions of Ax, Ay and fc 
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have to be taken into account as well. To achieve this further study on this topic 
is needed. 

The calculation process presented within this section has not yet taken into 
account other effects such as the rebar configuration presented in the following 
sections. The limiting concrete strength may need further adjustment when the 
other aspects have been taken into account. 

 
Fig. 4.17. Influence of concrete strength to the shear capacity prediction after limiting 

the concrete strength when fc > 45 MPa. 

Lightweight Aggregate Concrete 
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gates is always lower than the cement matrix. Thus the crack surface will always 
develop through the aggregates. Comparative studies on the shear capacities of 
lightweight aggregate concrete beams and normal weight concrete beams have 
been carried out by Ivey and Buth (Ivey & Buth 1967), Taylor and Brewer 
(Taylor & Brewer 1963), and Hanson (Hanson 1961) in the 1960s; Walraven 
evaluated the size effect of LWA beams in (Walraven 1978). The comparative 
tests revealed that the overall shear capacities of beams with lightweight ag-
gregate concrete are lower than those of normal concrete beams. The reported 
shear test data from the aforementioned literature have been collected as an 
additional shear database for LWA concrete specimens, see Appendix III. The 
reported shear capacity in the database is compared with the prediction by the 
proposed cr model in Fig. 4.18. As expected, the formula proposed in this 
chapter overestimates the shear capacity of lightweight aggregate specimens. 
The mean values of Vcal/Vu for lightweight concrete and normal concrete are 
1.23 and 1.05 respectively. 
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Because lightweight aggregate breaks together with the concrete matrix, the 
cracked surface will not develop surrounding the unbroken aggregate-cement 
matrix interface, as was assumed by Walraven in (Walraven 1980). In that case, 
the shear resistance in the crack is mainly caused by the roughness on a me-
so-level of the crack surface as reported in (Sagaseta & Vollum 2011).  

Thus, to take into account the effect of lightweight aggregate to the shear 
capacity of a beam, a similar strategy as used for high strength concrete beams is 
suggested. The principle is that the contact areas Ax and Ay shall be reduced in 
order to reflect the smoother cracked surface due to the fracture of aggregate. 
Based on the limited test results collected in this section, it is suggested to use a 
reduction factor Ra = 0.75 for the aggregate interlock effect in the LWA concrete. 
The comparison with test results with correction by Ra is shown in Fig. 4.18 right. 
The overestimation on the shear capacity of lightweight concrete members is 
improved. The mean value of Vcal/Vu is 1.09 after correction. It has to be men-
tioned that the reduction of aggregate interlock action is related to the type of 
aggregate. Therefore, the scatter in Fig. 4.18 is still large than for normal concrete 
beams. For a specific type of lightweight aggregate, additional tests may still be 
needed to obtain the corresponding Ra.  

Fig. 4.18. Comparison of shear capacity prediction and experimental results. (left: 
before contact area correction, right: contact area corrected by a factor 0.75, LWA: 
lightweight aggregate concrete specimens, NA: normal aggregate specimens). 

Moreover, the reason why a relatively larger Ra is chosen is that according to 
Fig. 4.8, a large proportion of the shear stress at a given shear displacement  is 
generated close to the tip of the major crack, where a relatively small crack width 
is expected. According to Walraven’s aggregate interlock tests (Walraven & 
Reinhardt 1981), although the stress of aggregate interlock is significantly 
reduced at larger crack width, when w is small, the crack in LWA concrete can 
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still transmit a substantial portion of the shear stress compared to normal 
concrete with the same compressive strength and aggregate sizes. The LWA 
concrete specimens in his test program can carry about 66% of the shear stress 
compared to that of the normal concrete specimens at w = 0.1 mm. Further 
explanation on the regression analysis result will be given in section 4.7.2. 

 

4.6 EFFECT OF REBAR DIAMETER ON CRITICAL SHEAR DISPLACEMENT 

4.6.1 Leonhardt’s Shear Tests with Varying Rebar Configuration 

The effect of the longitudinal rebar to the shear behaviour of reinforced concrete 
beams is classically related to the tensile force in the rebar. Therefore, in almost 
all design methods so far, when the effect of the longitudinal reinforcement is 
concerned, it always appears through the reinforcement ratio As/bd. Exam-
ples are (CSA 2004; Eurocode 2 2004; fib 2012). An explicit explanation given by 
Collins et al. (Vecchio & Collins 1986; Bentz, Vecchio et al. 2006) is that the 
tensile deformation of the longitudinal rebar governs the flexural crack width, 
which influences the aggregate interlock contribution to the shear force across 
the crack. A higher reinforcement ratio means a smaller crack width under the 
same cross sectional moment, and eventually a larger shear capacity. That 
consideration leads to the conclusion that as long as the reinforcement ratio of a 
beam remains constant any variation of the reinforcement configuration will not 
affect the shear behaviour of the beam. 

That conclusion has been proven to be wrong experimentally by Leonhardt 
(Leonhardt & Walther 1962; Leonhardt 1978). He carried out a comparative 
study on two beams with the same reinforcement ratio s = 1.88%, but different 
rebar configurations, EA1: 2Ø24 + 1Ø16; EA2: 2Ø14 + 3Ø16. The shear capacity 
found for specimen EA2 is about 28% higher than that was found for EA1. A 
similar trend has been observed in tests on slab specimens of the same rein-
forcement ratio but with different reinforcement configurations, see Fig. 4.19. 
Considering the fact that all the other configurations of the specimens are 
identical in the test series, the increment of the shear capacity cannot be ex-
plained with a theory only involving the total area of the longitudinal 
reinforcement. Leonhardt attributed this effect to the bond between reinforce-
ment and concrete. He explained that rebars with smaller diameters have better 
bond, thus smaller crack spacing and a smaller crack width. As a result, the 
larger aggregate interlock force leads to a larger shear capacity. However, direct 
observation of the crack pattern does not show a clear difference between the 
specimens. Moreover, the paradox with this explanation is that if it is the larger 
bond strength between rebar and concrete that improves the shear capacity of 
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still transmit a substantial portion of the shear stress compared to normal 
concrete with the same compressive strength and aggregate sizes. The LWA 
concrete specimens in his test program can carry about 66% of the shear stress 
compared to that of the normal concrete specimens at w = 0.1 mm. Further 
explanation on the regression analysis result will be given in section 4.7.2. 
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the specimens, it is not possible to explain that in the same test series, the 
specimens with plain bars had an even higher shear capacity than the rest. In 
Table 4.1, it is shown that the two specimens EB1 and EB2 with plain bars are 
more than 30% stronger than EA2. From these two test results totally contra-
dictory conclusions can be drawn.  

The difficulty in explaining the experimental findings comes from improper 
understanding of the shear failure mechanism. Apparently, other than the two 
mechanisms discussed in this section, the rebar diameters influence the shear 
failure process through other mechanisms. 

 
Table 4.1. Test results Leonhardt's tests with varying reinforcement configuration. 

Translated from (Leonhardt & Walther 1962). 

Test No. Reinforcement 
Configuration 

eq1 s a/d d fcm,cube Pu Vu 
[mm] [%] [-] [mm] [MPa] [kN] [kN] 

EA 1 2Ø24 + 1Ø6 22.1 1.89 2.78 270 24.6 116.6 58.3 
EA 2 2Ø14 + 3Ø16 15.1 1.88 2.78 270 24.6 149.0 74.5 
EB 1 2Ø25 25.0 1.91 2.78 270 24.6 226.4 113.2 
EB 2 5Ø14 + 1Ø16 14.4 1.88 2.78 270 24.6 198.0 100.0 
1 eq is the equivalent diameter of the reinforcement configuration, 2 /

eq
f f f= å å .  is the 

diameter of each rebar. 
 

 
 

Fig. 4.19. Influence of diameter and spacing of bars on shear strength of beams with 
the same reinforcement ratio, adapted from (Leonhardt 1978). 
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4.6.2 Influence of Rebar Diameter on cr 

With the procedure introduced in this study, the difficulties in explaining the 
effect of longitudinal rebar configuration can be solved. As presented previously, 
although the contribution of the dowel force is not dominating the shear re-
sistance, the failure of the whole specimen is strongly related to the development 
of the dowel crack along the longitudinal reinforcement. The longitudinal rebars 
are not only influencing the aggregate interlocking effect which largely contrib-
utes to the shear resistance, but certainly affect locally the dowel cracking 
process along itself as well. As explained before, during the development of the 
dowel cracking process, the maximum shear force is determined by the concrete 
tensile strength fct, so that it remains more or less constant. On the other hand, 
the critical shear displacement cr is influenced by the reinforcement configura-
tion. 

Considering the simplified energy balance equation Eq. (3.38) shown in 
Chapter 3, under the same crack length , the energy release length is not only 
related to the area of the reinforcement but also to the bending stiffness of it. The 
larger the rebar diameter, the larger energy releasing rate is expected. Conse-
quently a smaller crack width is needed to get the crack developed. Considering 
that the items relating to the crack widths are quadratic terms, it is reasonable to 
relate the actual critical vertical displacement to a function of 2 and . 

As explained before, because of the complex nature of the problem, it is not 
possible to derive an accurate analytical solution directly through the energy 
principle. A more practical solution is to evaluate the vertical displacement from 
executed test results. To serve that purpose, a different selection of data com-
pared to the ones used in the preceding sections is used here. The database is 
based on a selection of published test results from the database of Reineck 
(Reineck, Bentz et al. 2013), in which the configuration of the longitudinal 
reinforcement of the tests are reported. The selection is based on the diameter 
size of the longitudinal reinforcement. All the tests with only a single type of 
rebar are placed into one group. The shear slenderness ratios of the specimens 
are at least 3.0. The selected tests are subdivided into several groups with rebar 
diameter of 12 mm, 16 mm, 22 mm, 25 mm, 28 mm, and 32 mm, among which 
the group with Ø25 mm rebar includes most tests. It has 92 tests out of the total 
312 selected test results. 

Following the procedure presented in Section 4.3, the shear displacements  
at the failure loads of each test are calculated. Fig. 4.20 shows the results of the 
group of beams with Ø25 mm bars. As revealed in Section 4.3, the values of cr 
are related to the depth d of the specimens. Only comparing the test result of 
beams with one size of diameter, this trend is much more pronounced. Similar 
results are observed in the other groups as well. To eliminate the effect of d, the 
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the specimens, it is not possible to explain that in the same test series, the 
specimens with plain bars had an even higher shear capacity than the rest. In 
Table 4.1, it is shown that the two specimens EB1 and EB2 with plain bars are 
more than 30% stronger than EA2. From these two test results totally contra-
dictory conclusions can be drawn.  

The difficulty in explaining the experimental findings comes from improper 
understanding of the shear failure mechanism. Apparently, other than the two 
mechanisms discussed in this section, the rebar diameters influence the shear 
failure process through other mechanisms. 

 
Table 4.1. Test results Leonhardt's tests with varying reinforcement configuration. 

Translated from (Leonhardt & Walther 1962). 

Test No. Reinforcement 
Configuration 

eq1 s a/d d fcm,cube Pu Vu 
[mm] [%] [-] [mm] [MPa] [kN] [kN] 

EA 1 2Ø24 + 1Ø6 22.1 1.89 2.78 270 24.6 116.6 58.3 
EA 2 2Ø14 + 3Ø16 15.1 1.88 2.78 270 24.6 149.0 74.5 
EB 1 2Ø25 25.0 1.91 2.78 270 24.6 226.4 113.2 
EB 2 5Ø14 + 1Ø16 14.4 1.88 2.78 270 24.6 198.0 100.0 
1 eq is the equivalent diameter of the reinforcement configuration, 2 /

eq
f f f= å å .  is the 

diameter of each rebar. 
 

 
 

Fig. 4.19. Influence of diameter and spacing of bars on shear strength of beams with 
the same reinforcement ratio, adapted from (Leonhardt 1978). 
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4.6.2 Influence of Rebar Diameter on cr 

With the procedure introduced in this study, the difficulties in explaining the 
effect of longitudinal rebar configuration can be solved. As presented previously, 
although the contribution of the dowel force is not dominating the shear re-
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(Reineck, Bentz et al. 2013), in which the configuration of the longitudinal 
reinforcement of the tests are reported. The selection is based on the diameter 
size of the longitudinal reinforcement. All the tests with only a single type of 
rebar are placed into one group. The shear slenderness ratios of the specimens 
are at least 3.0. The selected tests are subdivided into several groups with rebar 
diameter of 12 mm, 16 mm, 22 mm, 25 mm, 28 mm, and 32 mm, among which 
the group with Ø25 mm rebar includes most tests. It has 92 tests out of the total 
312 selected test results. 

Following the procedure presented in Section 4.3, the shear displacements  
at the failure loads of each test are calculated. Fig. 4.20 shows the results of the 
group of beams with Ø25 mm bars. As revealed in Section 4.3, the values of cr 
are related to the depth d of the specimens. Only comparing the test result of 
beams with one size of diameter, this trend is much more pronounced. Similar 
results are observed in the other groups as well. To eliminate the effect of d, the 
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calculated value cr is first normalized with Eq. (4.9). Within each rebar size 
group, the mean values of the normalized shear displacement D are evaluated. 
They are plotted against 1/ in Fig. 4.21. The influence of rebar diameter on the 
critical vertical displacement is clearly revealed. Considering the scatter of the 
test results, a linear relationship is sufficient to evaluate the influence. 

Apparently the influence of rebar diameter cannot be ignored. Hence, the 
derivation process presented in Section 4.3 has to be revised. The rather large 
scatter of  shown in Fig. 4.11 can partly be attributed to the ignorance of the 
rebar diameter. The accuracy of the prediction can be greatly improved if one 
can introduce the influence of the rebar diameter. However, a large portion of 
the reported test beams are reinforced by multiple sizes of rebars. To limit the 
possible influence from unexpected variables, instead of including all the tests 
with different rebar types, it is better to evaluate tests on beams only comprising 
one size of reinforcing bar, and extend the results to the other rebar sizes. Based 
on that consideration the test group with Ø25 mm rebars is chosen, since it 
includes the largest number of tests within the test data base. A regression 
analysis for the group of beams with rebar diameter Ø25 mm gives the follow-
ing relationship: 
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 (4.14) 

Fig. 4.20. Relationship between beam height 
d and critical shear displacement cr for 
beams reinforced by Ø25 bars. 

Fig. 4.21. Relationship between rebar 
diameter and critical shear displace-
ment cr. 
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With the relationship between the normalized critical shear displacementD and 
rebar diameter 1/ shown in Fig. 4.21, Eq. (4.14) can be extended to: 

 25
0.0022 0.025 mm

30610cr

d

f
D = + £  (4.15) 

where  
d : is the effective height of the beam; 
: is the diameter of the longitudinal reinforcing bars.  
 
In the case that there is more than one size of steel bars in the same beam, one 

may use the equivalent diameter suggested by Leonhardt (Leonhardt & Walther 
1962). Before a more sophisticated relationship is derived, it offers sufficient 
information on the rebar configuration further than the total area As. 

 2 /
eq i i
f f f=å å  (4.16) 

Once more detailed information of the longitudinal reinforcement is availa-
ble, Eq. (4.9) recommended in section 4.4.1 should be replaced by Eq. (4.15). To 
compare the difference with between the two methods, the test results of the 
selected tests database shown previously are calculated with both Eq. (4.9) and 
Eq. (4.15). The ratio between the calculated shear capacity and the measured 
results of each rebar group are summarized. The mean prediction of each rebar 
group and their standard deviation are plotted against the rebar diameter in Fig. 
4.22. 

Fig. 4.22. Comparison between prediction accuracy with Eq. (4.9) (left) and Eq. (4.15) 
(right). 
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calculated value cr is first normalized with Eq. (4.9). Within each rebar size 
group, the mean values of the normalized shear displacement D are evaluated. 
They are plotted against 1/ in Fig. 4.21. The influence of rebar diameter on the 
critical vertical displacement is clearly revealed. Considering the scatter of the 
test results, a linear relationship is sufficient to evaluate the influence. 
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scatter of  shown in Fig. 4.11 can partly be attributed to the ignorance of the 
rebar diameter. The accuracy of the prediction can be greatly improved if one 
can introduce the influence of the rebar diameter. However, a large portion of 
the reported test beams are reinforced by multiple sizes of rebars. To limit the 
possible influence from unexpected variables, instead of including all the tests 
with different rebar types, it is better to evaluate tests on beams only comprising 
one size of reinforcing bar, and extend the results to the other rebar sizes. Based 
on that consideration the test group with Ø25 mm rebars is chosen, since it 
includes the largest number of tests within the test data base. A regression 
analysis for the group of beams with rebar diameter Ø25 mm gives the follow-
ing relationship: 
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With the relationship between the normalized critical shear displacementD and 
rebar diameter 1/ shown in Fig. 4.21, Eq. (4.14) can be extended to: 
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where  
d : is the effective height of the beam; 
: is the diameter of the longitudinal reinforcing bars.  
 
In the case that there is more than one size of steel bars in the same beam, one 

may use the equivalent diameter suggested by Leonhardt (Leonhardt & Walther 
1962). Before a more sophisticated relationship is derived, it offers sufficient 
information on the rebar configuration further than the total area As. 
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Once more detailed information of the longitudinal reinforcement is availa-
ble, Eq. (4.9) recommended in section 4.4.1 should be replaced by Eq. (4.15). To 
compare the difference with between the two methods, the test results of the 
selected tests database shown previously are calculated with both Eq. (4.9) and 
Eq. (4.15). The ratio between the calculated shear capacity and the measured 
results of each rebar group are summarized. The mean prediction of each rebar 
group and their standard deviation are plotted against the rebar diameter in Fig. 
4.22. 

Fig. 4.22. Comparison between prediction accuracy with Eq. (4.9) (left) and Eq. (4.15) 
(right). 
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Fig. 4.23. Comparison of predicted and tested shear strength with Eq. (4.9) (left) and 
Eq. (4.15) (right). 

The comparison with the original evaluation procedure clearly shows that 
the predicted shear capacity is strongly dependent to the rebar diameter, while 
by introducing Eq. (4.15) the mean values of the Vcal/Vu in each rebar diameter 
group all move to values close to 1.0. In the other words, they may be considered 
to be independent of the rebar configuration with that correction. Besides, the 
scatter within each rebar diameter size group is significantly improved. With 
respect to the overall performance, the introduction of Eq. (4.15) significantly 
improves the accuracy of the prediction. The COV calculated from the database 
comprised by all the rebar diameter size groups used within this section im-
proves from 18.2% to 12.3%. The difference regarding the prediction accuracy 
can be directly observed through the comparison of predicted shear stress and 
measured ones in Fig. 4.23. 

Considering the limit concrete strength discussed in Section 4.5.2 for high 
strength concrete, by comparing the test results of the database with the proce-
dure implementing the improved evaluation procedure, it is confirmed that the 
limit concrete strength of 60 MPa is able to provide more accuracy rather than 45 
MPa as was suggested in Section 4.5.2. In Section 4.5.2, the lower limit strength is 
probably because of the influence from rebar configuration in the selected test 
series. Even in that case, 60 MPa is still an acceptable value. Thus, overall 
speaking, to take into account the effect of high strength concrete it is more 
appropriate to adopt a limit strength fc = 60 MPa. 

Taking into account the reinforcement configuration in the critical shear dis-
placement cr, Leonhardt’s test series introduced at the beginning of this section 
is reviewed. The new calculation procedure makes it is possible to explain the 
difference between the tests. The predicted shear capacities of EA1 and EA2 are 
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126.9 kN and 142.7 kN respectively. The ratio between the calculated capacity 
and the tested ones are 1.09 and 0.95 respectively. Regarding the plain bars, as 
suggested by Muttoni in (Muttoni & Ruiz 2008) their bond capacities are so low 
that it is not possible to generate a critical crack with its tip outside acc described 
by Eq. (3.44) in Chapter 3. Similar to beams with smaller a/d ratio, in that case 
the contribution of Vc is significantly increased. Thus the formula cannot be 
applied directly anymore. This effect will be discussed further in the next chap-
ter. Other than that, the effect of bond strength is quite limited. 

As discussed in Section 4.4.2, to compare the accuracy of the adjusted evalu-
ation method with the original one at the same level, a different set of test results 
has to be used for evaluation. Therefore the database of König and Fischer 
discussed in Section 4.4.2 is adopted again to be evaluated with the adjusted 
method. The result is plotted in Fig. 4.24, which can be compared with the 
results plotted in Fig. 4.12. The only difference is that in Fig. 4.24 the test series 
reported by Bažant in (Bažant & Kazemi 1991) has been discarded. In their tests, 
a very unconventional rebar configuration has been used. When more than one 
type of rebar is used in the specimen, Eq. (4.16) is used. Compared to the original 
method, the COV of Vcal/Vtest has been significantly improved to 12.2%. With the 
same dataset, the COV of Vcal/Vtest calculated by Eurocode formula without 
limitation is 13.1%, which was the best predict before the method proposed here 
was developed. 

 

Fig. 4.24. Comparison of predicted shear force and test results based on König and 
Fischer’s database taking into account the rebar configuration. 
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Fig. 4.23. Comparison of predicted and tested shear strength with Eq. (4.9) (left) and 
Eq. (4.15) (right). 
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126.9 kN and 142.7 kN respectively. The ratio between the calculated capacity 
and the tested ones are 1.09 and 0.95 respectively. Regarding the plain bars, as 
suggested by Muttoni in (Muttoni & Ruiz 2008) their bond capacities are so low 
that it is not possible to generate a critical crack with its tip outside acc described 
by Eq. (3.44) in Chapter 3. Similar to beams with smaller a/d ratio, in that case 
the contribution of Vc is significantly increased. Thus the formula cannot be 
applied directly anymore. This effect will be discussed further in the next chap-
ter. Other than that, the effect of bond strength is quite limited. 

As discussed in Section 4.4.2, to compare the accuracy of the adjusted evalu-
ation method with the original one at the same level, a different set of test results 
has to be used for evaluation. Therefore the database of König and Fischer 
discussed in Section 4.4.2 is adopted again to be evaluated with the adjusted 
method. The result is plotted in Fig. 4.24, which can be compared with the 
results plotted in Fig. 4.12. The only difference is that in Fig. 4.24 the test series 
reported by Bažant in (Bažant & Kazemi 1991) has been discarded. In their tests, 
a very unconventional rebar configuration has been used. When more than one 
type of rebar is used in the specimen, Eq. (4.16) is used. Compared to the original 
method, the COV of Vcal/Vtest has been significantly improved to 12.2%. With the 
same dataset, the COV of Vcal/Vtest calculated by Eurocode formula without 
limitation is 13.1%, which was the best predict before the method proposed here 
was developed. 

 

Fig. 4.24. Comparison of predicted shear force and test results based on König and 
Fischer’s database taking into account the rebar configuration. 
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4.7 EFFECT OF BEAM DEPTH ON SHEAR CAPACITY 

4.7.1 Size Effect in Shear Failure of Concrete Members 

Scaling has been widely applied in engineering practice and scientific research 
(Barenblatt 1996). It intends to enable the extension of experimental results 
derived through experiments within limited conditions to much wider applica-
tions. In structural analysis, the calculations of the capacity of a structural 
member are usually based on the strength of the material of the member, which 
is considered to be a material property, and therefore independent of the size of 
the structure. That hypothesis enables the scaling relationship in structural 
analysis. Thus, it is possible to up-scale the test results from small scale lab tests 
to big scale structures. 

However, the shear capacity of concrete beams without shear reinforcement 
has been proven to be one of the exceptions of the preceding hypothesis. In the 
1960s, Leonhardt and Walther (Leonhardt & Walther 1962) investigated the 
shear capacity of concrete beams of different scale regarding to all the dimen-
sions. They observed that the scaling-up of the beam specimen will reduce the 
equivalent nominal shear strength ( = V/bd) of the specimens at failure. Kani 
showed further through experiments (Kani 1967) that it is the depth that influ-
ences the equivalent nominal shear strength. What has to be mentioned is that 
Kani concluded that the width does not influence the shear strength based on 
results from specimens with a width of maximum 0.6 m. As will be shown later 
in Chapter 6, the influence of specimen width becomes pronounced in speci-
mens with a much larger width due to the variability of the material. Besides, 
neglecting the influence of width is at the safe side, thus it is not discussed in this 
section. In this section, the term size effect only stands for the influence of 
specimen depth to the average cross sectional shear strength of concrete beams. 
More experimental proof of the effect of beam height has been observed even 
since (Walraven 1978; Chana 1981; Shioya 1989; Bažant & Kazemi 1991; Collins 
& Kuchma 1999). Without a clear image on the size effect relationship, the 
up-scaling strategy widely applied in structural design will result in a danger-
ous situation when it is applied in calculating the shear capacities of large scale 
structures. For that reason, research has been carried out to explore the reason 
for it and to determine the scaling relationship regarding the effective height of 
the beam. Some of the theories on size effect of shear capacity are presented 
here. 

Statistical Size Effect 

Since the shear flexural failure was attributed to the tensile stress reaching the 
tensile strength in the diagonal direction (see the discussion in Section 2.1). 

CH4 Evaluation of Shear Capacity of Reinforced Concrete Beams Based 
on Critical Vertical Displacement 

141 

 

 

Following the analysis of uniaxial tensile tests (Kittl & Díaz 1988; Carpinteri 1989; 
Kittl & Díaz 1990), the size effect in shear capacity was firstly related to Weibull’s 
theory, also called the Weakest Link Theory (Weilbull 1951). It attributes the 
influence of beam height to the statistical distribution of concrete strength. 
Assuming more defects due to a larger beam height results in a lower nominal 
shear strength of the beam. It was shown by Walraven (Walraven 1978) that it is 
not possible to apply the same rule derived from Weibull’s theory to describe 
both flexural shear failure and tension failure. This conclusion was also con-
firmed by Bažant in (Bažant et al. 1991). They showed that the size effect of 
flexural shear failure observed in tests is stronger than what is predicted by 
Weibull’s theory. Besides, the stress redistribution due to the tension softening 
behaviour of concrete is different from the assumption of Weibull’s theory. 

Size Effect from Fracture Mechanics  

The other classical theory of size effect comes from Linear Elastic Fracture 
Mechanics, according to which the crack opening criterion is the energy release 
rate along the crack, rather than the stress. Dimensional analysis of the main 
variables involved in the formulation shows the following relationship 
(Barenblatt 1996): 

 
2

2
const

K
l

s
=  (4.17) 

where  
l : is the characteristic length of the structure, with unit: m; 
K : has the same unit of fracture toughness: N/m3/2, and can be consid-

ered as material property in LEFM such as: KIC or (EGf)1/2. 
 : is the stress at unstable crack development, with unit: N/m2. 

 
Eq. (4.17) shows that the critical stress of a structure is related to the square root 
of the specific dimension of the structure. This relationship can be derived 
through other approaches as well, see (Bažant 2005). 

However, experimental results show that such a relationship holds true only 
for very large structures or very brittle materials such as ceramics, which can be 
approximated with LEFM. For quasi-brittle materials like concrete, there are 
residual tensile stresses in the cracks even for relatively large crack widths: 
therefore the idealization is not applicable anymore for structures with normal 
size. K cannot be considered as a constant anymore.  

Experimental evidences show that the tension softening property of concrete 
plays an important role in the propagation of cracks in beams under shear 
loading. A notable experimental proof followed from the size effect tests carried 
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specimen depth to the average cross sectional shear strength of concrete beams. 
More experimental proof of the effect of beam height has been observed even 
since (Walraven 1978; Chana 1981; Shioya 1989; Bažant & Kazemi 1991; Collins 
& Kuchma 1999). Without a clear image on the size effect relationship, the 
up-scaling strategy widely applied in structural design will result in a danger-
ous situation when it is applied in calculating the shear capacities of large scale 
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for it and to determine the scaling relationship regarding the effective height of 
the beam. Some of the theories on size effect of shear capacity are presented 
here. 

Statistical Size Effect 

Since the shear flexural failure was attributed to the tensile stress reaching the 
tensile strength in the diagonal direction (see the discussion in Section 2.1). 
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Following the analysis of uniaxial tensile tests (Kittl & Díaz 1988; Carpinteri 1989; 
Kittl & Díaz 1990), the size effect in shear capacity was firstly related to Weibull’s 
theory, also called the Weakest Link Theory (Weilbull 1951). It attributes the 
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Assuming more defects due to a larger beam height results in a lower nominal 
shear strength of the beam. It was shown by Walraven (Walraven 1978) that it is 
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both flexural shear failure and tension failure. This conclusion was also con-
firmed by Bažant in (Bažant et al. 1991). They showed that the size effect of 
flexural shear failure observed in tests is stronger than what is predicted by 
Weibull’s theory. Besides, the stress redistribution due to the tension softening 
behaviour of concrete is different from the assumption of Weibull’s theory. 

Size Effect from Fracture Mechanics  

The other classical theory of size effect comes from Linear Elastic Fracture 
Mechanics, according to which the crack opening criterion is the energy release 
rate along the crack, rather than the stress. Dimensional analysis of the main 
variables involved in the formulation shows the following relationship 
(Barenblatt 1996): 
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where  
l : is the characteristic length of the structure, with unit: m; 
K : has the same unit of fracture toughness: N/m3/2, and can be consid-

ered as material property in LEFM such as: KIC or (EGf)1/2. 
 : is the stress at unstable crack development, with unit: N/m2. 

 
Eq. (4.17) shows that the critical stress of a structure is related to the square root 
of the specific dimension of the structure. This relationship can be derived 
through other approaches as well, see (Bažant 2005). 

However, experimental results show that such a relationship holds true only 
for very large structures or very brittle materials such as ceramics, which can be 
approximated with LEFM. For quasi-brittle materials like concrete, there are 
residual tensile stresses in the cracks even for relatively large crack widths: 
therefore the idealization is not applicable anymore for structures with normal 
size. K cannot be considered as a constant anymore.  

Experimental evidences show that the tension softening property of concrete 
plays an important role in the propagation of cracks in beams under shear 
loading. A notable experimental proof followed from the size effect tests carried 
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out by Walraven in (Walraven 1978). Walraven marked the crack patterns of the 
three specimens from the same test series with different beam heights at the 
same nominal shear stress, among which, the crack patterns of beams in A series 
at  = 0.42 MPa are plotted in Fig. 4.25, where it is shown that although the 
configurations of the three specimens are strictly scaled in the test series, the 
difference among the crack patterns are remarkable. This can be explained by 
the fact that although the strain gradients along the cross sections of the beams 
are comparable, the scaled tensile deformation dose not result in the same 
cracking. The strain criterion for the fracturing of concrete is always constant. 
Accordingly, due to the fracturing of concrete, the stress redistributes in the 
beams, and consequently the overall behaviour of the beams deviates. 

 

 
 

Fig. 4.25. Comparison of the scaled crack patterns for beam A1, A2 and A3 at  = 0.42 
MPa (Walraven 1978) 

However, the shear failure of concrete beams is a more complex process 
comprising several different mechanisms rather than the fracturing process of 
the inclined crack alone. One of the efforts to describe this complex behaviour is 
from Bažant. He tried to bridge the gap between the theoretical expression from 
LEFM and experimental observations with a transitional scaling relationship 
between LEFM and strength criteria through regression analysis, see Fig. 4.26. 
Accordingly, a size effect relationship for shear capacity was proposed in 
(Bažant & Kim 1984; Bažant & Yu 2005; Bažant & Yu 2005): 
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Fig. 4.26. Illustration of Bažant's 

transitional scaling effect rela-
tionship (Bažant 2005). 

Fig. 4.27. Results of Walraven’s size effect test on 
gravel and light-weight aggregate concrete, 
adopted from (Walraven 1978). 

The procedure improves the first question regarding the LEFM approach. In fact, 
although Eq. (4.18) was initially based on the assumption that only the residual 
tensile strength is the reason of this size effect relationship, the regression 
analysis implicitly covers the effect of all the other mechanisms acting during 
shear failure as well. However, as shown before, the shear failure of concrete 
beams is the consequence of several mechanisms. To derive a single scaling 
relationship covering the size effect of shear strength due to several failure 
mechanisms with probably different scaling relationships is a fundamental 
challenge. 

Size Effect from Aggregate Interlock 

Another explanation of the size effect of shear strength comes from the Modified 
Compressive Field Theory as proposed by Collins and Vecchio (Vecchio & 
Collins 1986), which has been introduced in Chapter 2. They suggest that the 
shear capacity of concrete beams is related to the aggregate interlock effect in a 
crack. Thus the average width of the inclined crack w determines the size effect 
of shear strength. The crack width is expressed by w = lcr,m·x where lcr,m is the 
crack spacing in the beam. For beams with only longitudinal reinforcement at 
the tensile side, lcr,m is assumed to be equal to the internal lever arm of the beam z, 
which is further assumed to be 0.9d. In this way the shear strength of the beam is 
related to the beam depth implicitly. The calculation was simplified further in 
the Simplified Modified Compressive Theory proposed by Bentz, Vecchio et al. 
in (Bentz, Vecchio et al. 2006), where, the longitudinal strain x and crack spacing 
lcr,m are separated in Eq. (2.8). According to Collins and Kuchma (Collins & 
Kuchma 1999), the size effect of shear strength can be attributed to lcr,m in Eq. 
(2.8). They proved that supposition by comparing beam tests with distributed 

strength criteria

LEFM

log (size)

lo
g 

(s
tr

en
gt

h)

1

2

Bažant’s scaling 
relationship

200 400 600 800

0.6

0.8

1

1.2

1.4

d [mm]

τ u [M
P

a]

 

 
gravel concrete ρ

s
 = 0.74−0.83%

LWA concrete ρ
s
 = 0.74−0.83%

LWA concrete ρ
s
 = 1.53−1.58%



142  4.7 Effect of Beam Depth on Shear Capacity 
 

 

out by Walraven in (Walraven 1978). Walraven marked the crack patterns of the 
three specimens from the same test series with different beam heights at the 
same nominal shear stress, among which, the crack patterns of beams in A series 
at  = 0.42 MPa are plotted in Fig. 4.25, where it is shown that although the 
configurations of the three specimens are strictly scaled in the test series, the 
difference among the crack patterns are remarkable. This can be explained by 
the fact that although the strain gradients along the cross sections of the beams 
are comparable, the scaled tensile deformation dose not result in the same 
cracking. The strain criterion for the fracturing of concrete is always constant. 
Accordingly, due to the fracturing of concrete, the stress redistributes in the 
beams, and consequently the overall behaviour of the beams deviates. 

 

 
 

Fig. 4.25. Comparison of the scaled crack patterns for beam A1, A2 and A3 at  = 0.42 
MPa (Walraven 1978) 

However, the shear failure of concrete beams is a more complex process 
comprising several different mechanisms rather than the fracturing process of 
the inclined crack alone. One of the efforts to describe this complex behaviour is 
from Bažant. He tried to bridge the gap between the theoretical expression from 
LEFM and experimental observations with a transitional scaling relationship 
between LEFM and strength criteria through regression analysis, see Fig. 4.26. 
Accordingly, a size effect relationship for shear capacity was proposed in 
(Bažant & Kim 1984; Bažant & Yu 2005; Bažant & Yu 2005): 

 
0

1

1 /
u c

d d
t t=

+
 (4.18) 

Where d0, 0 are constants from regression analysis.  

A3

A2

A1

τ = 0.42 MPa

τ = 0.42 MPa

τ = 0.42 MPa

d = 720 mm

d = 420 mm

d = 125 mm

CH4 Evaluation of Shear Capacity of Reinforced Concrete Beams Based 
on Critical Vertical Displacement 

143 

 

 

 
Fig. 4.26. Illustration of Bažant's 

transitional scaling effect rela-
tionship (Bažant 2005). 

Fig. 4.27. Results of Walraven’s size effect test on 
gravel and light-weight aggregate concrete, 
adopted from (Walraven 1978). 

The procedure improves the first question regarding the LEFM approach. In fact, 
although Eq. (4.18) was initially based on the assumption that only the residual 
tensile strength is the reason of this size effect relationship, the regression 
analysis implicitly covers the effect of all the other mechanisms acting during 
shear failure as well. However, as shown before, the shear failure of concrete 
beams is the consequence of several mechanisms. To derive a single scaling 
relationship covering the size effect of shear strength due to several failure 
mechanisms with probably different scaling relationships is a fundamental 
challenge. 

Size Effect from Aggregate Interlock 

Another explanation of the size effect of shear strength comes from the Modified 
Compressive Field Theory as proposed by Collins and Vecchio (Vecchio & 
Collins 1986), which has been introduced in Chapter 2. They suggest that the 
shear capacity of concrete beams is related to the aggregate interlock effect in a 
crack. Thus the average width of the inclined crack w determines the size effect 
of shear strength. The crack width is expressed by w = lcr,m·x where lcr,m is the 
crack spacing in the beam. For beams with only longitudinal reinforcement at 
the tensile side, lcr,m is assumed to be equal to the internal lever arm of the beam z, 
which is further assumed to be 0.9d. In this way the shear strength of the beam is 
related to the beam depth implicitly. The calculation was simplified further in 
the Simplified Modified Compressive Theory proposed by Bentz, Vecchio et al. 
in (Bentz, Vecchio et al. 2006), where, the longitudinal strain x and crack spacing 
lcr,m are separated in Eq. (2.8). According to Collins and Kuchma (Collins & 
Kuchma 1999), the size effect of shear strength can be attributed to lcr,m in Eq. 
(2.8). They proved that supposition by comparing beam tests with distributed 

strength criteria

LEFM

log (size)

lo
g 

(s
tr

en
gt

h)

1

2

Bažant’s scaling 
relationship

200 400 600 800

0.6

0.8

1

1.2

1.4

d [mm]
τ u [M

P
a]

 

 
gravel concrete ρ

s
 = 0.74−0.83%

LWA concrete ρ
s
 = 0.74−0.83%

LWA concrete ρ
s
 = 1.53−1.58%



144  4.7 Effect of Beam Depth on Shear Capacity 
 

 

longitudinal rebars over the beam depth. By using the rebar space lcr,m as the 
variable instead of the beam depth 0.9d, they got a strong correlation between 
lcr,m and the measured u. In the next section, the relationship between the crack 
width and the size effect will be elaborated in another way giving slightly 
different results. 

However, following the theories relating the size effect of shear strength 
solely to aggregate interlocking, one may expect that once the aggregate inter-
lock action is eliminated, the size effect is eliminated as well. To evaluate the 
influence of aggregate interlock to size effect, Walraven studied the size effect of 
shear beams with both normal concrete beams and Light-Weight Aggregates 
(LWA) concrete beams in (Walraven 1978). It was expected that in the LWA 
concrete beams, the fracture of the course aggregates reduced the contact area in 
a given crack, thus decreasing the stresses generated by aggregate interlock. 
Expectedly the size effect in LWA concrete beams should be less pronounced. 
The results of the tests are given in Fig. 4.27. It clearly shows that LWA concrete 
beams follow almost the same scaling relationship as normal concrete beams. 
The experimental observation turns out to be in conflict with the preceding 
conclusion deducted from the theory. Another experimental evidence is the 
shear tests series carried out by Chana (Chana 1981). In his specimens, the 
aggregate sizes were scaled with the beam height as well. Nevertheless, a similar 
scaling relationship was found in his tests. This shows indirectly that the size 
effect of shear strength is a comprehensive effect due to more than one type of 
mechanism related to the beam size.  

Empirical Approaches 

As shown above, a generally accepted rational explanation on the size effect of 
shear strength is not available yet. Consequently, regression analysis has been 
widely carried out by researchers based on the large amount of test results 
reported in literature, from which empirical formulas have been derived. The 
basic assumption behind these methods is that it is possible to derive a scaling 
relationship for the size effect of shear strength. Those formulas have been 
widely used in design codes. The scaling relationships of several typical formu-
las are listed in Table 4.2. 
In Table 4.2, the scaling relationships in the empirical formulas are significantly 
different from each other. This can be explained by the fact that they were 
derived from different data collections. However, since totally different rela-
tionships can be concluded from different data collections, the question may be 
raised: whether it is possible to derive a specific scaling relationship separately 
in the shear formula? The other aspect is that as shown in Section 2.4, the ma-
jority of the test results in literature are laboratory tests on beams with relatively 
small depths. Therefore, as long as the empirical formulae are able to calculate 
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the shear capacity of those small scale beams, it gives good regression accuracy 
in general. The size effect relationship may be easily suppressed with such types 
of database. That problem has been addressed in Section 2.4 previously.  
 
Table 4.2. Empirical scaling relationship of size effect. 

Formula Eurocode1 Rafla2, Niwa3 Bažant4 Remmel5 
Scaling  
Relationship 1 + (d/200) -1/2 d -1/4 (1 + d/d0) -1/2 d  -1/3 

1 Eurocode formula from (Eurocode 2 2004); 
2 Rafla’s regression formula from (Rafla 1971); 
3 Shear Formula from Niwa et al. (Niwa et al. 1987), it is also used in JSCE code; 
4 Bažant’s size effect relationship from (Bažant & Kim 1984; Bažant & Yu 2005; Bažant & Yu 2005); 
5 Regression formula from Remmel’s work in (Remmel 1992). 

 

4.7.2 Size Effect according to cr Model 

It was shown in the preceding subsection, that the procedure of deriving a 
simple scaling relationship and multiplying it to the shear strength is not ap-
propriate to cover the mechanisms with different scaling relationship. 
Understanding the mechanisms behind it seems to be critical to solve the riddle 
of the size effect. On the other hand, the good agreement shown in the compar-
ison with the test database in Section 4.4.2 and 4.6.2 indicates that within the 
shear evaluation method presented in this chapter, the influence of depth has 
already been integrated. It partly confirms that the theory reflects the reality 
properly without additional adjustment needed. Since an explicit expression of 
the scaling effect is not present in the theory, the task of this section is to find out 
the causes of the size effect within the scope of the shear evaluation procedure 
explained previously. 

The calculation procedure as explained in section 4.4.2 subdivides the total 
shear capacity V into the three parts Vd, Vai and Vc. The influence of beam 
effective height d to them will be explained separately. In addition, the role of 
the tension softening behaviour of concrete in the model is discussed in the end. 

Concrete Compressive Zone 

The shear force carried by the compressive zone Vc is not subject of a size effect. 
The two terms in Eq. (3.26): z and zc are both related to the beam depth d, thus 
they are eliminated. Assuming a linear normal stress distribution in the com-
pressive zone and simplifying Eq. (3.2) into scr = kcrd, Eq. (3.26)is simplified into:
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Since kcr is independent of d, the term Vc can be eliminated from Eq. (3.20), so it 
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Therefore, although the height of the compressive zone is related to the beam 
depth, the shear force transferred within the compressive zone is independent of 
beam depth for slender beams. 

 
Fig. 4.28. The influence of beam depth on the contribution of dowel action in the 

ultimate capacity as reported by (Collins & Kuchma 1999). 

Dowel Action 

The dowel action term Vd expressed by Eq. (3.28) is independent of the beam 
depth. However, because of that, a different scaling relationship should be 
considered when the shear strength is concerned. In that case, the shear strength 
contributed by dowel action d is related to d -1: 
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For the shallow beams in the size effect tests, like the smallest specimens in the 
tests reported in (Kani 1967; Bažant & Kazemi 1991; Collins & Kuchma 1999), the 
effect of dowel action can be pronounced. As an example, the BN series test 
reported by Collins and Kuchma are regarded. The widths of the specimens are 

200 400 600 800 1000
15

20

25

30

35

40

45

d [mm]

V
d/V

u [%
]

CH4 Evaluation of Shear Capacity of Reinforced Concrete Beams Based 
on Critical Vertical Displacement 

147 

 

 

all 300 mm, and the depth varied from 110 mm to 925 mm. Assuming that Eq. 
(3.28) predicts the dowel force accurately, the percentage of Vd to the total 
measured shear capacity Vu changes significantly, see Fig. 4.28.  

Aggregate Interlock 

Compared to the other components, the role of aggregate interlock is much more 
complex. In the design method, a relatively accurate estimation of the shear 
force generated by aggregate interlock should be calculated by integrating the 
shear stress generated at the critical shear displacement cr and the normal crack 
opening w with Eq. (4.4). Since the normal crack opening at failure is unknown 
beforehand, an iteration process is required to determine the ultimate capacity. 
The complex process makes it almost impossible to determine the influence of 
beam depth explicitly. 

In principle there are several effects involved in the mechanism. To clarify 
the effect of beam depth some simplification is made, in order to demonstrate 
the influence of beam depth clearly. 

First of all, when the crack width is involved in the formulation of the shear 
capacity, the beam depth is automatically included. This conclusion is given in 
(ACI Committee 446 1989). It can be illustrated in a simplified way. Most ex-
perimental observations show that the shear stress in the crack is inversely 
proportional to the crack width. In the most simplified manner, the shear stress 
by aggregate interlock can be expressed as: 

 0
0ai

w

w
t t=  (4.20) 

On the other hand, the crack width is expressed by Eq. (4.10). Since both z and lcr 
in the equation are proportional to d, Eq. (4.10) is simplified into: 
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The relationship between crack width and beam depth holds for most slender 
beams with reasonable beam height. Assuming that aggregate interlock is the 
only cause of shear resistance ( = ai), combining Eq. (4.20) and Eq. (4.21) leads 
to the conclusion that the shear stress  is related to the square root of the beam 
depth d:  ~ d -1/2. Because the crack width is related to the total shear force rather 
than the shear stress, as long as it is included in the formulation of the aggregate 
interlock force, the effect of beam depth d will always be included. 
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On the other hand, the crack width is expressed by Eq. (4.10). Since both z and lcr 
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The relationship between crack width and beam depth holds for most slender 
beams with reasonable beam height. Assuming that aggregate interlock is the 
only cause of shear resistance ( = ai), combining Eq. (4.20) and Eq. (4.21) leads 
to the conclusion that the shear stress  is related to the square root of the beam 
depth d:  ~ d -1/2. Because the crack width is related to the total shear force rather 
than the shear stress, as long as it is included in the formulation of the aggregate 
interlock force, the effect of beam depth d will always be included. 
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However, the actual expression for the aggregate interlock force is more 
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force carried by aggregate interlock is calculated by integrating the shear stress 
generated along a crack with a certain crack opening and shear displacement 
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this approach is helpful either. Nevertheless it is still useful to discuss how the 
aggregate interlock force is influenced by the beam depth. 

First of all, as illustrated by Eq. (4.21), the crack width is proportional to the 
beam depth. With the linear crack width distribution as proposed in section 4.2.1, 
the shear stress distribution over the crack height does not change with the crack 
width in principle. A larger crack width at the tensile side only causes an addi-
tional part of the shear stress to crack width curve approaching zero. Because the 
peak of the shear stress at the crack tip of the major crack remains unchanged, 
the total shear force due to aggregate interlock largely concentrates at the part of 
the major crack close to the tip, see Fig. 4.29. For beams with a larger depth, their 
crack widths at the tensile side increase proportionally, nevertheless, most of the 
shear force due to aggregate interlock is generated at a certain distance from the 

 
Fig. 4.29. Shear stress distribution calculated from different crack width at the tensile 

side (wb = 0.1 mm, 0.2 mm and 0.3 mm respectively,  = 0.02 mm, fcm = 40 MPa). 
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crack tip. It can be defined as the characteristic length l0, where the crack width 
at the end of l0 is w = w0. When w0 is more or less fixed, the characteristic length 
from the crack tip is also constant because of Eq. (4.21). Therefore, it is the shear 
stress distributions close to the crack tip that results in the size effect. 

That also explains the observation by Walraven in (Walraven 1978) and 
Chana in (Chana 1981). The performance of aggregate interlock within l0 is 
critical to the size effect relationship. According to Walraven’s aggregate inter-
lock test in (Walraven & Reinhardt 1981), the influence of maximum aggregate 
size is limited at small crack width. Although the minimum crack width w in his 
tests was limited at w = 0.1 mm, the extension of this conclusion to cracks with 
even smaller crack width is a realistic assumption regarding the already ob-
served shear stress development for cracks with larger crack width to smaller 
crack width. Therefore whether or not the aggregate size is scaled with the 
specimen size, does not influence the size effect relationship of the whole 
structural member. Regarding the LWA concrete beams, it has discussed in 
Section 4.5.2, according to Walraven’s tests (Walraven & Reinhardt 1981) the 
shear stress that is generated in cracks of the LWA concrete is not significantly 
reduced comparing to that of the normal concrete when the crack width is small. 
At w = 0.1 mm,  = 0.15 mm, the experimental observation shows that the ai of 
LWA concretes is about 0.66 times that of normal concrete. A smaller crack 
width w may even lead to a higher ratio. That also confirms the reduction factor 
0.75 applied on Vai for LWA concrete in section 4.5.2, where the value of the 
reduction factor was derived from regression analysis. Therefore, the applica-
tion of LWA concrete will not eliminate the size effect due to aggregate interlock 
either. The size effect of LWA concrete beams can still be explained with the 
theory presented here.  

Another important aspect affecting the aggregate interlock effect is the criti-
cal shear displacement cr. The calibration with test results in section 4.3.2 shows 
that the value ofcr should depend on the beam depth as well to correct the error 
introduced by the simplification of the crack width distribution. Without a 
correction of the critical shear displacement, the shear stress distribution over-
estimates Vai in beams with smaller depths, thus enlarging the size effect 
relationship. This effect is illustrated in Fig. 4.30. In addition, according to 
section 4.6.2, the rebar configuration needs be taken into account as well when 
calculating cr. However, the rebar configuration was not always of considera-
tion in the size effect tests for practical reasons. The choice of the rebar 
configuration when designing the test specimen influences the ultimate shear 
capacity, and as a result, the size effect relationship derived might be influenced 
as well. 
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from the crack tip is also constant because of Eq. (4.21). Therefore, it is the shear 
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even smaller crack width is a realistic assumption regarding the already ob-
served shear stress development for cracks with larger crack width to smaller 
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0.75 applied on Vai for LWA concrete in section 4.5.2, where the value of the 
reduction factor was derived from regression analysis. Therefore, the applica-
tion of LWA concrete will not eliminate the size effect due to aggregate interlock 
either. The size effect of LWA concrete beams can still be explained with the 
theory presented here.  

Another important aspect affecting the aggregate interlock effect is the criti-
cal shear displacement cr. The calibration with test results in section 4.3.2 shows 
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introduced by the simplification of the crack width distribution. Without a 
correction of the critical shear displacement, the shear stress distribution over-
estimates Vai in beams with smaller depths, thus enlarging the size effect 
relationship. This effect is illustrated in Fig. 4.30. In addition, according to 
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calculating cr. However, the rebar configuration was not always of considera-
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configuration when designing the test specimen influences the ultimate shear 
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Fig. 4.30. Influence of cr correction on the size effect relationship (fcm = 40 MPa, M/Vd 

= 3.0, s = 0.9% with 3 rebars). 
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already be properly described with the aggregate interlock and dowel action in a 
cracked section of a beam. Nevertheless, the tension softening behaviour of 
concrete, which is proven as the reason for the influence of beam height to the 
propagation of cracks (see Fig. 4.25) is still of importance in the model. 
 

 
 

Fig. 4.31. Determination of shear resistance taking into account tension softening. 
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First of all, the tension softening behaviour of concrete influences the prop-
agation of the major cracks, which has been shown in Section 3.2.1. A beam with 
smaller height needs a larger cross sectional moment M to generate a fully 
developed major crack. 

On the other hand, the shear evaluation model described in this study is 
based on a fully developed crack profile. Fig. 4.31 indicates that the shear ca-
pacity of a beam is determined by the lowest point of the shear resistance line, 
the boundary of which is defined by the position of the loading point and the 
cracking shear force line. The later one is significantly influenced by the tension 
softening behaviour of concrete. In the model described in this chapter, the 
cracking moment is estimated by completely ignoring the post-peak tensile 
behaviour of concrete (scr reached immediately once M = Mcr), which leads to a 
lower bound of the cracking shear force line. However, because the cracking 
shear force line is always much lower than the shear resistance line, the major 
cracks at the critical sections are already fully developed when the inclined 
cracking load is reached. As a result, a better evaluation on the exact moment 
when a crack profile is fully developed does not improve the accuracy of the 
evaluation. An exception is when the shear span of the beam is very small, in 
that case the lower bound of the shear resistance line can be determined by the 
cross point at its left side. Nevertheless, it is always on the safe side to evaluate 
the shear resistance at M = Mcr as the lower bound of the shear resistance. 

Although the tension softening behaviour also influences the development of 
a dowel crack, it has already covered implicitly by Eq. (4.15) through regression 
analysis. 

Because of the aforementioned reason, the influence of tension softening to 
the shear capacity of concrete beams is not less significant in the model, espe-
cially for beams with relatively larger shear slenderness ratio. Further validation 
on the conclusion can be found in the experiments presented in the following 
chapters.  

4.7.3 Discussion 

In this section, the influence of beam height to the shear strength of concrete 
beams has been discussed. It is shown that the term size effect can be traced back 
to several different mechanisms. Therefore, it is not practical to express this 
effect with a relatively simple relationship as some researchers proposed. On the 
other hand, the shear evaluation procedure proposed in this chapter is devel-
oped based on the understanding of the shear failure mechanism, and because 
of that, it is not necessary to add an additional scaling relationship regarding the 
effect of the beam effective height d. According to the theory presented, the size 
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Fig. 4.30. Influence of cr correction on the size effect relationship (fcm = 40 MPa, M/Vd 
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effect is generated from the localized aggregate interlock stress distribution and 
the constant dowel force at the tension bars. 

Fig. 4.32. Influence of beam depth on model prediction accuracy (top left: Present 
Theory; top right: Eurocode; bottom left: Modified Compressive Field Theory; 
bottom right: Bažant's formula). 
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selection of small number of test data. Only test data from research aimed at 
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Walraven 1978; Collins & Kuchma 1999). In addition, the 6 size effect tests on 
LWA concrete beams carried out by Walraven (Walraven 1978) are also included. 
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Because the material is in general the same as the one tested in (Walraven & 
Reinhardt 1981), the reduction factor for LWA concrete is chosen to be 0.66 
instead of 0.75 according to the test results. The comparison between the model 
prediction and test results are plotted in Fig. 4.32. For the sake of comparison, 
the prediction given by Eurocode, MCFT, and Bažant’s formula are plotted as 
well, in which the LWA concrete specimens are not included.  

All the models are calibrated with a large set of test data. Good agreements 
were achieved in the calibrations. Nevertheless, when the large number of tests 
within a relatively small range of beam depth is removed, the comparison 
clearly shows that the current theory is able to predict the test results over the 
whole depth range unbiased, whereas the prediction of all the other models 
leans towards a certain side of the beam depths range. Besides, as shown in Fig. 
4.32, once the reduction of aggregate interlock stress at small crack openings is 
known, the size effect of LWA concrete beams can be predicted accurately with 
the present theory as well. 

 

4.8 CONCLUSIONS 

Based on the failure mechanism discussed in Chapter 3, a simplified calculation 
procedure was developed in this chapter. It aims at giving a prediction for the 
inclined cracking load of simply supported reinforced concrete beams without 
shear reinforcement with a relatively large shear slenderness ratio (a/d). 

In the procedure, the crack profile is simplified to a straight major crack being 
perpendicular to the longitudinal direction of the beam connected by a second-
ary inclined branch. With that simplification, it is possible to express the shear 
displacement  and the normal crack opening w independently, which are used 
to calculate the shear force generated by aggregate interlock based on 
Walraven’s aggregate interlock equations. The procedure is further simplified 
into an expression that is suitable for hand calculation. 

Based on the simplifications, the critical shear displacement cr at the longi-
tudinal rebar is derived by reverse analysis of the vertical displacement  at the 
reported failure loads Vu of 410 experiments reported in literature. 

For high strength concrete or lightweight aggregate concrete beams, due to 
the fracture of aggregates, the aggregate interlocking force Vai has to be reduced. 
This can be done by taking into account the reduction of the contact area into the 
aggregate interlock equations. A simplified method is that for high strength 
concrete the concrete compressive strength used in calculating the aggregate 
interlocking forces is limited up to 60 MPa, and a general reduction factor Ra = 
0.75 is introduced for LWA concrete beams as a rough estimation. 
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Because the material is in general the same as the one tested in (Walraven & 
Reinhardt 1981), the reduction factor for LWA concrete is chosen to be 0.66 
instead of 0.75 according to the test results. The comparison between the model 
prediction and test results are plotted in Fig. 4.32. For the sake of comparison, 
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well, in which the LWA concrete specimens are not included.  

All the models are calibrated with a large set of test data. Good agreements 
were achieved in the calibrations. Nevertheless, when the large number of tests 
within a relatively small range of beam depth is removed, the comparison 
clearly shows that the current theory is able to predict the test results over the 
whole depth range unbiased, whereas the prediction of all the other models 
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4.32, once the reduction of aggregate interlock stress at small crack openings is 
known, the size effect of LWA concrete beams can be predicted accurately with 
the present theory as well. 

 

4.8 CONCLUSIONS 

Based on the failure mechanism discussed in Chapter 3, a simplified calculation 
procedure was developed in this chapter. It aims at giving a prediction for the 
inclined cracking load of simply supported reinforced concrete beams without 
shear reinforcement with a relatively large shear slenderness ratio (a/d). 

In the procedure, the crack profile is simplified to a straight major crack being 
perpendicular to the longitudinal direction of the beam connected by a second-
ary inclined branch. With that simplification, it is possible to express the shear 
displacement  and the normal crack opening w independently, which are used 
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Walraven’s aggregate interlock equations. The procedure is further simplified 
into an expression that is suitable for hand calculation. 

Based on the simplifications, the critical shear displacement cr at the longi-
tudinal rebar is derived by reverse analysis of the vertical displacement  at the 
reported failure loads Vu of 410 experiments reported in literature. 

For high strength concrete or lightweight aggregate concrete beams, due to 
the fracture of aggregates, the aggregate interlocking force Vai has to be reduced. 
This can be done by taking into account the reduction of the contact area into the 
aggregate interlock equations. A simplified method is that for high strength 
concrete the concrete compressive strength used in calculating the aggregate 
interlocking forces is limited up to 60 MPa, and a general reduction factor Ra = 
0.75 is introduced for LWA concrete beams as a rough estimation. 
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Because the development of the dowel crack along the longitudinal rebar is a 
complex process, involving both the rebar tensile and flexural stiffness, the rebar 
configuration plays an important role in the expression of cr in addition to the 
total cross-sectional area of the reinforcing steel. 

The simplified shear evaluation procedure is developed based on a proper 
understanding of the shear failure mechanism. Therefore, it is able to predict the 
size effect on the shear capacity without any further modification. According to 
the model, the inclined crack is generated from a fully developed major crack, 
and the size effect is mainly due to the aggregate interlock and dowel action at 
the cracked section. The tension softening behaviour of concrete has limited 
effects on the shear capacity when the beam span is small. 

A comparison with the results found in multiple shear tests databases has 
shown that the proposed calculation procedure is able to deliver a very accurate 
prediction of the shear capacity of the target reinforced concrete beams. With 
regard to accuracy, the method developed is also superior to most of the other 
design formulas for this type of structure. 
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5.1 INTRODUCTION 

In Chapter 3, the shear failure mechanism of a simply supported reinforced 
concrete beam loaded by single point load has been discussed, based on which a 
simplified calculation method was proposed in Chapter 4. One of the important 
messages that have been delivered in the previous chapters is that the shear 
failure process is strongly related to the cracks initiated by the flexural moment. 
Therefore, the shear resistance of a structure should not be considered as a 
material property as is done when it is loaded by a bending moment or a tensile 
force. For a given structure, the shear resistance has to be evaluated by taking 
into account its loading condition, which influences the crack trajectories and the 
crack opening. In the case of a simply supported beam this influence is often 
related to the so-called shear slenderness ratio (a/d), which was firstly demon-
strated by Kani in his well-known experiments described in (Kani 1964). With 
the design procedure specified in Chapter 4, the influence of a/d can simply be 
explained by the opening of the major crack at the critical cross section. For 
beams with smaller a/d, the moment at the critical cross-section is smaller under 
the same shear force, which gives a smaller crack width, thus larger shear 
resistance at the cracked cross section. The proposed method compares well 
with experimental results reported in literature. This also implies that the shear 
failure mechanism reflects the reality properly. 

However, most structures in reality are characterized by more complex 
boundary conditions. Fig. 5.1 shows two examples of structures where shear 
failure is considered to be critical. The first case is concerned with concrete slab 
decks, which are widely used in highway bridges with multiple spans. The slab 
decks are mostly constructed without shear reinforcement, thus vulnerable to 
shear failure when heavy wheel loads are approaching the support. Also, for 
tunnel sections, shear reinforcement is usually not provided. Thus shear failure 
at the corners of tunnel sections is usually a point of concern. In this case the 
soil/water pressure being simplified as distributed load makes the moment and 
shear force distribution more complex. 

In this chapter, the shear capacity of beams under more complex loading or 
supporting conditions is discussed. The shear failure mechanism proposed, 
based on simply supported beams with simple loading conditions, is gen-
eralized to more complex boundary conditions first. Three common load cases 
will be discussed in the section, the design procedures of beams loaded in these 
load cases are investigated as examples. With increasing complexity, the load 
cases to be discussed are continuous beams loaded by point loads, and fur-
thermore the two shear critical load conditions shown above. Validation against 
experimental results is carried out. 
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Fig. 5.1. Loading conditions of typical concrete structures vulnerable to shear failure. 

For the continuous supported beams loaded by point loads, full scale labora-
tory studies were executed by the author in the Stevin Laboratory at Delft 
University of Technology. The experimental program is dealt with in this chap-
ter briefly. 

 

5.2 EXTENSION OF THE SHEAR MODEL TO GENERALIZED BOUNDARY 
CONDITIONS 

For a simply supported beam subject to point loads as described in Chapter 3 
and 4, the moment and shear force distribution along the span is rather simple. 
The shear force along the span is constant between the support and the loading 
point, which results in a linear moment distribution as shown in Fig. 5.2.  Based 
on this moment and shear force distribution, a crack profile distribution is 
derived, with which the shear resistance components along a given crack profile 
can be evaluated, leading to the shear capacity of the whole structure. To extend 
the same process to more general boundary conditions, as shown in Fig. 5.2 (b) 
and (c), the derivation of the force components in Chapter 3 based on a relatively 
simple moment and shear force distribution has to be verified regarding the 
following questions:  

Typical three span concrete slab bridge

Crosssection of a typical tunnel element
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Fig. 5.2. Moment and shear force diagrams of beams under different boundary condi‐

tions. 

Whether or not a similar crack profile can be obtained at a given mo-
ment/shear force ratio? 

In Chapter 3 it was concluded that the inclination of a crack in a longitudinally 
reinforced beam is due to the shear stress developed between the reinforcing 
bars and concrete at the bottom of the concrete teeth formed by flexural cracks. 
That statement is independent of the boundary conditions of the whole beam. To 
get the expression for the crack path, the stress state around the propagating 
crack tip due to the combination of moment and shear force action has to be 
calculated. The calculation was done with the help of the sequentially linear 
analysis including a crack propagation algorithm. Thus the crack path being 
calculated was based on the condition that the shear force is constant from the 
section where the crack initiates till the section of the crack tip. When the shear 
force changes substantially between the two sections, the variation of the shear 
force will result in a different crack path function. 

For beams loaded by point loads and supported by standalone supports, 
since the shear forces between the supports or the loads are always constant, the 
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same crack profile expression can be expected. This conclusion may be further 
extended to beams subjected to uniformly distributed load with a large span. If 
the inclination of the crack is relatively small, and the distance between the two 
cracked sections is limited, the change of the shear force can be neglected. In that 
case, the crack profile expression derived from beams subject to point loads can 
be considered as a close estimation. 

With the same crack profile and crack opening, do the shear force com-
ponents change? 

Since the critical shear displacement cr is only related to the materials and the 
reinforcement configurations, it is supposed to be independent of the loading 
condition. If the shear force components along the cracked cross-section remain 
the same under the same shear displacement , then the shear failure process 
can be calculated in the same way. 

For Vd due to dowel action, it is assumed that at shear failure the maximum 
value of Vd is reached. Similar to cr, Vd,max is a constant value only related to the 
material properties and the cross-section of the structure. Therefore it is inde-
pendent of the boundary conditions. 

The force Vai is calculated from the shear stress ai and the normal stress ai at 
a given crack opening n and t, see Fig. 3.26. Hence, it is related to the crack path 
and crack opening. As long as the first criterion is fulfilled, the same crack 
opening should guarantee the same resultant shear force. 

In the case of Vc, the stress analysis in Section 3.5.3 has shown that when a 
concrete teeth structure cannot be formed between the critical inclined crack and 
the loading point, the shear stress distribution proposed by Mörsch in (Mörsch 
1909) is not valid anymore. In that case, it is quite difficult to evaluate the shear 
stress that is carried by the uncracked zone of the concrete beam. Even when 
concrete teeth can be formed the value of Vc varies from Eq. (3.26) due to the 
load distribution. Taking uniformly distributed load as an example, Mörsch’s 
evaluation assumed that the value of V is constant between the two cracked 
surfaces in the derivation. V = dM/dx, under that condition. However, when a 
distributed load is applied on the beam, the relationship between moment and 
shear force becomes dM = ∫V(x) dx. The simplified relationship may not be valid 
anymore when V varies significantly between the two cracked sections.  

Where is the critical section? 

Section 3.4.3 suggests that for a simply supported beam the critical cross-section 
is at the loading point although the real critical section is at a distance lcr,m from 
the loading point. The determination of the critical section is based on the 
following reasons. First of all, the cracked cross-section with larger M/Vd 



158  5.2 Extension of the Shear Model to Generalized Boundary Conditions 
 

 

 
 
Fig. 5.2. Moment and shear force diagrams of beams under different boundary condi‐

tions. 

Whether or not a similar crack profile can be obtained at a given mo-
ment/shear force ratio? 

In Chapter 3 it was concluded that the inclination of a crack in a longitudinally 
reinforced beam is due to the shear stress developed between the reinforcing 
bars and concrete at the bottom of the concrete teeth formed by flexural cracks. 
That statement is independent of the boundary conditions of the whole beam. To 
get the expression for the crack path, the stress state around the propagating 
crack tip due to the combination of moment and shear force action has to be 
calculated. The calculation was done with the help of the sequentially linear 
analysis including a crack propagation algorithm. Thus the crack path being 
calculated was based on the condition that the shear force is constant from the 
section where the crack initiates till the section of the crack tip. When the shear 
force changes substantially between the two sections, the variation of the shear 
force will result in a different crack path function. 

For beams loaded by point loads and supported by standalone supports, 
since the shear forces between the supports or the loads are always constant, the 

MOMENT DIAGRAM SHEAR DIAGRAM

P1P 1

q

P1P1

M-

M+

M-
V + V +

M+ M+
V -

V -

M+

V

V

q

a )

b )

c )

simply supported beam with point load

continuous supported beam with point load

continuous supported beam with distributed load

CH5 Shear Behaviour of Reinforced Concrete Beams under Complex 
Boundary Conditions 

159 

 

 

same crack profile expression can be expected. This conclusion may be further 
extended to beams subjected to uniformly distributed load with a large span. If 
the inclination of the crack is relatively small, and the distance between the two 
cracked sections is limited, the change of the shear force can be neglected. In that 
case, the crack profile expression derived from beams subject to point loads can 
be considered as a close estimation. 

With the same crack profile and crack opening, do the shear force com-
ponents change? 

Since the critical shear displacement cr is only related to the materials and the 
reinforcement configurations, it is supposed to be independent of the loading 
condition. If the shear force components along the cracked cross-section remain 
the same under the same shear displacement , then the shear failure process 
can be calculated in the same way. 

For Vd due to dowel action, it is assumed that at shear failure the maximum 
value of Vd is reached. Similar to cr, Vd,max is a constant value only related to the 
material properties and the cross-section of the structure. Therefore it is inde-
pendent of the boundary conditions. 

The force Vai is calculated from the shear stress ai and the normal stress ai at 
a given crack opening n and t, see Fig. 3.26. Hence, it is related to the crack path 
and crack opening. As long as the first criterion is fulfilled, the same crack 
opening should guarantee the same resultant shear force. 

In the case of Vc, the stress analysis in Section 3.5.3 has shown that when a 
concrete teeth structure cannot be formed between the critical inclined crack and 
the loading point, the shear stress distribution proposed by Mörsch in (Mörsch 
1909) is not valid anymore. In that case, it is quite difficult to evaluate the shear 
stress that is carried by the uncracked zone of the concrete beam. Even when 
concrete teeth can be formed the value of Vc varies from Eq. (3.26) due to the 
load distribution. Taking uniformly distributed load as an example, Mörsch’s 
evaluation assumed that the value of V is constant between the two cracked 
surfaces in the derivation. V = dM/dx, under that condition. However, when a 
distributed load is applied on the beam, the relationship between moment and 
shear force becomes dM = ∫V(x) dx. The simplified relationship may not be valid 
anymore when V varies significantly between the two cracked sections.  

Where is the critical section? 

Section 3.4.3 suggests that for a simply supported beam the critical cross-section 
is at the loading point although the real critical section is at a distance lcr,m from 
the loading point. The determination of the critical section is based on the 
following reasons. First of all, the cracked cross-section with larger M/Vd 
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requires a lower shear force to generate the same shear displacement cr. Sec-
ondly, the shear displacement  is obtained by rotation of the secondary branch 
at the crack tip, whereas a certain length of the crack branch is necessary to 
generate  under a relatively small rotation. Thus, having the crack tip at lcr,m 
from the turning point of rotation, it is guaranteed that the development of cr is 
still theoretically possible. The last one is to check whether a crack can develop 
at sections with very small M/Vd, where the shear force needed in order to 
generate an inclined crack can becomes very small again. 

The description above explains the criteria to determine the critical 
cross-section for general loading cases. The location of the critical cross-section 
must have an M/Vd as large as possible, where the lowest shear capacity is 
expected. In the meantime it shall be not less than lcr,m from the rotation points. 
Last but not least, the moment at the section has to be larger than the cracking 
moment, and there should be a sufficiently large shear force. 

Depending on the type of the boundary conditions, the location of the critical 
section may vary. The choices of critical cross sections will be discussed ac-
cording to the specific loading cases in the following sections.  
 

To summarize, it is possible to extend the failure mechanism that is based on 
simply supported beams with point loads to more general boundary conditions. 
To do so, the critical section where the inclined crack develops has to be updated. 
Once the critical section is determined, the shear force components along the 
critical crack have to be checked. Besides, if the boundary conditions of the beam 
differ from the ones described above, the crack path function and the formula of 
Vc have to be verified first. 
 

5.3 CONTINUOUS BEAM LOADED BY POINT LOADS 

5.3.1 Introduction 

Since the solid concrete deck of multiple span bridges is one of the most com-
mon structure types that are vulnerable to shear failure, the influence of the 
boundary conditions of this type of structure is studied in this section. In the 
Netherlands, an evaluation has been carried out on the concrete bridges in the 
country’s highway system with the Eurocode provisions. The result revealed 
that a large percentage of those bridges do not fulfil the code provisions under 
the current traffic load level. However, the Eurocode provision provides a 
relatively conservative prediction in the case of continuous supported structures, 
since it treats the shear capacity of beams as a cross sectional property, which is 
independent of the boundary conditions. Only when av/d of the loading point is 
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smaller than 2.0, the influence of the loading condition is treated as a reduction 
factor on the applied point load, see also Section 2.3.2. 

On the other hand, according to the failure process described in this study, 
the moment distribution over the shear span has a significant influence on the 
crack path and crack opening, thus the shear capacity is influenced. In the case 
of a continuous supported beam, the shear critical span lies often between the 
loading point and the intermediate support, see Fig. 5.2 (b). In the same span, the 
moment reaches zero. As explained in 5.2, in this case, the critical section of the 
beam is located at one of the two sections with a distance lcr,m from the loading 
point or the support, depending on which one has a larger M/Vd. The shear 
capacity of the beam is related to the value of the bending moment M and the 
shear force V at the critical section. Therefore, only regarding inclined cracking 
load, the beam can be considered as two shear loaded simply supported beams 
separated by the point where the moment is zero. The relatively smaller moment 
within the span increases the expected inclined cracking load. 

Similar to shear in simply supported beams, experimental results are needed 
to verify the model dealing with the shear capacity of this type of structures. 
However, reported test results with regard to complex loading conditions are 
quite limited in literature. Additional experimental research is needed to get a 
better insight into this problem. For that reason, a series of experiments with 
complex loading conditions was carried out in the Stevin Laboratory at Delft 
University of Technology upon the request of Rijkswaterstaat. In this section the 
experimental program is explained. More detailed reports can be found in (Yang 
& den Uijl 2011).  

5.3.2 Test Program 

 General Considerations 5.3.2.1

The aim of the experimental program was to evaluate the influence of the design 
variables such as the moment distribution, load conditions, reinforcement ratio 
etc. to the shear capacities of continuous beams. Thus, in the experiments, it is 
intended to reproduce a moment distribution on a concrete beam in the labora-
tory which is similar to that in a continuous concrete bridge deck. Both positive 
and negative moment shall be found in the critical shear span. This type of 
moment distribution can be generated on either a real continuous beam or a 
simply supported beam with a cantilever. In this study, the second option is 
chosen. Nevertheless, because the moment distribution in the critical shear span 
is chosen to imitate that of a continuous beam, the specimens are still denoted as 
continuous beams in the research to distinguish them from simply supported 
beams loaded with a point load within the span. In a statically indeterminate 
continuous beam, once the concrete cracks, the flexural stiffness of the beam 
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smaller than 2.0, the influence of the loading condition is treated as a reduction 
factor on the applied point load, see also Section 2.3.2. 

On the other hand, according to the failure process described in this study, 
the moment distribution over the shear span has a significant influence on the 
crack path and crack opening, thus the shear capacity is influenced. In the case 
of a continuous supported beam, the shear critical span lies often between the 
loading point and the intermediate support, see Fig. 5.2 (b). In the same span, the 
moment reaches zero. As explained in 5.2, in this case, the critical section of the 
beam is located at one of the two sections with a distance lcr,m from the loading 
point or the support, depending on which one has a larger M/Vd. The shear 
capacity of the beam is related to the value of the bending moment M and the 
shear force V at the critical section. Therefore, only regarding inclined cracking 
load, the beam can be considered as two shear loaded simply supported beams 
separated by the point where the moment is zero. The relatively smaller moment 
within the span increases the expected inclined cracking load. 

Similar to shear in simply supported beams, experimental results are needed 
to verify the model dealing with the shear capacity of this type of structures. 
However, reported test results with regard to complex loading conditions are 
quite limited in literature. Additional experimental research is needed to get a 
better insight into this problem. For that reason, a series of experiments with 
complex loading conditions was carried out in the Stevin Laboratory at Delft 
University of Technology upon the request of Rijkswaterstaat. In this section the 
experimental program is explained. More detailed reports can be found in (Yang 
& den Uijl 2011).  

5.3.2 Test Program 

 General Considerations 5.3.2.1

The aim of the experimental program was to evaluate the influence of the design 
variables such as the moment distribution, load conditions, reinforcement ratio 
etc. to the shear capacities of continuous beams. Thus, in the experiments, it is 
intended to reproduce a moment distribution on a concrete beam in the labora-
tory which is similar to that in a continuous concrete bridge deck. Both positive 
and negative moment shall be found in the critical shear span. This type of 
moment distribution can be generated on either a real continuous beam or a 
simply supported beam with a cantilever. In this study, the second option is 
chosen. Nevertheless, because the moment distribution in the critical shear span 
is chosen to imitate that of a continuous beam, the specimens are still denoted as 
continuous beams in the research to distinguish them from simply supported 
beams loaded with a point load within the span. In a statically indeterminate 
continuous beam, once the concrete cracks, the flexural stiffness of the beam 
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changes along the length. As a result the inner forces, such as the moment 
distribution, change when the external load level increases. That makes the 
boundary conditions of the tests indefinite. Besides, the redistribution makes the 
tested shear capacity higher, while on a simply supported beam with a cantile-
ver, the moment distribution over the target shear span can be kept constant as 
long as the external load levels are kept constant. 

 Since the moment distribution is the most distinctive feature for a con-
tinuous structure, this is one of the key variables in the research program. The 
moment distribution can be described by the length of the critical shear span a 
and the moment ratio between the maximum positive moment (sagging mo-
ment) and the negative moment (hogging moment) M +/M —. Both values 
directly relate to the maximum M/V in the span by 
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Therefore, the main variables with respect to the moment distributions involve 
two variables:  

a: is the shear span, which is the distance between the point load and the 
intermediate support; 

M +/M — : is the ratio between the maximum positive moment (sagging mo-
ment) M + and the minimum (sagging moment) negative moment M — 
in the shear span a. 

 
The test specimens are designed based on the common practice for Dutch 

concrete slab bridges, for example the Gestelsestraat Bridge (Yang et al. 2010). 
The reinforcement of those bridges was originally designed to get flexural 
failure before shear failure, therefore a large strain is expected on the reinforce-
ment at the ultimate limit state. As reported by Collins et al. in (Collins, Mitchell 
et al. 2008) beams under such load condition are found to have lower shear 
capacity than usually expected. On the other hand, a relatively small reinforce-
ment ratio may results in yielding of the rebars before shear failure. For the sake 
of comparison, an additional test series of specimens with higher reinforcement 
ratio which guaranteed shear failures was planned to check the influence of the 
reinforcement ratio s. 

In spite of the single point load tests, an additional test series including two 
point loads spaced at 1.2 m was planned. This was based on the concentrated 
loads as specified by Load Model 1 in Eurocode 1 (Eurocode 1 2003). Since the 
reinforced concrete beams are in general structures with nonlinear behaviour, 
the superposition principle of a linear elastic structure becomes inapplicable 
here. For beams loaded by multiple point loads a different shear behaviour was 
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observed by Bryant et al.(Bryant et al. 1962). Thus, it is necessary to investigate 
the effect of having multiple point loads on the continuous beam. 

 Test Specimens 5.3.2.2

Material Properties 

The concrete mixture used in the test specimens was a commercial mixture. It 
was classified as C53/65 by the producer. The maximum aggregate size of the 
mixture was 16 mm. A typical mixture composition is given in Table 6.5 in 
Chapter 6. In total 9 casts have been carried out in the lab. Among them, 5 casts 
were conducted in 2010, and the others in 2011. The last cast was planned almost 
one year later than the first one. Though the compositions of the mixtures are 
still the same on paper, the change of the raw materials of the concrete plant 
might still result in a variation of the final result. 

The mean compressive strength fcm and splitting tensile strength fctm,s were 
tested with 150 mm cubes after 7 days, 28 days, and on the dates when the 
experiments were executed. It turned out that the strength was higher than what 
was expected from Eurocode 2 (Eurocode 2 2004), especially for the first 5 casts 
made in 2010. The average compressive strength of the first 5 casts on the dates 
of testing reached fcm,cube = 87 MPa, which corresponds with fcm = 74 MPa. The 
coefficient of variation was 6.6%. The mean value of the splitting tensile strength 
was fctm,s = 5.7 MPa. For the concrete beams from the last four casts in 2011, the 
fcm,cube value was 80 MPa, corresponding with fcm = 68 MPa with the coefficient of 
variation being 6.2%. The splitting tensile strength of those specimens was fctm,s = 
4.9 MPa. There was a difference of 7 MPa between the compressive strengths of 
the two batches of casts, while the coefficients of variations of both groups were 
relatively low. The two batches of concrete were treated separately. 

Geometry and Reinforcement Configuration 

As explained before, the dimensions as well as the reinforcement configurations 
of the test specimens were designed based on the configuration of the Gestelse-
straat Bridge (Yang, den Uijl et al. 2010). The dimensions of the beams were 
uniform in the whole test, being 8 m long, 0.5 m high, and 0.3 m wide. They are 
also indicated in Fig. 5.3. The specimens were cast with a mould built in the lab. 
Each time two beams were cast simultaneously. The beams were numbered 
according to the cast sequence. In total, 18 beams have been cast, among which 
beams 6-8 were not tested.  

Most beams were tested at their ends. Depending on the damage level caused 
by the first test, it was strengthened before starting the second test. The 
strengthening frame is composed of six screwed high strength steel bars, and 
four clampers welded by L shape steel profiles. 
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changes along the length. As a result the inner forces, such as the moment 
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boundary conditions of the tests indefinite. Besides, the redistribution makes the 
tested shear capacity higher, while on a simply supported beam with a cantile-
ver, the moment distribution over the target shear span can be kept constant as 
long as the external load levels are kept constant. 

 Since the moment distribution is the most distinctive feature for a con-
tinuous structure, this is one of the key variables in the research program. The 
moment distribution can be described by the length of the critical shear span a 
and the moment ratio between the maximum positive moment (sagging mo-
ment) and the negative moment (hogging moment) M +/M —. Both values 
directly relate to the maximum M/V in the span by 
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Therefore, the main variables with respect to the moment distributions involve 
two variables:  

a: is the shear span, which is the distance between the point load and the 
intermediate support; 

M +/M — : is the ratio between the maximum positive moment (sagging mo-
ment) M + and the minimum (sagging moment) negative moment M — 
in the shear span a. 

 
The test specimens are designed based on the common practice for Dutch 

concrete slab bridges, for example the Gestelsestraat Bridge (Yang et al. 2010). 
The reinforcement of those bridges was originally designed to get flexural 
failure before shear failure, therefore a large strain is expected on the reinforce-
ment at the ultimate limit state. As reported by Collins et al. in (Collins, Mitchell 
et al. 2008) beams under such load condition are found to have lower shear 
capacity than usually expected. On the other hand, a relatively small reinforce-
ment ratio may results in yielding of the rebars before shear failure. For the sake 
of comparison, an additional test series of specimens with higher reinforcement 
ratio which guaranteed shear failures was planned to check the influence of the 
reinforcement ratio s. 

In spite of the single point load tests, an additional test series including two 
point loads spaced at 1.2 m was planned. This was based on the concentrated 
loads as specified by Load Model 1 in Eurocode 1 (Eurocode 1 2003). Since the 
reinforced concrete beams are in general structures with nonlinear behaviour, 
the superposition principle of a linear elastic structure becomes inapplicable 
here. For beams loaded by multiple point loads a different shear behaviour was 
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observed by Bryant et al.(Bryant et al. 1962). Thus, it is necessary to investigate 
the effect of having multiple point loads on the continuous beam. 

 Test Specimens 5.3.2.2

Material Properties 

The concrete mixture used in the test specimens was a commercial mixture. It 
was classified as C53/65 by the producer. The maximum aggregate size of the 
mixture was 16 mm. A typical mixture composition is given in Table 6.5 in 
Chapter 6. In total 9 casts have been carried out in the lab. Among them, 5 casts 
were conducted in 2010, and the others in 2011. The last cast was planned almost 
one year later than the first one. Though the compositions of the mixtures are 
still the same on paper, the change of the raw materials of the concrete plant 
might still result in a variation of the final result. 

The mean compressive strength fcm and splitting tensile strength fctm,s were 
tested with 150 mm cubes after 7 days, 28 days, and on the dates when the 
experiments were executed. It turned out that the strength was higher than what 
was expected from Eurocode 2 (Eurocode 2 2004), especially for the first 5 casts 
made in 2010. The average compressive strength of the first 5 casts on the dates 
of testing reached fcm,cube = 87 MPa, which corresponds with fcm = 74 MPa. The 
coefficient of variation was 6.6%. The mean value of the splitting tensile strength 
was fctm,s = 5.7 MPa. For the concrete beams from the last four casts in 2011, the 
fcm,cube value was 80 MPa, corresponding with fcm = 68 MPa with the coefficient of 
variation being 6.2%. The splitting tensile strength of those specimens was fctm,s = 
4.9 MPa. There was a difference of 7 MPa between the compressive strengths of 
the two batches of casts, while the coefficients of variations of both groups were 
relatively low. The two batches of concrete were treated separately. 

Geometry and Reinforcement Configuration 

As explained before, the dimensions as well as the reinforcement configurations 
of the test specimens were designed based on the configuration of the Gestelse-
straat Bridge (Yang, den Uijl et al. 2010). The dimensions of the beams were 
uniform in the whole test, being 8 m long, 0.5 m high, and 0.3 m wide. They are 
also indicated in Fig. 5.3. The specimens were cast with a mould built in the lab. 
Each time two beams were cast simultaneously. The beams were numbered 
according to the cast sequence. In total, 18 beams have been cast, among which 
beams 6-8 were not tested.  

Most beams were tested at their ends. Depending on the damage level caused 
by the first test, it was strengthened before starting the second test. The 
strengthening frame is composed of six screwed high strength steel bars, and 
four clampers welded by L shape steel profiles. 
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Fig. 5.3. Dimensions and reinforcement configurations of the specimens. 
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Fig. 5.4. Photo of the test setup with multiple point loads in the main span. 

As one of the variables, three reinforcement configurations have been uti-
lized in the test specimens. The reinforcement ratios s were 0.68%, 0.97% and 
1.79% respectively. Among all the 18 beams, the s of beam 1 to 8 is 0.68%. Three 
ribbed steel bars Ø20 mm were used both as top and bottom reinforcement. The 
thickness of the concrete cover was 35 mm. The effective height of the beam d 
was 455 mm. Beams 9 and 10 had a s of 0.97%, two additional ribbed bars of 
Ø16 mm were added on the bases of the rebar cage of beam 1—8. The s of the 
rest beams was 1.79%. In those beams, the top and bottom rebars were 3 Ø32 
respectively. The effective height d was 450 mm. A few stirrups of Ø8-150 were 
arranged at the end of the beams and in the middle to support the longitudinal 
rebars to prevent unexpected shear failure at those positions. In beam 11 to 14, 
more stirrups were arranged in one end of the beams, to make sure that there 
would be no shear failure in the cantilever. The configurations of the reinforce-
ment cages are given in Fig. 5.3. 

 Test Setup and Measurement 5.3.2.3

Test Setup 

The moment distribution of a continuous beam was generated by arranging the 
two point loads on a simply supported beam with cantilever, see Fig. 5.5. The 
two point loads were generated by two hydraulic actuators with a loading 
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Fig. 5.4. Photo of the test setup with multiple point loads in the main span. 

As one of the variables, three reinforcement configurations have been uti-
lized in the test specimens. The reinforcement ratios s were 0.68%, 0.97% and 
1.79% respectively. Among all the 18 beams, the s of beam 1 to 8 is 0.68%. Three 
ribbed steel bars Ø20 mm were used both as top and bottom reinforcement. The 
thickness of the concrete cover was 35 mm. The effective height of the beam d 
was 455 mm. Beams 9 and 10 had a s of 0.97%, two additional ribbed bars of 
Ø16 mm were added on the bases of the rebar cage of beam 1—8. The s of the 
rest beams was 1.79%. In those beams, the top and bottom rebars were 3 Ø32 
respectively. The effective height d was 450 mm. A few stirrups of Ø8-150 were 
arranged at the end of the beams and in the middle to support the longitudinal 
rebars to prevent unexpected shear failure at those positions. In beam 11 to 14, 
more stirrups were arranged in one end of the beams, to make sure that there 
would be no shear failure in the cantilever. The configurations of the reinforce-
ment cages are given in Fig. 5.3. 

 Test Setup and Measurement 5.3.2.3

Test Setup 

The moment distribution of a continuous beam was generated by arranging the 
two point loads on a simply supported beam with cantilever, see Fig. 5.5. The 
two point loads were generated by two hydraulic actuators with a loading 
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capacity of 1000 kN. The forces of the actuators were monitored and controlled 
by a computer, so that the ratio between P1 and P2 was kept constant during the 
whole loading process. The distance between the two actuators was fixed at 
2.4 m. For the test series with two point loads, an additional load transfer beam 
was used to distribute the load equally over the two point loads, which is shown 
in Fig. 5.5 bottom. 

The width of the loading plate and the support plate is 200 mm. Gypsum 
layers were applied to ensure full contact between the surface of the specimen 
and the loading plates. In the two wheel loads tests, rubber blocks were used to 
ensure a certain rotation capacity at the loading positions, and to transfer the 
load from the steel beam to the specimen. 

 
 
 

 
 

 
 
Fig. 5.5. Sketches of test setups with single point load and multiple point loads. 
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Loading Procedure 

With the loading setup presented before, a linear moment distribution with both 
a positive and negative moment was created. The ratio between the maximum 
positive moment M + and the negative moment M - is determined by the force 
ratio P1/P2. For each test, a target M +/M - was defined first. The force ratio is then 
calculated according to that target M +/M -. The value of P1/P2 was kept constant 
during the test. 
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with l0 = 2400 mm in all the tests in the program. 
 
The loading procedure was divided into two stages. Firstly, the hydraulic 

actuators were controlled by the force level measured by load cells, denoted as 
force control. At this stage, the loading process was subdivided into several load 
steps. For each load step a maximum load level was defined according to the 
shear force in the shear span a. The ratio between shear force V and P1 can be 
calculated with: 

 0 1 2

1

( )( / )
1

a l a P PV

P l

- -
= -  

The forces applied by the actuators P1 and P2 were increased under constant 
loading rates until the predefined load levels. The first load level was defined to 
be close to the cracking load of the specimen, after that the following load levels 
were increased by a fixed interval. The loading rate of P1 was 0.2 kN/s in all tests, 
and the loading rate of P2 was determined accordingly. By the end of each load 
step, the forces were kept constant for 10 minutes, in order to stabilize the 
deformation of the specimen, and to provide sufficient time for crack marking 
and other measurements operations. 

The force-controlled loading procedure was stopped when unstable inclined 
crack development was observed, or the specimen showed a significant change 
of flexural stiffness in the load deflection diagram. The actuator P1 was then 
controlled by its displacement, denoted as displacement control, while the 
value of P2 was still controlled by the force measured from the load cell of P1 
real-time, so that the value of P1/P2 was still constant. The value of P1 was in-
creased stepwisely up to failure of the specimen. An example of the loading 
history is given in Fig. 5.6. At the end of each load step in the displace-
ment-controlled phase, the displacements of the actuators were also kept 
constant for a few minutes. Because of the crack propagation, one may find that 
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capacity of 1000 kN. The forces of the actuators were monitored and controlled 
by a computer, so that the ratio between P1 and P2 was kept constant during the 
whole loading process. The distance between the two actuators was fixed at 
2.4 m. For the test series with two point loads, an additional load transfer beam 
was used to distribute the load equally over the two point loads, which is shown 
in Fig. 5.5 bottom. 

The width of the loading plate and the support plate is 200 mm. Gypsum 
layers were applied to ensure full contact between the surface of the specimen 
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Loading Procedure 

With the loading setup presented before, a linear moment distribution with both 
a positive and negative moment was created. The ratio between the maximum 
positive moment M + and the negative moment M - is determined by the force 
ratio P1/P2. For each test, a target M +/M - was defined first. The force ratio is then 
calculated according to that target M +/M -. The value of P1/P2 was kept constant 
during the test. 
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with l0 = 2400 mm in all the tests in the program. 
 
The loading procedure was divided into two stages. Firstly, the hydraulic 

actuators were controlled by the force level measured by load cells, denoted as 
force control. At this stage, the loading process was subdivided into several load 
steps. For each load step a maximum load level was defined according to the 
shear force in the shear span a. The ratio between shear force V and P1 can be 
calculated with: 
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The forces applied by the actuators P1 and P2 were increased under constant 
loading rates until the predefined load levels. The first load level was defined to 
be close to the cracking load of the specimen, after that the following load levels 
were increased by a fixed interval. The loading rate of P1 was 0.2 kN/s in all tests, 
and the loading rate of P2 was determined accordingly. By the end of each load 
step, the forces were kept constant for 10 minutes, in order to stabilize the 
deformation of the specimen, and to provide sufficient time for crack marking 
and other measurements operations. 

The force-controlled loading procedure was stopped when unstable inclined 
crack development was observed, or the specimen showed a significant change 
of flexural stiffness in the load deflection diagram. The actuator P1 was then 
controlled by its displacement, denoted as displacement control, while the 
value of P2 was still controlled by the force measured from the load cell of P1 
real-time, so that the value of P1/P2 was still constant. The value of P1 was in-
creased stepwisely up to failure of the specimen. An example of the loading 
history is given in Fig. 5.6. At the end of each load step in the displace-
ment-controlled phase, the displacements of the actuators were also kept 
constant for a few minutes. Because of the crack propagation, one may find that 



168  5.3 Continuous Beam Loaded by Point Loads 
 

 

the forces in the actuators decrease. The next load level started after the forces of 
the actuators were more or less stabilized. 

 
Fig. 5.6. Loading procedure of specimen C2a152. 

Measurement 

The data that was collected during the experiments includes: the load level in 
the actuators, the deflection of the specimen, the crack development in the shear 
span, and the deformation of the beam in the shear span. The following meas-
urement methods were applied. 

The loads applied through the actuators were measured with load cells. To 
ensure the accuracy, the load cell was calibrated again after the whole test 
program. The variation of the measurement in the period of 1 year was less than 
2%. The deflections of the beams were measured by draw-wire displacement 
sensors through wires connected to the bottom of the beams. The deflections of 
the specimen were measured at the locations of the actuator P1, actuator P2 and 
the midpoint between P1 and the end support in the single point load tests, see 
Fig. 5.5. In the multiple point-loads tests, the displacement sensor between P1 
and the end support was moved to the location of the first point load see Fig. 5.5.  

The deformation field or eventually the crack development at the side sur-
faces in the shear span is of interest, thus it was monitored with two different 
methods during the tests. At one side of the beam, an LVDT array was glued 
onto the beam surface. The configuration of the LVDT array was dependent on 
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the load condition of the specimens and the amount of channels available in the 
data collection system. An example of the LVDT arrays is shown in Fig. 5.7, the 
test name shown will be explained in the next section. The arrangement of the 
LVDT array was designed to record real-time the deformations along the top 
and bottom longitudinal rebars and the deformations in vertical and diagonal 
direction, so that the propagations of inclined cracks and flexural cracks can be 
monitored. 

 

 
 

Fig. 5.7. Congurations of LVDT array for beams with shear span a = 1500 mm. 

On the other side of the shear span, the so called photogrammetric measure-
ment technology was employed to measure the deformation of the beam by the 
end of the load steps. It is an optical measurement method developed by the 
author. More detailed information can be found in (Yang 2009). The deformation 
gradient at the beam surface can be measured with a very fine grid in a highly 
automated program based on Matlab. A brief description of the procedure is 
given here. Before the test, a grid of 8 mm diameter markers was glued onto the 
surface of the specimen. The grid consisted of equally sided triangular elements 
with 80 mm side length. In total 7 rows of maximum 24 nodes can be aligned in 
the grid. The mesh configuration as well as the measurement setup is shown in 
Fig. 5.8. At the load levels to be measured, photos were made with a digital 
camera. In this test program the camera used was a Canon 5D MarkII, with a 
21.1 megapixel full frame CMOS sensor. The photos made during the tests were 
processed after the experiment. The locations of all the nodes in the mesh were 
derived first from the processing images. Comparing the new locations of the 
nodes with the original locations derived by the photos made before the speci-
men was loaded, the displacements of the nodes in the grid under the load level 
was derived. Assuming a linear strain distribution, the nodal displacements can 
be translated into a strain field of the triangulate mesh with a linear shape 
function. Compared to the LVDT method, the photogrammetry measurement is 
able to provide much more detailed information upon the deformation field and 
crack width distribution over the surface of the specimens at any load step 
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the forces in the actuators decrease. The next load level started after the forces of 
the actuators were more or less stabilized. 
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the load condition of the specimens and the amount of channels available in the 
data collection system. An example of the LVDT arrays is shown in Fig. 5.7, the 
test name shown will be explained in the next section. The arrangement of the 
LVDT array was designed to record real-time the deformations along the top 
and bottom longitudinal rebars and the deformations in vertical and diagonal 
direction, so that the propagations of inclined cracks and flexural cracks can be 
monitored. 
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without contacting the specimen. With the help of this measurement, it is possi-
ble to study the development of the critical diagonal cracks in more detail. 

Besides, the cracks were carefully marked during the load resting period in 
each load step. After each test, photos of those cracks were made with an accu-
racy of 0.5 mm/pixel. The crack patterns of the beam by the end of each load 
step were then digitized manually based on those photos. By combining the 
crack position data with the information from photogrammetry measurement, it 
is possible to calculate the opening of each crack. The output of the measure-
ment has already been applied in the previous studies in the research (e.g. 
Section 4.2.2). 

 

 
Fig. 5.8. Setup of photogrammetry measurement and mesh arrangement. 

5.3.3 Test Series 

In total 32 tests have been carried out. The tests are distinguished by the length 
of the shear span a, the moment ratio within the shear span M -/M +, the rein-
forcement ratio s, and the number of the loading points. The names of the tests 
are in accordance with those variables. The identifying rules are illustrated in 
Fig. 5.9. The first letter stands for the number of loading points in the main span: 
if the test was loaded by a single point load it is C, otherwise the letter is D. The 
first one or two numbers after C/D stands for the beam number which is de-
termined by the casting sequence. Not all the cast beams were tested, therefore 
the numbers are not always continued. The letter a/b indicates the sequence of 
the tested beam end, a stands for the first test and b is the second. The next two 
digits indicate the length of the critical shear span a. a may switch among 0.9 m, 
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The tests are categorized into 5 series. The basic test series includes the 
specimens with s = 0.68%. The specimens of this series were designed reflecting 
the existing Dutch bridges. As a reference series, almost all the load cases have 
been included in this series. However, some of the tests showed flexural failure 
due to the lower amount of longitudinal reinforcement area. In the second series 
the specimens have a reinforcement ratio of 0.97%. There are only 4 tests to 
evaluate the influence of the reinforcement ratio. The specimens of the third 
series have the largest reinforcement ratio of 1.79%, which guarantees shear 
failure before yielding of the reinforcing bars. The configurations of tests in this 
series cover the ones having flexural failure in series 1. Further to that, two 
additional test series were included. The specimens of tests series 4 and 5 have 
the same configuration as those in series 3. These two series were designed to 
evaluate the effect of existing cracks and multiple point loads respectively. A 
summary of the configurations of all the executed tests is given in Table 5.1. 
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Table 5.1. Configuration of tested specimens. 
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a b a/d M/Vd M -/M + P1/P2 V/P1 s 

[m] [m] [-] [-] [-] [-] [-] 

Series 1         
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C4a122 1.2 1.2 2.64 1.98 1/3 4.95 0.81 0.68 
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C4b094a 0.9 1.5 1.98 0.99 1 3.70 0.90 0.68 

Beam number 
Testing end
Shear span in dm 
Moment ratio M-/M+

Additional test 

Test No. Explanation Range

(1-10)
(a or b)
(09, 12, 15 or 18)
(1-4, stands for M-/M+ = 0.0 to 1.0)
(/ or a)
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without contacting the specimen. With the help of this measurement, it is possi-
ble to study the development of the critical diagonal cracks in more detail. 
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is possible to calculate the opening of each crack. The output of the measure-
ment has already been applied in the previous studies in the research (e.g. 
Section 4.2.2). 
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[m] [m] [-] [-] [-] [-] [-] 

Series 1         

C1a152 1.5 0.9 3.30 2.47 1/3 3.17 0.76 0.68 
C1b153 1.5 0.9 3.30 1.98 2/3 1.89 0.80 0.68 
C2a154 1.5 0.9 3.30 1.65 1 1.46 0.82 0.68 
C2b151 1.5 0.9 3.30 3.30 0 - 0.70 0.68 
C3a123 1.2 1.2 2.64 1.58 2/3 2.97 0.84 0.68 
C3a124a 1.2 1.2 2.64 1.32 1 2.32 0.86 0.68 
C3b121 1.2 1.2 2.64 2.64 0 - 0.76 0.68 
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C5a094 0.9 1.5 1.98 0.99 1 3.70 0.90 0.68 
C5b183 1.8 0.6 3.96 2.37 2 1.11 0.75 0.68 
Series 2         
C9a123 1.2 1.2 2.64 1.58 2/3 2.97 0.84 0.97 
C9b121 1.2 1.2 2.64 2.64 0 - 0.76 0.97 
C10a124 1.2 1.2 2.64 1.32 1 2.32 0.86 0.97 
C10b154 1.5 0.9 3.30 1.65 1 1.46 0.82 0.97 
Series 3         
C11a091 0.9 1.5 2.00 2.00 0 - 0.82 1.79 
C11b123 1.2 1.2 2.67 1.60 2/3 2.97 0.84 1.79 
C12a121 1.2 1.2 2.67 2.67 0 - 0.76 1.79 
C12b094 0.9 1.5 2.00 1.00 1 3.70 0.90 1.79 
C13a122 1.2 1.2 2.67 2.00 1/3 4.95 0.81 1.79 
C13b092 0.9 1.5 2.00 1.50 1/3 7.76 0.86 1.79 
C14a124 1.2 1.2 2.67 1.33 1 2.32 0.86 1.79 
C14b093 0.9 1.5 2.00 1.20 2/3 4.72 0.88 1.79 
C15a151 1.5 0.9 3.33 3.33 0 - 0.70 1.79 
C15b154 1.5 0.9 3.33 1.67 1 1.46 0.82 1.79 
Series 4         
C16a123 1.2 1.2 2.67 1.60 2/3 2.97 0.84 1.79 
C16b123 1.2 1.2 2.67 1.60 2/3 2.97 0.84 1.79 

Series 5         

D17a151 1.5 0.9 3.33 2.00 0 - 0.70 1.79 
D17b154 1.5 0.9 3.33 1.67 1 1.46 0.82 1.79 
D18a121 1.2 1.2 2.67 1.33 0 - 0.76 1.79 
D18b152 1.5 0.9 3.33 1.17 1/3 3.17 0.76 1.79 

P1 is the total force applied through the actuator in series 5. 
 

Table 5.2. Moments and shear forces in specimens of series 5. 

Test No. M1 /M0 P1 /P2 V1 /P1 V2 /P1 V3 /P1 V4 /P1 M2 /M0 M3 /M0 
D17a151 0 - - 0.70 0.20 0.30 0.90 0.83 
D17b154 1 1.46 0.68 0.82 0.32 0.18 0.20 0.83 
D18a121 0 - - 0.76 0.26 0.24 0.60 0.84 
D18b152 1/3 3.17 0.32 0.76 0.26 0.24 0.70 0.83 
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Fig. 5.10. Moment and shear force diagram of two point loads test. 

In some tests of serious 5 shear failure was also observed in the spans be-
tween the two point loads, or between the second point load and the end 
support. Therefore, the shear forces in these two spans are also of interest. The 
values of M1 /M0, M2 /M0, M2 /V2 d, V2 /P1, V3 /P1 etc. are listed separately in Table 
5.2. The notations of the variables are illustrated in Fig. 5.10. 

5.3.4 Test Results 

The failure process of the 32 experiments was well recorded by the measurement 
mentioned above, which generated a huge amount of test data. A brief explana-
tion on the major findings in the tests is given here. 

The test results are briefly summarized in Table 5.3. More detailed infor-
mation on the test results are given in the test report (Yang, den Uijl et al. 2011). 
Some essential explanations on the tests are still necessary here. The failure 
modes of the tests are marked in the table. Not all the beams failed in shear. 
Some specimens with a combination of a low reinforcement ratio and a small 
shear slenderness ratio showed flexural failure defined by the yielding of the 
longitudinal reinforcement. Among them, some had moderate damage in the 
critical shear span, like C3a123 and C4b091. They were unloaded, and reloaded 
again at a higher moment ratio with a different loading procedure. In that case, 
the specimens got a new test number, see the remarks in Table 5.3. In some other 
specimens with a flexural failure such as C9a123 and C9b121, the beam was 
already loaded by a relatively high load level. Instead of releasing the forces in 
actuator P1, it was decided to directly increase the force P2, while keeping the 
displacement at actuator P1 constant. So that the moment ratio and the shear 
force in the shear span was increased. With those tests, the test numbers are kept 
the same. But a second record is listed in Table 5.3. In that case the actual shear 
force in the span and the value of M/Vd has to be updated according to the 
values of P1 and P2 at failure. 
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C5a094 0.9 1.5 1.98 0.99 1 3.70 0.90 0.68 
C5b183 1.8 0.6 3.96 2.37 2 1.11 0.75 0.68 
Series 2         
C9a123 1.2 1.2 2.64 1.58 2/3 2.97 0.84 0.97 
C9b121 1.2 1.2 2.64 2.64 0 - 0.76 0.97 
C10a124 1.2 1.2 2.64 1.32 1 2.32 0.86 0.97 
C10b154 1.5 0.9 3.30 1.65 1 1.46 0.82 0.97 
Series 3         
C11a091 0.9 1.5 2.00 2.00 0 - 0.82 1.79 
C11b123 1.2 1.2 2.67 1.60 2/3 2.97 0.84 1.79 
C12a121 1.2 1.2 2.67 2.67 0 - 0.76 1.79 
C12b094 0.9 1.5 2.00 1.00 1 3.70 0.90 1.79 
C13a122 1.2 1.2 2.67 2.00 1/3 4.95 0.81 1.79 
C13b092 0.9 1.5 2.00 1.50 1/3 7.76 0.86 1.79 
C14a124 1.2 1.2 2.67 1.33 1 2.32 0.86 1.79 
C14b093 0.9 1.5 2.00 1.20 2/3 4.72 0.88 1.79 
C15a151 1.5 0.9 3.33 3.33 0 - 0.70 1.79 
C15b154 1.5 0.9 3.33 1.67 1 1.46 0.82 1.79 
Series 4         
C16a123 1.2 1.2 2.67 1.60 2/3 2.97 0.84 1.79 
C16b123 1.2 1.2 2.67 1.60 2/3 2.97 0.84 1.79 

Series 5         

D17a151 1.5 0.9 3.33 2.00 0 - 0.70 1.79 
D17b154 1.5 0.9 3.33 1.67 1 1.46 0.82 1.79 
D18a121 1.2 1.2 2.67 1.33 0 - 0.76 1.79 
D18b152 1.5 0.9 3.33 1.17 1/3 3.17 0.76 1.79 

P1 is the total force applied through the actuator in series 5. 
 

Table 5.2. Moments and shear forces in specimens of series 5. 

Test No. M1 /M0 P1 /P2 V1 /P1 V2 /P1 V3 /P1 V4 /P1 M2 /M0 M3 /M0 
D17a151 0 - - 0.70 0.20 0.30 0.90 0.83 
D17b154 1 1.46 0.68 0.82 0.32 0.18 0.20 0.83 
D18a121 0 - - 0.76 0.26 0.24 0.60 0.84 
D18b152 1/3 3.17 0.32 0.76 0.26 0.24 0.70 0.83 
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actuator P1, it was decided to directly increase the force P2, while keeping the 
displacement at actuator P1 constant. So that the moment ratio and the shear 
force in the shear span was increased. With those tests, the test numbers are kept 
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Table 5.3. Summary of test results of continuous beam tests. 

Test No. fcm Age Failure 
Mode2 

P1,u Vu3 P1,cr Vcr3 
[MPa] [days] [kN] [kN] [kN] [kN] 

Series 1        
C1a152 68.4 37 FS 198.9 150.5 198.9 150.5 
C1b153 68.4 57 FS 336.1 267.3 182.5 146.0 
C2a154 68.4 59 FS 326.0 268.5 224.3 184.7 
C2b151 68.4 64 FS 178.1 124.7 178.1 124.7 
C3a123 74.0 57 F 401.1 337.2 285.5 239.8 
C3a124a 74.0 57 O 468.5 404.6 399.4 344.9 
C3b121 74.0 75 FS 264.4 200.9 175.6 132.4 
C4a122 74.0 76 F 330.0 266.8 204.3 165.2 
C4b091 74.0 90 F 322.4 264.3 181.7 149.0 
C4b094a 74.0 90 O 561.1 505.6 331.4 298.3 
C5a094 78.1 71 F 564.6 508.7 327.4 295.0 
C5b183 78.1 138 F 323.2 241.6 183.6 137.7 
Series 2 

       
C9a123 75.5 89 F 529.5 445.2 257.9 216.8 
C9a1231 75.5 89 O 530.3 494.6 257.9 216.8 
C9b121 75.5 90 F 367.5 279.3 177.6 135.0 
C9b1211 75.5 90 O 475.4 442.4 475.4 442.4 
C10a124 75.5 95 F 581.6 502.3 302.9 261.6 
C10b154 75.5 96 FS 271.6 223.7 229.9 189.3 
Series 3        
C11a091 69.8 35 SC 772.8 633.7 205.6 168.6 
C11b123 69.8 41 FS 236.6 198.9 222.8 187.3 
C12a121 69.8 42 FS 250.1 190.1 217.9 165.6 
C12b094 69.8 43 SC 1002.7 903.5 331.3 298.5 
C13a122 69.3 49 FS 488.8 395.2 182.9 147.9 
C13b092 69.3 54 SC 827.5 710.5 232.6 199.7 
C14a124 69.3 56 SC 463.8 400.6 318.3 274.9 
C14b093 69.3 62 SC 821.2 725.6 367.7 324.9 
C15a151 66.5 48 FS 220.8 154.6 220.7 154.5 
C15b154 66.5 49 FS 290.2 239.0 230.5 189.8 
Series 4 

       
C16a123 66.5 50 SC 611.8 514.3 237.9 200.0 
C16b123 66.5 56 FS 301.7 253.6 245.3 206.2 
Series 5 

       
D17a151 66.1 55 FS 303.3 212.3 250.0 175.0 
D17b154 66.1 60 O/FS 500.4 161.9 229.6 189.1 
D18a121 66.1 61 O/FS 611.9 146.9 250.4 190.3 
D18b152 66.1 67 FS 326.8 247.3 326.7 247.2 
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1 These results were achieved by keeping the position of P1 after the yielding moment, and apply 
P2 on the cantilevered end at loading rate of 0.01 mm/s. 

2 The failure modes of the specimens are organized in four catalogues abbreviated by:  F: Flex-
ural failure (yielding of longitudinal rebar); SC: Shear Compression failure; FS: Flexural Shear failure; 
O: Others, mainly stands for failure developed in the span such as the cantilever. 

3 The shear force does not include the self-weight. The shear force generated by the self-weight of 
the specimens is about 8.82 kN. It has to be taken into account during the evaluation process. 

 
In Table 5.3, two critical load levels are recorded. They are the ultimate ca-

pacity of the specimen denoted by Pu and Vu, and the inclined cracking load 
identified as Pcr and Vcr. The later one is defined by the moment that the inclined 
crack in the critical shear span opens due to the development of a dowel crack 
along the longitudinal rebar. The mechanism of that process has been intro-
duced in Chapter 3. Following the same description, it was always possible to 
find a critical point during the loading process that fulfils the description within 
the test series, even when the failure mode of the specimen was flexural failure. 
The same definition is valid to the other test results that are to be described in 
the following chapters.  

Unlike the ultimate capacity, the definition of Vcr varies in the literature per 
author, especially when the specimen shows shear compression failure. To 
avoid the inconsistence due to the unclear definition, only inclined cracking 
loads of the tests carried out within the same research program on the residual 
shear capacity of concrete bridges are adapted for further analysis. The inclined 
cracking loads in research program presented are determined from the vertical 
deformation - shear force relationship diagram measured real-time with the 
LVDT array shown in Fig. 5.7 during the experiments. The test results in Table 
5.3 show that even with a moderate reinforcement ratio of 0.68% in series 1, it is 
still possible to develop a shear failure in beams without shear reinforcement. 
Therefore the evaluation of the shear capacity is still crucial in this type of 
beams. 

In Fig. 5.11, the maximum shear forces Vu measured in the tests are plotted 
against the maximum M/Vd and the shear slenderness ratio a/d of the critical 
span respectively. The comparison shows that the scatter of the test results is 
mainly due to the different failure modes of the specimen when the shear 
slenderness is small. In general the specimens showing shear compression 
failure form the upper bound whilst the specimens with flexural shear failure 
form the lower bound. The comparison also reveals that the scatter of the results 
is reduced when the ultimate capacity of the specimens are plotted against the 
maximum M/Vd. 

However regarding the specimens with failure mode of shear compression 
failure, Vu is more strongly related to a/d. This can be explained by the residual 
load bearing structure originating after inclined cracking described in Section 
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Table 5.3. Summary of test results of continuous beam tests. 

Test No. fcm Age Failure 
Mode2 

P1,u Vu3 P1,cr Vcr3 
[MPa] [days] [kN] [kN] [kN] [kN] 

Series 1        
C1a152 68.4 37 FS 198.9 150.5 198.9 150.5 
C1b153 68.4 57 FS 336.1 267.3 182.5 146.0 
C2a154 68.4 59 FS 326.0 268.5 224.3 184.7 
C2b151 68.4 64 FS 178.1 124.7 178.1 124.7 
C3a123 74.0 57 F 401.1 337.2 285.5 239.8 
C3a124a 74.0 57 O 468.5 404.6 399.4 344.9 
C3b121 74.0 75 FS 264.4 200.9 175.6 132.4 
C4a122 74.0 76 F 330.0 266.8 204.3 165.2 
C4b091 74.0 90 F 322.4 264.3 181.7 149.0 
C4b094a 74.0 90 O 561.1 505.6 331.4 298.3 
C5a094 78.1 71 F 564.6 508.7 327.4 295.0 
C5b183 78.1 138 F 323.2 241.6 183.6 137.7 
Series 2 

       
C9a123 75.5 89 F 529.5 445.2 257.9 216.8 
C9a1231 75.5 89 O 530.3 494.6 257.9 216.8 
C9b121 75.5 90 F 367.5 279.3 177.6 135.0 
C9b1211 75.5 90 O 475.4 442.4 475.4 442.4 
C10a124 75.5 95 F 581.6 502.3 302.9 261.6 
C10b154 75.5 96 FS 271.6 223.7 229.9 189.3 
Series 3        
C11a091 69.8 35 SC 772.8 633.7 205.6 168.6 
C11b123 69.8 41 FS 236.6 198.9 222.8 187.3 
C12a121 69.8 42 FS 250.1 190.1 217.9 165.6 
C12b094 69.8 43 SC 1002.7 903.5 331.3 298.5 
C13a122 69.3 49 FS 488.8 395.2 182.9 147.9 
C13b092 69.3 54 SC 827.5 710.5 232.6 199.7 
C14a124 69.3 56 SC 463.8 400.6 318.3 274.9 
C14b093 69.3 62 SC 821.2 725.6 367.7 324.9 
C15a151 66.5 48 FS 220.8 154.6 220.7 154.5 
C15b154 66.5 49 FS 290.2 239.0 230.5 189.8 
Series 4 

       
C16a123 66.5 50 SC 611.8 514.3 237.9 200.0 
C16b123 66.5 56 FS 301.7 253.6 245.3 206.2 
Series 5 

       
D17a151 66.1 55 FS 303.3 212.3 250.0 175.0 
D17b154 66.1 60 O/FS 500.4 161.9 229.6 189.1 
D18a121 66.1 61 O/FS 611.9 146.9 250.4 190.3 
D18b152 66.1 67 FS 326.8 247.3 326.7 247.2 
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1 These results were achieved by keeping the position of P1 after the yielding moment, and apply 
P2 on the cantilevered end at loading rate of 0.01 mm/s. 

2 The failure modes of the specimens are organized in four catalogues abbreviated by:  F: Flex-
ural failure (yielding of longitudinal rebar); SC: Shear Compression failure; FS: Flexural Shear failure; 
O: Others, mainly stands for failure developed in the span such as the cantilever. 

3 The shear force does not include the self-weight. The shear force generated by the self-weight of 
the specimens is about 8.82 kN. It has to be taken into account during the evaluation process. 

 
In Table 5.3, two critical load levels are recorded. They are the ultimate ca-

pacity of the specimen denoted by Pu and Vu, and the inclined cracking load 
identified as Pcr and Vcr. The later one is defined by the moment that the inclined 
crack in the critical shear span opens due to the development of a dowel crack 
along the longitudinal rebar. The mechanism of that process has been intro-
duced in Chapter 3. Following the same description, it was always possible to 
find a critical point during the loading process that fulfils the description within 
the test series, even when the failure mode of the specimen was flexural failure. 
The same definition is valid to the other test results that are to be described in 
the following chapters.  

Unlike the ultimate capacity, the definition of Vcr varies in the literature per 
author, especially when the specimen shows shear compression failure. To 
avoid the inconsistence due to the unclear definition, only inclined cracking 
loads of the tests carried out within the same research program on the residual 
shear capacity of concrete bridges are adapted for further analysis. The inclined 
cracking loads in research program presented are determined from the vertical 
deformation - shear force relationship diagram measured real-time with the 
LVDT array shown in Fig. 5.7 during the experiments. The test results in Table 
5.3 show that even with a moderate reinforcement ratio of 0.68% in series 1, it is 
still possible to develop a shear failure in beams without shear reinforcement. 
Therefore the evaluation of the shear capacity is still crucial in this type of 
beams. 

In Fig. 5.11, the maximum shear forces Vu measured in the tests are plotted 
against the maximum M/Vd and the shear slenderness ratio a/d of the critical 
span respectively. The comparison shows that the scatter of the test results is 
mainly due to the different failure modes of the specimen when the shear 
slenderness is small. In general the specimens showing shear compression 
failure form the upper bound whilst the specimens with flexural shear failure 
form the lower bound. The comparison also reveals that the scatter of the results 
is reduced when the ultimate capacity of the specimens are plotted against the 
maximum M/Vd. 

However regarding the specimens with failure mode of shear compression 
failure, Vu is more strongly related to a/d. This can be explained by the residual 
load bearing structure originating after inclined cracking described in Section 
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Fig. 5.11. Relationship of maximum shear capacity Vu plotted against a/d (upper) and 

M/Vd (lower): the additional cross on the markers stands for simply supported 
beams. The extra sign × on the data point indicates that it is a simply supported 
test. 
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3.5.2. In the case of the continuous beams, the loading point also includes the 
support regarding the moment distribution. Therefore, as long as the tip of the 
critical crack is within the critical compressive zone acc from the edge of the 
loading point, the compressive strut will not fail directly upon the formation of 
the critical inclined crack. In that case, the strut can develop directly from the 
loading point to the support through the point of inflection. The critical span 
should to be considered as one piece. The ultimate capacity has to be calculated 
according to the shear slenderness a/d. 

Fig. 5.12 shows the relationship between the inclined cracking load Vcr and 
the maximum M/Vd. Indeed, compared to the two figures regarding the ulti-
mate shear force Vu in Fig. 5.11, by introducing Vcr, a much stronger relationship 
is observed. The smaller scatter related to the inclined cracking load can be 
explained by the fact that unlike the ultimate capacity which may be determined 
by several failure modes, the inclined cracking load is mainly governed by a 
single failure mode. Therefore, a more robust prediction can be expected re-
garding to the inclined cracking load rather than trying to get the ultimate 
capacity of the concrete members involving multiple failure modes.  

Furthermore, the formation of the inclined cracks defines the compressive 
strut. In the case of flexural shear failure, it determines the ultimate capacity of 

 
Fig. 5.12. Relationship between inclined cracking load Vcr and M/Vd. 
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the specimens directly. Whilst in shear compression failure, the formation of the 
inclined cracks is always prior to the crush of the compressive strut according. 
Further discussion in Chapter 6 also shows that considering the presence of the 
existing cracks and other faults in the beams, whether or not the compressive 
strut in the residual structure may still be influences by the inclined crack in 
many cases even at a relatively smaller shear span. In that case, the formation of 
the inclined crack in a reinforced concrete beam without shear reinforcement can 
still be considered as the lower bound of the shear capacity. 

Based on the results of test series 5, a similar conclusion may be extended to 
specimens loaded by multiple point loads. In Fig. 5.12, the inclined cracking 
loads derived from test series 5 are included as well. The results show no dif-
ference from the tests with single point loads. In test Series 5, the first inclined 
crack developed in the critical span in all the four tests. However, unlike the 
tests with a single point load, in which the inclined crack normally stopped at 
the edge of the loading point, the cracks extend into Span 3 along the top rein-
forcement in the tests from series 5. That makes the capacity of the compressive 
arch structure after the first loading point very low. An example of the crack 
pattern of a typical multiple point loads test is shown in Fig. 5.13. 

 
Table 5.4. Shear forces over the spans at critical load levels. The shaded cells indicate 

the critical span. 

Test No. Variable Span 1 Span 2 Span 3 Span 4 P1 
D17a151 M/Vd - 2.00 9.76 6.46  
 Vcr - 175.0 50.0 75.0 250.0 
 Vu - 212.3 60.6 91.0 303.3 
D17b154 M/Vd 2.00 1.67 3.52 6.46  
 Vcr 156.1 188.3 73.5 41.3 229.6 
 Vu 340.3 410.3 160.1 90.1 500.4 
D18a121 M/Vd - 1.33 6.56 6.46  
 Vcr - 190.3 65.1 60.1 250.4 
 Vu - 465.0 159.1 146.9 611.9 
D18b152 M/Vd 2.00 1.17 6.11 6.46  
 Vcr 104.5 248.3 85.0 78.4 326.7 
 Vu 104.6 248.3 85.0 78.4 326.8 

 
As two special cases, in tests D17b154 and D18a121, the residual structure of 

the specimen after the inclined cracking load were still strong enough to carry 
more load. Because of that, the load applied on the specimen was increased 
further, until flexural shear failures occurred in another span. The shear forces in 
each span of the same specimen, corresponding to the occurrence of the inclined 
crack and failure, are summarized in Table 5.4, whereas the maximum values of 
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the ratio M/Vd in the corresponding spans are indicated as well. The spans in 
which the specified event occurred are shaded in the table. 

5.3.5 Shear Cracking in a Span with Large M/Vd 

An additional remark is given on tests D18a121. As shown in Table 5.4, the final 
failure in this test occurred in span 4 with a maximum M/Vd = 6.46. Compared 
to the other tests in the same series, the value of M/Vd in the test is much larger. 
Nevertheless the inclined cracking load found in the experiment is still quite 
comparable with the other tests with M/Vd close to 3.0. That observation partly 
proofs that there is a lower limit with respect to the influence of the bending 
moment, as was illustrated in Fig. 3.38 qualitatively. This can be explained by 
two facts. First of all, when the crack is developed at an M/Vd larger than 3.0, 
the influence of M/Vd to the crack pattern is very limited; Secondly, the aggre-
gate interlocking force at the tip of the major cracks (can be simplified with a 
constant shear stress distributed at a characteristic length l0 according to Section 
4.7.2) contributes mostly to Vai. The length of l0 is less influenced by the crack 
opening, when the value of M/Vd is larger.  
 

 
 
Fig. 5.13. Crack pattern of D18a121 after failure. 

As shown in Fig. 5.13, the vertical flexural cracks had been fully developed in 
D18a121 before the development of the critical inclined crack. Actually at P1 = 
550 kN (Vcr,4 = 132.0 kN), an inclined crack started to develop from the flexural 
cracks already formed in Span 4 of the specimen. The test was stopped, and that 
part of the beam was strengthened, see Fig. 5.13. Nonetheless, the second in-
clined crack developed quickly afterwards. This experiment validates the 
hypothesis made in Chapter 3 section 3.4.3.  
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 The inclined cracks form on the basis of the flexural major cracks. Therefore, 
the proposition about the opening of a critical inclined crack at one time 
does not always hold true. The inclination of the crack cannot be 45º either.  

 As was proposed in Chapter 3, the failure is due to the fact that the shear 
force applied at the cross-section results in a large shear displacement be-
tween the crack faces so that a dowel crack along the longitudinal 
reinforcement has to develop; 

 When the ratio M/Vd of the span is large, the shape of the flexural major 
crack does not influence the shear capacity of the beam significantly; the 
difference between inclined crack locations in different positions is quite 
limited; 

 However, the small difference still causes the inclined crack to develop first 
at locations with a larger M/Vd. 

5.3.6 Shear Cracking in a Span with Small M/Vd 

 Evaluation of the Continuous Beam Tests 5.3.6.1

In principle it is possible to extend the shear evaluation procedure proposed in 
Chapter 4 to continuous beams loaded by point loads, assuming that the three 
criteria raised in 5.2 are not violated in this loading case. The test series pre-
sented in this chapter are evaluated with the proposed shear calculation 
procedure. The calculated shear capacity Vcal is, by definition, the inclined 
cracking load of the specimens. Thus, they shall be compared with the values of 
Vcr if the development of the inclined crack did not result in the final failure of 
the corresponding specimen. To evaluate the prediction with the test results, the 
values of Vcr/Vcal are plotted against M/Vd in Fig. 5.14.  

The comparison shown in Fig. 5.14 should be regarded separately with re-
spect to the maximum M/Vd of the tests. For specimens with an M/Vd larger 
than 2.0, the model gives quite a good prediction in general. Apart from one test, 
all the predictions are within 20% of the test results. However, when M/Vd is 
close to 2.0, the predictions overestimates the capacities of the specimens on 
average. It actually reflects the discussion on the special cases when determining 
the critical cross sections in Chapter 3 section 3.4.3. The calculated minimum Vcal 
in the vicinity of the loading point is about 200 kN for beams with shear span of 
2.0d, while at Vcr = 150 kN, the cracked section is already at about 0.6d from the 
support, where the resultant shear force that can be generated is significantly 
reduced due to the large crack inclination. Therefore, the shear capacity is 
overestimated when the maximum M/Vd is close to 2.0. Nevertheless, as was 
expected in section 3.4.3, the overestimation is quite limited. 

On the other hand, when the maximum M/Vd of the span is smaller than 2.0, 
the model underestimates the capacities of the specimens. The ratio of Vcr/Vcal 
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increases with the decrease of M/Vd. It indicates that the model does not reflect 
the shear cracking process properly when the maximum M/Vd becomes even 
smaller than about 2.0. Considering that for continuous beams, it is quite likely 
to have a very small maximum M/Vd in its critical shear span, additional 
evaluation under that situation seems to be important. 

 
Fig. 5.14. Relationship between Vcr /Vcal and M/Vd, Vcal calculated by the adjusted 

critical shear displacement shown in Section 4.6. 

 Adjustment for Beams with Small M/Vd 5.3.6.2

With respect to beams with a maximum M/Vd smaller than 2.0 subjected to 
point loads, the three criteria proposed in 5.2 are checked again. Based on the 
discussions in Chapter 3 and the observations within the test program, one may 
conclude that in this case, Criterion 2 is not fulfilled. As explained previously, 
the calculation model assumed a simple bilinear crack profile, in which the 
major crack is perpendicular to the longitudinal direction. It is connected by an 
inclined secondary crack branch in the compressive zone. This is an approxima-
tion of the crack path usually observed at cracked sections with large M/Vd. 
With the reduction of the maximum M/Vd of the span, the inclination of the 
major cracks in the span increases, the consequence of which is that the formulas 
of both Vc and Vai at cr cannot describe the behaviour properly anymore. 

With respect to the aggregate interlock effect, a larger crack inclination re-
sults in an increase of the shear displacement  at the position of tensile 
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reinforcement under the same shear force. This effect has been illustrated in Fig. 
3.33. For a given critical shear displacement cr, the shear force that can be 
generated by aggregate interlock reduces. If the inclination of the crack is large 
enough, the rotation of the crack around the crack tip before a horizontal crack 
develops may already make  larger than cr. In this case, the propagation of the 
crack itself leads to splitting cracking along longitudinal reinforcement as shown 
in section 3.4.3. However, considering that the contribution of Vc to the total 
shear resistance V is significantly increased at the same time, Vai becomes less 
important for the loading case being discussed here. A more thorough discus-
sion on this topic will be given in section 5.4.2 for beams loaded by a distributed 
load. The reduction of Vai under smaller M/Vd will directly affect the ultimate 
bearing capacity in that case. 

The shear force in the concrete compressive zone Vc increases significantly 
when M/Vd is reduced. This has been illustrated in section 3.5.3. The reason is 
that when the maximum M/Vd is small, the teeth structure which can be de-
scribed with Eq. (3.26) to calculate Vc does not exist anymore. In that case, the tip 
of the inclined crack reaches the loading point directly. The criterion for the 
residual capacity after reaching the inclined cracking load is illustrated in Fig. 
3.42. It also applies for continuous beams with point loads. When the maximum 
M/Vd is smaller than 2.0, the value of Vc shall be evaluated taking into account 
the stiffness of the arch structure formed by the inclined crack. 

Based on the two aspects mentioned above, the contributions of Vc and Vai to 
the total shear resistance change significantly when the M/Vd reduces. To 
illustrate this effect a simplified example is given in Fig. 5.15, where, Vc and Vai 
are calculated using the beam example introduced in Chapter 3, assuming that 
the bottom crack opening in both sides is fixed at  = 0.02 mm, w = 0.4 mm. The 
value of Vc is calculated with the simplified formula Eq. (3.49). Vai is calculated 
by the integration of aggregate interlocking stresses with Eq. (3.31) based on the 
crack path described by Eq. (3.19), assuming that the critical crack is initiated at 
0.6(M/V) from the point of inflection. Accordingly, the length of the concrete 
arch is the remaining part of the span: 0.4(M/V). Fig. 5.15 shows that when 
M/Vd of the span is smaller than 2.0, the proportion of Vc and Vai changes 
tremendously under the same vertical displacement . The percentage of Vc 
increases significantly from about 20% at M/Vd = 2.0 towards 100% when M/Vd 
is smaller than 0.5. The increment of Vc is mainly due to the increase of stiffness 
of the concrete arch span. The comparison implies that for beams with small 
M/Vd the aggregate interlocking effect is not decisive anymore as it would be in 
case of slender beams. This conclusion is valid for all other load cases and 
structures in which the teeth structure is not able to form. 
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steps shall be added: Check if M/Vd < 2.0, make M/Vd = 2.0 during the calcu-
lation; By the end of the calculation, the resultant V should be increased by  = 
2(M/Vd)-1. 

By introducing the adjustment explained above, the accuracy of the predic-
tion is clearly improved. The ratios of Vcr/Vcal/ are plotted in Fig. 5.16. 
Compared to the prediction shown in Fig. 5.14, the accuracy is clearly improved 
in general. The adjusted model turns out to be accurately enough as a lower 
bound of the shear capacity of the specimens. 

 
Fig. 5.16. Relationship between Vcr/Vcal and M/Vd, Vcal as calculated with the adjusted 

critical vertical displacement. 

However, it has to be emphasized that one should not be misled by the ad-
justed method and presume that the shear failure mechanism of specimens with 
a small M/Vd is the same as in a normal beam. Although the overall shear 
resistance may be approximated with the same procedure, the contribution of 
each part of the cracked section is totally different. The reasons for the difference 
have been explained previously. As a result, some of the conclusions applied to 
normal beams may not be the same for beams with a small M/Vd. For example, 
with respect to high strength concrete or lightweight aggregate concrete, the 
same reduction factor on aggregate interlock proposed in section 4.5.2 may not 
be applicable anymore. Because the contribution of aggregate interlock effect is 
very limited in this case. However, the mean tensile strength fctm and the fracture 
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energy of the concrete Gf become more important for the inclined cracking load 
in this case. With the mechanism understood, further adjustment is possible. 
 

5.4 UNIFORMLY DISTRIBUTED LOAD 

5.4.1 From Point Loads to Distributed Load 

A uniformly distributed load is a regular loading case in tunnels and founda-
tions. Many of those structures are constructied without shear reinforcement, 
thus are vulnerable to shear failure as well. The evaluation of the shear capacity 
of beams under a uniformly distributed load is of interest and will be discussed 
in this section. Based on that, the model is extended to deal with distributed 
loads. 

Compared to point loads, a uniformly distributed load generates a con-
tinuously varying shear force distribution along the span. The consequence is 
that the 2nd and 3rd criteria described in section 5.2 are violated. 

Regarding Criterion 2 about the shear force components, the assumptions for 
the determination of Vc with Eq. (3.26) are not valid. However, since the crack 
spacing is usually significantly smaller than the beam span, the variation of the 
shear force between two subsequent cracks is quite limited. As long as the 
adjacent cracks are of the same height, it is safe to use the simplified relationship 
described by Eq. (3.26)designed for point loads. In case of a simply supported 
beam, it is observed that the critical section is located in the vicinity of the 
support, where no limitation is expected on the development of the secondary 
crack branch of the critical inclined crack. Criterion 3 is not violated in this case, 
thus Vc can still be calculated with Eq. (3.26). However, when the beam has an 
intermediate support or other types of supports with confinement on rotation, 
the critical inclined crack develops towards the support in the vicinity of the 
support. In that case, the crack teeth cannot form anymore, thus Vc has to be 
formulated differently. 

For Criterion 3, the determination of the critical section under the loading 
case of a uniformly distributed load is more complex than for point loads. As an 
example of a member with simple boundary conditions, a simply supported 
beam is regarded. The moment and shear force distribution along the beam are 
given in Fig. 5.17. (a) (b). Under that loading case, the maximum moment is 
reached at mid-span of the beam. Close to that point, the crack widths are larger. 
Therefore a lower shear capacity may be expected. However, the shear force in 
that region is close to zero. Consequently, even though a smaller shear resistance 
is expected, due to the even lower shear force at the same cross section, the 
critical section cannot be here. In the vicinity of the support, the maximum shear 
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beam is regarded. The moment and shear force distribution along the beam are 
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force is reached. However, since the moment there is close to zero, the crack 
widths there are very small. Higher shear resistance is expected there as well. 
Besides, when the cross sectional moment is smaller than Mcr, the flexural cracks 
cannot develop at the sections very close to the support of the beam; therefore 
the critical section cannot be there either. 

It is assumed that the shear force resistance formula given in Chapter 4 is still 
valid in the case of beams subjected to a uniformly distributed load, which 
means that the influence of the crack profile to the shear resistance is eliminated, 
and the resistance of the cracked section is only related to the moment over shear 
force ratio (M/Vd) locally. The shear resistance distribution along the span can 
then be calculated. In the case of a simply supported beam, the shear resistance 
VR along the beam is plotted in Fig. 5.17 (e). Considering the linear distribution 
of the shear load VE shown in Fig. 5.17 (c), the critical cross-section can be found 
by checking the location where the value of VE/VR reaches the maximum, see 
Fig. 5.17 (f). A Similar approach has been proposed by Muttoni in (Muttoni & 
Ruiz 2008). In this loading case, the critical section is located at about 0.15l from 
the support, when l is the length of the total span. The same procedure may be 
applied to other load cases. In Fig. 5.19, two examples are shown. In these two 
cases, the critical sections are close to the clamped support, where both the 
moment and shear forces reach peak values. 

 
 
Fig. 5.17. Calculation of shear capacity along simply supported beam loaded by a 

uniformly distributed load. (a) Boundary conditions. (b) Moment distribution. (c) 
Shear force distribution. (d) M/Vd distribution. (e) Shear resistance assuming 
straight crack path. (f) Shear force over shear resistance.  
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Another aspect relating to the critical section in beams subject to a uniformly 
distributed load is how to determine the shear force in the cracked section. 
Taking simply supported beams as an example, a demonstration of the load 
distribution and the crack path is shown in Fig. 5.18. The shear force that is 
transferred across a certain crack should be determined by the location of the 
crack tip. The part of the distributed load between the crack tip and the support 
is transferred to the support by the part of the concrete member. Therefore, the 
shear force that has to be transferred along a crack generated at x0 is calculated at 
xct. With regard to the simple bilinear crack profile defined in Chapter 4, xct is 
calculated from the tip of the secondary crack branch, according to Fig. 4.2. The 
effective shear force at the critical crack is therefore calculated by VE = q(l/2 – xct). 

 
 
Fig. 5.19. Distribution of VR and VE /VR under statically indeterminate beams. 
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Fig. 5.18. Evaluating shear force VE for a critical shear crack. 
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Fig. 5.18. Evaluating shear force VE for a critical shear crack. 
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In general, for beams loaded by any type of distributed load, depending on the 
loading and supporting conditions, the effective shear force has to be calculated 
by the load applied on the part of the beam that cannot be transferred directly to 
the support, the boundary of which should always be defined by the tip of the 
crack. Other examples will be given in the following chapters. 

5.4.2 Adjustment of Crack Inclination 

The principle discussed in the previous section implies that the shear capacity of 
cracks initiated from any cross-section of the beam can be predicted with the 
formulation derived in Chapter 4. In the calculation procedure, the aggregate 
interlocking force is calculated with a simplified crack shape, which basically 
ignores the inclination and the curvature of the crack. However, when the value 
of M/Vd at the critical section is smaller than 1.0, a large inclination is expected 
when a crack is developed there. In that case, the influence of the crack shape 
has to be taken into account. Besides, the crack shape may influence the design 
value of the shear force VE that has to be checked along the cracked surface, and 
the shear component in the concrete compressive zone Vc as well. The three 
aspects are to be discussed in this section. 

For beams loaded by point loads, to have a critical crack under a small M/Vd 
is more difficult because a higher cracking moment is needed in that case. 
Because the shear force level is constant along the span, at the load level when a 
crack can develop at sections with small M/Vd, the beam already fails at cracked 
sections closer to the loading point. However, when a beam is subjected to a 
uniformly distributed load, a larger part of the sections have very small M/Vd. 
As an example the simply supported beam shown in Fig. 5.17 is regarded. The 
distribution of M/Vd is plotted in Fig. 5.17 (d). It shows that in the vicinity of the 
support, the value of M/Vd is exceptionally low. For a beam with a/d = 3.0, the 
value of M/Vd is smaller than 1.0 at 0.3a from the support. For uniformly dis-
tributed loaded beams, the shear span a stands for l/2. Because the shear force 
close to the support is larger, the chance of having the crack developed from a 
section with small M/Vd is high as well. Thus the evaluation of the shear ca-
pacities of cracks developed under small M/Vd has to be investigated.  

The influence of the crack shape on the shear capacity of a cracked section is 
shown in Fig. 5.20. In the figure, the shear displacement of the crack faces at the 
level of reinforcement of a cracked section  is calculated under a shear force V = 
100 kN according to the procedure described in section 3.4.1, and is represented 
by the solid line. For the sake of comparison, the dashed line indicates the shear 
displacement calculated with a constant crack shape at M/Vd = 4.0. The figure 
demonstrates the influence of the crack shape to the shear resistance of the 
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section qualitatively. It shows a clear drop of the shear resistance when M/Vd is 
smaller than 1.0.  

 
Fig. 5.20. Influence of crack shape to the vertical displacement under V = 100 kN. 
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100 kN according to the procedure described in section 3.4.1, and is represented 
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demonstrates the influence of the crack shape to the shear resistance of the 

CH5 Shear Behaviour of Reinforced Concrete Beams under Complex 
Boundary Conditions 

189 

 

 

section qualitatively. It shows a clear drop of the shear resistance when M/Vd is 
smaller than 1.0.  

 
Fig. 5.20. Influence of crack shape to the vertical displacement under V = 100 kN. 

However, in order to retain the merit of simplicity by using a straight crack, it 
is not appropriate to introduce a complex crack shape function to consider this 
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Fig. 5.21. Kinetic condition of an inclined crack. 

For inclined cracks, the secondary crack branch defined in chapter 4 is still 
necessary to generate a tangential displacement in the major crack and to rep-
resent the change of inclination of a curved crack properly. It reduces the 
rotation of the crack under the same b at the tensile side of the beam when there 
is sufficient distance between the tip of the major crack and the point of inflec-
tion. 

By replacing the curved crack profile with a straight crack having an average 
inclination of , the input of Eq. (4.7) has to be adjusted. A scheme of the crack is 
depicted in Fig. 5.21. According to the kinetic conditions shown, the equation is 
updated: 
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with scr, = scr/sin, the equation retains the same structure: 
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where  
, w:are the normal and tangential displacement along a crack path, where 

the additional subscripts b and t stand for the displacement measured 
at the level of the tensile reinforcement or the tip of the major crack 
respectively; 

scr, : is the length of the crack, while scr is the height of the crack in the 
height direction of the beam 

 
The next step is to convert the crack width wb and the critical shear displace-

ment cr of the inclined crack into the normal and tangential displacements wb, 
and  required in the formula.  

curved crack straight crack

α

wt,α

wb

scr

Vai,α
Vai

scr,α

Δt,α

ΔbΔb

ΔbΔb

A
A’

straight crack ( α = 0 )
wt

wb

scrVai

Δb

Δb

Δt

wb wb

l0

l0

CH5 Shear Behaviour of Reinforced Concrete Beams under Complex 
Boundary Conditions 

191 

 

 

The introduction of the crack inclination results into two effects regarding the 
formulation of the vertical displacement b (distinguished from the tangential 
displacement  in the inclined major crack) at the reinforcement level, and the 
shear displacement t at the tip of the major crack. 
 The additional vertical displacement  due to the larger horizontal distance 

scr cot introduced by the crack inclination is, according to Fig. 5.21: 
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 The average inclination of the crack path changes the formulation of the 
normal and tangential displacements t,, wt,. Assuming that the tangential 
displacement  remains constant along the crack, its value can be calculated 
by projecting the rotation of the secondary crack branch to the direction of 
the major crack, which results in: 
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where 
:  represents the average inclination of the major crack; 
:  is the inclination of the secondary crack branch; 
: is the rotation of the whole crack profile around the crack tip; 
l0 : is the length in the longitudinal direction of the secondary crack 

branch. 
 
Combining Eq. (5.2) and Eq. (5.3), and taking b = cr, gives the following 

expression for  : 
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Since the inclination of the secondary crack branch is usually small due to the 
confinement in the compression zone, the value of0 is set to zero in Eq. (5.4), 
which results in the following simplified formula: 
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The simplified aggregate interlocking force formula Eq. (4.7) was derived by 
regression analysis with a normal crack width wb = 0.01 mm at the crack tip. To 
guarantee the validation of the formula, wt, has to be 0.01 mm. The value of wb 
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The simplified aggregate interlocking force formula Eq. (4.7) was derived by 
regression analysis with a normal crack width wb = 0.01 mm at the crack tip. To 
guarantee the validation of the formula, wt, has to be 0.01 mm. The value of wb 
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can still be the calculated one by the elongation of the reinforcement expressed 
by Eq. (4.3). 

The additional shear displacement described by Eq. (5.2) can be applied to 
beams subjected to point loads with short shear span as well. It has been illus-
trated by Fig. 3.38 in section 3.4.3 qualitatively that the shear resistance of a 
cracked section reduces for cracks generated with smaller M/Vd. The compari-
son between experimental results in section 5.3.6.1 confirms that when the shear 
span is close to 2.0d, the reduced shear resistance for cracks with smaller M/Vd 
can be critical. However, in the evaluation procedure developed in Chapter 4, 
this effect is ignored for beams with large shear span to simplify the evaluation 
procedure. The argument was that the difference between the reduced shear 
resistance at smaller M/Vd and the one evaluated in the vicinity of the loading 
point is limited. For an accurate evaluation of the full shear resistance curve as 
shown in Fig. 3.38, Eq. (5.2) offers a solution to evaluate the effect of beams with 
very short span with a similar simplified procedure. 

Crack Length Reduction Method 

Regarding the original calculation procedure, the introduction of a bilinear crack 
profile with a vertical first branch (also called major crack) significantly simpli-
fies the calculation procedure. It is appropriate to retain the basic structure of the 
calculation procedure designed for the case of single point loads. The inclination 
of the overall crack profile can be imitated by applying a reduction of the major 
crack height scr with a crack inclination factor k. An illustration of this simpli-
fied crack path is shown in Fig. 5.22. The shortened part of the major crack is 
connected by a longer secondary branch with constant inclination ks. ks is the 
same as it was defined in section 4.2.1. Therefore, the ratio between wt and t 
remains unchanged. Since the pure rotation around the crack tip does not 
contribute to the shear resistance, the shear force Vai that can be transmitted 
through the crack path is still calculated only in the vertical crack path but with a 
reduced length kscr. The value of k is related to the level of curvature of the 
original crack. k can be related to M/Vd of the section where the crack initiates 

 
Fig. 5.22. Simplifying curved crack profile by bilinear profile with vertical major 

crack. 
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when Eq. (3.19) is taken into account. The crack opening distribution in longi-
tudinal direction w is the same as was proposed in Chapter 4. 

By introducing kscr into Eq. (4.7), the shear force transmitted through aggre-
gate interlock becomes: 
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Similarly, Eq. (4.4) is reformed into: 
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Compared to the formulation described in the first alternative, the procedure 
of reducing the crack height simplifies the calculation procedure significantly. 
However, since the assumption of having a crack width at the tip of the vertical 
crack is set to be 0.01 mm, the rotation of the two parts of the crack has to be 
different. As a result, the procedure cannot fulfil the kinetic condition, whereas 
this problem can be neglected in the original model, considering the much 
smaller length of the secondary branch. For that reason, this alternative can only 
be applied when proper calibration on test results is available. 

5.4.3 Simply Supported Beams 

 General Consideration 5.4.3.1

By taking into account the inclination of the crack profile discussed in section 
5.4.2, the shear failure process of a simply supported beam is re-examined. As 
shown in Fig. 5.17 (d), the value of M/Vd is really low at the sections close to the 
support. The influence of the inclination of the critical cracks cannot be ne-
glected anymore. It shall be evaluated from two points of view. On the one hand 
the shear resistance of the cracked section is reduced by the inclination of the 
crack profile; on the other hand, the shear force that applies on the crack section 
should be counted at the tip of the crack profile (xct), which is also smaller than 
the shear force at the root of the major crack employed in the original calculation. 
Thus, it is difficult to evaluate how much the two contradictory effects influence 
the accuracy of the prediction of the critical crack section.  

Regarding the section where the crack initiates, a direct comparison with 
experimental result has been done with respect to the experimental research 
carried out by Leonhardt and Walther (Leonhardt & Walther 1962). In the 
research simply supported beams with different length-depth ratio were loaded  
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Fig. 5.23. Crack pattern of simply supported beams loaded by uniformly distributed 
load ((Leonhardt & Walther 1962). 
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by a uniformly distributed load until shear failure. The crack patterns of the 
specimens after failure are shown in Fig. 5.23. The figure shows that inde-
pendent of the beam span, the critical inclined cracks with a large inclination 
always initiate at sections close to the supports. It is shown that it is appropriate 
to set the section where cracks initiate at 0.8d from the support. The value of 
M/Vd at the crack initiating section can be used to evaluate the crack profile 
with Eq. (3.19). It is expressed by: 
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0.8( )

M l x x
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⋅ -
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However, for the evaluation of the shear resistance, the moment and the shear 
force must be calculated at the section where the crack tip (secondary crack 
branch) ends, see Fig. 5.18. Accordingly, the value of M/Vd has to be calculated 
with Eq. (5.8) at the position of the crack tip. 

The position of the crack tip xct in simply supported beams loaded by a uni-
formly distributed loads was studied by Reineck, Bentz et al. (Reineck, Bentz et 
al. 2013). The position of the critical section was directly found on the basis of the 
failure crack patterns of the specimens reported in literature. According to their 
definition the position of the critical section is defined as the intersection point of 
the inclined crack and the neutral axis of the beam. The study showed that the 
position of the critical section is related to the ratio between the beam span l and 
the effective depth d. When l/d is larger than 12, the position of xct is more or less 
fixed at 2.4d. For beams with a smaller l/d, a linear regression analysis gives for 
the expression for xct:  
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The value of xct has to be converted back to the position of the crack tip again. 
However, this can be done only when the average inclination of the major crack 
is known. Before further calibration with experimental results, the value of xct 
expressed with Eq. (5.9) is used as an indication of the location of the governing 
section for the moment and the shear force calculation. 

Crack Inclination Method 

When the additional crack inclination is taken into account directly by assuming 
the critical inclined crack as an inclined plane with an angle , the following 
adjustment can be considered. For beams with a uniformly distributed load, the 
tip of the major crack usually locates at a large distance from the centre of the 
beam, so that the length of the secondary crack branch l0 is usually rather long. 
To generate the same critical shear displacement cr, less rotation  is needed. 
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Fig. 5.23. Crack pattern of simply supported beams loaded by uniformly distributed 
load ((Leonhardt & Walther 1962). 
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is known. Before further calibration with experimental results, the value of xct 
expressed with Eq. (5.9) is used as an indication of the location of the governing 
section for the moment and the shear force calculation. 

Crack Inclination Method 

When the additional crack inclination is taken into account directly by assuming 
the critical inclined crack as an inclined plane with an angle , the following 
adjustment can be considered. For beams with a uniformly distributed load, the 
tip of the major crack usually locates at a large distance from the centre of the 
beam, so that the length of the secondary crack branch l0 is usually rather long. 
To generate the same critical shear displacement cr, less rotation  is needed. 
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Therefore, the additional vertical displacement component due to the inclination 
of the major crack scr·cot· in Eq. (5.2) is less relevant. To avoid convergence 
problems caused by introducing an additional item related to the output in 
calculating Vai, that part is neglected. As a result, the expression of  in Eq. (5.5) 
becomes: 

 sin
cra aD = D  (5.10) 

To sum up, for simply supported beams the following additional steps have to 
be taken regarding the shear capacity calculation: 
 The location of the tip of the critical crack (critical section) shall be calcu-

lated by the shear resistance over shear force ratio distribution. As a 
simplified method, Eq. (5.9) can be used as an alternative.  

 The design shear force and moment shall be evaluated at the crack tip xct. 
The value of M/Vd is calculated by Eq. (5.8). 

 cr being used in Eq. (4.7) or Eq. (4.4) has to be adjusted with Eq. (5.10); 
further validation should be carried out to obtain an appropriate value of . 

Crack Length Reduction Method 

It is also possible to reduce the shear force carried by aggregate interlock by 
reducing the length of the flexural crack. To do so, Eq. (5.6) or Eq. (5.7) shall be 
used to replace Eq. (4.7) or Eq. (4.4) in the second step of the procedure pre-
sented in 4.4.1. The remaining part of the procedure is the same. 

 Validation 5.4.3.2

Experiments reported by Leonhardt and Walther (Leonhardt & Walther 1962), 
Krefeld and Thurston (Krefeld & Thurston 1966) are used to evaluate the shear 
calculation procedures presented in this section. Both test series include simply 
supported specimens loaded by a uniformly distributed load. The span to depth 
ratio l/d of the specimens varies from 4.69 to 22. For beams loaded by uniformly 
distributed loads, it is quite difficult to distinguish the so-called shear compres-
sion failure and flexural shear failure directly. Observation of the tests by 
Krefeld and Thurston (Krefeld & Thurston 1966) shows that in almost all ex-
periments with uniformly distributed loads, the development of the critical 
inclined crack does not result in direct collapse of the specimen; additional load 
increments can be applied afterwards. This is due to the further development of 
the secondary branch at the major crack tip. However, the larger is the ratio l/d 
of the specimen, the smaller is the additional load that can be applied. This 
indicates that for beams with smaller l/d, the uncracked concrete part is able to 
transmit a larger shear force after the dowel crack forms along the longitudinal 
reinforcement. Thus the formula presented in Chapter 4, which is aiming at the 
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development of the critical inclined crack, can only provide a lower bound for 
this loading condition. 

Critical Sections 

With the test results, the critical sections are firstly evaluated. The original 
calculation procedure presented in Chapter 4 is firstly applied to calculate the 
cross sectional shear resistance, which is then used to determine the position of 
the critical section. As examples, the configurations of the experiments reported 
in (Leonhardt & Walther 1962; Krefeld & Thurston 1966) are used the calculate 
the critical sections. The critical sections determined by the procedure presented 
are plotted against the span-depth ratio as dots in Fig. 5.24. In the figure, the 
analysis results show a strong linear relationship. A regression analysis gives the 
following expression: xct = (0.1399 l/d +0.3)d, which has an offset of 0.5d from Eq. 
(5.9) as discussed previously. 

 
Fig. 5.24. Comparison between the calculated critical sections based on tests reported 

in (Leonhardt & Walther 1962; Krefeld & Thurston 1966) marked as dots with the 
simplified model and the regression formula Eq. (5.9). 
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are calculated at the section where the crack is initiated. On the other hand, the 
reduction of shear resistance by crack inclination is not taken into account either. 
Both effects results in a certain inaccuracy in the evaluation of the critical section 
but in different directions. A more accurate evaluation can be achieved by taking 
into account the reduction of the shear resistance due to the crack profile. 
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Therefore, the additional vertical displacement component due to the inclination 
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 sin
cra aD = D  (5.10) 

To sum up, for simply supported beams the following additional steps have to 
be taken regarding the shear capacity calculation: 
 The location of the tip of the critical crack (critical section) shall be calcu-

lated by the shear resistance over shear force ratio distribution. As a 
simplified method, Eq. (5.9) can be used as an alternative.  

 The design shear force and moment shall be evaluated at the crack tip xct. 
The value of M/Vd is calculated by Eq. (5.8). 

 cr being used in Eq. (4.7) or Eq. (4.4) has to be adjusted with Eq. (5.10); 
further validation should be carried out to obtain an appropriate value of . 

Crack Length Reduction Method 

It is also possible to reduce the shear force carried by aggregate interlock by 
reducing the length of the flexural crack. To do so, Eq. (5.6) or Eq. (5.7) shall be 
used to replace Eq. (4.7) or Eq. (4.4) in the second step of the procedure pre-
sented in 4.4.1. The remaining part of the procedure is the same. 

 Validation 5.4.3.2

Experiments reported by Leonhardt and Walther (Leonhardt & Walther 1962), 
Krefeld and Thurston (Krefeld & Thurston 1966) are used to evaluate the shear 
calculation procedures presented in this section. Both test series include simply 
supported specimens loaded by a uniformly distributed load. The span to depth 
ratio l/d of the specimens varies from 4.69 to 22. For beams loaded by uniformly 
distributed loads, it is quite difficult to distinguish the so-called shear compres-
sion failure and flexural shear failure directly. Observation of the tests by 
Krefeld and Thurston (Krefeld & Thurston 1966) shows that in almost all ex-
periments with uniformly distributed loads, the development of the critical 
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Fig. 5.25. Relationship between Vcr /Vcal 
and l/d with the original method. 

Fig. 5.26. Relationship between Vu /Vcal 
and l/d with the original method. 

Shear Capacity 

Regarding the shear capacity, the inclined cracking load can be considered as a 
lower bound for the shear capacity as was done for beams loaded by point loads. 
Based on that consideration, the inclined cracking loads reported by Krefeld and 
Thurston are used to evaluate the original calculation procedure at the critical 
section specified with Eq. (5.9). The choice of a single research program aims at 
ensuring the consistence of the criterion for inclined cracking. The comparison is 
plotted in Fig. 5.25. It is shown that on average, the calculation procedure 
overestimates the inclined cracking load with about 36%. Nevertheless, the level 
of the prediction is consistent. The coefficient of variation of the prediction is 
only 11.4%.  

In addition, the ultimate bearing capacity obtained in experiments from 
(Leonhardt & Walther 1962) and (Krefeld & Thurston 1966) is plotted in Fig. 5.26. 
The comparison confirms that the original simplification gives an overestima-
tion of the ultimate bearing capacity of the beam as well. Thus, the inclination of 
the major crack has to be taken into account. Besides, the inclined cracking load 
is the lower bound of the shear capacity of a structure. With decreasing 
span-depth ratio the shear capacity of the tested specimen increases compared to 
the calculated capacities. This increase starts at a higher span-depth ratio than in 
the case of point loaded specimens, because of the different shear force distri-
bution. 

Comparisons of test results and the model prediction (Crack Inclination 
Method) are given in Fig. 5.27 and Fig. 5.28. Regarding the inclined cracking 
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load, by considering the reduction of the aggregate interlock effect due to the 
crack inclination, the improved model gives better results, the mean value of 
Vcr/Vcal in Fig. 5.27 being 1.00 (COV = 9.7%) and 0.96 (COV = 12.6%) respectively. 
Besides, with respect to the ultimate capacity, the prediction underestimates the 
test results in specimens with almost all span/depth ratios. 

In addition, with the procedure introduced above, the reduced shear re-
sistance is used to calculate VR along the length of the beam. The shear capacity 
of the whole specimen is determined by checking the value of VR at the section 
with the maximum VE/VR, which is the procedure introduced in Section 5.2 for 
structural members with general boundary conditions. With this procedure, an 
accurate prediction can be derived as well: a mean value of Vcr/Vcal = 1.03 and a 
COV of 9.6% is obtained regarding the same set of data. 

Fig. 5.27. Relationship between Vcr /Vcal 
and l/d with the improved simplified 
method. 

Fig. 5.28. Relationship between Vu /Vcal 
and l/d with the improved simplified 
method. 
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beams, subjected to point loads and uniformly distributed loads is used to 
extend the evaluation model to general supporting conditions. For a beam 
loaded by a uniformly distributed load with any discrete boundary conditions, 
the moment and shear force distribution within a span can be expressed by a 
parabolic function and a linear function. An example is shown in Fig. 5.29. In 
principle, once the moments and the shear forces at the ends of the span are 
known, the distributions of actions applying along the beam can be determined. 
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and l/d with the original method. 
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load, by considering the reduction of the aggregate interlock effect due to the 
crack inclination, the improved model gives better results, the mean value of 
Vcr/Vcal in Fig. 5.27 being 1.00 (COV = 9.7%) and 0.96 (COV = 12.6%) respectively. 
Besides, with respect to the ultimate capacity, the prediction underestimates the 
test results in specimens with almost all span/depth ratios. 

In addition, with the procedure introduced above, the reduced shear re-
sistance is used to calculate VR along the length of the beam. The shear capacity 
of the whole specimen is determined by checking the value of VR at the section 
with the maximum VE/VR, which is the procedure introduced in Section 5.2 for 
structural members with general boundary conditions. With this procedure, an 
accurate prediction can be derived as well: a mean value of Vcr/Vcal = 1.03 and a 
COV of 9.6% is obtained regarding the same set of data. 

Fig. 5.27. Relationship between Vcr /Vcal 
and l/d with the improved simplified 
method. 

Fig. 5.28. Relationship between Vu /Vcal 
and l/d with the improved simplified 
method. 
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Furthermore, if the sign of the shear force changes along the span (from V1 to Vi 
in Fig. 5.29), the beam can be considered as a part of a beam with the same 
maximum shear force V1 = V2 at both ends. To cover all possible moment and 
shear force combinations, only one variable is needed, which is the ratio be-
tween the hogging moment and the total moment difference: m = M2/(M1 + M2). 
In most practical conditions, the value of m varies between 0 and 1. Several 
examples of M/Vd distribution of beams with different m value are shown in Fig. 
5.30. Those configurations were tested in the research program presented in the 
following section. 

The principle to deal with beams with any moment and shear force ratio at 
the ends was explained in the previous sections. First of all, the critical section 

 
Fig. 5.30. Distribution of M/Vd along the longitudinal axis of the specimens in the 

TNO tests, see the following section. 
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Fig. 5.29. Moment and shear force distribution of a beam loaded by uniformly dis-

tributed load with generalized boundary conditions. 
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has to be found through the VE/VR diagram, see the examples shown in Fig. 5.17 
and Fig. 5.19. At the critical section, when the maximum ratio VE/VR applies, the 
properties of the crack profile are taken into account if it is necessary. On the 
basis of the shear resistance at the critical section the overall load level can be 
determined if required. This procedure has been validated with experimental 
results of simply supported beams loaded by a uniformly distributed load. In 
that loading case, the shear force in the span decreases with an increase of the 
moment. Any part of a beam with only a hogging moment can be considered as 
a part of a simply supported beam, the critical section and the shear capacity of 
which has to be checked in the same manner as for simply supported beams 
loaded by a uniformly distributed load. 

For another loading condition, like shown Fig. 5.19, m can be relatively large. 
The shear force increases with an increase of the moment to the end of the span. 
In theory the critical section under that condition should be located at the centre 
of the support. In practice, when there is confinement applied at the support 
such as by a supporting plate, or a change of the cross section, the development 
of an inclined crack can be restricted. Based on experimental observation, the 
recommended minimum cracking distance is d from the centre of the support 
(IBBC-TNO 1977c). Besides, the design moment and the shear force have to be 
checked at the initiation position of the crack. 

As shown for simply supported beams, the crack profile plays an important 
role. When crack inclination is expected, the stiffness of the aggregate interlock 
effect along the crack has to be reduced. Moreover, when there is confinement at 
the tip of the crack, the shear failure Criterion 3 in 5.4.2 is violated. The actual 
amount of shear force transferred in the concrete compressive zone Vc has to be 
enlarged.  

This principle is used in the evaluation of beams with different combinations 
of end moment ratios, to make sure that the chosen boundary conditions are 
realistic and can be validated. The selection is based on an experimental research 
program carried out at IBBC-TNO (TNO Institute for Building Materials and 
Structures) carried out in the 1970s. The research was aimed at understanding 
the shear behaviour of tunnel segments constructed in the Netherlands at that 
time. The whole experimental programme is reported in detail in several TNO 
reports (IBBC-TNO 1977a; IBBC-TNO 1977b; IBBC-TNO 1977c; IBBC-TNO 1985). 
Since those reports are all in Dutch, a brief introduction of the test programme is 
given in the section. 

 Evaluation of TNO Tests 5.4.4.2

The loading condition of the research programme is designed based on the 
discussion on general boundary conditions of beams subjected to a uniformly 
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has to be found through the VE/VR diagram, see the examples shown in Fig. 5.17 
and Fig. 5.19. At the critical section, when the maximum ratio VE/VR applies, the 
properties of the crack profile are taken into account if it is necessary. On the 
basis of the shear resistance at the critical section the overall load level can be 
determined if required. This procedure has been validated with experimental 
results of simply supported beams loaded by a uniformly distributed load. In 
that loading case, the shear force in the span decreases with an increase of the 
moment. Any part of a beam with only a hogging moment can be considered as 
a part of a simply supported beam, the critical section and the shear capacity of 
which has to be checked in the same manner as for simply supported beams 
loaded by a uniformly distributed load. 

For another loading condition, like shown Fig. 5.19, m can be relatively large. 
The shear force increases with an increase of the moment to the end of the span. 
In theory the critical section under that condition should be located at the centre 
of the support. In practice, when there is confinement applied at the support 
such as by a supporting plate, or a change of the cross section, the development 
of an inclined crack can be restricted. Based on experimental observation, the 
recommended minimum cracking distance is d from the centre of the support 
(IBBC-TNO 1977c). Besides, the design moment and the shear force have to be 
checked at the initiation position of the crack. 

As shown for simply supported beams, the crack profile plays an important 
role. When crack inclination is expected, the stiffness of the aggregate interlock 
effect along the crack has to be reduced. Moreover, when there is confinement at 
the tip of the crack, the shear failure Criterion 3 in 5.4.2 is violated. The actual 
amount of shear force transferred in the concrete compressive zone Vc has to be 
enlarged.  

This principle is used in the evaluation of beams with different combinations 
of end moment ratios, to make sure that the chosen boundary conditions are 
realistic and can be validated. The selection is based on an experimental research 
program carried out at IBBC-TNO (TNO Institute for Building Materials and 
Structures) carried out in the 1970s. The research was aimed at understanding 
the shear behaviour of tunnel segments constructed in the Netherlands at that 
time. The whole experimental programme is reported in detail in several TNO 
reports (IBBC-TNO 1977a; IBBC-TNO 1977b; IBBC-TNO 1977c; IBBC-TNO 1985). 
Since those reports are all in Dutch, a brief introduction of the test programme is 
given in the section. 

 Evaluation of TNO Tests 5.4.4.2

The loading condition of the research programme is designed based on the 
discussion on general boundary conditions of beams subjected to a uniformly 



202  5.4 Uniformly Distributed Load 
 

 

distributed load above. The configuration of the test specimens is plotted in Fig. 
5.32. The specimens are simply supported. They are all loaded by a uniformly 
distributed load generated by water pressure in two fire hoses confined by a stiff 
steel beam. The two additional supporting blocks are also loaded by the uni-
formly distributed load. The supports are placed at a distance e from the middle 
of the specimen on the attachment blocks. That part of the specimen is reinforced 
with stirrups to prevent unwanted shear failure there. By adjusting the position 
of the support, the moment at the end of the testing segment is controlled. Fig. 
5.31 shows a sketch of the test setup. The main variables in the research are the 
beam length – depth ratio l/d, the beam end moment ratio m, and the beam 
height d.  

The dimensions of the cross-section of the test segment of the specimens are 
180×150 mm, with an effective height d = 150 mm. The length of the test segment 
l varies among 900, 1350 and 1800 mm, accordingly, the moment ratio m varies 
from 0 to 1 by every 0.25. 3 Ø14 mm rebars were used as longitudinal reinforce-

 
Fig. 5.31. Test setup of TNO shear tests under uniformly distributed load. Adapted 

from (IBBC-TNO 1977c). 

 
Fig. 5.32. Configuration of TNO test specimens. Adapted from (IBBC-TNO 1985). 
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ment. Only the test specimens without shear reinforcement in the test segment 
are selected for the evaluation analysis in this section. Other than the three test 
series, several additional tests were included later, to check the size effect. In 
those tests, the effective beam height was increased to 300 and 400 mm. 3 Ø28 
mm rebars were employed. The length and the reinforcement of these beams are 
increased proportionally to keep the same l/d and reinforcement ratio. 

 
 

Fig. 5.33. Comparison of measured critical 
section and critical section used in the 
calculation. 

Fig. 5.34. Relationship between Vu /Vcr 
and l/d with the simplified method 
adjusted for inclined cracks. 
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distributed load above. The configuration of the test specimens is plotted in Fig. 
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steel beam. The two additional supporting blocks are also loaded by the uni-
formly distributed load. The supports are placed at a distance e from the middle 
of the specimen on the attachment blocks. That part of the specimen is reinforced 
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5.31 shows a sketch of the test setup. The main variables in the research are the 
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The dimensions of the cross-section of the test segment of the specimens are 
180×150 mm, with an effective height d = 150 mm. The length of the test segment 
l varies among 900, 1350 and 1800 mm, accordingly, the moment ratio m varies 
from 0 to 1 by every 0.25. 3 Ø14 mm rebars were used as longitudinal reinforce-
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ment. Only the test specimens without shear reinforcement in the test segment 
are selected for the evaluation analysis in this section. Other than the three test 
series, several additional tests were included later, to check the size effect. In 
those tests, the effective beam height was increased to 300 and 400 mm. 3 Ø28 
mm rebars were employed. The length and the reinforcement of these beams are 
increased proportionally to keep the same l/d and reinforcement ratio. 

 
 

Fig. 5.33. Comparison of measured critical 
section and critical section used in the 
calculation. 

Fig. 5.34. Relationship between Vu /Vcr 
and l/d with the simplified method 
adjusted for inclined cracks. 
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inclined crack, see the discussions in section 3.5.3. In that case, the value of Vc is 
suggested to be increased to 2.5Vc from the regression analysis of the TNO tests.  

With the adjustment described above, the calculated results are plotted 
against the test results in Fig. 5.34. The result shows that the proposed method is 
able to predict the behaviour of beams even for more generalized conditions. It 
should be noted that in the test reports, only the failure loads were recorded. So, 
in Fig. 5.34 the ultimate loads Vu are compared with the theoretical inclined 
cracking load Vcr,cal. The calculated results give a good lower bound. When the 

 
 

Fig. 5.35. Crack pattern of test series B after failure. l = 1350 mm, from B1 to B5, m = 
0.00, 0.25, 0.50, 0.75 and 1.00 respectively (IBBC-TNO 1985). 
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slenderness of the specimens is small, the span between the two inflection points 
is not long enough to allow the full development of two inclined cracks with an 
inclination of 30º anymore. As a result, the remaining part of the uncracked 
beam forms an arch structure, which is still able to withstand a higher load 
afterwards. A smaller slenderness of the beam will result in an arch with a larger 
minimum height, shorter span, and consequently higher stiffness. Therefore the 
maximum values of Vu/Vcal increases with a decrease of the beam slenderness. 
On the other hand, with regard to the specimens with the largest M/Vd, the 
opening of the critical inclined crack led to the failure of the specimen, see Fig. 
5.36. The adjustment reflects the failure loads found in the specimens with large 
l/d properly. 

 
 

 

 

 

 

 
 
Fig. 5.36. Crack pattern of test series C after failure. l = 1350 mm, from C1 to C5, m = 

0.00, 0.25, 0.50, 0.75 and 1.00 respectively (IBBC-TNO 1985). 
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5.5 CONCLUSIONS 

In this chapter the shear evaluation procedure derived in Chapter 4 is extended 
to more complex boundary conditions. Before the procedure is applied to new 
boundary conditions, it is suggested that three general criteria have to be 
checked. If one of the three is not fulfilled, further adjustment to the evaluation 
procedure should be considered. The three criteria are: 
 Whether or not a similar crack profile can be obtained at a given mo-

ment/shear force ratio? 
 With the same crack profile and crack opening, do the shear force compo-

nents change? 
 Where is the critical section? 

Two typical loading conditions are investigated as the examples of the crite-
ria and adjustments suggested in this chapter. Corresponding experimental 
results are introduced and evaluated. 

Point Loads 

For continuous beams with point loads, the calculation procedure derived for 
simply supported beams subjected to a point load can still be applied in princi-
ple.  

Because the dowel crack along the longitudinal rebar can develop across the 
point of inflection, the length of the detached tension chord is longer in a con-
tinuous beam. The reduction of the stiffness due to the development of inclined 
cracks is more pronounced. Therefore, the inclined cracking load should be used 
as a lower bound for the shear capacity, even for beams with a relatively small 
shear span. 

The shear slenderness ratio a/d is not equivalent to the maximum ratio M/Vd 
in continuous beams anymore. The latter one should be used in order to evalu-
ate the inclined cracking load. 

When the maximum of M/Vd is very large, the value of Vcr is stabilized. The 
critical inclined crack is located at flexural cracks close to the loading point 
(rotation centre). 

When the maximum of M/Vd is smaller than 2.0, the teeth structure cannot 
be formed anymore, and the contribution of Vc is significantly increased with the 
reduction of the shear span. On the other hand, the contribution of Vai is reduced 
because of the larger crack inclination. The contributions of the components 
along the critical inclined crack change. 

The opening of the inclined crack of beams with a maximum ratio M/Vd < 
2.0 is mostly due to the development of a crack at M = Mcr. Overall speaking the 
value of Vcr can be estimated by relating Vcr to the maximum ratio M/Vd di-
rectly.  
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Uniformly Distributed Load 

In a beam subjected to a uniformly distributed load or even more complex 
loading condition, the shear capacities of the critical sections in the hogging and 
sagging moment regions need to be checked. The positions of the sections are 
determined from the peak of the VE/VR curve along the span. Here the value of 
VR can be determined without taking into account the reduction of crack incli-
nation. 

For a simply supported beam loaded by a uniformly distributed load, or any 
part of a beam under a uniformly distributed load including a sagging moment 
zone between two points of inflection, the critical section can be determined by a 
simplified regression formula.  

In the hogging moment zone, where the moment increases with the shear 
force, the critical section is set at d from the support or from any other type of 
confinement which may prevent the further development of the secondary crack 
branch. The shear force component transmitted in the uncracked compression 
zone has to be increased. Based on the TNO tests, a suggested increment factor is 
2.5 Vc. 

When a uniformly distributed load is applied, the inclined crack usually de-
velops at sections with very small M/Vd ratio, thus a large inclination of the 
major crack is expected. To take into account the crack inclination, a reduction 
has to be made when calculating the shear force generated by aggregate inter-
lock at a given vertical displacement . The reduction can be made by 
introducing a crack inclination angle  = 36º when using the Crack Inclination 
Method, or crack height reduction factor k = 0.41 when using the Crack Length 
Reduction Method. Both are simplified evaluation procedures proposed in this 
research and have been evaluated with test results. 

The reduction in case of more complex loading conditions has to be eval-
uated based on test results. 
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6.1 FUNCTION OF CONCRETE STRENGTH 

The contribution of concrete strength to the shear capacity of concrete structures 
is usually described as being proportional to the cubic root (Eurocode 2 2004) or 
square root (ACI Committee 318 2004) of the concrete compressive strength fc 
based on regression analysis. This simple relationship does not reflect the 
complex shear failure mechanism of a concrete beam. Based on this, a wrong 
interpretation may be generated when the material properties of the concrete are 
not the same as for ‘normal’ concrete reported in literature. Several examples 
will be given in the following part of the chapter, regarding shear problems of 
specimens with abnormal concrete properties, or other shear problems regard-
ing the effect of concrete strength. 

Before that, the functions of concrete strength in the shear failure process are 
summarized. Many of those aspects have already been mentioned in the previ-
ous chapters. Further considerations on particular phenomena related to 
concrete strength are given. 

6.1.1 Concrete Tensile Strength 

A straight-forward explanation of the role of the concrete strength with regard 
to shear failure is that for slender beams it is the unstable propagation of the 
critical inclined crack that defines the shear failure. Finally it is the concrete 
tensile strength fct that determines the shear capacity. Since fct is related to the 
concrete compressive strength, the compressive strength can also be seen as a 
governing factor regarding shear capacity. The shear formulation in the former 
Dutch code NEN 6720 (Nederlands Normalisatie-Instituut 1995) is based on that 
consideration. This explanation complies with the shear failure criteria proposed 
in section 3.4.2.1 and 3.4.2.2. In Chapter 3 it has been proven that these two 
criteria cannot lead to the shear failure of a concrete beam. A secondary crack 
branch needs to develop at the tip of a major crack to fulfil the cross sectional 
equilibrium. Additional shear displacement  will occur with the opening of the 
secondary crack branch. Only after that, sufficient shear resistance can be gen-
erated by aggregate interlock.  

A special case applies when the maximum ratio M/Vd is small. In that case, 
the shear resistance of the cracks in the vicinity of the loading point is large 
because of the smaller crack width. Thus, a high shear force level is expected, 
which results in the opening of a crack at very small M/Vd with a large crack 
inclination. Because of the large inclination, the critical shear displacement cr at 
the level of the longitudinal reinforcement can be reached only because of the 
rotation of the crack around its tip. In this case, the contribution of aggregate 
interlock to the shear resistance is limited. Therefore, the propagation of a 
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critical crack will result in the development of the dowel crack, which defines 
the opening of the inclined crack. However, in this case the chance that the 
uncracked arch structure still has sufficient capacity is quite large as well. Thus, 
another failure mode is expected. 

The other mechanism related to the concrete tensile strength is the maximum 
dowel force Vd expressed by Eq. (3.28). However, that does not relate to shear 
failure directly either, since the value of Vd,max itself is rather small compared to 
the overall shear resistance. Moreover, as shown in Fig. 3.28, after the maximum 
value of Vd,max is reached, a yielding plateau will develop. It is the critical shear 
displacement cr that determines the opening of the dowel crack along the 
longitudinal rebar, and defines the failure of the beam. Since the value of cr is 
usually larger than the displacement when Vd,max is reached, it is not dependent 
on fct either. 

However, the only thing that is really related to the concrete tensile strength 
is the residual capacity of the arch structure after the development of the dowel 
crack. The concrete tensile strength fct influences the strength of the arch struc-
ture in the following two manners: 
 The tensile strength defines the cracked span in the beam, in other words 

the boundary of the location where the critical inclined crack may develop. 
The location of the crack then defines the shape of the arch structure. 

 The tensile strength of concrete determines the flexural strength of the 
uncracked concrete arch. Based on that the critical compressive region ac,c is 
derived in Eq. (3.43). 

Both aspects will influence the failure mode of the beam. For concrete beams 
with a smaller tensile strength, the length of the cracked span is larger. The 
critical inclined crack can develop at a large distance from the loading point or 
the support at the same load level. Moreover, the critical compressive region ac,c 
is smaller. The chance that the tip of the major crack falls outside ac,c is larger, see 
the discussion in Section 3.5. Consequently the failure mode of the beam is more 
likely to be flexural shear failure.  
 

Nevertheless, none of the aforementioned mechanisms relates to the deter-
mination of the inclined cracking load Vcr directly. 

6.1.2 Concrete Compressive Strength 

The concrete compressive strength, on the other hand, does influence the shear 
capacity of reinforced concrete beams in a more direct way. First of all, the 
capacity of the compressive strut in the residual arch structure after inclined 
cracking is directly determined by the concrete compressive strength. For beams 
with small shear slenderness ratio or with any other loading condition under 
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which the remaining concrete arch structure is not affected by the inclined crack, 
the ultimate capacity of the whole beam is determined by fc. 

In case of slender beams, the concrete compressive strength implicitly influ-
ences the shear capacity. Out of the three shear force components, it is the 
aggregate interlock force Vai that relates to fc most. In Eq. (4.7) the term fc0.56 
actually represents the yielding strength of the cement matrix. According to 
Walraven (Walraven 1980), the yielding strength of the cement matrix in normal 
strength concrete is related to the concrete strength by: 

 0.566.39
pu c

fs =  

In that way the concrete strength is affecting the shear force transmitted across 
the cracked surfaces. 

Moreover, for very high strength concrete, the high concrete tensile strength 
combined with a higher modulus of elasticity results in the fracture of aggregate 
along the crack. Consequently the cracked surface is smoother, and a lower 
aggregate interlock force is expected at the same tangential displacement . This 
effect was treated in section 4.5. 

6.1.3 Effect of Spatial Variability 

The concrete strengths in two different loading conditions functions differently. 
The concrete tensile strength mainly affects the shear failure mode (flexural 
shear or shear compression), while the concrete compressive strength influences 
the shear bearing capacity in both failure modes. With the function of the con-
crete strength in the shear failure process understood, it is possible to introduce 
the spatial variability of concrete strength in the failure process. 

The variation of concrete strength over the concrete body means the existence 
of peaks and valleys regarding concrete strength in space. The local valleys may 
be considered as weak spots in the structure. Taking a tensile element as an 
example, the effect of local weak spots influences the overall behaviour of the 
element in several ways as illustrated in Fig. 6.1. In the longitudinal direction, 
the subsequent cross sections of the element may be considered as a serial 
system. The overall capacity of the system is determined by the weakest section. 
This type of failure can be described with Weilbull’s model proposed in 
(Weilbull 1951). On the other hand, within the critical section, the effect of the 
weak spot is very much dependent on the post peak behaviour of the material. 
For a plastic material, after the strength of the weak spot has been reached (u,i in 
Fig. 6.1), the stiffness of the whole element is reduced, but the total force applied 
on the element will still increase. The ultimate capacity of the section is defined 
by the mean strength of material over the whole section. 
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A:  is the total area of the cross section. Ai is the area of a part of the cross 

section. 
u: is the local strength of the material. 

 
 

Fig. 6.1. Relation of material constitutive behaviour to the behaviour of tensile ele-
ment with weak spot. 

If the material is extremely brittle, the stress level at the weak spot goes to zero 
immediately after it reaches u,i, see Fig. 6.1. The ultimate capacity of the section 
is then dependent on the distribution of the material strength u. Assume that 
the cumulative strength distribution function of the material is represented by: 
(). () varies from 0 to 1 when  varies from 0 to ∞, its corresponding 
partial distribution function is denoted as (). At  = u,i the area of the 
cross-section that has not failed yet is Ai() = A·[1-(u,i)]. The relationship 
between the total force and the average stress level over the critical cross-section 
is  
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The ultimate load of the tensile member is calculated by finding the peak value 
of that equation. In the discrete case, the weak spot of the material occupies a 
certain area. After its strength has been reached, the part of the total force carried 
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along the crack. Consequently the cracked surface is smoother, and a lower 
aggregate interlock force is expected at the same tangential displacement . This 
effect was treated in section 4.5. 

6.1.3 Effect of Spatial Variability 

The concrete strengths in two different loading conditions functions differently. 
The concrete tensile strength mainly affects the shear failure mode (flexural 
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weak spot is very much dependent on the post peak behaviour of the material. 
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A:  is the total area of the cross section. Ai is the area of a part of the cross 

section. 
u: is the local strength of the material. 

 
 

Fig. 6.1. Relation of material constitutive behaviour to the behaviour of tensile ele-
ment with weak spot. 
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The ultimate load of the tensile member is calculated by finding the peak value 
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by the weak spot has to be taken over by the remaining part of the section. An 
example of such situation is shown in Fig. 6.1, case 2. After the failure of the 
weak spot, an increment of stress is also expected in the remaining section under 
the same total force P. This may result in the failure of the whole cross-section 
immediately if the increment of the stress is large enough. An example of such a 
case is shown in Fig. 6.1, case 1. 

For a plastic material, when the stress in a part of the cross-section reaches 
the yielding strength u, the stress there remains u. Therefore the total force P of 
the cross-section at a given deformation  shall be calculated by the integration 
over the whole cross section: 
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Compared to the ideal brittle material, an additional term is added in case of an 
ideal plastic material. The overall load – displacement relationship of an ideal 
plastic material loaded in tension is shown in Fig. 6.1 as case 3. For a general 
quasi-brittle material with a certain softening property, the value of u in the 
first term should be replaced by the softening function of the material soft (u, ). 
As expected, the total force P at a given average strain  should be between Pb () 
and Pp (). 
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For shear failure, the mechanism is more complex than failure in pure tension. 
Nonetheless, a similar strategy may be followed. The influence of material 
variability can be discussed in longitudinal, depth and width directions. 

Longitudinal Direction (x Direction) 

The beam can be treated as a serial system similar to the tension element in the 
longitudinal direction. When the shear force over the span is constant in case of 
point loaded beams, the cracked section in the span which has the lowest shear 
resistance will be the location from where the critical inclined crack develops. 
The variation of concrete strength in the longitudinal direction results in an 
uncertainty of the crack initiation positions. Sections closer to the support but 
with lower concrete tensile strength might crack earlier. Besides, the loading 
history or the variation of loading condition may generate cracks at random 
positions. The presence of a crack due to an earlier loading case in the loading 
history may initiate the development of an inclined crack as well. The uncer-
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tainty of the position of the critical inclined crack may result in an unexpected 
failure mode. The effect of this type of variation in the longitudinal direction will 
be discussed in section 6.2. 

Height Direction (z Direction) 

In the beam height direction, the variation of concrete strength is important at 
certain locations. First of all, a crack always develops towards the direction with 
the smallest /fct ratio at its tip. Other than that, only the concrete strength along 
the crack path and at the top of the uncracked compressive zone is of importance. 
For the uncracked concrete between the flexural cracks, its strength is not 
relevant anymore. Secondly, even at the sensitive areas, the concrete property 
plays a different role at different locations. The strength of concrete in the 
compressive zone decides the capacity of the residual arch structure formed by 
the inclined crack. Along the crack path, the shear force is transmitted by ag-
gregate interlock. When calculating the aggregate interlocking force Vai at a 
given shear displacement , a large part of the crack profile shares the same 
tangential displacement . Thus the crack path can be considered as a parallel 
system, the shear stresses along which are calculated based on the same . 
Besides, since the aggregate interlocking functions on the basis of compression 
contact between aggregate and cement matrix, plastic constitutive behaviour is 
expected. 

Width Direction (y direction) 

Last but not least, the variation of concrete strength in width direction is only 
pronounced when the width of the structural member is large. In that case the 
structure can be considered as a parallel system. If the critical crack surface is 
located at the same position in the longitudinal direction, the shear failure 
process may be described in the same manner as in the tension element. Other-
wise, an additional geometric effect has to be taken into account. 

 
Little experimental research has been carried out to investigate the three as-

pects mentioned above. Nevertheless, the experimental research carried out by 
the author in several research programs is related to these aspects. Therefore, the 
background of those experiments and their rationality within this chapter will 
be explained respectively in the following sections together with the conclusions 
derived through the experiments. The referred experimental research was 
carried out in the Stevin Lab at Delft University of Technology. 
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For shear failure, the mechanism is more complex than failure in pure tension. 
Nonetheless, a similar strategy may be followed. The influence of material 
variability can be discussed in longitudinal, depth and width directions. 

Longitudinal Direction (x Direction) 

The beam can be treated as a serial system similar to the tension element in the 
longitudinal direction. When the shear force over the span is constant in case of 
point loaded beams, the cracked section in the span which has the lowest shear 
resistance will be the location from where the critical inclined crack develops. 
The variation of concrete strength in the longitudinal direction results in an 
uncertainty of the crack initiation positions. Sections closer to the support but 
with lower concrete tensile strength might crack earlier. Besides, the loading 
history or the variation of loading condition may generate cracks at random 
positions. The presence of a crack due to an earlier loading case in the loading 
history may initiate the development of an inclined crack as well. The uncer-
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6.2 INFLUENCE OF EXISTING FLEXURAL CRACKS 

6.2.1 Introduction 

It has been discussed previously, that in the longitudinal direction of a beam 
structure variation of material property and pre-existing cracks within the shear 
span may result in an unexpected crack pattern. This is especially true when 
dealing with existing structures, the load history of which is mostly unknown. 
The influence of existing cracks has been studied by several researchers. 

Hamadi and Regan reported a comparative study in (Hamadi & Regan 1980). 
The loading procedure of their specimens is shown in Fig. 6.2. Flexural cracks 
were generated in a 4 points bending test. Afterwards, 3 point loading was 
applied after having one of the supports moved closer. In all the tests, shear 
failure was only observed in virgin shear spans, which indicates that the pres-
ence of flexural cracks seems to increase the shear capacity. 

Pimanmas and Tisavipat observed a similar behaviour in their experimental 
research reported in (Pimanmas & Tisavipat 2005). In their tests, vertical cracks 
generated by pre-cracking loading were across the whole beam height, and 
along the whole span of the shear testing stage, see Fig. 6.3. In the shear tests, the 
ultimate capacity of the specimens being pre-cracked were between 17.8% and 
48.8% higher than the reference virgin specimen. Besides, it was reported that 
the presence of the flexural cracks changed the failure mode of the specimen. 

In those tests, the preloading process was achieved by changing the support-
ing condition of the specimens. This type of change of loading condition is not 
common for a simply supported structural element. Thus it is of limited practical 
significance. For simply supported beams subjected to point loads, the moment 

 
 

Fig. 6.2. Loading arrangement for Hamadi and Regan's beam tests with existing 
flexural cracks (Hamadi & Regan 1980). 
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distribution does not change significantly without changing the supporting 
condition. Therefore, the loading history cannot result in a substantial variation 
of crack pattern. The pre-cracking procedure practiced in the research programs 
mentioned above is quite extreme. Besides, they are shown to give results at the 
safe side. 

On the other hand, for beams with relatively more complex boundary condi-
tions, such as continuous beams, the influence of existing cracks may be more 
pronounced. Examples have been shown in Chapter 5. In the span of a contin-
uous beam a point of inflection may be present where the bending moment is 
zero. However, the shear force may be rather high at that location. This type of 
local force distribution prevents the development of flexural cracks in the 
vicinity of the point of inflection when the beam is loaded for the first time. 
Thus, no inclined crack will develop from a flexural major crack there. Accord-
ing to the shear failure process described in Chapter 3, the formation of a major 
crack due to a bending moment is vital to the shear failure process. Thus, the 
suppression of the development of flexural cracks will result in a higher shear 
capacity. Unlike simply supported beams, for a continuous beam, the variation 
of the position of a point load along the beam span will directly lead to shifting 
of the point of inflection, which changes the moment distribution drastically. If, 
due to the load history, a crack already exists in the vicinity of the point of 
inflection and the shear force level is quite high, the chance of having an inclined 
crack starting from the existing crack may be increased. Consequently, an 
unusual position and profile of the critical inclined crack will influence the 
formation of the arch structure. The ultimate bearing capacity of the structure is 
influenced eventually. In real structures such as continuous concrete slab 
bridges, the presence of existing cracks is quite likely to happen at various 
locations due to, for example, heavy traffic loads, uneven foundation settle-
ments, or restrained volume changes. 

The influence of the existing cracks on the shear capacity of continuous re-
inforced concrete beams without shear reinforcement is studied by a series of 
comparative experiments. These experiments are part of the extended test 

 
 
Fig. 6.3. Loading arrangement for Pimanmas and Tisavipat's beam tests. Adapted from 

(Pimanmas & Tisavipat 2005). 
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program investigating the shear capacity of continuous beams presented in 
Chapter 4 and in (Yang, den Uijl et al. 2011). The tests are designed in such a way 
that the situation described above is simulated in the laboratory. The influence 
of an existing crack on the shear capacity of continuous reinforced concrete 
beams is evaluated. 

6.2.2 Loading Procedure 

The problem of the influence of existing cracks was first noticed in test C11b123 
of the continuous beam test series. The test was carried out on a specimen that 
had been tested previously at the other end. It was test C11a091 in Table 5.1. The 
maximum moment reached at the boundary of the critical shear span of C11a091 
(see Fig. 6.4) during the previous test was 166.9 kNm. Since the cracking moment 
of the cross-section is only Mcr = 61.3 kNm (fct = 4.9 MPa), several flexural cracks 
had been observed before the next test started. The crack pattern of the specimen 
is shown in Fig. 6.4. At first, it was assumed that the presence of those cracks 
would not affect the behaviour of test C11b123. However, the ultimate bearing 
capacity of the beam was significantly lower than what was found in the rest of 
the test series. For that reason two additional experiments were added as series 4 
in Table 5.1. They were executed on the same specimen (Beam 16). C16a123 is 
the reference test, evaluating the shear capacity of a virgin specimen, while 
C16b123 is designed to investigate the influence of existing cracks in a more 
controlled way. No visible crack was observed in the critical span before loading 
was started. 
 

 
Fig. 6.4. Crack pattern of C11b123 before loading. 

The test setup and the specimen have already been explained in Chapter 5, 
for instance the sketch of the setup is plotted in Fig. 5.5. The specimens are 
identified as C11b123, C16a123 and C16b123. The test number indicates the 
length of the critical shear span a = 1200 mm. One may check Fig. 5.9 for the full 
explanation of the coding rules. During the test, the ratio between P1 and P2 was 
kept constant: P1/P2 = 2.97, which makes the ratio between the maximum 
hogging moment and sagging moment M -/M + = 2/3. Thus the maximum M/Vd 
in the shear span is 1.60. 
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In test C11b123 and C16a123 the loading procedure consists of two stages. 
First, the hydraulic jacks were force controlled. The loading procedure is the 
same as described in section 5.3.2.3. In this stage, the loading process was 
subdivided into several steps. For each load step a maximum load level was 
defined based on the shear force in the measuring span. The forces of the jacks P1 
and P2 were increased with a constant loading rate until predefined load levels. 
The loading rate of P1 was fixed at 0.2 kN/s, and the loading rate of P2 followed 
accordingly. After reaching the predefined load level, the forces were kept 
constant for 10 minutes to stabilize the deformation of the specimen, and to 
provide sufficient time for crack marking and other measurements.  

The force controlled loading procedure was ended when a potentially un-
stable inclined crack developed, or when the specimen showed significant 
change of flexural stiffness. Then, the hydraulic jack P1 was switched to dis-
placement control, while the load applied by P2 was still controlled by the 
real-time measured force P1, so that the value of P1/P2 was still kept constant. 
The load level was increased stepwise up to failure of the specimen. 

In test C16b123 an additional pre-cracking stage was added before the load-
ing procedure described above started to generate the existing crack for the next 
load stage in a more controlled way. In the stage, the beam was only loaded by 
actuator P1 with the same supporting condition. The actuator P1 was driven by 
force control. It was intended to have three load steps in the preloading stage, 
with the maximum shear force by the end of each load steps V = 50, 100 and 125 
kN, respectively. However, due to an error in the controlling system, the loading 
rate of P1 in the first load step was faster than planned, which yielded a maxi-
mum shear force of 102.4 kN in that step, see Fig. 6.5. Because the designed 
maximum load level in the preloading stage was not exceeded yet, the cracking 
process was not influenced by this accident, and the test was continued. The 
maximum load level in this test was P1 = 164.5 kN (V = 125 kN). It is about 66% 
of the maximum shear load at that boundary conditions according to the pre-
vious tests carried out in the extended test program. With the cracking moment 
Mcr = 61.3 kNm, development of flexural cracks is expected at about 560 mm 
from the intermediate support. In the subsequent test, the point of inflection is at 
480 mm from the support. Therefore, flexural cracks were expected to develop in 
the vicinity of the point of inflection in the preloading stage. This is verified by 
the observation of the crack pattern after the pre-cracking stage; see Fig. 6.6. 
After the third load step, the load applied by P1 was reduced to zero with the 
same loading rate, and kept for 10 minutes before the real loading procedure 
discussed previously started. The loading history of both P1 and P2 is given in 
Fig. 6.5. 
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In test C11b123 and C16a123 the loading procedure consists of two stages. 
First, the hydraulic jacks were force controlled. The loading procedure is the 
same as described in section 5.3.2.3. In this stage, the loading process was 
subdivided into several steps. For each load step a maximum load level was 
defined based on the shear force in the measuring span. The forces of the jacks P1 
and P2 were increased with a constant loading rate until predefined load levels. 
The loading rate of P1 was fixed at 0.2 kN/s, and the loading rate of P2 followed 
accordingly. After reaching the predefined load level, the forces were kept 
constant for 10 minutes to stabilize the deformation of the specimen, and to 
provide sufficient time for crack marking and other measurements.  

The force controlled loading procedure was ended when a potentially un-
stable inclined crack developed, or when the specimen showed significant 
change of flexural stiffness. Then, the hydraulic jack P1 was switched to dis-
placement control, while the load applied by P2 was still controlled by the 
real-time measured force P1, so that the value of P1/P2 was still kept constant. 
The load level was increased stepwise up to failure of the specimen. 

In test C16b123 an additional pre-cracking stage was added before the load-
ing procedure described above started to generate the existing crack for the next 
load stage in a more controlled way. In the stage, the beam was only loaded by 
actuator P1 with the same supporting condition. The actuator P1 was driven by 
force control. It was intended to have three load steps in the preloading stage, 
with the maximum shear force by the end of each load steps V = 50, 100 and 125 
kN, respectively. However, due to an error in the controlling system, the loading 
rate of P1 in the first load step was faster than planned, which yielded a maxi-
mum shear force of 102.4 kN in that step, see Fig. 6.5. Because the designed 
maximum load level in the preloading stage was not exceeded yet, the cracking 
process was not influenced by this accident, and the test was continued. The 
maximum load level in this test was P1 = 164.5 kN (V = 125 kN). It is about 66% 
of the maximum shear load at that boundary conditions according to the pre-
vious tests carried out in the extended test program. With the cracking moment 
Mcr = 61.3 kNm, development of flexural cracks is expected at about 560 mm 
from the intermediate support. In the subsequent test, the point of inflection is at 
480 mm from the support. Therefore, flexural cracks were expected to develop in 
the vicinity of the point of inflection in the preloading stage. This is verified by 
the observation of the crack pattern after the pre-cracking stage; see Fig. 6.6. 
After the third load step, the load applied by P1 was reduced to zero with the 
same loading rate, and kept for 10 minutes before the real loading procedure 
discussed previously started. The loading history of both P1 and P2 is given in 
Fig. 6.5. 
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Fig. 6.5. Loading procedure of test C16b123. 

6.2.3 Test Results 

Despite the identical boundary conditions in the three tests, a transition from 
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the introduction of pre-cracking. The test results are summarized in Table 6.1. 
The load (P1) -deflection relationships of the three tests are plotted in Fig. 6.7. 
The programs of the experiments are explained as follows: 

In the reference test C16a123, flexural cracks developed first under the load-
ing point. At P1 = 200.0 kN, a dowel crack started to develop along the tensile 
reinforcement from one of the flexural cracks which is marked in Fig. 6.6 (left) as 
inclined crack 1. Limited additional deformation was observed in the 
load-deflection relationship at that load level, and the stiffness of the beam was 
not influenced very much by then. At P1 = 339.5 kN, the second inclined crack 
developed, see Fig. 6.6 (left). The loading procedure was switched to displace-
ment control. The load level was able to be increased further, while the 
propagation of the cracks was quite stable. At P1 = 611.8 kN, the load could not 
be increased any further. The concrete strut reached the maximum compressive 
strain. This is typically defined as shear compression failure.  
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Fig. 6.6. Crack development of (left) test C16a123 and (right) test C16b123 (the existing 

cracks in C16b123 are marked by grey lines). 
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Fig. 6.7. Load-deflection relationship of pre-cracking tests series. 

Table 6.1. Summary of the precracking test results. 

Test No. Pre-crack
ing 

Age Failure 
Mode1 

P1,u2 Vu3 P1,cr2 Vcr3 
[days] [kN] [kN] [kN] [kN] 

C16a123 No 50 SC 611.8 514.3 237.9 200.0 
C16b123 Yes 56 FS 301.7 253.6 245.3 206.2 
C11b123 Yes 41 FS 236.6 198.9 222.8 187.3 
1 SC stands for shear compression failure, FS stands for flexural shear failure; 
2 Subscript u stands for ultimate load. Subscript cr stands for inclined cracking load.  
3 The shear force does not include the self-weight. The shear force generated by the self-weight of 

the specimens is about 8.82 kN. It has to be taken into account during the evaluation process. 
 
On the other hand, in the pre-cracked tests not many new flexural cracks 

developed when the load level was low. Instead, the existing flexural cracks 
continued to propagate. For example, in test C16b123 at about P1 = 200 kN the 
secondary crack branches developed at the compressive side from the tips of the 
existing cracks and made them joining the critical inclined crack; see Fig. 6.6 
(right). At the tensile side of the crack, dowel crack was developed along the 
longitudinal reinforcement. This process was accompanied by large deformation 
in the critical shear span, and the load level dropped quickly in Fig. 6.7. After 
increasing the displacement of the actuators the load level could be recovered 
and even increased to a certain extent. The maximum load reached was 301.7 kN, 
which was less than half of the ultimate bearing capacity in the reference test. In 
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test C11b123 the failure process was similar, but its capacity was even lower. The 
failure mode of these two tests can be defined as flexural shear failure. 

6.2.4 Discussion 

The first impression is that the experimental results on continuous beams with 
pre-cracking and the ones reported in literature (Hamadi & Regan 1980; 
Pimanmas & Tisavipat 2005) are contradictory. In the tests reported in both 
publications, the presence of existing cracks increased the shear capacity, while 
in the continuous beam tests they reduced the ultimate capacity. However, both 
can be explained with the same theory presented in Chapter 3. 

First of all, despite the failure modes, in almost all the load cases in the con-
tinuous test program, the development of an inclined major crack, and the 
subsequent opening of a dowel crack along the longitudinal rebar have been 
observed at a certain load level. That load level is defined as inclined cracking 
load as was discussed previously in Chapter 3. As shown in Fig. 6.7 in the 
continuous beam tests, the inclined cracking load of the tests with different 
failure modes is actually quite stable. The inclined cracking load is not clearly 
mentioned in either Hamadi & Regan’s tests or Pimmanmas & Tisavipat’s tests. 
Nevertheless, in Pimmanmas & Tisavipat’s tests, Vcr can still be distinguished 
from the load-deflection relationship because of the reduction of the overall 
stiffness when the longitudinal bar is detached from the concrete beam. Re-
garding the inclined cracking load, a slight offset of the position of the inclined 
crack does not affect the value of Vcr significantly, this conclusion is confirmed in 
the crack pattern shown in Fig. 6.6, and in section 5.3.5 as well. 

Secondly, the presence of the existing cracks influences the position of the 
major cracks and their profiles; both aspects eventually determine the profile of 
the critical inclined crack, especially the tip of the inclined crack, which eventu-
ally governs the failure modes. Based on the procedure described in section 3.5.2, 
with the boundary conditions of the experiment presented in this section, the 
critical compressive zone is at ac,c = 180 mm from the edge of the loading point. 
Taking into account the cracking moment Mcr = 61.3 kNm, the actual available 
length of the locations where a critical inclined crack may develop is only about 
133.5mm when the measured inclined cracking load was reached. Considering 
the average major crack spacing of 232 mm, the chance of having flexural shear 
failure in such a load configuration is small. However, the presence of the 
flexural crack in C16b123 already defined the positions of the major crack before 
the load was applied. Besides, unlike the simply supported beam tests, the 
existing cracks in the continuous tests were generated at sections with small 
M/Vd ratio, the profiles of the cracks from previous loading case already had a 
pronounced inclination. Consequently the tip of the inclined crack may be 
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test C11b123 the failure process was similar, but its capacity was even lower. The 
failure mode of these two tests can be defined as flexural shear failure. 

6.2.4 Discussion 

The first impression is that the experimental results on continuous beams with 
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Pimanmas & Tisavipat 2005) are contradictory. In the tests reported in both 
publications, the presence of existing cracks increased the shear capacity, while 
in the continuous beam tests they reduced the ultimate capacity. However, both 
can be explained with the same theory presented in Chapter 3. 

First of all, despite the failure modes, in almost all the load cases in the con-
tinuous test program, the development of an inclined major crack, and the 
subsequent opening of a dowel crack along the longitudinal rebar have been 
observed at a certain load level. That load level is defined as inclined cracking 
load as was discussed previously in Chapter 3. As shown in Fig. 6.7 in the 
continuous beam tests, the inclined cracking load of the tests with different 
failure modes is actually quite stable. The inclined cracking load is not clearly 
mentioned in either Hamadi & Regan’s tests or Pimmanmas & Tisavipat’s tests. 
Nevertheless, in Pimmanmas & Tisavipat’s tests, Vcr can still be distinguished 
from the load-deflection relationship because of the reduction of the overall 
stiffness when the longitudinal bar is detached from the concrete beam. Re-
garding the inclined cracking load, a slight offset of the position of the inclined 
crack does not affect the value of Vcr significantly, this conclusion is confirmed in 
the crack pattern shown in Fig. 6.6, and in section 5.3.5 as well. 

Secondly, the presence of the existing cracks influences the position of the 
major cracks and their profiles; both aspects eventually determine the profile of 
the critical inclined crack, especially the tip of the inclined crack, which eventu-
ally governs the failure modes. Based on the procedure described in section 3.5.2, 
with the boundary conditions of the experiment presented in this section, the 
critical compressive zone is at ac,c = 180 mm from the edge of the loading point. 
Taking into account the cracking moment Mcr = 61.3 kNm, the actual available 
length of the locations where a critical inclined crack may develop is only about 
133.5mm when the measured inclined cracking load was reached. Considering 
the average major crack spacing of 232 mm, the chance of having flexural shear 
failure in such a load configuration is small. However, the presence of the 
flexural crack in C16b123 already defined the positions of the major crack before 
the load was applied. Besides, unlike the simply supported beam tests, the 
existing cracks in the continuous tests were generated at sections with small 
M/Vd ratio, the profiles of the cracks from previous loading case already had a 
pronounced inclination. Consequently the tip of the inclined crack may be 
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located outside the critical compressive zone, thus the flexural shear failure 
mode becomes possible. 

In the simply supported tests in literature, the situation is different. First of 
all, the cracks generated in the precracking tests are pure flexural cracks. They 
are perpendicular to the longitudinal direction of the beam. The force needed to 
open an inclined crack (shear resistance) is related to the profile of the crack 
itself, see Fig. 3.38. A more inclined crack may deliver less shear force through 
aggregate interlock action, thus results in a smaller shear capacity. That explains 
why in the Hamadi and Regan’s test series, the critical inclined crack always 
developed at the virgin shear span, where it is still possible to generate an 
inclined crack due to the combined effect of moment and shear force.  

Moreover, for a beam with only vertical cracks, such as the Pimmanmas 
beams, a very large shear resistance is expected due to the aggregate interlock in 
cracks with this type of profile. In their experiments, the shear capacity of the 
existing flexural cracks is so high that an additional inclined crack with lower 
capacity was still able to develop in the uncracked concrete between the flexural 
cracks.  

Besides, the Pimanmas’ tests also show that despite the fact that the existing 
cracks in those beams are over the whole beam height, the compressive zone of 
the beams seems not to be affected. The height of the arch still equals zc at the 
section of the existing flexural crack. If the distance of the flexural crack and the 
loading point is small, it is still possible to have shear compression failure which 
is then influenced by the position of the kink between the major crack and the 
secondary crack branches. In Pimanmas’ tests it turns out that this postion is still 
defined by the locations of the existing cracks due to the crack arrest mechanism 
shown in Fig. 6.8. Since in this test series, the a/d ratio of the specimens is only 
2.42, the space left for another critical inclined crack is limited. When the critical 
inclined crack develops from the existing flexural crack located within ac,c from 
the centre of the loading point, a stronger residual structure is formed by the 
profile of the critical inclined crack, thus the failure mode may switch from 
flexural shear to shear compression. 

 
Fig. 6.8. Crack arresting mechanism, adopted from (Pimanmas & Tisavipat 2005). 
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The discussion above leads to the following conclusions regarding the pres-
ence of cracks or other type of weaker sections along the longitudinal direction 
of a beam. First of all, the location of the existing crack will influence the location 
and profile of the critical inclined crack, and thus the aggregate interlock in the 
crack and the capacity of the residual concrete arch formed by it. Consequently 
the uncertainty of the existing cracks makes the failure mode unpredictable 
when both failure modes are possible in the span (a/d between 2 to 3 for exam-
ple).  

Because of the uncertainty of the failure modes if the clear beam span is not 
exceptionally small (a/d <2, also for continuous beam), it is at the safe side to use 
the inclined cracking load as a lower bound for the shear capacity before the 
shear compression failure is guaranteed when the shear span is smaller than the 
lower bound defined by the crack path function as shown in Fig. 3.42. In case of 
a continuous beam it is more vulnerable to shear flexural failure, thus the 
conclusion has to be strictly followed. 
 

6.3 INFLUENCE OF CONCRETE STRENGTH ALONG A CRACK 

6.3.1 Introduction 

Section 6.2 reveals the influence of the randomness regarding to the weaker 
sections along the longitudinal direction of a beam due to the variation of the 
material properties. The following question may be raised: at a given critical 
cracked section, will the material variability further influence the development 
of the crack and eventually the shear capacity of the beam? The classical answer 
is: Yes, since by definition, the opening of a crack is related to the strength of the 
concrete. Variation of concrete properties such as tensile strength makes the 
crack follow the direction in which 1/fct is minimum. The presence of a weak 
spot in the concrete section will result in earlier occurrence of the critical crack. 
However, the moment when the crack develops at a specific section is in princi-
ple not so much dependent on the material variability. Once the cracking 
process starts, it reaches scr quickly to fulfil the cross-sectional force equilibrium. 
This process usually will not result in immediate failure of the cross section. 
Eventually the shear force that is able to be transmitted across the crack under 
the critical shear displacement cr is decisive to the shear capacity for the cracked 
section.  

The effect of variability of concrete to the shear resistance of a cracked section 
can be summarized into two aspects: the influence of the crack profile and the 
yielding strength of the cement matrix according to Walraven’s formula 
(Walraven 1980). Numerical simulations with the non-linear-finite-element 
program Atena 2D have been carried out to investigate the influence of material 
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concrete. Variation of concrete properties such as tensile strength makes the 
crack follow the direction in which 1/fct is minimum. The presence of a weak 
spot in the concrete section will result in earlier occurrence of the critical crack. 
However, the moment when the crack develops at a specific section is in princi-
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(Walraven 1980). Numerical simulations with the non-linear-finite-element 
program Atena 2D have been carried out to investigate the influence of material 
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variability to the shear failure process of structures (Tanaka 2008). The analysis 
shows that the variability of the concrete strength influences the location of the 
critical inclined crack and thus affects the failure mode, which has been treated 
in the preceding section. Regarding the capacity of the structure, its influence is 
limited. However, there is no experimental proof explicitly supporting this 
conclusion yet. In this section the experimental research on a comparative study 
on the shear capacity of 50-years old and new concrete beams is presented. 
Compared to freshly cast concrete in the laboratory, there are a considerable 
number of cracks and other weak spots in the old concrete beams, causing large 
spatial variability regarding the material properties, which will be demonstrated 
in this section later. Thus the direct comparative study on the shear tests of an 
old and similar new concrete beam with the same conditions should provide a 
conclusive answer to the problem. 

6.3.2 Background of the Test Program 

The experimental research program presented in this section started from a 
discussion on the concrete strengths measured through core samples drilled 
from several existing concrete bridges in the Netherlands. Compressive tests of 
those core samples showed that the compressive strength of the concrete in the 
bridges has increased considerably compared to the design strength when the 
bridges were constructed. This would involve a higher shear capacity according 
to current codes like the Eurocode and the ACI code. However, the tensile 
strength from direct tension tests on the same set of cores was reported to be 
about 50% lower compared to what is normally expected for the compressive 
strength of fresh hardened concrete, although the splitting tensile strength 

 
 

Fig. 6.9. Geometries of the deck of Gestelsstraat Bridge and the location of the test 
specimens in the bridge deck. 
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showed the same relation to the compressive strength as is found in new con-
crete. This can be attributed to the presence of weak spots in the old concrete 
samples. Considering the difference in the concrete strength from different 
testing methods, the question was raised by Rijkswaterstaat (Dutch Ministry of 
Infrastructure and Environment), whether the tested compressive strength of 
the old concrete can be used to evaluate the shear capacity of the bridge deck, or 
to use the direct tensile strength is more appropriate? 

To answer that question, the ministry of transportation intended to evaluate 
the shear capacity of an old bridge by testing it to failure. The bridge Gestelse-
straat in the motorway surrounding Eindhoven was chosen. It was built in 1961, 
and would be demolished in 2008, due to the reconstruction of that motorway. It 
is a three span flat slab bridge without shear reinforcement in the bridge deck. 
The only vertical reinforcing elements are bent-up bars in the flexural reinforce-
ment and steel profiles used as the supports of the topside reinforcing bars. See 
Fig. 6.9 for the geometry of the bridge. The bridge has a skewness of 75 degrees. 

The initial plan was to check the shear capacity of an entire span by loading 
the bridge in situ to failure. However, preliminary non-linear finite element 
simulations showed that the chance to generate shear failure of the deck was too 
small because of the low amount of flexural reinforcement. Moreover, the 
available time for testing was very short. Therefore it was decided to saw beams 
from the bridge deck, which would be subjected to shear loading tests under 
laboratory conditions. In total 14 beams were sawn in the end, and a selection of 
those beams were tested in Stevin Lab of Delft University of Technology by the 
author. The test program is presented in this section. 

6.3.3 Test Specimens and Setups 

 Specimens 6.3.3.1

The original arrangement of the longitudinal reinforcement in the slab is shown 
in Fig. 6.10. In the width direction four repetitive longitudinal reinforcement 
design layers can be distinguished. The spacing between each layer is 150 mm. 
That determines the average width of the beams as 600 mm. The beams were cut 
from the east side span (see Fig. 6.9 for the definition of the directions. In the 
present section, the bottom side of the beam refers the original bottom side of 
the bridge) to avoid the larger amount of bent bars at the middle span. Out of the 
14 beams, 4 beams include the intermediate support in the west end, see Fig. 6.9. 
They are numbered as Beam 6—Beam 9. The length of those beams is 8800 mm. 
The remaining beams were sawn before the intermediate support, thus have the 
dimensions of about 7000 mm long, 500 mm deep and 600 mm wide. The beams 
are not totally prismatic. The side surface is curvy along the longitudinal direc-
tion. The cross sections of the specimens were measured at every 1000 mm and 
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variability to the shear failure process of structures (Tanaka 2008). The analysis 
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simulations showed that the chance to generate shear failure of the deck was too 
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those beams were tested in Stevin Lab of Delft University of Technology by the 
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in Fig. 6.10. In the width direction four repetitive longitudinal reinforcement 
design layers can be distinguished. The spacing between each layer is 150 mm. 
That determines the average width of the beams as 600 mm. The beams were cut 
from the east side span (see Fig. 6.9 for the definition of the directions. In the 
present section, the bottom side of the beam refers the original bottom side of 
the bridge) to avoid the larger amount of bent bars at the middle span. Out of the 
14 beams, 4 beams include the intermediate support in the west end, see Fig. 6.9. 
They are numbered as Beam 6—Beam 9. The length of those beams is 8800 mm. 
The remaining beams were sawn before the intermediate support, thus have the 
dimensions of about 7000 mm long, 500 mm deep and 600 mm wide. The beams 
are not totally prismatic. The side surface is curvy along the longitudinal direc-
tion. The cross sections of the specimens were measured at every 1000 mm and 
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reported in (den Uijl & Yang 2009; Yang & Den Uijl 2012). Because of the sawing 
operation, the tensile longitudinal rebars of Beam 14 were damaged; therefore it 
was not tested. Besides, Beam 4 was damaged by accidental loading, no results 
were recorded. These two specimens were not tested.  

Close to the intermediate support at the west end, some of the bars were bent 
from the top reinforcement layer to the bottom layer. This procedure was 
common at that time, to optimize the usage of reinforcement with regard to the 
moment distribution of the structure. The arrangement of reinforcement ensures 
that there are 4Ø28 mm tensile bars at the bottom of the beam in the sagging 
moment span, and 5Ø28 mm tensile bars in the top reinforcement layer in the 
hogging moment span close to the intermediate support. Thus, for simply 
supported tests, the critical shear span has to be arranged in such way that the 
bend ups of the rebars are avoided. For continuous beam tests, the loading 

 
 

Fig. 6.10. Reinforcement layout of the old beams sawn from the Gestelsstraat bridge. 
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conditions of the test had to generate similar moment distributions as the orig-
inal reinforcement was designed for. 

Because the original reinforcement could not provide sufficient flexural ca-
pacity, to increase the flexural strength of the beams, four Carbon Fibre 
Reinforced Polymer (CFRP) laminates, each with a cross-section of 1.4×100 mm, 
were glued onto the tensile surface of the specimens. The laminates were placed 
beyond the position of loading plates when possible, so that both ends of the 
laminates are clamped by the loading/supporting plates during the test. The 
applied CFRP laminates behaviour is linear elastic up to failure at 1850 MPa 
(S&P Clever Reinforcement Company AG 2007). Because of the rather high 
strength, they are expected to behave as a perfect linear elastic material up to the 
failure of the beam. When the critical shear crack develops, debonding of the 
CFRP may occur. The failure of the beam may be caused by a combination of the 
opening of a dowel crack or the debonding longitudinal rebar CFRP. The bond 
behaviour between the CFRP laminates and concrete is quite different compared 
to the development of dowel crack along the longitudinal rebar under dowel 
force. The combined action makes it even more difficult to determine a failure 
criterion. Therefore it is not appropriate to compare this set of test directly with 
the results of beams with only steel bars reported in literature. Therefore, for 
some of the tests on old beams, reference tests were performed on new beams 
with the same dimensions, type and layout of the longitudinal reinforcement 
and the skew shear reinforcement, CFRP strengthening, concrete composition 
(type of cement, type and distribution of aggregates), and compressive concrete 
strength. 

The whole test program was composed of two series. The first series com-
prised comparative tests between old and new specimens. It included 6 tests on 
simply supported old beams and on 6 new beams with the same boundary 
conditions. The second series is the additional test program, on the four beams 
with intermediate support. The test series comprised 5 simply supported tests 
and 4 continuous beam tests. 

 

 
 

Fig. 6.11. Existing cracks in Beam 6. 
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conditions of the test had to generate similar moment distributions as the orig-
inal reinforcement was designed for. 

Because the original reinforcement could not provide sufficient flexural ca-
pacity, to increase the flexural strength of the beams, four Carbon Fibre 
Reinforced Polymer (CFRP) laminates, each with a cross-section of 1.4×100 mm, 
were glued onto the tensile surface of the specimens. The laminates were placed 
beyond the position of loading plates when possible, so that both ends of the 
laminates are clamped by the loading/supporting plates during the test. The 
applied CFRP laminates behaviour is linear elastic up to failure at 1850 MPa 
(S&P Clever Reinforcement Company AG 2007). Because of the rather high 
strength, they are expected to behave as a perfect linear elastic material up to the 
failure of the beam. When the critical shear crack develops, debonding of the 
CFRP may occur. The failure of the beam may be caused by a combination of the 
opening of a dowel crack or the debonding longitudinal rebar CFRP. The bond 
behaviour between the CFRP laminates and concrete is quite different compared 
to the development of dowel crack along the longitudinal rebar under dowel 
force. The combined action makes it even more difficult to determine a failure 
criterion. Therefore it is not appropriate to compare this set of test directly with 
the results of beams with only steel bars reported in literature. Therefore, for 
some of the tests on old beams, reference tests were performed on new beams 
with the same dimensions, type and layout of the longitudinal reinforcement 
and the skew shear reinforcement, CFRP strengthening, concrete composition 
(type of cement, type and distribution of aggregates), and compressive concrete 
strength. 

The whole test program was composed of two series. The first series com-
prised comparative tests between old and new specimens. It included 6 tests on 
simply supported old beams and on 6 new beams with the same boundary 
conditions. The second series is the additional test program, on the four beams 
with intermediate support. The test series comprised 5 simply supported tests 
and 4 continuous beam tests. 
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The additional target in the second test series was to investigate the influence 
of real-life concrete variability on the shear behaviour. As was expected, the 
loading history of the bridge introduced a certain degree of damage to the 
beams. Visible cracks were found on the sawn surfaces of the beams. An exam-
ple of the existing crack pattern across a tested shear span is plotted in Fig. 6.11. 
For all the tested specimens, the visible crack distribution before the experiments 
was recorded in (den Uijl & Yang 2009; Yang & Den Uijl 2012). 

Besides, the concrete mixture showed a substantial sedimentation effect 
during casting. That generated a lot of air bubbles under the reinforcing bars and 
large aggregate, see Fig. 6.12. They became voids after the concrete was hard-
ened. 

 

 
 

Fig. 6.12. Voids observed in a section of concrete beam specimen. 

 Material Properties 6.3.3.2

The Gestelsestraat Bridge was designed for a 28-days cube strength of about 
35 MPa. To determine the concrete strength after almost 50 years, 24 cylinders 
with 100 mm diameter were drilled in-situ. After the first test series, two addi-
tional large concrete cores with a diameter of 290 mm were drilled from the 
Beam 4 at the part of the span that was not affected by the accidental loading. 
These cores were positioned close to each other with the axis perpendicular to 
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the side face of the beam. From those large cores, 100 mm diameter cylinders 
were drilled from vertical direction and longitudinal direction of the beam to 
evaluate the directional difference of the concrete strength. To guarantee that the 
measured concrete strengths are comparable, the same procedure has been 
followed with regard to the new concrete beams. The material properties are 
summarized in Table 6.2, in which fcm,cube is the equivalent cube compressive 
strength (cylinder Ø100-100 mm), fctm,s is the splitting tensile strength, and fctm,dt 
is the direct tensile strength (cylinder Ø100-200 mm; end faces glued to dis-
placement controlled loading plates, thus rotation free). The reference beams 
were cast at different times, which resulted in a relatively large variation be-
tween the strengths of different beams. More detailed results are reported in 
(den Uijl & Yang 2009). 
 
Table 6.2. Concrete strength (reference beams: cube compressive and splitting tensile 

strength measured at time of beam test, direct tensile strength measured 4 to 8 
weeks after beam test). 

Sample Sources  Specimen 
fcm,cube fctm,s fctm,dt fctm,dt /fctm,s 
[MPa] [MPa] [MPa] [%] 

Gestelsstraat Bridge Site1 81.9 4.54 2.1 46.2 
 B4E 68.0 4.01 2.1 52.4 

Directional Strength: fcm,cube,h: 64.4 fcm,cube,v: 71.6  
Reference Beams B1N 82.4 4.9 3.5 71 

Directional Strength: fcm,cube,h: 80.3 fcm,cube,v: 90.6  
 B2N 69.9 4.7 3.2 68 
 B3N 67.5 4.3 2.9 68 
1 Derived from the 100 mm diameter cylinders directly drilled from the bridge. 
2 fcm,cube,h is the concrete cube strength derived from samples drilled in horizontal di-

rection; fcm,cube,v is the concrete cube strength derived from samples drilled in vertical 
direction. 

 
The comparison of fctm,dt/fctm,s between the old concrete specimens and the 

new concrete specimens in Table 6.2 clearly shows the problem stated in section 
6.3.2 that for the old concrete in the existing bridges, the tensile strength derived 
from direct tensile tests is indeed considerably lower than in the case of newly 
cast concrete. 

Another phenomenon that is worthwhile to be mentioned is that the concrete 
cube strength of samples drilled in vertical direction is always more than 10% 
higher than the ones drilled in the horizontal direction. This phenomenon is 
observed in the specimens of both old and new concrete. A possible explanation 
is the sedimentation effect described shown in Fig. 6.12. It is a more general 
effect not only found in the existing concrete structures but also in the newly cast 
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structures. The presence of the horizontal cracks weakens the compressive 
strength of concrete when the compressive stresses are parallel to the horizontal 
cracks. That was the case when the cylinders in compression tests were drilled 
horizontally. This phenomenon is illustrated in Fig. 6.13.  

 

 
 

Fig. 6.13. Cracks generated by sedimentation voids under aggregates during com-
pressive tests. 

The diameters of the reinforcing bars in the old beams are Ø16, Ø19, Ø22, 
and Ø28 as shown in Fig. 6.10. They are all plain bars. The measured yield stress 
of the steel used in the longitudinal bars was 292 MPa, and the ultimate tensile 
strength was 402 MPa. In the ends of the beams steel plates were welded onto 
the longitudinal rebars, to ensure sufficient bond capacity. To make the refer-
ence beams comparable, plain bars of the lowest graded steel available on the 
market (S235) were chosen. The measured yield stress of the longitudinal bars 
was 303 MPa, and the ultimate tensile strength 420 MPa. 

The measured elastic modulus of the CFRP laminates was 165 GPa. Tests 
showed that in most cases, the bond strength between CFRP and concrete was 
stronger than the tensile strength of the concrete (Yang & Den Uijl 2012). A 
weaker bond strength was observed in the first two continuous beam tests, in 
which the original asphalt surface layer was not completely removed. 

 Test Setup 6.3.3.3

In principle the test setup is the same as explained for the continuous test pro-
gram presented in Chapter 5. In the first test series, all the specimens are simply 
supported, thus, the main variable in the test series is the shear span a. In the 
second test continuous beams were involved. Accordingly more variables were 
included, which are the moment ratio in the shear span M -/M +, and whether or 
not the beam is reinforced by FRP. A list of the configuration of the tested 
specimens is given in Table 6.3 and Table 6.4, where the experiments are identi-
fied by the number of the beam, the concrete type and the loading type. In the 
first test series, the beams are numbered as BxxNx. The first letter and the two 
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digits stand for the beam number. The second letter stands for the type of 
concrete, which may vary between E (existing concrete) and N (newly cast 
concrete). The last digit indicates the test sequence of the same beam. The 
specimens in the second series are identified slightly differently in the format of 
ExSx. Here, Ex stands for the beam number, whereas the second letter indicates 
the boundary conditions. C means continuous tests and S means simply sup-
ported tests. The last digit indicates the test sequence for the same beam as well. 
 

 
Fig. 6.14. Illustration of loading scheme of P1. 

In some of the old beam tests, Acoustic Emission (AE) sensors were installed, 
to monitor the elastic wave emitted during the cracking process of the concrete, 
thus to monitor the damage level of the specimen. To serve for the AE meas-
urement, a different loading procedure including additional load cycles was 
designed. During the loading process, the actuators were under force control in 
most part of the tests. The load levels in the actuators were increased stepwise. 
The maximum load level in each loading step was designed with respect to the 
critical structural stages of the specimen. For example, the first load step was set 
a bit lower than the flexural cracking load, to open the existing cracks before 
new cracks are created. Within each load step, the force P1 (see Fig. 5.5) was 
increased at a constant loading rate of 0.2 kN/s. After the designated load level 
was reached, the forces were kept constant for 2 min, and then reduced with the 
same loading rate to a force level of about 15 kN for P1 and kept constant for 2 
min to finish the load cycle. In total three load cycles were executed within each 
load step. The holding time in the last cycle was 10 min for crack marking and 
photogrammetry measurement. This type of load scheme stops as soon as an 
unstable inclined crack develops. It guarantees the full development of cracks 
during the tests. In the first test series, after the load cycles, the actuator P1 was 
switched to displacement control. The load level was increased step-wisely until 
failure. In the second test series, after the development of the critical inclined 
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crack, P1 was still under force control and increased step-wise, but no load cycle 
was performed anymore. Meanwhile, a strict displacement safety threshold was 
applied over the actuator, which made sure that as soon as the deformation of 
the specimen became unstable, the loading procedure would be stopped. An 
example of the loading scheme of P1 is given in Fig. 6.14. 

6.3.4 Test Results and Discussions 

A summary of the results of all the 21 executed tests is listed in Table 6.3 and 
Table 6.4.  
 
 
Table 6.3. Summary of configurations and results of tests on old and new concrete 

specimens. 

Test No.1 d b a a/d l FRP2 Vu /bd3 Vc r/bd3 Failure 
mode3 [mm] [mm] [mm] [-] [m] [MPa] [MPa] 

Series 1                   

B13E1 426 600 1000 2.35 5000 Y 1.41 1.34 S 
B10E1 456 550 1265 2.77 5000 Y 1.50 1.02 S 
B05E1 438 585 1260 2.88 5000 Y 1.69 1.23 S 
B03E1 441 588 1540 3.49 5000 Y 1.32 1.07 S 
B12E1 431 590 1510 3.50 5000 Y 1.25 1.14 F 
B11E1 426 600 1765 4.14 5000 Y 1.05 0.77 F 
B02N1 456 600 1000 2.19 5000 Y 1.82 1.18 S 
B03N1 456 600 1250 2.74 5000 Y 1.32 1.14 S 
B01N1 456 600 1250 2.74 5000 Y 1.45 1.24 S 
B01N2 456 600 1509 3.29 5000 Y 1.25 1.24 S 
B03N2 456 600 1500 3.31 5000 Y 1.28 1.20 S 
B02N2 456 600 1530 3.36 5000 Y 1.19 - F 

Series 2                   

E6S1 447 598 750 1.68 3000 Y 2.67 1.69 O,F 
E7S1 446 567 750 1.68 5000 Y 2.36 1.37 O,F 
E8S1 447 599 500 1.12 5000 N 2.31 2.13 F 
E8S2 447 599 500 1.12 4500 N 2.21 - F 

E9S1 446 596 500 1.12 5000 Y 3.2 1.71 O,F 
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Table 6.4. Summary of configurations and results of tests on old concrete specimens 
(continuous tests). 

Test No.1 d b a a/d M/Vd M–/M + Vu /bd3 Vcr /bd3 Failure 
mode4 [mm] [mm] [mm] [-] [-] [-] [MPa] [MPa] 

E6C1 447.4 598.4 1250 2.79 2.09 3.0 2.51 1.70 SC 
E7C1 446.4 567.4 1250 2.80 1.68 1.5 2.35 1.72 O 
E8C2 446.8 599.0 1000 2.24 1.68 3.0 2.63 1.26 O 
E9C1 445.6 595.6 1500 3.37 2.02 1.5 1.76 1.58 O,F 

1 Identification code, explanation of it is referred to 6.3.3.1; 
2 Y indicates that the specimen was reinforced by CFRP laminates, N indicates no reinforcement; 
3 The shear forces are measured values, they do not include the self-weight. 
4 Failure mode of the test, S stands for shear failure: because of the complex reinforcement con-

figuration, it is difficult to distinguish the specific failure mode. Nevertheless, when it is 
distinguishable SC stands for shear compression failure. F stands for flexural failure due to the 
yielding of reinforcement. O stands for other failure such as the in sufficient bond between CFRP 
and the specimen. 

 
Fig. 6.15. Comparison of Vcr/bd derived from specimens made of old concrete and new 

concrete. In the legend, sim stands for simply supported specimens, con stands for 
continuous supported specimens 

Within the test program, different failure types have been observed. Never-
theless in most of the tests an inclined crack together with a certain level of 
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detachment of either the reinforcement or the CFRP laminates were observed, 
from which the inclined cracking force Vcr was defined. 

Because of the complexity regarding the reinforcement arrangement, a clear 
definition of the critical shear displacement cr is not available for this type of 
specimens. Thus it is not possible to predict the shear capacity properly with the 
same procedure as specified in Chapter 4. Nevertheless, the same reinforcing 
arrangement of both the new beams and the old ones ensures the same failure 
criteria within this research program. By comparing the performance of the two 
groups, it is still possible to evaluate the difference between the old and new 
concrete specimens. Accordingly, the question raised by Rijswaterstaat on 
whether it is possible or not to evaluate the shear capacity of existing concrete 
structures with the measured concrete compressive strength from cylinder 
specimens can be answered. 

Fig. 6.16. Comparison of shear stress - deflection relationships between old and new 
beams. 

In Fig. 6.15 the measured inclined cracking load Vcr of all the tests in this re-
search program is plotted against the maximum M/Vd ratio of the critical shear 
span. With respect to Vcr, the comparison shows that the difference between 
specimens consisting of old or new concrete is quite limited. Similarly, the 
overall stiffness of the specimens is quite comparable as well when the shear 
force is nominalized by the measured cross sectional area of the specimen. Two 
examples of such a comparison from the shear stress-deflection relationship are 
shown in Fig. 6.16. It shows that the influence of the weak spots in the old 
concrete specimens was only pronounced at the stage when the flexural cracks 
were developed. After the flexural cracks were stabilized, the stiffness of both 
old beams and new beams were comparable. That also indicates that once a 
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major crack is fully developed, the shear force that can be transferred per vertical 
displacement  is not affected by the local weak spots along the crack anymore. 

 

This conclusion was further validated afterwards by comparing the surfaces 
of the critical inclined cracks of Beam 4E and Beam 1N. The failures of both 
beams were due to the large opening of inclined cracks, thus can be treated as 
flexural shear failure. After the tests, the specimens were broken along the 
critical inclined crack, and the longitudinal reinforcing bars were sawn so that 
the crack surfaces were exposed to be examined. The photos of both crack 
surfaces are shown in Fig. 6.17, in which the difference of colour was due to the 
different type of cement paste. In both cases the crack surface developed 
through the course aggregates. That indicates that the cement matrix strengths 
of both old concrete and the new one are higher than the aggregates. It confirms 
with the decision in section 4.5.2 to take into account the effect of aggregate 
fracture when the concrete strength is higher than 60 MPa. Because of that, the 
surface roughness played an important role to generate aggregate interlocking 
force. In that case, only a limited part of the crack faces had contact, which 
generated the shear resistance of Vai, whereas the local voids or cracks in the old 
concrete did not contribute to Vai or weaken it at all. To the contrary, the obser-
vation shows that the presence of the local cracks may even increase the 
roughness of the cracked surface, thus increase the shear force that is transferred 
through the cracked surface in certain concomitances. 

In addition, the influence of existing cracks to the shear failure modes ad-
dressed in 6.2 was also found in this test program. However, since it is difficult 
to quantify both the material properties and the boundary conditions of the old 
specimens, it is not discussed further. For more detailed information reference is 
made to (Yang et al. 2012). 

 

  
  
Fig. 6.17. Surface of inclined crack in Beam 4E (left) and Beam 1N (right). 
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major crack is fully developed, the shear force that can be transferred per vertical 
displacement  is not affected by the local weak spots along the crack anymore. 
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of the critical inclined cracks of Beam 4E and Beam 1N. The failures of both 
beams were due to the large opening of inclined cracks, thus can be treated as 
flexural shear failure. After the tests, the specimens were broken along the 
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Fig. 6.17. Surface of inclined crack in Beam 4E (left) and Beam 1N (right). 
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Last but not least, to give a direct answer to the practical question raised from 
Rijkswaterstaat, the results of the Eurocode provision as also shown in Fig. 6.15. 
The reinforcement ratio of the specimens is determined by converting the area of 
CFRP strips into steel bars according to their elastic modules. The concrete 
cylinder strength fcm of 60 MPa was used as a general approximation based on 
the measured concrete compressive strength reported in Table 6.2. The original 
formula was adjusted to predict the mean value of the test results, see Chapter 2. 
Despite the inaccuracy introduced into the assumptions, the comparison shows 
that for design practice, it is still safe to use the measured concrete compressive 
strength to estimate the shear capacity of the existing structures with Eurocode 
provision. 

 

6.4 INFLUENCE OF CONCRETE STRENGTH VARIABILITY IN WIDTH 
DIRECTION 

6.4.1 Introduction 

In principle, a specimen having identical boundary conditions in the transverse 
direction can always be considered as a parallel system composed of a set of 
specimens in the transverse direction. According to this assumption the bound-
ary conditions of the set of paralleled specimens are identical in the transverse 
direction, and the contribution of each specimen in the transverse direction is the 
same as well, so that the same failure section applies. As discussed in section 
6.1.3, in a parallel system, the overall capacity of the whole set of the specimens 
is determined by the post peak behaviour of each component of the system. 
However, the post peak behaviour of a reinforced concrete beam after shear 
failure is complicated. It was shown in Fig. 3.40 that depending on the position 
of the critical inclined crack the residual behaviour of the beam may be quite 
different. In addition, the presence of existing cracks can cause the transition of 
the failure mode from flexural shear to shear compression, which has been 
shown in section 6.2 already. Because of the uncertainty of the behaviour of the 
beam after inclined cracking, when dealing with structural elements with large 
width and material variation in width direction, it is difficult to define how the 
variability should be taken into account in the evaluation of the overall struc-
tural behaviour. 

On the other hand, when the concrete strength of an existing structure is de-
termined on the basis of drilled core samples, a large scatter is often observed. 
Shear failure is usually regarded as a brittle failure mode, considering the 
parallel system theory discussed before, the weakest spot of the parallel system 
is believed to govern the bearing capacity of the structure. With this principle an 
over-conservative prediction of the bearing capacity of the existing structure 
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may be obtained. Since an investigation of the existing concrete slab decks in the 
Dutch highway system have shown that their concrete strength has a large 
scatter (Steenbergen et al. 2010; Vervuurt et al. 2013), and some of those struc-
tures even showed local damage (Lantsoght & van der Veen 2012; Yang, den Uijl 
et al. 2012), an appropriate evaluation of those structures is important. 

For that reason, experimental studies have been carried out in the Stevin 
Laboratory at Delft University of Technology to investigate the influence of the 
concrete strength variation in transverse direction on the shear capacity of the 
slabs. The test program and several preliminary conclusions derived from the 
results are reported in (Yang & den Uijl 2012). In this section, the experimental 
research will be presented, and based on the results of that research, the one way 
shear behaviour of structural elements with a large width and significant con-
crete strength variability is discussed. 

6.4.2 Test Specimens and Setup 

 Design of Test Specimens 6.4.2.1

The dimensions and the arrangement of the concrete strips for the chosen slab 
layout are shown in Fig. 6.18. The slabs are 4200 mm long, 2500 mm wide and 
300 mm thick. They are composed of seven strips of two different concrete 
mixtures. The ones at the sides are 250 mm wide and are made of high strength 
concrete, whereas the central strips are 400 mm wide. That makes the volume 
ratio between high strength concrete and low strength concrete about 52%-48%. 
Taking into account the inaccuracy of the casting process, the ratio between the 
two concrete mixtures can be approximated to 50%-50%. 

 

 
 

Fig. 6.18. Dimensions and layout of test specimens with mixed strengths. 
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Fig. 6.18. Dimensions and layout of test specimens with mixed strengths. 
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 Concrete Properties 6.4.2.2

In order to maximize the difference of concrete strength, the strengths of the two 
concrete mixtures used in the same slab shall be clearly different. The concrete 
mixtures used in the test program are C53/65 and C20/25. The high strength 
concrete mixture is a commercial mixture delivered by a concrete plant that has 
been used in the tests regarding the continuous beams subject to a point load in 
the research program, see section 5.3. This enables the comparison with former 
test series. The cube strength can reach as high as 87 MPa (Yang & den Uijl 2011). 
The low strength mixture was designed in the lab. In order to minimize the 
concrete strength, while preventing segregation, limestone powder and fly ash 
were used to partly replace cement. The compositions of the mixtures are given 
in Table 6.5 and Table 6.6. 

Because of the complexity of casting the mixed slabs, only one slab with two 
different concretes was cast at once. Despite the great effort being made to 
ensure consistent concrete mixtures among the different casts, scatter still exists 
among the concrete strength of the different casts, especially for the low strength 
mixtures. On average, the low strength concrete is stronger than the design 
value. Cube tests were performed at the date that the tests were carried out. The 
results of the aforementioned tests are summarized in Table 6.8 together with 
the configurations of the test setups. 

 
Table 6.5. Composition of the high strength 

concrete mixture. 
Table 6.6. Composition of the low strength 

concrete mixture 

 

Content Mass [kg] 
CEM I 52.5 280 
CEM III 42.5 145 
Sand 0-4 mm 775 
Gravel 4-16 mm 900 
Fly Ash 60 
SPL VC 1550 3.541 
VTR VZ 1 1.213 
Water 171 
Total 2336 

 

Content Mass [kg] 
CEM I 42.5 150 
Limestone Powder 80 
Fly Ash 100 
Sand 0-4 mm 872 
Gravel 4-16 mm 907 
  
  
Water 185 
Total 2294 

 
Table 6.7. Comparison between control cube tests and cylinder tests (Ø100×100 mm) 

drilled from the tested specimens (Measured compressive strength; unit: MPa). 

Cast No. 1 2 3 4 5 6 7 8 

Cube 30.5 80.3 90.1 45.0 81.3 40.3 83.9 39.8 
Cylinder 32.6 97.4 90.7 38.4 89.7 43.0 78.5 34.5 
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Table 6.8. Configurations of tested specimens (cylinder strength fcm = 0.85 fc,cube , 
concrete cube strength measured at the day of testing). 

Test No.1 
a Cast No. fcm,l2 Cast No. fcm,h2 fcm age 

[mm] [-] [MPa] [-] [MPa] [MPa] [days] 
L016A 600 1 23.2 - - 23.2 61 
H026A 600 - - 2 61.0 61.0 29 
M036A 600 4 30.6 3 69.7 50.2 43 
M046A 600 6 25.6 5 64.8 45.2 38 
M056B 600 8 31.0 7 73.1 52.0 85 

L018B 800 1 26.3 - - 26.3 126 
H028B 800 - - 2 67.8 67.8 117 
M038B 800 4 37.3 3 72.9 55.1 112 
M048B 800 6 31.2 5 69.0 50.1 105 
M058A 800 8 31.0 7 68.7 49.9 79 
1 Identification code, concrete strength: L-low, H-high, M-mixed; Slab number: 01-05; Shear span: 

6 = 600 mm, 8 = 800 mm; Test order: A = first, B = second. 
2fcm,l: is the tested cylinder strength of the low strength concrete; fcm,h: is the tested cylinder 

strength of the high strength concrete; 
 
Moreover, Ø100 mm cores were drilled after the specimens were tested to 

check if the casting process was executed properly. Splitting tensile tests and 
compressive tests were applied on them. The cylinders from the cores drilled 
from the specimens have the dimension of Ø100×100 mm, which is considered 
to be equivalent to cube tests. Since in the Eurocode the cylinder strength 
(Ø150×200) is utilized, the tested cube strengths are translated to cylinder 
strength with a factor 0.85. These results are used as an indication of the real 
concrete strength of the slabs. Those test results are consistent to the cube tests. 
The comparison between cube strength and original cylinder strength are shown 
in Table 6.7. 

 Reinforcement Configuration 6.4.2.3

The reinforcement arrangement is consistent with other slab tests in the same 
research project (Lantsoght, van der Veen et al. 2011). The bottom reinforcement 
mesh is composed of 21Ø20 mm ribbed bars in longitudinal direction and 34Ø10 
mm in transverse direction. The top reinforcement mesh consists of 9Ø12 mm in 
longitudinal direction and 15Ø12 mm in transverse direction. The concrete cover 
is 25 mm, which makes the effective depth of the slab d = 265 mm. The rein-
forcement ratio of the longitudinal bottom bars in is 0.97%. 

For the bottom reinforcement mesh, some steel bars are bent up to support 
the top reinforcement at the edges of the specimen. Since the bent ups of the 
transverse rebars may be considered as shear reinforcement, they may influence 
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Table 6.5. Composition of the high strength 

concrete mixture. 
Table 6.6. Composition of the low strength 

concrete mixture 

 

Content Mass [kg] 
CEM I 52.5 280 
CEM III 42.5 145 
Sand 0-4 mm 775 
Gravel 4-16 mm 900 
Fly Ash 60 
SPL VC 1550 3.541 
VTR VZ 1 1.213 
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Total 2336 

 

Content Mass [kg] 
CEM I 42.5 150 
Limestone Powder 80 
Fly Ash 100 
Sand 0-4 mm 872 
Gravel 4-16 mm 907 
  
  
Water 185 
Total 2294 

 
Table 6.7. Comparison between control cube tests and cylinder tests (Ø100×100 mm) 

drilled from the tested specimens (Measured compressive strength; unit: MPa). 

Cast No. 1 2 3 4 5 6 7 8 

Cube 30.5 80.3 90.1 45.0 81.3 40.3 83.9 39.8 
Cylinder 32.6 97.4 90.7 38.4 89.7 43.0 78.5 34.5 
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Table 6.8. Configurations of tested specimens (cylinder strength fcm = 0.85 fc,cube , 
concrete cube strength measured at the day of testing). 

Test No.1 
a Cast No. fcm,l2 Cast No. fcm,h2 fcm age 
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H028B 800 - - 2 67.8 67.8 117 
M038B 800 4 37.3 3 72.9 55.1 112 
M048B 800 6 31.2 5 69.0 50.1 105 
M058A 800 8 31.0 7 68.7 49.9 79 
1 Identification code, concrete strength: L-low, H-high, M-mixed; Slab number: 01-05; Shear span: 

6 = 600 mm, 8 = 800 mm; Test order: A = first, B = second. 
2fcm,l: is the tested cylinder strength of the low strength concrete; fcm,h: is the tested cylinder 

strength of the high strength concrete; 
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strength with a factor 0.85. These results are used as an indication of the real 
concrete strength of the slabs. Those test results are consistent to the cube tests. 
The comparison between cube strength and original cylinder strength are shown 
in Table 6.7. 
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research project (Lantsoght, van der Veen et al. 2011). The bottom reinforcement 
mesh is composed of 21Ø20 mm ribbed bars in longitudinal direction and 34Ø10 
mm in transverse direction. The top reinforcement mesh consists of 9Ø12 mm in 
longitudinal direction and 15Ø12 mm in transverse direction. The concrete cover 
is 25 mm, which makes the effective depth of the slab d = 265 mm. The rein-
forcement ratio of the longitudinal bottom bars in is 0.97%. 

For the bottom reinforcement mesh, some steel bars are bent up to support 
the top reinforcement at the edges of the specimen. Since the bent ups of the 
transverse rebars may be considered as shear reinforcement, they may influence 
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the shear capacity of the specimens. However, since the area of these bars is 
quite limited compared to the cross sectional area of the slab and the anchorage 
length of these bars is very short, the tensile force that can be built up in these 
bars is quite limited. Therefore, the influence of the reinforcement arrangement 
on the shear capacity of the specimens is negligible. 

 Casting Process 6.4.2.4

In order to get a concrete slab with two different concrete mixtures in different 
regions maintaining the connectivity between the various parts, the two types of 
concrete have to be cast at more or less the same time to be able to harden 
together. To achieve this, the mould was separated into strips by removable 
partitions. These removable elements consist of two panels spaced 380 mm with 
a hoist beam mounted on top to lift the elements right after the concrete has been 
cast and vibrated. Slots are made in the panels to place the transverse bottom 
reinforcement. The top mesh rests on rows of steel wire supports, and was 
placed after the removable moulds had been lifted out. The whole casting 
procedure is described by the following steps: 
 Clean the mould and oil it. Place the removable mould units. Record the 

actual distance between the panels; 
 First, cast high strength concrete filling the respective moulds up to around 

100 mm; 
 Cast the low strength concrete filling those strips completely. Try to make 

the level of the fresh concrete 15 mm higher than 300 mm; 
 Finally complete the casting of high strength concrete. Make the level of the 

fresh concrete 15 mm higher than 300 mm. Compact the concrete with in-
ternal vibrators; 

 Lift the removable moulds one after another; 
 Place the top reinforcement mesh. Vibrate the concrete carefully and add 

some high strength concrete on top if needed; 
 Flatten the surface and remove spilled concrete. 

An overview of the concrete mould is given in Fig. 6.19, together with a 
photo of the concrete specimen after the casting procedure. Immediately after 
the casting, the differences in the concrete type are clearly shown by colour in 
the photo. The lower strength concrete has a higher water/cement ratio there-
fore it is more reflective than the higher strength concrete. 
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Fig. 6.19. Overview of concrete mould (top), prepared specimen after casting (bottom). 
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 Test Setup 6.4.2.5

A sketch of the test setup is plotted in Fig. 6.20. The specimens were simply 
supported and loaded by a hydraulic actuator. A 1000 mm high, and 2500 mm 
long steel distributing beam was used to transmit the force from the actuator to 
the slab. The large stiffness of this beam ensured a homogeneous displacement 
along the width direction, with the additional plaster layer between the load 
distributing beam and the specimen, a line load was simulated. The cen-
tre-to-centre distance between the line load and the main support was 600 mm 
or 800 mm. The main span of the slab was 3600 mm. An ideal simply support 
condition was created by a roller support and a fixed hinge. In order to measure 
the reaction force of the support in the critical span, 7 support units including 
load cells were installed at the main support. 7 pairs of laser displacement 
sensors were placed at the centre of each strip, to measure both top and bottom 
displacement. The displacement differences of each laser sensor pair indicate the 
crack opening in vertical direction at the centre of each strip. 

During the experiments, the main actuator was under force control in the 
first loading stage. A loading scheme was designed for each test. It follows the 
same principle as was presented in Chapter 5. The force applied by the actuator 
is increased stepwise. The maximum load level in each load step was designed 
with respect to the critical structural stages of the specimen. 
 

 
Fig. 6.20. Test setup of specimens with concrete strength variability in width direc-

tion. 
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6.4.3 Test Results and Discussions 

All the five specimens were tested at both ends. These ten tests were subdivided 
into two test series with different shear spans: series 1 with a shear span of 600 
mm, series 2 with a shear span of 800 mm. From Slabs 1 to 4, the first test had a 
shear span a = 600 mm and were tested with a = 800 mm on the other side. Slab 5 
was used for additional tests. It was first tested with a = 800 mm, to check if there 
is any influence from the order of testing. The results of the tests are summa-
rized in Table 6.9. In the table, the tests are categorized by the shear span. 

The name of the test specimens is explained as follows: the first letter indi-
cates the type of concrete being tested, which varies among L, H and M, 
representing Low strength, High strength and Mixed strength concrete. The 
following two digits stand for the number of the slab, while the last digit stands 
for the length of the shear span, which varies between 6 (600 mm) and 8 
(800mm). The last letter of the name indicates the test sequence in the same 
specimen. 
 
Table 6.9. Summary of test results investigating concrete variability (unit: kN). 

Test No. Pcr Pu Vcr 1 Vu 1 VEC,m Vcal 4 Vcr /VEC,m Vcr /Vcal 

L016A 1007.0 1445.8 862.5 1228.2 524.2 716.5 1.65 1.20 
H026A2 1200.03 1659.5 1286.4 1406.3 723.8 950.6 1.78 1.35 
M036A 1200.0 1833.3 1023.4 1551.1 678.1 900.3 1.51 1.14 
M046A 1199.5 1701.8 1022.9 1441.5 654.8 872.6 1.56 1.17 
M056B 1176.0 1211.0 1003.4 1032.5 686.3 909.8 1.46 1.10 

L018B 1071.2 1071.2 855.0 855.0 546.7 666.5 1.56 1.28 
H028B 1297.6 1297.6 1031.1 1031.1 749.7 863.0 1.38 1.19 
M038B 1132.8 1165.5 902.8 928.3 699.5 832.4 1.29 1.08 
M048B 1195.2 1195.2 951.4 951.4 677.7 808.8 1.40 1.18 
M058A 1153.0 1166.1 928.8 928.8 676.8 807.8 1.37 1.15 

1 Self-weight has been taken into account to compare with the calculated results. 
2 Test was terminated at this load level due to unbalanced movement of the loading beam. 
3 The opening of the inclined crack started at the end of the 3rd load step at one side of the slab. It 

developed towards the other side at P = 1515.6 kN. This was caused by the additional torsional 
moment in the main support. 

4 Vcal is calculated with the procedure proposed in Chapter 4. 
 
In test H026A, shortly after the inclined crack developed, the loading plate 

between the distributing beam and the concrete surface slipped away, because 
of the large displacement. The test had to be terminated for safety reasons. 
Therefore, the maximum load of that test is relatively low. 



244  6.4 Influence of Concrete Strength Variability in Width Direction 
 

 

 Test Setup 6.4.2.5

A sketch of the test setup is plotted in Fig. 6.20. The specimens were simply 
supported and loaded by a hydraulic actuator. A 1000 mm high, and 2500 mm 
long steel distributing beam was used to transmit the force from the actuator to 
the slab. The large stiffness of this beam ensured a homogeneous displacement 
along the width direction, with the additional plaster layer between the load 
distributing beam and the specimen, a line load was simulated. The cen-
tre-to-centre distance between the line load and the main support was 600 mm 
or 800 mm. The main span of the slab was 3600 mm. An ideal simply support 
condition was created by a roller support and a fixed hinge. In order to measure 
the reaction force of the support in the critical span, 7 support units including 
load cells were installed at the main support. 7 pairs of laser displacement 
sensors were placed at the centre of each strip, to measure both top and bottom 
displacement. The displacement differences of each laser sensor pair indicate the 
crack opening in vertical direction at the centre of each strip. 

During the experiments, the main actuator was under force control in the 
first loading stage. A loading scheme was designed for each test. It follows the 
same principle as was presented in Chapter 5. The force applied by the actuator 
is increased stepwise. The maximum load level in each load step was designed 
with respect to the critical structural stages of the specimen. 
 

 
Fig. 6.20. Test setup of specimens with concrete strength variability in width direc-

tion. 

200

100

400

4200

3600

1000

600

100

100

HE1000M

CH6 Influence of Material Variability on the Shear Failure Process 245 
 

 

6.4.3 Test Results and Discussions 

All the five specimens were tested at both ends. These ten tests were subdivided 
into two test series with different shear spans: series 1 with a shear span of 600 
mm, series 2 with a shear span of 800 mm. From Slabs 1 to 4, the first test had a 
shear span a = 600 mm and were tested with a = 800 mm on the other side. Slab 5 
was used for additional tests. It was first tested with a = 800 mm, to check if there 
is any influence from the order of testing. The results of the tests are summa-
rized in Table 6.9. In the table, the tests are categorized by the shear span. 

The name of the test specimens is explained as follows: the first letter indi-
cates the type of concrete being tested, which varies among L, H and M, 
representing Low strength, High strength and Mixed strength concrete. The 
following two digits stand for the number of the slab, while the last digit stands 
for the length of the shear span, which varies between 6 (600 mm) and 8 
(800mm). The last letter of the name indicates the test sequence in the same 
specimen. 
 
Table 6.9. Summary of test results investigating concrete variability (unit: kN). 

Test No. Pcr Pu Vcr 1 Vu 1 VEC,m Vcal 4 Vcr /VEC,m Vcr /Vcal 

L016A 1007.0 1445.8 862.5 1228.2 524.2 716.5 1.65 1.20 
H026A2 1200.03 1659.5 1286.4 1406.3 723.8 950.6 1.78 1.35 
M036A 1200.0 1833.3 1023.4 1551.1 678.1 900.3 1.51 1.14 
M046A 1199.5 1701.8 1022.9 1441.5 654.8 872.6 1.56 1.17 
M056B 1176.0 1211.0 1003.4 1032.5 686.3 909.8 1.46 1.10 

L018B 1071.2 1071.2 855.0 855.0 546.7 666.5 1.56 1.28 
H028B 1297.6 1297.6 1031.1 1031.1 749.7 863.0 1.38 1.19 
M038B 1132.8 1165.5 902.8 928.3 699.5 832.4 1.29 1.08 
M048B 1195.2 1195.2 951.4 951.4 677.7 808.8 1.40 1.18 
M058A 1153.0 1166.1 928.8 928.8 676.8 807.8 1.37 1.15 

1 Self-weight has been taken into account to compare with the calculated results. 
2 Test was terminated at this load level due to unbalanced movement of the loading beam. 
3 The opening of the inclined crack started at the end of the 3rd load step at one side of the slab. It 

developed towards the other side at P = 1515.6 kN. This was caused by the additional torsional 
moment in the main support. 

4 Vcal is calculated with the procedure proposed in Chapter 4. 
 
In test H026A, shortly after the inclined crack developed, the loading plate 

between the distributing beam and the concrete surface slipped away, because 
of the large displacement. The test had to be terminated for safety reasons. 
Therefore, the maximum load of that test is relatively low. 
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Fig. 6.21. Relationship between concrete mean strength fcm and inclined cracking force 
Vcr (left) and ultimate shear capacity Vu (right). 

The ultimate capacity of the slabs and the inclined cracking load are plotted 
against the mean concrete strength (see Table 6.8) in Fig. 6.21. The results show 
that in test series 2 (a = 800 mm) the concrete strength has a very consistent 
influence on the shear capacity. The results are quite repeatable among the three 
tests: M038B, M048B and M058A. However, the results derived from test series 1 
(a = 600 mm) lead to a contradictory conclusion. The three mixed specimens 
have a quite different ultimate capacity. Among them, test M036A reached the 
yielding moment, while in M056B the maximum shear force was as low as 
1009.2 kN, which is only 66% of the highest one. 

The rather large scatter shown in Fig. 6.21 regarding the ultimate shear ca-
pacity is due to the unstable failure modes of the specimens in test Series 1 (a = 
600 mm); the influence of the concrete strength on the shear capacity was sup-
pressed by the switch of the failure modes. On the other hand, Fig. 6.21 shows 
that despite the variation of the failure modes, the inclined cracking load was 
quite stable. In most cases the inclined cracking load is in line with the mean 
concrete strength of the slab. Therefore the inclined cracking load can still be 
calculated with the mean concrete strength over the width. Besides, the conclu-
sion stated in section 6.2 is still valid with respect to slab structures, saying that 
for structures which do not have a fixed failure mode, one may use the inclined 
cracking load as a lower bound. For that reason, special attention is paid to the 
inclined cracking load of each test. 

Table 6.9 provides the comparison of the measured Vcr with the Eurocode 
provision and the calculated shear capacity with the formula proposed in this 
research. Both calculation results are derived using the mean concrete strength 
fcm of the whole slab. The comparison shows that by adapting the mean concrete 
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strength both methods are able to follow the increment of shear capacity 
properly. Regarding accuracy, the prediction given by the method proposed in 
this section is better. Compared to the test result, it gives a consistent prediction. 
Nevertheless, both methods underestimated the tested shear capacity. 

It has to be mentioned that in Table 6.9 the inclined cracking load is defined 
as the load level at which unstable cracks started to develop in diagonal direc-
tion. During the loading process, the vertical displacement of the slab in the 
middle of the shear span is monitored by an array of laser displacement sensors. 
This has been explained in section 6.4.2.5. The vertical component of the crack 
opening is derived by subtracting the top and bottom displacement. The in-
clined cracking load is derived from the real-time measured vertical crack 
opening versus load relationship when the crack opening in vertical direction 
starts from at least one pair of the sensors in width direction. Detailed infor-
mation is given in the test report (Yang & den Uijl 2012). 

Unlike beam specimens, a clear definition of the inclined cracking load is not 
always possible. In some of the specimens, a clear plateau was not found in the 
vertical crack opening-load curve of all the laser sensor pairs, in some other ones 
no clear difference in vertical crack opening was distinguishable. An example is 
shown in Fig. 6.22. It plots the vertical crack opening – load relationship of test 
M038B at the middle of the shear span in the seven strips. Although the final 
failure mode was flexural shear, the opening of the vertical crack did not start at 
the same load level along the transverse direction. Relating to the shear failure 
mechanism explained in Chapter 3, this indicates that for a slab structure, 
despite the fact that a certain part of the critical inclined crack in transverse 
direction reaches cr, the remaining part of the slab will not always follow. Only 
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strength both methods are able to follow the increment of shear capacity 
properly. Regarding accuracy, the prediction given by the method proposed in 
this section is better. Compared to the test result, it gives a consistent prediction. 
Nevertheless, both methods underestimated the tested shear capacity. 

It has to be mentioned that in Table 6.9 the inclined cracking load is defined 
as the load level at which unstable cracks started to develop in diagonal direc-
tion. During the loading process, the vertical displacement of the slab in the 
middle of the shear span is monitored by an array of laser displacement sensors. 
This has been explained in section 6.4.2.5. The vertical component of the crack 
opening is derived by subtracting the top and bottom displacement. The in-
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opening versus load relationship when the crack opening in vertical direction 
starts from at least one pair of the sensors in width direction. Detailed infor-
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M038B at the middle of the shear span in the seven strips. Although the final 
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when the vertical displacement  of the majority of the section reaches cr, the 
splitting dowel crack can developed, eventually, failure of the section is possible. 
The failure load is most likely to be the average of the whole section.  

A possible reason for the inhomogeneous vertical displacement could be that 
the position of the inclined crack is not identical along the width direction. To 
illustrate this, the crack pattern at both sides of slab 1-4 after failure is plotted in 
Fig. 6.25, where both the shape and the position of the critical inclined crack at 
the sides of the specimen are not the same. This phenomenon is observed not 
only on slabs with mixed strength but also on homogeneous slabs. It is not 
directly related to the material variability. 

In order to check the integrity of the slabs with mixed strips, the crack pat-
terns of four specimens in the same test series under the same load level P = 800 
kN are marked in Fig. 6.24. The graphs show that the cracked areas of L016A 
and H026A do not vary significantly, despite the two times higher strength of 
the latter one. The furthest cracks in both specimens are located at almost the 
same distance to the line load. On the other hand, the crack spacing clearly 
changes with the concrete strength. In the low strength slab L016A, about nine 
cracks are visible over a distance of 1 meter, while in the high strength slab 
H026A, only around seven cracks can be found within the same distance. This is 

 
Fig. 6.23. Width depth ratio versus shear capacity prediction with Eurocode. 
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certainly due to the lower concrete tensile strength. The crack patterns of the 
mixed specimens fall in between these two reference cases. It is noted that the 
strips of different concrete strengths in the mixed slabs behave as if it was a 
homogeneous slab. The formation of the crack pattern did not vary significantly 
with regard to the concrete strength variation in the transverse direction. This is 
also observed from other measurements, such as AE emission, and vertical crack 
opening-load relationships at different strips. 

Other than the finding that the weaker concrete spots in the transverse di-
rection of the mixed slab do not determine the overall shear capacity of the 
whole slab, an additional conclusion may be drawn from the set of tests. In Table 
6.9, the comparison between test results and predictions shows that in general 
the shear capacity of the slabs seems to be always higher than the predicted 
capacity based on beam test results.  

To check the influence of the width of the specimen to its shear capacity, a 
more extensive study on experiments reported in literature has been carried out. 
Shear tests with configurations similar to the tests presented in this study in the 
shear test database reported by Collins, Bentz et al. (Collins, Bentz et al. 2008) are 
collected. The adopted original database has been used to determine the critical 
shear displacement cr for the proposed shear design procedure in Chapter 4 
already. In this part of the research a different selection of tests has been made. It 
is based on the following criteria: concrete strength fcm between 15 MPa and 40 
MPa, effective depth d between 250 mm and 300 mm, reinforcement ratio  
between 0.5% and 1.5%, and shear slenderness ratio a/d larger than 2.7 to ensure 
shear flexural failure. These results comparable with the low strength slab tests. 
A summary of these tests are indicated in Appendix III in combine with the 
ACI-DAfStd database. Besides, the wide beam tests reported by Sherwood et.al 
in (Edward G. Sherwood 2006) are included in the comparison as well. Note that 
according to Sherwood et al.’s description, the boundary conditions of their 
widest specimen are different from an ideal one-way slab. They applied three 
parallel point loads and 3 point supports in the transverse direction of the 
specimen to replace a real line load and line support: that configuration may 
course stress localization and eventually influence the shear capacity of the 
specimen. 

The aforementioned data are plotted together with the results presented in 
this section in Fig. 6.23, in which the y axis is the normalized measured capacity 
by Eurocode prediction. The x axis is the ratio between specimen width b and 
the effective depth d. The comparison shows the tendency that the average 
normalized shear capacity is indeed increasing with the width of the specimen. 
Regarding this, several explanations are proposed in the following section. 
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Fig. 6.24. Bottom crack patterns of series 1 at P = 800 kN. 
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Fig. 6.25. Comparisons of crack patterns of side surfaces of slab 1-4 after failure. 
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Fig. 6.25. Comparisons of crack patterns of side surfaces of slab 1-4 after failure. 
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Other than the increase of mean shear strength, although the amount of data 
points between the narrow and wide specimens are not comparable, Fig. 6.23 
still shows the tendency that the narrow specimens have larger scatter than the 
wide ones. This can be explained by the fact that the narrow specimens are more 
vulnerable to the local variation of the concrete strength. The shear capacity of 
the whole specimen is easily influenced by the weak spots in the shear span. 
However, for a wide member, the local shear failure does not result in an overall 
collapse, the load can still be carried though the redistribution mechanism in the 
transverse direction. The wider the specimen is, the smaller is the variation of 
the expected concrete mean strength in the transverse direction. If the shear 
capacity of the mixed specimen can be estimated by the average strength, the 
scatter of the shear capacity of one-way slabs with width-depth ratio of 10 shall 
be considerably less than that of beams with width-depth ratio of 0.5. In practise, 
most slab bridge decks have a width over depth ratio larger than 10. However, 
this ratios for most specimens in literature is close to 0.5 (beam specimens). 
Further than this study, the widest specimen in literature has a width-depth 
ratio of 7.2. Taking into account that the design formula of the shear capacity of a 
beam is derived from a regression study of relatively narrow beam tests with 
remarkably large scatter, the safety for the shear capacity of a slab factor needs 
to be adjusted, if the same  value (reliability factor) has to be achieved. 

6.4.4 Influence of Specimen Width 

The comparison study of slabs with concrete strength varying in width direction 
shows that basically the shear failure of reinforced concrete structures can still 
be considered as quasi-brittle behaviour, thus considering it as a parallel system 
making it possible to calculate the shear capacity by taking the average concrete 
strength in the transverse direction. On the other hand, it was found that despite 
the strength variability, the shear capacity of a slab structure with larger 
width-depth ratio has a relatively higher shear capacity than beam specimens. 
This conclusion is also confirmed by comparison of experimental results re-
ported in some literature, like Conforti, Minelli et al. (Conforti et al. 2013) in their 
shallow specimens. Although no direct experimental comparison has been 
carried out to validate it, the observation on higher shear capacity of one way 
slab specimens turns out to be a more general phenomenon. In this section it is 
attempted to explain this within the theoretical framework presented in the 
previous chapters. 

For a homogeneous one way slab structure, any strip of the slab in the span 
direction should be equivalent in theory, since the structural performance and 
the boundary conditions of each strip are the same. So does the shear capacity of 
any strip taken along the transverse direction, which shall be of no difference 
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compared to the whole slab. The additional increment of the shear capacity has 
to come from the inhomogeneity of the structure in the transverse direction. 
Ignoring the variation of the boundary conditions, it is the variability of the 
concrete property (strength) in transverse direction that raises the shear capacity 
of slab structures. 

Compared to beam elements with relatively small width, the larger 
width-depth ratio allows a difference regarding the deformation of the slab 
along the transverse direction. Consequently, unlike beam elements which 
always have cracks throughout the whole specimen width once a local spot of 
the structure cracks, cracking of weak spots locally will not spread over the 
whole width. For a one way slab, the crack development in width direction is the 
result of the connection of local fracture at weak spots over the concrete slab. The 
random distribution of the weak spots shapes the transverse cracks of one way 
slabs into a curve with random waves. The wavy shape of the crack influences 
the force transferred through aggregate interlock effect in two possible ways: 
 Firstly, the wavy crack profile increases the length of the crack profile, so 

that the shear force transferred through the aggregate interlock effect Vai  is 
increased by: 

 cr
ai ai

b
V V

b
¢ =  (6.1) 

where bcr is the real length of the critical crack. 
 

 Secondly, the wavy crack profile results in the shift of the crack position in 
longitudinal direction. Assuming that the uncracked part of the beam is a 
rigid body, under the same rotation around the crack tip, the vertical dis-
placement at the level of longitudinal reinforcement varies. Since the dowel 
action is a plastic mechanism, only when the shear displacements  of most 
parts of the cross-section reach cr the dowel crack along the rebar will de-
velop. Therefore more rotation is needed, and the value of critical shear 
displacements cr is increased due to the crack profile. 

 ( ) (1 )cr
cr cr cr

cr

dx
x dx

x
q¢D = + = D +


  (6.2) 

where  
xcr : is the length of the inclined crack in longitudinal direction,  

cr
dx : is the average variation of the transverse crack profile in longitudinal 

direction, in other words the average wave amplitude of the crack 
profile. 
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Both aspects strongly rely on the configuration of the crack profile in the 
transverse direction. Assuming the crack profile to be a random triangular wave 
for its simple geometry, the average period and amplitude defines the character 
of the profile.  

Amplitude 

The amplitude of the transverse crack profile Ap is related to the crack spacing. 
There has to be a crack within the maximum crack spacing defined by the bond 
between concrete and reinforcing bars. Thus the variation of the crack profile 
cannot be larger than the maximum crack spacing. The average amplitude can 
be defined as the average crack spacing lcr = slt, with s = 1.5 and lt defined by 
Eq. (3.4). 

Wave Length 

The period of the crack profile curve can be considered as a random 1D signal, 
how to determine the average wave length can be converted to the following 
question: within how much distance a crack generated by a local weak spot will 
influence the remaining part of the uncracked zone. Outside the affected zone, 
the position of a newly developed crack will not be influenced by the adjacent 
one, where the next peak in the wave profile may be formed. The distance 
between the two peaks can be considered as half the average wave length (or the 
period) of the curve. Based on that consideration, the problem is translated into 
investigating the length of the influencing zone of a local crack in the width 
direction. 

 
Fig. 6.26. Simplified model to consider the influence of weak spot in a one way slab. 

If a slice of a one way slab with width dx in the transverse direction is taken 
out, see Fig. 6.26, the slice of the slab and its relationship between the remaining 
part of the slab can be considered as a beam on a distributed elastic foundation. 
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The stiffness of the foundation is the deflection stiffness per width of the slab in 
longitudinal direction. The opening of a crack locally results in the reduction of 
flexural stiffness at the cross-section locally. Therefore that cracked longitudinal 
strip tends to generate a larger deflection. On the other hand the remaining 
uncracked part along the width direction has to carry a larger part of the shear 
force. This is equivalent to superimpose a reversed force at the cracked spot of 
the transverse slice. Thus the research question is further simplified to evaluat-
ing the influenced area of a local force in a beam on elastic foundation. 

Considering the longitudinal strip of a simply supported one way slab, the 
deflection stiffness of the section at a distance x from the support is  
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where  
Iy : is the moment of inertia of a strip of the slab in longitudinal direction; 
l : is the length of the slab; 
x : is the distance of the weak spot to the support. 

 
In the other direction, kw is considered as the elastic stiffness of the transverse 
slice of the slab cut at x from the support. 

Assuming that the length of the crack in transverse direction generated by 
the weak spot is still small compared to the width of the whole slab, the 
boundary conditions of the transverse slice can be described by an infinite beam 
on elastic foundation loaded by a point load. The solution of such a problem is 
(Timoshenko 1930): 
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where 
P :  is the compensation load for the cracked area; 
Ix :  is the moment of inertia of the transvers strip; 
:  is the stiffness factor, which is expressed by  
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Fig. 6.27. Relationship between f= e–x(sinx – cosx) and x.  

Despite the fact that the value of P is unknown, the distribution of moment 
over the beam is determined by the function:  = e–x(sinx – cosx), the value 
of which decreases with the distance from the loading point, see Fig. 6.27. The 
value of approaches zero at x = . Thereafter, its value becomes negligible 
compared to the rest part of the curve. Based on that consideration, one may 
conclude that the influencing length of a weak spot of a slab is: 
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where  
dx: is the width of the transverse strip, which can be considered as the 

average crack spacing lcr. 
 

Thus the expected average wave length of the crack profile can be estimated by 
2lw, Assuming it is the dominating frequency, further evaluation on its influence 
to the shear capacity can be continued. 

With the estimation of the crack profile, the effects of the two proposed in-
fluencing aspects regarding the length of the crack and the critical shear 
displacement are evaluated. Taking the configuration of the high strength 
concrete slab test H028B presented in this chapter as an example, the amplitude 
A and the period T of the crack profile are calculated with Eq. (3.4) and Eq. (6.6); 
they are A = 107.1 mm and T = 504.9 mm respectively, having average bond 
stress bm = 2.0 fctm, and critical crack located at x = 400 mm. 

The actual crack length is therefore easily calculated with  
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In H028B, the increasing factor from the width of the beam to the actual crack 
length is only 1.02. Because of the large period and small amplitude, the incre-
ment of the crack length is negligible in most cases. 

On the other hand, the increment of the critical vertical displacement cr, is 
calculated with Eq. (6.2), where the average additional length cr

dx = Ap/2 = 53.6 
mm. Furthermore, it is assumed that the total length of the critical inclined crack 
in longitudinal direction is xcr = h = 200 mm (from the measurement of the 
specimen). Both values are inserted into Eq. (6.2). The critical vertical displace-
ment cr for the slab should be increased by 1.27. Taking the increment into 
account, the shear capacity of the slab is recalculated with the standard proce-
dure described in Chapter 4. The calculated shear capacity is then cal

V ¢ = 970.2 kN. 
The original prediction which neglects the variation of critical crack position, 
yields V = 863.0 kN. The prediction taking into account the increase of vertical 
displacement results are 12.4% higher value than the original prediction. Con-
sidering the actual tested shear capacity being 1031.1 kN, one may conclude that 
the alternative of increase of the critical vertical displacement is the governing 
factor of the two proposed mechanisms regarding the width effect of slabs. The 
same procedure has been applied to all other tests in the same experimental 
program. The results are listed in Table 6.10, where it is clearly shown that by 
taking into account the misalignment of the crack path in the width direction, 
the model is able to predict the shear capacity of all the slab specimens more 
accurately. 

However, the choice of the total length of the critical inclined crack length xcr 
still needs to be investigated further. If the actual crack length is much larger 
than h, the increase of cr has to be reduced, which might be the case when the 
slab is loaded by a uniformly distributed load, the crack inclination is increased 
remarkably according to Chapter 5. Consequently, the total length of the in-
clined crack increases as well. As Eq. (6.2) shows, the same additional length cr

dx
cannot increase cr to the same level anymore. The influence of the specimen 
width to the shear capacity may become less prominent. Further experimental 
evidence is still needed to validate this proposition. 

Nevertheless for most slab structures, the shear critical load cases are multi-
ple point loads or line loads. To deal with these types of loading conditions, the 
procedure proposed in this section can be used as a good estimation. Based on 
the limited amount of evaluation of the test results presented in this section, an 
average increase of 18.2% is observed if the additional shear displacement is 
implemented, which appears to be quite stable for all the cases (COV = 8%). 
Following an engineering approach, a rough width factor of w = 1.1 can be 
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In H028B, the increasing factor from the width of the beam to the actual crack 
length is only 1.02. Because of the large period and small amplitude, the incre-
ment of the crack length is negligible in most cases. 
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cannot increase cr to the same level anymore. The influence of the specimen 
width to the shear capacity may become less prominent. Further experimental 
evidence is still needed to validate this proposition. 

Nevertheless for most slab structures, the shear critical load cases are multi-
ple point loads or line loads. To deal with these types of loading conditions, the 
procedure proposed in this section can be used as a good estimation. Based on 
the limited amount of evaluation of the test results presented in this section, an 
average increase of 18.2% is observed if the additional shear displacement is 
implemented, which appears to be quite stable for all the cases (COV = 8%). 
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assumed for a more accurate evaluation regarding the shear capacity of concrete 
slabs. 

 
Table 6.10. Comparison of the model prediction with test results (unit: kN). 

Test No. L016A H026A M036A M046A M056B L018B H028B M038B M048B M058A 

cr
V 1 862.5 1286.4 1023.4 1022.9 1003.4 855.0 1031.1 902.8 951.4 928.8 

cal
V 2 716.5 950.6 900.3 872.6 909.8 666.5 863 832.4 808.8 807.8 

/
cr cal

V V  1.20 1.35 1.14 1.17 1.10 1.28 1.19 1.08 1.18 1.15 

cal
V ¢ 2 829.4 1097.5 1040.0 1008.4 1050.9 767.3 989.6 956.4 929.7 928.6 

/
cr cal

V V ¢  1.04 1.17 0.98 1.01 0.95 1.11 1.04 0.94 1.02 1.00 
1 Self-weight has been taken into account. 
2 Vcal is the calculated shear capacity with the original method; Vcal′ is the calculated shear capac-

ity taking into account the two effects explained in the section. 
 

6.5 CONCLUSIONS 

This chapter discusses the influence of spatial variability of material properties 
to the shear failure process. It is mainly focused on the variability of concrete 
strength.  

According to the theoretical framework proposed in this research both con-
crete tensile strength and compressive strength influence the shear failure 
process. The concrete tensile strength mainly affects the shear failure modes, 
while the concrete compressive strength influences the shear capacity. 

Inspired by investigating the influence of the concrete tensile strength in di-
rect tension tests by the material spatial variability, its effect on the shear 
capacity of a concrete member is discussed in three dimensions: longitudinal 
direction, vertical direction and transverse direction. 

Longitudinal Direction 

The presence of existing cracks due to the loading history or other type weak 
section in longitudinal direction of the concrete member may influence the 
position and the profile of the critical inclined crack, thus the capacity of the 
concrete arch formed by it. Consequently this effect makes the failure mode of 
the member unpredictable when both failure modes are still possible in the span. 

Because of the uncertainty of the failure modes, it is on the safe side to use the 
inclined cracking load as the lower bound of the shear capacity unless the shear 
compression failure is guaranteed when the shear span is smaller than the lower 
bound defined by the crack path function for shear compression failure. 
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Vertical Direction 

The spatial variability of concrete strength only influences the crack path locally. 
Besides, it determines the strength of the residual concrete arch structure formed 
by the inclined crack.  

Other than that, since only limited parts of the cracked surface have contacts, 
the influence of the weak spots along the critical crack does not influence the 
overall shear capacity of the beam. 

Width Direction 

When the concrete strength varies along the width direction of a concrete slab, 
the inclined cracking load of the specimen can be calculated with the mean 
strength in the width direction. 

Contrary to narrow beam specimens, the opening of the critical inclined 
crack in a slab specimen shows certain ductility. The overall capacity of the 
beam can still be maintained before the dowel crack along the longitudinal rebar 
develops over the most part of the beam in width direction.  

The maximum shear stress of a one way slab is on average larger than that of 
a beam. This effect is also valid for slabs with homogeneous materials. It can be 
explained by two aspects: 
 The wavy crack profile increases the length of the crack profile; accordingly 

the shear force transmitted through aggregate interlock Vai is increased. 
 The wavy crack profile results in a shift of the crack position in longitudinal 

direction. As a result, at the same rotation at the crack tip, the vertical dis-
placement at the bottom of the crack varies in width direction. Only when 
the vertical displacement D of the utmost part of the cross-section reaches 
cr, the dowel crack may develop. 

 
The crack path in width direction can be simplified by a wave function. On 

the basis of that assumption, the influence of both effects to shear capacity is 
studied. The results show that the second one is the main reason of the increase 
of the shear capacity. Although further study is still needed regarding the 
evaluation of the crack length xcr at different boundary conditions etc. the 
proposed method provides a simplified tool based on the shear design proce-
dure proposed in Chapter 4, which is able to predict the effect of the width of the 
concrete specimen on its shear capacity with a pleasing accuracy.  

Following an engineering approach, an approximated width factor of w = 1.1 
can be assumed for a more accurate evaluation regarding the shear capacity of 
concrete slabs. 
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7.1 INTRODUCTION 

The research work presented in this dissertation is dedicated to a rather classic 
problem, namely, the shear capacity of reinforced concrete members without 
shear reinforcement. Looking back to the task set in the beginning of the disser-
tation, the research work presented in the dissertation has provided an adequate 
solution. A new theory on the shear failure mechanism has been established, 
which provides a fundamental insight into the phenomenon from a quite dif-
ferent perspective from the classical theories. Based on this new theory, a 
simplified shear evaluation procedure is proposed. The good accuracy obtained 
from comparison with test results reported in literature confirms that the theory 
reflects the mechanism properly. 

In this chapter, both the shear failure mechanism and the design procedure 
based on it are reviewed. Moreover, several topics which are strongly related to 
the theory developed in this thesis, but have not yet been fully studied due to 
lack of time, are mentioned. Additional research which may lead to a better 
understanding of those topics is proposed. 

 

7.2 SHEAR FAILURE MECHANISM 

The theory proposed in this research attributes flexural shear failure to the 
opening of dowel cracks at the tip and the level of tensile reinforcement of a 
flexural crack. Therefore the development of flexural cracks in reinforced con-
crete beams without shear reinforcement is strongly related to their shear failure 
process. According the theory, the flexural cracks that develop above the cen-
troid line of the beam section are defined as major cracks, which should be 
treated differently from the cracks that develop at the level of tensile bars due to 
bonding cracking. It is assumed that the height of the major cracks will be 
stabilized quickly to a value scr after the cross sectional moment M has exceeded 
Mcr. The pattern of the major cracks is defined by the crack height, spacing and 
profile. The crack height scr can be calculated from the requirement of cross 
sectional equilibrium; the crack spacing is determined by scr, whereas the profile 
of a crack is related to the ratio M/Vd of the cracked cross section and crack 
spacing.  

However, it is shown that only based on the opening of the major cracks de-
scribed by the crack pattern and formed at Mcr not sufficient shear capacity can 
be developed. Additional shear displacement along the crack faces is necessary 
to generate larger shear resistance through aggregate interlock. This is only 
possible when allowing the development of a secondary crack branch at the tip 
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of the existing major cracks. With the increase of the shear displacement, the 
development of the secondary crack branch at the level of longitudinal rein-
forcement (also defined as dowel crack) will become unstable. Consequently the 
opening of one of the major cracks increases considerably, and the shear re-
sistance provided by the aggregate interlock of the crack drops. The load level 
by then is usually defined as the inclined cracking load in experiments. After the 
formation of the inclined crack, the load bearing system of the beam becomes an 
arch structure formed by the critical crack. When the capacity of the resultant 
arch structure is less than the inclined cracking load, the beam collapses. The 
corresponding failure mode is denoted as flexural shear failure. On the other 
hand, if the residual arch structure is capable to carry the load that causes the 
inclined cracks, the capacity of the beam is higher than the inclined cracking 
load. The collapse of the beam is determined by crushing of the concrete arch. 

The description of shear failure process shows that the unstable development 
of dowel cracks can be considered as a criterion for the inclined cracking load 
and flexural shear failure. It is proposed in this research that the shear dis-
placement of a critical major crack at the level of the tensile reinforcement can be 
used as a criterion for unstable development of the dowel cracking and eventu-
ally shear failure. 

The mechanism described above forms the foundation of the theory pre-
sented in this research. To convert it into a procedure that can be applied in 
design practice, several simplifications have been made in the dissertation. The 
procedure proposed in the research proofs to be able to generate accurate 
prediction with respect to the overall shear capacity of concrete beams. Never-
theless, some of the simplifications do not fully reflect the experimental 
observations or require further experimental evidence. They are discussed in the 
sequel. 

Definition of Critical Inclined Crack 

It is assumed in the theory that when the beam is loaded by point loads, the 
critical inclined crack is located in the vicinity of the loading point. This as-
sumption is derived from the comparison of the shear displacement  of cracks 
at different positions subjected to the same shear force, see Fig. 3.33. The shear 
force needed to generate the critical shear displacement in a cracked section is 
determined by the crack opening w and the profile of the crack. When the 
cracked section has a large M/Vd ratio, its profile can be approximated by a 
vertical plane. In that case, the shear resistance is mainly influenced by the crack 
width. A larger M/Vd ratio results in a smaller cross sectional shear resistance. 
Nevertheless, the variation of the shear capacity due to M/Vd is quite limited. 
Those two conclusions were also proven by the experimental observations in 
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Section 5.3.5. Based on this, it can be considered as a safe choice to assume the 
critical crack at the maximum possible M/Vd location in the span. 

However, for beams with moderate shear slenderness ratio, cracks with 
M/Vd smaller than 2.0 may develop as well. As discussed before, the shear 
resistance of those cracks can be lower than those closer to the loading point. The 
situation described in Fig. 3.38 may become different. The actual lowest point of 
the shear resistance line might switch to a section closer to the support. It has 
been argued that the difference between the shear resistance of the two sections 
is usually quite limited, in the cases when the critical section closer to the sup-
port becomes critical to the ultimate capacity. Nevertheless, it has to be 
remarked that the evaluation procedure proposed in Chapter 4 does not include 
the influence of the crack profile (see the calculated shear resistance line marked 
in Fig. 7.1), thus is not able to determine the critical section closer to the support. 
That explains the difference between the location of the critical inclined crack 
between the experimental observations and the theory presented. This might 
cause a certain inaccuracy in more complex situations. 

To be able to evaluate the actual shear resistance line shown in Fig. 7.1, two 
options have been proposed in Chapter 5 of the dissertation. The crack profile is 
taken into account by assuming an inclined crack plain with an inclination angle 
 or by reduction the actual crack height scr. Because of the limitation in the 
available test results, both procedures could not be evaluated sufficiently. Thus 
they can only be applied in very limited occasions. To derive a curve as pro-
posed in Fig. 7.1, more research is still needed. 

 
 

 
 

Fig. 7.1. Determination of the critical section in a span with relatively small shear 
slenderness ratio. 
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Shear Failure at Small M/Vd 

For structural members with a small shear slenderness ratio, further than the 
difficulty of determining the location of the critical inclined crack, it is also 
difficult to accurately evaluate the shear force contribution in the compressive 
zone. Because the small shear span limits the development of the major crack, 
the hypothesis needed to generate Mörsch’s stress distribution is not valid 
anymore. Besides, the steep drop of the shear resistance line influenced by the 
crack profile makes the shear resistance very sensitive to the crack location, 
which is still a random variable within the maximum crack spacing. The last 
point is that for beams with smaller shear span, the reduction of beam stiffness 
after the unstable opening of the inclined crack is limited. Therefore, it is more 
difficult to observe the inclined cracking load in experiments as well. Taking the 
aforementioned aspects into account, the accurate prediction of the inclined 
cracking load at small shear spans is less relevant.  

Nevertheless, there are still several interesting topics to be discussed. For 
example, the theory assumes that in general the fracture energy of concrete does 
not influence the shear resistance of a cracked section, since the pattern of the 
major cracks has already fully developed before the critical shear displacement 
is reached. However, when the critical inclined crack is located at a section with 
a very small M/Vd, cr is reached before the crack develops fully. In that case the 
tension softening relationship becomes important. It defines the force needed to 
get a fully developed major crack. The fracturing process of the critical inclined 
crack becomes more important to the inclined cracking load in that situation, 
which can be evaluated by the fracture mechanics of concrete. 

Influence of Fracture Energy 

Similar to the effect of the tensile strength of concrete discussed in Chapter 6, the 
direct influence of the fracture energy of concrete to the shear capacity of the 
structural member is limited other than in the situation discussed in the pre-
ceding section. The experimental proof of this conclusion is that the shear 
capacities of concrete beams with old concrete or existing cracks have the same 
inclined cracking load as new beams. Nevertheless the influence still exists 
indirectly. One of the aspects which may be influenced by the fracture energy is 
the definition of the critical shear displacement cr. A brief discussion on this has 
been given in Section 3.4.3. Further quantitative evaluation is still standing out.  

Further than the influence of fracture energy, the role of other parameters 
such as the rebar configuration and the concrete type are not completely clear 
yet. When there are multiple layers of reinforcement with heavy reinforcement 
ratio, or very high strength concrete in compine with small maximum aggregate 
size, it is still not very clear how the the related variables should be adjusted. 
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Shear Failure at Small M/Vd 
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yet. When there are multiple layers of reinforcement with heavy reinforcement 
ratio, or very high strength concrete in compine with small maximum aggregate 
size, it is still not very clear how the the related variables should be adjusted. 
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Examples of test on members with such specimens are the test BRH100 in 
(Podgorniak-Stanik 1998) for the first case and the test series reported by Sneed 
and Ramirez in (Sneed & Ramirez 2010) for the second case. It showns that more 
refined research work is still needed to complete the theoretical framework. 

Aggregate Interlock at Small Crack Width 

In the dissertation, it has been clearly declared that the shear stress generated by 
aggregate interlock at a small crack width is very important for the overall shear 
capacity of the whole structural member. Taking that into account, Fig. 4.29 
indicates a possibility to replace the complex shear stress distribution in a crack 
by a block of shear stress within a characteristic length from the crack tip, so that 
the shear stress distribution at ultimate limit state can be treated with this 
simplified shear stress block in the part of the crack with small crack width, as is 
done with the bending resistance of beams  in design codes.  

However, the effect of aggregate interlock at small crack widths still needs to 
be discussed. In this research, it implies that Walraven’s formula on aggregate 
interlock still works when the normal crack width ranges between 0.01 mm and 
0.1 mm. This assumption is probably overestimating the shear stress that can be 
generated in reality. That explains why in the design method presented in 
Chapter 4 the evaluated critical shear displacement cr is more close to the lower 
bound of the experimental observations. 

Very little experimental research has been carried out regarding aggregate 
interlock at very small crack widths. Walraven’s experiments started from a 
minimum crack width of 0.1 mm (Walraven 1980); Keuser and Walraven’s tests 
(Keuser & Walraven 1989) did not reach a very large tangential displacement; 
while van Mier’s tests (van Mier, Nooru-Mohamed et al. 1991) ended up mostly 
with opening of mode I cracks in different directions. As a result, most current 
theories made their own simplifications on this effect. For example, in most 
non-linear finite element method, the shear stress - tangential displacement 
relationship is assumed to be linear (Rots & Blaauwendraad 1989), with the 
shear stiffness related to the normal crack width.  

Apparently, more research is required on this topic. The questions to be 
answered are: Is it possible to keep such small crack widths while having sig-
nificantly larger tangential (shear) displacement under the complex stress stage 
as in the crack tip? If not, what type of crack width distribution can describe the 
situation best? Also it is important to investigate the shear stress-tangential 
displacement relationship of a crack with small normal crack width after the 
crack has opened first and closed again (which is the case for shear cracks). 
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7.3 SHEAR CALCULATION PROCEDURE 

Based on the critical shear displacement cr criterion described in this disserta-
tion, a shear capacity calculation procedure has been proposed. It has been 
discussed in Chapter 4 regarding simply supported beams with point load, and 
then been extended to deal with different concrete types and boundary condi-
tions in the following chapters. In this section a summarized shear design 
procedure is given to cover the conditions discussed in the whole dissertation. 

Before Evaluation 

Step 1: Check the loading conditions of the member. 
 
Check the boundary conditions of the member. If the structural member is 
loaded by a point load or uniformly distributed load, and there is no distributed 
support on the beam, the procedure is discussed in the dissertation. Otherwise 
check the following three questions: 
 Whether or not a similar crack path can be obtained at a given mo-

ment/shear force ratio? 
 With the same crack path and crack opening, do the shear force compo-

nents change? 
 Where is the critical section? 

With respect to each question, adjustments have to be made accordingly. On 
the other hand for beams with point loads, when the shear span is shorter than 
2.0 d, the calculating M/Vd has to be taken as 2.0. 

 
Step 2: Determine the critical section. 
 
The critical section is used to calculate the value of moment and crack width in 
the shear capacity calculation. Depending on the boundary conditions, there can 
be more than one critical sections. 

For members loaded by point loads, the centre of the loading point or the 
support can be used as the critical section for crack width calculation.  

When the member is subjected to a uniformly distributed load, the position 
of the critical section should be calculated differently. In the part of the member 
with a sagging moment (deflection is in the same direction of the load), it is 
calculated with xct = (0.14l/d +0.3)d, where l is the length between two adjacent 
points of inflection. In the hogging moment part (deflection is in the opposite 
direction of the load, usually close to the intermediate support), the critical 
section is set to be at d from the intermediate support. 
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In case of more general loading conditions, it is necessary to calculate the 
shear resistance of the whole length of the member and compare it with the 
shear force distribution to determine the critical sections. 
 
Step 3: Check the dimensions of the member 
 
If the width of the member is larger than 2lw, an additional width effect has to be 
taken into account. lw is expressed by Eq. (6.6): 
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The beam height should be higher than 200 mm. Otherwise, the average 
crack spacing lcr,m has to be adjusted to lcr at the tension reinforcement level. 

 
Step 4: Check the concrete type 

 
Check whether the member is made of high strength concrete with fcm > 60 MPa, 
or lightweight aggregate concrete. Calculate the aggregate interlock reduction 
factor Ra. Unless a specific evaluation is made, Ra = 0.75 for LWA concrete, fcm ≤ 
60 MPa. For ultra-high strength concrete, an additional Ra is needed, Eq. (4.11) is 
suggested with further calibration in advance. 

In case of existing structures or other types of structures, of which the 
strength of the concrete is not known, compressive tests are recommended on 
cylinders drilled from the same structure. The existing faults or cracks do not 
influence the shear capacity significantly. 

Evaluation Procedure 

Step 5:  Calculate the equivalent rebar diameter with 
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Step 6: Calculate the maximum shear force carried by dowel action: 
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Step 7: Start with a shear force value Vu, calculate the moment at the design 
cross section, and the crack width wb at that cross section: 

 
,

, d
d u b cr m

s s

MM
M V d w l

Vd zA E
= =  (4.8) 

Step 8: Determine the critical transverse displacement cr: 
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In case the rebar configuration is not known, a rough estimation can be made 
with Eq. (4.9). 

 0.005 0.025
29800cr

d
D = + £  (4.9) 

When the member is loaded by a uniformly distributed load, the critical 
transverse displacement should be reduced by sin, with  = 36º. 

When the width of the specimen is larger than lw, the value of cr has to be 
increased by a factor expressed by Eq. (6.2). 
 
Step 9: Evaluate the shear force carried by aggregate interlock effect with the 

calculated cr and wb 
 
For an accurate evaluation, it is recommended to calculate Vai through integrat-
ing the shear stress derived from Walraven’s formula over the crack height scr. 
This could be done with the Matlab code attached in Appendix I. 
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A simplified estimation is also provided with the following equation: 
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where, Ra is 1.0 for normal concrete. 
 

Step 10: Calculate the shear force carried in the concrete compressive zone. z is 
expressed by Eq. (3.26): 
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When the tip of the critical inclined crack is confined, for example, when the 
crack tip is close to the intermediate support of a continuous member loaded by 
a uniformly distributed load, the teeth structure cannot be developed in front of 
the critical inclined crack. Then Vc has to be increased. In continuous members 
loaded by a uniformly distributed load, Vc is suggested to be increased to 2.5Vc. 
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a uniformly distributed load, the teeth structure cannot be developed in front of 
the critical inclined crack. Then Vc has to be increased. In continuous members 
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Step 11: Update the overall shear force Vu of the whole cross section, and repeat 
from Step 7 to Step 11 till the value of Vu converges. 

 
u c d ai

V V V V= + +  

Step 12: For members loaded by point loads, with a shear span smaller than 
2.0d, the calculated Vu is based on M/Vd = 2.0, the value of Vu still has 
to be multiplied by  = 2(M/Vd)-1. 
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Roman Upper Case 

A  total cross sectional area 

Ac,eff effective concrete area surrounding the tensile reinforcement 
in a beam 

Ap amplitude of the transverse crack profile 

Ax, Ay projected contact areas for a unit crack length, which are 
functions of the normal and tangential displacement (n,t) of the 
two crack faces 

CRd regression factor in Eurocode shear formula to calculate the 
design shear resistance of a member without shear reinforce-
ment 

CRm regression factor in Eurocode shear formula to calculate the 
mean shear resistance of a member without shear reinforce-
ment from experiments 

Ci indicate the ith derivative of the expression is a continuous 
function 

D aggregate size 

Dmax maximum aggregate size 

E elastic modules 

Ec elastic modules of concrete in linear elastic stage 

Es elastic modules of steel in linear elastic stage 

Gf fracture energy, the subscript I or II stand for the corre-
sponding fracture mode 

GI, GII strain energy release rate for the corresponding fracture mode 

G1-G4 functions in Walraven's aggregate interlock formula 
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I moment of inertia of a given cross-section 

KI, KII stress intensity factor at given crack tip, the subscription stands 
for the corresponding fracture mode 

M flexural moment 

M +, M - maximum positive moment (sagging moment) and negative 
moment (hogging moment) of the span 

Mcr cracking moment, the moment that makes the stress at a edge 
of the beam cross-section higher than the tensile strength of the 
material 

Nc resultant compressive force in the uncracked compressive zone 

Nai resultant compressive force component carried by aggregate 
interlock 

O(x) higher order terms that can be ignored 

P1,P2 forces measured though the corresponding load cells 

R2 coefficient of determination 

Ra reduction factor of aggregate interlock, for high strength 
concrete or lightweight aggregate concrete 

Rs surface roughness index 

Ts resultant tensile force in the reinforcement 

U strain energy of a structural member 

U* complimentary strain energy of a structural member 

V  shear force 

Vai resultant shear force component carried by aggregate interlock 

VE expected shear force at corresponding cross section 

VR shear resistance at corresponding cross section 

Vc resultant shear force component carried in the uncracked 
concrete compression zone 

Vcr inclined cracking load, the shear force needed to generate the 
critical inclined crack 
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Vcr,m shear force needed to open a major crack at x0 from the support 

Vd resultant shear force component carried by the dowel action 

Vu maximum shear force in the span before the collapse of the 
structural member 

 

Roman Lower Case 

a centre to centre distance between a loading point and the first 
support of a beam next to it 

a0 uncracked span length of the member from the support 

ac 
length of the secondary branch 

ac,c length of the critical compressive zone, when the tip of the 
major crack is located in the zone, the residual structure 
formed by which can generate sufficient capacity after Vcr 

av edge to edge distance between a loading plate and the  support 
of a beam, used in Eurocode shear formula 

b width of the structural member 

bcr length of a crack in the transverse direction of a slab 

bn clear width of the beam 

c thickness of the concrete cover 

d effective height of a beam cross section, it is defined as the 
distance from the centroid of the tensile reinforcement to the 
edge fibre of the cross-section in the compressive edge 

d0 a constant defined in Bažant’s shear design formula, see 
Chapter 2 

 

average width of the transverse crack profile, which can also 
be considered as the average wave amplitude 

ec offset of the resultant compressive force to the centroid of the 
compressive zone 

fc concrete compressive strength (through cylinder tests with 
diameter 150 mm) 

fcm mean concrete compressive strength (through standard cylin-
der tests) 

cr
dx
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fcm,cube mean concrete compressive strength (through standard cube 
tests) 

fctm mean tensile strength of concrete 

fctm,s mean tensile strength of concrete (through splitting tests) 

fctm,dt mean tensile strength of concrete (through direct tensile tests) 

ft tensile strength of a material 

fx, fy resultant normal stresses in longitudinal and vertical direction  

h total height of the member 

hi, hj position of the layers in the layered model 

ka crack inclination factor to take into account the reduction of the 
crack height 

kc slope of the stress line to distribute localized load/deformation 
to the whole section 

kcr factor between the height of major crack and the effective beam 
height 

kh
size effect factor in Eurocode formula 

kr stiffness of the residual structure formed by the inclined crack 

ks slope of the secondary crack branch 

kw deflection stiffness of a transverse strip of a concrete slab 
member 

l0 the length of the secondary crack branch 

lch characteristic length in the layered model to convert crack 
width to strain 

lcr mean crack spacing along the reinforcement, lcr,max is the 
maximum crack spacing along the reinforcement 

lcr,m mean crack spacing of the major cracks (at the mid-height of 
the beam section) 

lt minimum crack spacing, or the stress transmit length between 
rebar and concrete 

lw influencing length of a weak spot of a slab 
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m ratio between the sagging moment and the maximum moment 
differemce in the span of a continuous supported beam with 
uniformly distributed load, m = M2/(M1+M2)  

ne elastic stiffness ratio between Es and Ec 

n,t normal and tangential displacement of the crack at the crack 
profile 

rexcl distance surrounding an already cracked root element in 
which no more crack can develop from another root element in 
CPA 

s distance of a point of the crack profile to the tensile edge of the 
beam, thus it can also be considered the height of the crack at 
certain stage of the crack development 

scr the height of the crack after it is stabilized 

tc slope of the major crack tc = scr/x 

w, wb crack opening at the level of the tensile reinforcement in the 
longitudinal direction 

wt crack opening at the tip of the major crack in the longitudinal 
direction 

x0 distance between the centre of the support and the root of the 
crack profile 

xcr distance between the tip and the root of the major crack in 
longitudinal direction 

xct distance between the tip of the crack and the centre of the 
support, also defined as the position of the critical section 

y   deflection of a beam 

z length of the internal level arm between the loading point of 
the equivalent compressive force and the centroid of the 
tension force in tensile reinforcement 

z0 location of the neutral axis of a beam cross-section from the 
tension edge  

zc is the height of the uncracked compressive zone at tip of the 
major crack 

zc' is the height of the uncracked compressive zone at tip of the 
secondary crack 
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Greek Upper Case 

D, Db relative displacement of the crack faces at the level of tensile 
reinforcement in the vertical direction 

D0, Dt relative displacement of the crack faces at the tip of the crack in 
the vertical direction 

Dcr the critical shear displacement of the crack faces at the level of 
the tensile reinforcement for the opening of the dowel crack 

Da shear displacement of the crack faces along the crack faces 

DTs difference of tensile force in reinforcement between two major 
cracks 

Fs the cumulative strength distribution function of the material 

Ys the ratio between the minimum crack spacing and the mean 
factor of the crack spacing at reinforcement level 

 

Greek Lower Case 

a first derivative of the crack profile, when assuming the crack 
profile as a plain, alpha stand for the slope of the crack plain 

b stiffness factor in the expression of beams on elastic founda-
tion 

ba shear slenderness factor defined in Eurocode shear formula 

dcr normalized crack spacing, cr = lcr/h 

e normal strain, or average strain of the cross-section in certain 
direction 

esm, ecm  average strain of the reinforcement and concrete between 
two adjacent major cracks respectively 

g w width factor for slab members 

k curvature at given location of the beam in longitudinal 
direction 

kB aggregate factor in Bažant’s formula 

kr function in the expression of the residual structure stiffness 

l length of the dowel crack along the tensile reinforcement 
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m coefficient of the friction between aggregate and the matrix 
material 

f diameter of rebar 

feq  equivalent diameter of the reinforcement configuration 

fb function used to calculate the moment of a beam on elastic 
foundation loaded by a point load 

yM, yT, yI, yII regression functions in the expression of stress intensity 
factors, which do not have an analytical expression 

reff effective reinforcement ratio when calculating crack spacing 
at the level of reinforcement of a beam 

rs reinforcement ratio, ratio of reinforcing bar area over effec-
tive area of the beam cross-section s = As/bd 

s normal stress 

sc normal stress at the outer fibre of the compressive zone 

spu crushing strength of the cement matrix under confinement 

ssr cracking stress of reinforcement at the onset of the formation 
of a new crack 

su maximum stress of a material 

t shear stress 

tbm average friction between rebars and concrete 

tu average shear stress in the beam cross-section at failure 

t1, t2 shear resistance corresponding to the two failure modes 
specified in IBBC-TNO shear design method 

q relative rotation of the crack faces around the tip of the crack 

q,r coordinates in a polar coordinate system with the origin at 
the tip of the crack and the principal axis along the axis of 
the crack 

x normalized crack coordinate in height direction, x = s/h 

xs partial distribution function of a material strength 
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t shear stress 

tbm average friction between rebars and concrete 

tu average shear stress in the beam cross-section at failure 

t1, t2 shear resistance corresponding to the two failure modes 
specified in IBBC-TNO shear design method 

q relative rotation of the crack faces around the tip of the crack 

q,r coordinates in a polar coordinate system with the origin at 
the tip of the crack and the principal axis along the axis of 
the crack 

x normalized crack coordinate in height direction, x = s/h 

xs partial distribution function of a material strength 
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z normalized crack coordinate in longitudinal direction, z = 
x/h 

 

Subscriptions 

ai effect caused by aggregate interlock  

c effect in the uncracked compressive zone in the member 

cal values calculated with the corresponding theory 

cr values relating to the opening of the inclined crack 

d effects caused by dowel action 

I, II mode of  fracture 

m mean value of the notation 

test values measured in the tests 

u values relating to the ultimate capacity 

x longitudinal direction of the member 

y transvers direction of the member 
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Matlab Code 
 
 
In this appendix, a Matlab code designed for the implementation of the alterna-
tive procedure of Step 4 Eq. (4.4) in Section 4.4.1 is presented. In the program, the 
influence of rebar configuration to the value of cr is calculated with Eq. (4.15) in 
Section 4.6.2. The influences of the other aspects such as the fracture of aggre-
gates, the loading conditions etc. have not been implemented in the code, users 
may include these aspects according to the suggestion given in the dissertation, 
or use their own validated formulation. 
 
function [V] = CSDM(mvd, da, fc, d, bw, rho, Re) 
%CSDM  Evaluation shear capacity based on Critical Shear Displacement 
% 
%   V = CSDM(mvd, da, fc, d, bw, rho, Re), is the implementation of the 
%   critical shear displacement method proposed in Y.Yang (2014). "Shear 
%   behaviour of reinforced concrete members without shear reinforcement  
%   -A new look and an old problem." The equation numbers in the file is  
%   in accordance to the reference. 
%   The input variables are explained as follow: 
%   mvd is the maximum value of M/Vd in the calculated span in [-]; 
%   da is the maximum aggregate size in [mm]; 
%   fc is the compressive strength of concrete in [MPa]; 
%   d is the effective depth of the beam in [mm]; 
%   bw is the width of the beam in [mm], here the beam is assumed to be 
%   prismatic, the program has not checked for T beams or I beams. 
%   rho is the reinforcement ratio of the beam, the percentage is not. 
%   needed Re is the rebar configuration. It is a cell, each array stands  
%   for the configuration of a beam, which is a two columns matrix. The  
%   first column is the number of rebar, the second one is the diameter  
%   in [mm]. 
% Example 
%   For two beams with maximum a/d ratio = 3.0, concrete compressive  
%   strength 34.2 MPa and 34.8 MPa, effective depth of 420 mm and 720 mm,  
%   width of 200 mm, reinforcement ratio of 0.74% and 0.79%, rebar  
%   configuration being 1 Ø 14 + 2 Ø 20 and 3 Ø 22(Walraven's A2 and A3  
%   beams), the inputs are: 
%   
%   mvd = [3; 3]; 
%   da = [16; 16]; 
%   fc = [34.2; 34.8]; 
%   d = [420; 720]; 
%   bw = [200; 200]; 
%   rho = [.0074; .0079]; 
%   Re = {[1 14; 2 20];[3 22]}; 
%   V = CSDM(mvd, da, fc, d, bw, rho, Re); 
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Matlab Code 
 
 
In this appendix, a Matlab code designed for the implementation of the alterna-
tive procedure of Step 4 Eq. (4.4) in Section 4.4.1 is presented. In the program, the 
influence of rebar configuration to the value of cr is calculated with Eq. (4.15) in 
Section 4.6.2. The influences of the other aspects such as the fracture of aggre-
gates, the loading conditions etc. have not been implemented in the code, users 
may include these aspects according to the suggestion given in the dissertation, 
or use their own validated formulation. 
 
function [V] = CSDM(mvd, da, fc, d, bw, rho, Re) 
%CSDM  Evaluation shear capacity based on Critical Shear Displacement 
% 
%   V = CSDM(mvd, da, fc, d, bw, rho, Re), is the implementation of the 
%   critical shear displacement method proposed in Y.Yang (2014). "Shear 
%   behaviour of reinforced concrete members without shear reinforcement  
%   -A new look and an old problem." The equation numbers in the file is  
%   in accordance to the reference. 
%   The input variables are explained as follow: 
%   mvd is the maximum value of M/Vd in the calculated span in [-]; 
%   da is the maximum aggregate size in [mm]; 
%   fc is the compressive strength of concrete in [MPa]; 
%   d is the effective depth of the beam in [mm]; 
%   bw is the width of the beam in [mm], here the beam is assumed to be 
%   prismatic, the program has not checked for T beams or I beams. 
%   rho is the reinforcement ratio of the beam, the percentage is not. 
%   needed Re is the rebar configuration. It is a cell, each array stands  
%   for the configuration of a beam, which is a two columns matrix. The  
%   first column is the number of rebar, the second one is the diameter  
%   in [mm]. 
% Example 
%   For two beams with maximum a/d ratio = 3.0, concrete compressive  
%   strength 34.2 MPa and 34.8 MPa, effective depth of 420 mm and 720 mm,  
%   width of 200 mm, reinforcement ratio of 0.74% and 0.79%, rebar  
%   configuration being 1 Ø 14 + 2 Ø 20 and 3 Ø 22(Walraven's A2 and A3  
%   beams), the inputs are: 
%   
%   mvd = [3; 3]; 
%   da = [16; 16]; 
%   fc = [34.2; 34.8]; 
%   d = [420; 720]; 
%   bw = [200; 200]; 
%   rho = [.0074; .0079]; 
%   Re = {[1 14; 2 20];[3 22]}; 
%   V = CSDM(mvd, da, fc, d, bw, rho, Re); 
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%Last modified by Yuguang Yang on April 04 2014. Copy right reserved.  
  
CoreNum = 4; % when parallel calculation is available on the computer,  
% determine the number of cores that is available 
global Es Ec 
  
Es = 210000; % elastic modules of steel in MPa 
Ec = 40000; % elastic modules of concrete in MPa, only effecting the  
% crack height calculation, thus a rough estimation is sufficient. 
% validation, it is recommended to make Ra = 0.75 for LWA concrete; 
% and keep Ra = 1.0, while reduce fc back to 60 MPa for HSC 
n = numel(d);       % number of tests 
As = rho.*bw.*d;    % reinforcement area 
Ra = ones(n,1);     %reduction factor for special concrete types such as  
% HSC or LWA concrete.  
br = zeros(n,1);D = br;      
if nargin > 6 
    for l = 1:n 
        br(l) = sum(Re{l}(:,1).*Re{l}(:,2)); % the part of width occupied  
        % by rebar for dowel force Vdw calculation (only applicable when  
        % all the rebars are in one layer) 
        D(l) = sum(Re{l}(:,1).*Re{l}(:,2).^2)/sum(Re{l}(:,1).*Re{l}(:,2)); 
        % equivalent rebar diameter Deff, calculated with eq..(4.16) 
    end 
else 
    % When rebar configuration is not available, assuming there are four 
    % bars in one layer, calculate the rebar diameter accordingly. 
    Re = ones(n,1)*[4 4]; 
    Re(2) = (As/pi).^.5; 
    br = 4*Re(:,2); D = Re(:,2); 
end 
Vdw = V_dw(bw, br, fc, D);   % calculate the contribution of dowel action 
V = zeros(n,1); 
  
%Initialize Matlab Parallel Computing Environment 
if matlabpool('size')<=0 % check parallel computing environment 
matlabpool('open','local',CoreNum);  
% start parallel computing environment 
end 
  
for l = 1:n 
    V(l) = Vm(mvd(l), da(l), fc(l), d(l), bw(l), As(l), Vdw(l), ... 
    D(l), rho(l), Ra(l)); 
    % calculation of the maximum shear resistance of each tests 
end 
matlabpool close 
end 
%------------------------------------------------------------------------
-- 
function V = Vm(mvd, da, fc, d, bw, As, Vdw, rho, D, Ra) 
  
global Es Ec 
  
ne = Es/Ec; % ratio between Es and Ec for crack height calculation 
delta = min((3.267e-5.*d*25/D+.002204), .025);  
scr = (1+rho.*ne-(2*rho.*ne+(rho.*ne).^2).^.5).*d;   % major crack height 
lcrm = scr./1.28;       % average crack spacing of major cracks 
z = (2*d + scr)/3;      % internal level arm 
V1 = 1.5*d*bw;          % first guess of shear resistance 
V0 = 0; count = 0;      % initiation of iteration 
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while abs(V0-V1) > 10 
    M0 = V1*d*mvd;      % cross sectional moment 
    w = M0/z/As/Es*lcrm;    % estimation of average crack width eq..(4.8) 
    V0 = V1; 
     
    Vai = V_ai(delta, w, da, scr, fc, bw);  % aggregate interlock 
    Vc = V_c(z,d, V0);          % shear force in compression zone 
    V1 = Ra*Vai + Vc + Vdw;     % summation of total shear force 
     
    V = V1; 
    if count == 20  % maximum iteration number is 20 
        break 
    end 
    count = count+1; 
end 
if mvd < 2 
    V = V*2/mvd0; 
end 
% fctm = (fc<58).*.3.*(fc-8).^(2/3)+(fc>=58).*2.12.*log(1+(fc/10)); 
end 
%------------------------------------------------------------------------
-- 
function Vai = V_ai(delta, w, da, scr, fc, bw) 
% shear resistance contributed by aggregate interlock, based on eq..(4.4) 
w0 = 0.01;  % crack width at crack tip 
dw = (w0-w)/100;   % increment of crack width in the linear crack profile 
CrackProfile = (w: dw: w0);    % crack profile, divided into 100 sections 
n = numel(CrackProfile); 
L = scr/n; 
fc = min(fc,60);    % limitation for high strength concrete 
tau = zeros(size(CrackProfile)); 
parfor l = 1:n 
    [~,tau(l)]=AI_walraven(CrackProfile(l), delta, da, fc); 
    % Walraven's aggregate interlocking formula eq..(3.30) 
end 
Vai = -sum(tau.*L )*bw; 
% alternative simplified AI formula: eq..(4.7), much faster than  
% Walraven's formula:  
% Vai = (-978*delta.^2+85*delta-.27).*fc.^.56.*bw.*.03./(w-.01).*scr; 
end 
%------------------------------------------------------------------------
-- 
function Vdw = V_dw(bw, br, fc, D) 
% maximum dowel action force, based on eq..(3.28)  
Vdw = 1.64*(bw-br).*D.*(fc).^.333; 
end 
%------------------------------------------------------------------------
-- 
function Vc = V_c(z, d, V) 
% shear force contrition in compression zone, based on eq..(3.26) 
Vc = 2*(d-z)/z*V; 
end 
%========================================================================
== 
function [sig,tau]=AI_walraven(w0, D0, da, fc) 
%AI_Walraven Walraven's formula for aggregate interlock eq..(3.30) 
%   [sig,tau]=AI_walraven(w0, D0, da, fc), calculated the shear and  
%   normal stresses [MPa] generated due to aggregate interlock when the  
%   normal or shear displacement at the crack faces is given. The  
%   function only allows the input of single values. If you have an array  
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%Last modified by Yuguang Yang on April 04 2014. Copy right reserved.  
  
CoreNum = 4; % when parallel calculation is available on the computer,  
% determine the number of cores that is available 
global Es Ec 
  
Es = 210000; % elastic modules of steel in MPa 
Ec = 40000; % elastic modules of concrete in MPa, only effecting the  
% crack height calculation, thus a rough estimation is sufficient. 
% validation, it is recommended to make Ra = 0.75 for LWA concrete; 
% and keep Ra = 1.0, while reduce fc back to 60 MPa for HSC 
n = numel(d);       % number of tests 
As = rho.*bw.*d;    % reinforcement area 
Ra = ones(n,1);     %reduction factor for special concrete types such as  
% HSC or LWA concrete.  
br = zeros(n,1);D = br;      
if nargin > 6 
    for l = 1:n 
        br(l) = sum(Re{l}(:,1).*Re{l}(:,2)); % the part of width occupied  
        % by rebar for dowel force Vdw calculation (only applicable when  
        % all the rebars are in one layer) 
        D(l) = sum(Re{l}(:,1).*Re{l}(:,2).^2)/sum(Re{l}(:,1).*Re{l}(:,2)); 
        % equivalent rebar diameter Deff, calculated with eq..(4.16) 
    end 
else 
    % When rebar configuration is not available, assuming there are four 
    % bars in one layer, calculate the rebar diameter accordingly. 
    Re = ones(n,1)*[4 4]; 
    Re(2) = (As/pi).^.5; 
    br = 4*Re(:,2); D = Re(:,2); 
end 
Vdw = V_dw(bw, br, fc, D);   % calculate the contribution of dowel action 
V = zeros(n,1); 
  
%Initialize Matlab Parallel Computing Environment 
if matlabpool('size')<=0 % check parallel computing environment 
matlabpool('open','local',CoreNum);  
% start parallel computing environment 
end 
  
for l = 1:n 
    V(l) = Vm(mvd(l), da(l), fc(l), d(l), bw(l), As(l), Vdw(l), ... 
    D(l), rho(l), Ra(l)); 
    % calculation of the maximum shear resistance of each tests 
end 
matlabpool close 
end 
%------------------------------------------------------------------------
-- 
function V = Vm(mvd, da, fc, d, bw, As, Vdw, rho, D, Ra) 
  
global Es Ec 
  
ne = Es/Ec; % ratio between Es and Ec for crack height calculation 
delta = min((3.267e-5.*d*25/D+.002204), .025);  
scr = (1+rho.*ne-(2*rho.*ne+(rho.*ne).^2).^.5).*d;   % major crack height 
lcrm = scr./1.28;       % average crack spacing of major cracks 
z = (2*d + scr)/3;      % internal level arm 
V1 = 1.5*d*bw;          % first guess of shear resistance 
V0 = 0; count = 0;      % initiation of iteration 
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while abs(V0-V1) > 10 
    M0 = V1*d*mvd;      % cross sectional moment 
    w = M0/z/As/Es*lcrm;    % estimation of average crack width eq..(4.8) 
    V0 = V1; 
     
    Vai = V_ai(delta, w, da, scr, fc, bw);  % aggregate interlock 
    Vc = V_c(z,d, V0);          % shear force in compression zone 
    V1 = Ra*Vai + Vc + Vdw;     % summation of total shear force 
     
    V = V1; 
    if count == 20  % maximum iteration number is 20 
        break 
    end 
    count = count+1; 
end 
if mvd < 2 
    V = V*2/mvd0; 
end 
% fctm = (fc<58).*.3.*(fc-8).^(2/3)+(fc>=58).*2.12.*log(1+(fc/10)); 
end 
%------------------------------------------------------------------------
-- 
function Vai = V_ai(delta, w, da, scr, fc, bw) 
% shear resistance contributed by aggregate interlock, based on eq..(4.4) 
w0 = 0.01;  % crack width at crack tip 
dw = (w0-w)/100;   % increment of crack width in the linear crack profile 
CrackProfile = (w: dw: w0);    % crack profile, divided into 100 sections 
n = numel(CrackProfile); 
L = scr/n; 
fc = min(fc,60);    % limitation for high strength concrete 
tau = zeros(size(CrackProfile)); 
parfor l = 1:n 
    [~,tau(l)]=AI_walraven(CrackProfile(l), delta, da, fc); 
    % Walraven's aggregate interlocking formula eq..(3.30) 
end 
Vai = -sum(tau.*L )*bw; 
% alternative simplified AI formula: eq..(4.7), much faster than  
% Walraven's formula:  
% Vai = (-978*delta.^2+85*delta-.27).*fc.^.56.*bw.*.03./(w-.01).*scr; 
end 
%------------------------------------------------------------------------
-- 
function Vdw = V_dw(bw, br, fc, D) 
% maximum dowel action force, based on eq..(3.28)  
Vdw = 1.64*(bw-br).*D.*(fc).^.333; 
end 
%------------------------------------------------------------------------
-- 
function Vc = V_c(z, d, V) 
% shear force contrition in compression zone, based on eq..(3.26) 
Vc = 2*(d-z)/z*V; 
end 
%========================================================================
== 
function [sig,tau]=AI_walraven(w0, D0, da, fc) 
%AI_Walraven Walraven's formula for aggregate interlock eq..(3.30) 
%   [sig,tau]=AI_walraven(w0, D0, da, fc), calculated the shear and  
%   normal stresses [MPa] generated due to aggregate interlock when the  
%   normal or shear displacement at the crack faces is given. The  
%   function only allows the input of single values. If you have an array  
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%   please do it through iteration. This function has to be a separate  
%   file named 'AI_walraven.m'. The inputs of the function are: 
%   normal crack opening w0 [mm],  
%   shear crack opening D0 [mm],  
%   maximum aggregate size da [mm],  
%   concrete compressive strength fc [MPa]. 
%Exmaple 
%   [sig,tau]=AI_walraven(0.01,0.02,16,34.2); 
  
%Last modified by Yuguang Yang on April 04 2014. Copy right researved.  
  
global dm pk u w D 
w = w0*(w0>0);  % normal crack opening 
D = abs(D0);    % shear crack opening 
dm = da;        % maximum aggregate size 
% situation when there is no contact between crack faces 
if w > dm 
    sig = 0; 
    tau = 0; 
% situation when the shear displacement is larger than Dmax  
else if D > dm 
    [sig,tau]=AI_walraven_u(w0, da, fc); 
    else 
% normal situation 
pk = 0.75; 
u = .4;     % friction coefficient 
fcc = fc; 
sig_pu = 6.39*fcc^(.56);    % crush strength of the cement matrix 
if D > w 
    Ay = quad(@ay,2*w,dm); 
    Ax = quad(@ax,2*w,dm); 
else 
    if (w^2+D^2)/D<dm 
    Ay = quad(@ay,(w^2+D^2)/D,dm); 
    Ax = quad(@ax,(w^2+D^2)/D,dm);   
    else 
    Ay = 0; 
    Ax = 0; 
    end 
end 
sig = sig_pu*(Ax-u*Ay); 
tau = sig_pu*(Ay+u*Ax)*(-D/D0); 
    end 
end 
end 
function [sig,tau]=AI_walraven_u(w0) 
% Walraven's formula when the shear displacement is larger than Dmax 
% aggregate size. 
global dm pk u w 
w = w0;     % crack opening [mm] 
dm = 16;    % maximum aggregate size [mm] 
pk = 0.75;  % percentage of aggregate 
u = .4;     % friction 
fcc = 40;   % concrete compressive strength [MPa] 
sig_pu = 6.39*fcc^(.56);    % yield strength of concrete under three  
% dimensional loading 
if w*2 < dm 
Ay = quad(@ayu,2*w,dm); 
Ax = quad(@axu,2*w,dm); 
sig = sig_pu*(Ax-u*Ay); 
tau = sig_pu*(Ay+u*Ax); 
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else  
sig = 0; 
tau = 0; 
end 
end 
function [F] = F(d0,dm) 
% aggregate size distribution function F(D), see eq..(3.30) 
d = d0/dm; 
F = .532*d.^.5-.212*d.^4-.072*d.^6-.036*d.^8-.025.^10; 
end 
function [G1] = G1(d,D,w) 
% function G1(n,t,D), see eq..(3.30) 
um = UM(w,D,d); 
G1 = d.^(-3).*((d.^2-(w^2+D.^2)).^.5.*D./(w^2+D.^2).^.5.*um-w.*um-um.^2); 
end 
function [G2] = G2(d,D,w) 
% function G2(n,t,D), see eq..(3.30) 
um = UM(w,D,d); 
G2 = d.^(-3).*((D-(d.^2-w^2-D.^2).^.5*w./(w^2+D.^2).^.5.*um +... 
    (um+w).*(d.^2/4-(w+um).^2).^.5 - w*(d.^2/4-w^2).^.5)+... 
    d.^2/4.*asin((w+um)./d*2) - d.^2/4.*asin(2*w./d)); 
end 
function [G3] = G3(d,w) 
% function G3(n,t,D), see eq..(3.30) 
G3 = d.^(-3).*(d/2-w).^2; 
end 
function [G4] = G4(d,w) 
% function G4(n,t,D), see eq..(3.30) 
G4 = d.^(-3).*(d.^2*pi/8-w*(d.^2/4-w^2).^.5-d.^2/4.*asin(2*w./d)); 
end 
function um = UM(w,D,d) 
% calculation of umax in G1 and G2 
um = (-w/2*(w^2+D^2)+(w^2*(w^2+D^2)^2-(w^2+D^2)*((w^2+D^2)^2- ... 
D^2*d.^2)).^.5/2)/(w^2+D^2); 
end 
function [ay] = ay(d) 
% projected contact area Ax in x direction in eq..(3.30) 
global dm pk w D 
if D > w 
    if w == 0 
        D0 = dm; 
    else 
        D0 = (w^2+D^2)/w; 
    end 
d1 = d(d <= D0); 
ay1 = pk*4/pi.*F(d1,dm).*G3(d1,w); 
d2 = d(d > D0); 
ay2 = pk*4/pi.*F(d2,dm).*G1(d2,D,w); 
ay = [ay1,ay2]; 
else 
  ay = pk*4/pi.*F(d,dm).*G1(d,D,w); 
end 
end 
function [ax] = ax(d) 
% projected contact area Ax in x direction in eq..(3.30) 
global dm pk w D 
if D > w 
    if w == 0 
        D0 = dm; 
    else 
        D0 = (w^2+D^2)/w; 



294  Appendix I 
 

 

%   please do it through iteration. This function has to be a separate  
%   file named 'AI_walraven.m'. The inputs of the function are: 
%   normal crack opening w0 [mm],  
%   shear crack opening D0 [mm],  
%   maximum aggregate size da [mm],  
%   concrete compressive strength fc [MPa]. 
%Exmaple 
%   [sig,tau]=AI_walraven(0.01,0.02,16,34.2); 
  
%Last modified by Yuguang Yang on April 04 2014. Copy right researved.  
  
global dm pk u w D 
w = w0*(w0>0);  % normal crack opening 
D = abs(D0);    % shear crack opening 
dm = da;        % maximum aggregate size 
% situation when there is no contact between crack faces 
if w > dm 
    sig = 0; 
    tau = 0; 
% situation when the shear displacement is larger than Dmax  
else if D > dm 
    [sig,tau]=AI_walraven_u(w0, da, fc); 
    else 
% normal situation 
pk = 0.75; 
u = .4;     % friction coefficient 
fcc = fc; 
sig_pu = 6.39*fcc^(.56);    % crush strength of the cement matrix 
if D > w 
    Ay = quad(@ay,2*w,dm); 
    Ax = quad(@ax,2*w,dm); 
else 
    if (w^2+D^2)/D<dm 
    Ay = quad(@ay,(w^2+D^2)/D,dm); 
    Ax = quad(@ax,(w^2+D^2)/D,dm);   
    else 
    Ay = 0; 
    Ax = 0; 
    end 
end 
sig = sig_pu*(Ax-u*Ay); 
tau = sig_pu*(Ay+u*Ax)*(-D/D0); 
    end 
end 
end 
function [sig,tau]=AI_walraven_u(w0) 
% Walraven's formula when the shear displacement is larger than Dmax 
% aggregate size. 
global dm pk u w 
w = w0;     % crack opening [mm] 
dm = 16;    % maximum aggregate size [mm] 
pk = 0.75;  % percentage of aggregate 
u = .4;     % friction 
fcc = 40;   % concrete compressive strength [MPa] 
sig_pu = 6.39*fcc^(.56);    % yield strength of concrete under three  
% dimensional loading 
if w*2 < dm 
Ay = quad(@ayu,2*w,dm); 
Ax = quad(@axu,2*w,dm); 
sig = sig_pu*(Ax-u*Ay); 
tau = sig_pu*(Ay+u*Ax); 
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else  
sig = 0; 
tau = 0; 
end 
end 
function [F] = F(d0,dm) 
% aggregate size distribution function F(D), see eq..(3.30) 
d = d0/dm; 
F = .532*d.^.5-.212*d.^4-.072*d.^6-.036*d.^8-.025.^10; 
end 
function [G1] = G1(d,D,w) 
% function G1(n,t,D), see eq..(3.30) 
um = UM(w,D,d); 
G1 = d.^(-3).*((d.^2-(w^2+D.^2)).^.5.*D./(w^2+D.^2).^.5.*um-w.*um-um.^2); 
end 
function [G2] = G2(d,D,w) 
% function G2(n,t,D), see eq..(3.30) 
um = UM(w,D,d); 
G2 = d.^(-3).*((D-(d.^2-w^2-D.^2).^.5*w./(w^2+D.^2).^.5.*um +... 
    (um+w).*(d.^2/4-(w+um).^2).^.5 - w*(d.^2/4-w^2).^.5)+... 
    d.^2/4.*asin((w+um)./d*2) - d.^2/4.*asin(2*w./d)); 
end 
function [G3] = G3(d,w) 
% function G3(n,t,D), see eq..(3.30) 
G3 = d.^(-3).*(d/2-w).^2; 
end 
function [G4] = G4(d,w) 
% function G4(n,t,D), see eq..(3.30) 
G4 = d.^(-3).*(d.^2*pi/8-w*(d.^2/4-w^2).^.5-d.^2/4.*asin(2*w./d)); 
end 
function um = UM(w,D,d) 
% calculation of umax in G1 and G2 
um = (-w/2*(w^2+D^2)+(w^2*(w^2+D^2)^2-(w^2+D^2)*((w^2+D^2)^2- ... 
D^2*d.^2)).^.5/2)/(w^2+D^2); 
end 
function [ay] = ay(d) 
% projected contact area Ax in x direction in eq..(3.30) 
global dm pk w D 
if D > w 
    if w == 0 
        D0 = dm; 
    else 
        D0 = (w^2+D^2)/w; 
    end 
d1 = d(d <= D0); 
ay1 = pk*4/pi.*F(d1,dm).*G3(d1,w); 
d2 = d(d > D0); 
ay2 = pk*4/pi.*F(d2,dm).*G1(d2,D,w); 
ay = [ay1,ay2]; 
else 
  ay = pk*4/pi.*F(d,dm).*G1(d,D,w); 
end 
end 
function [ax] = ax(d) 
% projected contact area Ax in x direction in eq..(3.30) 
global dm pk w D 
if D > w 
    if w == 0 
        D0 = dm; 
    else 
        D0 = (w^2+D^2)/w; 



296  Appendix I 
 

 

    end 
d1 = d(d <= D0); 
ax1 = pk*4/pi.*F(d1,dm).*G4(d1,w); 
d2 = d(d > D0); 
ax2 = pk*4/pi.*F(d2,dm).*G2(d2,D,w); 
ax = [ax1, ax2]; 
else 
  ax = pk*4/pi.*F(d,dm).*G2(d,D,w); 
end 
end 
function [ay] = ayu(d) 
% projected contact area Ay in y direction when the shear displacement is  
% larger than maximum aggregate size D > dm 
global dm pk w 
ay = pk*4/pi.*F(d,dm).*G3(d,w); 
end 
function [ax] = axu(d) 
% projected contact area Ax in x direction when the shear displacement is  
% larger than maximum aggregate size D > dm 
global dm pk w  
ax = pk*4/pi.*F(d,dm).*G4(d,w); 
end 
 
 

 

 

 
Appendix II 

 
Results of FEM Models for the Crack Profile Study 
 
 
This appendix provides the additional information of the FEM models utilized 
in deriving the crack profile expression in Chapter 3, section 3.2.4. Other than 
the basic configurations of the models which have been introduction in the 
dissertation, in this appendix, the differences of 23 models used in the paramet-
ric study are presented. The main variables of the models includes the crack 
position x0, the crack spacing, the height of the existing crack, the tensile prop-
erties of concrete, the thickness of the concrete cover, the reinforcement ratio, etc. 
The resultant crack paths of each model are reported in the appendix as well. 

 
Table II.1. Material properties of the normal concrete elements in a basic model 

(Model 1-5 in Table II.2). 

Elastic Modules: 4.000000E+04 MPa 
Poison’s ratio: 0.4 
Crack model: Total strain fixed crack model  

Tensile strength:  3 MPa 
Fracture energy: 0.125 kN/m 

Tension softening curve: Linear softening 
Saw-tooth model: Ripple model 

Number of saw-tooth: 25 
Crack band width model: Oliver model 

Crack track algorism: PROFLD (see explanations in 
main text Section 3.2.4) 

Excluding distance rexcl: 8.0 m 
Shear retention factor: 0.05 (constant) 

 
The properties of the normal concrete elements for the reference models 

(Model 1-5) are listed in Table II.1. In the basic models, a simplified concrete 
tensile behaviour was employed, some of the properties were rough approxi-
mations see Table II.1. From Model 6 the material properties were improved by 
adapting the fib Model Code 1990 based on concrete class C40. The improved 
material properties are mentioned in Table II.2. However, a comparison between 
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    end 
d1 = d(d <= D0); 
ax1 = pk*4/pi.*F(d1,dm).*G4(d1,w); 
d2 = d(d > D0); 
ax2 = pk*4/pi.*F(d2,dm).*G2(d2,D,w); 
ax = [ax1, ax2]; 
else 
  ax = pk*4/pi.*F(d,dm).*G2(d,D,w); 
end 
end 
function [ay] = ayu(d) 
% projected contact area Ay in y direction when the shear displacement is  
% larger than maximum aggregate size D > dm 
global dm pk w 
ay = pk*4/pi.*F(d,dm).*G3(d,w); 
end 
function [ax] = axu(d) 
% projected contact area Ax in x direction when the shear displacement is  
% larger than maximum aggregate size D > dm 
global dm pk w  
ax = pk*4/pi.*F(d,dm).*G4(d,w); 
end 
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Results of FEM Models for the Crack Profile Study 
 
 
This appendix provides the additional information of the FEM models utilized 
in deriving the crack profile expression in Chapter 3, section 3.2.4. Other than 
the basic configurations of the models which have been introduction in the 
dissertation, in this appendix, the differences of 23 models used in the paramet-
ric study are presented. The main variables of the models includes the crack 
position x0, the crack spacing, the height of the existing crack, the tensile prop-
erties of concrete, the thickness of the concrete cover, the reinforcement ratio, etc. 
The resultant crack paths of each model are reported in the appendix as well. 

 
Table II.1. Material properties of the normal concrete elements in a basic model 

(Model 1-5 in Table II.2). 

Elastic Modules: 4.000000E+04 MPa 
Poison’s ratio: 0.4 
Crack model: Total strain fixed crack model  

Tensile strength:  3 MPa 
Fracture energy: 0.125 kN/m 

Tension softening curve: Linear softening 
Saw-tooth model: Ripple model 

Number of saw-tooth: 25 
Crack band width model: Oliver model 

Crack track algorism: PROFLD (see explanations in 
main text Section 3.2.4) 

Excluding distance rexcl: 8.0 m 
Shear retention factor: 0.05 (constant) 

 
The properties of the normal concrete elements for the reference models 

(Model 1-5) are listed in Table II.1. In the basic models, a simplified concrete 
tensile behaviour was employed, some of the properties were rough approxi-
mations see Table II.1. From Model 6 the material properties were improved by 
adapting the fib Model Code 1990 based on concrete class C40. The improved 
material properties are mentioned in Table II.2. However, a comparison between 
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Model 1 and Model 6 showed that the influence from the differences of the 
material properties is very limited.  

 
Table II.2. Configurations of FEM models. 

Model No. Parameter Misc. 
Model 1. Basic model, with x0 =   605 mm, M/Vd = 1.32 Influence of the M/Vd 

value at the crack root. Model 2 Basic model, with x0 =   805 mm, M/Vd = 1.75  
Model 3 Basic model, with x0 = 1005 mm, M/Vd = 2.18  
Model 4 Basic model, with x0 = 1205 mm, M/Vd = 2.62  
Model 5 Basic model, with x0 = 1405 mm, M/Vd = 3.05  
Model 6 Based on Model 1, with more realistic con-

crete properties of C30: fct = 2.8 MPa, Gf = 
7.08·10-2, Ec = 3.4·104 MPa, shear retention 
factor SF = 20. Hordijk softening model. 

Influence of the concrete 
tensile properties. 

Model 7 Based on Model 6, load step size is doubled. Influence of the load step 
size. Model 8 Based on Model 7, load step size is doubled 

again. 
Model 9 Based on Model 8, reinforcement area is 

reduced to 1/3 of Model 8: 1Ø32 
Influence of the reinforce-
ment ratio. 

Model 10 Basic model, with x0 = 1605 mm, M/Vd = 3.49 Extended series on the 
influence of the M/Vd 
value at the crack root. 

Model 11 Basic model, with x0 = 1805 mm, M/Vd = 3.92 
Model 12 Basic model, with x0 =   405 mm, M/Vd = 0.88 
Model 13 Basic model, with x0 =   205 mm, M/Vd = 0.45 
Model 14 Based on Model 6, half of the nodal coordi-

nate values 
Influence of the size effect. 

Model 15 Based on Model 1, double the mesh size in 
the critical zone 

Influence of the mesh size. 

Model 16 Based on Model 1, smaller crack spacing lcr,m 
= 100 mm 

Influence of the major crack 
spacing lcr,m. 

Model 17 Based on Model 1, smaller crack spacing lcr,m 
= 300 mm 

 

Model 18 Based on Model 6, 10 times the reinforcement 
area 

Extended series on the 
influence of reinforcement 
ratio. Model 19 No reinforcement 

Model 20 Based on Model 6, the height of the existing 
crack height scr,e reduced from 400 mm to 300 
mm 

Influence of existing crack 
height. 

Model 21 Based on Model 6, scr,e = 200 mm 
Model 22 Based on Model 6, scr,e = 100 mm 
Model 23 Based on Model 6, half the concrete cover 

thickness, c = 20 mm 
Influence of concrete cover 
thickness. 
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Regarding the root element, as explained in the main text, the properties of 
which has to be designed such that a crack will always develop from that ele-
ment rather than any other part of the model. To serve that purpose, the tensile 
strength of the root element fct was reduced to 0.001 MPa, and the fracture 
energy Gf became 0.00125 kN/m. The other properties of the element were the 
same as the normal concrete elements. 

The coordinates of the resultant crack paths of all the 23 models are given in 
the following tables. 

Table II.3. Model 1 

x y 
605.2 13.3 

606.0 26.7 

607.2 40.0 

609.8 50.2 

610.1 50.9 

613.1 60.4 

616.2 70.7 

619.8 81.2 

620.8 83.9 

623.8 92.0 

628.4 103.0 

632.3 111.6 

633.5 114.1 

639.2 125.4 

645.9 137.4 

647.7 140.5 

655.8 153.4 

658.7 158.0 

664.6 167.2 

669.5 174.6 

673.7 180.9 

680.1 190.3 

683.2 195.0 

691.0 206.8 

692.1 208.4 

699.8 220.3 

702.4 224.3 

Table II.4. Model 2 

x y 
805.2 13.3 

805.8 26.7 

806.9 40.0 

809.0 50.2 

810.1 53.9 

811.9 60.4 

814.6 70.8 

817.7 81.4 

821.2 92.2 

821.2 92.3 

825.2 103.5 

829.8 114.9 

833.5 123.2 

835.0 126.4 

841.0 138.5 

847.7 151.1 

848.5 152.5 

856.7 166.4 

858.7 169.6 

865.2 179.7 

869.5 186.3 

873.9 193.5 

879.6 202.7 

883.2 208.9 

890.4 220.7 

892.1 223.3 

897.6 232.3 

Table II.5. Model 3 

x y 
1005.0 13.3 

1006.0 26.7 

1007.0 40.0 

1008.0 50.2 

1010.0 58.4 

1011.0 60.4 

1013.0 70.9 

1016.0 81.5 

1019.0 92.5 

1022.0 98.8 

1023.0 103.8 

1028.0 115.3 

1032.0 127.0 

1035.0 131.6 

1038.0 139.1 

1045.0 152.6 

1048.0 158.0 

1052.0 166.1 

1059.0 177.1 

1060.0 179.1 

1068.0 192.4 

1069.0 194.2 

1078.0 208.8 

1079.0 209.7 

1080.0 211.3 

1085.0 221.3 
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Model 1 and Model 6 showed that the influence from the differences of the 
material properties is very limited.  

 
Table II.2. Configurations of FEM models. 

Model No. Parameter Misc. 
Model 1. Basic model, with x0 =   605 mm, M/Vd = 1.32 Influence of the M/Vd 

value at the crack root. Model 2 Basic model, with x0 =   805 mm, M/Vd = 1.75  
Model 3 Basic model, with x0 = 1005 mm, M/Vd = 2.18  
Model 4 Basic model, with x0 = 1205 mm, M/Vd = 2.62  
Model 5 Basic model, with x0 = 1405 mm, M/Vd = 3.05  
Model 6 Based on Model 1, with more realistic con-

crete properties of C30: fct = 2.8 MPa, Gf = 
7.08·10-2, Ec = 3.4·104 MPa, shear retention 
factor SF = 20. Hordijk softening model. 

Influence of the concrete 
tensile properties. 

Model 7 Based on Model 6, load step size is doubled. Influence of the load step 
size. Model 8 Based on Model 7, load step size is doubled 

again. 
Model 9 Based on Model 8, reinforcement area is 

reduced to 1/3 of Model 8: 1Ø32 
Influence of the reinforce-
ment ratio. 

Model 10 Basic model, with x0 = 1605 mm, M/Vd = 3.49 Extended series on the 
influence of the M/Vd 
value at the crack root. 

Model 11 Basic model, with x0 = 1805 mm, M/Vd = 3.92 
Model 12 Basic model, with x0 =   405 mm, M/Vd = 0.88 
Model 13 Basic model, with x0 =   205 mm, M/Vd = 0.45 
Model 14 Based on Model 6, half of the nodal coordi-

nate values 
Influence of the size effect. 

Model 15 Based on Model 1, double the mesh size in 
the critical zone 

Influence of the mesh size. 

Model 16 Based on Model 1, smaller crack spacing lcr,m 
= 100 mm 

Influence of the major crack 
spacing lcr,m. 

Model 17 Based on Model 1, smaller crack spacing lcr,m 
= 300 mm 

 

Model 18 Based on Model 6, 10 times the reinforcement 
area 

Extended series on the 
influence of reinforcement 
ratio. Model 19 No reinforcement 

Model 20 Based on Model 6, the height of the existing 
crack height scr,e reduced from 400 mm to 300 
mm 

Influence of existing crack 
height. 

Model 21 Based on Model 6, scr,e = 200 mm 
Model 22 Based on Model 6, scr,e = 100 mm 
Model 23 Based on Model 6, half the concrete cover 

thickness, c = 20 mm 
Influence of concrete cover 
thickness. 
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Regarding the root element, as explained in the main text, the properties of 
which has to be designed such that a crack will always develop from that ele-
ment rather than any other part of the model. To serve that purpose, the tensile 
strength of the root element fct was reduced to 0.001 MPa, and the fracture 
energy Gf became 0.00125 kN/m. The other properties of the element were the 
same as the normal concrete elements. 

The coordinates of the resultant crack paths of all the 23 models are given in 
the following tables. 

Table II.3. Model 1 

x y 
605.2 13.3 

606.0 26.7 

607.2 40.0 

609.8 50.2 

610.1 50.9 

613.1 60.4 

616.2 70.7 

619.8 81.2 

620.8 83.9 

623.8 92.0 

628.4 103.0 

632.3 111.6 

633.5 114.1 

639.2 125.4 

645.9 137.4 

647.7 140.5 

655.8 153.4 

658.7 158.0 

664.6 167.2 

669.5 174.6 

673.7 180.9 

680.1 190.3 

683.2 195.0 

691.0 206.8 

692.1 208.4 

699.8 220.3 

702.4 224.3 

Table II.4. Model 2 

x y 
805.2 13.3 

805.8 26.7 

806.9 40.0 

809.0 50.2 

810.1 53.9 

811.9 60.4 

814.6 70.8 

817.7 81.4 

821.2 92.2 

821.2 92.3 

825.2 103.5 

829.8 114.9 

833.5 123.2 

835.0 126.4 

841.0 138.5 

847.7 151.1 

848.5 152.5 

856.7 166.4 

858.7 169.6 

865.2 179.7 

869.5 186.3 

873.9 193.5 

879.6 202.7 

883.2 208.9 

890.4 220.7 

892.1 223.3 

897.6 232.3 

Table II.5. Model 3 

x y 
1005.0 13.3 

1006.0 26.7 

1007.0 40.0 

1008.0 50.2 

1010.0 58.4 

1011.0 60.4 

1013.0 70.9 

1016.0 81.5 

1019.0 92.5 

1022.0 98.8 

1023.0 103.8 

1028.0 115.3 

1032.0 127.0 

1035.0 131.6 

1038.0 139.1 

1045.0 152.6 

1048.0 158.0 

1052.0 166.1 

1059.0 177.1 

1060.0 179.1 

1068.0 192.4 

1069.0 194.2 

1078.0 208.8 

1079.0 209.7 

1080.0 211.3 

1085.0 221.3 
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707.3 232.1 

713.1 241.7 

714.6 244.1 

721.6 256.0 

723.7 259.8 

728.4 268.0 

734.5 279.0 

735.2 280.0 

741.9 292.0 
 

903.0 240.8 

905.0 244.1 

912.0 256.1 

913.0 257.9 

919.0 268.0 

924.0 275.4 

926.0 280.0 

934.0 292.0 
 

 
Table II.6. Model 4 

x y 

1205.0 13.3 

1206.0 26.7 

1206.0 40.0 

1208.0 50.2 

1210.0 60.5 

1210.0 60.8 

1212.0 70.9 

1215.0 81.6 

1218.0 92.7 

1222.0 104.0 

1222.0 105.5 

1226.0 115.7 

1230.0 127.5 

1235.0 139.7 

1236.0 141.1 

1241.0 152.8 

1248.0 165.7 

1248.0 166.1 

1254.0 178.6 

1259.0 186.7 

1261.0 191.4 

1268.0 204.5 

1269.0 205.0 

1274.0 214.8 

1278.0 222.6 

Table II.7. Model 5 

x y 

1405.0 13.3 

1406.0 26.7 

1406.0 40.0 

1408.0 50.2 

1410.0 60.5 

1410.0 63.2 

1412.0 70.9 

1414.0 81.7 

1417.0 92.8 

1420.0 104.2 

1423.0 111.4 

1424.0 116.0 

1428.0 127.9 

1433.0 140.1 

1436.0 148.4 

1438.0 152.9 

1444.0 165.7 

1448.0 173.4 

1450.0 178.3 

1457.0 190.8 

1459.0 194.5 

1463.0 203.6 

1467.0 211.2 

1469.0 214.7 

1473.0 223.8 

Table II.8. Model 6 

x y 

605.2 13.3 

605.9 26.7 

607.2 40.0 

609.8 50.2 

610.1 51.0 

613.2 60.4 

616.6 70.7 

620.5 81.2 

620.6 81.6 

624.8 91.9 

629.5 102.8 

632.0 107.9 

635.0 113.9 

640.8 125.0 

647.5 136.3 

647.8 136.9 

648.0 137.1 

658.7 153.8 

658.7 153.8 

668.2 167.6 

669.5 169.4 

678.2 181.5 

680.2 184.4 

687.6 195.3 

691.0 200.6 
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1283.0 229.1 

1286.0 232.9 

1291.0 244.4 

1293.0 248.6 

1297.0 256.2 

1303.0 264.3 

1306.0 268.1 

1313.0 279.3 

1314.0 280.0 

1321.0 292.0 
 

1474.0 225.8 

1479.0 233.8 

1481.0 245.0 

1484.0 249.9 

1489.0 256.4 

1493.0 261.4 

1498.0 268.2 

1503.0 275.3 

1507.0 280.1 

1513.0 288.3 
 

695.8 208.3 

702.3 219.0 

703.0 220.2 

710.0 232.1 

713.0 237.2 

716.9 244.1 

723.3 256.0 

723.7 256.8 

729.8 268.0 

734.5 277.4 

735.9 280.0 

741.9 292.0 
 

 
Table II.9. Model 7 

x y 

605.2 13.3 

605.9 26.7 

607.3 40.0 

610.1 50.1 

610.1 50.2 

613.6 60.4 

617.0 70.7 

620.6 80.5 

620.9 81.2 

625.0 91.9 

629.8 102.8 

631.9 107.0 

635.3 113.8 

641.0 124.9 

647.4 135.8 

647.9 136.7 

648.2 137.2 

658.6 153.8 

658.7 153.9 

667.9 167.6 

669.5 170.0 

677.3 181.4 

Table II.10. Model 8 

x y 

605.2 13.3 

605.9 26.7 

607.3 40.0 

610.1 50.1 

610.1 50.2 

613.6 60.4 

617.0 70.7 

620.6 80.5 

620.9 81.2 

625.0 91.9 

629.8 102.8 

631.9 107.0 

635.3 113.8 

641.0 124.9 

647.4 135.8 

647.9 136.7 

648.2 137.2 

658.6 153.8 

658.7 153.9 

667.9 167.6 

669.5 170.0 

677.3 181.4 

Table II.11. Model 9 

x y 

605.3 13.3 

606.1 26.7 

607.5 40.0 

609.7 50.2 

610.1 51.8 

612.3 60.4 

615.1 70.8 

618.5 81.3 

621.0 88.0 

622.6 92.1 

627.0 103.2 

632.2 114.4 

632.6 115.3 

638.0 125.7 

644.4 137.7 

647.7 143.4 

653.5 153.2 

658.7 161.6 

662.1 167.0 

669.5 177.9 

671.5 180.6 

680.1 192.0 
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609.8 50.2 
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1503.0 275.3 

1507.0 280.1 

1513.0 288.3 
 

695.8 208.3 

702.3 219.0 

703.0 220.2 

710.0 232.1 

713.0 237.2 

716.9 244.1 

723.3 256.0 

723.7 256.8 

729.8 268.0 

734.5 277.4 

735.9 280.0 

741.9 292.0 
 

 
Table II.9. Model 7 

x y 

605.2 13.3 

605.9 26.7 

607.3 40.0 

610.1 50.1 

610.1 50.2 

613.6 60.4 

617.0 70.7 

620.6 80.5 

620.9 81.2 

625.0 91.9 

629.8 102.8 

631.9 107.0 

635.3 113.8 

641.0 124.9 

647.4 135.8 

647.9 136.7 

648.2 137.2 

658.6 153.8 

658.7 153.9 

667.9 167.6 

669.5 170.0 

677.3 181.4 

Table II.10. Model 8 

x y 

605.2 13.3 

605.9 26.7 

607.3 40.0 

610.1 50.1 

610.1 50.2 

613.6 60.4 

617.0 70.7 

620.6 80.5 

620.9 81.2 

625.0 91.9 

629.8 102.8 

631.9 107.0 

635.3 113.8 

641.0 124.9 

647.4 135.8 

647.9 136.7 

648.2 137.2 

658.6 153.8 

658.7 153.9 

667.9 167.6 

669.5 170.0 

677.3 181.4 

Table II.11. Model 9 

x y 

605.3 13.3 

606.1 26.7 

607.5 40.0 

609.7 50.2 

610.1 51.8 

612.3 60.4 

615.1 70.8 

618.5 81.3 

621.0 88.0 

622.6 92.1 

627.0 103.2 

632.2 114.4 

632.6 115.3 

638.0 125.7 

644.4 137.7 

647.7 143.4 

653.5 153.2 

658.7 161.6 

662.1 167.0 

669.5 177.9 

671.5 180.6 

680.1 192.0 
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680.1 185.7 

686.6 195.3 

691.0 201.5 

695.6 208.3 

702.3 218.6 

703.3 220.2 

710.6 232.1 

713.0 235.8 

718.1 244.0 

723.7 253.8 

725.0 256.0 

731.8 268.0 

734.5 272.6 
 

680.1 185.7 

686.6 195.3 

691.0 201.5 

695.6 208.3 

702.3 218.6 

703.3 220.2 

710.6 232.1 

713.0 235.8 

718.1 244.0 

723.7 253.8 

725.0 256.0 

731.8 268.0 

734.5 272.6 
 

682.3 195.0 

691.0 207.0 

692.0 208.4 

700.1 220.3 

702.4 223.4 

708.0 232.1 

713.1 240.8 

714.9 244.1 

721.6 256.0 

723.7 259.3 

728.8 268.0 

734.5 279.0 
 

 
Table II.12. Model 10 

x y 

1605.0 13.3 

1605.0 26.7 

1606.0 40.0 

1608.0 50.2 

1610.0 60.0 

1610.0 60.5 

1612.0 70.9 

1615.0 81.7 

1617.0 92.8 

1620.0 104.2 

1623.0 112.4 

1624.0 116.0 

1627.0 128.1 

1631.0 140.4 

1635.0 153.1 

1637.0 157.1 

1639.0 165.7 

1643.0 178.0 

1648.0 189.0 

1648.0 190.1 

1653.0 202.1 

Table II.13. Model 11 

x y 

1805.0 13.3 

1805.0 26.7 

1806.0 40.0 

1808.0 50.2 

1810.0 60.5 

1810.0 64.7 

1811.0 71.0 

1814.0 81.7 

1816.0 92.9 

1819.0 104.5 

1822.0 116.3 

1823.0 120.6 

1825.0 128.4 

1829.0 140.6 

1833.0 153.2 

1837.0 164.1 

1837.0 165.6 

1841.0 177.9 

1846.0 190.0 

1848.0 195.0 

1850.0 201.9 

Table II.14. Model 12 

x y 

405.3 13.3 

406.2 26.7 

407.8 40.0 

410.1 48.2 

410.9 50.2 

414.9 60.3 

418.9 70.6 

420.4 74.0 

423.5 81.0 

428.4 91.5 

431.1 96.8 

434.0 102.2 

440.0 112.9 

442.8 117.6 

446.4 123.3 

451.9 131.8 

457.8 140.6 

459.1 142.3 

468.0 154.8 

469.4 156.7 

478.2 168.8 
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1658.0 212.8 

1658.0 213.6 

1662.0 224.4 

1666.0 231.5 

1669.0 235.0 

1672.0 245.9 

1675.0 251.6 

1679.0 257.0 

1684.0 264.1 

1687.0 268.4 

1693.0 276.2 

1696.0 280.2 

1854.0 213.3 

1858.0 220.5 

1860.0 224.4 

1863.0 235.3 

1866.0 241.4 

1870.0 246.1 

1873.0 257.5 

1875.0 263.0 

1880.0 268.7 

1884.0 273.2 

1889.0 280.3 
 

480.2 171.5 

488.2 182.6 

491.0 186.6 

497.2 195.7 

501.9 202.8 

505.3 208.1 

512.8 220.1 

512.9 220.3 

520.2 232.0 

523.7 238.2 

526.8 244.0 

533.1 256.0 
 

 
Table II.15. Model 13 

x y 

205.3 13.3 

206.4 26.7 

208.5 40.0 

210.0 44.9 

212.2 50.2 

217.2 60.3 

220.2 65.7 

222.9 70.5 

228.8 80.7 

230.5 83.6 

235.0 91.0 

240.9 100.2 

241.7 101.3 

248.6 111.4 

251.6 115.6 

255.5 120.9 

260.7 127.7 

262.9 130.7 

269.6 139.3 

272.5 143.0 

280.1 152.5 

283.3 156.5 

Table II. 16. Model 14 

x y 

252.6 6.7 

252.9 13.3 

253.5 20.0 

255.0 24.9 

255.1 25.1 

257.3 30.2 

259.4 35.3 

260.2 37.3 

261.6 40.5 

264.0 45.8 

265.6 49.1 

266.7 51.1 

269.6 56.5 

271.6 60.0 

272.7 61.8 

275.6 66.4 

277.9 69.9 

279.5 72.3 

283.1 77.3 

284.7 79.5 

288.2 84.3 

290.1 86.9 

Table II.17. Model 15 

x y 

605.2 13.3 

605.9 26.7 

607.1 40.0 

609.5 50.6 

610.6 53.9 

612.9 61.3 

616.6 72.6 

621.4 85.6 

625.0 94.5 

628.1 101.2 

628.8 102.9 

641.5 127.5 

644.9 133.3 

656.8 151.9 

665.1 163.5 

676.3 178.9 

684.9 190.4 

695.6 205.7 

703.1 216.8 

711.4 230.9 

719.9 244.9 

725.8 255.5 
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680.1 185.7 

686.6 195.3 

691.0 201.5 

695.6 208.3 

702.3 218.6 

703.3 220.2 

710.6 232.1 

713.0 235.8 

718.1 244.0 

723.7 253.8 

725.0 256.0 

731.8 268.0 

734.5 272.6 
 

680.1 185.7 

686.6 195.3 

691.0 201.5 

695.6 208.3 

702.3 218.6 

703.3 220.2 

710.6 232.1 

713.0 235.8 

718.1 244.0 

723.7 253.8 

725.0 256.0 

731.8 268.0 

734.5 272.6 
 

682.3 195.0 

691.0 207.0 

692.0 208.4 

700.1 220.3 

702.4 223.4 

708.0 232.1 

713.1 240.8 

714.9 244.1 

721.6 256.0 

723.7 259.3 

728.8 268.0 

734.5 279.0 
 

 
Table II.12. Model 10 

x y 

1605.0 13.3 

1605.0 26.7 

1606.0 40.0 

1608.0 50.2 

1610.0 60.0 

1610.0 60.5 

1612.0 70.9 

1615.0 81.7 

1617.0 92.8 

1620.0 104.2 

1623.0 112.4 

1624.0 116.0 

1627.0 128.1 

1631.0 140.4 

1635.0 153.1 

1637.0 157.1 

1639.0 165.7 

1643.0 178.0 

1648.0 189.0 

1648.0 190.1 

1653.0 202.1 

Table II.13. Model 11 

x y 

1805.0 13.3 

1805.0 26.7 

1806.0 40.0 

1808.0 50.2 

1810.0 60.5 

1810.0 64.7 

1811.0 71.0 

1814.0 81.7 

1816.0 92.9 

1819.0 104.5 

1822.0 116.3 

1823.0 120.6 

1825.0 128.4 

1829.0 140.6 

1833.0 153.2 

1837.0 164.1 

1837.0 165.6 

1841.0 177.9 

1846.0 190.0 

1848.0 195.0 

1850.0 201.9 

Table II.14. Model 12 

x y 

405.3 13.3 

406.2 26.7 

407.8 40.0 

410.1 48.2 

410.9 50.2 

414.9 60.3 

418.9 70.6 

420.4 74.0 

423.5 81.0 

428.4 91.5 

431.1 96.8 

434.0 102.2 

440.0 112.9 

442.8 117.6 

446.4 123.3 

451.9 131.8 

457.8 140.6 

459.1 142.3 

468.0 154.8 

469.4 156.7 

478.2 168.8 
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1658.0 212.8 

1658.0 213.6 

1662.0 224.4 

1666.0 231.5 

1669.0 235.0 

1672.0 245.9 

1675.0 251.6 

1679.0 257.0 

1684.0 264.1 

1687.0 268.4 

1693.0 276.2 

1696.0 280.2 

1854.0 213.3 

1858.0 220.5 

1860.0 224.4 

1863.0 235.3 

1866.0 241.4 

1870.0 246.1 

1873.0 257.5 

1875.0 263.0 

1880.0 268.7 

1884.0 273.2 

1889.0 280.3 
 

480.2 171.5 

488.2 182.6 

491.0 186.6 

497.2 195.7 

501.9 202.8 

505.3 208.1 

512.8 220.1 

512.9 220.3 

520.2 232.0 

523.7 238.2 

526.8 244.0 

533.1 256.0 
 

 
Table II.15. Model 13 

x y 

205.3 13.3 

206.4 26.7 

208.5 40.0 

210.0 44.9 

212.2 50.2 

217.2 60.3 

220.2 65.7 

222.9 70.5 

228.8 80.7 

230.5 83.6 

235.0 91.0 

240.9 100.2 

241.7 101.3 

248.6 111.4 

251.6 115.6 

255.5 120.9 

260.7 127.7 

262.9 130.7 

269.6 139.3 

272.5 143.0 

280.1 152.5 

283.3 156.5 

Table II. 16. Model 14 

x y 

252.6 6.7 

252.9 13.3 

253.5 20.0 

255.0 24.9 

255.1 25.1 

257.3 30.2 

259.4 35.3 

260.2 37.3 

261.6 40.5 

264.0 45.8 

265.6 49.1 

266.7 51.1 

269.6 56.5 

271.6 60.0 

272.7 61.8 

275.6 66.4 

277.9 69.9 

279.5 72.3 

283.1 77.3 

284.7 79.5 

288.2 84.3 

290.1 86.9 

Table II.17. Model 15 

x y 

605.2 13.3 

605.9 26.7 

607.1 40.0 

609.5 50.6 

610.6 53.9 

612.9 61.3 

616.6 72.6 

621.4 85.6 

625.0 94.5 

628.1 101.2 

628.8 102.9 

641.5 127.5 

644.9 133.3 

656.8 151.9 

665.1 163.5 

676.3 178.9 

684.9 190.4 

695.6 205.7 

703.1 216.8 

711.4 230.9 

719.9 244.9 

725.8 255.5 
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291.0 166.0 

294.4 170.4 

301.9 180.1 

304.5 183.6 

312.7 195.0 

313.4 196.0 

321.7 208.0 

323.7 211.0 

329.3 220.0 

334.5 229.1 

336.1 232.0 

342.5 244.0 
 

293.2 91.2 

295.5 94.4 

297.8 97.8 

301.0 102.5 

302.0 104.1 

305.8 110.1 

306.5 111.1 

309.5 116.0 

311.9 120.0 

313.0 122.0 

316.2 128.0 

317.3 129.8 

319.5 134.0 

736.3 274.0 

739.6 279.8 

752.2 303.1 

752.6 303.9 

764.8 327.8 

767.5 332.9 

776.9 351.7 
 

 
Table II. 18. Model 16 

x y 

604.8 13.3 

604.6 26.7 

604.6 40.0 

606.7 50.3 

610.1 59.6 

610.4 60.5 

614.6 70.8 

619.6 81.0 

619.9 81.4 

625.6 91.7 

627.5 95.0 

633.5 105.0 

635.4 108.1 

643.0 120.6 

644.7 123.8 

649.8 134.6 

655.2 146.6 

655.6 147.4 

660.1 159.6 

664.1 171.7 

666.5 178.1 

Table II. 19. Model 17 

x y 

605.2 13.3 

605.8 26.7 

606.9 40.0 

609.2 50.6 

610.3 54.1 

612.3 61.3 

615.3 71.9 

618.6 82.6 

621.3 90.2 

622.5 93.4 

626.6 104.2 

631.3 115.1 

633.3 119.3 

636.5 126.0 

642.4 137.5 

647.7 146.9 

650.4 151.3 

658.1 163.3 

658.7 164.1 

667.0 176.1 

668.6 178.2 

Table II. 20. Model 18 

x y 

605.2 13.3 

605.9 26.7 

607.2 40.0 

609.8 50.2 

610.1 51.0 

613.2 60.4 

616.6 70.7 

620.5 81.2 

620.6 81.6 

624.8 91.9 

629.6 102.8 

632.0 107.8 

635.0 113.9 

640.8 125.0 

647.5 136.3 

647.9 136.8 

648.0 137.1 

658.7 153.8 

658.7 153.8 

668.1 167.6 

669.5 169.5 
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668.0 183.8 

670.9 195.8 

673.8 207.8 

676.9 219.8 

677.7 222.8 

679.0 231.9 

680.7 243.9 
 

676.1 187.7 

679.3 191.6 

685.8 199.3 

690.2 204.4 

696.4 211.2 

701.0 216.0 

708.7 223.9 

711.3 226.4 

721.1 235.8 

723.9 238.5 

730.9 245.5 

739.6 253.5 

740.7 254.5 

750.7 263.4 

754.8 267.3 

760.9 273.0 

768.6 280.0 

771.4 282.6 

678.1 181.5 

680.2 184.5 

687.5 195.3 

691.0 200.7 

695.7 208.3 

702.3 219.2 

702.9 220.2 

710.0 232.1 

713.0 237.3 

716.8 244.1 

723.2 256.0 

723.7 256.9 

729.8 268.0 

734.5 277.4 

735.9 280.0 

741.9 292.0 
 

 
Table II. 21. Model 19 

x y 

605.3 13.3 

606.1 26.7 

607.6 40.0 

609.3 50.2 

610.1 55.0 

611.1 60.4 

613.3 70.9 

615.9 81.6 

619.3 92.5 

621.6 99.3 

623.3 103.8 

627.6 115.3 

632.7 127.0 

634.5 130.6 

638.4 139.1 

645.1 152.6 

Table II. 22. Model 20 

x y 

605.2 13.3 

606.0 26.7 

607.4 40.0 

610.1 49.5 

610.4 50.2 

614.0 60.4 

617.6 70.7 

620.5 78.1 

621.7 81.1 

626.2 91.8 

631.2 102.5 

631.6 103.2 

636.9 113.5 

643.0 124.4 

645.4 128.4 

649.5 135.1 

Table II. 23. Model 21 

x y 

605.2 13.3 

605.9 26.7 

607.2 40.0 

610.0 50.2 

610.1 50.3 

613.6 60.4 

616.9 70.7 

620.6 80.9 

620.7 81.2 

625.0 91.9 

629.9 102.7 

631.9 106.6 

635.4 113.7 

641.2 124.7 

647.3 135.2 

647.9 136.2 
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291.0 166.0 

294.4 170.4 

301.9 180.1 

304.5 183.6 

312.7 195.0 

313.4 196.0 

321.7 208.0 

323.7 211.0 

329.3 220.0 

334.5 229.1 

336.1 232.0 

342.5 244.0 
 

293.2 91.2 

295.5 94.4 

297.8 97.8 

301.0 102.5 

302.0 104.1 

305.8 110.1 

306.5 111.1 

309.5 116.0 

311.9 120.0 

313.0 122.0 

316.2 128.0 

317.3 129.8 

319.5 134.0 

736.3 274.0 

739.6 279.8 

752.2 303.1 

752.6 303.9 

764.8 327.8 

767.5 332.9 

776.9 351.7 
 

 
Table II. 18. Model 16 

x y 

604.8 13.3 

604.6 26.7 

604.6 40.0 

606.7 50.3 

610.1 59.6 

610.4 60.5 

614.6 70.8 

619.6 81.0 

619.9 81.4 

625.6 91.7 

627.5 95.0 

633.5 105.0 

635.4 108.1 

643.0 120.6 

644.7 123.8 

649.8 134.6 

655.2 146.6 

655.6 147.4 

660.1 159.6 

664.1 171.7 

666.5 178.1 

Table II. 19. Model 17 

x y 

605.2 13.3 

605.8 26.7 

606.9 40.0 

609.2 50.6 

610.3 54.1 

612.3 61.3 

615.3 71.9 

618.6 82.6 

621.3 90.2 

622.5 93.4 

626.6 104.2 

631.3 115.1 

633.3 119.3 

636.5 126.0 

642.4 137.5 

647.7 146.9 

650.4 151.3 

658.1 163.3 

658.7 164.1 

667.0 176.1 

668.6 178.2 

Table II. 20. Model 18 

x y 

605.2 13.3 

605.9 26.7 

607.2 40.0 

609.8 50.2 

610.1 51.0 

613.2 60.4 

616.6 70.7 

620.5 81.2 

620.6 81.6 

624.8 91.9 

629.6 102.8 

632.0 107.8 

635.0 113.9 

640.8 125.0 

647.5 136.3 

647.9 136.8 

648.0 137.1 

658.7 153.8 

658.7 153.8 

668.1 167.6 

669.5 169.5 
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668.0 183.8 

670.9 195.8 

673.8 207.8 

676.9 219.8 

677.7 222.8 

679.0 231.9 

680.7 243.9 
 

676.1 187.7 

679.3 191.6 

685.8 199.3 

690.2 204.4 

696.4 211.2 

701.0 216.0 

708.7 223.9 

711.3 226.4 

721.1 235.8 

723.9 238.5 

730.9 245.5 

739.6 253.5 

740.7 254.5 

750.7 263.4 

754.8 267.3 

760.9 273.0 

768.6 280.0 

771.4 282.6 

678.1 181.5 

680.2 184.5 

687.5 195.3 

691.0 200.7 

695.7 208.3 

702.3 219.2 

702.9 220.2 

710.0 232.1 

713.0 237.3 

716.8 244.1 

723.2 256.0 

723.7 256.9 

729.8 268.0 

734.5 277.4 

735.9 280.0 

741.9 292.0 
 

 
Table II. 21. Model 19 

x y 

605.3 13.3 

606.1 26.7 

607.6 40.0 

609.3 50.2 

610.1 55.0 

611.1 60.4 

613.3 70.9 

615.9 81.6 

619.3 92.5 

621.6 99.3 

623.3 103.8 

627.6 115.3 

632.7 127.0 

634.5 130.6 

638.4 139.1 

645.1 152.6 

Table II. 22. Model 20 

x y 

605.2 13.3 

606.0 26.7 

607.4 40.0 

610.1 49.5 

610.4 50.2 

614.0 60.4 

617.6 70.7 

620.5 78.1 

621.7 81.1 

626.2 91.8 

631.2 102.5 

631.6 103.2 

636.9 113.5 

643.0 124.4 

645.4 128.4 

649.5 135.1 

Table II. 23. Model 21 

x y 

605.2 13.3 

605.9 26.7 

607.2 40.0 

610.0 50.2 

610.1 50.3 

613.6 60.4 

616.9 70.7 

620.6 80.9 

620.7 81.2 

625.0 91.9 

629.9 102.7 

631.9 106.6 

635.4 113.7 

641.2 124.7 

647.3 135.2 

647.9 136.2 
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647.8 157.1 

652.7 166.1 

658.8 176.3 

660.8 179.2 

666.5 192.2 

669.1 197.0 

679.4 204.7 

684.3 208.9 

681.7 219.5 

674.1 221.7 

666.7 218.4 

663.1 214.0 

659.5 202.9 
 

651.1 137.8 

660.5 151.9 

661.8 153.7 

672.7 168.2 

673.0 168.6 

683.9 182.2 

684.4 182.8 

694.5 194.9 

695.0 195.4 

703.9 206.0 

705.9 208.7 

712.0 216.8 

716.6 223.3 

719.6 227.5 

727.4 238.1 

727.5 238.2 

735.7 248.7 

738.3 251.8 
 

648.2 136.7 

657.4 151.9 

658.7 153.9 

664.5 163.0 

670.8 172.8 

672.6 175.7 

681.6 190.5 

682.2 191.6 

691.7 208.0 

692.3 209.0 

700.0 222.6 

702.7 227.6 

707.1 235.7 

713.1 245.9 

714.4 248.0 

722.9 260.0 

723.7 261.0 

732.9 272.0 

734.5 273.9 

744.4 284.0 

745.4 285.0 

756.3 294.7 

757.9 296.0 

767.2 303.3 

774.1 308.0 

778.1 310.6 
 

 
Table II. 24. Model 22 

x y 

605.1 13.3 

605.5 26.7 

606.2 40.0 

608.1 50.2 

610.2 58.8 

610.5 60.4 

612.7 70.9 

615.0 81.6 

Table II. 25. Model 23 

x y 

615.2 10.0 

615.7 20.0 

618.0 30.1 

620.1 36.4 

621.4 40.2 

624.6 50.4 

628.1 60.7 

630.9 67.8 
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617.8 92.7 

621.0 104.1 

622.3 108.4 

624.5 115.8 

628.4 127.8 

632.8 140.1 

636.4 149.1 

638.0 152.8 

643.5 165.4 

648.0 174.5 

649.6 177.7 

656.0 189.7 

658.9 194.6 

663.1 201.5 

669.6 211.6 

670.8 213.3 

679.2 225.1 

680.3 226.5 

688.7 236.8 

691.0 239.5 

698.9 248.4 

701.8 251.5 

710.2 259.9 

712.7 262.3 

722.7 271.4 

723.6 272.2 

734.5 281.3 

736.4 282.9 

745.4 289.8 

751.6 294.3 

756.3 297.4 

767.2 304.3 

769.5 305.7 

632.2 70.8 

636.6 80.7 

640.7 89.0 

641.3 90.2 

647.4 101.3 

649.6 105.0 

654.7 113.2 

660.0 121.4 

662.3 124.9 

669.9 136.1 

670.0 136.2 

676.1 144.9 

682.0 153.2 

683.7 155.5 

690.4 164.9 

694.4 170.7 

700.1 179.0 

703.5 184.2 

710.7 196.1 

711.4 197.2 

718.6 210.0 

721.6 215.0 

725.5 222.7 

731.3 235.4 

732.7 237.9 

737.4 248.0 
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647.8 157.1 

652.7 166.1 

658.8 176.3 

660.8 179.2 
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679.4 204.7 

684.3 208.9 
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674.1 221.7 

666.7 218.4 
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727.5 238.2 

735.7 248.7 
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Shear Databases 
 
 
This appendix includes several collections of shear test data which have been 
used in this research for different purposes. Considering the fact that great 
efforts have been made by other researchers to collect the shear test data from 
literature. It is the intention to make the maximum use of those databases. In this 
appendix, the ACI-DAfStd database is employed as a reference, it is the most 
updated and comprehensive database by the time this dissertation is written. All 
the tests in that database, which the shear evaluation procedure presented in 
Chapter 4 is applicable to, are listed in this appendix. The criteria are as follow: 
 Normal rebar type, max > 6 mm; 
 Effective depth d > 100 mm; 
 Flexural shear failure mode (a/d > 2.5 and no shear compression failure is 

reported); 
 Prismatic cross section; 

In total 668 tests are included in this collection. Even with the whole set of the 
data, model is still able to deliver very good accuracy. The COV of Vcal/Vu for 
the whole data set is as low as 13.8% (excluding the 8 tests from Sneed). Never-
theless, as pointed out in Section 2.4, evaluating a model with unselected data 
may lead to unjustified conclusions. Therefore, that conclusion is not discussed 
in the main text. 

The test number listed in Table III.1. is consistent with the ACI-DAfStd, for 
readers who want to check additional information of the data or the original 
reference, the paper (Reineck, Bentz et al. 2013) is referred to. The information 
that is included in the tables are: 
 The number of the test in ACI-DAfStd database when applicable; 
 The reference of the tests in author-year format; 
 The name of the test in the reference; 
 The width of the test specimen b; 
 The length of the critical shear span of the test specimen (centre to centre 

distance between loading point to support in case of simply supported 
beams; 
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 The length of the critical shear span of the test specimen (centre to centre 

distance between loading point to support in case of simply supported 
beams; 
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 The maximum M/Vd in the critical shear span, equivalent to a/d for simply 
supported beams; 

 The effective depth of the specimen d; 
 The mean concrete compressive strength fcm; 
 The reinforcement ratio s; 
 The actual rebar configuration of the specimen; 
 The measured ultimate shear force Vu; 
 The calculate shear capacity Vcal with the evaluation procedure presented in 

this research; 
 The ratio between Vcal /Vu; 
 The data collection where that data point is used in this dissertation. 
 The span of beams with uniformly distributed loads L; 
 The ratio between the sagging moment and the maximum moment differ-

ence in the span of a continuous supported beam with uniformly 
distributed load m. 

Other than Table III.1, three more data collections are included in this ap-
pendix, among which, Table III. 2 consists of the additional shear tests with 
point loads which are not included in ACI-DAfStd database but also being used 
in the dissertation; Table III. 3 is a database of shear tests on lightweight aggre-
gate concrete beams; Table III. 4 collects shear tests with uniformly distributed 
load. Because the study is mostly focused on the tests reported by Krefeld and 
Thurston (Krefeld & Thurston 1966), see Section 5.4.3.2, only this set of tests is 
included in this database; Table III. 5 presents the shear tests reported by 
IBBC-TNO (IBBC-TNO 1985) in Section 5.4.4.2. 

The explanations of the abbreviations of databases in the tables are as follow: 
 kf: the adjusted database of König & Fischer (König & Fischer 1995), see 

Section 4.4.2 and 4.6.2. 
 hsc: the collection of tests to evaluation the influence of fracture of aggre-

gate in high strength concrete beams, see Section 4.5.2. 
 d12 - d25: the collection of shear tests on specimens reinforced with single 

type of reinforcement, see Section 4.6.2. The last two digits represent the 
normalized rebar diameter in mm. 

 bw: the data collection to evaluate the influence of specimen width, see 
Section 6.4.4. The original data collection was from the database of Collins 
et.al. in (Collins, Mitchell et al. 2008). The relevant data is selected in the 
ACI-DAfStd. Some of the data points might be missing in the current table. 

 lwa: the collection of shear tests carried out on specimens with lightweight 
aggregate concrete, see Section 4.5.2. In addition, the specimens marked by 
lwar are reference tests on specimens with normal concrete. 
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 The maximum M/Vd in the critical shear span, equivalent to a/d for simply 
supported beams; 

 The effective depth of the specimen d; 
 The mean concrete compressive strength fcm; 
 The reinforcement ratio s; 
 The actual rebar configuration of the specimen; 
 The measured ultimate shear force Vu; 
 The calculate shear capacity Vcal with the evaluation procedure presented in 

this research; 
 The ratio between Vcal /Vu; 
 The data collection where that data point is used in this dissertation. 
 The span of beams with uniformly distributed loads L; 
 The ratio between the sagging moment and the maximum moment differ-

ence in the span of a continuous supported beam with uniformly 
distributed load m. 

Other than Table III.1, three more data collections are included in this ap-
pendix, among which, Table III. 2 consists of the additional shear tests with 
point loads which are not included in ACI-DAfStd database but also being used 
in the dissertation; Table III. 3 is a database of shear tests on lightweight aggre-
gate concrete beams; Table III. 4 collects shear tests with uniformly distributed 
load. Because the study is mostly focused on the tests reported by Krefeld and 
Thurston (Krefeld & Thurston 1966), see Section 5.4.3.2, only this set of tests is 
included in this database; Table III. 5 presents the shear tests reported by 
IBBC-TNO (IBBC-TNO 1985) in Section 5.4.4.2. 

The explanations of the abbreviations of databases in the tables are as follow: 
 kf: the adjusted database of König & Fischer (König & Fischer 1995), see 

Section 4.4.2 and 4.6.2. 
 hsc: the collection of tests to evaluation the influence of fracture of aggre-

gate in high strength concrete beams, see Section 4.5.2. 
 d12 - d25: the collection of shear tests on specimens reinforced with single 

type of reinforcement, see Section 4.6.2. The last two digits represent the 
normalized rebar diameter in mm. 

 bw: the data collection to evaluate the influence of specimen width, see 
Section 6.4.4. The original data collection was from the database of Collins 
et.al. in (Collins, Mitchell et al. 2008). The relevant data is selected in the 
ACI-DAfStd. Some of the data points might be missing in the current table. 

 lwa: the collection of shear tests carried out on specimens with lightweight 
aggregate concrete, see Section 4.5.2. In addition, the specimens marked by 
lwar are reference tests on specimens with normal concrete. 
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Table III. 4. Collection of shear tests with uniformly distributed load from (Krefeld 
and Thurston, 1966). 

No. Name b L d fcm s Rebar Vu Vcal Vcal /Vu fcm 

- - mm mm mm MPa % Config. kN kN -   MPa 

1 4A1 203.2 1829 390.1 29.2 2.06 2 #10 405.2 169.0 140.7 0.83 

2 4B1 203.2 1829 390.1 27.5 2.06 2 #10 438.6 191.2 138.4 0.72 

3 5A1 203.2 1829 390.1 29.4 3.09 3 #10 549.8 213.5 167.1 0.78 

4 5B1 203.2 1829 390.1 29.6 3.09 3 #10 625.4 191.2 167.3 0.87 

5 4A2 203.2 1829 390.1 28.1 2.06 2 #10 428.3 180.1 139.1 0.77 

6 5A2 203.2 1829 390.1 29.4 3.09 3 #10 636.5 180.1 167.0 0.93 

7 11A1 152.4 1829 313.9 27.0 3.42 2 #10 268.7 112.6 101.7 0.90 

8 15A1 152.4 1829 316.0 19.2 1.34 1 #9 156.2 72.5 62.0 0.85 

9 16A1 152.4 1829 239.8 21.0 1.76 1 #9 106.5 58.9 55.2 0.94 

10 17A1 152.4 1829 242.8 18.3 2.10 2 #7 123.4 58.9 51.5 0.87 

11 17B1 152.4 1829 242.8 21.0 2.10 2 #7 129.2 63.4 53.4 0.84 

12 19A1 152.4 1829 239.8 21.2 3.53 2 #9 161.2 85.6 71.2 0.83 

13 3AU 152.4 2438 255.5 22.7 1.99 2 #7 94.1 67.8 50.4 0.74 

14 4AU 152.4 2438 254.0 17.9 2.62 2 #8 91.8 70.0 54.4 0.78 

15 5AU 152.4 2438 252.5 20.6 3.35 2 #9 111.4 72.3 64.7 0.90 

16 2CU 152.4 3048 254.0 20.8 1.31 1 #8 55.4 50.0 42.1 0.84 

17 3CU 152.4 3048 255.5 20.5 1.99 2 #7 72.7 50.0 45.1 0.90 

18 4CU 152.4 3048 254.0 20.5 2.62 2 #8 80.7 56.7 52.1 0.92 

19 5CU 152.4 3048 252.5 20.4 3.35 2 #9 83.8 67.8 59.3 0.87 

20 6CU 152.4 3048 250.4 20.5 4.28 2 #10 78.9 74.5 67.6 0.91 

21 4EU 152.4 3658 254.0 20.2 2.62 2 #8 74.0 56.7 48.6 0.86 

22 5EU 152.4 3658 252.5 19.3 3.35 2 #9 78.5 54.5 54.6 1.00 

23 6EU 152.4 3658 250.4 20.1 4.28 2 #10 69.6 63.4 62.7 0.99 

24 5GU 152.4 4267 252.5 21.3 3.35 2 #9 66.9 56.7 53.1 0.94 

25 4JU 152.4 4877 254.0 22.2 2.62 2 #8 58.0 50.0 45.2 0.90 

26 6U 152.4 1829 252.5 20.4 4.25 2 #10 171.5 85.6 83.2 0.97 

27 4AAU 152.4 1829 254.0 36.4 2.62 2 #8 184.4 90.1 74.5 0.83 

28 6AAU 152.4 1829 250.4 34.4 4.28 2 #10 215.9 90.1 95.6 1.06 

29 4AU 152.4 2438 254.0 31.6 2.62 2 #8 118.5 76.7 64.0 0.83 

30 5AU 152.4 2438 252.5 31.6 3.35 2 #9 133.6 94.5 73.0 0.77 

31 6AU 152.4 2438 250.4 34.1 4.28 2 #10 155.9 90.1 85.0 0.94 

32 4CU 152.4 3048 254.0 32.3 2.62 2 #8 98.5 74.5 59.3 0.80 

33 5CU 152.4 3048 252.5 32.3 3.35 2 #9 96.3 85.6 67.5 0.79 
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No. Name b L d fcm s Rebar Vu Vcal Vcal /Vu fcm 

- - - mm mm mm MPa % Config. kN kN   MPa 

34 6CU 152.4 3048 250.7 36.8 4.28 2 #10 108.7 92.3 79.8 0.86 

35 3AAU 152.4 1829 255.5 12.5 1.99 2 #7 129.2 58.9 47.7 0.81 

36 4AAU 152.4 1829 254.0 12.3 2.62 2 #8 112.7 54.5 54.9 1.01 

37 6AAU 152.4 1829 250.4 13.4 4.28 2 #10 135.0 78.9 73.9 0.94 

38 3AU 152.4 2438 255.5 13.7 1.99 2 #7 98.1 50.0 43.7 0.87 

39 4AU 152.4 2438 254.0 12.7 2.62 2 #8 82.5 45.6 49.4 1.08 

40 6AU 152.4 2438 250.4 12.4 4.28 2 #10 80.3 63.4 64.2 1.01 

41 3CU 152.4 3048 255.5 12.2 1.99 2 #7 60.3 45.6 38.9 0.85 

42 4CU 152.4 3048 254.0 17.1 2.62 2 #8 71.8 50.0 49.4 0.99 

43 5CU 152.4 3048 252.5 14.7 3.35 2 #9 81.6 54.5 54.0 0.99 

44 6CU 152.4 3048 250.4 13.7 4.28 2 #10 72.7 54.5 60.3 1.11 

45 4EU 152.4 3658 254.0 14.3 2.62 2 #8 51.4 45.6 43.9 0.96 

46 5EU 152.4 3658 252.5 15.1 3.35 2 #9 65.1 50.0 50.8 1.02 

47 6EU 152.4 3658 250.4 12.8 4.28 2 #10 62.9 50.0 55.1 1.10 

48 3GU 152.4 4267 255.5 13.5 1.99 2 #7 48.7 40.2 35.5 0.88 

49 5GU 152.4 4267 252.5 11.2 3.35 2 #9 49.6 41.1 44.1 1.07 

50 U 203.2 3048 482.6 21.1 1.55 3 #8 254.3 158.2 107.6 0.68 

51 OU 254.0 3658 455.7 37.2 2.23 4 #9 286.4 216.5 163.8 0.76 

 
 



344 Appendix III 
 

 

Table III. 5. Collection of shear tests with uniformly distributed load from (TNO, 1977). 

No. Name b L d m fcm s Rebar Vu Vcal Vcal /Vu 
- - mm mm mm -  - MPa % Config. kN kN   

1 A1L 150.0 900 150 0.00 20.1 2.05 3Ø14 98.8 88.0 0.89 

2 A1R 150.0 900 150 0.00 20.1 2.05 3Ø14 129.8 93.9 0.72 

3 A2L 150.0 900 150 0.25 22.2 2.05 3Ø14 95.0 82.8 0.87 

4 A2R 150.0 900 150 0.25 22.2 2.05 3Ø14 104.9 81.6 0.78 

5 A3L 150.0 900 150 0.50 21.5 2.05 3Ø14 85.3 58.5 0.69 

6 A3R 150.0 900 150 0.50 21.5 2.05 3Ø14 77.9 70.1 0.90 

7 A4L 150.0 900 150 0.75 23.6 2.05 3Ø14 58.1 83.2 1.43 

8 A4R 150.0 900 150 0.75 23.6 2.05 3Ø14 77.6 53.3 0.69 

9 A5L 150.0 900 150 1.00 24.7 2.05 3Ø14 88.0 57.5 0.65 

10 A5R 150.0 900 150 1.00 24.7 2.05 3Ø14 55.6 66.3 1.19 

11 B1L 150.0 1350 150 0.00 20.2 2.05 3Ø14 56.5 75.0 1.33 

12 B1R 150.0 1350 150 0.00 20.2 2.05 3Ø14 56.5 85.0 1.51 

13 B2L 150.0 1350 150 0.25 20.8 2.05 3Ø14 78.3 50.8 0.65 

14 B2R 150.0 1350 150 0.25 20.8 2.05 3Ø14 66.4 60.8 0.92 

15 B3L 150.0 1350 150 0.50 22.8 2.05 3Ø14 66.8 51.8 0.77 

16 B3R 150.0 1350 150 0.50 22.8 2.05 3Ø14 61.7 66.5 1.08 

17 B4L 150.0 1350 150 0.75 23.9 2.05 3Ø14 52.0 49.5 0.95 

18 B4R 150.0 1350 150 0.75 23.9 2.05 3Ø14 52.0 82.8 1.59 

19 B5L 150.0 1350 150 1.00 20.5 2.05 3Ø14 48.2 94.0 1.95 

20 B5R 150.0 1350 150 1.00 20.5 2.05 3Ø14 60.8 108.9 1.79 

21 C1L 150.0 1800 150 0.00 23.2 2.05 3Ø14 42.5 75.6 1.78 

22 C1R 150.0 1800 150 0.00 23.2 2.05 3Ø14 41.0 85.9 2.10 

23 C2L 150.0 1800 150 0.25 19.5 2.05 3Ø14 51.3 101.0 1.97 

24 C2R 150.0 1800 150 0.25 19.5 2.05 3Ø14 60.3 62.8 1.04 

25 C3R 150.0 1800 150 0.50 26.4 2.05 3Ø14 69.8 54.9 0.79 

26 C4L 150.0 1800 150 0.75 24.3 2.05 3Ø14 53.6 95.1 1.78 

27 C5L 150.0 1800 150 1.00 26.0 2.05 3Ø14 37.4 95.1 2.55 

28 C5R 150.0 1800 150 1.00 26.0 2.05 3Ø14 42.1 87.0 2.07 

29 A10L 150.0 900 150 0.00 24.3 2.05 3Ø14 93.2 86.9 0.93 

30 A10R 150.0 900 150 0.00 24.3 2.05 3Ø14 91.6 79.4 0.87 

31 A50R 150.0 900 150 1.00 25.1 2.05 3Ø14 56.3 79.2 1.41 
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Table III. 5. Collection of shear tests with uniformly distributed load from (TNO, 1977). 

No. Name b L d m fcm s Rebar Vu Vcal 
Vcal/V

u 
‐  ‐  mm  mm  mm  ‐  MPa  %  Config. kN  kN    

1  A1L  150.0  900  150  0.00  20.1  2.05  3Ø14  98.8  88.0  0.89 

2  A1R  150.0  900  150  0.00  20.1  2.05  3Ø14  129.8  93.9  0.72 

3  A2L  150.0  900  150  0.25  22.2  2.05  3Ø14  95.0  82.8  0.87 

4  A2R  150.0  900  150  0.25  22.2  2.05  3Ø14  104.9  81.6  0.78 

5  A3L  150.0  900  150  0.50  21.5  2.05  3Ø14  85.3  58.5  0.69 

6  A3R  150.0  900  150  0.50  21.5  2.05  3Ø14  77.9  70.1  0.90 

7  A4L  150.0  900  150  0.75  23.6  2.05  3Ø14  58.1  83.2  1.43 

8  A4R  150.0  900  150  0.75  23.6  2.05  3Ø14  77.6  53.3  0.69 

9  A5L  150.0  900  150  1.00  24.7  2.05  3Ø14  88.0  57.5  0.65 

10  A5R  150.0  900  150  1.00  24.7  2.05  3Ø14  55.6  66.3  1.19 

11  B1L  150.0  1350  150  0.00  20.2  2.05  3Ø14  56.5  75.0  1.33 

12  B1R  150.0  1350  150  0.00  20.2  2.05  3Ø14  56.5  85.0  1.51 

13  B2L  150.0  1350  150  0.25  20.8  2.05  3Ø14  78.3  50.8  0.65 

14  B2R  150.0  1350  150  0.25  20.8  2.05  3Ø14  66.4  60.8  0.92 

15  B3L  150.0  1350  150  0.50  22.8  2.05  3Ø14  66.8  51.8  0.77 

16  B3R  150.0  1350  150  0.50  22.8  2.05  3Ø14  61.7  66.5  1.08 

17  B4L  150.0  1350  150  0.75  23.9  2.05  3Ø14  52.0  49.5  0.95 

18  B4R  150.0  1350  150  0.75  23.9  2.05  3Ø14  52.0  82.8  1.59 

19  B5L  150.0  1350  150  1.00  20.5  2.05  3Ø14  48.2  94.0  1.95 

20  B5R  150.0  1350  150  1.00  20.5  2.05  3Ø14  60.8  108.9  1.79 

21  C1L  150.0  1800  150  0.00  23.2  2.05  3Ø14  42.5  75.6  1.78 

22  C1R  150.0  1800  150  0.00  23.2  2.05  3Ø14  41.0  85.9  2.10 

23  C2L  150.0  1800  150  0.25  19.5  2.05  3Ø14  51.3  101.0  1.97 

24  C2R  150.0  1800  150  0.25  19.5  2.05  3Ø14  60.3  62.8  1.04 

25  C3R  150.0  1800  150  0.50  26.4  2.05  3Ø14  69.8  54.9  0.79 

26  C4L  150.0  1800  150  0.75  24.3  2.05  3Ø14  53.6  95.1  1.78 

27  C5L  150.0  1800  150  1.00  26.0  2.05  3Ø14  37.4  95.1  2.55 

28  C5R  150.0  1800  150  1.00  26.0  2.05  3Ø14  42.1  87.0  2.07 

29  A10L  150.0  900  150  0.00  24.3  2.05  3Ø14  93.2  86.9  0.93 

30  A10R  150.0  900  150  0.00  24.3  2.05  3Ø14  91.6  79.4  0.87 

31  A50R  150.0  900  150  1.00  25.1  2.05  3Ø14  56.3  79.2  1.41 

 

194  5.4 Uniformly Distributed Load 
 

 

 
 

Fig. 5.23. Crack pattern of simply supported beams loaded by uniformly distributed 
load ((Leonhardt & Walther 1962). 
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Shear loading on structures has been recognized as 
one of the most relevant actions determining structural 
safety since the 19th century. In the case of reinforced 
concrete structures, despite the great efforts that have 
been made through experimental and theoretical 
research over many years, the nature of the shear 
failure process of a reinforced concrete beam without 
shear reinforcement has always, for a substantial part, 
remained a riddle. The present research work takes a 
new look at this old problem. The mechanism of flexural 
shear failure for a reinforced concrete beam without 
shear reinforcement is explained fundamentally, based 
on which a new failure criterion is proposed. The study 
leads to a shear evaluation procedure that is in excellent 
agreement with test results.


