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Traveller behaviour in public transport in the early stages of the 
COVID-19 pandemic in the Netherlands 
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A B S T R A C T   

With a few exceptions, public transport ridership around the world has been hit hard by the 
COVID-19 pandemic. Travellers are now likely to adapt their behaviour with a focus on factors 
that contribute to the risk of COVID-19 transmission. Given the unprecedented spatial and 
temporal scale of this crisis, these changes in behaviour may even be sustained after the 
pandemic. To evaluate travellers’ behaviour in public transport networks during these times and 
assess how they will respond to future changes in the pandemic, we conduct a stated choice 
experiment with train travellers in the Netherlands at the end of the first infection wave. We 
specifically assess behaviour related to three criteria affecting the risk of COVID-19 transmission: 
(i) crowding, (ii) exposure duration, and (iii) prevalent infection rate. Observed choices are 
analysed using a latent class choice model which reveals two, nearly equally sized latent traveller 
segments: ‘COVID Conscious’ and ‘Infection Indifferent’. The former has a significantly higher 
valuation of crowding, accepting, on average 8.75 min extra waiting time (average total travel 
time in the choice scenarios was about 40 min) to reduce one person on-board. Moreover, this 
class indicates a strong desire to sit without anybody in the neighbouring seat and is quite sen-
sitive to changes in the prevalent infection rate. By contrast, the Infection Indifferent class has a 
value of crowding (1.04 waiting time minutes/person) that is only slightly higher than pre- 
pandemic estimates and is relatively unaffected by infection rates. We find that older and fe-
male travellers are more likely to be COVD Conscious while those reporting to use the trains more 
frequently during the pandemic tend to be Infection Indifferent. Further analysis also reveals 
differences between the two segments in attitudes towards the pandemic and self-reported rule- 
following behaviour. We believe that the behavioural insights from this study will not only 
contribute to better demand forecasting for service planning but will also inform public transport 
policy decisions aimed at curbing the shift to private modes.   

1. Introduction 

The COVID-19 pandemic has led to unprecedented restrictions on public life globally. Some of the first restrictions in many places 
were on public transport which, by its very nature of moving people in dense, enclosed spaces, could be a major transmission risk for 
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this highly contagious virus1. While some public authorities completely stopped service (e.g., India (Union Home Secretary, 2020)), 
others restricted or discouraged use other than by essential workers or for urgent needs (e.g., Netherlands, United Kingdom 
(Department for Transport; Openbaar Vervoer Nederland, 2020a)). Then, at the end of the first infection wave, many authorities, 
pressed with a need to restart economies and provide essential transportation, eased restrictions and cautiously resumed public 
transport. Demand levels, however, did not return to pre-pandemic levels (Citymapper, 2021; Google LLC, 2021), at least partly, due to 
heightened (awareness of the) risk of infection (Beck and Hensher, 2020). 

The effect of on-board crowding on travel behaviour has received much attention in literature and has been widely accepted to be a 
significant influence on various choice dimensions (Hensher et al., 2011; Li and Hensher, 2011; Tirachini et al., 2013; Wardman and 
Whelan, 2011). Using choice observations, mainly from stated choice experiments (e.g., (Kroes et al., 2013; Sahu et al., 2018)) but also 
from revealed preferences (e.g., (Hörcher et al., 2017; Yap et al., 2018)), a number of studies have estimated the value of crowding in 
terms of the willingness to pay to reduce it or its impact on the value of travel time. The disutility of crowding in these studies arises 
primarily from physical and psychological discomfort and exhaustion. However, given the wide and sustained impact of the COVID-19 
pandemic, travellers are now likely to want to avoid crowds even more so than under normal circumstances as a measure towards 
minimizing their exposure to the virus (Tirachini and Cats, 2020). 

Travellers may now focus on factors contributing to COVID-19 transmission and for service planners to be able to respond to these 
changes in behaviour it is essential to have an empirical underpinning of those. The question is then: given the COVID-19 pandemic, 
how will travellers respond to crowdedness on public transport vehicles and future changes in infection rates? Studies on the COVID-19 
pandemic as well as those on previous epidemics resulting from viruses spread through similar means (such as SARS, MERS, swine flu) 
have shown that people perceive avoiding public transport as a preventive measure (Gerhold, 2020; Kim et al., 2017; Lau et al., 2003; 
Rubin et al., 2009). A number of COVID-19 related analyses also indicate a significant mode shift to private modes such as bicycles and 
automobiles demand (e.g., Bucsky (2020)). While these studies focus on perceptions and aggregate statistics, only a few studies have 
analysed public transport travellers’ choice behaviour. 

A Scopus search2 and other modes of literature collection found only a handful of studies conducting choice analysis in the context 
of public transport and epidemics. Scorrano and Danielis (2021) conduct a mode choice analysis for before and during COVID-19 in 
Trieste, Italy. The impact of the pandemic on mode choice is parametrised as mode-specific penalties which they find to be negative 
(and even more so for COVID-19 risk averse travellers) for public transport. Cho and Park (2021) and Aghabayk et al. (2021) also 
conduct a before-after experiment but focus on estimating crowding multipliers using stated choice data from Seoul and Tehran, 
respectively. They find that crowding multipliers are 1.04–1.44 times higher during the pandemic, confirming expectations that 
travellers would be more wary of crowds. Awad-Núñez et al. (2021) and Aaditya and Rahul (2021) focus on the impact of COVID-19 
safety measures (such as reducing on-board crowding and improving cleaning) on the willingness to use and pay for public transport. 
They find that a higher safety perception increased willingness to use public transport. Finally, Hensher et al. (2022) present choice 
models of commuting, work-from-home, or not working using revealed choice data from Sydney and South East Queensland. 

We contribute to the growing literature on COVID-19 and public transport by analysing how travellers have adapted their 
behaviour under these exigent circumstances. A stated choice experiment is conducted to analyse traveller behaviour specifically 
related to three criteria affecting the risk of COVID-19 transmission (Hu et al., 2020; Prather et al., 2020): (i) distance to other people, 
(ii) duration of exposure, and (iii) prevalent infection rate. In the context of public transport travel, the first two correspond to on- 
board crowding and in-vehicle time, respectively. With the choice experiment, we measure travellers’ crowding valuation in the 
backdrop of the ongoing pandemic and how these valuations are affected by factors that might affect the perception of related risk. 
These model estimates will not only be useful for demand forecasting but could also provide insights that may be valuable for policy 
designs aimed at managing demand (Gkiotsalitis and Cats, 2020) not only for the ongoing crisis but also the next pandemic. In this 
study, we report findings from the stated choice experiment conducted with train travellers in the Netherlands towards the end of the 
first infection wave, just as the first restrictions were being lifted. 

In the next section, we describe the survey design, data collection, and choice analysis methodology. This is followed by the results 
and discussions in Section 3. Finally, a summary of the results, potential policy implications, limitations of the study, and future 
avenues of research are outlined in Section 4. 

2. Data and analysis 

To understand traveller behaviour under the new circumstances presented by the pandemic, a stated choice experiment was 
conducted with Dutch train travellers. The experiment was part of a larger survey that collected, among other things, travellers’ socio- 
demographics, mobility choices, and pandemic-related qualitative measures. Discrete choice analysis is applied on observations from 
the experiment to measure crowding valuation while the personal characteristics are used to explain heterogeneity in behaviour either 
a posteriori or as part of the choice model. 

1 However, there is no conclusive evidence to this end and indeed some suggest that if recommended mitigation measures are implemented, the 
risk of contracting COVID-19 in public transport could be low (Gkiotsalitis and Cats, 2020; Goldbaum, 2020)  

2 Scopus search term (initial search on 25 March 2021 revealed only two relevant studies; the overview was updated to briefly include studies 
published during the review based on a search on 25 December 2021):(TITLE-ABS-KEY (pandemic OR epidemic OR sars OR mers OR "swine flu" OR 
h1n1 OR ebola OR covid) AND TITLE-ABS-KEY ("public transport*" OR transit OR bus OR tram OR train OR metro) AND TITLE-ABS-KEY ((choice 
OR logit OR probit) W/2 (model* OR analys*))) 
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2.1. Survey design 

2.1.1. Stated choice experiment 
The experiment consists of a series of choice situations in which respondents were asked to assume that they had arrived at a train 

station from which two trains were available for their destination. They were informed that they were travelling with the same purpose 
for which they had indicated they most frequently used the train before the pandemic-related restrictions. The train alternatives varied 
only in terms of on-board crowdedness (distance to other people) and waiting time. We note that this means that crowding valuation 
will be obtained in terms of waiting time savings instead of the usual money amounts. We did not use different travel costs directly to 
avoid interactions with respondent income and expectations from a higher travel class. Implying that a more costly train would be less 
crowded (and therefore safer) could also lead to protest answers. Contextual information about factors potentially affecting the 
perception of contracting the disease, namely travel time (exposure duration) in either train, and prevalent infection rate, was also 
given. The latter was provided in terms of the proportion of Dutch population that is infectious and capable of transmitting the virus to 
others. To ensure that only in-vehicle time was considered as the duration of exposure, we noted that it was possible to maintain social 
distance while waiting. Furthermore, respondents were reminded of the mandatory face mask regulations on-board public transport 
vehicles (Openbaar Vervoer Nederland, 2020b). While this was not mentioned explicitly in the survey, we note that in majority of the 
trains, windows cannot be opened, meaning that ventilation conditions cannot be easily changed. Respondents were asked to rank the 
two train alternatives and the option of not travelling by train for each choice situation. We asked for a ranking rather than a single best 
choice to enable us to obtain trade-off estimates in the case that the majority of respondents chose to opt-out altogether. 

On-board crowding was presented graphically as the seated section in a single coach of a commuter train (known as Sprinter in the 
Netherlands). Five levels of crowdedness were used: 5, 18, 23, 28, and 36 seats occupied (out of 40), colloquially corresponding to the 
following labels: ‘almost empty’, ‘able to sit alone’, ‘unable to sit alone but not too crowded’, ‘quite crowded’, and ‘packed’ (Fig. 1). To 
avoid confusion, respondents were informed that the indicated crowding level was after everyone else (but the respondent) had 
boarded. While these trains do have some standing space near the doors (not shown in the graphics), we excluded the option to stand in 
order to simplify the choice situation. By only offering seating space, we may miss out on capturing the (possibly different) crowding 
valuation of those who would prefer to stand. However, given the limited and confined standing space, and the relatively long in- 
vehicle time levels used in the study (see below), it is likely that most travellers would have preferred to find a seat for their trip. 
As such, we expect the impact of this simplification to be small. To trigger respondents to consider where they would sit, they were 
asked, in a series of questions prior to the choice experiment, to indicate where they would sit in each of the five crowding levels. Three 
levels of waiting times were used: 3, 12, and 25 min. A wide range was deliberately used to ensure that we would observe trade-offs 
between on-board crowding and waiting time savings. 

It is likely that respondents would find it difficult to respond to infection rate numbers without any real-world references on which 
to anchor their evaluation of this variable. To help respondents interpret the infection rate numbers, we sought to provide them a best 
estimate of the infection levels (i) at the time of the survey when restrictions had begun to be lifted (0.1%) and (ii) at the peak of the 
pandemic (in terms of daily reported cases and hospitalizations) in mid-April (0.43%). The proportion of infectious people in the 
population is innately unknowable due to the presence of asymptomatic and pre-symptomatic cases, limited testing capacity, and 
reluctance to get tested. Therefore, in the absence of official estimates (at the time of the survey3), we obtained the above numbers from 
back-of-the-envelope calculations using daily reported infections. In the experiment, five levels around these reference infection rates 
were used: 0.01% (pre-restriction levels), 0.1% (at the time of the survey), 0.5% (mid-April level), 2%, and 10% (extremely high). For 
the other contextual variable, in-vehicle time, three levels were used: 10, 25, and 40 min. 

We used a semi-random experiment design: weakly dominated and symmetrical choice situations were removed from the full 
factorial of the above described attribute levels; and from these, 4 subsets of 15 choice situations were randomly picked. Respondents 
then faced one of these subsets at random. Walker et al. (2018) argue that semi-random designs, where dominated choice tasks are 
eliminated, perform as well as efficient designs, particularly because they are robust against a large range of parameter estimates and 
model specifications. A screenshot of the experiment is shown in Fig. 2. 

2.1.2. Personal characteristics 
Three categories of personal characteristics were collected to explain potential differences in behaviour: (i) mobility factors, (ii) 

socio-demographic factors, and (iii) COVID-19-related qualitative measures. In the first category, we asked travellers how often they 
travelled with the train before and during the pandemic-related restrictions, the crowding level they usually experienced, their most 
frequent purpose of travel, and which alternative modes were available for these trips. In the second category, common socio- 
demographic questions (age, gender, income, employment status, zip code, highest education attained, and household size) were 
asked. In addition, some variables more specific to the current context were also collected; in particular, ages of household members 
and past, current, and expected future status of working or studying from home. The final category consists of questions regarding the 
perceived likelihood of the respondent or someone in their household getting infected and the severity of the disease if they do. 
Respondents were also asked about the degree to which they think they, themselves, and others follow pandemic related advice and 
regulations such as frequent hand sanitization and social distancing in public places. Finally, this category also includes questions 

3 Since then, the Dutch government has published these figures (also retroactively) (Rijksoverheid, 2021). Their estimates for April 15 and May 20 
(at the time of the survey) are 0.34% and 0.08%, respectively. Although these values are fairly close to ours, they estimate the peak of the infection 
rate to be around the end of March rather than mid-April. 
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about institutional trust and frequency of information seeking in relation to the pandemic. Note that all variables in this category 
except the last one noted here are qualitative Likert scale measures. 

2.2. Data collection 

The survey was distributed to Dutch train travellers who travelled by this mode at least once per month before March 2020 when 
the first pandemic-related restrictions were imposed. In March 2020, the Dutch government urged travellers to use public transport 
only ‘if it is really needed’. By May 2020, having achieved a reduction in the daily reported cases, Dutch authorities announced that 
certain professions, services, and educational activities could resume by the end of that month (Rijksoverheid, 2020). Furthermore, 
public transport could be used once again by mid-June 2020 but with new regulations such as mandatory face masks and seat blocking 
to maintain distance (the latter was stopped in July 2020) (Openbaar Vervoer Nederland, 2020b). Data collection took place from 20 to 
25 May, after announcements concerning these measures had been made. A total of 513 valid responses4 were collected via an online 
panel. The survey was offered in Dutch and we expected a completion time of 12–15 min. In addition to pre-COVID-19 train use 
requirements, we sought to collect a sample representative of the overall Dutch population in terms of age, gender, and education level. 
Table 1 shows some sample characteristics. 

2.3. Choice analysis 

Observations are analysed under the conventional random utility maximization framework where the utility of an alternative i for 
individual n, Uin, consists of a systematic (Vin) component, capturing the utility associated with factors observed by the analyst, and a 
random (εin) component. We assume that the systematic component is linear-additive and is computed by taking the sum of the 
alternate specific constant (βi) and the product of taste preferences (βij) and the values of attributes, j (xijn) (Equation (1)). The 
probability of choosing alternative i from I alternatives in a multinomial logit (MNL) model, is given by Equation (2). 

Uin = Vin + εin

Vin = βi +
∑

j
βij ⋅ xijn (1)  

Pin =
eVin

∑I
i′ =1eV

i′ n
(2) 

cihparGleveLgnidworC

Almost empty 

Able to sit alone 

Unable to sit alone but not too crowded 

Quite crowded 

Packed 

Fig. 1. Graphical presentation of crowding levels.  

4 About 40 responses completed in<6 min were removed as this was considered to be too fast to have been properly answered. Response time was 
not a significant indicator in a simple linear-additive multinomial logit model and a model with just these responses returned many insignificant (p 
< 0.05) parameters indicating randomness in the responses given. 
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To assess heterogeneity in traveller behaviour we use a latent class choice model (LCCM) which is a discrete mixture of choice 
models to which individuals are probabilistically allocated. Although the choice models can have different attributes, structures, or 
even belong to a completely different framework, we use the same model in each class. The probability of an individual n, belonging to 
class s (amongst S classes) with probability πns, choosing alternative i is the product-sum of the class membership probabilities and the 
probability of selecting that alternative for each class (given the vector of taste parameters in that class, βs) (Equation (3)). Panel effects 
are accounted for by assuming that a particular individual is allocated to each class with the same probability for all their choices. The 
likelihood of observing an individual’s sequence of choices i:i1,…,iT by individual n over T situations is given by Equation (4). 

Pin =
∑S

s=1
πns ⋅ Pin(βs) (3)  

Lin =
∑S

s=1
πns

∏T

t=1
Pint (βs) (4) 

An important aspect of LCCM is the ability to explain behavioural heterogeneity though class membership probabilities using 
values of individual characteristics, k (zkn) (Equation (5)). We use socio-demographic and mobility characteristics to explain class 
membership. For other, generally unobservable variables (such as, worrying about transmitting the infection to someone in the 
household), we conduct a posterior analysis to find the distributions of these variables in the classes of the estimated model. 

πns =
eδs+

∑
k
γks ⋅zkn

∑S
s′ =1eδ

s′
+
∑

k′
γ

k′ s′
⋅z

k′ n

(5) 

Fig. 2. Screenshot of the choice experiment (translated to English).  
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Table 1 
Sample characteristics.  

Total respondents 513     

Distribution (%) 

Attribute Value Actual Required1 

Gender Female 49% ~50%  
Male 50% ~50%  
Other 0%  

Age 18–24 15% 11%  
25–34 18% 16%  
35–44 17% 15%  
45–54 17% 18%  
55–64 19% 17%  
65–74 13% 14%  
>74 2 %2 10% 

Education3 Elementary school 
(basisonderwijs) 

1% 

~29%  
Secondary school  
(HAVO/VWO/VMBO) 

27%  

Vocational diploma  
(MBO) 

34% 
~37%  

Higher professional education  
(HBO) 

25% 

~33%  University education 
incl. bachelor, master, PhD  
(WO) 

13% 

Trip purpose Work  38%  
Education  11%  
Visiting friends or family  26%  
Recreation  
(e.g., sightseeing)  

17%  

Errands  
(e.g., supermarket, bank, etc.)  

1%  

Business visit  6%  

1 Source: Centraal Bureau voor de Statistiek (2020). 
2 The under-sampling here is potentially due to the minimum train trip frequency requirement. 
3 Translated to international equivalents. 

Fig. 3. Proportion of observations choosing crowded train versus extra waiting time to reduce one person on-board.  
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The class-specific taste parameters (βs) and membership coefficients (γks, δs) are simultaneously estimated using PythonBiogeme 
(Bierlaire, 2016). 

3. Results 

Since the experiment was conducted in the context of the COVID-19 pandemic, one fear was that a large number of respondents 
would simply opt-out of using trains altogether. Ultimately, this was not the case and only about 4% of the respondents always opted- 
out while 13% never opted-out in the 15 situations they faced. A substantial number of respondents always ranked waiting higher than 
the crowded train (~13%) or vice versa (~3%). However, only about 1% and 3% always chose waiting or taking the crowded train as 
their top option, respectively. As expected the proportion of observations where the respondent takes the crowded train rises with the 
extra waiting time required to reduce one person on-board (Fig. 3). 

We tried a number of utility specifications, in particular varying whether attributes were modelled as having a linear or non-linear 
effect. Since, perceived infection risk (and, therefore, disutility of a train alternative) may be higher when two contributing factors are 
higher together, we also included interaction effects of crowding with infection rate and in-vehicle times in the utility specification. 
Ultimately, the specification in Equation (6) within MNL was found to provide the most informative model parameters. Table 2 gives 
an overview of attributes included in the final model. 

Vtrain 1 = βcrowd: can sit alone ⋅ crowd18, train 1 + βcrowd: not crowded ⋅ crowd23, train 1
+βcrowd: quite crowded ⋅ crowd28, train 1 + βcrowd: almost full ⋅ crowd36, train 1
+βWT ⋅ WTtrain 1 + βcrowd×infect ⋅ crowdtrain 1 ⋅ infect + βcrowd×IVT ⋅ crowdtrain 1 ⋅ IVT

Vtrain 2 = βcrowd: can sit alone ⋅ crowd18, train 2 + βcrowd: not crowded ⋅ crowd23, train 2
+βcrowd: quite crowded ⋅ crowd28, train 2 + βcrowd: almost full ⋅ crowd36, train 2
+βWT ⋅ WTtrain 2 + βcrowd×infect ⋅ crowdtrain 2 ⋅ infect + βcrowd×IVT ⋅ crowdtrain 2 ⋅ IVT

Vopt - out = βopt - out + βIVT ⋅ IVT
+βinfect: 0.01 ⋅ infect0.01 + βinfect: 0.5 ⋅ infect0.5 + βinfect: 2 ⋅ infect2 + βinfect: 10 ⋅ infect10

(6) 

The MNL model shown in Table 3 is finalized by removing insignificant (p > 0.10) parameters one-by-one. As shown, all parameters 
have the expected signs and magnitudes: the likelihood of choosing an option generally decreases with increasing crowding and 
waiting time while the likelihood of opting out increases with increasing infection rate. A small and large non-linear effect is found for 
the highest attribute levels of crowding and infection rate, respectively. Since respondents were only shown graphics for on-board 
crowding, meaningful non-linear effects possibly indicate that respondents may be applying subjective labels (Li and Hensher, 
2013); for instance (as will be shown in the LCCM results) assigning a much higher utility to being able to sit alone than to a similar 
reduction in crowding otherwise. Although the coefficients for in-vehicle time and the interaction between crowding and in-vehicle 
time were not significant for the MNL model, we keep them in the specification tested for the LCCM. 

We examined whether removing respondents who consistently ranked the crowded train higher or lower than the other train 
alternative (~16% of the sample) affected the results. The MNL model estimated from this reduced sample shows a slightly lower 
impact of crowding and infection rates, and a higher (negative) impact of opting out. A possible reason for this is that those who 
consistently ranked less crowded trains higher often selected opting out as their most preferred option. We also tested consistency in 
responses to check for respondent fatigue. To do this, we split the choice dataset into two—responses to the first eight choice situations 
and the last seven choice situations—and estimate the described MNL model for each set. While the value of crowding (relative to 
waiting time) remains similar, the model for the last seven situation shows larger and smaller impacts for infection rate and opting out, 
respectively. We suspect that as respondents gain experience with the choice situation, they are able to better discriminate between the 
contextual variable that is infection rate. 

For the LCCM, we first find the optimal number of classes using an intercept-only class membership function. Typically, this is done 
using the model fit indicators, particularly the Bayesian information criterion (BIC), which explicitly penalize the number of pa-
rameters in the model. In our case, model fit indicators continued to improve as we increased the number of classes (we checked up to 6 

Table 2 
Overview of attributes included in the final choice model.  

Attributes Symbol Explanation Range 

Choice coefficients    
Crowding (level i) βcrowd: i Categorical (effect coded)  
Waiting time βWT 

All time attributes are in minutes 3–25 
In-vehicle time βIVT 10–40 
Infection rate (level i) βinfect: i Categorical (effect coded); percentage of population 0.01–10 
Opt-out constant βopt-out   

Personal characteristics    
Age βage Ordinal in ascending order:  

18–24, 25–34, 35–44, 45–54, 55–64, 65–74, 75–84 
1–7 

Gender βfemale Categorical (effect coded):  
female, male  

Train use frequency during COVID βtrain freq. covid Ordinal in ascending order:  
never, once per month, 1–3 times per month, >4 times per week 

1–4  
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classes). Therefore, we chose the 2-class model as it, in our opinion, best described heterogeneity in behaviour. While the 2-class model 
clearly delineated two behavioural types, adding more classes yielded intermediate groups without adding more insights. Moreover, 
adding more groups resulted in higher standard errors of estimated parameters and even led to unexpected parameter signs for higher 
number of classes. Next, the choice models in each class are finalized in the same way as the MNL model: by removing insignificant (p 
> 0.10) parameters one-by-one. Finally, all non-correlated observable individual characteristics (from section 2.1.2) are included in 
the class membership function and eliminated one-by-one if they are insignificant to arrive at the final model shown in Table 3. 

The choice parameters in both classes have signs and magnitudes in line with expectations. Results show that, in general, higher 
levels of crowdedness, waiting times, and infection rates all reduce travellers’ willingness to board a particular train alternative and 
increase the probability of opting out. Surprisingly, for the LCCM too, in-vehicle time—time to be spent in an enclosed train coach-
—does not affect travellers’ decisions indicating that they might be underestimating the importance of duration of exposure on the risk 
of infection. 

To enable comparisons of coefficients across models, we calculate the ratio of each attribute coefficient to the waiting time co-
efficient under the scaled values columns in Table 3. As can be seen from the scaled columns, the two estimated classes differ strongly 
on the relative impact of level of crowdedness and infection rates. Moreover, the general propensity to opt-out has a very large effect in 
both classes but is in opposite directions. Based on these differences, we call the first class ‘COVID Conscious’ as decisions in this group 
are more strongly driven by the level of crowdedness, infection rates, and the expected number of infected persons on-board 
(approximated by the interaction effect of crowdedness and infection rate). In contrast, the second class, which we call ‘Infection 
Indifferent’, is affected by these factors to a lesser degree and is also less likely to opt-out on average. 

Since respondents are assigned to classes probabilistically, econometric indicators calculated for the two classes do not directly 
apply to individual respondents. Instead, they form the lower and upper boundaries for individual indicators which are obtained as the 
weighted average of the estimates for the two classes. Averaging the individual-specific indicators gives an aggregate value over the 
whole sample. The weights—posterior membership probabilities—are calculated by multiplying the prior probabilities (obtained by 
applying the class membership model) with the likelihood of observing individual respondents’ sequence of choices and then 
normalizing (Hensher et al., 2015). The sum of the posterior probabilities for each class gives the class sizes shown in percentage in 
Table 3. To examine the extent to which individuals belong to either class, in Fig. 4, we plot the distribution of absolute difference 
between posterior class membership probabilities (higher values indicate a more deterministic assignment to either class). As can be 
seen, about 85% of respondents are assigned to one class with a probability of 95% or more. In the following, we discuss traits of the 

Table 3 
Estimation results of the 2-class LCCM.  

Model MNL LCCM 2-Class 

# Parameters 10 23 
Initial LL − 8453.822 − 8054.030 
Final LL − 7572.643 − 6498.217 

Adjusted ρ2 0.103 0.190 
BIC 15234.77 13202.246   

Class-specific choice models     

Class 1: COVID Conscious Travellers Class 2: Infection Indifferent Travellers 

Class Size    53.73% 46.27%  

Coeff. p-val Scaled Coeff. p-val Scaled Coeff. p-val Scaled 

βcrowd: almost empty 1.317 – − 42.76 2.230 – − 159.29 0.690 – − 18.16 
βcrowd: can sit alone 0.245 0.00 − 7.95 0.792 0.00 − 56.74 0 – – 
βcrowd: not crowded − 0.188 0.00 6.10 − 0.531 0.00 37.93 0.110 0.01 − 2.89 

βcrowd: quite crowded − 0.558 0.00 18.12 − 0.921 0.00 65.79 − 0.262 0.00 6.89 
βcrowd: almost full − 0.816 0.00 26.49 − 1.570 0.00 112.14 − 0.538 0.00 14.16 

βWT − 0.031 0.00 1 − 0.014 0.02 1 − 0.038 0.00 1 
βcrowd×infect − 0.0012 0.00 0.004 − 0.0046 0.00 0.33 − 0.0026 0.00 0.07 

βcrowd×IVT – – – – – – – – – 
βinfect: 0.01 − 0.397 – 12.89 − 0.720 0.00 51.43 0 – – 

βinfect:0.1 0.059 – − 1.92 − 0.213 – 15.21 − 0.488 – 12.84 
βinfect: 0.5 0 – – 0.133 0.08 − 9.5 0 – – 

βinfect: 2 0.387 0.00 − 12.56 0.521 0.00 − 37.21 0.254 0.00 − 6.68 
βinfect: 10 0.375 0.00 − 12.18 0.279 0.05 − 19.93 0.234 0.00 − 6.16 

βIVT – – – – – – – – – 
βopt-out − 0.424 0.00 13.77 0.927 0.00 − 66.21 − 2.02 0.00 53.16     

Class membership model     

Class 1: COVID Conscious Travellers Class 2: Infection Indifferent Travellers     

Coeff. p-val Scaled Coeff. p-val Scaled 

βintercept    0 – – − 1.160 0.00 1 
βage    – – – − 0.107 0.08 0.09 

βfemale    – – – − 0.275 0.01 0.24 
βtrain freq. covid    – – – 0.820 0.00 − 0.71  
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two latent classes—alternatively referring to prototypical (i.e., representative) travellers of either class—rather than focussing on 
aggregate estimates. Note that, given the posterior probability distribution, for most respondents, individual-specific estimates would 
be close to those calculated for one of the classes. 

Typically, the effect of crowding has been modelled as an in-vehicle time multiplier (Li and Hensher, 2011; Wardman and Whelan, 
2011). The idea being that the disutility of crowdedness should be larger for longer trips because passengers have to be in a crowded 
vehicle for a longer time. We included crowding in our model both as a constant penalty as well as an interaction effect with in-vehicle 
time (i.e., as a multiplier). As shown in Table 3, the time multiplier parameters were not significant. When constant penalties are 
excluded, the time multiplier parameters are significant but, similar to Kroes et al. (2014), the model has a significantly lower goodness 
of fit. We note that constant penalties may only be performing better for the range of in-vehicle times that were tested in this survey or 
because in-vehicle times were only included as context effects in the experiment. 

Equation (7) shows how the values of crowding are calculated. Since we estimate parameters for each crowding level (i), the 
coefficient for change in crowding between two levels (βcrowd:i→i+1) is given by the difference in the utility contributions divided by the 
difference in the number of persons on-board (xi). This crowding coefficient divided by the coefficient for waiting time gives the value 
of crowding in terms of waiting time between those levels (ϒ i→i+1). The average value of crowding (ϒ) is given by the weighted 
average of these individual values of crowding. 

βcrowd: i→i+1 =
βcrowd: i − βcrowd: i+1

xi − xi+1

Υi→i+1 =
βcrowd: i→i+1

βWT

Υ =
Υ1→2 ⋅ (x2 − x1) + Υ2→3 ⋅ (x3 − x2) + Υ3→4 ⋅ (x4 − x3) + Υ4→5 ⋅ (x5 − x4)

(x2 − x1) + (x3 − x2) + (x4 − x3) + (x5 − x4)

(7) 

Prototypical travellers of the COVID Conscious class, are willing to wait an extra 8.75 min, on average, to reduce just one person on- 
board. As shown in Fig. 5, travellers in this class are willing to wait the most when there is a possibility to sit alone. This is indicative of 
the aversion towards infection risk in this class as well as the general framing of the choice situations in the context of the pandemic. 
Note that this is in contrast to previous studies which typically report that the impact of crowding increases with the number of persons 
on-board, especially after 60–80% load factor (Hörcher et al., 2017; Wardman and Whelan, 2011; Yap et al., 2018). The value of 
crowding for Infection Indifferent travellers seems to be more in line with values from previous studies (albeit on the higher end) with 
an average willingness to wait of 1.04 min to reduce one person on-board. (The average willingness to wait in the MNL model is 2.23 
min per person.) 

Previous studies that evaluate the effect of seating occupancies—either as constant penalties or in-vehicle time multipliers—and 
waiting times can be compared with our results. To convert coefficients from such studies to units comparable to ours, where required, 
we assume a total seat capacity of 40 and an in-vehicle time range of 10–40 min. Preston et al. (2017) observed stated choices in an 
experiment where respondents chose between two trains: the first which was due but with no possibility to sit and the second with a 
given expected waiting time and one of two lower crowding levels. They report constant crowding penalties that lead to values of 
crowding in the range of 0.52–0.96 min per person. From an experiment similar to ours, Kroes et al. (2013) find a willingness to wait of 
0.15 and 0.33 min per person to reduce crowdedness from 75% to 50% and from 100% to 75%, respectively. Assuming expected 
waiting times to be half of headways, Tirachini et al. (2013) find similar values of 0.15–0.6 min per person from a mode choice 
experiment. For comparison, note that we found the COVID Conscious and Infection Indifferent classes willing to wait 8.75 and 1.04 
min per person, respectively. Douglas and Karpouzis (2006) and Sahu et al. (2018) use similar stated choice experiments for Sydney 
and Mumbai. They find that travellers are willing to wait 1.88–7.52 min and 3.58–14.32 min, respectively, for an uncrowded seat over 
a crowded seat alternative. Assuming ‘not crowded’ and ‘almost full’ to be the corresponding categories in our model, we find an 
extremely high value of 74 min and a more moderate 17 min in the COVID Conscious and Infection Indifferent classes, respectively. 

Fig. 4. Distribution of absolute difference between posterior class membership probabilities.  
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Using revealed preferences from smart card data in The Hague, however, Yap et al. (2018) found significantly lower values between 
0.015 and 0.06 min per person (depending on in-vehicle times) for trams. Thus, while both the COVID Conscious and Infection 
Indifferent classes show higher values of crowding, the latter is much closer to pre-pandemic estimates from stated choice experiments. 

As shown in Fig. 6, for both classes, the tendency to opt-out increases as a concave function of the prevalent infection rate. The 
effect plateaus at extreme infection rates (2% and 10%) indicating that travellers may be considering a threshold level beyond which 
the infection rate itself no longer contributes to perceived risk. A t-test could not reject the null hypothesis that the coefficients for these 
extreme infection rate levels are equal in either class (p-values: 0.17 and 0.91 for each class, respectively). Other consecutive levels are 

Fig. 5. Value of crowding (in terms of waiting time minutes per person on-board) between levels in the two traveller classes. The value of crowding 
is interpolated between can sit alone and not crowded in the Infection Indifferent class. 

Fig. 6. Probability of not using trains versus infection levels for different crowding levels for the two classes (wait time for trains is 12 min). The dip 
at 0.1% for the Infection Indifferent class (right) is an artefact of the chosen reference level, arising because the two lowest infection rate levels have 
insignificant coefficients and are, consequently, fixed to zero. 
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Fig. 7. Class profiles of personal, unobserved, qualitative measures related to the COVID-19 pandemic.  
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statistically different (p-value < 0.01). The graph for COVID Conscious prototypical travellers demonstrates, again, the strong pref-
erence to sit in an almost empty coach or to sit alone. Furthermore, note that the opt-out rates for crowded vehicles in the COVID 
Conscious class are fairly inelastic in relation to infection rates. This might indicate that travellers in this group would not feel safe 
travelling in crowded vehicles even when infection rates are back to pre-pandemic levels. 

Amongst the individual characteristics collected, three variables contributed to explaining the differences in behaviour between the 
two classes. Older and female respondents were over-represented amongst COVID Conscious travellers whereas those reporting higher 
train use during the COVID-19 restrictions were likely to be Infection Indifferent. Presumably, older people, are more risk averse due to 
a higher vulnerability to the disease. While the disease does not seem to affect women more severely than men, female respondents 
have often been shown to be more risk averse in their decisions (e.g., de Palma and Picard (2005)). Kluwe-Schiavon et al. (2021) also 
find that older and female respondents had a lower COVID-19 risk tolerance for economic opportunity. The causal relationship be-
tween higher train use during the pandemic and lower risk aversion may be in either direction. Travellers with a higher probability of 
being Infection Indifferent may have used the train more frequently because they are not particularly averse to the COVID-19 risk. 
Conversely, lower risk aversion amongst those who use the train more frequently during the pandemic might be explained by the 
existence of the description-experience gap when evaluating risky choices. When judging the likelihood of contracting COVID-19 on 
public transport, these travellers may be depending more on their experience rather than the risk described by authorities (Barron and 
Erev, 2003). When people make decisions based on experience, they do not account for rare events as much as the objective proba-
bilities of such events suggest they should (Hertwig and Erev, 2009). A little surprisingly, having the possibility to conduct the trip with 
a private mode (e.g., car, bicycle, walk) was not related to the propensity to opt-out of the train alternatives. 

Fig. 7 shows the posterior distributions of some unobserved COVID-19-related qualitative measures. To obtain these distributions, 
the posterior membership probabilities are summed class-wise for all respondents who select a particular level for an indicator. The 
class-wise sums are then normalized by the respective class-sizes to find the percentage of each class that would select a given level on 
the indicator being analysed. Since respondents are only probabilistically assigned to either class, we note that the distributions convey 
the characteristics of the latent class rather than that of the individuals. Although the two classes do not differ too strongly on these 
factors, small differences can be noted. The COVID Conscious class tends to be more worried about the pandemic, specifically, about 
being hospitalized and spreading the infection to someone in their household. A moderate correlation exists between age and worrying 
about being hospitalized but not with other factors (older travellers are over-represented in this class). Additionally, travellers highly 
likely to be COVID Conscious reported themselves to be more rule-following, indicating that they followed advice such as frequently 
sanitizing hands and maintaining 1.5 m distances in public places. Moreover, they also had a more negative opinion about the degree 
to which others followed these rules. Indicative of the long drawn national debate over it (DutchNews.nl, 2020), face mask use is 
unpopular with both classes and largely uncorrelated with the degree to which other measures are followed. 

4. Conclusion 

The COVID-19 pandemic has had an extensive impact on public transport. As a result of actions and advisories aimed at containing 
the disease, public transport ridership has declined sharply, perceptions regarding this mode have become more negative, and there 
has been a shift to personal transport modes. Consequently, changes in traveller behaviour in order to minimize exposure to the virus 
are expected. Moreover, these changes may be sustained through different stages of the pandemic and even have a significant effect on 
public transport demand after the pandemic. While a number of studies examine current ridership patterns and anticipated transport 
preferences, few have investigated trade-offs in the age of COVID-19 via choice analysis in detail. 

In this study, we analysed traveller behaviour related to factors affecting the risk of COVID-19 transmission in public transport with 
a stated choice experiment. Since one of the most important ways to avoid exposure is to reduce contact with other people, we 
measured travellers’ (potentially updated) valuation for on-board crowding. To do this, we obtained respondents’ preferences between 
a crowded-but-low-wait-time and a less-crowded-but-higher-wait-time (and an opt-out) alternative. Choices were presented in the 
context of exposure duration (operationalised as the in-vehicle time of the alternatives) and infection rate to examine the effects of 
these risk-contributing factors on choice behaviour. 

Responses were collected from train travellers in the Netherlands at the end of the first infection wave (May 20–25, 2020), just as 
the first restrictions were being lifted and new regulations were setup for travel in public transport. We believe that behavioural in-
sights from this study will contribute to better demand forecasting. In addition to providing insights regarding when travellers opt-out 
(i.e., choose not to travel), by modelling decisions of the type ‘to board or to wait’ we can provide an important behavioural input to 
agent-based models (e.g., Cats and Gkioulou (2017)) that commonly simulate this choice situation. These results will also be valuable 
in informing public transport policy decisions, not only in the current pandemic but also future ones. 

Applying a latent class choice model, we found two, nearly equal-sized traveller segments: COVID Conscious and Infection 
Indifferent. While higher crowding levels and infection rates reduce the willingness to board a train in both, the effect of these factors is 
much larger in the COVID Conscious segment. Value of crowding, measured as the number of minutes travellers are willing to wait to 
reduce one person on-board, is also significantly higher in this class (on average 8.75 min/person) and increases sharply with the 
possibility to sit alone. In contrast, Infection Indifferent travellers’ value of crowding (on average 1.04 min) is comparable to, although 
slightly on the higher end of, pre-pandemic evaluations. Moreover, unlike their counterparts, COVID Conscious travellers are highly 
affected by the prevalent infection rate, particularly at low crowding levels, and are more likely to opt-out in general. Surprisingly, 
neither group took the exposure duration into account. Older and female respondents are over-represented in the COVID Conscious 
class while those who report higher train use during the pandemic are more likely to belong to the Infection Indifferent class. Finally, 
distributions of COVID-19-related indicators showed that COVID Conscious travellers were more worried about the pandemic, 

S. Shelat et al.                                                                                                                                                                                                          



Transportation Research Part A 159 (2022) 357–371

369

considered themselves and household members more likely to be hospitalised if infected, and reported themselves to be following 
related measures to a higher degree. 

Although the crowding valuation for the COVID Conscious class is high, we note that it does not necessarily imply that travellers are 
willing to accept hour-long waits. Firstly, respondents had the option to opt-out and secondly, applications of the choice model must, 
technically, be within the range of waiting times included in the experiment (3–25 min). Thus, the COVID Conscious class model, in 
fact, indicates a very strong preference for either selecting the less crowded train or opting out altogether. On the other hand, pro-
totypical travellers of the Infection Indifferent class, show a more nuanced decisions between taking the crowded train or waiting. 
Furthermore, while we cannot rule out the possibility that the COVID Conscious class has an inherently lower value of time, the results 
as a whole strongly suggest that the high values of crowding are driven by sensitivity to pandemic risks. For instance, the COVID 
Conscious class has a higher likelihood of opting out and is impacted more strongly by infection rates. Moreover, it also scores higher 
on indicators such as worrying about COVID-19, likelihood of being hospitalized, hygiene-related rule following, etc.; all of which 
imply a strong impact of the pandemic. 

A variety of direct and indirect effects of the pandemic have led public transport ridership to plummet. Given the importance of 
public transport in economic recovery and sustainable mobility, authorities and operators need to work to improve travellers’ 
perception about public transport and slow down the shift to non-sustainable modes. Ridership levels have typically returned to 
normal at the end of previous localized catastrophic events, such as epidemics and security threats (Gkiotsalitis and Cats, 2020). 
However, the COVID-19 pandemic is unprecedented in its spatial and temporal scale with regions around the world going in and out of 
lockdowns over an extended period of time. Thus, authorities cannot depend on ridership to improve by itself but must actively work 
towards increasing public transport demand while providing this essential service safely. 

The apprehension of the COVID Conscious segment seemingly follows calls from authorities to avoid public transport. While such 
calls are compatible with the intuition that sharing confined spaces may be unsafe, there is little to no hard evidence of outbreaks 
linked to public transport. This might suggest that public transport travel could be safe if recommended measures are implemented 
(Gkiotsalitis and Cats, 2020; Goldbaum, 2020; Schive, 2020; UITP, 2020). Yet, the fact that over two-thirds of COVID Conscious 
travellers in our sample are unwilling to travel if they cannot find an empty row, regardless of infection level, is an indication of how 
difficult it will be to restore travellers’ confidence and foreshadows lingering behavioural adaptations from the pandemic in the future. 
Where trips cannot be replaced by telecommuting or active modes, providing crowding information for public transport can be the key. 
For low infection rates (0.1%), when there is a possibility to sit in an almost empty coach or with the adjacent seat empty, 50–80% of 
COVID Conscious travellers in our sample indicated that they will use the train. By highlighting which trains and coaches will be less 
crowded, these travellers can adjust their departure times, routes, and even the choice of which coach to board. Assuming that these 
travellers overestimate the likelihood of contracting COVID-19 on-board public transport, more experience with travelling (even in less 
crowded vehicles) could bring their assessments in line with reality. Future studies may also look into the effect of other risk mitigating 
actions, such as mask mandates and increased cleaning, as well as the (perceived) extent to which these are followed on travellers’ risk 
perceptions. 

While public transport may be safe with recommended measures, their overall lower concern regarding the virus and absence of 
substantial behavioural change, indicates that Infection Indifferent travellers may not be motivated to follow them carefully. Poor 
compliance from these travellers could increase the real as well as perceived risk for everyone and further drive the apprehension of 
other travellers. Therefore, we must continue to emphasize the need for simple measures such as face masks and recognize that 
returning to pre-pandemic levels of crowding while the prevalent infection levels are still significant would be reckless. 

Although the stated choice experiment provides important behavioural estimates we note limitations arising from the information 
provided to respondents and the nature of such experiments. Firstly, the prevalent infection rates given as a contextual attribute can 
only be estimated, and trusted estimations may not be available everywhere. Even if they were available, one might question whether 
travellers actually consider this information directly or respond to more abstract cues, such as the intensity of regulations or media 
coverage. However, since it is difficult to recreate the entire context for the experiment, we used this single indicator (which is 
correlated to such cues). Furthermore, travellers were helped in anchoring the prevalent infection rates to abstract cues by providing 
the prevalent infection rates at two different dates. Nevertheless, care must be taken when transferring estimations to other situations. 
Future studies could focus on analysing the impacts of specific societal, political, and media cues on pandemic-related travel 
behaviour. 

Secondly, crowding information is not commonly available although a growing number of public transport networks and trip 
planning applications now try to provide predictions in some format (see review in (Drabicki et al., 2020)). In their smartphone 
application, the Dutch railways show a (qualitative) three-level crowding indicator for most trains and a more precise ‘seat-finder’ on 
some trains, showing seat availability in different coaches (Nederlandse Spoorwegen, 2021). By prominently displaying crowding 
information, we may have drawn respondents’ attention to this aspect more than usual, leading to higher crowding valuation. Previous 
studies (e.g., Yap et al. (2018)) have also claimed that travellers tend to demonstrate a higher value of crowding in stated choice 
experiments than is observed from passively collected data. Moreover, while we presented crowding (and waiting time) information as 
objectively true, in real life, depending on factors such as trust in the information provided by the operator, travellers may consider 
attributes of the second train to be uncertain and therefore attach a higher disutility to it. We believe reliable crowding information 
could be key in regaining travellers trust. Since, crowding is likely to be affected by subjective perceptions, studies assessing travellers’ 
responses to different presentation formats and reliability levels would be critical for such developments. 

Thirdly, we note that choices observed here are hypothetical and the situations do not directly reflect the various constraints arising 
from societal positions of individuals. These constraints have been previously found to play a significant role in travellers actual 
capacity to change behaviour (Kim et al., 2017). Thus, although we find an intent to avoid trains amongst COVID Conscious travellers 
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their ability to do so may be limited because of employer constraints. In contrast, some Infection Indifferent travellers may indicate 
intent to use the trains but do not actually do so as they can work/study from home. We attempted to control for such factors by 
marking the opt-out option as ‘I will not make this trip by train’ and asking respondents if they had alternative modes for the stated trip 
purpose. We also asked respondents’ family income range and (for working/studying individuals) how effectively they could work/ 
study at home as well as the frequency of doing so. None of these variables were found to contribute towards explaining choice 
behaviour. Nevertheless, the precise distribution of travellers between the different classes and their propensity to opt-out must be 
used with care in applications, accounting for other individual constraints that might affect behaviour. We can, however, confidently 
interpret crowding valuations and the existence of significant risk-averse and indifferent traveller segments. 

Finally, we stress that we have observed a snapshot of behaviour (and intent) for present and future circumstances. Since the global 
outbreak of the COVID-19 pandemic in March 2020, the situation has developed quickly and unpredictability. Given the widespread 
and extended impact of this pandemic, people have been rapidly adopting and changing behaviours for the evolving new realities 
encountered during the course of this crisis. Yet, these acquired behaviours also fluctuate as the level of precaution changes depending 
on a number of factors, such as local infection rates, vaccination status, personal impact assessment, and ‘pandemic fatigue’. Thus, the 
trade-offs estimated here may change with new and significant developments; for instance, if a cure for COVID-19 emerges. 

However, we emphasise that this does not obviate the utility of our findings and policy recommendations (or those of similar 
studies) for two reasons. First, given the uncertainty surrounding COVID-19, it has become almost impossible to confidently predict the 
‘end’ of the pandemic and a return to a state of stability. With the emergence of new variants and questions surrounding the duration of 
vaccine protection and efficacy against new variants, we cannot rule out a return to a situation similar to the one analysed here. 
Second, and more importantly, our analysis contributes to a larger picture of traveller preferences (and subsequent policy recom-
mendations) in key stages of the pandemic. In time, a meta-analyses charting traveller preferences over the pandemic may also be 
recommended. What we learn about travel behaviour from this pandemic will be instrumental in supporting policy-makers to act 
proactively in the next one. 
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