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Abstract

For high efficiency and flexibility, a fleet of Automated Guided Vehicles (AGVs) both homogeneous
and heterogeneous are widely used automation products for material handling in warehouses and
automated production lines. Given the layout capacity, the AGVs interact with each other, which
provokes challenges in Driverless Transport Vehicle System (DTVS) traffic management in dynamic
environments. One of the main challenges is how to avoid collision and deadlock between heteroge-
neous fleets of AGVs in a bidirectional layout. This research study proposes a deadlock detection
and avoidance algorithm that follows the deadlock prediction and uses a dynamic rerouting strategy
with Dijkstra to avoid deadlocks. The mission paths are checked in space and time for overlapping
edges by four check conditions and cumulative weights and return a boolean value to avoid cyclic
deadlocks. For the heterogeneous fleet of AGVs, a standard communication protocol VDA5050 is
used to maintain a standard communication interface between vehicles and the traffic management
module with cloud-based microservices for increased processing time and interoperability within the
warehouse. This communication interface is used to communicate the novel deadlock control algo-
rithm to a heterogeneous fleet of AGVs. The proposed algorithm not only improves the throughput
by increasing vehicle operational time but also successfully avoids congestion and deadlocks with
high traffic management efficiency in the logistic transportation system.
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1
Introduction

A fun fact, according to [67], by 2050, there will be 24 billion interconnected devices! Under ’Fac-
tory of the Future’ (FoF), the large-scale factory layouts are envisioned to operate with a highly
integrated and well-organized foundation of knowledge. With changes in technology, economy, de-
mands, and aim for sustainability, the FoF must be adaptable to these changing trends. For this,
incredible advancements are being made in computer and communications technology to have ad-
vanced manufacturing operations in operational layout collaboration with human operators on site.
It is said that the key to success for the FoF with Industry 4.0 (I4.0) is software developments that
connect many parts of the factory such as logistics and production to establish reliable and coherent
communication [65]. In Logistics and production, as a part of industry automation, controlling a
fleet of Automated Guided Vehicles (AGV) is gaining high priority. With growing demands in pro-
duction diversity and labor shortages, a heterogeneous portfolio of autonomous material handling
solutions is expanding.

Data and information exchange between AGVs, FMS, and physical production systems are essential
for autonomous operations to optimize the processes in FoF. These systems are called Cyber-
Physical Production Systems (CPPS) and include developments in computer science (CS), informa-
tion and communication technology (ICT) and manufacturing science and technology (MST) which
eventually point towards the direction of the Industry 4.0 revolution [44]. An interplay between CS,
ICT and MST involves machines equipped with data-generating electronics and a web of commu-
nication technologies with which a heterogeneous fleet of AGVs can be efficiently managed in the
shared operational area [60].

For diverse demands, AGV from different manufacturers are often required to accomplish tasks,
however, the challenge lies in the interoperability of these heterogeneous fleets in the same opera-
tional area effectively [38]. In this thesis, a Heterogeneous Fleet of Vehicles(HFoV) is defined as
vehicles with different operational functions, different manufacturers, and mainly different Fleet
Management Systems (FMS). Here, the HFoV is distinguished by structural heterogeneity and
functional heterogeneity. The vehicles are considered structurally heterogeneous if they differ in
design and dynamics, for example, bulk body, aerodynamic body, vehicle speed, payload capacity,
fuel consumption, etc. On the other hand, functionally heterogeneous vehicles if not all vehicles
are executing the same field of operation. For instance, a cleaning vehicle equipped with cleaning
instruction software functionally works differently from a service vehicle whose software controls are
for service pick-up and drop-off. These vehicles are assigned to visit the source point and target
point while cleaning visits all the points in the configuration space [58].

1.1. Research Motivation
Modern logistics includes a wide area of characteristics ranging from systematic industry, a com-
bination of logistics and information technology, integration of supply and services, and network
architecture of the intelligent transport system [10]. The vital technologies for these modern logis-
tics are sensors, intelligent chips, and wireless communication networks, which all together come

1
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under the Internet of Things (IoT). For interoperability, IoT requires standards, and protocols
that are implemented in the horizontal networks in the warehouse, such as middleware for fleet
management, adapters for interface between the middleware and the physical assets, and program-
ming/communication protocols across different devices from multi-vendors. Interoperability is one
of the keywords in this research project. Interoperability is essential for the decision-makers to have
an integrated view of the operations/performances of different machines in the factory. It indeed
improves performance, reduces costs, and provides useful insights into the data collected from dif-
ferent machines with a standard format. Standard protocols are used for the data to be discovered,
managed, communicated, and authenticated over different vehicles from different vendors operating
in the warehouse [59].

However, establishing coordination between HFoV is still an area of open problem. There are various
challenges with its autonomy, but before this let’s discuss the current state of interoperability in
the below section:

• Challenge 1 - Redundancy in integration: A vendor vehicle establishes communication and
information flow of tasks or orders via a warehouse management system or warehouse execution
system which is unique to it. This communication is installed via proprietary Application
Programming Interface (APIs). This means, that if there is a new vehicle that is introduced
in the factory, it has to go individual integration efforts to install its management system. In
addition, the integration costs are higher.

• Challenge 2 - Task execution: With multiple warehouse management systems as a result of
multi-vendor vehicles, these two different vehicles see each other as dynamic obstacles. In case
they are on the same path, it causes a deadlock with each vehicle unable to resolve this conflict.
Hence, with a heterogeneous fleet of vehicles, intended task allocation and task execution are
highly inefficient and unsustainable with multiple warehouse management systems.

• Challenge 3 - Co-working/shared space difficulty: When different robots from different vendors
work in the same operational area, they lack situational awareness and hinder the operations
of one another. Thus requires separate operational space for each to operate efficiently.

• Challenge 4 - Low potential when performing a collaborative task: In case of a complex,
elaborative task requires different fleets of vehicles to work together, it usually is operable in
the presence of human operators to manually control these fleets as the vehicles have zero
access of the current status or planned tasks of different vehicles.

Figure 1.1: Compliant AGV to work together via one fleet management software (left), rather than different master
controllers being needed for each brand of AGV working on-site (right) [62].

2 2023.MME.8870
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Figure 1.2: Navitec Fleet Control managing 4 different vehicles in the same fleet [66]

1.2. Research objective
To solve the challenges mentioned in 1.1, the traffic management techniques are developed and
implemented with a communication network between the fleet of heterogeneous vehicles and FMS
in order to automate the material handling operation as much as possible. Challenges 1,3 and 4 are
seen as technical, while challenge 2 is seen as operational.

1.2.1. Operational research objective
Challenge 2, task execution with a HFoV in intralogistics with dynamic obstacles involves the efficient
establishment of traffic-control policies. For a flexible, heterogeneous operational space, control
policies for HFoV require collision-free and deadlock-free operations to evaluate the operational
performance of the warehouse automation systems. The operational research objective, also the
prime research, for this project is to develop a deadlock control algorithm to control both dynamic
and static obstacles and deadlock situations, especially for a heterogeneous fleet of AGVs, where all
the vehicles are operating in a common collaborative layout.

1.2.2. Technical research objective
In order to successfully transmit the traffic-control policies to HFoV, a standard communication
protocol between a HFoV for the efficient flow of information, and integration is used. Challenges
1,3 and 4 can be solved with a standard communication interface as represented in figure 1.1. The
standard communication interface VDA5050 enables a single master controller for both systems, the
new and the existing vehicles (challenge 1). In addition, it also enables parallel operations (challenges
3 and 4) of AGVs (also vehicles with different degrees of autonomy) from different manufacturers and
inventory systems in the same warehouse environment. Figure 1.2 shows the industries getting their
hands on managing different vehicles in the same fleet, with the help of VDA5050. The technical
research objective is to communicate the traffic policies of the developed deadlock control algorithm
to a HFoV by introducing a standard communication interface called VDA5050 between the Traffic
Management module of FMS and a HFoV.

3 2023.MME.8870
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1.3. Problem description
For a flexible material handling system, it is important that a HFoV be integrated together operat-
ing in a shared space in order for a smooth and efficient task execution with no conflict or deadlock
situation. However, in the case of heterogeneous fleets, traffic control with deadlock-free operations,
and handling dynamic obstacles in real-time, is still an ongoing area of research with many ques-
tions to solve. Hence, this thesis aims to develop a novel traffic control strategy with a deadlock
detection and avoidance algorithm for a HFoV to improve the operational performance of vehicles in
operational layouts with dynamic obstacles. The traffic management module embedded in FMS and
the HFoV communicate via an industrial standard protocol and modular communication framework
operating in the warehouse, in order to establish an efficient CPPS.

Main research question:
How to improve the deadlock control algorithm for efficient traffic management and operational
performance of a heterogeneous fleet of AGVs in collaborative intralogistics operation?

Sub-Research Questions (SRQ):

• SRQ 1: What is the ongoing area of research in traffic control management for HFoV in
collaborative intralogistics operations?

• SRQ 2: What is the framework of an Intelligent Transport System in a warehouse with
HFoV and Why is standard communication interface VDA5050 required for warehouses with
heterogeneous fleets of AGVs?

• SRQ 3: What are deadlock conditions defined in the traffic control policy of warehouse oper-
ations and how are these deadlocks handled?

• SRQ 4: How to design and develop a deadlock control algorithm? What necessary changes
are required in developing the novel approach for this study?

• SRQ 5: How can the operational performance of the developed deadlock control algorithm of
a HFoV’s intelligent traffic management module be evaluated?

1.4. Scope
The number of AGVs, functionality and the number of missions/operational time are user-based
input. These vehicles either start from a charging station or a rest station.
The main aim of this thesis work is to develop a deadlock detection and avoidance algorithm for
HFoV and establish a communication network between FMS and a diverse fleet of vehicles. This
thesis does not concentrate on optimizing algorithms. Various assumptions are taken into account:

• Layout is tessellated grid-based, with the centre of each cell as node and edges connected to
pick-up, drop-off, charge, and rest locations. Each of these nodes has a location defined by x
and y coordinates. Nodes, connected to each other via edges are defined and can be adaptable
if in case the layout is changed. The size of one cell represents one vehicle. Some cells are
marked as buffer zones (for ex, around inventory) in order to simulate a practical environment
in case of turns.

• AGVs are guided and not autonomous, i.e., AGVs follow the guide nodes connected with edges
in a straight line and turn whenever prompted.

• Inventory is assumed to be infinitely available in case of pick-ups and has infinite space in case
of drop-off.

4 2023.MME.8870
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• Cleaning vehicle and AGVs are squared-shaped vehicles with lightweight-load capacity trans-
port. Automated guided forklifts are rectangular in shape occupying two cells and three cells
in case of turns with heavy-load capacity.

• There is no priority in vehicles while operation. It is first in first out according to the list of
mission executions.

• It is assumed that each vehicle carries its own capacity package. Inventory management is
out of the scope of this study.

1.5. Outline
Keeping readers’ point-of-view in mind, this outline contains descriptions and information of all the
chapters of this report and helps to navigate through it efficiently.

Chapter 1 discusses the research motivation, objectives, problem to be studied in this work, the
scope of the problem area carried out in this project, related research questions and a brief outline
of the report.

Following the introduction chapter, chapter 2 provides thorough research inspection in the domain of
FMS, AGVs and communication networks. A literature review answers SRQ 1 to learn the existing
traffic control policies and ongoing areas of research, leading to the investigation of the potential
research gap that will be studied and analyzed in this project.

Chapter 3 answers SRQ 2, discusses the framework and modules of the Driverless Transport Vehicle
System. In the broad spectrum, a thorough system analysis of the framework of the Driverless Trans-
port Vehicle System, Intelligent Transport System, different modules and standard communication
interface VDA5050 in the communication server module is studied. This chapter also achieves the
technical research objective mentioned in 1.2.2.

After studying and learning about transport systems and modules, chapter 4 focuses on the analysis
of the important module of study in this project embedded in FMS, Traffic Management module
and answers SRQ 3. Introduction to deadlocks in warehouse logistics, different deadlock handling
strategies and comparison of these strategies is carried out. With multi-criteria analysis, a promising
approach suitable for the problem at hand is selected. The operational research objectives mentioned
in 1.2.1 are answered one-by-one in and following this chapter.

After analyzing the traffic management module from the previous chapter, chapter 5 models a novel
deadlock control algorithm by first developing deadlock detection checks, followed by a deadlock
avoidance strategy, thus answering SRQ 4. This chapter also discusses the technical implementation
of the developed approach, simulation set-up for experiments and verification and validation of the
simulation model.

In order the evaluate the operational performance of the developed deadlock control algorithm, in
chapter 6 different simulation experiments are conducted and results are studied. The performance of
the developed deadlock control is studied and compared with the output of the traditional deadlock
control approach to answer SRQ 5.

Finally, chapter 7 concludes the research and provides recommendations for future research on this
topic.

5 2023.MME.8870



2
Literature Review

The literature review provides knowledge and baseline research of the topic of interest, in this study,
deadlock control policies for a fleet of AGVs in a collaborative operational layout. It is conducted
to collect key resources, findings and potential research gaps that can be studied and filled in this
project. The chapter is divided into two sections; a literature review technique used for this study
and a review of the papers and their findings. The SRQ 1 What is the ongoing area of research in
traffic control management for HFoV in collaborative intralogistics operations? is answered in this
chapter with a finding of a potential research gap.

Keywords used for the review are: Deadlock handling strategies, warehouse operations, AGVs,
Interoperability, FMS, communication framework, standard protocol

2.1. Literature review techniques used
To have an insightful literature review, the following steps are followed:

• Finding relevant and reliable literature or source of information is key for establishing a use-
ful literature review. An electronic database with keyword search, termed as pearl growing
method, to study the resources was employed here. The primary database was IEEE Explorer,
ScienceDirect, as it provides access to a large bibliographic database related to science and
technology worldwide and is easily accessible by TU Delft login. The secondary database used
was Google Scholar, a freely accessible web search engine. Apart from the vast collection of
research and articles, it was also used to cite the references in this document. Thirdly, the TU
Delft education repository was also used for literature review to check if there are researches
being carried out in the field of study of this project so that the personnel in the university
can be approached for more information if necessary. Lastly, the World Wide Web (www) was
used to look for familiar informational news, recent technological updates, company brochures
and full-text research articles.

• When using the World Wide Web, to find credibility if a particular news article or research
article is true and not misleading, the resources were searched again in ScienceDirect and
Google Scholar to check for credibility. Another way to check for the credibility or truthfulness
of a particle article is the name of the author who was searched to find if a researcher has
relevant research outputs in a similar field of interest as that of the research article of his/her.

• The information for this review was successfully found by using keywords: deadlocks, traffic
control, warehouse operations, Industry 4.0, interoperability, FMS, communication framework,
standard protocol. These keywords were used according to their relevance and appropriateness
to this literature review subject. To narrow down and find the most appropriate articles, the
combination of keywords with the boolean search operator ’AND’ in between was used.

• To analyze the resources, the criteria set reviewed researchers from reliable technological insti-
tutes, companies and educational technologies, date of publication of the articles, and other
conducted research. For about 90% of the literature in this study, the date of publication was
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restricted to articles published after 2000 to keep the review as updated as possible.

• In addition to the resource search from databases, the snowball method was employed to find
additional relevant papers that are present in the reference list of the primary/starting point
paper. This helps to find concise and relatable research in a short amount of time. Another
method, the citation method (backwards approach) was minimally employed.

2.2. Research paper review
I4.0 features interoperability, virtualization, decentralization, real-time capability, service orientation
and modularity are aimed to be implemented to maximize the automation in the manufacturing
and warehouse industry. According to [18], the material handling process accounts for up to 70%
of total manufacturing costs, which eventually leads many industries to shift to highly automated
solutions for higher turnover. One of the systems under automated material handling operation
is AGVs. The performance of the AGV system highly depends on the layout of the system (both
cyber and physical layout) and the strategies used for controlling the vehicles. Control strategies
for such AGV systems should at least perform the following three functions: path planning, task
assignment, and traffic control [16]. The main challenge with the heterogeneous fleet of vehicles lies
in the area of navigation, deadlocks created in case two different vehicles fail to recognize each other
as vehicles but navigational blocks and halt themselves, failing to complete the missions successfully.
In addition, the vehicles in the fleet are from different manufacturers or with different functionalities
and come with their own FMS. In this case, it is a challenging task to operate these heterogeneous
vehicles with different FMSs. It, thus, turns out to be a non-sustainable approach in case of the
factory floor expansion which demands for increase in the vehicle types. Therefore, a one-in-all
FMS with vehicles communicating bidirectionally with standard protocols is the next research area
in FoF.

One of the issues related to AGVs as a result of implementing the I4.0 features with diverse AGVs
customized for specific needs: normal and heavy load, forklift, tugger, etc. with different versions and
software stacks [1]. Under the European H2020 cluster digital, industry and space, [55] implemented
the starting step of establishing a unidirectional communication interface between Cyber-Physical
System (CPS) and FMS, mainly for the system mapping and navigation, but bi-directional commu-
nication i.e., status updates from the AGV to the FMS is still an open-field of research in addition
to managing a heterogeneous fleet of vehicles.
Keyword search of FMS for a fleet of robots/vehicles leads to papers with optimal path planning,
scheduling and fleet monitoring. In the paper [52], a novel open interface to establish communica-
tion between FMS and a fleet of AGVs is studied. Using HMI (Human Machine Interface), a set
of missions is communicated by the operators and the status of these missions is received. This
is a significant stepping stone in designing a communication framework between the operator and
the AGVs, indeed opening a path for more horizontal integration with heterogeneous vehicles. [71]
designed an agent-based system architecture with each AGV as an agent decentralized/distributed
network with AGVs communicating to each other in conditions such as path conflicting with cloud-
edge computing environment, with interesting concept on AGV agent taking over the scheduling
if the network connection fails between the edge node and the agent-based AGVs. The network
loss in the factory floor results in the loss of status updates of running vehicles and can cause fatal
accidents like collisions or deadlocks. [47] talks about insightful 5G-based smart manufacturing
technology and its open area of research. Deadlocks, explained in [16] discusses three ways to avoid
deadlocks, deadlock detection and recovery, deadlock avoidance and deadlock prevention on tessel-
lated layout and uses an algorithm that makes sure that the layout remains deadlock-free within
the limited known future movements of vehicles. Term heterogeneous AGVs are defined as vehicles
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with different load-carrying capacities and functions (forklift, tugger, or just mobile) and study a
collision-avoidance and deadlock avoidance algorithm. However, the heterogeneous fleet of vehicles
also includes vehicles with different versions, control module stacks, communication software stacks,
FMS and also different manufacturers.

There are numerous research papers with task allocation algorithms, path planning and conflict-
resolution algorithms. However, these strategies are applied to the fleet of vehicles with at most
different functionality. This is due to a lack of standardization within the communication network
between the management systems and the fleet of vehicles. [60] thesis work discusses one of the stan-
dard messaging protocols, pub-sub machine-to-machine interface called Message Queuing Telemetry
Transport (MQTT) for heterogeneous fleet of vehicles. However, the study is limited to future work
suggestions on conflict-free paths. In brief, a thorough literature search shows a lack of study on the
control strategies of the fleet of vehicles with varying software versions for communication, FMS or
manufacturers. In addition, an open interface standard of communication for vehicles with different
versions, manufacturers and software stacks is currently an active area of research.
The performance of the AGV system highly depends on the layout of the system (both cyber and
physical layout) and the strategies used for controlling the vehicles. Control strategies for such
AGV systems should at least perform the following three functions: path planning, task assignment,
and traffic control [16]. The main challenge with the HFoV lies in the area of navigation, dead-
locks created in case two different vehicles fail to recognize each other as vehicles but navigational
blocks and halt themselves, failing to complete the missions successfully. In addition, the vehicles
in the fleet are from different manufacturers or with different functionalities and come with their
own central controller. In this case, it is a challenging task to operate these heterogeneous vehicles
with different central controllers. It, thus, turns out to be a non-sustainable approach in case of
the factory floor expansion which demands for increase in the vehicle types. Therefore, a one-in-all
central controller with vehicles communicating bidirectionally with standard protocols is the next
research area in factory of future.

Deadlocks, explained in this article discusses three ways to avoid deadlocks, deadlock detection and
recovery, deadlock avoidance and deadlock prevention and uses an algorithm that makes sure that
the layout remains deadlock-free within the limited known future movements of vehicles. Deadlock
prevention is an offline strategy, where the system schedules paths in such a way that is deadlock-free
in prior. For bidirectional layout and higher throughput, a prevention strategy with faster network
routing is beneficial in terms of cost reduction with a reduction in used areas by vehicles [19], but
however limits in preventing deadlocks in case of dynamic disturbances in the operational layout.
With time-based route planning, certain segments/cells in the route of a vehicle are allocated and
the rest of the segments in the route are utilized by other vehicles. In the paper [32], each node in a
cell of the operational layout has a list of time windows reserved by vehicles and a list of free time
window that is available for the vehicles to reserve. In this way, the algorithm plans the vehicle
route with free time windows in the proposed time-window graph instead of physical cell nodes of
the operational flow path. The computation time is then o(v4n2) where v is the number of vehicles
and n is the number of nodes. This means, that with an increase in the number of vehicles, the
computational complexity increases. This is suitable for only small transport systems. Factors such
as acceleration, deceleration, and external obstacles in dynamic environments make it difficult to
calculate time windows precisely in case of delays and can lead to unpredictable obstacles.
Similar to the prevention strategy, deadlock avoidance avoids the occurrence of the deadlocks which
are passive in nature. This policy plans the mission operations dynamically depending on the system
state such that it remains deadlock-free. Resource allocation graphs are useful for detecting dead-
locks. Dynamic resource allocation can affect the resource/zone utilization and system throughput,
and eventually increase the lead time and vehicle travel time [72]. In terms of transportation systems,
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a Banker’s algorithm is a resource allocation and deadlock avoidance strategy that predetermines if
the system will remain in safe state or not by first simulating the allocation of node(s)/cell(s) to the
mission paths. It then makes a safe state check before actually allocating the node(s)/cell(s) to the
mission to navigate through them in order to avoid deadlock. In article [16], the central controller
calls deadlock avoidance every time to check if a particular vehicle is allowed to reserve a set of cell-
s/tiles required for its navigation. The algorithm determines if the reservation is allowed only if the
order of movements of AGVs exists such that the system remains deadlock-free. The combination
of steps of different vehicles is checked by the algorithm to evaluate the system state, which causes
unnecessary deterring of AGVs and longer calculation time. A modified Banker’s algorithm strategy
proposed by [29] provides a solution to solve the low utilization of vehicles and longer waiting times.
Under special circumstances, the vehicles are allowed to transverse unsafe states (deadlock existing
states) to decrease the vehicle waiting times and mission execution times. This extended set of states
is allowed only if all the missions can be executed safely, or else the vehicles wait until the state is
safe. An extension of this modification is proposed by [24] for an improved near-optimal deadlock
avoidance strategy. It consists of two stages, an offline algorithm that preprocesss guide-path and an
online which combines preprocessed guide-path results with the vehicle status to evaluate the safety
of the system dynamically. In order to avoid the vehicles waiting until the overlapped edges of two
paths are released, alternative shortest paths are obtained. Before a path from alternative paths is
allocated to a vehicle, a safety assessment of the system is carried out. If all these alternative paths
lead to an unsafe state, the vehicle is instructed to pause and wait for the next scheduled check.
This questions the trade-off between travel distance in case of alternative path allotment or waiting
time until the system gets back to safe state.

Most of these papers discuss detecting deadlock edge-by-edge, and then prompting the deadlock
handling strategy to either prevent/avoid them. However, detecting deadlocks in prior just after
path planning and before vehicle movement execution is a factor to consider. Deadlock detection in
prior can help in time management to control deadlocks, avoiding cyclic deadlock situations and can
positively affect the system throughput. This is the potential research gap of deadlock detection in
advance for the path and not edge-by-edge, which will be developed in this study and its operational
performance will be evaluated.
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3
Driverless Transport Vehicle System (DTVS)

Analysis

A driverless transport system is made of different components that share information with each
other in order to accomplish a mission or order. The purpose of this chapter is to study the frame-
work of the system in a broader spectrum, understand the different modules and their functions,
and also learn the intelligence that is introduced under Industry 4.0 in these modules for efficient
warehouse operations. First, the framework of intelligent transport system for DTVS is represented
with modules, these modules and their sub-embedded systems are explained with their working and
functionalities. Secondly, in this project, the emphasis is on introducing a heterogeneous fleet of
AGVs in the warehouse, which then prompts a standard communication interface VDA5050 to be
used. The specifics and working of VDA5050 are also discussed.
This chapter answers SRQ 2 about the Intelligent Transport System framework and role of stan-
dard communication interface VDA5050. In addition, this chapter achieves the technical objectives
discussed in 1.2.2.

3.1. DTVS-based warehouse operations
In manufacturing and warehousing, a DTVS consisting of a fleet of vehicles (homogeneous and
heterogeneous) is becoming increasingly crucial for the efficient transport of goods. In comparison
to belt-conveyor, sorter system or human-operated forklift, DTVS is proving to be a promising
alternative with advantages in terms of flexible deployment, less human-prone errors in the operation
with real-time routing and rescheduling.
With varying demands and supply for varied items, the heterogeneity among these vehicles is asked
for. In order to evaluate the performance of the DTVS-based warehouse operations, warehouse
engineers choose suitable traffic control policies and warehouse layouts according to the requirements.
In this project, one of the evaluation factors, traffic control policies mainly focusing on collision-free
and deadlock control during the operation is studied.

A fundamental challenge is implementing the traffic control policy in an operational environment
with HFoV for collision and deadlock-free strategies and no manual intervention, with the aim of
minimizing total cost in terms of computation and waiting time. For the traffic management module
to plan collision and deadlock-free routes, it is necessary that the vehicle update its position. This
position update can be vehicle software-oriented and differs in data format from vehicle to vehicle in
the case of a heterogeneous fleet. To compute these different data formats can be computationally
expensive. It is necessary to establish standard data communication protocols so that the data
collected by the traffic management module is of the same format and can be analyzed and processed
faster.
To address the computation challenge, an I4.0 technology to take benefit from to access unlimited
processing power and storage is cloud computing. A worldwide network of interconnected objects that
can be addressed uniquely, and based on standard communication protocols is termed as Internet of
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Things (IoT). This technology is used to establish a communication network with standard protocols.
For example in warehouse/logistics, RFID(Radio-frequency identification)-enabled vehicles that use
sensors and actuators can be connected to better access to the position, temperature, and status
and gather useful results. This information can then be stored virtually in cloud-based services
to be used by different system management (warehouse floor departments, inventory management
system, execution system). Merging cloud computing and IoT to bring a new paradigm is termed as
CloudIoT [8]. In this study, software stacks (navigation stack) of heterogeneous driverless vehicles
form a network of interconnected devices that are connected to the Warehouse Management System
with a standard communication protocol and for increased storage and processing units, cloud-based
microservices are exploited. This arrangement is called as Intelligent Transportation System.

3.2. Framework of Intelligent Transportation System for DTVS
In this study, DTVS is an authorization-based system where vehicles need permission from DTVS for
every action to perform. The system consists of three modules, a warehouse management module,
a fleet management system (central controller) and a communication server (wired/wireless) as
represented in figure 3.1.

Figure 3.1: Driverless Transport Vehicle System modules

• Warehouse Management Module: The data management module consists of information about
each vehicle in the fleet, mission requests and operational space information. This data is input
into the fleet management system. The data consists of the x and y coordinates of nodes
defined in the operational layout, and weights on the edges connecting the nodes. Weight can
be the distance between nodes or the time taken for the vehicles between two connected nodes.
Here, weight is the distance.

• Fleet Management System (central controller): It is considered as high-level fleet management
which supervises the fleet of vehicles by planning, coordinating and controlling the fleet. It
provides necessary instructions to the vehicles to accomplish the order pick-up/drop-off. The
traffic management module is sub-embedded in the Fleet Management System.

• Communication server: In order to send/receive the mission information to and from a fleet of
vehicles, communication servers are used. A standard interface of communications is required
for a fleet of heterogeneous vehicles.

Important modules to focus on in this project are a central controller with the traffic management
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module which runs the traffic control policies and a Communication server module to establish
CloudIoT-based standard communication protocol. A representation of this Intelligent Transporta-
tion System is shown in figure 3.2. The Intelligent Transportation System modules are only used in
this study to implement the developed deadlock control algorithm HFoV.

Figure 3.2: Intelligent Transportation System with CloudIoT

The system architecture represented in figure 3.2 can be divided into 3 layers, the back end, the
communication server and the front end. The back-end consists of a Fleet Management System with
a Traffic Management Module. The front-end is a simulation-based Graphical User Interface(GUI)
of the navigation of the HFoV.

3.3. Intelligent Transportation System: Back-end module
3.3.1. Fleet Management System
FMS, for short, is usually called ’high-level’ fleet management, which provides a wide range of solu-
tions comprising different fleet-related applications in the transportation, logistics and supply chain
industry.
A vehicle transportation system can be divided into two areas; transportation system design and
transportation system management [41], depending on tactical and operational issues. Transporta-
tion system design consists of improving the system performance by studying and estimating guide-
path design, the number of parking, pick-up and drop locations in the operational layout and the
number of vehicles required. Transportation system management (Fleet Management System) in-
cludes vehicle dispatching, routing and scheduling, traffic control for collision and deadlock avoidance
and maintenance strategies.

• Mission routing and scheduling: Missions. orders received from the Warehouse Management
system, the mission route is first planned and assigned to the vehicle. The scheduling takes
into account the departure and arrival time from the pick-up location to the delivery location,
accounting for the cumulative weights (distance between two connected nodes) from the pick-
up to the drop-off location. This cumulative weight calculation is used for collision and
deadlock-free scheduling.

• Vehicle dispatching: Dispatching is when an order is assigned to the vehicle or vehicle to
the order. Dispatching methods can vary from time constraints, priorities, or the nearest idle
vehicle available. The simple dispatching rule is assigning an order to the idle or next available
vehicle with the shortest or nearest travel distance/time from the order location. This rule is
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followed in the current study.

• Traffic control policies: A planned route is feasible for vehicle operation with appropriate
traffic control policies to account for collisions and deadlocks. These control strategies are
closely related to dispatching, routing and scheduling. Collisions are prevented by the posing
rule that no two vehicles can occupy the same zone/position at the same time. However, this
rule can cause congestion and lead to deadlocks.

Based on available transportation resources and constraints at the application/operation site, it
has different functions ranging from mission routing and scheduling, vehicle dispatching and traffic
management. A study [73] describes the clear objective of FMS is to reduce security risk, increase
the quality of service of operation and in turn increase the operational efficiency by minimizing the
costs.

From a system control perspective, the system architecture has two categories, centralized and
distributed [20]. A centralized architecture meets the objectives of this research that are suitable
for modern vehicle fleet planning and coordination. However, centrally processing large amounts
of planning and coordination data sounds inefficient, but this is also a good approach to obtain
globally optimal solutions in case of task planning, allocation and execution, thus providing an
effective decision-support tool. Another problem with centralized architecture is computational
expensiveness. This can be solved by outsourcing cloud-based infrastructure for computationally
heavy processes, In addition, these systems come with sophisticated cooling systems that tick green
with energy-efficient system goals.

One major disadvantage of centralized architecture is single-point failure. This system is less robust
with system faults. For ex, the vehicles can establish communication with each other only via the
central master controller. In case the central controller faces network downtime, then this poses a
single-point failure problem with mission-critical operations. It is assumed that a duplicate version
can act as clone-FMS in case of system downtime [6]. In case of network loss/disconnectivity,
the mission database is a cloud-based microservice that can rebuild the states and continue from
the information stored in the database, so the mission is not lost, reference figure 3.2. It can be
believed that the system, instead of leading to downtime, will ensure that it maintains operability.
Cloud-based services are discussed below.

3.3.2. Cloud-based microservices
It is ’low-level’ fleet management that runs in the cloud. The microservice module manages com-
munication with the software stacks of the vehicles (navigational stack here). In addition, it is
responsible for executing the mission, keeping track and collecting feedback information such as
position, status, and error from the vehicles and feeding it to the FMS.

Cloud-based microservice: Mission database
The database hosts REST API endpoints, basically, any mission submitted is stored in this database
and is managed persistently. This is done using Postgres (also called PostgreSQL), which is an
open-source object-relational data management system. It manages a locally hosted database, here
mission database. In case of connectivity loss, the services crash and come back up for FMS, the
missions in the database can rebuild the states and continue from the information stored in the
database, so the mission is not lost. The APIs are used to create, post, and get the mission states
and updates from the API mission/vehicle object.

Cloud-based microservice: Mission dispatch
This sub-module manages the mission state transition of the vehicles and handles communication
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between the FMS and the fleet. It enables FMS to submit the planned mission to the fleet of vehicles.
It provides a connection between the FMS and the fleet but does not handle control strategies like
vehicle dispatch with mission or traffic control. Mission dispatch module maps missions in the form
of a series of tasks which are translated to VDA5050 Order messages and sent to the vehicle for
execution. The connection between this cloud control service and vehicles relies on an industry-
standard called VDA5050 and uses MQTT as a light-weight pub-sub, machine-to-machine network
protocol explained below.

3.4. Intelligent Transportation System: Communication server
A communication server allows industries to build networked infrastructure to deploy communication
systems (wired/wireless) for the transfer of information or data.

3.4.1. MQTT broker
MQTT broker is used for communication between the Mission dispatch module and the navigation
stack of the vehicle. MQTT is a lightweight, text-based message exchange protocol (message broker)
with IoT publish/subscribe model and consists of clients that are divided into subscriber and pub-
lisher. The subscriber is a message message-receiving client who is registered with the broker and
notifies it to receive specific types of messages. The publisher is a message message-sending client
who sends a message to the subscriber when asked through the broker [26] [25]. Here, Mosquitto is
used as MQTT broker.

Mosquito is a lightweight MQTT broker with the capability to exchange large amounts of data over
low network overhead, with limited network bandwidth and interrupted communication. Thus, it
can be implemented on low-power devices like micro-controllers used in remote IoT sensors. MQTT
allows distribution of messages to sub-channels termed as topics. Clients (here mission dispatch
module and software on vehicle) subscribe to these topics to receive required information that
interests them. The topics and clients with pub/sub are represented in figure 3.3. Topics concerning
to current study are Order (Communication of driving orders like nodes to navigate from FMS to
vehicle), Action (Action to be executed sent from FMS to vehicle), instantActions (any immediate
actions to be executed), state (vehicle state) and factsheet (vehicle setup). An explanation of these
is provided in the next section.

Figure 3.3: MQTT broker Mosquitto with publisher/subscriber

3.4.2. Industrial standard protocol - VDA5050
The communication server acts as a bridge between the cloud/edge microservices like the Mission
Dispatch module and the vehicle in order to exchange topics (order, status) between the FMS and
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software on vehicles. This interface has some requirements such as it has to be agnostic with different
software stacks such as ROS! or Isaac SDK. In addition, the interface should facilitate a simplified
connection strategy of new vehicles into an existing FMS, and enable parallel operation between
vehicles from different manufacturers and inventory systems in the same operational environment.
It should be cloud-friendly and scalable to large numbers of vehicles. This interface helps achieve the
technical research objective drawn in 1.2.2 and provides solutions to challenges 1, 3 and 4 mentioned
in 1.1.

To meet these requirements, an interface, VDA5050, was established in 2022 between the Verband
der Automobilindustrie e.V. (German abbreviation VDA) and Verband Deutscher Maschinen-und
Anlagenbau e.V. (German abbreviation VDMA) with an aim to create universally applicable inter-
face tool. It defines a messaging structure and uses MQTT network protocol to publish/subscribe
the message structures. There are two objectives of the interface that are of interest in this work:

1. Increase in Plug & Play capability the system by using uniform, overall coordination logic
between all transport vehicles, models and manufacturers

2. Using a common interface between FMS and vehicle control will increase vehicle manufac-
turer’s independence

Figure 3.4: Information flow of pub/sub topics between modules with VDA5050 specification

In [42], [31], are informative references where a Digital twin is used to build a VDA5050-compliant
communication interface between the controller and the vehicles. To execute missions, the Mission
dispatch module receives control strategies from FMS and publishes the order, Actions or instantAc-
tions to corresponding VDA5050 subtopic with VDA5050 compliant message structure. The vehicle
software stack receives the order, Actions or instantiations via MQTT broker. Update vehicle state
and missions are published by the corresponding state, factsheet which are subscribed by Mission
dispatch module via MQTT broker. The flow of this information is represented in figure 3.4. In-
formation flow designed by VDA and VDMA, about VDA5050, message schema of these subtopics,
and mission tree message structure is explained in appendix 9.

3.5. Intelligent Transportation System: Front-end modules
Front-end modules are the PC onboard vehicles connected to the PC operated by the operator offsite.
Operators can input necessary information like the operational warehouse layout map, the missions
to be completed manually and vehicles required for the missions or connect it with the Warehouse
Management System for automatic generation of the information.
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3.6. Summary
Driverless Transport System framework consists of three modules, Warehouse Management module
with embedded Data Management Module, Central Controller with embedded traffic management
module and Communication server which is in direct communication with the homogeneous fleet
of vehicles. In order to introduce a heterogeneous fleet of vehicles, the driverless transport system
is upgraded to an Intelligent Transport System. The Intelligent Transport System has two added
features, cloud-based services with mission database and dispatch in the cloud and communication
server embeds MQTT broker with VDA5050 industrial standard communication interface for a
heterogeneous fleet of vehicles.

For faster processing, an upgrade of the driverless transport system to intelligent driverless transport
system is necessary. I4.0 technologies combination; cloud-based and IoT called as CloudIoT is im-
plemented in the framework. In these cases, an adaptable traffic management module with a robust,
scalable algorithm with traffic control policies is ongoing research. This Intelligent Transport System
is centralized management in order to achieve global optimization. For the computational expen-
siveness of processing information in centralized architecture, an intelligent system with cloud-based
infrastructure, and for real-time mission and vehicle position updates an interconnected network of
devices is established in an intelligent system.

In addition, an intelligent system also provides a standard communication interface VDA5050 as
heterogeneous vehicles share information in different, manufacturer-specific formats. Each vehicle
from different manufacturing comes with its unique warehouse management system. VDA5050 helps
to solve the redundancy in the integration of new vehicles into the existing Warehouse Management
System, hence eliminating the individual integration of each new vehicle to install its management
system and reducing integration-related costs. If vehicles from different manufacturers are operating
in the warehouse, they lack situational awareness and cause collisions. Due to this, these vehicles are
allocated separate bounded operational areas for each. By managing a heterogeneous fleet under one
warehouse management system, VDA5050 allows communication of each operating vehicle status
in the system to be shared up to date with one warehouse management system, hence allowing a
heterogeneous fleet of vehicles co-working in shared space. In case a particular mission requires a
heterogeneous fleet of vehicles, this can be possible with VDA5050 standard communication and
also without the need for the operator to manually control the fleet.
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4
Traffic Management Module System Analysis

The previous chapter discussed Intelligent Transport System modules on a broader spectrum and
achieving the technical research objective of this project. To narrow down and study the prime
purpose of this project, traffic management module system analysis is carried out to study the
traffic control policies, deadlock conditions, and deadlock handling strategies required to control
deadlocks. This chapter will also draw necessary insights into existing deadlock control strategies
providing knowledge to develop a novel deadlock control algorithm for a heterogeneous fleet of
AGVs operating in collaborative warehouse logistics. This chapter consists of analyzing transport
system design, vehicle management, conditions for deadlocks, different deadlock handling strategies,
and their multi-criteria analysis which helps find weak spots in the existing deadlock handling
approaches. Furthermore, to evaluate the operational performance, key performance indicators are
discussed. This chapter helps answer SRQ 3 about different deadlock conditions and their handling
strategies.

4.1. Traffic management module of DTVS
An embedded module Traffic Management Module has the functionality of traffic control strategies
with rules and algorithms, one of the evaluating factors of the operational performance of DTVS.
It mainly focuses on collision and deadlock handling during the operation of AGVs. Automated
fleet operations in warehouses have a stronger foundation with infrastructures like robust and re-
silient fleets of heterogeneous and diverse vehicles. One fundamental problem with heterogeneous
multi-vehicles is a multi-vehicle traffic control strategy for collision-free paths or deadlock-free path
planning to each vehicle in the network [46]. Hence, collision and deadlock handling strategies with
multi-vehicle, especially heterogeneous systems have a critical study discussion in this thesis.
For collision and deadlock-free paths, the traffic management module of DTVS plans mission dis-
patch, routing, and scheduling and are handled concurrently. A baseline function in these three
functionalities is path planning. Path planning for the vehicle to transverse from source to target
and re-planning in case of obstacles in order to avoid collision and deadlock [36] [12]. It is a non-
deterministic polynomial-time (NP)-hard problem because, with an increase in the degree of freedom
of the system, the complexity increases. Suitable factors such as layout design, vehicle control, and
information flow architecture based on system requirements are to be selected in order to increase
the DTVS transportation efficiency. A combination of DTVS transportation system design, vehicle
management, and control is studied below.

4.1.1. Transportation system design
Transportation system design discusses the structure of flow-path layouts to design the transporta-
tion of vehicles. Flow-path layouts are classified into unidirectional, bidirectional, and multi-lane
flow paths. With a unidirectional path, no opposite traffic is allowed, hence requiring simple con-
trols. One-way traffic has less layout utilization and a higher vehicle traveling distance with less
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Figure 4.1: DTVS transportation, management and control design selection

number of missions completed. Bidirectional flow allows two-way traffic, facilitates transportation
cost reduction, and minimizes the area used by increasing the transportation network and hence
higher throughput. A bidirectional path with a vast networked layout requires a smaller number of
vehicles and is more advantageous than a unidirectional one. Due to bidirectional traffic, congestion
increases and system complexity increases. This then requires an adequate traffic control algorithm.
In a bi-directional graphical network layout, vehicles travel in opposite directions. It is then nec-
essary to check the accessible route available for vehicles in order to avoid collisions or deadlocks
when traveling in the opposite direction. That means mission scheduling and vehicle dispatching
are closely related to vehicle routing. It is hence necessary logically to integrate mission routing,
scheduling, and vehicle dispatching as an entire solution for the DTVS control [69]. A suitable and
adequate traffic control algorithm for the bidirectional flow of vehicles is required.

4.1.2. Transportation system control
Transportation system control is classified as centralized, decentralized and distributed. In decentral-
ized control, the decisions are made based on local information. Here, the vehicles are aware of their
state and the state of neighboring vehicles. The traffic management is handled and communicated
between these vehicles and negotiated by themselves. Decentralized control has low computation
and a simpler solution approach but has low efficiency. A distributed control, algorithm uses a
combination of global and local information. In the Intelligent Transport System framework set in
chapter 3, only global information flow is implemented. Local information flow increases the sys-
tem’s control complexity. For this study, a simpler global information flow is considered and hence
distributed control is out-of-scope of this study. In centralized control, all the information about the
vehicles, positions, planning, and coordination of transportation systems are stored and computed
in one place. It is highly efficient but requires longer computation time. In order to reach a globally
optimal solution, centralized control is a feasible approach. For the computational expensiveness of
centralized control, outsourcing cloud-based infrastructure for computationally heavy processes is
employed as discussed in section 3.3.1.

4.1.3. Vehicle Management
In vehicle management, the updates received from the vehicle and mission are used to plan and
control traffic. Traffic control algorithms are classified as static, time-window-based and dynamic.
Static algorithms plan all the mission routes in advance and fail to react in case of a dynamic traffic
condition. This method is suitable for smaller transportation systems with low throughput and
global planning. In time-window-based algorithms, each vehicle with a flow path is divided into
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segments, where one segment is partially for that time is occupied by one vehicle and the rest of
the other segments can be shared by other vehicles. This allows for better flow-path utilization and
higher transportation system throughput. When all the orders, sources, targets, and schedule times
are known prior to the operation, the system employs static and time-window-based algorithms.
Dynamic algorithms plan the path based on real-time information about the traffic. In case of
missions are submitted or arrive in a sequential manner and route decisions are made without the
information about the missions arriving later, the algorithm is capable of real-time operations.

The transportation system design is set to bidirectional with a networked layout with the aim of
higher system throughput. The control of the Intelligent Transport System is centralized with
cloud-based services. Control algorithms are required for vehicle and traffic management, these are
selected and modeled depending on the components of the system (here HFoV, obstacles, and kind
of deadlocks to be handled in the system. The rest of this chapter will deep dive into the deadlock
conditions and handling deadlocks occurring in HFoV in the DTVS. A morphological overview of
all possible deadlock handling strategies with control policies and multi-criteria analysis of these
strategies is carried out to select the most suitable strategy/strategies in the context of the related
problem of this project.

4.2. Conditions and categorization of deadlocks
It is interesting to notice that the term deadlock was first coined not from logistics but from computer
science, where this problem was recognized and discussed in the late 1960s and early 1970s [11] [23].
During primary parallel/ multi-programming, deadlocks occurred and thus strategies were developed
to break the conditions for deadlock occurrence. In multiprogramming, when two programs in the
computer share the same resource, they eventually prevent each other from accessing that resource
effectively causing the operational halt of the program or technical ceasure. Here, resources can be
defined as devices (tape/disk, drives, card readers, etc.), processors, or storage media in the context
of computer science and can be information data (tables, files, etc), programs, or routes in the
context of logistics. Coffman et al. proposed four conditions for deadlock occurrence and since then
have been used to investigate the occurrence of deadlocks and their handling strategies in logistics
[5].

The same deadlock situation occurring in the computer system can be related to a deadlock occurring
between two driverless vehicles in a traffic management system of the warehouse. The resources
shared between these vehicles can be data, cells/routes in the operational layout or positions that
can lead to potential deadlock. When two vehicles reserve the same cell to traverse through the
planned route, it causes deadlock as each vehicle strives to travel to that reserved cell which is
currently occupied by another vehicle [11] and is represented in figure 4.2.

For a situation to be posed as deadlock, Coffman coined four conditions as explained below [34]:

• Mutual exclusion: This condition states that one cell can be occupied by one vehicle at a time.
It ensures that if two vehicles share a common path, then one cell can be reserved by one
vehicle at a time.

• Hold and wait: This condition holds true when one vehicle waits for a cell to be free which is
currently occupied by another vehicle.

• Non-preemption: This condition is met when the cell is released only when the vehicle (V1)
occupying that cell has left it completely. It is infeasible to remove the vehicle (V1) occupying
the cell until the completion of the assigned order at that particular cell.
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(a) Deadlock in computer science, process 1 (P1) has
resource 1 (R1) and requires additional resource 2 (R2)

which is currently being used by process 2 (P2) [56] (b) Vehicles in deadlock [11]

Figure 4.2: Deadlock representation in computer science (a) and its analogy in logistics (b)

• Circular wait: This condition holds true when a circular chain of vehicles waiting for each
other to move to the cell that is currently occupied by the next vehicle in the chain

Coffman says that in order to prevent the occurrence of deadlocks, at least one of the four above-
mentioned conditions should be broken. In figure 4.2b, all four conditions are satisfied, thus creating
deadlocks. In DTVS in the warehouse, the first three conditions are always true in physical systems.
Therefore, in the context of the problem of this study, the breaking of Coffman’s fourth condition
Circular wait will avoid the occurrence of cyclic deadlocks.

4.2.1. Categories of deadlocks:
Type 1: Active deadlocks:
A deadlock caused by irrational motion coordination strategies where vehicles are already in a
deadlock can be termed an active deadlock. This kind of deadlock can be prevented or resolved by
the motion coordination program running on the vehicles, controlling the movements locally, and
correcting the passing sequence. This deadlock category is out of scope for the current thesis as the
focus is on global planning and co-ordination systems.

Type 2: Passive deadlocks:
On the other hand, a deadlock caused by poor path planning is termed a passive deadlock. It
can be resolved by a reasonable path-planning strategy that minimizes the forming of deadlocks by
deadlock-free routing or re-routing some vehicles. This is the category of deadlocks looked into in
this study.

To handle deadlocks, the next section discusses three basic strategies/approaches to address dead-
locks in DTVS operation.

4.3. Strategies to handle deadlocks
The deadlock handling strategies are classified into three; deadlock detection and recovery policy,
deadlock prevention policy, and deadlock avoidance policy.
Deadlock detection and recovery handles active deadlocks. That means this policy allows the occur-
rence of deadlocks. These deadlocks are detected and recovered by another algorithm that re-plans
the path of at least one vehicle that is in a deadlock situation. This approach does not prevent
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deadlocks in advance. While deadlock prevention and avoidance handles passive deadlocks.
Deadlock prevention is an off-line traffic control policy that aims at the complete avoidance of any
situation that may lead to a deadlock by pre-planning 100% deadlock-free paths prior to the mission
execution. It follows the static approach and computes routes that do not require change and are
robust against disturbances.
Deadlock avoidance is an online control policy in real-time that avoids the occurrence of deadlocks
in the next event by dynamically allocating the vehicle’s mission path based on the information of
the current state of the system. This approach is used for dynamic routing. In case of delays and
disturbances, this approach then requires re-computation of vehicle routes which can be computa-
tionally expensive.

4.3.1. Deadlock detection and recovery policy
This policy handles deadlocks in two steps; detection and recovery. For detection, a system’s actual
updated state should be represented all the time whenever there is a significant change in the status
of the system, here DTVS. The system is represented as graph-theoretic / matrix-based or Petri-net-
based. According to [35], this policy is termed as lazy optimistic strategy which reserves or schedules
a route, if available, hoping that the planned route will be deadlock-free. The strategy uses resource
allocation graph which is used in computer science, also called wait-for-graph to detect deadlocks.
The cycle where one vehicle is waiting for a cell to be free is currently occupied by the next vehicle
in the chain of the cycle as represented in figure 4.2a. A cycle in wait-for-graph indicates deadlock.
Once the cyclic deadlock occurs in the operational layout, it persists until the policy detects and
resolves it. The resolution of deadlock is done by reallocating resources, for instance, paths or cells.
This policy works successfully for the systems with occasional deadlocks.

A major disadvantage is that this strategy is unable to predict deadlock even after certain informa-
tion on deadlock occurrence in the future is available in the system. For example, in case a vehicle
is broken in between the operations, and some other vehicles are in the operation and will traverse
the route or cells where the vehicle broken is currently halted. This strategy does not predict the
deadlock situation of the operating vehicles but detects a system deadlock when it actually happens
[37]. It is time-consuming and increases the vehicle waiting time to resolve the deadlock.

4.3.2. Deadlock prevention policy
Deadlock prevention policy prevents the occurrence of deadlocks which are passive in nature. With
prior knowledge of the system, missions and vehicles, a prevention strategy can provide fine dis-
cretization with vehicles moving on edges and a faster network of routes for a large number of
vehicles but is computationally expensive. For prevention strategy, it has to prevent one out of four
deadlock conditions (4.2) to prevent deadlocks in the operational layout.

Deadlock prevention by system design and path planning:
Transportation system design
By careful transportation system design, the possibility of deadlock occurrence is excluded com-
pletely before the mission execution/operation. It is an offline strategy, where the system schedules
paths in such a way that is deadlock-free in prior. For bidirectional layout and higher throughput,
a prevention strategy with faster network routing is beneficial in terms of cost reduction with a
reduction in used areas by vehicles [19].

Static path planning
With static route planning, the factors required for a mission such as vehicles, routes and location
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are acquired before the vehicle movement or operation. A path from the source to the target is
determined during the routing and scheduling and remains occupied until the vehicle completes the
mission. In addition, this path remains the same for that particular set of source and target. This
means, that in case of disruptions or irregularities in the system, the static vehicle management fails
to modify the path.
In order for faster network routing, static planning can be relaxed so that different combinations of
paths can be chosen between the same locations. With mesh or grid-based topology, the path with
the shortest distance can be chosen.

Time-window-based path planning
With time-based route planning, certain segments/cells in the route of a vehicle are allocated and
the rest of the segments in the route are utilized by other vehicles. In [41], chains of elementary
reservations, where vehicles dynamically add the reservation of cells/segments at any time. After
adding these reservations to the queue, vehicles can commence their transport missions. If two
vehicles share a reservation, then one vehicle waits for another to finish its mission.
In the paper [32], each node in a cell of the operational layout has a list of time windows reserved
by vehicles and a list of free time window that is available for the vehicles to reserve. In this way,
the algorithm plans the vehicle route with free time windows in the proposed time-window graph
instead of physical cell nodes of the operational flow path. The computation time is then o(v4n2)
where v is the number of vehicles and n is the number of nodes. This means, that with an increase
in the number of vehicles, the computational complexity increases. This is suitable for only small
transport systems. Article [57] proposes a dynamic routing method by taking into account active
missions and their respective priorities for multiple AGVs. The paths are evaluated by time windows
and overlapping tests to check the feasibility. As the number of active missions with corresponding
vehicles changes with time, the proposed strategy makes the shortest path feasible for missions by
time window elongation which results in collision and deadlock-free mission paths. However, the
proposed method is limited to undirected graph topology. Factors such as acceleration, deceleration,
and external obstacles in dynamic environments make it difficult to calculate time windows precisely
in case of delays and can lead to unpredictable obstacles in dynamic environments [74].

Deadlock prevention by eliminating deadlock conditions

• Eliminate Mutual exclusion: Prevention rules that can state no two paths can share a common
node at the same time.

• Eliminate Hold and Wait: The Prevention algorithm plans all the mission paths with required
nodes and edges before the start of the execution of those missions. This leads to low utilization
of nodes in the operational layout. For example, if mission 2 requires navigating through a
particular node at a later point in time, but the prevention algorithm has assigned that node
for another mission before the start of execution, then that node will remain blocked for
mission 2 until the other mission has completed its execution. This solution might lead to
increased waiting time.

• Eliminate No preemption: Prevention strategy can preempt the node(s) if those node(s) are
required by a high-priority mission. The low-priority mission then has to make new requests
for the mission path node(s). This can lead to long request queues. In the current study, no
priority in the mission is considered.

• Eliminate circular-wait: To eliminate this condition, each node will be assigned a weight/num-
ber depending on its priority. The algorithm then only allocates nodes to the mission path
depending on the priority weight/number. For example, if the mission 1 path has node 5
assigned, and due to deadlock, it then requests node 4 which has lower priority than node 5 to
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navigate through, the algorithm does not make the change as node 4 may already be assigned
to another mission path. This can increase the mission execution waiting time. In addition,
assigning priority to nodes can be different from mission to mission or application.

Deadlock prevention strategy can eliminate condition 1, however requires additional computation
time to eliminate other conditions. In addition, the deadlock prevention strategy performs well for
small transportation systems with low utilization of resources but fails to perform efficiently in the
case of large systems where traffic dynamics change and disturbances are higher.

4.3.3. Deadlock avoidance policy
Similar to the prevention strategy, deadlock avoidance avoids the occurrence of the deadlocks which
are passive in nature. This policy plans the mission operations dynamically depending on the
system state such that it remains deadlock-free. The avoidance policy requires that the system is
not initially in a deadlock state. This strategy works by knowing deadlock dynamics. Dynamics is
defined by state. A state is defined by the available and assigned cells/nodes, and by the required
cells per mission. A state can be defined as safe state if an algorithm is able to assign the required
number of cells/nodes for all the missions in any order in a way that does not lead to deadlock.
Unsafe state is when some nodes/zones, even after careful scheduling, may cause deadlocks. Not
necessarily all the time, it may or may not cause deadlocks represented in figure 4.3. Deadlock
avoidance techniques consist of a resource allocation graph and Banker’s algorithm with a further
wait-for approach.

Figure 4.3: Deadlock dynamics State

Resource allocation graph
Most of the deadlock avoidance algorithms use Petri-net-based methods. Modeling a Petri-net or
matrix-based is time-consuming. Whenever there is a small modification or change in the physical
layout, it takes time to incorporate these changes and revise the model. Revising the model can cause
changes system-wide in the existing operational model [72]. To avoid the drawbacks of Petri-net, a
graph-theoretic approach is proposed. One of the graph-theoretic approaches, a resource-allocation
graph is used to visualize the system’s current state. It includes information on all the vehicles
assigned with mission routes, routes, and also the routes planned for the vehicles which are yet
to operate. It counts for safe and unsafe states in order to reserve/allocate the cells/nodes for a
mission path. Based on this information, the traffic control algorithm decides if the mission path
should be reserved or allocated with the next nodes(s)/cell(s) or should wait in order to avoid
the deadlock. With fewer missions, the deadlocks in the graph can easily be spotted and avoided.
Resource allocation graphs are useful for detecting deadlocks. Dynamic resource allocation can
affect the resource/zone utilization and system throughput, and eventually increase the lead time
and vehicle travel time [72].

Banker’s algorithm
Devised by a famous Dutch scientist E. Dijkstra, Banker’s algorithm follows a resource allocation
strategy that is motivated by the banker’s way of handling loans. Bankers used to ensure that they
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lent out resources in the form of loans in a way to satisfy all the customers. Bankers would not loan
a little money to start constructing a house unless they are assured that they will later be able to
lend out more money in order to complete the house construction [13].

In terms of transportation systems, a Banker’s algorithm is a resource allocation and deadlock
avoidance strategy that predetermines if the system will remain in safe state or not by first simulating
the allocation of node(s)/cell(s) to the mission paths. It then makes a safe state check before actually
allocating the node(s)/cell(s) to the mission in order to avoid deadlock. It is based on tables, unlike
resource allocation which is based on graphs. In case the number of missions and nodes is more,
Banker’s algorithm is useful. A disadvantage of Banker’s algorithm is that it fails to store necessary
information about the failed executions and the reasons behind the failure that led the mission to
an unsafe state. It only knows that a particular mission is in an unsafe state. It also fails to show
which mission needs what particular node(s)/cell(s) in order to solve the deadlock.

In the case of a multi-AGV system, a resource is associated with edges/nodes/cells and the process
is with missions. Each vehicle requests algorithm allocation of edges on its path from source to
target if only that edge is not occupied by another vehicle. Banker’s algorithm checks by simulating
the request if the allocation will allow other vehicles to complete their missions in sequential manner
one-by-one. If the new state requested by the vehicle simulates to be safe, then the requested edge
is granted or else in case of unsafe state, the vehicle movement will be forbidden and enters the
wait-for simulation loop until the state gets to safe. This causes low utilization of vehicles and
longer waiting times. In addition, simulation and check can be computationally expensive.

Wait-for approach
When an algorithm successfully predicts the deadlocks, it instructs to stop mission execution. The
algorithm has to decide if the vehicle has to wait for the deadlock to clear or whether a new plan
needs to be drawn. Most of the traditional deadlock avoidance go through closed loops and apply
a wait strategy until the deadlock is cleared.
In article [16], the central controller calls deadlock avoidance every time to check if a particular
vehicle is allowed to reserve a set of cells/tiles required for its navigation. The algorithm determines
if the reservation is allowed only if the order of movements of AGVs exists such that the system
remains deadlock-free. The combination of steps of different vehicles is checked by the algorithm to
evaluate the system state, which causes unnecessary deterring of AGVs and longer calculation time.
A modified Banker’s algorithm strategy proposed by [29] provides a solution to solve the low utiliza-
tion of vehicles and longer waiting time. Under special circumstances, the vehicles are allowed to
transverse unsafe states (deadlock existing states) to decrease the vehicle waiting times and mission
execution times. This extended set of states is allowed only if all the missions can be executed
safely, or else the vehicles wait until the state is safe. Verification of a safe system is graphical, with
polynomial complexity associated with a number of missions O(|M |).
An extension of this modification is proposed by [24] for an improved near-optimal deadlock avoid-
ance strategy. It consists of two stages, an offline one that preprocesses guide-path and an online
which combines preprocessed guide-path results with the vehicle status to evaluate the safety of
the system dynamically. In order to avoid the vehicles waiting until the overlapped edges of two
paths are released, alternative shortest paths are obtained. Before a path from alternative paths is
allocated to a vehicle, a safety assessment of the system is carried out. If all these alternative paths
lead to an unsafe state, the vehicle is instructed to pause and wait for the next scheduled check.
This questions the trade-off between travel distance in case of alternative path allotment or waiting
time until the system gets back to safe state.

This raises questions like; in case of non-re-routing, is it possible that vehicles wait indefinitely? In
some scenarios, this is not the best possible solution. The wait strategy can cause persistent cyclic
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deadlocks (single and multiple) as vehicles involved in this scene are instructed to wait and rely
on each other for movement. An alternate solution is to compare paths and replan or re-route the
vehicles. This further raises some questions. If a re-route is initiated, is there always an alternate
path available? If two vehicles have the same source point, does one vehicle have to wait for a very
long time until the zone is deadlock-free or is it possible to assign a different mission with a different
source point? The answer to these questions is to come up with the most suitable strategy that can
solve most of these issues.

In case for the system to be deadlock-free, Coffman’s fourth condition Circular wait should be
eliminated. The algorithms for avoidance focus on waiting until a mission path has a safe state. The
straightforward way to implement a deadlock avoidance strategy is with vehicle re-routing instead
of waiting. Re-routing by path planning also helps to avoid Coffman condition 4 of Circular wait
by allowing the mission to break from the cyclic deadlock and to re-route and continue operation.
In paper [33], authors propose a dynamic routing algorithm that avoids deadlocks efficiently. The
dynamic routing calls the Dijkstra algorithm for active path reservation and considers waiting time
in the cost, making it possible to choose between waiting until no overlap or detouring. However,
the performance of this method is limited to the flow path of AGVs i.e., reserving nodes one-by-one
after occupancy and finding the next node before claiming it. In addition, the approach is limited
to the layout used in that study. A possible deadlock control approach that is adaptable to the
layout, number of vehicles and heterogeneous fleet follows two-step; Step 1 of deadlock detection
in the path planned in advance prior to vehicle movement provides a deadlock control strategy
with enough time to provoke step 2 and step 2 of avoiding the detected deadlock by avoidance by
re-planning the vehicle path. This strategical approach will be further analyzed with multi-criteria
analysis.

4.4. Mission Path Planning and Deadlock avoidance
Path planning, being one of the core tasks of the FMS, can be defined as planning the best possible
path for a vehicle to traverse from source, re-plan in case of deadlocks and repeating it until the
vehicle reaches its target point. Path planning is considered to be a non-deterministic polynomial-
time (NP)-hard problem, with an increase in the degree of freedom of the system, increasing the
complexity.

4.4.1. Path planning: Classical approach [2]
• Cell decomposition: This method divides the entire operation map/graph into discrete, non-

overlapping regions called cells, together forming an entire configuration space called a C-space.
The system generates a transverse path through adjacent cells called connectivity-graph and
forms a path with a sequence of cells for the vehicle to transverse from source to target.

• Road Maps: The graph produces a set of 1D curves by forming connections between the
vehicle’s free spaces to path out a road map. The system then uses the set of these standardized
curves to find the optimal path. The nodes are used as waypoints for the vehicle to transverse
from source to target. In the case of new information, road maps are difficult to regenerate as
the whole map now needs to be reconstructed.

• Artificial potential field: An approach where the vehicle is the center of influence and the goal
points are considered to emit attractive forces and obstacle points emit repulsive forces to the
vehicle in the vicinity of those points. This is local planning where a system forward-simulates
the vehicle motion and uses that simulated path as the planned path. With potential fields,
however, local minima can cause delays or prevent reaching global minima.
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Above mentioned classical methods find feasible paths only with known knowledge about the operat-
ing environment. However, these are less capable of handling unknown or partially known dynamic
environments, like in the current study and tend to be computationally heavy.

4.4.2. Path planning: Meta-heuristics approach
There are various meta-heuristics methods like Particle Swarm Optimization(PSO), Ant Colony
Optimization(ACO), Whale Optimization Algorithm (WOA). These algorithms aim at optimal
solutions and reducing computational time.

• PSO: A most common meta-heuristic algorithm for multi-robot path planning. It is based
on a stochastic optimization approach by behavioral analysis of swarms. Drawing a balance
between exploitation and exploration of swarms, it has both global and local search abilities. It
aims at minimizing the mission time, however has shown low scalability and execution ability
[39].

• ACO: Inspired by the colony of ants in designing optimal path planning solution, this approach
is inspired by the trail leaving ants to find the shortest and collision-free path. The path with
higher trails is defined as the optimal path [39][30].

• WOA: One of the bio-inspired swarm-based algorithms that mimic the behaviour and bubble-
net hunting of humpback whales. It is a recently introduced algorithm that exhibits superior
performance compared to other meta-heuristic methods [53]. It is considered a high-level
algorithm for this thesis as of now.

4.4.3. Path planning: Heuristic methods
• Dijkstra algorithm: The algorithm begins by finding the shortest path from the source to the

closest nodes, and keeps finding the next closest nodes to the earlier node. It maintains the
closest nodes in the priority queue and stores only the intermediate node to form the shortest
path from source to target. Modified Dijkstra algorithms are implemented depending on the
application. Traditional Dijkstra relies on a greedy search for path planning [2] [39].

• A*: A* search algorithm is one of the graph search algorithms that use the breadth-first search
method to find the least cost path. It uses a goodness function that consists of two metrics,
one to find the shortest path from the source to the current node and another metric to find
the shortest path from the current node to the target node. It is computationally heavy and
time expensive when the configuration area is large and if new information flows from the
vehicle’s on-board sensors then it takes time to restructure [2] the system to introduce and
consider new information.

• D*: A dynamic A* called as D* algorithm is basically an extension of A*. It differs from A*
in a way where A* computes one path at the start, while D* computes more than one path
and hence easier to switch between paths. It also updates the map with dynamic changes if
any. It is indeed computationally expensive but efficient as it sticks to the heuristic rule of
focusing only on the portions that are relevant to repairing the current found solution path
from a given state to target [2].

The focus of this thesis is not on optimizing the path planning algorithm, but just using a simple
yet computationally efficient algorithm that finds the collision and deadlock-free shortest path from
source to target. Therefore, a path planning heuristic method, i.e., the Dijkstra algorithm which
considers these aspects is taken into account as a good primary algorithm approach for the problem
at hand. In terms of layout, the objective of the FMS to be more efficient is by increasing system
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throughput and decreasing the vehicle waiting time. In order to achieve that, the vehicles travel in
bidirectional flow paths [41]. The following section discusses in detail the working of the Dijkstra
algorithm.

Proposed by Edsger Dijkstra in 1959 [50], the Dijkstra algorithm is easily implementable and adapt-
able to topology or configuration space change and dynamic environments.
The configuration graph is divided into nodes and connected to each other by edges. A graph can
be undirected, directed or weighted. Each weight can either be a distance or time between the two
connected nodes. In this study, the layout flow path is bidirectional.

It is a famous solution for the shortest path problem developed by Dijkstra. It is a greedy algorithm
that solves the single-source shortest path problem for weighted graph G = (V, E, w) with non-
negative edge weights, i.e., w(A, B) ≥ 0 for each edge (A, B) ∈ E with n nodes and e edges and E
is set of edges and V is set of nodes. If the edge <A,B> does not exist, the the weight w(A,B) = ∞.
d(x) is the distance from source node s to node x. Let S denote the set of nodes that are included
in the shortest path, which means, initially S contains only source node s. V-S then denotes the set
of nodes that are not included in the shortest path yet and follows [51]:

1. Initialization: Set the source node s, and set S = S ∪ s.

2. In V-S set, find node i that is adjacent to the source node s. If the weight of the connecting
edge from s to i is shortest, then add i to set S.

3. Let i be the new intermediate node. Repeat step 2 to find the next smallest numbered adjacent
node j from V-S set. Update the distance between source node s and node j. If d(j) > d(i)
+ w(i,j), which means if the distance passing through i is shorter than not through it, then
modify d(j) to d(j) = d(i) + w(i,j), and then add node j to S.

4. Repeat step 2 and 3 for the n-1 iterations, where n is number of nodes in the graph G. The
output then consists of the source node, intermediate nodes and target nodes with the shortest
path from the source to the target node.

Here, the weight is distributed equally, positive, and is the distance between two connected nodes.
It repeats this process and updates the nodes according to the shortest path found until all the
nodes in the graph are added. We define the source and the target nodes and the algorithm finds
the shortest path between these nodes.

4.5. Multi-criteria analysis for strategies to handle deadlocks
A suitable combination of a path planning strategy with a deadlock handling strategy is required
for a Driverless Transport Vehicle System for effective collision and deadlock-free operations.
Both the deadlock handling strategies, deadlock prevention and avoidance are able to prevent or
avoid deadlocks successfully, i.e., no occurrence of deadlocks (NoD) in the Driverless Transport
Vehicle System with HFoV. To choose a suitable deadlock handling approach, a multi-criteria anal-
ysis is used. The idle waiting time (WT) of the vehicles should be reduced in order for increased
throughput of missions by avoiding deadlocks and successfully re-routing to avoid cyclic deadlocks
(circular-wait) in order to keep operations running. For example, if there are few vehicles operating
in the layout and only one vehicle is allowed to operate in order to avoid deadlocks, the system
throughput will be affected. On the other hand, applying too many deadlock-avoiding restrictions
can make the system to be computationally expensive. The algorithm designed should be restrictive
enough to lower the waiting time but also less complex to make it a computationally faster (Comp)
working algorithm. In the case of HFoV, this strategy should be adaptable for the system in case
new vehicles are added to existing vehicles. In addition, the algorithm should be operationally effi-
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cient in the case of scalability (S) of the system. Another factor to consider is the robustness (R)
of the system in case of disturbances dynamic changes or dynamic obstacles in the case of HFoV
where the heterogeneous fleet consists of vehicles that are dynamic obstacles navigating through
their respective missions. The system is robust if it can act and react efficiently against unexpected
events by detecting dynamic obstacles (DDO). In case there are mission paths not yet added by the
user, the system should ensure a deadlock-free mission path for planned paths. A global optimality
should be achieved by the algorithm control policies, but reducing computational expensiveness does
not necessarily mean achieving optimality, hence this factor is considered out of scope and left out
in this study. The criteria for this study are computational time, waiting time (WT), no deadlock
occurrence (NDO), detection of dynamic obstacles (DDO), robustness (R), scalability (S), and com-
plexity (Cplx) of the solution. A rating scale is provided for each of the criteria; −− worst rating
and ++ being the most suitable one. The ratings are based on the scientific research conclusions
[64] and represented in table 4.1.

Comp WT NDO DDO R S Cplx
Detection and
recovery - - - - - + 0 0 0

Prevention by design
(Zone controlled) [69] [63] - - - ++ 0 0 - 0

Prevention with
static planning + 0 ++ - - 0 - +

Prevention with
time-window based [48] - - ++ + + 0 -

Avoidance with dynamic
resource reservation
and wait-for approach [74]

0 - ++ + 0 - 0

Avoidance with
wait and proceed [45] - - ++ ++ 0 + 0

Table 4.1: Multi-criteria analysis of deadlock handling strategies

The detection and recovery strategy performs well in detecting dynamic obstacles. However, the
complexity and computational expensiveness is higher for large-scale systems.
Prevention with design and zone-controlled traffic management approach for larger zones limits the
AGV scalability and for smaller zones creates multiple vehicle pauses and longer vehicle waiting times.
Prevention with a time-window-based algorithm outperforms static planning and by design approach
in terms of detecting dynamic deadlock strategies time-window-based approach and scalability but
performs less in areas of waiting time and computational expensiveness compared to static planning.
The prevention with time-based planning to avoid dynamic deadlocks has a computational time
complexity of O(N2H2) with N being the number of AGVs and H being the time window. In
addition, the negotiation for deadlock is FIFO (First-In-First-Out) AGVs, i.e., in case of deadlock,
the first AGV gets the chance to move and the next AGV has to wait, increasing AGV idle waiting
time.
The alternative approach to zone control is dynamic resource reservation, where the central controller
assigns nodes (resources) at a time to the vehicles as they proceed. If two vehicles share a common
resource, one of the vehicle’s status changes from moving to waiting. The controller compares the
residual path (path from current to final node) with other AGVs node-by-node. The computational
time is related to the number of AGVs i.e., O(N). This strategy resolves dynamic deadlocks and
wait-for to falsify circular wait deadlock conditions, but with increase in the number of vehicles
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increases vehicle waiting time and decreases the system throughput.
The upgraded version of dynamic resource reservation is avoidance with wait and proceed specifically
to tackle cyclic deadlock formation in large-scale systems with up to 80 AGVs. In this approach,
deadlock prediction cycles are run frequently issuing new commands to AGVs i.e., new control points
(nodes) to occupy one at a time which effectively avoids the occurrence of cyclic deadlocks. The
prediction algorithm computational complexity depends on the number of vehicles i.e., O(N2). An
important point to note is how frequently the predictions are made. The sooner the prediction, the
better avoidance measures can be taken.

To summarize the analysis, the traffic control policy has two steps; conflict detection and conflict
resolution. Collision and deadlock detection are static and dynamic and the resolution strategy is
waiting or re-route. Dynamic detection is further categorized as node-by-node detection or frequent
deadlock prediction cycles to avoid cyclic deadlocks. For resolution, the waiting strategy involves
vehicles instructed to wait to avoid deadlock formation. The waiting can be First In First Out
based, task-priority based etc. The re-route strategy involves vehicle rerouting only if a deadlock is
detected. In order to minimize vehicle waiting time and cyclic deadlock, rerouting is a straightfor-
ward approach. For detection, instead of node-by-node detection as the vehicle proceeds, the sooner
deadlock prediction, the sooner a deadlock handling strategy can be applied, reducing computational
complexity with node-by-node check and increasing the system throughput.

A selected strategy is deadlock detection in prior and avoidance with the implementation of re-routing
with Dijkstra path planning to resolve cyclic deadlocks and evaluate if this control strategy can increase
operational performance and system throughput.

4.6. Key Performance Indicators for DTVS
In order to quantify the study, Key Performance Indicators (KPIs) are used in research to evalute
the operational performance of the developed algorithm. Here, KPIs are measurable values to
determine the effectiveness of a proposed scientific approach. These are critical to validate the
system’s performance qualitatively and quantitatively.

Figure 4.4: Key performance indicators for traffic control strategies used in driverless transport vehicle operations

In an intralogistics industrial environment, time is essence in quantitative measures.

• System throughput (number of missions completed/hr): By employing AGVs and driverless
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transport vehicles, the distribution centres, ports and large material handling facilities like
Amazon warehouses are reducing the costs and increasing the throughput. However, it is
necessary for these infrastructures to invest in safe and reliable vehicle operations, i.e., collision
and deadlock-free operations to reduce fatal risks [43]. For a detailed quantitative analysis,
a subject of ongoing research is a detailed study on safe vehicle operations, vehicle density
and system throughput with different traffic management approaches. According to [15], to
improve the operational performance of the system, evaluating factors are enhancing algorithm
performance and system throughput. In order the improve the system throughput, optimizing
the operational algorithms in multi-AGV systems by feasible traffic coordination is the key
[9]. With well co-ordination traffic control strategy, the vehicles travel on assigned paths
by the algorithm in order to reduce the travelling time and in turn increase the number of
missions completed [3]. Not only for planning but also for completing the missions along with
heterogeneous vehicles in size and functionality with developed algorithm (Degene) compared
to the traditional algorithm, computational time taken to complete is considered important
[70]. The average execution time taken by the number of vehicles to accomplish the missions
is considered a performance indicator [4] [41].

• Waiting time (s): Another performance indicator is the waiting time, the time taken for the
algorithm to route and schedule the optimal deadlock-free mission path before the mission
dispatch to the vehicle. Waiting time is the sum of mission routing and scheduling. For the
operational performance check, the vehicles idle state is kept as minimum as possible [40] [21]
[7] [61] [14].

• Computational time (s): Computational time is the total time taken by the system to success-
fully complete the defined number of missions. Evidently, the performance of algorithms in
an industrial setting is indicated by the measurable quantity and computational time. In the
current study, the system throughput plays a vital role both operationally and economically
for an industry. Hence, the computational time of the algorithms to solve a complex problem
is not a prime key performance indicator in this study.

• Frequency of deadlocks prevented and avoided: Another performance indicator is the number
of deadlocks prevented and avoided. The occurrence of a number of deadlocks strategically
prevented and avoided by different algorithms in the operational time frame to complete all
the missions assigned should be studied. This shows the ability of the algorithm to find a new
path for the vehicles in order to reduce the total vehicle waiting time [64] [68] [34].

Other performance indicators for the algorithm are to be flexible to easily adapt to different system
layouts, robust to be capable of adapting to interruptions during operations and scalable in case of
an increase in vehicle or traffic density as discussed in [17].
In this study, the system throughput, and waiting time of vehicles by different algorithms are
compared by input parameters number of vehicles (size and functionality) and simulation time. In
order to check the operation performance of the warehouse, [49] suggests checking the performance
of the algorithms with respect to changing numbers of vehicles, which eventually affects the total
waiting and traveling time.

4.7. Summary
According to Coffman, the system is in a deadlock if any of the four conditions come true. The
conditions are Mutual exclusion, Hold and wait, Non-preemption and Circular wait. In a physical
system, the first 3 conditions always come true and with simple rules can be avoided with path
planning algorithms. The fourth condition circular wait in physical systems causes vehicles to halt
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the operation for longer, which increases travel time and decreases system throughput. Hence,
this study focuses on developing the deadlock handling algorithm to avoid circular wait as quickly
as possible. Deadlock handling strategies are categorized into deadlock detection and resolution,
deadlock prevention and deadlock avoidance. Deadlock detection and resolution allows deadlocks to
occur in order to detect them and then acts to resolve them. It is called lazy optimistic strategy
which plans route hoping that the planned route is deadlock-free. It is time-consuming and increases
vehicle waiting time to resolve deadlock.

Deadlock prevention has prior knowledge of the system, missions and vehicles and uses this infor-
mation to prevent deadlocks. It follows static planning of the routes and fails to prevent deadlock
in case of dynamic obstacles. For dynamic obstacle detection, prevention with time-window-based
planning and zone control strategy is designed by researchers. With zone control, each vehicle is
assigned a fixed or dynamic zone and it is constrained to operate in an allocated zone. Large zone
limits the scalability of the system vehicles, and smaller zones cause multiple mission pauses and
longer vehicle waiting time to resolve deadlocks and conflicts. Prevention with time-window-based
planning avoids dynamic deadlocks with a computational complexity of O(N2H2), an increase in
the number of vehicles causing increased computation complexity.

To reduce computational complexity and avoid zone allocation, dynamic resource reservation and
upgraded version with wait and proceed are coined by researchers. In the former, the central con-
troller reserves resources (or nodes) only if it does not lead to deadlock. The vehicles are assigned
nodes as they proceed depending on FIFO or mission priority basis. The winning vehicle moves
while the loser vehicle changes its status from moving to waiting. The computational complexity
is O(N), and due to the waiting strategy, an increase in the number of vehicles creates an unre-
solved cyclic deadlock situation. To avoid cyclic deadlock, the latter strategy of wait and proceed
follows a deadlock prediction cyclic frequency and resolves cyclic deadlocks by waiting strategy. The
computational complexity of this approach is O(N2).

Room for improvement is to reduce computational complexity and replace the waiting strategy with
straight forward re-route strategy if deadlock is detected. The prediction of deadlock plays a vital
role in controlling cyclic deadlocks and the calling of resolution strategy can be accelerated quickly
to re-plan the mission routes aiming for higher system throughput. This deadlock control approach
will be modeled in the next chapter and evaluated for its operational performance.
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Traffic Management Module System Modeling

This chapter discusses modeling and developing the novel deadlock control algorithm for the hetero-
geneous fleet of AGVs in collaborative warehouse operation. First, the front-end modeling to model
the operational layout, model for simulation and GUI, and next the back-end modeling that holds
developing the strategy and implementing with VDA5050. A deadlock control strategy coined in
the previous chapter is modeled and developed in this chapter. The strategy first detects deadlock
by developing four check conditions and resolves the deadlock by replanning the mission paths. This
strategy achieves the operational research objective drawn in 1.2.1. To achieve the overall objective
of this project, technical and operational are brought together later in this chapter, i.e., the oper-
ational objective developed is communicated to the vehicles via a communication server with the
technical objective of using an industrial standard protocol of VDA5050. The flow of mission and
vehicle status with VDA5050 order messages is presented briefly. To simulate the strategy output,
a simulation model is built and an input GUI is developed for users with different input options.
This chapter answers SRQ 4 about modeling and developing the novel deadlock control strategy.

5.1. Front-end modeling
Before developing the algorithm, the operational environment and components required for the input
to the algorithm are to be defined.

5.1.1. Operational layout
The warehouse layout is divided into an operational guide/mission paths connected to via a network
of nodes and edges for the vehicles represented in figure 5.1. Each node has an x and y coordinates.
These nodes with coordinates are input to the algorithm environment as a .csv file.

(a) Bidirectional layout with nodes and edges (b) Network of bidirectional layout

Figure 5.1: Bidirectional networked layout used in this study

The transportation area is divided into a tessellated layout with non-overlapping zones called cells.
The center of each square-shaped cell is called a node and nodes are connected to each other with
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edges. Each cell is connected via edges.
The layout can be a single loop, tandem or conventional as explained earlier in chapter 4. In a
single-loop layout, vehicles travel in a unidirectional path, which is computationally less expensive
but however not flexible. In this layout, the vehicle has to travel in loops to visit the same node. In
case of a vehicle breakdown, that vehicle can block the whole system. Similar to a single loop, the
tandem layout has non-overlapping cells with single vehicles operating in tandem but has low-fault
tolerance and causes system breakdown similar to a single loop. Hence, to overcome the disad-
vantages of single-loop and tandem layouts, a bidirectional layout is followed. In this layout, the
vehicles travel bi-directionally, which is advantageous to the DTVS operation because vehicles are
allowed to take shortcuts in order to reduce travel distance and time. These shortcuts can lead to
potential deadlocks and can be resolved with a deadlock control strategy.

5.1.2. Simulation model
To simulate the developed deadlock control strategy for a DTVS with a fleet of heterogeneous
AGVs, a simulation model is designed. The simulation model is not only to verify the working of
the developed strategy but also to validate the operational performance of the developed DTVS for
HFoV.

The layout is divided into 45 X 25 nodes as shown in figure 5.1a. Blue cells are the inventory
points, green coded are charging and rest station points. The cells represented in grey are buffers
or clearance zones for the vehicle to allow enough space for turns. To introduce heterogeneity in
vehicles, three different kinds of vehicles with different sizes, functionalities and manufacturers are
introduced. Size 1 occupies one cell at a time, size 2 occupies 2 cells while traversing in a straight
line and three in case of turn in order to represent the occupied cells during turn. The tail behind
these vehicles is to keep track of the vehicle’s movement, also the vehicle’s forward movement is
in the direction of the head. For heterogeneous functionality and posing as a dynamic obstacle, a
cleaning robot in yellow is modeled. The system consists of 3 inventories each with 10 inventory
points, 6 pick-up and 6 drop-off locations, 3 charging and 3 rest stations. A topology description of
the simulation model is discussed in 5.1a.

• Definition 1 - Charging station point
These points are defined as nodes designated for charging vehicles in charging stations. If the
vehicles reach 20% battery level in between operations, the vehicles are instructed to go to
these points and start charging. In this study, it is assumed that vehicles remain fully charged
throughout the operation with 100% battery level. In this project, this is the start and end
location of the vehicles after the completion of all missions. These are also assumed as rest
stations for vehicles in case the rest station is completely occupied.

• Definition 2: Rest station point
Similar to charging station points, these points in the rest station are designated as the start
and end points of the vehicles.

• Definition 3: Source
Every mission path has a source point. The start node of the path/mission is the source point.

• Definition 4: Target
Every mission path has a target point. The end node of the path/mission is the target point.

• Definition 5: Inventory point
Inventory points are the location of the inventory orders in inventory A, B and C.
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• State of vehicle
The vehicle state is either defined as alive (ready for mission execution) or idle (idle after
mission completion). These status codes are followed from the VDA5050 manual.

• State of mission
Mission states are pending, running and completed. Pending is when the mission is awaiting
the vehicle allocation, running is operational status and completed in case of mission comple-
tion. These status codes are followed from the VDA5050 manual.

The novel deadlock control strategy can be applied to an industry with existing DTVS with a
heterogeneous fleet of operations where deadlock can occur by the interaction of two heterogeneous
vehicles unknown to each other with the help of VDA5050. For example, a healthcare system where
a cleaning robot and service robot to deliver goods are required in the operational layout. In ports
or container terminals, two automated container transport vehicles from two different manufacturers
work in a shared operational environment. In warehousing or airport baggage handling, automated
mobile robots can operate together with automated forklifts in a shared common operational layout.

5.1.3. Graphical User Interface
GUI is designed to pass a set of instructions from the user, i.e., input to the FMS (also called as
central controller) and log operational updates on the window. It is divided into three sub-windows,
the left window has different tabs for input, the middle window shows the operational layout and
vehicle movement during the mission run and the right window shows mission/vehicle/operation
states and updates as represented in Figure 5.2.
Tabs on the left window are divided into the selection tab and the output tab. The selection tab
consists of algorithm selection, vehicle selection, and input number of missions. The output tab
consists of computational time to complete the number of missions input, the cumulative waiting
time of the vehicle until all the missions are complete, the deadlocks tracking tab and the progress
tab to keep track of the number of missions completed.
The middle window is the configuration space layout. To visualize the mission path, and the vehicle
operations if they are working as instructed. It helps in implementing required changes by modifying
code for smoother operations. The layout is user-defined input to the FMS from Data Management
module.
The right window showcases mission updates as shown. Pick-up mission from allocated node and
drop-off to the target node. It updates vehicles available, running missions and completed missions.

Figure 5.2: Front-end GUI for the Intelligent Transport System designed
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5.2. Back-end modeling - Deadlock detection and avoidance algo-
rithm

After defining the necessary resources and operational environment to input into the algorithm, we
are now ready to model and develop the deadlock control strategy. A pseudo explanation of the
working of the developed algorithm is presented in 5.2.

1. Input of data for simulation. It consists of the number and choice of vehicles to the virtual
operational environment, the required operational/simulation time, and the pick-up and drop-
off locations of these missions. In this study, a random mission pick-up location and drop-off
are initialized in order to check the algorithm performance with changing pick-up and drop-off
locations in every run.

2. Each mission is divided into two paths; first from vehicle location to pick-up node and then
pick-up to drop-off node. For these paths, a source and a target node are defined. The first
path is planned with Dijkstra between the first idle vehicle’s current location and the pick-up
location. The second path is planned also with Dijkstra by finding the shortest route from
pick-up to drop-off location.

3. Once the mission is executed, it is stored as the existing path. While the missions that are
planned but yet to be executed are named as new paths.

4. Four check conditions are defined. The existing path is checked with new paths for four
conditions to avoid deadlocks. These conditions are explained in detail in later sections. In
case these two paths have deadlock(s), the new path is instructed to be re-routed by calling
Dijkstra function.

5. In order to avoid the cyclic deadlock by assigning the same deadlock(s) node(s) to the new
re-route path, the check conditions make sure to remove the edges between deadlock nodes in
order to make them unavailable. This prompts the Dijkstra to find a new shorted route to
the new path.

6. Once the checked new path is executed, it becomes the existing path

7. The processes 4 to 5 continue until all the missions are executed with deadlock-free paths.

There are four check conditions which check for deadlocks between two missions, detect them and
avoid them by re-routing yet-to-be-executed missions. These four conditions; CheckSingleMultiN-
odeCollision, CheckCommonEdgesInForwardRoute, CheckCommonEdgesInReverseRoute, and Check-
FinalNode are explained below.

Algorithm 1 Check All Conditions
Function CheckAllCondition(new mission path, running mission path)

ep ← collect running mission path;
for path ← ep do

C1 ← CheckSingleMultiNodeCollision;
C2 ← CheckCommonEdgesInForwardRoute;
C3 ← CheckCommonEdgesInReverseRoute;
C4 ← CheckFinalNode;
if C1 or C2 or C3 or C4 then

return TRUE;
return FALSE
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5.2.1. Check condition 1 - Check for single or multi-node collision and deadlock

Figure 5.3: Single/Multi-node collision, detection and avoidance of deadlock

In figure 5.3, a black vehicle with a grey path is the existing mission executed and a blue with a blue
path is the new mission path planned and yet to be executed. The algorithms check these mission
paths for deadlocks as represented in 2. These paths have a deadlock highlighted in brown region
with red marking. In order to avoid this single-node deadlock, the blue vehicle is then instructed to
re-route.

Algorithm 2 C1 - Check single or multi-collision nodes in between the path and avoid deadlock(s)
Function C1 (new mission path, existing path, new mission path weights, existing path weights)

tolerance ← vehicle size;
for i ← len(min(new mission path,existing path)) do

n1 ← new mission path(i);
e1 ← existing path(i);
nw1 ← new mission path weights(i);
ew1 ← existing path weights(i);
if n1 == e1 & abs(nw1 - ew1) < tolerance then

Remove edge (n1, n1-1)
if n1 == e1+1 & abs(nw1 - ew1+1) < tolerance then

Remove edge (n1, n1-1)
if n1 == e1-1 & abs(nw1 - ew1-1) < tolerance then

Remove edge (n1, n1-1)

If any edges removed, return TRUE, else FALSE

In order to check if the node pair (that is node from the new mission path and the existing mission)
are the same and that the vehicle reaches this node at the same time by checking the cumulative
weights. This check can avoid collision and deadlock caused at that node.
Tolerance is defined by the size of the vehicles used in the operational layout to check if these vehicles
collide when working in proximity. A node in the new mission path and existing mission path is
checked if it is the same. If same, it is checked if an absolute difference of cumulative weights of the
new mission path and the existing mission path is less than tolerance. If yes, then the current same
edge is removed. Similarly, if the node in the new mission path is the same as the previous node of
the existing path or the next node of the existing path, then the absolute difference of cumulative
weights of the new mission path and the existing mission path is checked. If the difference is less
than tolerance, then the current edge is removed and Boolean value TRUE is returned. In order to
keep a safe buffer zone between two vehicles, the node of the new mission path is checked with the
previous and next node of the existing path. This is not necessary but however, recommended.
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5.2.2. Check condition 2 - Check for overlapping path segments for vehicles trav-
eling in the same direction and avoid deadlock(s)

Figure 5.4: Overlapping edges in the same direction traveling vehicles, detection and avoidance of deadlock

In figure 5.4, the black vehicle with the grey path is the existing mission executed and the blue with
the blue path is the new mission path planned and yet to be executed. The algorithms check these
mission paths for deadlocks as represented in 3. These paths have the longest common sub-sequence
and are traveling in the same direction to reach their targets. Check condition 2 is invoked. In order
to avoid deadlock, blue is instructed to re-route.

Algorithm 3 C2 - Check common overlapping edges for both the vehicles traveling in the same
direction
Function C2 (new mission path, existing path, new mission path weights, existing path weights)

lcs = list(longest common sequence(new mission path, existing path));
for cl ← lcs do

if len(cl) < 2 then
Skip

IndexNew = Get index of cl in new mission path;
IndexEp = Get index of cl in existing path;
indexNewWeights = new mission path weights(IndexNew);
indexEpWeights = existing path weights(IndexEp);
if indexNewWeights overlaps indexEpWeights then

Remove edges(new mission path(IndexNew))

If any edges removed, return TRUE, else FALSE

If the paths have the longest common sub-sequence and the cumulative weight is the same, then
the vehicles are traveling in the same direction and arrive at those nodes at the same time which
can cause deadlock during their arrival.
First, the longest common sub-sequence (lcs) is taken for both the existing and new mission path,
in order to check if two vehicles are traveling in the same direction. If the length of the longest
common sub-sequence (lcs) is less than 2, that means it is a single node check, then we ignore this
check because check 1 takes care of this. Otherwise, the cumulative weights from the new mission
path and existing mission path are checked. If there is an overlap between the cumulative weight
of the existing and new mission path, that means the vehicles visit those overlapping nodes at the
same time which might cause deadlock just before their arrival at that node. In this case, we remove
those overlapping edges and return a boolean value TRUE.
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5.2.3. Check condition 3 - Check for overlapping path segments for vehicles trav-
eling in opposite directions and avoid deadlock(s)

Figure 5.5: Overlapping edges in opposite direction traveling vehicles, detection and avoidance of deadlock

In figure 5.5, the black vehicle with the grey path is the existing mission executed and the blue
with the blue path is the new mission path planned and yet to be executed. The algorithms check
these mission paths for deadlocks as represented in 4. These paths have the longest common sub-
sequence if checked in reverse for one path and are traveling in opposite directions to reach their
targets. Check condition 3 is invoked. In order to avoid deadlock, blue is instructed to re-route.

Algorithm 4 C3 - Check common overlapping edges for both the vehicles traveling in opposite
directions
Function C3 (new mission path, existing path, new mission path weights, existing path weights)

reverse lcs = list(longest common sequence(new mission path(reverse), existing path));
for cl ← lcs do

if len(cl) < 2 then
Skip

IndexNew = Get index of cl(reverse) in new mission path;
IndexEp = Get index of cl in existing path;
indexNewWeights = new mission path weights(IndexNew);
indexEpWeights = existing path weights(IndexEp);
if indexNewWeights overlaps indexEpWeights then

Remove edges(new mission path(IndexNew))

If any edges removed, return TRUE, Else FALSE

If the paths have the longest common sub-sequence in reverse and the cumulative weight is the
same, then the vehicles are traveling in opposite directions and arrive at those nodes at the same
time which can cause deadlock during their arrival.
First, a reverse longest common sub-sequence (lcs) is taken for the existing and longest common sub-
sequence (lcs) for the new mission path, in order to check if two vehicles are traveling in the opposite
direction. If the length of the longest common sub-sequence (lcs) is less than 2, that means it is a
single node check, then we ignore this check because check condition 1 takes care of this. Otherwise,
the cumulative weights for the new mission path and the existing mission path are checked. If there
is an overlap between the cumulative weight of the existing and new mission path, that means the
vehicles visit those overlapping nodes at the same time and might cause deadlock just before their
arrival at that node. In this case, we remove those overlapping edges and return a Boolean value
TRUE
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5.2.4. Check condition 4 - For unbalanced weights, the last node check is necessary
to avoid deadlocks at drop-off points

Figure 5.6: Check for unbalanced weight layouts and nodes for deadlock and collision avoidance

In figure 5.6, a black vehicle with a grey path is stored as an existing mission executed, and a blue
with a blue path is stored as a new mission path planned and yet to be executed. This mission path
information is collected by resource allocation graph and passed to Banker’s algorithm to check
for s-state. The Banker’s algorithm checks condition 2 as represented in 5. These paths have a
common final node with the same cumulative weights. In order to avoid deadlock, blue is instructed
to re-route

Algorithm 5 C4 - In case of unbalanced weights layout, check the final node of two operational
vehicle paths
Function C4 (new mission path, existing path, new mission path weights, existing path weights)

tolerance ← vehicle size;
if (new mission path(last node) == existing path(last node)) And abs(new mission path weights
− existing path weights < tolerance) then

n1 ← new mission path(i);
e1 ← existing path(i);
for i ← len(min(new mission path,existing path)) do

Remove edge (n1, n1-1)

If any edges removed, return TRUE, else FALSE

In the case of layouts with unbalanced weights (unequal weights) between nodes, the last node
of the existing and new mission paths is checked. This is specifically modeled to provide a safe
buffer between vehicles, where one is entering the station point and one is leaving the station point.
Tolerance is defined by the size of the vehicles used in the operational layout to check if these vehicles
collide when working in proximity. If the last node of the existing path and the new mission path
are the same, then check if the absolute difference of cumulative weight of the new path and the
existing mission path is within the tolerance. If yes, then the new path edges are removed and the
Boolean value returned TRUE

After the check of all these conditions, a boolean value is returned to check if any edges from any of
these conditions are removed. If the value is TRUE, a re-route is planned to the new mission path.
These conditions are checked until a path with no deadlocks is planned.

5.3. Summary
First, the environment and resources necessary to input in the algorithm are defined. The operational
is a bidirectional layout with a network of nodes and edges. The mission paths are a network of these
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nodes. The operational layout is represented as a simulation model and user input and visualization
of this model is on developed GUI.

The operational objective of this project, modeling and developing a novel deadlock control algorithm
follows two steps; deadlock detection in advance as a necessary change to the existing works of
literature and deadlock resolution by replanning the mission path. For the detection of deadlocks or
prediction, four check conditions are developed in space and time by checking the nodes in the path
and the time of arrival at the nodes by cumulative weight check. Each executing mission path is
checked with new planned paths (yet to be executed) by four check conditions to detect if the paths
have any occurrence of deadlocks. Check Condition 1 to detect deadlock between mission vehicles if
they share a single node and arrive at the same time. Check Condition 2 to detect deadlock between
mission vehicles if they travel in the same direction share multiple nodes and arrive at the same
time. Check Condition 3 to detect head-on deadlock between mission vehicles if they travel in the
opposite direction share multiple nodes and arrive at the same time. Check Condition 4 to detect
deadlock just outside the pick-up/drop-off/inventory station between two mission vehicles where
one is leaving the pick-up/drop-off/inventory station and the other is entering that station. These
check conditions return a boolean value; TRUE if deadlock detected or else FALSE. If TRUE, a
mission path replanning with the Dijkstra algorithm is called to re-route the new planned path with
the next shortest route in order to avoid the deadlock. If FALSE, the mission follows the initially
planned path and no replanning is initiated.
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6
Implementation, Experiments and Results

The purpose of this chapter is to evaluate the operational performance of the developed deadlock con-
trol algorithm and answer final SRQ 5. For evaluation, the algorithm is first implemented, followed
by verification and validation, simulation experiments are conducted and results are analyzed.

6.1. Implementation
Implementation of the modified deadlock avoidance algorithm is carried out by Python programming
with IDE Visual Studio Code.

6.1.1. Technical specifications

Python version 3.8
Ubuntu version Ubuntu 22.04.2 LTS
ROS version ROS 2
Processor AMD@ Ryzen 5 4600hs
RAM 8.0 GiB
Graphics model Radeon Graphics X 12
Graphics card NVIDIA GeForce GTX

Table 6.1: PC specifications

6.1.2. Mission route network and behavior tree
In this study, a Python package called NetworkX is used for the analysis of complex network graphs
[22]. The NetworkX functionality is based on an understanding of graphs. A graph is a mathematical
structure used to model processes in different domains like physical, biological and information
systems. The entities of the system are called nodes and these entities are connected by edges.
These graphical networks have a function to navigate through nodes and edges and working with
these graphs helps to optimize paths in complex networks. As the aim of this study does not focus
on path optimization, this tool is used to study the structure of the graph and used as a standard
programming interface and building a graphical network for this study application. With its ability
to operate on large graphs with around 100 million nodes and connected edges, NetworkX with the
Dijkstra algorithm for path planning complements the developed deadlock control algorithm.

The basic structure of a mission with orders is a network graph of nodes and edges. The vehicle
is instructed to transverse the nodes and edges in the instruction to complete a mission. The full
configuration space with the networked graph is imported by FMS from the Data Management
Module.
A mission is a series of tasks to be completed by an assigned vehicle. This mission tree with a list
of task nodes is represented as a behavior tree. For vehicles to react to all sorts of situations, it is
advantageous to use a mission tree instead of an array of task nodes with steps. Here, each mission
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tree has a higher/start parent node termed as root and children node.
This study follows the mission behavior tree from [27] as a reference. Each mission tree node has
four states: IDLE, RUNNING, SUCCESS and FAILURE. There are four mission tree nodes: route,
action, sequence and selector. Nodes of the behavior tree are mentioned and explained below in
6.1.2.

• name: Each node is assigned a unique name in a mission .JSON format. If not specified, it is
automatically set a name.

• parent: The parent of the node. If not specified, then it is root node.

• sequence: In charge of executing children nodes in order. If all child nodes are complete with
SUCCESS, then the sequence node changes state to SUCCESS. If a child node is running and
completes with SUCCESS, then the next node is started, or else the sequence node states
FAILURE.

• selector: In charge of executing children nodes in order. If all child nodes are complete with
SUCCESS, then the selector node changes state to SUCCESS. If a child node is running and
completes with SUCCESS, then the next node is started, or else the selector node states
FAILURE.

• action: Performs generic and named action on vehicle to execute.

• route: Instructions from FMS that said vehicle to transverse the given path (waypoints). Once
the final waypoint is executed, it returns either SUCCESS or else FAILURE

The description of sequence and selector node sounds the same, however, a sequence node attempts
to run all the child nodes as long as they return SUCCESS, and will instantly return FAILURE
if one of the child nodes fails. In the case of a selector, it will attempt to get only one SUCCESS
and upon failure, it will push child nodes to either get SUCCESS or exhausts all child node. For
example, if there are ten nodes, in case the fifth node fails, the sequence node will ignore the rest
of the nodes and will return FAILURE for the complete branch. But in the case of a selector, it
will still run the rest of the nodes for SUCCESS until those nodes are exhausted. A note that all
mission tree nodes are mutually exclusive i.e., a selector node can not also be a sequence node and
a route node can not also be an action node.

Figure 6.1: Working of mission behavior tree [27]

An example is presented in figure 6.1. On the left is a representation of the behavior tree and on the
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right are corresponding VDA5050 order messages. For each route or action sent by FMS, the mission
tree node is translated into separate VDA5050 order messages. VDA5050 order JSON schemas are
represented in appendix 9. waypoints mentioned in route node is an order node. These are appended
together to form an order message for the path planned. In the action mission tree node, the action
to be executed is attached to the first node of order, the one with the current pose of the vehicle.
Based on the progression of the behavior tree, the order messages are sent sequentially [27].

For example in figure 6.1, a vehicle is asked to travel to the pick-up location and execute the
action of picking up the book. After the successful execution, the vehicle jumps to selector node
routefallback, where if the vehicle fails to go to a drop-off location, then it is asked to go back to
the pick-up point and drop off the book there, or else it drops off the book at target/goal location.

Once the mission paths are input and checked with all the check conditions for deadlock control,
the deadlock-free mission is converted into a .JSON file. The mission .JSON file consists of the
name of the vehicle assigned, the mission consisting of transverse nodes each with a unique name,
a parent, a route with x and y coordinates, actions if any, timeout, and deadline as shown in the
example figure 6.2. Here, Amazon is transversing from node 150 to 103, with the waypoints. The
other waypoints are not mentioned in this example .JSON file.

Figure 6.2: Mission .JSON format for vehicle Amazon

Input parameters for simulation experiments:

• Algorithm selection

• Vehicle density: Number of vehicles

• Vehicle size and functionality

• Simulation time

43 2023.MME.8870



6.2. Verification and Validation 2023.MME.8870

6.2. Verification and Validation
For model verification and validation, there are various techniques and tests used. In this study, a
documentation of the tests and techniques applicable for this study are derived from [54].

6.2.1. Verification and Validation Techniques
• Animation: The operational behavior of the model is represented graphically as it moves

through time. Here, the visualization of the model output acts as animation verification and
validation technique.

• Face Validity: If the model and its behavior are reasonable, several logic questions are posed
if the conceptual model is correct and if the input-output relationships are reasonable. Here,
input-output behavior questions if the increase in the number of vehicles causes an increase
in business in the layout and does that affect the system throughput.

• Operational Graphics: Visual display of performance indicators and their dynamic behavior
with time. For instance, the dynamic behavior of performance indicators like waiting time and
system throughput with dynamic changes in the number of vehicles, size, and functionality as
the simulation model runs through a given simulation time to ensure the right behavior of the
system.

• Parameter Variability - Sensitivity Analysis: As the name says, this technique employs changes
in the input parameters to determine its effect on the behavior and output of the model.
The same input-output relation should occur in reality. The sensitive parameters that cause
significant changes in the output behavior of the model are to be set sufficiently accurately
before the simulation runs of the model. For instance, the same set of missions to the respective
vehicle in all the simulations run in different models.

As this study focuses on the operational behavior of the system, operational validity is conducted for
this project. The purpose of operational validity is to determine if the output behavior of the sim-
ulation model has the accuracy required for the intended purpose of the model across the intended
applicable domain. Here, output behavior is the simulation throughput with an increase in the
number of AGVs, sizes, and functionality and the model’s intended purpose is to avoid deadlocks
efficiently to reduce travel costs and increase system throughput in heterogeneous warehouse envi-
ronments. The techniques discussed in 6.2.1 are used for operational validation. These techniques
can be used subjectively and objectively.

Observable System

Subjective Approach 1. Comparison Using Graphical Displays
2. Explore Model behavior

Objective Approach Comparison Using Statistical Tests and Procedures

Table 6.2: Operational validation classification

The term comparison compares the simulation model output to another model output using graph-
ical displays in case of subjective and statistical tests like confidence interval in case of an objective
approach. For explore model behavior, examination of the output behavior of the model is carried
out using techniques mentioned in 6.2.1. For a high degree of confidence in the simulation model
and its results, several different sets of experimental conditions are required to compare the output
behavior of different models. For this, an observable system that generates data to compare is used.
In this study, the developed model is validated with the other model subjectively with graphical
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displays and model behavior as mentioned in table 6.2. In addition, a performance validation of the
simulation is conducted to validate the developed model.

6.2.2. Verification
Three case studies with HFoV operations are considered to verify the working of the developed
algorithm. The operational layout is bi-directional and square-base and rectangular-base AGVs are
used. The term ’base’ refers to the shape of the vehicle base. Square bases are shown in figure 6.3a
and rectangular bases are shown in figure 6.3b.

(a) Square-based DTV! (b) Rectangular-based DTV!

Figure 6.3: Heterogeneous sized vehicles used in case study

6.2.3. Case study 1 - Square base service vehicles from different manufacturers
In this case, the vehicles are of the same size and from different manufacturers. The simplest case
study is to check if the algorithm successfully detects deadlocks in advance and initiates vehicle re-
route or changes the route to avoid those deadlocks. Visual verification of case study 1 is represented
in figure 6.4.

Figure 6.4: Case study 1 visualization

6.2.4. Case study 2 - Square and rectangular base service vehicles from different
manufacturers

In this case, the vehicles are square and rectangular-based (AGV forklifts and container trucks) are
to be tested. Increasing the level of difficulty for the deadlock algorithm by simulating different
sizes of vehicles and heterogeneous fleets, i.e., square occupies one node at a time, but rectangular
occupies two nodes while traversing in a straight line and 3 while in turn. A sufficient buffer or
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tolerance for rectangular-size vehicles is coded in the algorithm keeping in mind the nodes covered
during turn. To check if these lines of instruction are followed, a visualization is done with case
study 2. Visual verification of case study 2 is represented in figure 6.5.

Figure 6.5: Case study 2 visualization

6.2.5. Case study 3 - Square, rectangular base service and square base cleaning
vehicle from different manufacturers

In this case, a cleaning robot (square-base) with a cleaning function and a service vehicle (square-
base and rectangular base) that does the duty of pick-up and drop-off are tested. In a healthcare
environment, cleaning bots are used more often than in warehousing services. The cleaning bot
cleans one node at a time and can pose a dynamic obstacle for other service vehicles. The algorithm
is also modeled to control these dynamic obstacles. To verify this, the case study 3 is drawn. Visual
verification of case study 3 is represented in figure 6.6.

Figure 6.6: Case study 3 visualization

As the operational layout is bidirectional with a well-connected circuit, there is always an alternate
path available in case of mission re-route. Hence, the algorithm is successful in detecting deadlocks
and avoiding them. As a result, with the verification case studies, no deadlocks were noticed in the
visualization window.
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6.2.6. Validation
A subjective validation technique with explore model behavior is conducted to conceptually validate
the model first. The validation output is represented in table 6.3. For the validation of results
objectively, there is a lack of real-world data to validate the outcomes of this algorithm. Furthermore,
the environment setting and algorithm structure differ from research to research, hence limiting
the validation of this algorithm with other scientific papers for objective validation. Nevertheless,
conceptual behavior and performance validation are carried out to validate the simulation model.

Category Techniques
used

Justification for
technique used

Resuslt/
Conclusion

Confidence
in result

Deadlock detection
and avoidance
by vehicle
re-routing

Animation

To check if vehicles re-route
to avoid deadlocks and
complete the mission
successfully through time

No deadlocks
witnessed in
visualization

High

Face
validity

Logical model behavior
changes with change in input.
For example, with an increase
in the number of vehicles,
the busyness increases
given the same layout and
eventually, the availability of
routes decreases, hence less
system throughput

Logical behavior
of the algorithm
with change in
input parameters

High

Operational
Graphics

Similar to animation, in addition
to visualize the change in the
system throughput with an
increase in the number of
vehicles and heterogeneity.

Operations factors
like system
throughput varies
with varying
input

High

Parameter
Variability -
Sensitivity
analysis

The sensitive parameter is the
the sequence of the mission
assigned to the vehicle in each
run. If the the sequence differs,
for example, the vehicle gets a
mission to source and target
with less distance compared
to the previous run, then the
system throughput varies as
the the vehicle has more time
to complete more missions
due to the smaller mission
duration.

Randomess of the
mission sequence
affected the vehicle
travel distance and
the system
throughput

High

Table 6.3: Conceptual model validity evaluation table

For performance validation in the simulation experiment, the vehicle speed is set to 1m/s and the
distance from node to node is considered 1m. Simulation time is set to 600 secs. In an area of
25mX45m, the maximum distance traveled by AGVs did not exceed 3600m.

With more vehicles, more missions are executed at the same time, leading to decreases in the total
distance traveled by vehicles. If less number of vehicles are operating with the same set of simulation
times, less number of missions are executed at the same time, leading to increased traveling distances
of vehicles. The algorithm shows the same behavior as shown in figure 6.7a and thus validates the
model. If re-routing is employed, then logically more deadlocks will occur with more vehicles due
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to traffic congestion caused by vehicle re-routing than wait and proceed strategy. This performance
behavior of the algorithm is represented in figure 6.7b and thus validated. If the number of missions
to be completed is less than the number of vehicles, only the required number of vehicles is assigned
missions to complete and the remaining vehicles stay idle. This is visually simulated and represented
in figure 6.7c. The number of missions to execute is set to 10 and the number of vehicles input is
13. As the number of missions to execute is 10, only 10 vehicles are given commands to execute,
and the rest 3 are idle at the rest/charging stations, and only the required number of vehicles are
executing missions.

(a) Number of missions with number of vehicles
(b) Occurrence of deadlocks with an increase traffic and

congestion

(c) Only required number of AGVs to execute missions

Figure 6.7: Performance validation of developed deadlock control algorithm

A few aspects of this model are taken into assumption and do not replicate real-world situations. For
instance, vehicle batteries are always full and do not require a break in between the operations for
charging. No vehicle downtime due to structural and functional breakdowns is considered. Invento-
ries, pick-up, and drop-off locations have infinite space, and orders flow continuously so there is no
waiting time at these locations. The simulations hence result in higher throughput than the realistic
actual production site. In case the developed model performs better than the other in simulation,
it will also follow the same behavior in reality. An evaluation table for model validity is represented
in table 6.3. Therefore, this model with a developed deadlock control algorithm is feasible for this
thesis study.
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6.3. Simulation Experiments and Results
The developed algorithm is compared with wait and proceed approach researched in paper [45]
because both follow the deadlock prediction. The difference is the frequency of prediction of deadlock
and deadlock avoidance approach. For deadlock avoidance, the waiting strategy is implemented in
wait and proceed and re-route in the novel deadlock control approach developed in this study.

The performance indicators considered are:

• System throughput (number of missions completed/hr): The total number of orders or mis-
sions completed by the system with each algorithm per hour. This also gives insight into the
optimal number of vehicles required for the missions.

• Waiting time (s): The time taken by the algorithm to find a deadlock-free mission path and
dispatch it to the vehicle. Waiting time never exceeds computational time. It is the sum of
time taken to route planning (rp) and schedule the mission to vehicle(sm). In addition waiting
time in wait and proceed also accounts for the time the vehicle waits (vw) to avoid deadlock.
In brief,

TDDC = Trp + Tsm

TW P = Trp + Tsm + Tvw

(6.1)

where DDC is the Developed Deadlock Control of this project and WP is Wait and Proceed.

In this study, the detection of deadlock is by prediction approach for both wait and proceed
and re-route, as prediction is required to falsify circular wait deadlock condition. To evaluate
the operational performance of the selected strategy, the performance comparison is conducted
between wait and proceed and re-route. As the waiting strategy involves vehicle waiting and the
re-route strategy involves more driving time (loaded or unloaded), a fair comparison to evaluate
the operational performance considering waiting time is with traffic management efficiency.
The vehicle moving time and waiting time are both evaluated to check the efficiency of the
algorithm in managing traffic and vehicle fleet coordination as defined in [48]. It is expressed
as η = Tmoving/(Tmoving +Twaiting). Tmoving is the moving time of vehicles to complete missions.
η for WP and DDC is expressed in equation 6.2. For the developed deadlock control re-route
strategy, time consumed by the vehicle in re-route is also taken into account. Twaiting is TDDC

and TW P as defined in equation 6.1.

TmovingDDC = Tmoving + Tre−routing

TmovingW P = Tmoving

ηDDC = TmovingDDC/(TmovingDDC + TDDC)
ηW P = TmovingW P /(TmovingW P + TW P )

(6.2)
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6.3.1. Operational performance - system throughput
System throughput is defined as the number of missions/orders completed by the system in a given
time, here (per hour). Experiments 1,2 and 3 (similar to case studies 1,2 and 3 set up) are simulated
for system throughput.

Experiment 1 is only with mobile AGVs, experiment 2 is with mobile and forklift AGVs and Ex-
periment 3 is with mobile, forklift, and cleaning AGVs. In experiment 1, the output showcased is
from 7 AGVs to 19 AGVs, as this range showcased insightful output to compare. In experiment 2,
cluster A of 10 mobile AGVs with 2,3,4 and 5 forklift AGVs, cluster B of 11 mobile AGVs with 2,3,4
and 5 forklift AGVs, cluster C of 11 mobile AGVs with 2,3,4 and 5 forklift AGVs and cluster D of
11 mobile AGVs with 2,3,4 and 5 forklift AGVs. Similar to clusters in experiment 3, experiment 4
follows the same clustering with a cleaning robot added to clusters A, B, C, and D. These clusters
are chosen as they represent an insightful range of output from experiments.

Figure 6.8: Experiment 1 - System throughput (missions completed/hr) performance evaluation

Experiment 1 output presented in figure 6.8, the system throughput of developed deadlock control
with a re-route approach is increased by an average of 10.46% compared to the wait and proceed
approach. That means a developed approach completes 10.46% more missions in an hour than wait
and proceed. To notice is almost stagnant behavior of throughput after 17 AGVs in experiment 1
with a re-route approach.

Figure 6.9: Experiment 2 - System throughput (missions completed/hr) performance evaluation

Experiment 2 output presented in figure 6.9, the re-route approach shows increased system through-
put by 12.15% in cluster A, 13.56% in cluster B, 13.02% in cluster C, and 15.39% in cluster D
compared to wait and proceed. On average, re-route system throughput outperforms wait and pro-
ceed by completing 13.53% more missions in an hour in experiment 2 with different size AGVs. In
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experiment 2 for re-route, stagnant behavior in throughput starts to begin from clusters B, C, and
D with 4 forklifts.

Figure 6.10: Experiment 3 - System throughput (missions completed/hr) performance evaluation

Experiment 3 output presented in figure 6.10, the re-route approach shows increased system through-
put by 13.27% in cluster A, 12.87% in cluster B, 11.98% in cluster C, and 14.39% in cluster D com-
pared to wait and proceed. On average, re-route system throughput outperforms wait and proceed by
completing 13.12% more missions in an hour in experiment 3 with different sizes and functionalities
of AGVs. In experiment 3, cluster B with 4 forklifts shows stagnant behavior in throughput.

The system throughput re-route approach of experiment 3 slightly decreases compared to experiment
2 because experiment 3 introduces a cleaning AGV that traverses node by node with a cleaning
mission acting as a dynamic obstacle for other service AGVs causing increased re-route and less
operational time.

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Figure 6.11: Operational time (s) evaluation with re-route and wait and proceed approach

An explanation behind the increase in the number of missions by re-route compared to wait and
proceed is explained by efficient operational time represented in figure 6.11.
Operational time is the total time spent by vehicles to complete missions. This time is TmovingDDC

for re-route and TmovingW P for the wait and proceed approach and is calculated following 6.2. The
total operational time of wait and proceed in experiments 1,2 and 3 is less than re-route as AGVs’
time spent to avoid deadlocks by wait and proceed is higher compared to the re-routing time strategy,
thus yielding more operational time to complete missions with re-route.
Even though operational time decreases with an increase in AGVs, but increase in AGVs positively
affects the increase in system throughput. Furthermore, the re-route algorithm replans the paths
to avoid deadlock efficiently in order to increase the operational time for vehicles to complete more
missions, thus avoiding infeasible re-routing and inefficient utilization of resources. To prove this
point of efficiency of resource utilization, it is explained in section 6.3.2 with outputs represented.
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6.3.2. Operational performance - traffic management efficiency
In this project, to evaluate the performance of the developed deadlock control algorithm, its op-
erational performance is evaluated against an existing deadlock prediction approach by [45]. The
author developed a scientific deadlock control approach for AGVs in ports and terminals with dead-
lock prediction and avoiding by wait and proceed approach. Traffic management efficiency accounts
for vehicle moving time and waiting time and both of these factors are evaluated to check the effi-
ciency of the algorithm in managing traffic as defined in [48], and is used in industrial settings as
well.

A common trend in experiments is that the efficiency slightly decreases with a large fleet of AGVs
with more congestion and hence traffic control and management complexity increase.

Figure 6.12: Experiment 1- Traffic management efficiency performance evaluation

In experiment 1 presented in figure 6.12, the efficiency of the re-route approach averaged is 0.985,
and the wait and proceed is 0.91.

Figure 6.13: Experiment 2- Traffic management efficiency performance evaluation

In experiment 2 presented in figure 6.13, re-route efficiency averaged in cluster A is 0.982, cluster B
0.982, cluster C 0.984, and cluster D 0.983, and wait and proceed cluster A is 0.907, cluster B 0.91,
cluster C 0.915 and cluster D 0.914.

In experiment 3 presented in figure 6.14, re-route efficiency averaged in cluster A is 0.988, cluster B
0.983, cluster C 0.99, and cluster D 0.982, and wait and proceed cluster A is 0.908, cluster B 0.914,
cluster C 0.919 and cluster D 0.92.

Re-route shows increased efficiency of 8.24% in experiment 1, 7.81% in experiment 2, and 7.70% in
experiment 3 compared to wait and proceed. Within re-route, the efficiency slightly decreases with
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Figure 6.14: Experiment 3- Traffic management efficiency performance evaluation

experiments, as experiments introduce size change and functionality parameters, hence creating
more deadlocks and increased traffic management complexity.

6.4. Summary
The developed deadlock control algorithm modeled in the previous chapter is technically deployed
or implemented in this chapter to analyze and evaluate its operational performance. The system
specifications are; Python 3.8 programming version runs on Ubuntu 22.04.2 LTS system listed in
table 6.1.
After the missions are run through deadlock detection check conditions, and re-planned to avoid
deadlocks, the final deadlock-free mission path is constructed as a behavior tree to execute actions.
The behavior tree forms a route network with elements called Nodes and is defined as parent and
children. To distinguish missions from each other, each mission has a unique name and each waypoint
also has a unique name.
These mission trees to execute are in .JSON format and shared with HFoV as VDA5050 order
messages following VDA5050 JSON schemas via a communication server embedded with VDA5050
protocol interface. The schemas used in this study can be referred to in appendix 9 and for more
schemas in the VDA5050 manual.

After the technical implementation, the developed deadlock control algorithm is first verified and
validated to check if the model is right and if this is the right model respectively. Three case studies
are designed to keep a note of heterogeneity in size and functionality and to check if the algorithm
resolves dynamic deadlocks and obstacles if introduced. Case study 1 with similar size vehicles
from different manufacturers as simplest to see if the algorithm follows as instructed, case study 2
with different size vehicles from different manufacturers challenging further the deadlock prediction
and avoidance ability, and case study 3 with different sizes, functionality vehicles from different
manufacturers challenging the algorithm to detect dynamic disturbances introduced by as cleaning
robot middling service vehicles time to time. Verification follows techniques like Animation, Face
Validity, Operational Graphics, and Parameter Variability and Sensitivity checks of the three case
studies. Validation is operational and performance. Operational validation is done with a subjective
approach with exploring model behavior and graphical displays. Performance validation is carried
out by changing the input parameters like the number of vehicles, types, and speed and validating
distance traveled. In addition, changing the number of vehicles and traffic congestion, a number of
deadlocks detected and avoided is also validated.

After verification and validation, simulation experiments are conducted to evaluate the operational
performance of the developed deadlock control algorithm. The developed deadlock control approach
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follows deadlock prediction and avoidance by re-route approach. To evaluate its performance, [45]
which also follows deadlock prediction and employs wait and proceed for deadlock avoidance is used
as a comparison strategy.

Experiments coined for evaluation are the same as case studies. Evaluation factors or key perfor-
mance indicators are system throughput to evaluate the number of missions completed in a given
time, and waiting time (s) in terms of traffic management efficiency. The wait and proceed em-
ploys vehicle waiting and the developed approach modeled in this study employs re-route to avoid
deadlocks. To compare the effective operational time and resource utilization for these two different
approaches, the vehicle moving time and waiting time are both evaluated to check the efficiency of
the algorithm in managing traffic and vehicle fleet coordination as done in industries [48]. Simulation
experiments are run and the results of the operational performance are as follows:

System throughput with the re-route approach is increased by 10.46% in experiment 1, 13.53%
in experiment 2, and 13.12% in experiment 3 compared to wait and proceed. Re-route completes
12.37% more missions in an hour than wait and proceed. This is due to the effective operational
time. Operational time is the total vehicle moving time. For re-route, it is total vehicle moving time
+ total waiting time + total re-routing time. For wait and proceed, it is total vehicle moving time
+ total vehicle waiting time. These both equations are presented in 6.1 and 6.2. Wait and proceed,
due to less operational time, has decreased system throughput than re-route.

The operational time is affected by how efficiently the traffic is managed and vehicles are coordi-
nated. This is evaluated with traffic management efficiency which signifies effective deadlock detec-
tion, avoidance, and obstacle resolution efficiency of algorithms to complete missions efficiently. The
developed deadlock control algorithm’s traffic management efficiency is 8.24% higher in experiment
1, 7.81% in experiment 2, and 7.7% in experiment 3 than wait and proceed.
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7
Conclusions and Recommendations

The main research question for this thesis is: How to improve the deadlock control algorithm for
efficient traffic management and operational performance of a heterogeneous fleet of AGVs in col-
laborative intralogistics operation?

A developed novel deadlock control algorithm with a new approach was presented that is able to
employ modified traffic control strategies for a heterogeneous fleet of driverless transport vehicles
operating in shared operational space. A vehicle traffic coordination and control policy with dead-
lock prediction and efficient deadlock avoidance was presented for a centralized traffic management
module in an intelligent transport system. This transport system is intelligent by establishing a
standard communication interface between the fleet and the traffic management module, and the
modules are interconnected with cloud-based services and Internet of Things capability. To study
the impact of improved traffic control algorithms compared to existing algorithms, a conceptual
simulation model was programmed and experiments were conducted. In this final chapter, the
conclusions are drawn by answering sub-research questions and the main conclusion is drawn by
answering the main research question of this thesis. Following this are limitations of the work and
future recommendations for future research are discussed.

7.1. Sub conclusions
The sub-conclusions are drawn based on answering sub-research questions thoroughly.

7.1.1. Sub research question 1
What is the ongoing area of research in traffic control management for HFoV in collaborative
intralogistics operations?

The majority of studies in traffic control management of AGVs in warehouses address the detection
of deadlocks edge-by-edge or node-by-node resource checks, and how to trigger the deadlock han-
dling technique to either avoid or prevent them. However, one thing to notice is the detection of
deadlocks in the early stages, just after the path plan but before vehicle movement execution. Prior
deadlock detection can improve system performance and aid in time management by preventing
cyclic deadlock scenarios and controlling deadlocks. This work identified a possible research gap of
deadlock detection in advance for the path rather than edge-by-edge and avoidance by re-routing
the vehicle path.

7.1.2. Sub research question 2
What is the framework of an Intelligent Driverless Transport System in a warehouse with HFoV
and Why is standard communication interface VDA5050 required for warehouses with heterogeneous
fleets of AGVs?

Driverless Transport System framework consists of three modules, Warehouse Management Module
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with embedded Data Management module, Central Controller with embedded traffic management
module and Communication server which is in direct communication with the homogeneous fleet
of vehicles. In order to introduce a heterogeneous fleet of vehicles, the driverless transport system
is upgraded to an intelligent transport system. The intelligent transport system has two added
features, cloud-based services with mission database and dispatch in the cloud, and communication
server embeds MQTT broker with VDA5050 industrial standard communication interface for a het-
erogeneous fleet of vehicles.
For faster processing, an upgrade of the driverless transport system to intelligent driverless trans-
port system is necessary. Industry 4.0 technologies combination; cloud-based and IoT called as
CloudIoT is implemented in the framework. This Intelligent Transport System follows a centralized
control architecture for this study. An intelligent system with a cloud-based infrastructure is built
to mitigate the computational expense of processing information in a centralized architecture. Ad-
ditionally, an interconnected network of devices is established in an intelligent system to provide
real-time mission and vehicle position updates.
Furthermore, an intelligent system offers a standard communication interface, VDA5050, as the
heterogeneous fleet of AGVs exchange data in formats distinct to each manufacturer. Every vehicle
from various manufacturers has a special Warehouse Management System installed. By removing
the need for each new vehicle to be individually integrated in order to install its management system
and lowering integration-related costs, VDA5050 assists in resolving redundancies in the integration
of new AGVs into the current Warehouse Management System. When AGVs from various manufac-
turers are driven inside a warehouse, their situational awareness is compromised, leading to crashes.
As a result, each of these vehicles has its own defined functioning region. A heterogeneous fleet of
vehicles can co-work in shared space with VDA5050’s ability to manage a heterogeneous fleet under
a single Warehouse Management System. This allows communication of each operational vehicle
status in the system to be shared up to date with one Warehouse Management System. If a specific
operation calls for a diverse fleet of vehicles, this can be accomplished with VDA5050 standard
communication without requiring the operator to manage the fleet manually and be present on-site.

7.1.3. Sub research question 3
What are deadlock conditions defined in the traffic control policy of warehouse operations and how
are these deadlocks handled?

According to Coffman, the system is in a deadlock if any of the four conditions come true. The
conditions are Mutual exclusion, Hold and wait, Non-preemption, and Circular wait. In a physical
system, the first 3 conditions always come true, and with simple path-planning rules, these can
be avoided easily. Vehicles stop operating for extended periods of time in physical systems due to
the fourth condition circular wait, which lengthens trip times and reduces system throughput. In
order to prevent circular wait, the development of the deadlock handling method is the main goal
of this work. Three categories apply to deadlock handling strategies: deadlock avoidance, deadlock
prevention, and deadlock detection and resolution.

Deadlock detection and resolution lets deadlocks occur before taking action to break them. The
path is designed with the lazy optimistic strategy, hoping that there won’t be a deadlock. In order
to resolve deadlock, it takes time and lengthens the waiting period for vehicles.

Deadlock prevention has prior knowledge of the system, missions, and vehicles and uses this infor-
mation to prevent deadlocks. It follows static planning of the routes and fails to prevent deadlock
in case of dynamic change in mission paths. Researchers create a zone control approach and time
window-based planning for prevention in order to detect obstacles dynamically. Zone control limits
a vehicle to operate inside a designated zone, which is either fixed or dynamic. Large zones restrict
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the system vehicles’ capacity to scale, whereas smaller zones result in more mission pauses and longer
vehicle wait times to clear conflicts and deadlocks. Prevention with time window-based planning
avoids dynamic deadlocks with a computational complexity of O(N2H2), an increase in the number
of vehicles (N) causing increased computation complexity with time-window (H).

To reduce computational complexity and avoid zone allocation, dynamic resource reservation and up-
graded version with wait and proceed are coined by researchers. In the former, the central controller
reserves resources (or nodes) only if it does not lead to deadlock. The vehicles are assigned nodes
as they proceed depending on FIFO (First In First Out) or mission priority basis. The winning
vehicle moves while the loser vehicle changes its status from moving to waiting. The computational
complexity is O(N), and due to the waiting strategy, an increase in the number of vehicles cre-
ates an unresolved cyclic deadlock situation. To avoid cyclic deadlock, the latter strategy of wait
and proceed follows a deadlock prediction cyclic frequency and resolves cyclic deadlocks by waiting
strategy. The computational complexity of this approach is O(N2).

Room for improvement is to reduce computational complexity and replace the waiting strategy with
straight forward re-route strategy if deadlock is detected. In order to re-plan the mission routes
in an effort to increase system throughput, the resolution strategy can be called sooner with the
help of the critical role that deadlock prediction plays in controlling cyclic deadlocks. This deadlock
control method’s operational performance is modeled and assessed.

7.1.4. Sub research question 4
How to design and develop a deadlock control algorithm? What necessary changes are required in
developing the novel approach for this study?

Firstly, the resources and surroundings required for algorithm input are specified. The operational
system has a bidirectional network with nodes and edges. These nodes form a network known as the
mission pathways. The operational arrangement is modeled as a simulation, and a designed GUI is
used for user input and model viewing.

The project’s operational goal was to model and build a novel deadlock control technique by following
two steps; deadlock detection in advance as a necessary change to the existing works of literature
and deadlock resolution by replanning the mission path.
Four check conditions are modeled in space and time to identify deadlocks by evaluating the nodes
along the path and the arrival time at each node using a cumulative weight check. To find out if
there are any deadlocks in the mission routes, four check conditions are applied to each executing
mission path and new planned paths that have not yet been implemented. Check Condition 1 to
detect deadlock between mission vehicles if they share a single node and arrive at the same time.
Check Condition 2 to detect deadlock between mission vehicles if they travel in the same direction
share multiple nodes and arrive at the same time. Check Condition 3 to detect head-on deadlock
between mission vehicles if they travel in the opposite direction share multiple nodes and arrive at
the same time. Check Condition 4 to detect deadlock just outside the pick-up/drop-off/inventory
station between two mission vehicles where one is exiting the pick-up/drop-off/inventory station and
the other is entering that station. These check conditions return a Boolean value; TRUE if deadlock
is detected or else FALSE. If TRUE, a mission path replanning with the Dijkstra algorithm is called
to re-route the new planned path with the next shortest route in order to avoid the deadlock. If
FALSE, the mission follows the initially planned path by Dijkstra, and no replanning is initiated.
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7.1.5. Sub research question 5
How can the operational performance of the developed deadlock control algorithm of a HFoV’s
intelligent traffic management module be evaluated?

After the missions are run through deadlock detection check conditions, and are re-planned to avoid
deadlocks, the final deadlock-free mission path is constructed as a behavior tree to execute actions.
The behavior tree forms a route network with elements called Nodes and is defined as parent and
children. To distinguish missions from each other, each mission has a unique name, and each
waypoint also has a unique name. These mission trees to execute are in .JSON format and shared
with HFoV as VDA5050 order messages following VDA5050 JSON schemas via a communication
server embedded with VDA5050 protocol interface. The schemas used in this study can be referred
to in appendix 9 and for more schemas in the VDA5050 manual.

After the technical implementation, the developed deadlock control algorithm is first verified and
validated to check if the model is right and if this is the right model respectively. Three case
studies are designed to keep a note of heterogeneity in size and functionality and to check if the
algorithm resolves dynamic deadlocks and obstacles if introduced. Case study 1 with similar size
vehicles from different manufacturers as simplest to see if the algorithm follows as instructed, case
study 2 with different size vehicles from different manufacturers challenging further the deadlock
prediction and avoidance ability, and case study 3 with different sizes, functionality vehicles from
different manufacturers challenging the algorithm to detect dynamic disturbances introduced by as
cleaning robot middling service vehicles time to time. Verification followed techniques like animation,
Face validity, operational graphics, and Parameter variability and sensitivity checks of the three case
studies. Validation is operational and performance. Operational validation is done with a subjective
approach of exploring model behavior and graphical displays. In order to validate performance,
various input parameters are changed, such as the number, kind, and speed of the vehicles, and
the distance traveled is verified. Additionally, the number of deadlocks detected and avoided is
validated, with respect to changes in the number of vehicles and traffic congestion.

Following verification and validation, simulation studies are carried out to assess the created deadlock
control algorithm’s operational performance. The re-route technique is used in deadlock prediction
and avoidance in the proposed deadlock control strategy. [45], which uses wait and proceed for
deadlock avoidance and likewise follows deadlock prediction, is employed as a comparative approach
to assess its performance.
Case studies and experiments are developed for assessment. Evaluation criteria, or KPIs, included
system throughput, which assessed the number of missions finished in a specific amount of time
and waiting time (s) as a measure of the effectiveness of traffic management. To prevent deadlocks,
the proposed technique modeled in this study uses re-route and the wait and proceed uses vehicle
waiting. The vehicle movement and waiting times are assessed in order to determine the algorithm’s
effectiveness in controlling traffic and vehicle fleet coordination, as is done in other sectors, and to
compare the effective operating time and resource usage for these two distinct techniques.

Simulation studies are conducted and the results of the operational performance are as follows:
In comparison to wait and proceed, the developed re-route technique increases system throughput
by 10.46% in experiment 1, 13.53% in experiment 2, and 13.12% in experiment 3. Compared to wait
and proceed, the developed approach completes 12.37% more missions in an hour. The effective
operational time was the reason. Operational time is the total vehicle moving time. For re-route,
it is total vehicle moving time + total waiting time + total rerouting time. For wait and proceed,
it is total vehicle moving time + total vehicle waiting time. These both equations are presented in
6.1 and 6.2. Wait and proceed, due to less operational time, has decreased system throughput than
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re-route.
The effectiveness of traffic management and vehicle coordination has an impact on the operating
time. This is assessed using traffic management efficiency, which denotes the ability of algorithms
to detect deadlocks, avoid them, and resolve obstacles effectively in order to carry out missions ef-
ficiently. The developed deadlock control algorithm’s traffic management efficiency is 8.24% higher
in experiment 1, 7.81% in experiment 2, and 7.7% in experiment 3 than wait and proceed.

7.2. Main conclusion
The main research question
How to improve the deadlock control algorithm for efficient traffic management and operational
performance of a heterogeneous fleet of AGVs in collaborative intralogistics operation?

First, a heterogeneous fleet of AGVs working in a collaborative operational layout is modeled for an
Intelligent Transport System. By using the industry standard communication protocol VDA5050 to
interact with a diverse fleet of AGVs, this Intelligent Transport System fulfills the study’s technical
research goal.

Secondly, a novel deadlock control method that uses check criteria for deadlock detection in a
dynamic environment and commences a re-route strategy to successfully avoid deadlocks is built
into a centralized traffic management module. For operational assessment, this strategy is simulated,
used in three tests, and compared with the existing wait and proceed method for deadlock avoidance.
The evaluation factors used are system throughput (number of missions completed in a given time)
and traffic management efficiency to evaluate the vehicle moving time and waiting time and check
the efficiency of the traffic management and vehicle coordination by algorithms.
The results of the experiments show the system can complete 12.37% more missions per hour with
less number of vehicles with the novel deadlock control algorithm developed in this project. In
addition, the traffic management efficiency of the developed algorithm is higher by 7.91% than the
wait and proceed strategy. With this operational objective is achieved.

To answer the main research question, the industries can improve the deadlock control algorithm
by implementing deadlock prediction in advance and employing re-routing of vehicles to avoid and
falsify circular wait deadlocks. This can be employed in an operational layout with a heterogeneous
fleet of vehicles for increased interoperability with VDA5050 in complement with a novel deadlock
control algorithm for an increase in the operational output of the system.

7.3. Limitations and recommendations
7.3.1. Layout network
The layout used in this thesis is a bidirectional networked layout. The route network in the layout
is strong, which makes more routes available at once to avoid deadlock and route re-planning. This
influences the operational performance outcome like system throughput. Many industries use non-
tessellated guided paths like unidirectional, running parallel to each other. For this approach to
showcase its impact more closely in a real-world setting, it is recommended to study this approach
on different layouts and evaluate its performance.

For path planning, a heuristic simple Dijkstra algorithm is used in this study. Advanced algorithms
that solve complex networks faster are recommended for future research.
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7.3.2. Effective mission distribution
In this investigation, the central controller is unable to assign missions efficiently when there are
several vehicles sharing a pick-up station. Here, in order to prevent arriving at the pick-up point
simultaneously, the controller directs the vehicles to finish the first in-queue by re-routing. It is
possible to prevent this needless re-routing and vehicle movement by properly arranging the missions.
In this instance, it is advised to distribute the missions wisely by assigning the next mission to the
vehicle to complete first and returning to the first mission once the pick-up location is empty. This
allows the vehicles to complete tasks more quickly by completing them in an ad hoc manner.

7.3.3. Information exchange
The information exchange system model is created with the assumption that, while a mission is
being carried out, the AGVs’ sensors for local mapping and obstacle detection are turned off. FMS
transmits mission data to the fleet of vehicles for execution. The developed deadlock control algo-
rithm analyzes traffic control policies and arranges paths so as to identify and avoid obstacles and
deadlocks that are already a part of the system. For instance, if an operator whose information and
vehicle path are unknown and not fed in the system, then the path remains unknown to the system
and is not checked by the algorithm.
The system has to be linked to sensors on board AGVs in order to identify vehicle movement insights
that are not currently recorded in the system. This work may be extended by processing data from
the onboard sensors, which can be used to identify and guide vehicles locally to avoid unknown
obstacles based on visible information.

7.3.4. System architecture
A centralized architecture for the flow of information is employed in this study to achieve global
optimization. However, to improve the processing time and decrease computational time, the study
of other architectures like distributed or non-centralized is recommended.

7.3.5. Assumptions
A few presumptions were made in order to carry out the experiments. It is assumed that order
availability on a constant basis eliminates the time needed for the vehicle to load at pick-up and
inventory sites. Additionally, assuming infinite space and no conflicts, it is expected that these
sites may accommodate more than two vehicles entering at the same pick-up or drop-off time, but
not simultaneously. Additionally, it is assumed that vehicles always have enough battery power,
therefore no consideration is given to recharging times. During re-routing, these vehicles consume
more energy than when wait and proceed situations. When vehicle charging time is taken into
account, fewer vehicles may be available. It may be necessary to add more vehicles in order to boost
the system throughput. Future research endeavors should take this crucial study point into account.
Overall, by removing these presumptions, this study may be expanded for more accurate results.
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A novel deadlock control algorithm for a heterogeneous fleet of
autonomous transport vehicles in a collaborative intralogistics

environment

Ashwini Rathi, Ir. Mark Duinkerken, Ing. Marloes Hengeveld

Abstract— For high efficiency and flexibility, a fleet of Au-
tomated guided vehicles (AGVs) both homogeneous and het-
erogeneous are widely used automation products for material
handling in warehouses and automated production lines. Given
the layout capacity, the AGVs interact with each other, which
provokes challenges in Driverless transport vehicle system
(DTVS) traffic management in dynamic environments. One of
the main challenges is how to avoid collision and deadlock
between heterogeneous fleets of AGVs in a bidirectional layout.
This research study proposes a deadlock detection and avoid-
ance algorithm that follows the deadlock prediction and uses a
dynamic re-routing strategy with Dijkstra to avoid deadlocks.
The mission paths are checked in space and time for overlap-
ping edges by four check conditions and cumulative weights
and return a boolean value to avoid cyclic deadlocks. For the
heterogeneous fleet of AGVs, a standard communication pro-
tocol VDA5050 is used to maintain a standard communication
interface between vehicles and the traffic management module
with cloud-based microservices for increased processing time
and interoperability within the warehouse. This communication
interface is used to communicate the novel deadlock control
algorithm to a heterogeneous fleet of AGVs. The proposed
algorithm not only improves the throughput by increasing
vehicle operational time but also successfully avoids congestion
and deadlocks with high traffic management efficiency in the
logistic transportation system.

Keywords: Traffic control, heterogeneous AGVs, interop-
erability, deadlock resolution, warehouse

I. INTRODUCTION

With the increase in the global automation market CAGR
by 14%, the intralogistics industrial products, AGV’s (Au-
tomated Guided Vehicles) CAGR is forecasted to grow by
6.06 % by 2025. Industries implementing these products aim
for efficient and faster material handling operations. These
vehicles interact with each other often, so it is necessary
to implement traffic control policies in order to avoid con-
gestion and deadlocks for risk-free operations. Due to an
increase in production costs and automation, industries aim
for logical yet feasible operational performance requirements
such as higher system throughput, and traffic management
efficiency.

This paper focuses on developing a novel deadlock de-
tection and avoidance algorithm for a heterogeneous fleet
of AGVs in a driverless transport system. A wide array of
decisions have to be made in order to control traffic in the
system, for instance, the operational layout design, traffic
control policies, number of vehicles, type and functionality
of vehicles.
For smooth, continuous operations in the transport system,

traffic control policies are drawn to avoid collisions and
handle deadlocks correctly and efficiently [4]. The selection
of these policies that affect the performance of the driverless
transport system is critical and is used for mission routing,
scheduling, collision, and deadlock avoidance during mission
operations. Since one or more mission paths have an overlap,
and if the vehicles arrive at those overlapping nodes at
the same time it causes multiple vehicles to permanently
block the node and the path, and is defined as a deadlock
situation. This causes operation halt and hence it is necessary
to develop more efficient traffic control strategies to ensure
continuous operation of the transport system [3]. Therefore,
the operational objective of the paper is to develop a novel
deadlock control algorithm for efficient mission execution
for a fleet of AGVs.

The traffic control strategy embedded in Traffic Man-
agement Module for a heterogeneous fleet of vehicles has
both operational and technical challenges. The heterogeneous
fleet of vehicles is distinguished by structural heterogeneity
and functional heterogeneity. The vehicles are considered
structurally heterogeneous if they differ in design and dy-
namics, for example, bulk body, aerodynamic body, vehicle
speed, payload capacity, fuel consumption, etc. On the other
hand, functionally heterogeneous vehicles if not all vehicles
are executing the same field of operation. For instance, a
cleaning vehicle equipped with cleaning instruction software
functionally works differently from a service vehicle whose
software controls are for service pick-up and drop-off. These
vehicles are assigned to visit the source point and target
point while cleaning visits all the points in the configuration
space. In a heterogeneous fleet, vehicles, due to under-
knowledge of the vehicles in the system, see each other as
dynamic obstacles and can cause deadlock. This prompts
a technical challenge and leads to the technical research
objective of implementing the deadlock control algorithm
developed under operational objective on a heterogeneous
fleet of AGVs operating collaboratively in the warehouse. The
contributions of this work are:

• Intelligent transport system for a heterogeneous fleet of
vehicles: For warehouses with heterogeneous vehicles,
the traffic management module should possess inter-
connectivity between and among the fleet of AGVs
for ease in interoperability, collaborative operations be-
tween fleets and ease in the integration of new vehicles
to the existing warehouse system. This is a technical
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research objective respective to the heterogeneous fleet
of AGVs for integrated and collaborative warehouse
operations.

• A novel deadlock control algorithm: An algorithm with
check conditions for deadlock detection, strategy to
avoid deadlocks and execute missions effectively. This
is the operational research objective for efficient mission
execution by the heterogeneous fleet of AGVs with
an aim of efficient traffic management and increased
system output.

Before physical implementation, it is critical to check the
feasibility of these decisions in a virtual environment, which
also takes into account the complexity and dynamics of the
transport system. For this, simulation models are typical
approaches [1] used in this paper, hence mapping the correct
representation of the decisions for near approximate to the
exact representation of the planned system.

II. RELATED WORK

According to [6], the material handling process accounts
for up to 70% of total manufacturing costs, which eventually
leads many industries to shift to highly automated solutions
for higher turnover. One of the systems under Automated
material handling operation is AGVs. The performance of
the AGV system highly depends on the layout of the system
(both cyber and physical layout) and the strategies used for
controlling the vehicles. Control strategies for such AGV
systems should at least perform the following three functions:
path planning, task assignment, and traffic control [7]. The
main challenge with the heterogeneous fleet of vehicles lies
in the area of navigation, deadlocks created in case two
different vehicles fail to recognize each other as vehicles but
navigational blocks and halt themselves, failing to complete
the missions successfully. In addition, the vehicles in the fleet
are from different manufacturers or with different function-
alities and come with their own central controller. In this
case, it is a challenging task to operate these heterogeneous
vehicles with different central controllers. It, thus, turns out
to be a non-sustainable approach in case of the factory
floor expansion which demands for increase in the vehicle
types. Therefore, a one-in-all central controller with vehicles
communicating bidirectionally with standard protocols is the
next research area in factory of future.
Deadlocks, explained in this article discusses three ways to
resolve deadlocks; deadlock detection and recovery, deadlock
avoidance, and deadlock prevention.
Deadlock detection and recovery handles deadlocks in two
steps; deadlock detection and recovery and is termed as lazy
optimistic strategy [20]. It reserves or schedules a route if
available hoping that the planned route will be deadlock-
free and works successfully for the systems with occasional
deadlocks. A major disadvantage is that this strategy is
unable to predict deadlock even after certain information on
deadlock occurrence in the future is available in the system.
Deadlock prevention is an offline strategy, where the system
schedules paths in such a way that is deadlock-free in prior.
For bidirectional layout and higher throughput, a prevention

strategy with faster network routing is beneficial in terms
of cost reduction with a reduction in used areas by vehicles
[10], but however limits in preventing deadlocks in case of
dynamic disturbances in the operational layout. With time-
based route planning, certain segments/cells in the route
of a vehicle are allocated and the rest of the segments in
the route are utilized by other vehicles. In the paper [11],
each node in a cell of the operational layout has a list
of time windows reserved by vehicles and a list of free
time window that is available for the vehicles to reserve.
In this way, the algorithm plans the vehicle route with free
time windows in the proposed time-window graph instead
of physical cell nodes of the operational flow path. The
computation time is then o(v4n2) where v is the number
of vehicles and n is the number of nodes. This means, that
with an increase in the number of vehicles, the computational
complexity increases, which makes it suitable for only small
transport systems. Factors such as acceleration, deceleration,
and external obstacles in dynamic environments make it
difficult to calculate time windows precisely in case of delays
and can lead to unpredictable obstacles.
Similar to the prevention strategy, deadlock avoidance avoids
the occurrence of the deadlocks. This policy plans the
mission operations dynamically depending on the system
state such that it remains deadlock-free. Resource alloca-
tion graphs are useful for detecting deadlocks. Dynamic
resource allocation can affect the resource/zone utilization
and system throughput, and eventually increase the lead
time and vehicle travel time [14]. In terms of transportation
systems, a Banker’s algorithm is a resource allocation and
deadlock avoidance strategy that predetermines if the system
will remain in safe state or not by first simulating the
allocation of node(s)/cell(s) to the mission paths. It then
makes a safe state check before actually allocating the
node(s)/cell(s) to the mission to navigate through them in
order to avoid deadlock and implements wait-for approach to
avoid the unsafe state navigation by vehicle waiting strategy.
In article [7], the central controller calls deadlock avoidance
every time to check if a particular vehicle is allowed to
reserve a set of cells/tiles required for its navigation. The
algorithm determines if the reservation is allowed only if
the order of movements of AGVs exists such that the
system remains deadlock-free. The combination of steps of
different vehicles is checked by the algorithm to evaluate
the system state, which causes unnecessary deterring of
AGVs and longer calculation time. A modified Banker’s
algorithm strategy proposed by [15] provides a solution to
solve the low utilization of vehicles and longer waiting times.
Under special circumstances, the vehicles are allowed to
transverse unsafe states (deadlock existing states) to decrease
the vehicle waiting times and mission execution times. This
extended set of states is allowed only if all the missions can
be executed safely, or else the vehicles wait until the state is
safe. An extension of this modification is proposed by [16]
for an improved near-optimal deadlock avoidance strategy. It
consists of two stages, an offline which preprocesses guide-
path, and an online which combines preprocessed guide-
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path results with the vehicle status to evaluate the safety
of the system dynamically. In order to avoid the vehicles
waiting until the overlapped edges of two paths are released,
alternative shortest paths are obtained. Before a path from
alternative paths is allocated to a vehicle, a safety assessment
of the system is carried out. If all these alternative paths lead
to an unsafe state, the vehicle is instructed to pause and wait
for the next scheduled check. This questions the trade-off
between travel distance in case of alternative path allotment
or waiting time until the system gets back to safe state.
In dynamic environments, the dynamic reservation of node(s)
or resources(s) is the avoidance of cyclic deadlock formation.
In [13], before the dynamic reservation of node(s), a wait and
proceed deadlock prediction cycle is run frequently issuing
new commands to AGVs i.e., new control points (nodes) to
occupy one at a time which effectively avoids the occurrence
of cyclic deadlocks. The prediction algorithm computational
complexity depends on the number of vehicles (N) i.e.,
O(N2). An important point to note is how frequently the
predictions are made. The sooner the prediction, the better
avoidance measures can be taken.
Most of these papers discuss detecting deadlock resource-
by-resource or node-by-node, then prompting the deadlock
handling strategy to either prevent or avoid them. However,
detecting deadlocks in prior just after path planning and
before vehicle movement execution is a factor to consider.
Deadlock detection in prior can help in time management to
control deadlocks, avoiding cyclic deadlock situations, and
can positively affect the system throughput as noticed [13].
Therefore, the potential research gap noticed in literature is
deadlock detection in advance for the path and not edge-
by-edge, and hence will be studied in this paper, and its
operational performance will be evaluated.

III. METHODS
DTVS (Driverless Transport Vehicle System) is an

authorization-based system where vehicles need permission
from DTVS for every action to be performed. The system
consists of three modules, a warehouse management module,
a fleet management system (central controller), and a com-
munication server (wired/wireless) as represented in figure
1.

Fig. 1: Driverless Transport Vehicle System modules

• Warehouse management module: The data management
module consists of information about each vehicle in
the fleet, mission requests, and operational space infor-
mation. This data is input into the fleet management
system.

• Fleet management system (central controller): It is con-
sidered as high-level fleet management which supervises
the fleet of vehicles by planning, coordinating, and
controlling the fleet. It provides necessary instructions
to the vehicles to accomplish the order pick-up/drop.
The Traffic Management module which holds traffic
control policies is sub-embedded in the Fleet Manage-
ment System.

• Communication server: Communication servers are
used to send/receive mission information to and from
a fleet of vehicles.

Each heterogeneous fleet of vehicles has a communication
format unique to its manufacturer. To establish communi-
cation of data from the fleet management system or traffic
management module to and from the fleet of vehicles, it is
necessary to implement a standard interface between vehicles
and traffic management module for an adaptable, robust
system.
With Industry 4.0 technologies such as Internet of Things and
Cloud computing, interconnectivity among different modules
and machines becomes easier. This system is termed as
Intelligent Transport System [5] which is an upgrade in
DTVS.

A. Framework of the intelligent transport system

A representation of this Intelligent transportation system
is in figure 2.

Fig. 2: Intelligent Transportation System with CloudIoT

1) Fleet Management System

Transportation system management (Fleet Management
System) includes vehicle dispatching, routing, and schedul-
ing, traffic control for collision and deadlock avoidance, and
maintenance strategies.

• Mission Routing and scheduling: Mission orders are
received from the Warehouse Management system, and
the mission route is first planned and assigned to the
vehicle. The scheduling takes into account the departure
and arrival time from the pick-up location to the delivery
location, by the cumulative weights (distance between
two connected nodes) from the pick-up to the drop-off
location. This cumulative weight calculation is used for
collision and deadlock-free scheduling.

• Vehicle dispatching: Dispatching is when an order is as-
signed to the vehicle or vehicle to the order. Dispatching
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methods can vary from time constraints, priorities, or
the nearest idle vehicle available. The simple dispatch-
ing rule is assigning an order to the idle or next available
vehicle with the shortest or nearest travel distance/time
from the order location. This rule is followed in the
current study.

• Traffic control policies: A planned route is feasible
for vehicle operation with appropriate traffic control
policies to account for collisions and deadlocks. These
control strategies are closely related to dispatching,
routing, and scheduling.

2) Cloud-based low-level Fleet Management System

It is ’low-level’ fleet management that runs in the cloud
or edge. The microservice module manages communication
with the software stacks of the vehicles (navigational stack
here). In addition, it is responsible for executing the mission
node-by-node in the path, keeping track and collecting feed-
back information such as position, status, and error from the
vehicles and feeding it to the FMS.

A centralized architecture meets the objectives of this
research that are suitable for modern vehicle fleet plan-
ning and coordination. However, centrally processing large
amounts of planning and coordination data sounds inefficient,
however, this is also a good approach to obtain globally
optimal solutions in case of task planning, allocation, and
execution, thus providing an effective decision-support tool.
Another problem with centralized architecture is computa-
tional expensiveness. This is solved by outsourcing cloud-
based infrastructure for computationally heavy processes,
In addition, these systems come with sophisticated cooling
systems that tick green with energy-efficient system goals.
In case of network loss or disconnectivity, the mission
database is a cloud-based microservice that can rebuild
the states and continue from the information stored in the
database, so the mission is not lost. It can be believed that
the system, instead of leading to downtime, will ensure
that it maintains operability, thus cloud-based low-level fleet
management is used in this framework.

3) Communication server - MQTT broker

MQTT broker is used for communication between the
cloud-based low-level fleet management and the naviga-
tion stack of the vehicle. MQTT is a lightweight, text-
based message exchange protocol (message broker) with
IoT publish/subscribe model and consists of clients that are
divided into subscriber and publisher. The subscriber is a
message-receiving client who is registered with the broker
and notifies it to receive specific types of messages. The
publisher is a message-sending client who sends a message to
the subscriber when asked through the broker. For instance,
low-level fleet management is subscribed to receive state
and factsheets from vehicle software to keep an update
on the vehicle status and publishes mission order, Actions,
and instantActions to vehicle software to execute missions
with required actions. On another side, vehicle software is
subscribed to order, Actions, and instantActions published by

low-level management. Here, Mosquitto is used as an MQTT
broker.
MQTT allows the distribution of messages to sub-channels
termed as topics. Clients (here mission dispatch module
and software on the vehicle) subscribe to these topics to
receive the required information that interests them. Topics
concerning the current study are Order (Communication of
driving orders like nodes to navigate from FMS to vehicle),
Action (Action to be executed sent from FMS to vehicle),
instantActions (any immediate actions to be executed), state
(vehicle state) and factsheet (vehicle setup). These topics
can be referred from the VDA5050 manual. Mosquito is a
lightweight MQTT broker with the capability to exchange
large amounts of data over low network overhead, with
limited network bandwidth and interrupted communication.
Thus, it can be implemented on low-power devices like
microcontrollers used in remote IoT sensors.

4) Communication server - Industrial Standard Protocol
VDA5050

The communication server acts as a bridge between the
cloud/edge microservices and the vehicle in order to ex-
change topics (order, status) between the FMS and software
on vehicles. This interface has some requirements such as
it has to be agnostic with different software stacks such as
ROS or Isaac SDK that run on vehicles. In addition, the
interface should facilitate a simplified connection strategy
of new vehicles into an existing FMS, and enable parallel
operation between vehicles from different manufacturers and
inventory systems in the same operational environment. It
should be cloud-friendly and scalable to large numbers of
vehicles for smooth integration into the existing system. One
such industrial standard protocol was developed by
VDA5050 and was established in 2022 between the Verband
der Automobilindustrie e.V. (German abbreviation VDA) and
Verband Deutscher Maschinen-und Anlagenbau e.V. (Ger-
man abbreviation VDMA) with an aim to create universally
applicable interface tool. It defines a messaging structure and
uses the MQTT network protocol to publish/subscribe the
message structures.

VDA5050 helps to solve the redundancy in the integration
of new vehicles into the existing warehouse management
system, hence eliminating the individual integration of each
new vehicle to install its management system and reducing
integration-related costs. If vehicles from different manufac-
turers are operating in the warehouse, they lack situational
awareness and cause collisions. Due to this, these vehicles
are allocated separate bounded operational areas for each. By
managing a heterogeneous fleet under one warehouse man-
agement system, VDA5050 allows communication of each
operating vehicle’s status in the system to be shared to date
with one warehouse management system, hence allowing a
heterogeneous fleet of vehicles co-working in shared space.
In case a particular mission requires a heterogeneous fleet
of vehicles, this can be possible with VDA5050 standard
communication and also without the need for the operator to
manually control the fleet.

4



The technical research objectives coined in this paper are
achieved by Intelligent Transport System framework. Now,
to execute missions with efficient traffic management of
heterogeneous fleets in intelligent transport systems, a novel
deadlock control algorithm is modeled and analyzed here-
after.

B. Traffic Management Module Analysis

An embedded module in the Fleet Management System
Traffic Management Module has the functionality of traffic
control strategies with rules and algorithms for conflict-free
and deadlock-free operations, hence, being one of the eval-
uating factors of the operational performance of AGVs. One
fundamental problem with a heterogeneous fleet of AGVs
is the multi-vehicle traffic control strategy for collision-free
paths or deadlock-free path planning of each vehicle in
the network [17]. Mishandling of multi-vehicle traffic leads
unresolvable traffic congestion and higher operations costs
because of the halt of missions due to deadlock occurrence
and risk to human operators on-site. Hence, collision and
deadlock handling strategies for multi-vehicle, especially
heterogeneous systems have a critical study discussion in
this research.

For traffic control strategy, the transportation system is
divided into Transportation System Design, Vehicle Manage-
ment and Transportation System Control.

1) Transportation System Design

Transportation system design discusses the structure of
flow-path layouts, such as unidirectional, bidirectional, and
multi-lane. With a unidirectional path, no opposite traffic
is allowed, hence requiring simple controls. One-way traf-
fic has less layout utilization and higher vehicle traveling
distance with less number of missions completed. Bidirec-
tional flow allows two-way traffic, facilitates transportation
cost reduction, and minimizes the area used by increasing
the transportation network and hence higher throughput. A
bidirectional path requires a smaller number of vehicles and
is more advantageous than unidirectional.
Due to bidirectional traffic, congestion increases and system
complexity increases. As vehicles travel two-way, it is then
necessary to check the accessible route available for vehicles
in order to avoid collisions or deadlocks when traveling in
the opposite direction. That means mission scheduling and
vehicle dispatching are closely related to vehicle routing.
This then requires an adequate traffic control algorithm for
the bidirectional flow of vehicles.

2) Transportation System Control

Bidirectional system control can be classified as central-
ized, decentralized, and distributed. In the case of decen-
tralized, the decisions are made based on local information.
Here, the vehicles are aware of their state and the state
of neighboring vehicles. The traffic management is handled
and communicated between these vehicles and negotiated
by themselves. Decentralized control has low computation
and a simpler solution approach but has low efficiency. A

distributed control, algorithm uses a combination of global
and local information. In the case of centralized control,
all the information about the vehicles, positions, planning,
and coordination of transportation systems are stored and
computed in one place. It is highly efficient but requires
longer computation time. For computational expansiveness
of centralized control, outsourcing cloud-based infrastructure
for computationally heavy processes can be employed.

3) Vehicle Management

Vehicle management involves deploying traffic control
algorithms in order to avoid collisions and deadlocks and
managing vehicle coordination. There are four deadlock con-
ditions that, if true, can pose traffic management challenges
and can halt vehicle movement. The deadlock conditions,
handling strategies, and necessary changes required to select
a strategy to model for this study is discussed hereafter

4) Deadlock categorization

For a situation to be posed as deadlock, Coffman coined
four conditions as explained below [18]:

• Mutual exclusion: This condition states that one cell can
be occupied by one vehicle at a time. It ensures that if
two vehicles share a common path, then one cell can
be reserved by one vehicle at a time.

• Hold and wait: This condition holds true when one
vehicle waits for a cell to be free which is currently
occupied by another vehicle.

• Non-preemption: This condition is met when the cell
is released only when the vehicle (V1) occupying that
cell has left it completely. It is infeasible to remove the
vehicle (V1) occupying the cell until the completion of
the assigned order at that particular cell.

• Circular wait: This condition holds true when a circular
chain of vehicles waiting for each other to move to the
cell that is currently occupied by the next vehicle in the
chain

In order to prevent the occurrence of deadlocks, at least one
of the four above-mentioned conditions should be broken.
In DTVS in the warehouse, the first three conditions are
always true in physical systems and are solved by efficient
path planning. In the context of the problem of this study, the
breaking of Coffman’s fourth condition circular wait requires
more than path planning to avoid the occurrence of cyclic
deadlocks.

5) Deadlock handling strategies

The deadlock handling strategies are classified into three;
deadlock detection and recovery policy, deadlock prevention
policy, and deadlock avoidance policy.

Deadlock detection and recovery handles active deadlocks.
That means this policy allows the occurrence of deadlocks.
These deadlocks are detected and recovered by another algo-
rithm that re-plans the path of at least one vehicle that is in a
deadlock situation. This approach does not prevent deadlocks
in advance. While deadlock prevention and avoidance handle
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passive deadlocks, i.e., resolving deadlocks in advance.
Deadlock prevention is an off-line traffic control policy that
aims at the complete avoidance of any situation that may
lead to a deadlock by pre-planning 100% deadlock-free paths
prior to the mission execution. It follows the static planning
approach and computes routes that do not require change and
are robust against disturbances.
Deadlock avoidance is an online control policy in real-time
that avoids the occurrence of deadlocks in the next event
by dynamically allocating the vehicle’s mission cell based
on the information of the current state of the system. This
approach is used for resolving dynamic obstacles that can
create a deadlock situation.
Detection of deadlock sooner by running a prediction cycle
has efficient time management, implements an avoidance
strategy sooner, and therefore avoids the occurrence of cyclic
deadlocks. A thorough explanation is carried out in section
II.

Questions like; in case of non-re-routing, is it possible
that vehicles wait indefinitely? In some scenarios, this is not
the best possible solution. The waiting strategy can cause
persistent cyclic deadlocks (single and multiple) as vehicles
involved in this scene are instructed to wait and rely on each
other for movement as approached by most of the algorithms
reviewed in the literature. An alternate solution is to compare
paths and replan or re-route the vehicles. This further raises
some questions. If a re-route is initiated, is there always an
alternate path available? If two vehicles have the same source
point, does one vehicle have to wait for a very long time until
the zone is deadlock-free or is it possible to assign a different
mission with a different source point?
In case for the system to be deadlock-free, Coffman’s
fourth condition Circular wait should be eliminated. The
algorithms for avoidance focus on waiting until a mission
path has a safe state. The straightforward way to implement a
deadlock avoidance strategy is re-routing instead of waiting.
Re-routing by path planning also helps to avoid Coffman
condition 4 of Circular wait by allowing the mission to
break from the cyclic deadlock and to re-route and continue
operation. In paper [19], authors propose a dynamic routing
algorithm that avoids deadlocks efficiently. The dynamic
routing calls the Dijkstra algorithm for active path reservation
and considers waiting time in the cost, making it possible
to choose between waiting until no overlap or detouring.
However, the performance of this method is limited to
the layout used in that study. From research by [21], a
basic principle of deadlock-detecting prediction cycle can
be derived to detect deadlocks in advance, and instead of
the wait and proceed strategy used, an alternative approach
to study and model is to prompt vehicle re-routing to avoid
deadlocks.

6) Mission path planning

Proposed by Edsger Dijkstra in 1959, the Dijkstra
algorithm is easily implementable and adaptable to topology
or configuration space change and dynamic environments
for path planning. The configuration graph is divided into

nodes and connected to each other by edges. A graph can
be undirected, directed, or weighted. Each weight can either
be a distance or time between the two connected nodes. In
this study, the layout flow path is bidirectional.

It is a famous solution for the shortest path problem was
given by Dijkstra. It is a greedy algorithm that solves the
single-source shortest path problem for weighted graph G =
(V, E, w) with non-negative edge weights, i.e., w(A, B) ≥ 0
for each edge (A, B) ∈ E with n nodes and e edges and E is
set of edges and V is set of nodes. If the edge <A,B> does
not exist, the the weight w(A,B) = ∞. d(x) is the distance
from source node s to node x. Let S denote the set of nodes
that are included in the shortest path, which means, initially S
contains only source node s. V-S then denotes the set of nodes
that are not included in the shortest path yet and follows [?]:

1) Initialization: Set the source node s, and set S = S U
s.

2) In V-S set, find node i that is adjacent to the source
node s. If the weight of the connecting edge from s to
i is shortest, then add i to set S.

3) Let i be the new intermediate node. Repeat step 2 to
find the next smallest numbered adjacent node j from
V-S set. Update the distance between source node s
and node j. If d(j) > d(i) + w(i,j), which means if the
distance passing through i is shorter than not through
it, then modify d(j) to d(j) = d(i) + w(i,j), and then
add node j to S.

4) Repeat step 2 and 3 for the n-1 iterations, where n
is number of nodes in the graph G. The output then
consists of the source node, intermediate nodes, and
target nodes with the shortest path from the source to
the target node.

In this study, to handle dynamic disturbances and obsta-
cles, a potential research gap in detecting deadlocks sooner
will be modeled. To avoid vehicles getting into circular-wait
deadlock by waiting for strategy until the deadlock is cleared,
a straightforward approach of re-routing the mission using
the Dijkstra algorithm to avoid deadlocks will be modeled
as avoidance strategy in IV.

IV. MODELLING

A. Selected strategy model objective

The objective is to model and develop a two-step deadlock
control algorithm to effectively falsify circular-wait dead-
locks; deadlock detection by check conditions before the
mission execution or vehicle movement and avoidance of
detected deadlocks by re-planning the mission path by re-
routing.

1) Operational layout and simulation model

Before developing the algorithm, the operational environ-
ment and components required for the input to the algorithm
are to be defined. The warehouse layout is divided into
operational guide/mission paths with bidirectional flow paths
connected via a network of nodes and edges for the vehicles
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represented in figure 3. Each node has an x and y coordinates.
These nodes with coordinates are input to the algorithm
environment as a .csv file.

(a) Bidirectional layout
with nodes and edges

(b) Network of bidirectional
layout

Fig. 3: Bidirectional networked layout used in this study

In this layout, the vehicles travel bidirectional, which is
advantageous to the driverless transport system operation
because vehicles are allowed to take shortcuts in order to
reduce the travel distance and time. These shortcuts can lead
to potential deadlocks and can be resolved with a deadlock
control strategy.

The simulation model of the layout consists of 3 invento-
ries each with 10 inventory points, 6 pick-up and 6 drop-off
locations, 3 charging, and 3 rest stations.

A Graphical User Interface (GUI) is designed to pass
a set of instructions from the user, i.e., input to the Fleet
Management System (also called as central controller) and
log operational updates on the window. It is divided into
three sub-windows, the left window has different tabs for
input, the middle window shows the operational layout and
vehicle movement during the mission run and the right
window shows mission/vehicle/operation states and updates
as represented in Figure 4.

Fig. 4: Graphical User Interface for the Intelligent Transport
System designed

2) Novel Deadlock Control Algorithm

A pseudo explanation of the working of the newly selected
strategy is presented in IV-A.2.

1) Input of data for simulation. It consists of the num-
ber and choice of vehicles in the virtual operational
environment, operation/simulation time, and pick-up
and drop-off locations of these missions. In this study,
a random mission pick-up location and drop-off are
initialized in order to check the algorithm performance
with changing pick-up and drop-off locations in every
run.

2) Each mission is divided into two paths; first from
vehicle location to pick-up node and then pick-up to
drop-off node. For these paths, a source and a target
node are defined. The first path is planned between
the first idle vehicle’s current location and the pick-
up location. The second path is planned with Dijkstra
by finding the shortest route from pick-up to drop-off
location.

3) Once the mission is executed, it is named as the
existing path. While the missions that are planned but
yet to be executed are named as new paths.

4) Four check conditions are defined. The existing path
is checked with new paths for four conditions to avoid
deadlocks. These conditions are explained in detail in
later sections. In case these two paths have deadlock(s),
the new path is instructed to be re-routed by calling
Dijkstra function.

5) In order to avoid the cyclic deadlock by assigning
the same deadlock(s) node(s) to the new re-route
path, the check conditions make sure to remove the
edges between deadlock nodes in order to make them
unavailable. This prompts the Dijkstra to find a new
shortest route to the new path.

6) Once the checked new path is executed, it becomes the
existing path

7) The processes 4 to 5 continue until all the missions
are executed with deadlock-free paths.

For deadlock detection, four check conditions; C1, C2, C3,
and C4 are developed.

Algorithm 1 Check All Conditions
Function CheckAllCondition(new mission path, running mis-
sion path)

ep ← collect running mission path;
for path ← ep do

C1 ← CheckSingleMultiNodeCollision;
C2 ← CheckCommonEdgesInForwardRoute;
C3 ← CheckCommonEdgesInReverseRoute;
C4 ← CheckFinalNode;
if C1 or C2 or C3 or C4 then

return TRUE;
return FALSE

B. Check condition 1 - Check for single node collision and
deadlock

In figure 5, a black vehicle with the grey path is the
existing mission executed and blue with the blue path is
the new mission path planned and yet to be executed. The
algorithm checks this mission path for deadlock detection
using check condition 1 2. These paths have a deadlock
highlighted in brown region with red marking. In order
to avoid this single-node deadlock, a blue vehicle is then
instructed to re-route.

In order to check if the node pair (that is node from the
new mission path and the existing mission) are same and that
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Fig. 5: Single node collision, detection and avoidance of
deadlock

Algorithm 2 C1 - Check single node deadlock and avoid
deadlock(s)
Function C1 (new mission path, existing path, new mission
path weights, existing path weights)

tolerance ← vehicle size;
for i ← len(min(new mission path,existing path)) do

n1 ← new mission path(i);
e1 ← existing path(i);
nw1 ← new mission path weights(i);
ew1 ← existing path weights(i);
if n1 == e1 & abs(nw1 - ew1) < tolerance then

Remove edge (n1, n1-1)
if n1 == e1+1 & abs(nw1 - ew1+1) < tolerance
then

Remove edge (n1, n1-1)
if n1 == e1-1 & abs(nw1 - ew1-1) < tolerance
then

Remove edge (n1, n1-1)

If any edges removed, return TRUE, else FALSE

the vehicle reaches this node at the same time by checking
the cumulative weights, this check can avoid a collision at
that node and a deadlock caused just before that node.
Tolerance is defined by the size of the vehicles used in the
operational layout to check if these vehicles collide when
working in proximity. A node in the new mission path and
existing mission path is checked if it is the same.

C. Check condition 2 - Check for overlapping path segments
for vehicles traveling in the same direction and avoid dead-
lock(s)

In figure 6, a black vehicle with the grey path is the
existing mission executed, and blue with the blue path is
the new mission path planned and yet to be executed. The
algorithm checks these mission paths for deadlock detection
with check condition 2 3. These paths have the longest
common sub-sequence and are traveling in the same direction
to reach their targets. Check condition 2 is invoked. In order
to avoid deadlock, blue is instructed to re-route.

If the paths have the longest common subsequence
and the cumulative weight is the same, then the vehicles
are traveling in the same direction and arrive at those

Fig. 6: Overlapping edges in the same direction traveling
vehicles, detection and avoidance of deadlock

Algorithm 3 C2 - Check common overlapping edges for
both the vehicles traveling in the same direction
Function C2 (new mission path, existing path, new mission
path weights, existing path weights)

lcs = list(longest common sequence(new mission path,
existing path));
for cl ← lcs do

if len(cl) < 2 then
Skip

IndexNew = Get index of cl in new mission path;
IndexEp = Get index of cl in existing path;
indexNewWeights = new mission path
weights(IndexNew);
indexEpWeights = existing path weights(IndexEp);
if indexNewWeights overlaps indexEpWeights then

Remove edges(new mission path(IndexNew))

If any edges removed, return TRUE, else FALSE

nodes at the same time which can cause deadlock during
their arrival. In this case, we remove those overlapping edges.

D. Check condition 3 - Check for overlapping path segments
for vehicles traveling in opposite directions and avoid dead-
lock(s)

Fig. 7: Overlapping edges in opposite direction traveling
vehicles, detection and avoidance of deadlock

In figure 7, a black vehicle with the grey path is the
existing mission executed, and blue with a blue path is
the new mission path planned and yet to be executed.
The algorithms check mission paths for deadlock detection
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by checking condition 3 4. These paths have the longest
common sub-sequence if checked in reverse for one path
and are traveling in opposite directions to reach their targets.
Check condition 3 is invoked. In order to avoid deadlock,
blue is instructed to re-route.

Algorithm 4 C3 - Check common overlapping edges for
both the vehicles traveling in opposite directions
Function C3 (new mission path, existing path, new mission
path weights, existing path weights)

reverse lcs = list(longest common sequence(new mission
path(reverse), existing path));
for cl ← lcs do

if len(cl) < 2 then
Skip

IndexNew = Get index of cl(reverse) in new mission
path;
IndexEp = Get index of cl in existing path;
indexNewWeights = new mission path
weights(IndexNew);
indexEpWeights = existing path weights(IndexEp);
if indexNewWeights overlaps indexEpWeights then

Remove edges(new mission path(IndexNew))

If any edges removed, return TRUE, Else FALSE

If the paths have the longest common sub-sequence
in reverse and the cumulative weight is the same, then
the vehicles are traveling in opposite directions and
arrive at those nodes at the same time which can cause
deadlock during their arrival. In this case, we remove those
overlapping edges.

E. Check condition 4 - For unbalanced weights, the last node
check is necessary to avoid deadlocks at drop-off points

Fig. 8: Check for unbalanced weight layouts and nodes for
deadlock and collision avoidance

In figure 8, a black vehicle with the grey path is the
existing mission executed, and blue with the blue path
is the new mission path planned and yet to be executed.
The algorithm checks mission paths for deadlock detection
following 5. These paths have a common final node with the
same cumulative weights. In order to avoid deadlock, blue
is instructed to re-route

Algorithm 5 C4 - In case of unbalanced weights layout,
check the final node of two operational vehicle paths
Function C4 (new mission path, existing path, new mission
path weights, existing path weights)

tolerance ← vehicle size;
if (new mission path(last node) == existing path(last
node)) And abs(new mission path weights − existing
path weights < tolerance) then

n1 ← new mission path(i);
e1 ← existing path(i);
for i ← len(min(new mission path,existing path)) do

Remove edge (n1, n1-1)

If any edges removed, return TRUE, else FALSE

In the case of layouts with unbalanced weights (unequal
weights) between nodes, the last node of the existing and
new mission paths is checked. This is specifically modeled to
provide a safe buffer between vehicles, where one is entering
the station point and one is leaving the station point.

After the check of all these conditions, a Boolean value is
returned to check if any edges from any of these conditions
are removed. If the value is TRUE, a re-route is planned to
the new mission path. These conditions are checked until a
path with no deadlocks is planned.

V. EXPERIMENTS AND RESULTS

A. Implementation

Once the mission paths are input and checked with all
the check conditions for deadlock control, the deadlock-free
mission is converted into. a JSON file. The mission. JSON
file consists of the name of the vehicle assigned, the mission
consisting of transverse nodes each with a unique name,
a parent, a route with x and y coordinates, actions if any,
timeout, and deadline as VDA5050 schemas. This schematic
JSON structure is communicated via a communication server
to and from a fleet of vehicles and a fleet management
system.

B. Model Verification and Validation

Three case studies with a heterogeneous fleet of AGV
operations are considered to verify the working of the
developed algorithm. The operational layout is bidirectional.
The term ’base’ refers to the shape of the vehicle base.

Case study 1 - Square-based service vehicles from dif-
ferent manufacturers. In this case, the vehicles are of the
same size and from different manufacturers. The simplest
case study is to check if the algorithm successfully detects
deadlocks in advance and initiates vehicle re-route or changes
the route to avoid those deadlocks. Represented in figure 9a.

Case study 2 - Square and rectangular base service vehi-
cles from different manufacturers. In this case, the vehicles
are square AGVs, and rectangular-based (AGV forklifts and
container trucks) are to be tested. Increasing the level of diffi-
culty for the deadlock algorithm by simulating different sizes
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of vehicles and heterogeneous fleets, i.e., square occupies one
node at a time, but rectangular occupies two nodes while
traversing in a straight line and 3 while in turn. A sufficient
buffer or tolerance for rectangular-size vehicles is coded in
the algorithm keeping in mind the nodes covered during
turn. To check if these lines of instruction are followed, a
visualization is done with case study 2. Represented in figure
9b.

Case study 3 - Square, rectangular base service, and square
base cleaning vehicle from different manufacturers. In this
case, a cleaning robot (square-base) with a cleaning function
and a service vehicle (square-base and rectangular base)
that does the duty of pick-up and drop are tested. In a
healthcare environment, cleaning bots are used more often
than in warehousing services. The cleaning bot cleans one
node at a time and can pose a dynamic obstacle for other
service vehicles. The algorithm is also modeled to control
these dynamic obstacles. To verify this, the case study 3 is
drawn. Represented in figure 9c

(a) Case study 1
visualization

(b) Case study 2
visualization

(c) Case study 3
visualization

Fig. 9: Model Verification with case studies

As the operational layout is bidirectional with a well-
connected circuit, there is always an alternate path available
in case of mission re-route. Hence, the algorithm is success-
ful in detecting deadlocks and avoiding them. As a result,
with the verification case studies, no deadlocks were noticed
in the visualization window.

1) Validation

For the validation of results objectively, there is a lack of
real-world data to validate the outcomes of this algorithm.
Furthermore, the environment setting and algorithm structure
differ from paper to paper, hence limiting the validation of
this algorithm with other scientific papers for objective val-
idation. Nevertheless, conceptual behavior and performance
validation are carried out to validate the simulation model.

For performance validation in the simulation experiment,
the vehicle speed is set to 1m/s and the distance from node
to node is considered 1m. Simulation time is set to 600 secs.
In an area of 25mX45m, the maximum distance traveled by
AGVs did not exceed 3600m.

With more vehicles, more missions are executed at the
same time, leading to a total distance traveled by vehicles.
If less number of vehicles are operating with the same set
of simulation times, less number of missions are executed
at the same time, leading to increased traveling distances of
vehicles. The algorithm shows the same behavior as shown
in 10a and thus validates the model. If rerouting is employed,
then logically more deadlocks will occur with more vehicles

due to traffic congestion caused by vehicle rerouting than
wait and proceed strategy. This performance behavior of the
algorithm is represented in figure 10b and thus validated.
If the number of missions to be completed is less than the
number of vehicles, only the required number of vehicles
is assigned missions to complete and the remaining vehicles
stay idle. This is visually simulated and represented in figure
10c. The number of missions to execute is set to 10 and the
number of vehicles input is 13. As the number of missions
to execute is 10, only 10 vehicles are given commands to
execute, and the rest 3 are idle at the rest/charging stations,
and only the required number of vehicles are executing
missions.

(a) Number of mis-
sions with number of
vehicles

(b) Occurrence of
deadlocks with an
increase traffic and
congestion

(c) Only required
number of AGVs to
execute missions

Fig. 10: Performance validation of developed deadlock con-
trol algorithm

A few aspects of this model are taken into assumption and
do not replicate real-world situations. For instance, vehicle
batteries are always full and do not require a break in
between the operations for charging. No vehicle downtime
due to structural and functional breakdowns is considered.
Inventories, pick and drop locations have infinite space,
and orders flow continuously so there is no waiting time
at these locations. The simulations hence result in higher
throughput than the realistic. In case the developed model
performs better than the other in simulation, it will also
follow the same behavior in reality. Therefore, this model
with a developed deadlock control algorithm is feasible for
this thesis study.

C. Simulation experiments

The developed algorithm is compared with Wait and
proceed researched in paper [21] approach because both
follow the deadlock prediction approach. The difference
is the frequency of prediction of deadlock and deadlock
avoidance approach. For deadlock avoidance, the waiting
strategy is implemented in wait and proceed and re-route in
the novel deadlock control approach developed in this study.

The performance indicators considered are:
• System throughput (number of missions completed/hr):

The total number of orders or missions completed by
the system with each algorithm per hour. This also gives
insight into the optimal number of vehicles required for
the missions.

• Waiting time (s): The time taken by the algorithm to
find a deadlock-free mission path and dispatch it to the
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vehicle. Waiting time never exceeds computational time.
It is the sum of time taken to route planning (rp) and
schedule the mission to vehicle(sm). In addition waiting
time in wait and proceed also accounts for the time the
vehicle waits (vw) to avoid deadlock. In brief,

TDDC = Trp + Tsm

TWP = Trp + Tsm + Tvw

(1)

where DDC is the Developed Deadlock Control of
this project and WP is wait and Proceed.

In this study, the detection of deadlock is by prediction
approach for both wait and proceed and re-route, as
prediction is required to falsify circular wait deadlock
condition. To evaluate the operational performance of
the selected strategy, the performance comparison is
conducted between wait and proceed and re-route. As
the waiting strategy involves vehicle waiting and the
re-route strategy involves more driving time (loaded or
unloaded), a fair comparison to evaluate the operational
performance considering waiting time is with traffic
management efficiency. The vehicle moving time and
waiting time are both evaluated to check the efficiency
of the algorithm in managing traffic and vehicle fleet
coordination as defined in [22]. It is expressed as η =
Tmoving/(Tmoving + Twaiting). Tmoving is the moving
time of vehicles to complete missions. η for WP and
DDC is expressed in equation 2. For the developed
deadlock control re-route strategy, time consumed by
the vehicle in re-route is also taken into account.
Twaiting is TDDC and TWP as defined in equation 1.

TmovingDDC = Tmoving + Trerouting

TmovingWP = Tmoving

ηDDC = TmovingDDC/(TmovingDDC + TDDC)

ηWP = TmovingWP /(TmovingWP + TWP )

(2)

D. Operational performance - system throughput

System throughput is defined as the number of mis-
sions/orders completed by the system in a given time, here
(per hour).

Experiments 1,2 and 3 (similar to case studies 1,2 and 3
set up) are simulated for system throughput. Experiment 1
is only with mobile AGVs, experiment 2 is with mobile and
forklift AGVs and Experiment 3 is with mobile, forklift, and
cleaning AGVs.

In experiment 1, the output showcased is from 7 AGVs
to 19 AGVs, as this range showcased insightful output to
compare. In experiment 1 figure 11, the system throughput
of developed deadlock control with a re-route approach is
increased by an average of 10.46% compared to the wait
and proceed approach. That means a developed approach
completes 10.46% more missions in an hour than wait and
proceed. To notice is almost stagnant behavior of throughput
after 17 AGVs in experiment 1 with a re-route approach.

Fig. 11: Experiment 1 - System throughput (missions com-
pleted/hr) performance evaluation

Fig. 12: Experiment 2 - System throughput (missions com-
pleted/hr) performance evaluation

In experiment 2, cluster A of 10 mobile AGVs with 2,3,4
and 5 forklift AGVs, cluster B of 11 mobile AGVs with
2,3,4 and 5 forklift AGVs, cluster C of 11 mobile AGVs with
2,3,4 and 5 forklift AGVs, and cluster D of 11 mobile AGVs
with 2,3,4 and 5 forklift AGVs. In experiment 2 figure 12,
the re-route approach shows increased system throughput by
12.15% in cluster A, 13.56% in cluster B, 13.02% in cluster
C, and 15.39% in cluster D compared to wait and proceed.
On average, re-route system throughput outperforms wait and
proceed by completing 13.53% more missions in an hour in
experiment 2 with different size AGVs. In experiment 2 for
re-route, stagnant behavior in throughput starts to begin from
clusters B, C, and D with 4 forklifts.

Fig. 13: Experiment 3 - System throughput (missions com-
pleted/hr) performance evaluation

Similar to clusters in experiment 3, experiment 4 follows
the same clustering with a cleaning robot added to clusters A,
B, C, and D. These clusters are chosen as they represent an
insightful range of output from experiments. In experiment

11



3 figure 13, the re-route approach shows increased system
throughput by 13.27% in cluster A, 12.87% in cluster B,
11.98% in cluster C, and 14.39% in cluster D compared to
wait and proceed. On average, re-route system throughput
outperforms wait and proceed by completing 13.12% more
missions in an hour in experiment 3 with different sizes and
functionalities of AGVs. In experiment 3, cluster B with 4
forklifts shows stagnant behavior in throughput.
The system throughput re-route approach of experiment
3 slightly decreases compared to experiment 2 because
experiment 3 introduces a cleaning AGV which traverses
node by node with a cleaning mission acting as a dynamic
obstacle for other service AGVs causing increased re-route
and less operational time.

(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Fig. 14: Operational time (s) evaluation with re-route and
wait and proceed approach

An explanation behind the increase in the number of
missions by re-route compared to wait and proceed is
explained by efficient operational time represented in figure
14.
Operational time is the total time spent by vehicles to
complete missions. This time is TmovingDDC for re-route
and TmovingWP for the wait and proceed approach and is
calculated following 2. The total operational time of wait
and proceed in experiments 1,2 and 3 is less than re-route as
AGVs’ time spent to avoid deadlocks by wait and proceed
is higher compared to the re-routing time strategy, thus
yielding more operational time to complete missions with
re-route.
Even though operational time decreases with an increase in
AGVs, but increase in AGVs positively affects the increase
in system throughput. Furthermore, the re-route algorithm
replans the paths to avoid deadlock efficiently in order to
increase the operational time for vehicles to complete more
missions, thus avoiding infeasible re-routing and inefficient
utilization of resources. To prove this point of efficiency
of resource utilization, it is explained in section V-E with
outputs represented.

E. Operational performance - Traffic management efficiency

In this project, to evaluate the performance of the devel-
oped deadlock control algorithm, its operational performance
is evaluated against an existing deadlock prediction approach
by [21]. The author developed a scientific deadlock control
approach for AGVs in ports and terminals with deadlock
prediction and avoiding by wait and proceed approach.
Traffic management efficiency accounts for vehicle moving

time and waiting time and both of these factors are evaluated
to check the efficiency of the algorithm in managing traffic
as defined in [22], and is used in industrial settings as well.

A common trend in experiments is that the efficiency
slightly decreases with a large fleet of AGVs with more con-
gestion and hence traffic control and management complexity
increase.

Fig. 15: Experiment 1 - Traffic management efficiency per-
formance evaluation

In experiment 1 output presented in figure 15, the effi-
ciency of the re-route approach averaged is 0.985, and the
wait and proceed is 0.91.

Fig. 16: Experiment 2 - Traffic management efficiency per-
formance evaluation

In experiment 2 output presented in figure 16, re-route
efficiency averaged in cluster A is 0.982, cluster B 0.982,
cluster C 0.984, and cluster D 0.983, and wait and proceed
cluster A is 0.907, cluster B 0.91, cluster C 0.915 and cluster
D 0.914.

In experiment 3 output presented in figure 17, re-route
efficiency averaged in cluster A is 0.988, cluster B 0.983,
cluster C 0.99, and cluster D 0.982, and wait and proceed
cluster A is 0.908, cluster B 0.914, cluster C 0.919 and
cluster D 0.92.

Re-route shows increased efficiency of 8.24% in experi-
ment 1, 7.81% in experiment 2, and 7.70% in experiment
3 compared to wait and proceed. Within re-route, the effi-
ciency slightly decreases with experiments, as experiments
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Fig. 17: Experiment 3 - Traffic management efficiency per-
formance evaluation

introduce size change and functionality parameters, hence
creating more deadlocks and increased traffic management
complexity.

VI. CONCLUSION AND RECOMMENDATIONS

In this research, two research objectives are achieved. The
technical research objective is to implement an intelligent
transport system with industrial standard communication
protocol VDA5050 for a heterogeneous fleet of AGVs. An
operational research objective of developing a novel deadlock
control algorithm for the intelligent transport system of a
heterogeneous fleet of AGVs operating in a collaborative
intralogistics environment. This algorithm is communicated
to the heterogeneous fleet of AGVs via a communication
server with VDA5050. The novel deadlock control detects
dynamic deadlocks (cyclic and non-cyclic) using four con-
ditions and employs a re-routing approach to avoid those
deadlocks. The modified re-route approach outperforms the
wait-and-proceed strategy by increasing the system through-
put by 10.46% in experiment 1, 13.53% in experiment 2,
and 13.12% in experiment 3. Overall, the results of the
experiments show the system can complete 12.37% more
missions per hour with less number of vehicles with the
developed deadlock control approach. In addition, the traffic
management efficiency of the developed algorithm is higher
by 7.91% than the wait-and-proceed strategy, which signifies
effective deadlock detection, avoidance, and obstacle resolu-
tion efficiency of algorithms to complete missions efficiently.
With this operational objective is achieved.

For future recommendations, firstly, it is interesting to
study the developed approach to different warehouse layouts
like a beehive or parallel guide paths, and with different
vehicle sizes greater than 2 as used in the study. Secondly, an
important point to consider is energy consumption and the
time taken for the vehicles to recharge during the operations.
Third, collecting and analyzing information of data from
sensors to enable local mapping and navigation along with
global is recommended. Lastly, to decrease the computational
time, it is advised that for future research a more versatile
control architecture like distributed or non-centralized should
be studied for this approach.
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9.0.1. MQTT connection, security and Quality of Service(QoS!) in networking
MQTT provides an option of setting a last comment/message for client in case if the client disconnects unexpectedly due to network issues.
This last comment/message is distribute by broker to other subscribes. This feature comes under topic connection. In case if vehicle discon-
nects from broker, it stores all the order information and executes its task till the target node.
For protocol security, the broker configuration can be modified. QoS! is use of technology (here MQTT) to ensure the performance of
application critical in nature (here, topics and sub-topics) with limited network bandwidth/capacity. MQTT QoS level 0 (best effort) for
critical topics like order, state, factsheet. For topic like connection, MQTT QoS level 1 (at least once) can be used. This study assumes no
loss of connection during operation.

9.0.2. Subtopics for communication

Subtopic name Published by Subscribed by Used for Implementation Schema

order Mission dispatch
module Robot client

Communication of
executing mission orders
from FMS to
vehicle

mandatory order.schema

instantActions Mission dispatch
module Robot client

Communication of actions
that are needed to be
immediately executed

mandatory
(not considered) instantActions.schema

state Robot client Mission dispatch
module

Communication of state
of vehicle mandatory state.schema

visualization
(not considered) Robot client visualization system

module
High frequency of position
for visualization only optional visualization.schema

connection MQTT broker/
robot client

Mission dispatch
module

Indicates connection loss
of vehicle. Added for
MQTT protocol
connection check

mandatory
(not considered) connection.schema

factsheet Robot client Mission dispatch
module

Vehicle setup
in FMS module madatory factsheet.schema
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9.0.3. Topic order
FMS sends a JSON encapsulated order to the vehicle via MQTT broker as topic.

9.0.3.1. Maps

In order to ensure a consistent navigation amount heterogeneous fleet of vehicles, the position is
specified with reference to local map coordinate system as represented in figure 9.1. The map
co-ordinate system is right-handed, with z-axis pointing upwards in sky. A positive rotation is
counterclockwise. Vehicle co-ordinate is right-handed, with x-axis pointing forward direction. The
x, y and z co-ordinates are in metres, orientation in radians and within +pi to −pi. These are set
in accordance with standard DIN ISO 8855 standard [28].

Figure 9.1: Coordination system with sample vehicle according to standard VDA5050
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9.0.4. Topic order: implementation of order message
Table 9.1 showcases object structure used in this study of order message. For more structures, one
can refer to VDA5050 manual.

Object
structure Unit Data-type Description

hearderId uint32 HeaderId of the order message

timestamp string Time stamp (ISO 8601, UTC)
YYYY-MM-DD THH-mm-ss.ssZ

version string Version of the protocol
manufacturer string Manufacturer of the vehicle
serial number string Vehicle serial number

orderId string

Order identification.
This is used to identify multiple order
messages that belong to the same
orderId. In case vehicle losses order
message, it tracks back the orderId

node position{ JSON-object
Defines location of the nodes on the
configuration space/map. All maps have
same specific global origin

x m float64 x-position on the configuration space/map
y m float64 y-position on the configuration space/map
theta rad float64 Absolute orientation on the node

mapId} string Unique identification of the maps. For ex, map of
operational floor, map of upper floor, etc

action{ JSON-object Decribes action that vehicle is instructed to execute
actionType} string Name of the action

Table 9.1: Topic order JSON encapsulated message contents

9.0.5. Actions
Vehicle supporting actions other than driving, these actions are via the action field with either node
or edge, or sent via instantActions sub-topic. If actions are instructed to be executed on edge, then
those actions must run only when vehicle is on the edge. In case of actions on node, they can run
as long as they need to run and should be self-terminating (ex pick action, drop action, etc). The
thesis do not order any specific actions. There are predefined actions that reader can refer from
VDA5050 manual for more complex implementation, also instantActions.

78 2023.MME.8870



2023.MME.8870

9.0.6. Topic state
The states of the vehicle are transferred as topic state, which is only one topic. Instead of separate
messages like orders, battery-state or any errors, having one topic is beneficial to reduce workload of
broker and FMS for handling messages and also keeping the vehicle state information synchronized.
Vehicle state is published whenever subscribed by the client, or every 30s via broker to FMS. state
message are transmitted during events:

• Receiving an order

• Order update

• Errors or warnings

• Traversing over nodes assigned

Whenever a vehicle transverses through those nodes and edges, the mission states are updated with
nodeStates and edgeStates of those corresponding edges and nodes. Topic state exchange of messages
with JSON format is explained table 9.2.
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Field Data-type Unit Description
headerID uint32 Header Id of the message

timestamp string Timestamp (ISO 8601, UTC) YYYY-MM-DD
THH:mm:ss.ssZ

version string Protocol version
manufacturer string Vehicle manufacturer
serialNumber string Vehicle serial number

orderId string
Unique identification number of the current order
or completed order. It is kept until a new orderId is
received by the vehicle

agvPosition JSON-object Current position of the vehicle on map

actionStates
[actionState] array

List of actions both current and yet to be completed
The action is state is preserved until vehicle receives
new order

operatingMode string
Enum{AUTOMATIC, SEMIAUTOMATIC, MANUAL,
SERVICE,TEACHIN}
explained in table

agvPosition{ JSON-object
Defines position or location on a map or
configuration space. Each floor has its own space/map
representation

x float64 m x-position on the configuration space/map with respect
to map co-ordiante system

y float64 m y-position on the configuration space/map with respect
to map co-ordiante system

theta float64 rad
Vehicle orientation

Range: [-Pi..+Pi]

mapId string Unique id for map/configuration space.
Differs from floor to floor

batteryState{ JSON-object
batteryCharge float64 % Vehicle battery state of charge
charging
} boolean true: Charging in progress

false: Vehicle is currently not charging
error{ JSON-object

errorLevel} string

Enum [WARNING, FATAL]

WARNING: Maintenance required or Field
violation. No operator intervention required

FATAL: Vehicle enable to run. Operator
intervention is asked. For ex, sensor malfunction,
deadlock situation

Table 9.2: Topic state JSON encapsulated message contents

9.0.6.1. Errors or warnings

There are two levels of errors: WARNING and FATAL. WARNING is self-resolving error (opera-
tional field violation) while FATAL requires human intervention, for ex if vehicles are in deadlock
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situation.

9.0.6.2. operatingMode Enum description

Identifier Description
AUTOMATIC
(Used in this study)

Vehicle is under complete control of the FMS.
Vehicle executes the order messages instructed by FMS

SEMIAUTOMATIC

Vehicle is under complete control of the FMS.
Vehicle executes the order messages instructed by FMS.
It is different from above identifier in a way
where Human-Machine interface controls the driving speed

MANUAL

Vehicle is NOT under control of the FMS.
FMS does not send driving order or actions to the vehicle.
Human-Machine interface (HMI) is used to steer, control and
vehicle handling.

SERVICE
Vehicle is NOT under control of the FMS.
FMS does not send driving order or actions to the vehicle.
Authorized operator can reconfigure the vehicle

TEACHIN
Vehicle is NOT under control of the FMS.
FMS does not send driving order or actions to the vehicle.
Vehicle is in learning phase

Table 9.3: Description of operatingMode under topic state
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9.0.6.3. actionStates

actionState is used to represent the action whenever a vehicle receives it. actionStates are in array
format. actionState uses actionStatus to represent the stage of the lifecycle of that action. The table
is represented in 9.4

actionStatus Description

WAITING The vehicle has received the action, but not the node location
where it is supposed to trigger the action

INITIALIZING Action is trigerred
RUNNING The action is running

PAUSED The action is paused, either due to pause by instantAction topic
or by external trigger like pause button

FINISHED The action is finished and result is reported via resultDescription
FAILED Action could not be completed

Table 9.4: actionStatus for the lifecycle stage check of actionStates
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9.0.7. Topic connection
A last will message or comment can be set by the client on each vehicle. This message with
topic connection is published by broker in case of disconnection with vehicle. In this way, FMS
discovers the connection status by subscribing to the topic via broker. The interval to exchange
this message is configurable in broker and default set to 15 seconds. The disconnection is detected
via a heartbreak exchanged between broker and pub/sub client. The QoS! is level 1 (at least once).
In case if connection has been ended by user by initiating a MQTT disconnection command, the
last will message is not shared. This last will message is in JSON encapsulated message with fields
represented in table 9.5

Field Data-type Description
headerID uint32 Header Id of the message

timestamp string Timestamp (ISO 8601, UTC) YYYY-MM-DD
THH:mm:ss.ssZ

version string Protocol version
manufacturer string Vehicle manufacturer
serialNumber string Vehicle serial number

connectionState string

Enum {ONLINE, OFFLINE, CONNECTIONBROKEN}

ONLINE: Connection between vehicle and broker is active

OFFLINE: Connection between vehicle and broker is offline
in coordinated way.

CONNECTIONBROKEN: Connection between vehicle and broker
has unexpectedly broken and ended

Table 9.5: Topic connection JSON encapsulated message contents
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9.0.8. Topic factsheet
As the name says, it provides specific (technical and functional) information about the vehicles in
the fleet. This factsheet can be used to optimize the vehicle operations, simulation and planning
as the simulation can check the performance of different vehicles. In case of heterogeneous vehicles,
the factsheet include the type of communication interfaces of these vehicles which is then used to
integrate the vehicle type series into the VDA5050-compliant FMS.
factsheet is in JSON format in order for it to be both human-readable and for machine processing.
The factsheet is requeseted by FMS also through instant action message factsheetRequest

9.0.8.1. factsheet JSON structure

Field Data-type Description
headerID uint32 Header Id of the message

timestamp string Timestamp (ISO 8601, UTC) YYYY-MM-DD
THH:mm:ss.ssZ

version string Protocol version
manufacturer string Vehicle manufacturer
serialNumber string Vehicle serial number
typeSpecification JSON-object Defines specific class and the vehicle capabilities
physicalParameters JSON-object Defines basic physical properties of teh vehicle

protocolLimits JSON-object Limits defined for the length of identifiers, arrays,
strings and similar in MQTT connection

protocolFeatures JSON-object Features of VDA5050 protocol that are supported
agvGeometry JSON-object In depth definition of geometry of the vehicle
loadSpecification JSON-object Specification of load capabilities of vehicle
localizationParameters JSON-object In depth specification of localization

Table 9.6: Topic factsheet JSON encapsulated message contents

9.0.8.2. physicalParameters JSON-object

This JSON-object defines physical properties of the vehicle explain in table 9.7.

Field Data-type Description

speedMin float64 [m/s] Min controlled speed (continuous) of the
vehicle

speedMax float64 [m/s] Max speed of the vehicle

accelerationMax float64 [m/sq.s] Max acceleration defined at max load of the
vehicle

decelerationMax float64 [m/sq.s] Max deceleration defined at max load of the
vehicle

heightMin float64 [m] Minimum height of the vehicle
heightMax float64 [m] Maximum height og the vehicle
width float64 [m] Width of the vehicle
length float64 [m] Length of the vehicle

Table 9.7: JSON-object structure for physical properties of the vehicle
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9.0.8.3. typeSpecification JSON-object

This JSON-object defines general properties of the vehicle explain in table 9.8

Field Data-type Description

seriesName string Generalized series name as specified by vehicle
manufacturer

seriesDescription string Human readable vehicle type series description in
free text format

agvKinematic string

Simplified vehicle kinematics-type description
[OMNI, DIFF, THREEWHEEL]

OMNI: Omni-directional vehicle
DIFF: Differential drive
THREEWHEEL: three-wheel driven vehicle or with
similar kinematics

agvClass string

Simplified description of functional vehicle class
[FORKLIFT, CONVEYOR, TUGGER, CARRIER]

FORKLIFT: forklift functionality
CONVEYOR: Vehicle with conveyors on it
TUGGER: tugger functionality
CARRIER: Load carrier either with or without any
lifting unit

maxLoadMass float64 [kg], max load on vehicle

localizationTypes array of string

Localization type description
[NATURAL, REFLECTOR, RFID, DMC, SPOT, GRID]

NATURAL: Localization with natural landmarks

REFLECTOR: Laser reflector

RFID: RFID-based tags

DMC: Data matrix code (QR-code or bar code)

SPOT: Magnetic tapes/ spots

GRID: Magnetic grid

navigationTypes array of string

Path planning types supported by vehicle.
GUIDED is the path sent by FMS

PHYSICAL_LINE_GUIDED: No path planning, vehicle
follows installed physical path

VIRTUAL_LINE_GUIDED: Vehicle navigates on fixed
(virtual) paths

AUTONOMOUS: Used in local path planning, vehicle plans
autonomous path with onboard equipment

Table 9.8: JSON-object structure for general properties of the vehicle
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Each JSON-object in table 9.6 are discussed in tables below. The ones applicable/used in this thesis
are presented. Remaining JSON-object of factsheet can be referred from VDA5050 manual for more
integrated vehicle communication system.
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