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Finding patient zero in susceptible-infectious-susceptible epidemic processes

Robin Persoons * and Piet Van Mieghem
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology,

P.O. Box 5031, 2600 GA Delft, The Netherlands

(Received 12 July 2024; accepted 18 September 2024; published 18 October 2024)

Finding the source of an epidemic is important, because correct source identification can help to stop a
budding epidemic or prevent new ones. We investigate the backward equations of the N-intertwined mean-field
approximation susceptible-infectious-susceptible (SIS) process. The backward equations allow us to trace the
epidemic back to its source on networks of sizes up to at least N = 1500. Additionally, we show that the source
of the “more realistic” Markovian SIS model cannot feasibly be found, even in a “best-case scenario,” where
the infinitesimal generator Q, which completely describes the epidemic process and the underlying contact
network, is known. The Markovian initial condition s(0), which reveals the epidemic source, can be found
analytically when the viral state vector s(t ) is known at some time t as s(0) = s(t )e−Qt . However, s(0) can hardly
be computed, except for small times t . The numerical errors are largely due to the matrix exponential e−Qt , which
is severely ill-behaved.

DOI: 10.1103/PhysRevE.110.044308

I. INTRODUCTION

Finding the source, or patient zero, or the epicenter of an
epidemic is a problem of great interest. The source of the
COVID-19 epidemic, for example, has been investigated ex-
tensively [1–3]. Finding the source of an expanding epidemic
could yield critical insights to stop the epidemic before a large
portion of the population is affected. Related problems of
interest are, for example, finding the source of a rumour or
fake news or a computer virus.

Previous papers focus mainly on practical, but heuristic
methods to estimate the source of an epidemic. Brockmann
and Helbing [4] estimate the source of susceptible-infectious-
recovered (SIR) processes by comparing the shape of the
infection wavefront on the shortest path trees of different
nodes. The epidemic spreads approximately uniformly from
the source like a ripple in water. The nodes on the infection
wavefront should therefore be approximately equidistant from
the source on a shortest path tree. Prakash et al. [5,6] use
Minimum Description Length to find the source nodes of
discrete-time susceptible-infectious (SI) processes. Shah and
Zaman [7] introduce the rumor centrality R(v, GN ), which is
the number of ways that the nodes of the subgraph GN can be
sequentially infected, starting with node v. They then explain
several methods to estimate the epidemic source based on the
rumor centrality. More recently, Shah et al. [8] used graph
neural networks to find patient zero in mean-field SIR.

The problem of finding the source of an epidemic or ru-
mour has received strangely little attention. In particular, the
basic susceptible-infectious-susceptible (SIS) model, which is
a cornerstone of network epidemiology [9] as most epidemics
contain reinfections, is not considered, possibly because
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finding the source of a SIS epidemic is significantly harder
than finding the source of an SI or SIR epidemic. In this
work, we reverse the governing equation(s) of the epidemic
in time to find the backward equations that describe the epi-
demic backwards in time, to find patient zero. Like some
of the papers mentioned above, we restrict ourselves to the
best-case scenario: we assume complete knowledge of the
underlying Markovian or N-intertwined mean-field approxi-
mation (NIMFA) [10] process, the contact network, the exact
Markovian viral state vector s(t ), and the exact NIMFA viral
state vector V (t ) at some known time t .

In Sec. II we introduce the Markovian and NIMFA epi-
demic models. We discuss both the forward and backward
equations. In Sec. III we estimate the epidemic source of
Markovian epidemics and in Sec. IV we trace back NIMFA
SIS epidemics. We conclude in Sec. V.

II. EPIDEMIC PROCESSES

In this section we introduce the SI, SIS, and SIR
Markovian processes and the NIMFA SIS process. We also
discuss relevant similarities and differences between the
Markovian and NIMFA SIS processes.

A. Markovian epidemics

We describe epidemics using Markovian compartmental
models [11] on a static contact network, described by a graph
G(N, L) with N nodes and L links. The graph is fully defined
by its adjacency matrix A, with elements ai j = 1 if i and j
are neighbors and ai j = 0 otherwise. Each node represents
an individual and the links represent contacts between the
individuals. In a compartmental model, each node i is in a
single compartment at each time t . In this work, only three
compartments are considered: a node can be healthy but

2470-0045/2024/110(4)/044308(10) 044308-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8469-2395
https://orcid.org/0000-0002-3786-7922
https://ror.org/02e2c7k09
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.110.044308&domain=pdf&date_stamp=2024-10-18
https://doi.org/10.1103/PhysRevE.110.044308


ROBIN PERSOONS AND PIET VAN MIEGHEM PHYSICAL REVIEW E 110, 044308 (2024)

susceptible (S), infectious (I), or removed (R) when the node
is recovered and immune to the disease. The simplest model
is the SI model, where susceptible nodes become infected
by their infectious neighbours and never recover. In the SIS
model, infectious nodes can cure and move back to the sus-
ceptible S compartment. Similarly, in the SIR model, nodes
can cure, but they cannot be reinfected after recovery and are
therefore placed in the removed R compartment instead of the
susceptible S compartment. The spreading process (S→I) is
a Poisson process on the links with infection rate β̃i j from
node i to node j and the curing process (I→S or I→R) is a
Poisson process on the nodes with curing rate δi for node i. All
Poisson processes are independent. We define the infection
rate matrix B with elements βi j = β̃i jai j and the curing rate
matrix S = diag(δ1, . . . , δN ).

Each of the processes is fully defined [12] by its in-
finitesimal generator Q. The SI and SIS processes have 2N

possible epidemic configurations and the SIR process has 3N

configurations [13]. Therefore, the state vectors s(t ) of SI,
SIS, and SIR are 2N × 1, 2N × 1 and 3N × 1 vectors, respec-
tively. The infinitesimal generators QSI, QSIS, and QSIR are
2N × 2N , 2N × 2N , and 3N × 3N matrices, respectively. We
define the states of the Markov processes and the infinitesi-
mal generators QSI, QSIS, and QSIR as in Refs. [12–14]. For
the SIS process, the explicit definition of the statespace and
infinitesimal generator QSIS can also be found in Appendix A.
The viral state vector s(t ) for each of the Markov processes is
exactly given by the Chapman–Kolmogorov equation [12]:

s(t ) = eQt s(0), (1)

where s(0) is the initial state vector. Each element [s(t )]i of the
state vector s(t ) gives the probability that the process is in state
i at time t . Since s(t ) is a probability distribution, the process
is surely in one of the possible states, hence,

∑|s(t )|
i=1 [s(t )]i = 1

for all times t , where |s(t )| is the cardinality of the state vector
s(t ). When the state vector s(t ) is zero everywhere except at
index i, where it is 1, we write s(t ) = ei. The standard vector
ek has elements (ek )i = δki, thus (ek )i = 0, except when k = i,
then (ek )i = 1. When

∑|s(t )|
i=1 [s(t )]i �= 1 or [s(t )]i /∈ [0, 1] for

some index i, we call the state vector s(t ) nonphysical.
Since e−Qt is the inverse of the matrix eQt , the governing

Eq. (1) immediately shows that

s(0) = e−Qt s(t ). (2)

We call Eq. (2) the Markovian backward equation. Analo-
gously to the matrix eQt describing steps of length t forwards
in time in Eq. (1), the matrix e−Qt describes steps of length
t backwards in time in Eq. (2). However, unlike Eq. (1),
the right-hand side of Eq. (2) is numerically ill-conditioned,
because e−Qt is inherently unstable for large t . Due to the
difference in sign the norm of the exponential eQt decreases
in t , while the norm of e−Qt grows exponentially. The matrix
eQt can be written as eQt = ∑N

k=1 eλkt xkyT
k , where λk is the

kth, generally complex, eigenvalue of the infinitesimal gen-
erator Q and xk and yk are the right- and left-eigenvectors,
respectively [15]. The eigenvalues λk have a nonpositive real
part, as follows from Gershgorin’s circle theorem [16]. Ger-
shgorin’s circle theorem states that any eigenvalue of a matrix
A must lay within at least one of the closed Gershogorin

discs D(aii, Ri ) in the complex plane, with center at aii and
radius Ri = ∑

j �=i |ai j |. Since qii = −∑
j �=i |qi j | ∈ R, all Ger-

shgorin discs D(qii, Ri ) intersect the origin but otherwise stay
in the negative half-space of the complex plane. Therefore, all
eigenvalues of Q have a nonpositive real part. Analogously,
in the matrix e−Qt = ∑N

k=1 e−λkt xkyT
k , the eigenvalue −λk has

nonnegative real part, such that e−λkt grows exponentially with
t . The matrix exponential eAt is notoriously hard to compute
numerically in a general way [17]. As a consequence, the
equation e−Qt eQt s(0) = s(0) cannot be reproduced numeri-
cally in general. Specifically, for certain matrices Q, the error
||e−Qt eQt s(0) − s(0)||2 grows exponentially for large enough
times t when small rounding errors propagate into large errors.
Therefore, we will employ different matrix exponentiation
methods and compare their results. MATLAB provides the
functions expm [18,19] and expmv [20] natively and expv
through the EXPOKIT package [21]. All of these methods
have increasing rounding error propagation issues in the cal-
culation of e−Qt for large t and, therefore, cannot accurately
retrieve the exact initial state vector s(0) from the state vector
s(t ) when t � 0. We discuss why SIS is the more difficult case
compared to SI and SIR in Appendix B and restrict ourselves
to SIS from here on.

B. N-intertwined mean-field approximation

The N-intertwined mean-field approximation (NIMFA)
of the Markovian SIS model [14] reduces the Markovian
process to a system of N differential equations. The mean-
field infection probability of node i is written as vi(t ).
The N × 1 vector of the infection probabilities is V (t ) =
[v1(t ), v2(t ), . . . , vN (t )]T . The heterogeneous NIMFA gov-
erning equations are given by

d vi(t )

dt
= −δivi(t ) + [1 − vi(t )]

N∑
j=1

βi jv j (t ). (3)

The NIMFA process has a phase transition determined by
the basic reproduction number R0 = ρ(S−1B), where ρ(·)
indicates the spectral radius or largest eigenvalue [22,23].
Above the epidemic threshold (R0 > 1) the infection proba-
bility vector V (t ) �= 0 converges for large time t to a nonzero
steady-state vector V∞. Below and at the threshold (R0 � 1)
the steady-state infection probability vector V∞ is the all-zero
vector. The NIMFA SIS process converges slowest to the
steady-state V∞ around the epidemic threshold [24]. Because
NIMFA has not been solved analytically in closed form, it
is often solved approximately by repeatedly applying the for-
ward Euler [25] method:

vi(t + h) = vi(t ) + h

⎛
⎝−δivi(t ) + [1 − vi(t )]

N∑
j=1

βi jv j (t )

⎞
⎠.

(4)

We derive the NIMFA backward equations from the for-
ward Euler equation vi(t + h) = vi(t ) + h d vi (t )

dt by rewriting
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vi(t ) = vi(t + h) − h d vi (t )
dt and shifting the time t by −h:

vi(t − h) = vi(t ) − h

(
−δivi(t − h)

+ [1 − vi(t − h)]
N∑

j=1

βi jv j (t − h)

)
. (5)

The NIMFA backward equations (5) can be interpreted
as a backward Euler method [25] going backwards in time.
The backward Euler method has the form vi(t + h) = vi(t ) +
h d vi (t+h)

dt forwards in time. Backwards in time the method
takes the same form as Eq. (5), namely, vi(t − h) = vi(t ) −
h d vi (t−h)

dt . Because the backward Euler method is implicit [25],
a nonlinear system of N equations with N unknowns has to be
solved at each iteration step. Indeed, the unknown vi(t − h) is
on both sides of Eq. (5).

It may seem straightforward to apply the forward Euler
equations (but backwards in time) instead of Eq. (5). Specif-
ically, applying a method of the form vi(t − h) = vi(t ) −
h d vi (t )

dt , thus avoiding the need of solving a system of equa-
tions at each iteration step. However, like the Markovian case,
the NIMFA system is ill-behaved backwards in time. The
forward Euler method is, in fact, very unstable backwards in
time. The backward Euler method (5), fortunately, is accurate
when the number of steps is small enough. We found that the
range of Eq. (5) can be extended beyond what is reasonably
required by working with 128 bit variables (also known as
quadruple accuracy).

C. Comparison between Markovian and NIMFA SIS

In this section we will discuss some similarities and differ-
ences of Markovian and NIMFA SIS processes relevant to the
study.

1. State vector

The Markovian 2N × 1 state vector s(t ) describes the prob-
ability of each of the 2N possible network configurations of the
N nodes being in either the I or S compartment. The NIMFA
N × 1 state vector V (t ) describes the infection probability of
each of the N nodes. The NIMFA state vector can also be
interpreted as the fraction of infectious individuals in a group
when a node represents a building, city or country. While the
infection probability of an individual and the probability of
each of the 2N possible Markovian states are (almost) impos-
sible to estimate accurately during a real-world epidemic, the
fraction of infected individuals in cities or countries is not.
We argue that assuming a good estimation of V (t ) is realis-
tic for real-world epidemics when nodes represent groups of
individuals.

2. Governing equations

Both forward equations (1) and (4) are numerically stable.
Both backward equations (2) and (5) are not. In the fol-
lowing we will see that the NIMFA backward equations are
accurate for much larger times t than the Markovian ones.
The other main difference between the Markovian backward
equation (2) and the NIMFA backward equations (5) is that
the Markovian backward equation maps the state vector s(t )

FIG. 1. Left: Accuracy of the estimation of patient zero z in
Markovian SIS when t is known exactly on the left y axis and the
average probability of being in the steady state ξ (t ) on the right y axis
versus time. The accuracy and steady-state percentage are averaged
over 1000 epidemic processes. The contact graph is the complete
graph on N = 8 nodes K8, the infection rates βi j are random uniform
on the interval [0,1] and the curing rate δ = 1. All three exponen-
tiation methods are shown: expm in blue (X marker), expmv in red
(circle marker), and expv in black (square marker). The steady-state
fraction ξ (t ) is shown in dotted green. Right: Norm of the error
s(0) − e−Qt s(t ) versus time for the three exponentiation methods.

to the initial state s(0) in one step, while the NIMFA backward
equations solve the entire trajectory of the epidemic.

3. Steady-state information loss

The Markovian SIS steady state is the all-healthy state,
which corresponds to the basic vector e1. The first row of
the infinitesimal generator Q is all-zero (see Ref. [12] or
Appendix A), which implies that the first row of eQt is all-zero
for every t ∈ R and thus e1 = eQt e1 for all times t (including
negative t). Similarly, in the NIMFA case, the all-healthy state
V (t ) = 0 gives V (t − h) = 0 after solving Eq. (5) and the
nonzero steady-state V (t ) = V∞ gives V (t − h) = V∞ after
solving Eq. (5). This means that after converging to the steady
state the history of neither process can be retrieved.

III. TIME REVERSAL IN MARKOVIAN SIS

A. Estimating patient zero when the elapsed time is known

Since we are interested in estimating patient zero z, we
assume that s(0) = ei, where i = 2z−1, which is the state cor-
responding to every node being susceptible, but only node z
is infectious (see Appendix A). We try to recover patient zero
z from the state vector s(t ) by determining s(0) = e−Qt s(t ).
Patient zero is then estimated to be the node l corresponding
to the state i = 2l−1 which has the largest component in the
approximate initial state s(0) out of the states i = 2n−1 with
exactly one infected node n = 1, . . . , N .

Figure 1 shows the accuracy of estimating patient zero
averaged over 1000 SIS processes. Here, the contact graph
is the complete graph on N = 8 nodes K8, the infection rates
βi j are random uniform on the interval [0,1] and the curing
rate δ = 1. Appendix C discusses the simulation parameters in
more detail. The left y axis shows the accuracy, which is the
fraction of trials where patient zero was estimated correctly.
The accuracy is shown for all three exponentiation methods:
expm in blue (X marker), expmv in red (circle marker) and
expv in black (square marker). On the right y axis, in dotted
green, the steady-state fraction ξ (t ) is shown, which is the
average probability of being in the steady state at time t . More
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specifically, the steady-state fraction ξ (t ) is the average of
[s(t )]1 = Pr[all-healthy state] over the 1000 trials. The right
panel shows the norm of the error s(0) − e−Qt s(t ).

The left panel of Fig. 1 indicates that patient zero can
sometimes still be found by expv at large times t > 30. The
accuracy of expm and expmv falls off, but also stays above
zero significantly longer than the error in the right panel stays
small. Interestingly, for times t > 3, the accuracy of all three
methods is slightly above 1

N = 0.125, which would be the ac-
curacy of a random node choice. The fact that the steady-state
fraction ξ (t ) has not reached 1 when the accuracy decreases
around t = 3 suggests that information loss through the steady
state is not the main cause of the accuracy decrease. We were
able to determine the cause of the second drop in accuracy
of the expm and expmv methods between t = 30 and t = 35.
At these times the entries of the vector e−Qt s(t ) grow so large
that MATLAB interprets them as infinite. Then, each of the
N nodes shares the same entry [s(0)]i (where i = 2k−1) and
we consider these cases a failure to prevent an unrealistically
high accuracy when multiple entries tend to zero or infinity.
This reason also explains why the right panel of Fig. 1 stops
at t = 30. Indeed, for higher values of t the norm of the error is
infinite according to MATLAB. The right panel of Fig. 1 also
shows that the estimated initial state vector s(0) is nonphysical
from at least t ≈ 3.

We conclude from Fig. 1 that, although the errors in the
matrix exponential and in the initial state vector s(0) increase
exponentially, estimation can still work at times t > 10. To
show more explicitly that the low accuracy is mainly due to
numerical errors in the matrix exponentiation we considered
quadruple accuracy, that approximately doubled the time for
which the numerical methods were accurate to t = 6.

B. Finding the source node when t is unknown

The assumption that the elapsed time t is known is rather
unrealistic. In this section, we investigate the case when the
time t is unknown. If we denote by t∗ > 0 the estimated
elapsed time, then we can estimate the initial viral state s(0)
as s(t − t∗), when t∗ ≈ t :

s(0) ≈ s(t − t∗) = e−Qt∗
s(t ). (6)

Equation (6) follows from the semigroup property of the
exponential s(t − t∗) = eQ(t−t∗ )s(0) = e−Qt∗

eQt s(0) and from
Eq. (1) leading to s(t − t∗) = e−Qt∗

s(t ).
Since e−Qt has nonnegative eigenvalues, the norm of

s(t − t∗) will explode for large t∗. Analytically, the vector
s(t − t∗) must be a probability vector for t − t∗ � 0 and there-
fore this explosion cannot happen before t = t∗. Under our
assumption that s(0) = ei, where ei corresponds to an initial
state with only patient zero z infected, simulations suggest the
explosion starts exactly at t∗ = t :

Conjecture 1. Denote with s(0) = ei the initial state of an
Markovian epidemic process, with finite infection rates βi j

and finite curing rates δi. If ei is not an absorbing state, then it
holds for t > 0 that the norm ||e−Qt s(0)||2 = ||e−Qt ei||2 > 1.

Given that the initial state vector s(0) = ei and that the
time 0 < t < ∞, the state vector s(t ) is a probability vector
with norm ||s(t )||2 < 1. The norm of the initial state vector
||s(0)||2 = ||ei||2 = 1 and thus Conjecture 1 states that for

FIG. 2. Left: Accuracy of the estimation of patient zero z in
Markovian SIS when t is not known on the left y axis and the average
probability of being in the steady state ξ (t ) on the right y axis versus
time. The accuracy and steady-state percentage are averaged over
100 epidemic processes. The contact graph is the complete graph
on N = 8 nodes K8, the infection rates βi j are random uniform on
the interval [0,1] and the curing rate δ = 1. All three exponentiation
methods are shown: expm in blue (X marker), expmv in red (cir-
cle marker), and expv in black (square marker). The steady-state
fraction ξ (t ) is shown in dotted green. Right: Norm of the error
s(0) − e−Qt∗ s(t ) versus time for the three exponentiation methods.

negative t the norm ||s(t )||2 > 1. Therefore, we can use a
binary search algorithm [26] to find t using the following
criteria on s(t − t∗):

||s(t − t∗)||2 < 1 if t∗ < t,

||s(t − t∗)||2 = 1 if t∗ = t,

||s(t − t∗)||2 > 1 if t∗ > t . (7)

Here, we consider the 2-norm || · ||2 instead of the 1-norm
|| · ||1, which is usually more natural in probability theory,
because ||s(t − t∗)||1 = 1 when t∗ < t , which leads to a step
function in Eq. (7) that hinders the binary search. The binary
search algorithm is explained in more detail in Appendix D.

Figure 2 shows the estimation of patient zero when the
elapsed time t is unknown. The estimation is shown for
all three exponentiation methods: expm in blue (X marker),
expmv in red (circle marker), and expv in black (square
marker). The averages are taken over 100 SIS simulations.
Comparison of the left panels in Figs. 1 and 2 indicates that
not knowing the elapsed time t has little impact on the accu-
racy because the left panels of Figs. 1 and 2 are quite similar.

The binary search algorithm can fail when numerical errors
make the relations in Eq. (7) unreliable. While accurate up to
t = 2, all methods estimated t∗ ≈ 2 for all t � 2 and expv
additionally estimated t∗ ≈ 50 for all t � 15. It is unclear why
the accuracy in the left panel of Fig. 2 is not impacted by these
significant errors. It is also unclear why expm and expmv have
such different errors in the right panel of Fig. 2, while they
have the same estimated elapsed time t∗ ≈ 2 for times t � 2.
We hypothesized that a remnant of the initial state s(0) = ei is
present in s(t ) such that [s(t − t∗)]i is the largest of the entries
of s(t − t∗) representing states with a single infected node for
a large range of times t∗. Then, accurate estimation of the
elapsed time t is relatively unimportant when estimating pa-
tient zero. However, this is not true as simulations (not shown
here) indicate that the index of the maximum entry from the
set {[s(t − t∗)]i|i = 2k−1}, fluctuates significantly with t∗ in
a single epidemic. The right panel of Fig. 2 suggests that the
estimated initial state s(0) is nonphysical for expmv and expv.
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FIG. 3. Schematic visualization of the behavior of the backward NIMFA equations. Top: Regular double (64-bit) precision. Bottom:
Quadruple (128-bit) precision. Proportions of the different regimes are loosely based on simulations of homogeneous NIMFA SIS slightly
above the epidemic threshold (R0 = 1.1) on Barabási-Albert random graphs of size N = 50. The curing rate was chosen δ = 1 and the infection
rate β was chosen such that the basic reproduction number R0 = 1.1.

IV. TIME REVERSAL IN NIMFA SIS

In NIMFA SIS, the initial state V (0) = ez corresponds to
node z being infected with probability 1 while all other nodes
are not infected, i.e., node z is patient zero. The NIMFA
backward equations (5) are computationally nicer than the
Markovian backward equation (2). First, solving the system
of equations (5) is computationally easier than calculating the
matrix exponent in Eq. (2). In addition, the system has size
N instead of 2N . Therefore, significantly larger graphs can
be investigated. Second, the assumption that s(t ) is known
in the Markovian case is not very realistic. In a real-world
epidemic, it is implausible to estimate the probability of each
of the 2N states accurately. Conversely, assuming that V (t )
is known is reasonable, because the infection probabilities
vi(t ) can be estimated as the fraction of infected people in
a node when nodes represent buildings, cities or countries
instead of individuals. Last, the backward Euler method (5)
determines the infection probability vector V at all times in
the interval [0, t]. This means information about the trajectory
of the epidemic is also retrieved at no additional cost.

A. Observations

The NIMFA backward equations show three regimes of
accuracy, that are visualized in Fig. 3. For small times, the
method is accurate and the backward epidemic corresponds
with the forward epidemic. An example is shown in the left
panel of Fig. 4, where each line represents the infection prob-
ability vi(t ) of one of the N nodes. There is one thick line
for each of the N = 10 nodes that shows the value of vi(t ) in
the forward epidemic. The backward epidemic is shown with
+ symbols. The line and + symbols of a single node have
the same color. In the left panel the + symbols overlap with

the lines, showing the epidemic is traced accurately. When
the elapsed time increases errors start propagating and after
a time t = T , the backward epidemic starts diverging from
the forward epidemic. This divergence is shown in the middle
panel of Fig. 4, where around t = 10 all nodal states diverge.
The backward process starts at t = 25 and is thus accurate
for approximately 15 time units until t = 10. The divergence
time T seems largely determined by R0 and the precision of
the viral state V (t ). We explore this finding in more detail
below. The last regime in Fig. 4 is when the process is in the
steady state. The right panel of Fig. 4 shows that the backward
process is stuck in the steady state. The convergence time of
NIMFA is mainly [24] determined by the basic reproduction
number R0. It is also influenced by the numerical precision, as
illustrated in the bottom panel of Fig. 3. A graph with N = 10
nodes is shown in Fig. 4 such that the figure is still clear with
all vi(t ) shown, but the figure is representative of larger graphs
as well. For example, we found that the divergence time T , for
R0 = 1.1 (like in Fig. 4), is around 12 for graphs of various
sizes including as high as N = 1500.

B. Divergence time T
The divergence time T is the largest time before the back-

ward process diverges. Moreover, simulations suggest that the
divergence time is independent of the starting time of the
backward process (assuming the steady state is not reached).
Hence, the divergence time is also approximately the largest
starting time from which the nodal probability vector V (t ) can
be retraced back to V (0) accurately.

As mentioned above, the divergence time T is determined
by the basic reproduction number R0 and the numerical preci-
sion of the forward and backward processes. Since the basic

FIG. 4. Nodal state vi for each of the N = 10 nodes over time, forward epidemic (thick line) and backward epidemic (+ symbol) values
have the same color for each node. Different times of starting the reversal corresponding to the different regimes. The forward epidemic starts
at t = 0, while the backward epidemic starts at t = 10 (left), t = 25 (middle), and t = 40 (right). The three figures correspond with the three
regimes: accurate (left), divergence (middle), and stuck in the steady state (right). The contact graph has N = 10 nodes, the curing rate δ = 1
and the infection rate β is chosen such that the basic reproduction number R0 = 1.1. The x axis is in logscale for clarity.
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FIG. 5. Left: Divergence time T versus basic reproduction number R0. The infection rates β̃i j = β are chosen homogeneous and such that
the basic reproduction number R0 is what we choose. Right: Divergence time T versus the number of accurate digits of the state vector
V (t = 20) (the initial state of the backward equations) with basic reproduction number R0 = 1.1, guaranteeing that the process has not
converged at t = 20. The state vector V (t ) is rounded to have the right amount of accurate digits. For both panels the sample is taken over 50
random graphs of size N = 50, including Barabási-Albert and Erdős-Rényi random graphs, with curing rate δ = 1.

reproduction number R0 influences the convergence time,
it could be possible that for large values of R0 the diver-
gence regime in Fig. 3 is replaced by the steady-state regime.
However, the basic reproduction number R0 influences the
divergence time T in such a way that this does not hap-
pen. Indeed, even if the process converges very quickly all
three regimes as sketched in Fig. 3 exist. Figure 5 shows
the divergence time T for different homogeneous infection
rates β̃i j = β corresponding to specific R0 values (left) and
for different numbers of accurate digits in V (t ) (right). The
number of accurate digits is varied by rounding the viral
state V (t ) to the nearest decimal number with that amount of
digits after the period. For example, if one of the elements of
V (t ) is vi(t ) = 0.123456789, then with four accurate digits
it would be vi(t ) = 0.1235 and with seven accurate digits
vi(t ) = 0.1234568. The divergence time T is estimated as the
time of the first step in the backward epidemic where the the
difference between the forward and backward value of any
of the N infection probabilities vi(t ) is more than 10−3. For
both panels in Fig. 5 the epidemic is reversed from t = 20.
The time t = 20 is larger than T , but also small enough to
avoid convergence at R0 = 1.1. By fixing the starting time,
instead of searching for the smallest time where V (0) is re-
trieved without an error of more than 10−3 in any of the N
infection probabilities vi(t ), we save computation time. The
left panel shows that from R0 = 2 on, the divergence time
(and thus the accuracy) increases. For R0 > 2, the backward
process is stuck in the steady state on the entire interval.
The accuracy increases because, for higher values of R0, the
forward process reaches the steady state faster and is in the
steady state for a larger part of the interval [0,20]. Therefore,
the backward process, that is stuck in the steady state during
the entire interval, deviates from the forward process after
a longer time when R0 increases. As eluded to before, for
R0 < 2, the divergence time decreases with R0. Therefore,
even though for R0 = 1.5 the process converges faster than for
R0 = 1.1, there still is a diverging regime. The right panel of
Fig. 5 shows that the backward equations stay accurate longer
when the state vector V (t ) is known more precisely. We are

uncertain why the improvement halts at 10 accurate digits,
while MATLAB should have 16 decimal digits of precision
as default. Presumably, the forward Euler method has already
introduced errors that make V (t ) accurate in only 10 decimal
digits. The requirement of a large number of accurate digits
emphasizes the need for accurate and high-resolution mea-
surements. In quadruple precision computations, we found
that, even near the epidemic threshold, an epidemic reaching
times large enough to show convergence at double precision
could still be retraced accurately. The accuracy regimes at
quadruple precision are illustrated in the bottom part of Fig. 3.
Quadruple precision may not be practical however, because 32
digits of accuracy is not realistic in a real-world setting.

V. CONCLUSIONS

Finding the source of a continuous-time Markovian epi-
demic via s(0) = e−Qt s(t ) in Eq. (2) is significantly hindered,
because the matrix exponent e−Qt is ill-conditioned and can-
not be accurately calculated numerically unless the time t is
small. We investigate how well the source node, or patient
zero z, can be estimated when (1) the elapsed time t and the
state vector s(t ) are known and (2) only the state vector s(t ) is
known. Both scenarios show very similar results, because both
methods are significantly impacted by the numerical errors.
We introduce a binary search algorithm, based on conditions
in Eq. (7), which can estimate the elapsed time t when the
initial state s(0) = ei. Even though numerical errors should
prevent the algorithm from working, it still performs well and
the estimation of patient zero is effectively unchanged when
the elapsed time t is unknown.

While we claim that our time reversal method based on
Eq. (2) is analytically and (ignoring numerical challenges)
algorithmically a best-case scenario for Markovian SIS,
heuristic algorithms can outperform its accuracy due to its
exponential vulnerability to numerical errors. Our Markovian
method is not suitable for finding patient zero in real-world
situations even if the entire Q matrix and state vector s(t ) are
known (a best-case scenario).
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Given that time reversal of the Markovian process is un-
feasible, the NIMFA mean-field model is one of the best
alternative models. To find the source of a NIMFA SIS epi-
demic, we repeatedly apply the backward equations (5) to the
state vector V (t ) until the initial state V (0) is reached. We
observe three regimes: for short elapsed times t the method
is accurate, for intermediate elapsed times t the backward
epidemic diverges and for large elapsed times t the backward
epidemic is stuck in the steady state. The basic reproduction
number R0 and the accuracy of the initial state of the back-
ward epidemic V (t ) influence the accuracy of the backward
epidemic. Increasing R0 decreases the divergence time T and
causes the diverging regime to exist for all R0, even if the
epidemic converges very fast at large R0. The precision of
V (t ) has a large positive effect on the accuracy of the back-
ward epidemic. Using quadruple precision we can retrace the
epidemics accurately from times t that are large enough such
that the process is converged at that time t , if one had used
double precision instead. Unlike the assumption of a known
Markovian state vector s(t ), the assumption that the NIMFA
state vector V (t ) is known is realistic. Additionally, because
the backward NIMFA method is more stable and scales bet-
ter with the network size N than the Markovian method, it
is applicable for graphs with size N = 1500 or more. Mea-
surements of the required precision will be incredibly rare
in real-world scenarios. However, this is not necessarily a
problem because, for small times, the backward equations are

very accurate and less dependent on the precision. Times like
t = 10 may seem small, but the time t is defined in terms
of the curing rate δ and a time of t = 10 1

δ
could reasonably

correspond to multiple weeks for some epidemics.
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APPENDIX A: MARKOVIAN SIS STATESPACE
AND INFINITESIMAL GENERATOR

The state i in the Markovian SIS process is given by

i =
N∑

k=1

xk (i)2k−1,

where xk (i) ∈ {0, 1} is the viral state of node k in state i and
xk (i) = 0 if node k is susceptible in state i and xk (i) = 1 if
node k is infectious in state i. The state i can equivalently
be written as xN (i)xN−1(i) . . . x2(i)x1(i), which corresponds
to the binary representation of the number i. The 2N × 2N

infinitesimal generator QSIS is given by [12]

qi j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑N
k=1 βmkxk (i) if j = i + 2m−1; m = 1, 2, . . . N and xm(i) = 0,

δm if j = i − 2m−1; m = 1, 2, . . . N and xm(i) = 1,

−∑2N −1
k=0;k �= j qk j if i = j,

0 otherwise.

QSIS=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
δ1 −δ1 − β12 0 β12 0 0 0 0
δ2 0 −δ2 − β21 − β23 β21 0 0 β23 0
0 δ2 δ1 −δ1 − δ2 − β23 0 0 0 β23

δ3 0 0 0 −δ3 − β32 0 β32 0
0 δ3 0 0 δ1 −δ1 − δ3 − β12 − β32 0 β12 + β32

0 0 δ3 0 δ2 0 −δ2 − δ3 − β21 β21

0 0 0 δ3 0 δ2 δ1 −δ1 − δ2 − δ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We also gave an explicit example of the 23 × 23 infinitesimal
generator for the path graph on N = 3 nodes. Nodes 1 and 3
are the endpoints of the path graph, node 2 is in the middle.
Therefore, β13 = β31 = 0, since a13 = a31 = 0. Figure 6 visu-
alizes the states and transitions of the SIS process on a graph
with N = 4 nodes. The states 2z, with integer z, on the second
row are the states corresponding to a single infected node z.
Exact computations with the 2N × 2N infinitesimal generator
QSIS are limited due to exponentially growing matrix size with
N . On a normal personal computer, the infinitesimal generator
can be computed up to N ≈ 25, but linear calculations are
feasible only up to N ≈ 18. In this work, we require repeated
matrix exponentiation, which is feasible up to N ≈ 10.

APPENDIX B: COMPARISON OF SI, SIR, AND SIS

Figure 7 shows the average error ||eQt e−Qt − I||2 for dif-
ferent times t , where || · ||2 indicates the matrix 2-norm. The
average error is calculated with the expm function, since the
other methods do not calculate eQt or e−Qt directly. Figure 7
shows the average error for Q = QSI, Q = QSIS, and Q =
QSIR averaged over 1000 different infinitesimal generators,
with heterogeneous infection rates bi j i.i.d. uniform between
0 and 1. The curing rate δ = 0 for SI, while the curing rate
δ = 1 for SIS and SIR. The underlying contact graph was the
complete graph K6 for SIR and K8 for SI and SIS, because of
the exponential scaling 3N versus 2N .
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FIG. 6. The state diagram of SIS on a graph with N = 4 nodes,
from Ref. [12].

We hypothesize that the reason why the average error in
Fig. 7 grows faster in time for SIS than for SI and SIR is
due to the structure of the infinitesimal generator QSIS. The
infinitesimal generators QSI and QSIR are upper triangular ma-
trices, which are numerically more suited for exponentiation
than QSIS, which is not triangular. Triangular matrices have
the property that their powers are also triangular. The matrix
exponent eA can be written as eA = ∑∞

k=0
1
k! A

K and therefore
the matrix exponent eT of a triangular matrix T is also tri-
angular. This means that N (N−1)

2 elements of eT are 0 and
will neither contribute to nor get influenced by propagating
numerical errors, reducing the average error.

The triangular infinitesimal generators of SI and SIR are
due to the property that in both processes a state i can never
be reached again after the process has left state i (i.e., no states
communicate).

We explain with an example why finding patient zero in
SIS is more difficult compared to SI and SIR. Suppose node
z is the only infected node. Then, after infecting its neighbor
w, both z and w are infected. Now in the SIS process, node z
can cure leaving only node w infected. Due to the memoryless
property of the Markov process, the remainder of this hypo-
thetical SIS process will be identical to one that started with

FIG. 7. Development of the error ||eQt e−Qt − I||2 over time.
Here, || · ||2 represents the matrix 2-norm. The error is shown for
SI in blue (X marker), SIS in red (circle marker), and SIR in black
(square marker). We emphasize that SIR is on the graph K6 instead
of K8 like SI and SIS, which could make the comparison skewed.

patient zero w, although patient zero was in fact node z. In
SI and SIR a similar situation cannot occur: in SI node z cant
cure and in SIR node z would be in compartment R instead of
compartment S. Both SI and SIR cannot reach the state where
only node w is infected from the state where only node z is
infected, which makes it easier to find patient zero for these
processes. We emphasize that the problem from the example
is an obstacle in general: both heuristic models as well as exact
ones are obstructed.

APPENDIX C: SIMULATION PARAMETERS

1. Curing rates

Since we investigate the impact of the elapsed time t when
estimating the initial state s(0) or V (0) from the state vector
s(t ) or V (t ), we require the time to be dimensionless. In a
homogeneous Markovian process, where each node i has the
same curing rate δi = δ, the average curing time 1

δ
is the

characteristic time. The system can be made dimensionless by
considering the infinitesimal generator Q̃ = 1

δ
Q and dimen-

sionless time t̃ = δt , where the time t̃ is specified in units of
1
δ
. The dimensionless system allows us to compare the impact

of the elapsed time between processes and removes one pa-
rameter, because δ = 1 can be fixed without loss of generality
in the dimensionless system. The dimensionless Markovian
process directly translates to a dimensionless NIMFA process
when the curing rate matrix S = I . In this work, we consider
the dimensionless system, with heterogeneous infection rates
βi j , but homogeneous curing rates δi = δ = 1.

2. Infection rates

The accuracy of the Markovian process for large times
t depends on the infinitesimal generator Q and thus on the
infection rate matrix B and the curing rate matrix S. In par-
ticular, some methods perform poorly when there are small
differences in the eigenvalues of the infinitesimal generator Q
(see Refs. [12,27] about eigenvalues of multiplicity larger than
1). Therefore, we will consider heterogeneous infection rates
on the complete graph, to reduce degeneracy of the process
due to high multiplicity of the eigenvalues of the infinitesimal
generator Q. Specifically, we took β̃i j uniform between 0 and
1 on the complete graph K8 for the Markovian simulations.
This choice guarantees that the epidemic does not die-out
rapidly. For the NIMFA simulations the multiplicity of the
eigenvalues of the infinitesimal generator Q do not matter and
therefore we investigated different cases as well. In particular
we chose a homogeneous infection rate β such that the basic
reproduction number can be controlled since R0 = βρ(A).

3. Step-size h

The size of the step-size h used to numerically solve the
NIMFA backward equations is a parameter of large impor-
tance. A “sweet spot” has to be found, because both large and
small h reduce the accuracy of the solver. If the step-size is too
large, then the numerical solution is inaccurate. However, the
process will also escape the steady state easier if the step-size
h is increased, because h d V (t )

dt increases in magnitude and is
thus further away from zero. If the step-size h is too small,
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then the process gets stuck in the steady state easier. In addi-
tion, errors accumulate faster (because there are more steps)
and the increase in accuracy of the numerical method does
not necessarily compensate this. We obtained the best results
around h = 0.01, which is the value used in all simulations in
this paper.

4. Solver accuracy

We investigated whether increasing the accuracy of the
solver that solves the system of equations in Eq. (5) every
iteration step improved the solution of the backward Euler
method. This had no impact on the accuracy of the method
as the improvement was very small and the divergence is thus
likely caused by the inherent instability of the backward Euler
equation (5).

APPENDIX D: BINARY SEARCH ALGORITHM

The binary-search Algorithm 1 explained below finds t and
s(0) as follows. Assume Q and s(t ) are known and the time t
lies in an interval [l, h]. Then, the binary-search loop (lines 5
through 17) will, at each iteration, set the estimated time t∗
to l+h

2 (line 7) and then calculate s(0) = e−Qt∗
s(t ) (line 8).

The interval [l, h] is narrowed to [t∗, h] or to [l, t∗] using
criteria (7) (lines 9 though 16). [As a minor optimization,∑|s(t−t∗ )|

i=1 [s(t − t∗)]2
i is calculated instead of ||s(t − t∗)||2, be-

cause taking the square root on both sides does not change
the criteria in Eq. (7) because

√
1 = 1.] The binary-search

loop is then repeated until |∑|s(t−t∗ )|
i=1 [s(t − t∗)]2

i − 1| < ε.
Numerical errors due to the matrix exponential can prevent
convergence of the binary search at large times t , because the

ALGORITHM 1. Finding s(0) and t with perfect knowledge
of s(t ).

Input: State vector s(t ), infinitesimal generator Q,
bounds on the time land h, tolerance ε and
maximal number of iterations K

Output: Estimated elapsed time t∗ and estimated
initial state vector s(0)

1 tl ← l;
2 th ← h;
3 E ← 2;
4 i ← 0;
5 While |E − 1| > ε && i < K do
6 i ← i +1;
7 t∗ ← th+tl

2 ;
8 s(0) ← e−Qt∗ s(t );
9 E ← ∑N

i=1[s(0)]2
i ;

10 if E > 1 then
11 th = t∗;
12 else
13 if E < 1 then
14 tl = t∗;
15 end
16 end
17 end

estimated state vectors e−Qt s(t ) can be nonphysical. There-
fore, we also output t∗ and s(0) after some number of
iterations K to guarantee termination. Algorithm 1 only finds
the elapsed time t if s(0) = ei for some i because the ba-
sic vectors ei are the only probability vectors with 2-norm
equal to 1.
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