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Abstract
Physics-informed neural networks (PINNs) have recently become a powerful tool for solving partial differential equations 
(PDEs). However, finding a set of neural network parameters that fulfill a PDE at the boundary and within the domain of 
interest can be challenging and non-unique due to the complexity of the loss landscape that needs to be traversed. Although a 
variety of multi-task learning and transfer learning approaches have been proposed to overcome these issues, no incremental 
training procedure has been proposed for PINNs. As demonstrated herein, by developing incremental PINNs (iPINNs) we can 
effectively mitigate such training challenges and learn multiple tasks (equations) sequentially without additional parameters 
for new tasks. Interestingly, we show that this also improves performance for every equation in the sequence. Our approach 
learns multiple PDEs starting from the simplest one by creating its own subnetwork for each PDE and allowing each subnet-
work to overlap with previously learned subnetworks. We demonstrate that previous subnetworks are a good initialization 
for a new equation if PDEs share similarities. We also show that iPINNs achieve lower prediction error than regular PINNs 
for two different scenarios: (1) learning a family of equations (e.g., 1-D convection PDE); and (2) learning PDEs resulting 
from a combination of processes (e.g., 1-D reaction–diffusion PDE). The ability to learn all problems with a single network 
together with learning more complex PDEs with better generalization than regular PINNs will open new avenues in this field.

Keywords Physic-informed neural networks (PINNs) · Scientific machine learning (SciML) · Incremental learning · 
Sparsity

1 Introduction

Deep neural networks (DNNs) play a central role in scien-
tific machine learning (SciML). Recent advances in neural 
networks find applications in real-life problems in physics 
[1–4], medicine [5–7], finance [8–11], and engineering 
[12–15]. In particular, they are also applied to solve Ordi-
nary Differential Equations and Partial Differential Equa-
tions (ODEs/PDEs) [16–20]. Consider the following PDE,

where F  is a differential operator, B is a boundary condi-
tion operator, h(�) is an initial condition, and Ω is a bounded 
domain.

The first neural network-based approaches incorporated 
a form of the equation into the loss function with initial 
and boundary conditions included as hard constraints [21, 
22]. However, these works used relatively small neural 
networks with one or two hidden layers. On the contrary, 
PINNs [20] encode initial and boundary conditions as soft 
constraints into the loss function of a DNN. Subsequently, 
PINNs and their extensions found applications in fluid 
mechanics [23–25], inverse problems [26–28] and finance 
[20, 29]. Later, the generalized version of PINNs, called 
XPINNs [30], was proposed by decomposing the domain 
into multiple subdomains. However, this method uses as 

(1)F[u(�, t)] = f (�), � ∈ Ω, t ∈ (t0, T],

(2)B[u(�, t)] = b(�), � ∈ �Ω,

(3)u(�, t0) = h(�), � ∈ Ω,
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many networks as the number of subdomains, increasing 
the algorithm’s complexity. Almost simultaneously with 
our work, Multi-head PINNs (MH-PINNs) [31] have been 
proposed as a multi-task and meta-learning approach for 
PINNs that is employed to learn stochastic processes, 
synergistic learning of PDEs and uncertainty quantifica-
tion. MH-PINNs have a shared part of the network and 
task-specific output heads for prediction. Therefore, it 
uses additional parameters for every head, increasing the 
model’s size with respect to the number of tasks, without 
sharing knowledge between them. In addition, the param-
eters in MH-PINN are shared between all tasks in the non-
output layer, which is a limitation if the tasks are very 
different as the authors noted [31]. Other meta-learning 
approaches were also employed in the context of PINNs 
[32, 33]. However, meta-learning literature focuses on 
obtaining good initialization for a new task given some 
tasks for pretraining. Unfortunately, once the network is 
adapted to a new task, it loses the ability to solve the previ-
ous ones, i.e. it undergoes catastrophic forgetting of other 
tasks. We take a different route inspired by the incremental 
learning and continual (or lifelong) learning literature, as 
discussed below.

Background and main challenges PINNs formulate the 
PDE solution problem by including initial and boundary con-
ditions into the loss function of a neural network as soft con-
straints. Let us denote the output of the network N  with learn-
able parameters � as û(𝜃, �, t) = N(𝜃;�, t) . Then sampling the 
set of collocation points, i.e. a set of points in the domain, 
CP = {(xi, ti) ∶ xi ∈ int Ω, ti ∈ (t0, T], i = 1, 2,…NF} , the 
set of initial points IP = {(xj, t0) ∶ xj ∈ �Ω, j = 1, 2,… ,Nu0

} 
a n d  t h e  s e t  o f  b o u n d a r y  p o i n t s 
BP = {(xk, tk) ∶ xk ∈ �Ω, tk ∈ (t0, T], k = 1, 2,… ,Nb} one 
can write the optimization problem and loss function arising 
from PINNs as follows:

(4)L(�) = LF(�) + Lu0
(�) + Lb(�) → min

�
,

However, sometimes PINNs struggle to learn the ODE/
PDE dynamics [34–37] (see Fig. 1). Wight and Zhao [38] 
proposed several techniques to improve the optimiza-
tion process compared to the original formulation: mini-
batch optimization and adaptive sampling of collocation 
points. Adaptive sampling in time, splits the time interval 
[t0, T] = ∪K

k=0
[tk−1, tk], tK = T , and solves an equation on the 

first interval [t0, t1] , then on [t0, t2] , and so on up to [t0, T] . 
Thus, if a solution can be found on a domain Ω × [t0, tk−1] , 
then the network is pretrained well for the extended domain 
Ω × [t0, tk] . Krishnapriyan et al. [35] proposed the seq2seq 
approach that splits the domain into smaller subdomains in 
time and learns the solution on each of the subdomains with 
a separate network. Thus, both adaptive sampling in time 
and seq2seq are based on the idea of splitting the domain 
into multiple subdomains, on which solutions can be learned 
more easily.

As explained in [36], improving PINN’s solutions by 
considering small subdomains is possible because the loss 
residuals ( LF term) can be trivially minimized in the vicinity 
of fixed points, despite corresponding to nonphysical system 
dynamics that do not satisfy the initial conditions. Therefore, 
the reduction of the domain improves the convergence of the 
optimization problem (4) and helps to escape nonphysical 
solutions.

Despite the popularity of DNNs, and PINNs in particular, 
there are few incremental learning algorithms available in 
SciML literature. Yet, incremental learning and continual 

(5)

LF(𝜃) =
1

NF

NF∑

i=1

||||F[û(𝜃, x
i, ti)] − f (xi)||||

2
, (xi, ti) ∈ CP,

(6)Lu0
(𝜃) =

1

Nu0

Nu0∑

j=1

||||û(𝜃, x
j, t0) − h(xj)||||

2
, (xj, t0) ∈ IP,

(7)

Lb(𝜃) =
1

Nb

Nb∑

k=1

||||B[û(𝜃, x
k, tk)] − b(xk)||||

2
, (xk, tk) ∈ BP.

Fig. 1  1-D reaction equation 
with parameter � = 5 (see P1.2)
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learning algorithms [39–41] are capable of handling tasks 
sequentially, instead of altogether as in multi-task learning 
and other strategies. Moreover, they are still capable of not 
forgetting how to solve all of the previously learned tasks. 
If tasks have some similarities with each other, new tasks 
have the potential of being learned better (i.e., faster or with 
lower testing error) with the help of previously learned ones. 
The goal of this work is to propose an incremental learning 
algorithm for PINNs such that similar symbiotic effects can 
be obtained.

Our contribution We propose incremental PINNs (iPINNs) 
and implement this strategy by creating one subnetwork per 
task such that a complete neural network can learn multiple 
tasks sequentially without forgetting of previous tasks. Each 
subnetwork Ni has its own set of parameters 𝜃i ⊂ 𝜃 , and the 
model is trained sequentially on different tasks. A subnet-
work for a new task can overlap with all previous subnet-
works, which helps to assimilate the new task. As a result, 
the network consists of overlapping subnetworks, while the 
free parameters can be used for future tasks. To illustrate the 
benefits of the algorithm we consider two problem formula-
tions (Sect. 3). Firstly, we learn a family of equations (e.g., 
convection) starting from a simple one and incrementally 
learning new equations from that family. Secondly, we learn 
a dynamical system that consists of two processes (e.g., reac-
tion–diffusion) by first learning the individual components 
of the process. Both scenarios demonstrate that the incre-
mental approach enables an iPINN network to learn for cases 
where regular PINNs fail. To the best of our knowledge, this 
is the first example where one network can sequentially learn 
multiple equations without extending its architecture and be 
able to provide solutions to all previously seen PDEs without 
forgetting them, with the added benefit that performance is 
significantly improved.

2  Related work

Our methodology is based on creating sparse network repre-
sentations and, similarly to other PINN research, is sensitive 
to the choice of activation functions. We briefly highlight 
key related work herein.

Sparse network representation Sparse architectures 
are often advantageous compared to dense ones [42–45]. 
According to the lottery ticket hypothesis (LTH) [46], every 
randomly initialized network contains a subnetwork that can 
be trained in isolation to achieve comparable performance 
as the original network. Based on this observation, the idea 
of using subnetworks has been adopted in continual learn-
ing [47–49]. In this paradigm, every subnetwork created is 
associated with a particular task and used only for this task 

to make a prediction. One of the approaches to find these 
tasks-related subnetworks is connections’ pruning [50–54] 
that removes unimportant parameters while exhibiting simi-
lar performance.

Choice of the activation function There are several studies 
that investigate how different activation functions affect the 
performance of neural networks in classification and regres-
sion tasks [55, 56]. It was shown that ReLU [57] activation 
function which can be powerful in classification tasks, in the 
case of physics-informed machine learning (PIML) regres-
sion, may not be the optimal choice. Meanwhile, hyperbolic 
tangent (tanh) or sine (sin) perform well for PIML. Sinu-
soidal representation networks (SIRENs) [58] tackle the 
problem of modeling the signal with fine details. Special 
weights initialization scheme combined with sin activation 
function allows SIREN to learn complex natural signals. 
Hence, we use sin activation function in our experiments. 
In Sect. 6.1, we provide the comparison in results between 
the discussed activation functions.

Curriculum and transfer learning One possible approach 
for mitigating training difficulties in PINNs is transfer learn-
ing which is commonly used in computer vision and natural 
language processing [59–62]. It tries to improve the optimi-
zation process by starting with better weight initialization. In 
PINNs, transfer learning is also successfully used to acceler-
ate the loss convergence [63–66]. For instance, Chen et al. 
[67] apply transfer learning to learn different PDEs faster by 
creating tasks and changing coefficients or source terms in 
equations. Analogously, curriculum regularization (similar 
to curriculum learning [68]) is proposed in [35] to find good 
initial weights. However, in all these scenarios the PINN 
experiences forgetting, i.e. it loses the ability to generalize 
on the tasks used in pretraining. The proposed iPINN does 
not have this issue, maintaining the ability to remember solu-
tions for all given PDEs.

3  Problem formulation

We focus on two scenarios: (1) incremental PINNs learning, 
where the network sequentially learns several equations from 
the same family; and (2) learning a combination of multiple 
equations that create another physical process. To illustrate 
these cases, we consider one-dimensional convection, reac-
tion and reaction–diffusion problems with periodic boundary 
conditions.

3.1  Scenario 1: Equation incremental learning

We consider the problem of learning the sequence of equations 
that belong to one family:
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where Fk, k = 1, 2,… are differential operators from the 
same family of equations.

In this case, every task k  is associated with 
Dk = {(x, t, k) ∶ x ∈ [0, 2�], t ∈ [t0, T], k ∈ ℕ} . Following 
[35], we take h1(x) = sin x and h2(x) = e

−
(x−�)2

2(�∕4)2.

3.2  Scenario 2: Combination of multiple equations

We also consider the case when a dynamic process consists of 
multiple components. Let us consider the reaction–diffusion 
equation:

where t ∈ [0, 1], x ∈ [0, 2𝜋], 𝜈, 𝜌 > 0 . This process consists 
of two parts: reaction term (� = 0) : −�u(1 − u) and diffusion 
term (� = 0) : −� �2u

�x2
 . Therefore, we construct one task as the 

reaction, another one as the diffusion, and the final one as the 
reaction–diffusion. We can change the order of the reaction 
tasks and diffusion tasks to show the robustness of incre-
mental learning. The reaction–diffusion task should be the 
last one since our goal is first to learn the components of the 
system and only then the full system.

Considering these two problems, we want to show that 
better generalization can be achieved by pretraining the net-
work with simpler related problems rather than by dividing 
the domain into smaller subdomains. In the following section, 
we show how one network can incrementally learn different 
equations without catastrophic forgetting.

4  Proposed method

The proposed method needs to be applicable to both types 
of problems P1 and P2. However, these problems cannot be 
solved by one network with the same output head for every 

(P1)Fk[u(x, t)] = 0, x ∈ Ω, t ∈ [t0, T], k = 1, 2,… ,

1-D convection equation

∂u

∂t
+ βk

∂u

∂x
= 0, (P1.1)

u(x, 0) = h1(x),
u(0, t) = u(2π, t),

1-D reaction equation

∂u

∂t
− ρku(1− u) = 0, (P1.2)

u(x, 0) = h2(x),
u(0, t) = u(2π, t),

(P2)

�u

�t
− �

�2u

�x2
− �u(1 − u) = 0,

u(x, 0) = h2(x),

u(0, t) = u(2�, t),

different task, since Fi[u(x, t)] ≠ Fj[u(x, t)] for i ≠ j and 
x ∈ Ω, t ∈ (t0, T] . Instead, the incremental learning algo-
rithm we propose (iPINNs) focuses on learning task-specific 

subnetworks N1,N2, ...,Nk, ... for each task k. By creating 
PDE-specific subnetworks we can encode multiple solution 
in one network since not all parameters are shared between 
PDEs, and as a result we parameterize a solution of equa-
tion k with its own subnetwork Nk . Moreover, we achieve 
the ability to learn multiple PDEs without extension of the 
underlying architecture or using multiple networks.

We start by creating the above-mentioned subnetworks 
using an iterative pruning algorithm that we developed 
called NNrelief [54]. Other pruning strategies could be con-
sidered, without loss of generality—see Remark 1.

Remark 1 In principle, any connections pruning algorithm or 
any other approach that is able to find and train sparse net-
work representations is suitable for the iPINNs strategy we 
propose herein. However, most pruning algorithms aim at 
reducing memory requirements or reducing inference time, 
instead of aiming at subnetwork creation with the smallest 
number of neuron connections. NNrelief was developed with 
this in mind, so it creates sparser subnetworks for a given 
performance level when compared to state-of-the-art meth-
ods, as we showed in the original article [54] for multiple 
datasets. This makes it particularly interesting for iPINNs, as 
the subnetworks we generate are smaller and leave additional 
free connections for subsequent incremental training.

NNrelief consists of three steps: (1) training the network 
on the current task; (2) pruning unimportant connections 
based on a proposed criterion (importance scores, as dis-
cussed next and also detailed in the original article); and (3) 
retraining the network to obtain satisfactory performance. 
Steps 2 and 3 (pruning and retraining) can be repeated more 
than once, although in our experience it is not necessary 
to repeat it more than 3 times for the network to achieve 
similar or better performance than before pruning it [54]. 
NNrelief achieves the highest number of pruned parameters 
(connections) reported to date for different state-of-the-art 
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neural network architectures trained on MNIST [50], 
CIFAR-10/100 [69] and Tiny-ImageNet [70]. The method 
has the particular characteristic of using input data to esti-
mate the contribution of every connection to the neuron in 
the pretrained network and then deleting the least important 
connections.

For an output signal Y(l−1) = {�
(l−1)

1
, �

(l−1)

2
,… , �

(l−1)

N
} cor-

r e s p o n d i n g  t o  N  s a m p l e s ,  w h e r e 
�
(l−1)
n

= (y
(l−1)

n1
, y

(l−1)

n2
,… , y(l−1)

nm
)t ∈ ℝ

m and m is the number 
of neurons in layer l − 1 , NNrelief computes the average 
strength of a signal that passes through every connection. 
Thus, the average signal strength between neuron i of layer 
l − 1 and neuron j of layer l is computed as follows: 
���w

(l)

ij
y
(l−1)

i

��� ∶=
1

N

∑N

n=1

���w
(l)

ij
y
(l−1)

ni

��� , where w(l)

ij
 is a weight 

parameter for the corresponding connection. Then the 
importance score for this connection is defined as:

(8)s
(l)

ij
=

���w
(l)

ij
y
(l−1)

i

���
∑m

k=1

���w
(l)

kj
y
(l−1)

k

��� +
���b

(l)

j

���

,

where b(l)
j

 is a bias parameter for neuron j of layer l. For 
every neuron j, connections i∗ with the smallest value of the 
importance score s(l)

i∗j
 are deleted. The fraction of pruned 

parameters is defined with � ∈ (0, 1) , where the sum of the 
remaining importance s(l)

ij
 is at least � . Therefore, the smaller 

value of � results in a higher number of pruned parameters. 
The pseudocode is shown in Algorithm 1.

Algorithm 1  Pseudocode for NNrelief

Require: network N , training dataset D = {yi = (xi, ti), i = 1, 2, . . . , N},
pruning hyperparameter α.

1: Y(0) ← D
2: for every layer l = 1, . . . , L do
3: Y(l) ← layer Y(l−1)

)

4: for every neuron j in layer l do
5: Compute importance scores s(l)ij for every incoming connection wij

and bias bj using Eq. 8.
6: ŝ

(l)
ij ← Sort(s(l)ij , order = descending).

7: Find p0 = min{p :
∑p

i=1 ŝ
(l)
ij ≥ α}.

8: Prune connections with importance score s
(l)
ij < ŝ

(l)
p0j

.
9: end for

10: end for

Fig. 2  An example of iPINNs with two PDEs: every subnetwork 
corresponds to only one task (PDE). Colors represent belonging of 
connections to different tasks (PDEs): red for task 1, blue for task 2, 
magenta for both tasks, and black for not assigned connections (col-
our figure online)
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An important concept in the proposed iPINN strategy is 
that the pruning method is used to train task-specific subnet-
works, but allowing the subnetworks to naturally overlap on 
some connections (see Fig. 2). This way the method provides 
knowledge sharing between the subnetworks. These overlaps 
are updated with respect to all tasks that are assigned to a 
particular connection. Let us denote the loss of each task Dj 
as Lj = L(�j;Dj) , where �j is the parameter vector for task Dj , 
1 ≤ j ≤ k . Then the total loss and its gradient with respect to 
a parameter w can be written as:

because if w ∉ Nj , then �Lj

�w
= 0.

(9)L =

k∑

j=1

Lj,

(10)
�L

�w
=

k∑

j=1

�Lj

�w
=

∑

j∶ w∈Nj

�Lj

�w
,

Algorithm 2 includes the pseudocode for iPINNs. For 
every new task k that enters the network, we first find a cor-
responding subnetwork Nk with NNrelief (line 4 of Algo-
rithm 2), then adapt the overlaps between previous subnet-
works N1,N2,… ,Nk−1 and a new one Nk (line 5 of the 
Algorithm 2). We can prune a (sub)network multiple times 
(hyperparameter num_iters ) to achieve a lower sparsity level, 
however, this is computationally expensive. Therefore we 
prune every network only once and control the sparsity level 
with parameter �. 

Algorithm 2  PINN incremental learning: adding new task k 

Require: neural network N , training datasets D1,D2, . . . ,Dk−1 and Dk,
training hyperparameters, pruning hyperparameters (num iters, α).

1: Nk ← N � set full network as a subnetwork
2: Train N1,N2, . . . ,Nk on tasks D1,D2, . . . ,Dk using Eq. 10. � training

step
3: for it = 1, 2, . . . , num iters do � repeat pruning
4: Nk ← NNrelief(Nk,Dk, α) � pruning step: Algorithm 1
5: Retrain subnetworksN1,N2, . . . ,Nk on tasks D1,D2, . . . ,Dk using Eq.

10. � retraining step
6: end for

Remark 2 The pruning strategy allows us to have more flexi-
ble variation in parameter sharing because we can keep task-
specific parameters within a subnewtork that are not shared 
with other subnetworks, but we can also keep parameters 
that are shared among different subnetworks. Task-specific 
parameters are shown by the red and blue connections in 
Fig. 2, and they result from pruning the entire network and 
training free connections (in black) that are unused. The 
magenta connections in Fig. 2 highlight cases where their 
parameters are being shared across different tasks, and they 
result from the pruning algorithm not removing those con-
nections when training for a new task.

The main advantage of the proposed approach is that a 
neural network learns all tasks (equations) that were given 
during training and not only the last one. This is achieved 
by constantly replaying old data. Data for previous tasks 
is easily available by sampling collocation points, which 

eliminates all issues of data replaying for continual learning 
problems in computer vision and natural language process-
ing tasks and makes the algorithm well-suited in the con-
text of PINNs. We want to emphasize that iPINN does not 
need to know how many tasks will be handled overall, and it 
accesses only those that were considered up to task k inclu-
sive, which distinguishes it from multi-task learning. In the 
next section, we experimentally show that pretrained parts 
of the network help to improve the convergence process.

5  Numerical experiments

Our findings illustrate the advantage of Algorithm 2 over 
regular PINNs [20]. The Algorithm allows the network to 
learn multiple equations (P1) from the same family. Fur-
thermore, by starting with simpler tasks, the network can 
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subsequently learn more complex ones that cannot be 
learned in isolation.

Experiments setup Let us start by examining the proposed 
algorithms on the convection and reaction equations with 
periodic boundary conditions (P1). Following the setup in 
[35], we use a four-layer neural network with 50 neurons 
per layer. We use 1000 randomly selected collocation points 
on every time interval between 0 and 1 for LF  . Adam is 
used as the optimizer [71] with a learning rate of 0.01 and 

20,000 epochs to train the model before and after pruning. 
We divide the learning rate by 3 every 500 epochs in which 
the loss does not decrease. We repeat our experiments multi-
ple times with different random initializations of the network 
parameters and show the average values of error. We also 
compare our approach with curriculum training [35] and use 
the same total number of training epochs for both curriculum 
regularization and iPINNs.

To evaluate the performance of the algorithms we com-
pare the final error after the last task. In addition, following 
continual learning literature [72], we compare backward 
and forward transfer metrics. Let us denote the test set as 
Dtest = {(xi, ti, l) ∶ xi ∈ [0, 2�], ti ∈ [0, 1], l is the task-ID} 
and N = #Dtest , the solution of the equation at the point 
(xi, ti, l) as �i

l,k
= ui

l,k
(xi, ti) , and �̂i

l,k
 is a prediction of the 

model at point (xi, ti, l) after task Dk is learned. Relative and 
absolute errors are denoted as rl,k and �l,k , respectively, as 
they are calculated for task l after task k is learned ( l ≤ k).

(11)Relative error: rl,k =
||�l − �̂l,k||2

||�l||2
× 100%,

(12)Absolute error: 𝜀l,k =
1

N

N∑

i=1

|�i
l
− �̂

i
l,k
|,

(13)Backward Transfer: BWT =
1

k − 1

k−1∑

l=1

�l,k − �l,l or

(14)BWT =
1

k − 1

k−1∑

l=1

rl,k − rl,l

Table 1  Final error and forgetting after all reaction equations are 
learned

Bold values indicate better performance

Regular PINN [20] Curriculum 
training [35]

iPINN (ours)

� = 1

  abs. err 1.09 × 10−3 1.09 × 10−3 �.� × ��
−�

 rel. err 0.263% 0.263% �.���%
� = 2

 abs. err 1.97 × 10−3 6.13 × 10−4 �.� × ��
−�

 rel. err 0.479% 0.154% �.���%

� = 3

 abs. err 6.72 × 10−3 1.5 × 10−3 �.� × ��
−�

 rel. err 2.05% 0.467% �.���%

� = 4

 abs. err 1.13 × 10−2 2.89 × 10−3 �.�� × ��
−�

 rel. err 3.68% 0.98% �.���%

� = 5

 abs. err 5.04 × 10−2 4.54 × 10−3 �.�� × ��
−�

 rel. err 12.19% 1.62% �.���%

BWT
 abs. err N/A N/A −3.8 × 10−4

 rel. err N/A N/A −0.112%

Fig. 3  Relative error history 
for reaction equations (a) and 
convection equations (b). Every 
row shows the error after a new 
task is learned

(a) (b)
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5.1  Results

Table 1 presents the results after all reaction equations are 
learned varying � from 1 to 5. Figure 3a shows the error his-
tory for every equation after incremental steps. The Table 
summarizes the performance improvement of iPINNs com-
pared to regular PINNs and curriculum learning [35], exhib-
iting negligible error for all values of � , which is especially 

relevant for cases when � is larger. We believe by learning 
the given PDEs together, we achieve better generalization 
capabilities due to the synergistic effect of sharing subnet-
work parameters. Moreover, iPINNs provide negative BWT 
which means that previous subnetworks help to learn the 
following ones.

Similarly, we observe for the convection equation the 
same learning behaviour. By learning incrementally the 
sequence of convection equations, we achieve much lower 
absolute and relative errors for the equations that are more 
difficult to learn ( � = 30, 40 ). In Table 2 we show final errors 
at the end of the training, and Fig. 3b shows the absolute 
error history for each equation. In this case, we observe 
some level of forgetting, however, it is insignificant com-
pared to the error values.

In Figs. 4 and 5, we illustrate the error of iPINNs on 
convection and reaction equations and the exact solutions 
for every value of parameter � or � that were considered. 
Overall, we see that the neural network learns more com-
plicated tasks more accurately if parts of the network are 
pretrained with easier tasks. At the same time, iPINNs replay 
the training data for previous PDEs during training for the 
new one. There are no additional costs to store or generate 
input points (x, t) for previous tasks since they can be easily 
sampled when necessary.

Remark 3 The proposed iPINNs may require more training 
epochs than standard PINNs for one PDE because of the 
subnetwork creation strategy. However, the algorithm pur-
sues a different goal: provide the ability to learn the solu-
tions sequentially sharing previously learned knowledge.

We also illustrate the effectiveness of the iPINN method 
by addressing problem P2. We consider the values of � and 
� for which a PINN does not have difficulties when learning 

Table 2  Final error and forgetting after all convection equations are 
learned

Bold values indicate better performance

Regular PINN [20] Curriculum 
training [35]

iPINN (ours)

� = 1

 abs. err �.� × ��
−�

�.� × ��
−� 4.2 × 10−4

 rel. err �.���% �.���% 0.074%
� = 10

 abs. err 1.3 × 10−3 1.25 × 10−3 �.� × ��
−�

 rel. err 0.222% 0.211% �.���%

� = 20

 abs. err 1.9 × 10−3 �.�� × ��
−�

�.�� × ��
−�

 rel. err 0.339% 0.298% �.���%

� = 30

 abs. err 2.2 × 10−1 3.7 × 10−3 �.�� × ��
−�

 rel. err 3.957% 0.690% �.���%

� = 40

 abs. err 2.3 × 10−1 2.0 × 10−2 �.�� × ��
−�

 rel. err 37.4% 3.513% �.���%

BWT
 abs. err N/A N/A 1.8 × 10−4

 rel. err N/A N/A 0.0280%

Fig. 4  iPINNs on 1-D reaction 
equation



Engineering with Computers 

each component of the reaction–diffusion separately. Results 
obtained when first learning the reaction part (or vice-versa, 
the diffusion part) are shown in Table 3 (Table 4). The main 
finding is that the network can learn every equation at least 
as well as when it is learned independently. In fact, for the 
reaction equation, the neural network improves significantly 
the prediction error. Another interesting observation is that 
the model learns the reaction–diffusion equation with almost 
the same error, regardless of the order of the tasks. This 
gives us a hint about the robustness of the algorithm to dif-
ferent task orders in terms of prediction error. In Sect. 6.2, 
we analyze the percentages of parameters assigned to every 

subnetwork to illustrate the same conclusion in terms of the 
number of allocated parameters.

Remark 4 In contrast to meta-learning strategies, iPINNs do 
not need to adapt weights for a new task during testing. One 
can use the learned model and make a prediction with it.

Fig. 5  iPINNs on 1-D convec-
tion equation

Table 3  Final error and 
forgetting for reaction → 
diffusion → reaction–diffusion

Bold values indicate better performance

Parameters Equation Regular PINN [20] iPINN (ours)

� = 3, � = 5 Reaction abs. err 6.72 × 10−3 �.�� × ��
−�

rel. err 2.05% �.��%

Diffusion abs. err �.�� × ��
−� 1.85 × 10−4

rel. err �.��% 0.06%
Reaction–diffusion abs. err 4.89 × 10−3 �.�� × ��

−�

rel. err 0.80% �.��%

� = 4, � = 4 Reaction abs. err 1.13 × 10−2 �.�� × ��
−�

rel. err 3.68% �.��%

Diffusion abs. err �.�� × ��
−� 5.84 × 10−4

rel. err �.��% 0.19%
Reaction–diffusion abs. err 4.58 × 10−3 �.�� × ��

−�

rel. err 0.70% �.��%

� = 4, � = 5 Reaction abs. err 5.04 × 10−2 �.�� × ��
−�

rel. err 12.19% �.��%

Diffusion abs. err 5.18 × 10−4 �.�� × ��
−�

rel. err 0.18% �.��%

Reaction–diffusion abs. err 4.61 × 10−3 �.�� × ��
−�

rel. err 0.69% �.��%
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Table 4  Final error and 
forgetting for diffusion → 
reaction → reaction–diffusion

Bold values indicate better performance

Parameters Equation Regular PINN [20] iPINN (ours)

� = 3, � = 5 Diffusion abs. err �.�� × ��
−� 8.64 × 10−4

rel. err �.��% 0.28%
Reaction abs. err 6.72 × 10−3 �.�� × ��

−�

rel. err 2.05% �.��%

Reaction–diffusion abs. err 4.89 × 10−3 �.�� × ��
−�

rel. err 0.80% �.��%

� = 4, � = 4 Diffusion abs. err 4.35 × 10−4 �.�� × ��
−�

rel. err 0.16% �.��%

Reaction abs. err 1.13 × 10−2 �.�� × ��
−�

rel. err 3.68% �.��%

Reaction–diffusion abs. err 4.58 × 10−3 �.�� × ��
−�

rel. err 0.70% �.��%

� = 4, � = 5 Diffusion abs. err �.�� × ��
−� 1.05 × 10−3

rel. err �.��% 0.33%
Reaction abs. err 5.04 × 10−2 �.�� × ��

−�

rel. err 12.19% �.��%

Reaction–diffusion abs. err 4.61 × 10−3 �.�� × ��
−�

rel. err 0.69% �.��%

Fig. 6  Influence of weight 
decay on the results for reaction 
(left) and convection (right) 
equations after all tasks are 
learned

(a) (b)

Fig. 7  Influence of activation 
function on the results when the 
reaction learned first (left) and 
diffusion learned first (right)
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6  Additional study

In this section, we provide additional information about the 
learning procedure of iPINNs . We highlight some important 
training details such as the presence of regularization and the 
choice of activation functions. Also, we explore the subnet-
works that our approach produces showing the proportion 
of parameters allocated to each task.

6.1  Sensitivity to hyperparameters

Here we illustrate the influence of different training hyper-
parameters on the performance of iPINNs. First, we com-
pare the results with and without regularization param-
eter (weight decay). In Fig. 6, it can be observed that the 
presence of weight decay worsens the prediction error. 
However, looking at the result it is clear that iPINNs still 
work if weight decay is present. We can explain the lack 
of need for weight decay with the fact that many param-
eters are assigned to multiple tasks and cannot overfit to a 
particular one. Each subnetwork is also less parameterized 
than the original network and therefore does not tend to 
overfit. Thus, weight decay is not necessary and its pres-
ence only worsens the result due to the complication of the 
optimization procedure.

Furthermore, we compare the performance when using 
sin and tanh activation functions for two task order-
ings in Fig. 7. We observe that sin works significantly 
better in both cases. Also, we test ReLU activation but 

it exhibits poor performance in both PDE orderings, as 
expected. If the reaction is learned first, the absolute errors 
are 0.4959, 0.2369 and 0.1493. If we start with the diffu-
sion equation and then learn reaction and reaction–diffu-
sion PDEs, the errors are 0.2399, 0.2977 and 0.3003.

In addition, we present how different values of pruning 
parameter � affect the results. The higher the value of � is, 
the less the network is pruned. Therefore, if � = 0.95 the 
task-specific subnetworks are sparser than with � = 0.99 
but less sparse if � = 0.9 . In Fig. 8, we observe that for 
the reaction equation, we can prune less and achieve bet-
ter performance which can be explained by the fact that 
PDEs in the reaction family are quite similar. Therefore, 
we can allow the network to have more overlaps to share 
knowledge between subnetworks. For the case of learning 
within the same family of convection PDEs, the value of 
� = 0.95 was revealed to be a better option for constructing 
a sufficiently expressive task-specific subnetwork and frees 
space for future tasks. Notwithstanding, the performance 
is good with any reasonable choice of pruning parameter.

6.2  Subnetworks analysis

In Fig. 9, we present the portions of the subnetworks that are 
occupied by each task. We will illustrate this by consider-
ing both orders – when the model learns the reaction equa-
tion first (Fig. 9a), and when diffusion comes first (Fig. 9b). 
These results are averaged over 3 different runs for each of 
the orderings. It is noteworthy that the percentage of param-
eters occupied by all tasks is very similar for both orderings 

Fig. 8  iPINNs with different 
values of pruning parameter �

Fig. 9  Percentage of parameters 
used for every equation with 
� = 4, � = 4
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(31.8% and 31.5% respectively of all network parameters). 
On the other hand, the percentages of used parameters for 
both cases are 79.5% and 79.3%. This means that the total 
number of trained parameters for the two incremental proce-
dures is the same for both cases, which shows the robustness 
of the method. Moreover, the network has about 20% of free 
connections to learn new tasks.

7  Conclusion

In this work, we propose an incremental learning approach 
for PINNs where every task is presented as a new PDE. Our 
algorithm is based on task-related subnetworks for every task 
obtained by iterative pruning. To illustrate our idea, we con-
sider two cases when incremental learning is applicable to a 
sequence of PDEs. In the first case, we consider the family 
of convection/reaction PDEs, learning them sequentially. In 
the second example, we consider the reaction–diffusion equa-
tion and learn firstly the components of the process, namely 
reaction and diffusion, and only then the reaction–diffusion 
equation. Our main goal is to show the possibility of incre-
mental learning for PINNs without significantly forgetting pre-
vious tasks. From our numerical experiments, the proposed 
algorithm can learn all the given tasks, which is not possible 
with standard PINNs. Importantly, we also show that future 
tasks are learned better because they can share connections 
trained from previous tasks, leading to significantly better per-
formance than if these tasks were learned independently. We 
demonstrate that this stems from the transfer of knowledge 
occurring between subnetworks that are associated with each 
task. Interestingly, the model’s performance on previous tasks 
is also improved by learning the following tasks. In essence, 
iPINNs demonstrate symbiotic training effects between past 
and future tasks by learning them with a single network com-
posed of dedicated subnetworks for each task that share rel-
evant neuronal connections.
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