Msc Thesis

Dynamic Hardware Binary Translator for p-VEX
A.E. Ntasios CE-MS-2019-02

Abstract

The last years, there has been a increasing trend in embedded system and FPGA im-
plementations for greater flexibility and also, a rising adaptation of heterogeneous plat-
forms. These platforms often include FPGAs and embedded cores side by side. p-VEX
core, developed and maintained by the Computer Engineering group of TU Delft, is a
VLIW processor mostly developed on FPGAs. On the other hand, popular embedded
architectures include the established ARM architecture and the newly rising RISC-V
architecture. In order for these architectures to communicate with the p-VEX core, a
translation procedure has to be established. In this thesis, a hardware dynamic binary
translator was designed, able to translate on-the-fly ARM and RISCV instructions to p-
VEX instructions. The translator will enable heterogeneous platforms to be developed
and also allow pre-compiled binaries for one (ARM/RISC-V) architecture to be directly
ported in another one (p-VEX). This thesis provides a design process that focuses on
two approaches: first is the minimization of the overhead resulting from the transla-
tion procedure, and the second is the minimization of the hardware alterations and/or
hardware additions. These design choices were examined in the p-VEX core simulator.
The simulations show that for overhead minimization, the resulting overhead can be as
low as 1% for the RISC-V with focusing on the overhead minimization, and as high as
1024% with ARM and hardware minimization in mind.

Delft University of Technology

Quantum &

,; Delft Computer
TUDelft i Engiheering

Dynamic Hardware Binary Translator for p-VEX

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER ENGINEERING

by

Angelos E. Ntasios
born in Volos, Greece

Computer Engineering

Department of Electrical Engineering

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Dynamic Hardware Binary Translator for p-VEX

by Angelos E. Ntasios

Abstract

The last years, there has been a increasing trend in embedded system and FPGA implemen-
tations for greater flexibility and also, a rising adaptation of heterogeneous platforms. These
platforms often include FPGAs and embedded cores side by side. p-VEX core, developed and
maintained by the Computer Engineering group of TU Delft, is a VLIW processor mostly de-
veloped on FPGAs. On the other hand, popular embedded architectures include the established
ARM architecture and the newly rising RISC-V architecture. In order for these architectures to
communicate with the p-VEX core, a translation procedure has to be established. In this the-
sis, a hardware dynamic binary translator was designed, able to translate on-the-fly ARM and
RISCV instructions to p-VEX instructions. The translator will enable heterogeneous platforms
to be developed and also allow pre-compiled binaries for one (ARM/RISC-V) architecture to be
directly ported in another one (p-VEX). This thesis provides a design process that focuses on
two approaches: first is the minimization of the overhead resulting from the translation proce-
dure, and the second is the minimization of the hardware alterations and/or hardware additions.
These design choices were examined in the p-VEX core simulator. The simulations show that for
overhead minimization, the resulting overhead can be as low as 1% for the RISC-V with focusing
on the overhead minimization, and as high as 1024% with ARM and hardware minimization in
mind.

Laboratory : Computer Engineering
Codenumber : CE-MS-2019-02

Committee Members

Advisor: Prof. Dr. Ir. Stephan Wong, CE, TU Delft

Chairperson: Prof. Dr. Ir. Arjan Van Genderen, CE, TU Delft

Member: Prof. Dr. Ir. Przemyslaw Pawelczak, ES, TU Delft

ii

Dedicated to my family and friends

iii

iv

Contents

[List of Figures|

[List of Tables

[List of Acronyms|

[Acknowledgements|

(1 _Introduction|

2

Background|

2.3 Binary Translators|
[2.3.1 Static Binary Translators|
[2.3.2 Dynamic Binary translators| 0.

B33 QEMU| . .« o oo

[2.3.4 Hardware-Accelerated Dynamic Binary Translation|.

-V to p- inary lranslation

B.1 RISC-V Architecturel oo
3.1.1 Architectural Highlights|
3.2 Binary Translator High Level Architecturel.
[3.3 Architectural Differences Between RISC-V and p-VEX|
[3.3.1 RISC-VLIW incompatibility[.
[3.3.2 Endianess incompatibility|o 0 0oL
13.3.3 Link register incompatibility|]
[3.3.4 Program Counter access incompatibility|
[3.3.5 Pipeline hazards| o 0o
3.4 Tnstruction Set Translationl
[3.4.1 Register Operations|,
13.4.2 Immediate operations|
[3.4.3 Branch operations| L.
3.4.4 Memory Load Operations|
13.4.5 Memory Store Operations|

xi

xiv

XV

xvii

4 ARM to p-VEX binary translator| 29

4.1 ARM architecturel 30
4.1.1 Architectural Highlights| 30
4.1.2 ARM registers| 34

|4.2 High-Level Description of the Translator| 35
421 Decodeunitl. oo 35
422 Translateunitl. oo L 36
[4.2.3 Subroutine ROMIo oo 36

4.3 Architectural Differences Between ARMv4 and p-VEX.. 36
4.3.1 Pipeline hazards| o . 37
|4.3.2 Shitting mechanism| 37
[4.3.3 Direct accessto PCl 40
4.3.4 Conditional Execution| L. 41

4.4 Overflow/Borrow detection| 44
4.4.1 Overflow detectionl, 44
442 Borrow detectionl o oo oo 45
4.4.3 Carry detection| 45

4.5 Second operand calculation| o000 oo 45
4.5.1 Immediate generation| 46
4.5.2 Unmodified register| 47
4.5.3 Logical lett shift by immediate] 48
|4.5.4 Logical lett shift by register{ 48
|4.5.5 Logical right shitt by immediate| 50
[4.5.6 Logical shift right by register| 51
[4.5.7 Arithmetic shift right by immediate] 52
[4.5.8 Arithmetic shift right by register| 53
4.5.9 Rotate right by immediate]. 54
|4.5.10 Rotate right by register{ 54
|4.5.11 Rotate right by with extend|. 55

4.6 Memory Addressing Modes| L. 56
[4.6.1 Immediateoffset] o o 56
4.6.2 Register offset| o 57
4.6.3 Scaled register offset| oL 58
4.6.4 Immediate pre-indexed|. L. 59
4.6.5 Register pre-indexed| L 60
[4.6.6 Scaled register pre-indexed| oL 60
[4.6.7 Immediate post-indexed| L oL 62
[4.6.8 Register post-indexed| 0oL, 62
[4.6.9 Scaled register post-indexed| oL 63
[4.6.10 Multiple Load/Stores increment before/after| 64
[4.6.11 Multiple Load/Stores decrement before/after] 65

4.7 Combining all the emulation techniques| 66

vi

[5__Simulation results|
|5i|1 RISE:— ! f:xs:s:llll‘)ll II],S’II],S:SI
b2 ARM execution metricdo
[.2.1 Shitting mechanism overhead|
I;lilz,z I (: &ylilff Q&f:[hf:ﬂgﬂ
9.2.3 Predication system overhead|
[5.2.4 Flag comparison, translator overhead|.
5.2.5 Flag update, emulation overhead.
5.2.6 Flag update, translator implementation overhead|
[5.2.7 Combination of all the translation techniques|
6 Future work and conclusions|
6.1 Conclusionsl e
6.2 Main contribution| Lo
6.3 Future workl
6.3.1 Word Filling]
6.3.2 Instruction bufferl. oo
6.3.3 Out-of-order execution|
6.3.4 Resource scheduler],
(Bibliography|
[A Appendix: RISC-V Instruction Translation|
BT addl.o
A2 subl. e
B37S ..o
BA ST . .
S S ([
BB XOI . - o o oo
BT sl .o
ABTSral . o o
BO 01 . .
ATI0andl. oo
BITaddl o oo
AI2EM . . o o e e
N)
N) 5
0 5152 |
N G
BAITsrall. . . oo oo
7 o |
AT9andil
A DEQ| . . .« . o e e e e e e e e e e e e e e e e e e
B2TD0d. . . o oo
A22DI . . . oo

vii

71
71
72
72
74
74
75
76
76
77

79
79
81
81
81
82
83
83

86

DOE| e e e e e e e e 92
B2ADIE . . o o o e 92
A25DEEU| .« o o 93
A26TD. . o o o e 93
B27TTO. . . . o o 93
B28TW . . o o o 93
A20T0Ul . . . o o 93
A30T0U . . . o o o, 94
A3TSDl . o o 94
A32Sh . . . 94
A3B35W . . . 94
A3ATall . . o o, 94
.. 95
N0 95
A37TAWD . « o o o o oo 95

(B Appendix: ARM Instruction Translation| 97
B.I ALUnstructions 97

BT ANDI. . . oot 98

BI2 EORI. . . . 98

BI3 SUBl oo 99

B4 RSBl . . o o oo oo 99

BI5 ADDI. . . o oot 100

BI.6 ADC. . . o oot 101

BL7 SBU . o oo e e 101

B8 RST . o o v v e e e 102

BIO _TSTIo e 103

B.1.10 Ql .« 103

BIITCMPL. . . o o 104

BII2 CMN . . o oot e e e 105

BIIZORRI. o e 105

.................................. 106

BIIZBIT o e 106

BII6 MVN . . oo e 107
[B.2 Load/Store instruction| Lo 107

B21 STRBI . . . o o oo e e e 108

B22 STRH o o oo oo 108

B23 STRI . . . o e e 109

B24 TDRBl o oo 109

B25 LDRSBI . . . oo 110

B26 LDRHA o o oot 110

B27 TDRSH o 111

B28 TDRI. . . . e 111

B29 TDM. . . . e 112

B2I0STM . . o o o oo e e 112

[B.3 Multiplication instructions|. Lo oL 113

B3L MU . . oo 113
B32 UMUD. ot o o e s s 114
B33 _SMULl . . . o o oo e e e 114
B34 MLAL. . . o 115
B35 _UMLAT] o oo 116
B36 _SMLAT] 117
B4 Branch Instructionsd« v v v o 117
BAT Bl. . o o oo 118
B2 BI . . . oo 118
IB.5__Miscellaneous Instructions| Lo 118
BEIT _SWDI. . . . 118
B5.2 SWPBl. . . o o 119
BE3 SWI . . . e 120

X

List of Figures

3.1 RISC-V base instruction formats) 14
3.2 High level design of the translator interface with p-VEX|. 15
13.3 High level design of the translator. This is the least invasive design, |
| meaning that it is the simplest design in terms of hardware complexity.|. 16
13.4 Little to big and vice versa endianness converter. Lett side shows the |
| byte rearrangement of two half word bytes and right side shows the byte |
| rearrangement of a full 4 byte word.| 18
[3.5 Logical interconnection of the modified segments ot the simulator code.|. 27
4.1 ARM architecture shifter. No individual shift instructions exist, instead |
| the second operand can be shifted before the instruction execution.| . . . 33
|4.2 High level schematic of the ARM binary translator. The translator is |
| within the second pipeline stage. Colored modules within the translator |
| RTL are the optional additions and the light gray ones exist in all versions.| 35
4.3 Flag register update emulation. Requires three cycles and eight instruc- |
[tlonst 43
4.4 Multiple load store, increment vs decrement.|. 66
5.1 Comparison of the proposed shifting mechanics implementations.| 74
5.2 Comparison of the proposed flag comparison techniques.| 76
5.3 Comparison of the proposed flag update techniques| 78
6.1 Mixing instructions to fill NOPs generated by the translator| 82

X1

xii

List of Tables

[3.1 RISC-V base instruction sets. All implementations must implement one |
[of these ISAS 12
13.2 RISC-V extension subsets. Some ot the subsets might conflict with each |
[otherorwithsomebase ISAs]. 13
13.3 Calling conventions for integer registers| 14
13.4 Program counter access microcode instructions. Red PC values are in- |
| valid and the fetched instructions are not dispatched. Instead, the trans- |
| lator dispatches the PC access instructions.| 20
[3.5 Example of a Read After Write (RAW) hazard that can occur. Red |
| instruction at stage 1 will receive a wrong valuein Ra.| 20
13.6 Inserting NOPs coupled with a backwards jump to avoid hazards.|. . . . 20
3.7 RISC-V to p-VEX translation table 22
13.8 Register operations and function fields decoding.| 23
[3.9 Integer operations and function fields decoding.| 23
13.10 Branch operations, function fields decoding.| 24
13.11 Emulation code to execute two instructions and jump back to normal |
| program fHow. Assuming a a RISC branch instruction has been fetched |
| this needs to be translated into two VEX instructions: compare and |
[branch..o 25
13.12 Memory load operations, function fields decoding.|. 25
13.13 Memory load operations, tunction fields decoding.|. 25
[3.14 Memory store operations, function fields decoding.| 26
[3.15 Miscellaneous operations.| oL 26
4.1 ARM predicate example. First column shows the time, second column |
| shows the instruction, third column shows the instruction flags, fourth |
| column shows whether the instruction will update the flag values or not |
| and the final column are the processor flag values.| 32
4.2 ARM processor states.| oL 34
4.3 Shift instructions in powerstone benchmark| 38
4.4 Second operand calculation program flow. The “ADD” instruction has |
| a shifted second operand. First the shifted operand is calculated and |
[then the main instruction is executed) 39
|4.5 Complete instruction emulation example. The instruction to be executed |
| 1s a simple Add with a shift incorporated and flag update. Red segment |
| is the predication, blue segment is the second operand calculation, green |
| part is the instruction execution and yellow shades show the calculation |
| of the N, Z, C, V flags. The rest ot the instructions update the flag |
| register and resume normal program flow.| L. 68

xiii

|4.6 Total overhead resulting trom emulating all the steps ot executing the |
| mstructions. These include the predication calculation, the second |
| operand calculation, the instruction calculation, the flag updating and |
| the program flow resumption.| 69

5.1 Execution metrics. First column shows the name of the testbench, sec- |
| ond shows the original RISC-V instruction count, third column shows |

| the p-VEX implementation instruction count and overhead with hard- |

5.2 ohifting subroutine overhead|. 0L L. 73
5.3 Register duplicate instruction overhead.| 73
5.4 PC target instruction overhead. 'This table shows the overhead that |
| results from instructions that target PC as destination register.| 75
5.5 Flag comparison overhead. This table shows the overhead by emulating |
| the flag comparison.| 75
5.6 Flag updating overhead. This table shows the overhead by the emulation |
| of updating the instruction flags.| 77
5.7 Flag calculation overhead. This table shows the overhead resulting by |
| calculating the flags locally in the translator.| 77

Xiv

List of Acronyms

RTOS Real Time Operating System
CPU Central Processing Unit

ALU Arithmetic Logic Unit

OS Operating System

RAW Read After Write

VLIW Very Large Instruction Word
ILP Instruction Level Parallelism

DLP Data Level Parallelism

RISC Reduced Instruction Set Architecture

RTL Register Transfer Level

XV

xvi

Acknowledgements

Angelos E. Ntasios
Delft, The Netherlands
April 10, 2019

Xvii

xviii

Introduction

The trend for larger parallelization in processors, has been increasing ever since the fre-
quency speeds have reached their limits (mainly due to physical properties restraints)
[1]. There are many ways that processors can exploit the parallelization of the exe-
cuted programs and one of them is instruction level prallelism (ILP). Instruction level
prallelization allows many independent instructions to be executed at the same time
and on different data. This is in contrast to Data Level Parallelism (DLP) where the
parallelization source is the data itself. There are many micro-architecture techniques
that implement ILP, such as pipelining, superscalar execution, out-of-order execution,
register renaming, speculative execution, VLIW, and others. The latter one is the micro-
architecture technique deployed by p-VEX and a more thorough description is provided
in the following chapter

An important advantage of p-VEX VLIW architecure is the flexibility it offers in
terms of resource utilization and division. More specifically, the p-VEX VLIW archi-
tecture can have adjustable instruction length, adjustable number of execution stages
(which for example can include or not, a multiplier), and adjustable context execution,
(i.e., programs can be executed in different resources at the same time). These programs
can also be swapped with other ones on-the-fly, during gexecution.

An extra step to the flexibility and customizability of p-VEX would be to have the
capability to execute binaries of other architectures. This could allow pre-compiled
binaries in secondary architectures to execute directly to p-VEX without the need of re-
compilation. In addition, another very effective way to make use of the above flexibility, is
to run the p-VEX core alongside other popular processors as an accelerator. For example
an ARM processor could directly communicate with p-VEX and drive compute- intensive
or complex kernels to be executed by p-VEX. In order to allow direct communication a
translator is required between the cores.

The main benefits of developing the binary translator are flexibility and efficiency.
As an example, many FPGA boards nowadays incorporate embedded processors which
work alongside FPGA cells. The p-VEX can co-exist next to another core and serve as
an accelerator or a co-processor by executing code on-the-fly. Disregarding the aforemen-
tioned reasoning, the translation procedure can be performed (and in the vast majority
of the cases is) by software translators. However, p-VEX has a feature that does not
allow a software translation technique to match the performance produced by a hard-
ware binary translator. This is due to the p-VEX variable instruction length which
can change during run-time. This coupled with the VLIW nature of p-VEX, allows a
hardware binary translator to generate variable length instructions based on the current
configuration. Thus, the research question that arises is the following:

“How can we construct a dynamic binary translator that allows p-VEX to execute
other ISAs on the fly?”

2 CHAPTER 1. INTRODUCTION

In order to answer the above question, a number of goals must be set and completed.
These goals are the following:

e Provide a clear basis for a future hardware implementation.
e Provide a design space exploration for the future hardware implementation.

e Provide hardware design choices with different optimizations in mind.

In order to achieve the above goals an overview of the followed methodology is pro-
vided below:

e State of the art and literature review.
e Determine the most appropriate ISAs for translation.
e Analyze the architectures of the to-be-translated ISAs.

e Pinpoint the incompatibilities with p-VEX and provide micro-architectural solu-
tions.

e Design an invasive and a non-invasive translation technique.

e Apply those techniques on the p-VEX simulator.

e Provide clear instructions and schematics for hardware implementation.
e Provide simulation results and measurements.

In the following chapters, the preemptive work of two hardware binary translators
are presented. One is a RISC-V to p-VEX, and the other is ARMv4 to p-VEX. Both are
implemented in the p-VEX simulator and provide a plan and description of the translator
architecture, which will allow for a hardware implementation in the future.

A brief description of how the system works is as follows: the translators read the
binary file generated by the secondary compiler (RISC-V or ARM) on one side, and
generate p-VEX instructions on the other side, which emulate precisely the operation of
the original binary file. The reason RISC-V was chosen was due to its simplicity, rela-
tively small, instruction set, high compatibility with p-VEX and rising popularity. The
RISC-V binary translator was implemented first. This would provide a relatively simple
insight of how the more complex ARM translator should be implemented. RISC-V is
a classic RISC architecture that has a large compatibility with the p-VEX instructions;
large compatibility means that the instructions are mostly translated directly to a single
p-VEX instruction. Furthermore RISC-V ISA translation will allow for further investiga-
tion of how well a simple RISC architecture can be executed and potentially accelerated
by a VLIW processor.

The other architecture that was chosen was the ARM architecture mainly in embed-
ded systems and platforms. This was chosen mainly due to its popularity since currently
ARM is the most widely used architecture. However, due to its high complexity the

incompatibilities are significant. As a result two general approaches are examined: The
first one, is complete instruction emulation, i.e., all instructions that do not translate
to a specific p-VEX instruction are translated to multiple that emulate the behavior
of the ARM instruction. The second approach was to incorporate some of the extra
required functionality inside the translator, which has the effect of hiding many transla-
tion steps, reducing the translation overhead, but at the same time increasing hardware
design complexity.

The thesis is organized as follows: Chapter 2] provides a brief overview of the p-
VEX architecture as well as a brief introduction to binary translators. Chapter [3| and
present the exact methodology that was followed in order to develop the ARM and
RISC-V binary translators. Next, Chapter [5| provides simulation metrics and results.
Finally, Chapter [f]is devoted mainly to future work implementations and improvements
as well as conclusions.

CHAPTER 1. INTRODUCTION

Background

This chapter contains background information for all the relative information of this
thesis. It provides a brief explanation of the current status or the p-VEX project, as
well as information about binary translators. In addition, basic concepts are explained
such as binary executables and instruction set architectures. Furthermore, the current
state-of-the-art in binary translators is presented.

2.1 p-VEX

p-VEX was developed within the TU Delft Computer Engineering group, and is writ-
ten and maintained entirely by students. It is a VLIW, re-configurable and extensible
processor that is implemented as a simulator, on FPGAs and even on an ASIC [2]. The
main goals of the p-VEX core are to support dynamic workload execution as well as
educational and research purposes.

The main focus of the p-VEX processor is flexibility. Flexibility in terms of per-
formance, power consumption, parallelization, and code execution adaptation. p-VEX
is a Very Large Instruction Word (VLIW) architecture that supports a variable length
instruction and online context switching. More information on the p-VEX core and
project can be found here [3]. Compared to a classic RISC architecture, a VLIW pro-
cessor allows programs to explicitly specify instructions to execute in parallel, instead
of sequentialy. Essentially, the compiler specifies multiple operations to be executed si-
multaneously instead of serially. These separate instructions are called syllables and all
together an instruction.

Another important feature of p-VEX is re-configurability. The core, can adapt in real
time to requirements and limitations on the contextsﬂ and code it executes. Depending
on the available Instruction Level Parallelism (ILP) and Thread Level Parallelism (TLP),
the core can increase or decrease the size of the executed word and/or assign different
number of resources to different threads. Furthermore, contexts can be swapped in and
out of execution lanes depending on the priority and demands. Essentially, the core can
at any point stop the execution of a context, store its current execution state, switch to
a different one, and then later resume.

Lastly, another important feature of p-VEX is the fact that it is extensible. This
means that new instructions can be designed and incorporated in the core as well as
the accompanying toolchain. This can be particularly helpful in situations where an
accelerator needs to be implemented side by side with p-VEX.

1A context can be thought as an instance of a thread that is executed. At any given time, at most
four contexts can be executed.

6 CHAPTER 2. BACKGROUND

2.2 Instruction Set Architectures and Binary Executable
Files

The Instruction Set Architecture (ISA) is a list of mostly fixed instructions that define
a computer architecture. Essentially, it is the list of operations that an implemented
processor of this specific ISA can execute. An ISA defines everything from the list
of instructions, to the required register list and the way the instructions are encoded.
Furthermore, it serves as an interface between software and hardware. Any program
written in a high level language is eventually translated into a list of these instructions,
which are then translated into binary code that gets executed in the processor. A
program written for a specific ISA can be executed by any processor that implements
this ISA. For example any code written for the x86 ISA can run on either an Intel CPU
or an AMD CPU since they both implement the x86 architecture. However, it cannot
run on a processor that implements a different ISA.

Any program after compilation, results in a series of instructions that belong to a
specific ISA. These instructions are next translated to a binary file that is executed
by a processor. This file is usually called an executable-linkable format file (ELF) and
contains all the binary code along with code for routine calls and memory initialization
data. Essentially, this is the piece of binary information that goes into the processor’s
instruction memory and is read for execution. Since the work on this thesis is performed
on the p-VEX simulator, this type of files are read as an input and interpreted by the
simulator. The exact same input would also be in the hardware translation procedure.

2.3 Binary Translators

The x86 is an backwards compatible ISA developed by Intel in 1978. Most personal
computers nowadays contain a processor that implements the x86 architecture. The fact
that modern CPUs implement an ISA that was initially developed more than 4 decades
ago, shows how firmly attached to legacy ISAs are modern software and hardware devel-
opment. CPU developers do not opt for a new design due to development complexity,
costs and mainly fear of losing market share due to software incompatibilities [4]. On the
other hand, software developers do not want to develop complex tools nor spend time
and resources to port legacy code to new architectures.

A good solution to the above problem is to utilize binary translators. Binary transla-
tors can operate with pre-compiled code targeted for a specific architecture and produce
instructions for a different one. Generally, there are two types of binary translators:
Static binary translators and dynamic binary translators [5].

As mentioned above, a program that is compiled for a specific ISA cannot run on a
processor that implements a different ISA (at least without any modifications either on
the code or the processor). This is where the translator comes and serves as an interface
between the two different ISAs. Binary translators offer great possibilities in terms of
flexibility and adaptation [4][6], since they allow for automatic binary code translation,
which in turn, allows the code to be executed in a different architecture, without the need
for recompilation. Furthermore, binary translators are a perfect fit for VLIW processors

2.3. BINARY TRANSLATORS 7

[7] [8], [9] since the often resulting instruction overhead can be incorporated in a single
VLIW within one cycle.

2.3.1 Static Binary Translators

Static binary translators operate offline and translate raw binary code from one ISA to
another. Essentially, they receive a binary file as an input and after processing it, they
produce another binary file which is translated to a different ISA. Static translators offer
some key advantages compared to dynamic ones, namely: no run-time execution penalty,
no memory and storage overhead. However, they suffer from two major drawbacks: code
discovery and code location. When the translator parses data from the binary executable
file, the translator cannot always tell if the parsed binary code is data or instructions; this
is called code discovery problem. In some cases, the data might have the exact format
as an instruction and the translator attempts to translate which results in an error. For
example, x86 architecture often mixes data and instructions in the same address space.

Another problem arises with branches and PC-relative data. These kinds of data
are known only at run-time and the translator cannot generate code that utilizes these
values; this is called code location problem. Both of these cases are examined here,
during the development of the ARM binary static translator [10]. Similar problems as
the latter ones were also encountered in the current thesis work, however since this is
a dynamic hardware translator implementation, the code location problem can be dealt
with.

2.3.2 Dynamic Binary translators

Dynamic binary translators operate on-the-fly and translate instructions as the program
is executed [11]. They can monitor the execution state and they can dispatch micro-codes
that overcome many problems that are encountered in static translators. Generally, any
translation of the binary code results in an overhead with a few exceptions [12]. As a
result optimization in the code generation can play a significant role in the resulting
overhead.

For example, suppose an instruction needs to generate a micro-code sequence in
order to emulate an instruction. If the micro-code sequence generates a value during its
execution, it could be the case that this value can be re-used in following instruction
emulations. As a result a “smart” translator should be able to foresee this and store this
value for future use. Especially in the case of p-VEX, optimization plays a significant
role since the VLIW nature of the core offers great opportunities of parallel execution.
Since translation often results in an overhead of instructions, if these instructions are not
dependent on each other, they can be spread out in a single VLIW and executed within
one cycle. Contrary to static binary translators, dynamic translators have performance
restrictions since the translation operation is performed on-the-fly. As a result, the
translation procedure should not hinder the overall performance of the system.

Most of the translator implementations are dynamic, since the major problems of
static translation as discussed above can be overcome. Dynamic translators can be
implemented with software, hardware or a combination of both. Some examples of
software translators are QEMU [13], BOA [14], DAISY [15], CRUSOE [16], DYNAMO

8 CHAPTER 2. BACKGROUND

[17], FX!32 [18] and UQDBT[IY]. On the other hand, Simon Rokicki, et.al [20] present
a hardware binary translator and Jiunn-Yeu Chen, et.al [10] a translator that combines
hardware and software techniques.

2.3.3 QEMU

QEMU is a software binary translator (or emulator), which was used extensively during
the development process of this thesis. QEMU can emulate several ISAs [21], namely:

e TA-32 (x86).

o x86-64.

e MIPS64 Release 6[5] and earlier variants.
e Sun’s SPARC sun4m and sun4u.

e ARM.

e PowerPC.

e ETRAX CRIS.

e SMicroBlaze.

e RISC-V.

QEMU’s main operational usage is to run one OS on another, such as Windows on Linux.
It can also be used for debugging purposes since the execution can be paused at any time
in order to examine the program flow. QEMU consists of the following subsystems:

e CPU emulator.

Emulated devices (e.g., VGA display, mouse and keyboard).

Generic devices used to connect the emulated devices to the corresponding host
devices.

Machine descriptions instantiating the emulated devices

Debugger.

User interface.

During this thesis QEMU was used for debugging purposes for the ARM translator.
In order to debug the execution flow of the binary translator, QEMU was used to mirror
the execution and compare the normal program flow to the equivalent program flow of
the ARM-to-p-VEX binary translator. A major difficulty in this process was the fact
that QEMU debugger does not display instructions of re-executed kernels. For example,
if a loop runs 10 times, QEMU will display the code of only the first run. Furthermore,
if the kernel is called multiple times by different segments of the code, again QEMU does
not display the re-executed instructions.

2.3. BINARY TRANSLATORS 9

2.3.4 Hardware-Accelerated Dynamic Binary Translation

In this paper [20] the authors present a hardware binary translator which translates MIPS
[22] to a native VLIW core loosely based on VEX [23], as also p-VEX is. Their technique
is based on a three stage parsing sequence. The to-be-translated code is parsed in three
stages each of which extracts optimization information. The first stage performs basic
instruction decoding, data extraction, register values and most importantly, translation
to native instructions. No optimization is performed in this stage and the translated
code is stored in a temporary memory location. The content of this memory, will be
used in the next step to also identify block boundaries.

The second step is to re-order the instructions in the block generated in the previous
step. This step takes into account instruction level dependencies by keeping track the
register file reading/writing sequence. Finally, in the third step, the VLIW scheduler
takes the re-ordered instructions generated by the second step, and by implementing a
greedy algorithm tries to fill the VLIW.

10

CHAPTER 2. BACKGROUND

RISC-V to p-VEX Binary
Translation

This chapter describes the procedure of translating RISC-V targeted binary code to
p-VEX instructions. The translation is performed in the p-VEX simulator, and the
goal of this chapter is to establish the appropriate foundations required for a hardware
implementation. Out of the two ISAs that were translated in this thesis, RISC V is
simpler and easier to implement. This is because the initial design choice for the RISC-
V ISA, was to be highly flexible, extensible, and architecturally non-complex. Naturally,
the work on RISC-V is presented first. Furthermore, it has many architectural similarities
and very few incompatibilities when compared to p-VEX, which renders the development
procedure much smoother.

Initially, an overview of the RISC-V ISA is presented including all the extensions,
the most compatible of which was chosen. The reason behind this choice is that it allows
for a simpler and more efficient hardware translation and also an easier testing. Also a
complete analysis of the translation procedure is presented, as well as RTL schematics.

The reader, after reading this chapter should expect the following:

e Section 3.1} brief overview of the RISC-V architecture.

Section high-level architecture of the translator.

Section architectural comparison between RISC-V and p-VEX.

Section ISA translation precedures.

Section [3.5] simulator implementation and benchmark statistics.

11

12 CHAPTER 3. RISC-V TO p-VEX BINARY TRANSLATION

3.1 RISC-V Architecture

RISC-V is an open-source instruction set architecture which was developed by Berkeley
University of California. It is a Reduced Instruction Set Architecture (RISC) and its
initial purpose was educational. The simplicity and relatively small number of instruc-
tions, makes it suitable for embedded systems applications and small devices. Being
open-source, naturally, it can be freely used by anyone for any CPU design and software.

RISC-V is based on DLX which was developed in 1990 for educational purposes as
well and was initially presented in the book “Computer Architecture: A Quantitative
Approach”. David Patterson who was a co-author helped with the DLX development
and later on with RISC-V. According to the designers, RISC-V can be more efficient
regarding area, power and speed, when compared to similar commercial CPUs. In ad-
dition, even though most academic ISAs are intended for educational purposes, RISC-V
is also intended for commercial ones. Currently, there are companies that use RISC-V
in their products like SiFive, Codasip and UltraSoC, while others are already working
on the ISA or are on development [24]. For example Nvidia plans to replace the Falcon
processor on the GeForce products with a RISC-V processor.

Usually, developing a CPU ISA is a difficult task which requires people with expertise
in many fields, such us compilers, CPU micro-architecture, and electronics. As a result
this kind of expertise is found in large groups of engineers, usually within companies.
For this reason the RISC-V ISA is considered a community project, with people from
the open-source community contributing.

3.1.1 Architectural Highlights

RISC-V was developed with simplicity in mind. One of the main goals is to avoid complex
architectural techniques such as micro-coding and out-of-order execution. RISC-V is a
modular Reduced Instruction Set Computing (RISC) instruction set. The modularity
enables the choice of instruction subsets depending on the intended usage. The base small
integer ISA is standard for all implementations and is used alongside every extension.

The ISA supports 32, 64, and 128-bit length words. There are slight variations
in the subsets depending on the word length. The subsets are intended for various
usage environments, including general purpose computers, embedded systems, vector
processing and supercomputers. The ISA has reserved bits for all the 128-bit future
implementations.

Table 3.1: RISC-V base instruction sets. All implementations must implement one of
these ISAs.

Base Description

RV32l | Base Integer Instruction Set 32-bit

RV32E | Base Integer Instruction Set Embedded 32-bit
RV641 | Base Integer Instruction Set 64-bit

RV128I | Base Integer Instruction Set 128-bit

All RISC-V implementations must implement one of the base integer instruction

3.1. RISC-V ARCHITECTURE 13

subsets seen in Table The base ISAs are a set of chosen instructions, that allow for
a reasonable target for compilers, linkers, assemblers and operating systems. As a result
it serves as the required frame, which can be used standalone or with other instruction
set expansions. The base instruction sets cannot be altered and should not conflict with
each other. What this means is that only one base integer should be used.

Table 3.2: RISC-V extension subsets. Some of the subsets might conflict with each other
or with some base ISAs.

Extension | Description

Standard Extension for Integer Multiplication and Division
Standard Extension for Atomic Instructions

Standard Extension for Single-Precision Floating-Point
Standard Extension for Double-Precision Floating-Point
Standard Extension for Quad-Precision Floating-Point
Standard Extension for Decimal Floating-Point

Standard Extension for Compressed Instructions

Standard Extension for Bit Manipulation

Standard Extension for Dynamically Translated Languages
Standard Extension for Transactional Memory

Standard Extension for Packed-SIMD Instructions
Standard Extension for Vector Operations

Standard Extension for User-Level Interrupts

z| <| 7| 8| < w|alo|olo| = = =

The base integer ISA can be extended with other non-standard subsets. These sub-
sets can be seen in Table The base ISA is named “I” for integer, so for example
the 32 bit base ISA is the RV32l. In order to support more general purpose software
development, integer multiplication/division was added (M extension), as well as float-
ing point calculations (F, D, Q extensions). Furthermore the atomic instructions (A
extension), add inter-processor synchronization capabilities, and individual memory in-
structions. During the time this thesis was written, (2017) only the above extensions
were implemented.

The base ISA has fixed 32-bit length instructions. These instructions must be aligned
to 32-bit memory boundaries. However, larger instructions can be used in order to
facilitate different needs. For example a 16-bit compressed version exists as well as
larger than 32-bit sized instructions. In this work only the 32-bit sized instructions are
used. Figure shows the instruction format that is used for all the base 32-bit RISC-V
instructions. The instruction formats can be categorized into four arrangements: R-
type, I-type, S-type and U-type. All the instructions are formatted into one of these
four categories. As can be noticed in all variants, the register addresses “rs1”, “rs2”,
“rd” (when they are present) are encoded in the same positions. This is really helpful
and efficient in the translation procedure, since it can be realized with a simple wire
rerouting. Contrary to that, immediate values require multiplexers since the location
of the immediate is not the same in all variants. Furthermore, in all variants with
immediate values the sign bit is always at position 31. This can also be used to speed

14 CHAPTER 3. RISC-V TO p-VEX BINARY TRANSLATION

Table 3.3: Calling conventions for integer registers.

Register ‘ ABI name ‘ Description ‘ Saver ‘
x0 Z€TO Hard-wired zero -

x1 ra Return address Caller
x2 Sp Stack pointer Callee
x3 gp Global pointer -

x4 tp Thread pointer -

x5-7 t0-2 Temporaries Caller
x8 s0 Saved register /Frame pointer Callee
x9 sl Saved register Callee
x10-11 a0-1 Function arguments/return values Caller
x12-17 a2-7 Function arguments Caller
x18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

up sign extension circuitry.

Figure 3.1: RISC-V base instruction formats.

31 25 24 20 19 15 14 12 11 76 0
‘ funct7 ’ rs2 | rsl ‘ funct3 ‘ rd ‘ opcode |R—type
‘ imm[11:0] | rsl ‘ funct3 ‘ rd ‘ opcode |I—type
| imm[11:5] | 2 | sl | funct3 | imm[4:0] | opcode | S-type
| imm|31:12] ‘ rd | opcode | U-type

There are 33 user visible 32-bit registers in the RISC-V architecture, 31 general
purpose (rsl-rs31), one that is hardwired to zero (rs0) and the PC which is the program
counter. There is no dedicated link register, however the standard calling convention
uses register rsl as the register to hold the return address. Since p-VEX has 64 registers,
the first 32 are utilized by the translator. In addition to the integer registers, there are
also floating point registers. Table shows the calling convention for all the registers.
Since only the base integer instruction set is used for this work, the floating point calling
convention is omitted. The reader is referred to the “RISC-V Instruction set manual”
in the appendix for further information on floating point calling convention.

3.2 Binary Translator High Level Architecture

The main goal of this work is to provide a solid description of the architecture of the
translator that will be implemented in actual HDL. Since the simulator operates only on
one context the development and verification was done only with one context in mind.

3.2. BINARY TRANSLATOR HIGH LEVEL ARCHITECTURE 15

However, the hardware implementation could be implemented with all 4 lane groups
containing a binary translator module. This would allow different lanes to execute dif-
ferent architectures at the same time. The translator is located between the p-VEX core
and the memory. Many design choices will be presented later which include invasive
and non-invasive designs. The invasive designs alter the core design by adding modules
or guiding signals such as the PC and register values to the translator. These designs
might affect the core performance, area, and design complexity. The non-invasive de-
signs utilize existing p-VEX instructions to emulate RISC-V instructions. This makes
the communication of the core to the memory system almost completely transparent,
however in many cases, it introduces a great instruction overhead. Figure [3.2] shows
the high level interface of the binary translator with the core, assuming that all lanes
contain a binary translator. This figure also assumes the least invasive designs where
the only inputs and outputs of the translator are the instructions and the memory data.
Each translator can potentially feed instructions to all lanes if scheduling techniques are
utilized such us here [20]. Nevertheless, in this work only one lane is utilized with one
translator.

Figure 3.2: High level design of the translator interface with p-VEX.

Memory Memory Memory Memory
' - ’ - I - -
Binary Translator Binary Translator Binary Translator Binary Translator
1 Ilnstr Data 2 llnstr Data 3 l'ﬂsn Data 4 Jlnstr Data
ITTT 123 4 12 3 4 123 4
p-VEX
Lane 1 Lane 2 Lane 3 Lane 4

The translator design is depicted in Figure[3.3] This design is the least invasive out of
a few that will be proposed in the following sections. This means that this is the simplest
in terms of hardware complexity and requirements. The instruction input is the main
input which is by default presenlﬂ The translator provides up to two instructions as

Tt needs to be stated here that the only reason the memory data inputs are required is due to

16 CHAPTER 3. RISC-V TO p-VEX BINARY TRANSLATION

output. The source of the output is either a lookup table in the case that the translation
is 1 to 1 or a micro-code module that generates the appropriate instructions in order to
emulate the RISC-V instructions with the appropriate p-VEX ones. All of these modules
and multiplexers are controlled and monitored by a control unit.

Figure 3.3: High level design of the translator. This is the least invasive design, meaning
that it is the simplest design in terms of hardware complexity.

Mem Mem
Instr D_read D_write
Endian Endian Endian
Conv Conv Conv

Translator

micro-c
ode

-5

LuT

3.3 Architectural Differences Between RISC-V and p-VEX

The first step to creating the binary translator is to pinpoint all the major architec-
tural differences. Right from the start the most significant difference is the architecture
type. While p-VEX is a VLIW architecture, RISC-V is a RISC architecture. Between
them, p-VEX is clearly more complex since RISC-V was purposely designed with sim-
plicity in mind. As a result RISC-V base ISA consists of nearly 4 times less instructions
than p-VEX (RISC-V 38, p-VEX 169). Naturally, almost all of the RISC-V instructions
can be translated directly to p-VEX with the exception of a few as will be presented

endianess incompatibility. These inputs can also be omitted by doing bit and reordering operations on
all the words that are stored or loaded from memory.

3.3. ARCHITECTURAL DIFFERENCES BETWEEN RISC-V AND p-VEX 17

with details in Section Nevertheless, after translation, an overhead in instruction
raw count will occur, which however, could potentially be diminished by exploiting the
VLIW nature of p-VEX. A step even further in this direction is to actually reduce the
cycles required to execute the same code. This can be achieved by filling the VLIW
word with multiple independent RISC-V instructions. Further discussion on this matter
is presented in the future work chapter [f] In addition several other incompatibilities
exist such as endianness, instruction decoding, branching, program counter access and
pipeline hazards all of which are analyzed below.

3.3.1 RISC-VLIW incompatibility

RISC-V is a classic RISC architecture, where the processor receives the instructions
serially one at a time. As a result any optimization or parallelism in the execution
pattern of the code has to be implemented by the hardware. Contrary to that, p-VEX,
a VLIW processor, operates in a different manner. The core receives more than one
instruction per cycle, in the form of a VLIW instruction; these VLIW instructions are
issued by the compiler. This means that the compiler takes care of any paralelization and
dependency checking. For the p-VEX compiler, the number of instructions embedded
within a single VLIW instruction can be anywhere between 1 and 8. The ideal scenario
would be to always dispatch 8 instructions per cycle, however this is not always possible.
Contrary to that, the code generated by the RISC-V compiler is not optimized for a
VLIW architecture. Even though the designers of the RISC-V architecture propose some
VLIW functionality [24], as of 2018 none of these is yet implemented. Consequently, in
order to fill the VLIW bundle with RISC-V instructions, extra hardware is required for
dependency checking. The approach chosen in the current implementation is to place
only one instruction per VLIW word with a few exceptions which will be discussed later.
Even though this is not the optimum in terms of speed and performance, it is the first
step towards a more optimized VLIW utilization; as a result, examination on this simple
implementation can be performed in order to determine more optimized procedures.
However, due to time restrictions this was not performed in this thesis.

3.3.2 Endianess incompatibility

RISC-V has a little endian memory system while p-VEX has a big endian. The binary file
generated by the RISC-V compiler contains both instructions and data in a little endian
format. Since p-VEX is big endian the data transfered from the memory by the core are
incomprehensible since the byte order is reversed. As a result any time an instruction
is fetched, or data is read from the memory an endianess conversion must always occur.
Furthermore, when data are written back to the memory, they should also be converted.
This seems redundant at first (converting both when reading and writing), however data
already generated by the compiler are in little endian which are later converted to big
by the p-VEX memory system. The same procedure is followed when data are written
back to memory (the p-VEX memory system converts them), as a result they need to
be reversed again before they are written.

The solution to this problem is to reorder the bytes whenever memory is read or
written. Endianess reordering occurs in two places in the translator; firstly, for all

18 CHAPTER 3. RISC-V TO p-VEX BINARY TRANSLATION

instructions read from the instruction memory, and secondly when data is communicated
with the data memory. Instruction word reordering is rather simple since the instructions
are always 32 bits and are fed directly to the translator. As a result all instructions
pass through the endianess module. The actual reordering hardware implementation is
only a simple wire reordering as can be seen on schematic However when data is
communicated with the memory, the endianess reordering is a bit more complicated.
Loaded data pass through the converter and depending on the size (halfword, word) the
appropriate conversion is performed.

Figure 3.4: Little to big and vice versa endianness converter. Left side shows the byte
rearrangement of two half word bytes and right side shows the byte rearrangement of a
full 4 byte word.

32

d| c] bf a]

| 3124 [2316 | 158 | 70 |

3.3.3 Link register incompatibility

RISC-V architecture does not have a dedicated link register, however software calling
convention as seen in Figure sets register rs1(x1) as the link register. Furthermore
register rsb(x5) can be used as an alternative link register when compressed RISC-V
instructions are used @ p-VEX on the other hand has a dedicated link register, which
however can be mapped to a normal general-purpose register (rs63) on design time. Since
the RISC-V link register is a general-purpose register, this means that it can be accessed
for any operation. As a result the general-purpose link register mapping should also be
activated in the p-VEX core.

*Refer to the RISC-V instruction manual [25], page 16 for more information

3.3. ARCHITECTURAL DIFFERENCES BETWEEN RISC-V AND p-VEX 19

3.3.4 Program Counter access incompatibility

Another register that is also visible to the user in RISC-V architecture is the program
counter. There are 3 RISC-V instructions that needs to read the value of PC: auipc
as well as jal and jalr depending on the implementation, however currently there is
no instruction to access the PC in p-VEX. The only way to access the PC, is to use
the branch instructions which store the value of the next PC in the link register. Two
solutions are provided for this problem: One is to use the existing p-VEX instructions
in order to access the PC, and the other one is to make small hardware modifications.

The first solution is to generate a number of instructions that provide access to the
PC, while at the same time maintaining normal program flow and data integrity. Table
[3-4]shows these instructions. Suppose that in step 0 a RISC-V instruction requires access
to the current PC. The first step is to copy the current link address value to a random
register (rs32-rs62). Note that step 1 executes at the same time that the instruction
is read, this means that the PC has not incremented yet. The link register copy can
be performed with an “or” instruction. As mentioned earlier RISC-V utilizes only 32
registers, as a result, any of the remaining registers between 32 and 62 can be used for
temporary storage.

After that in step 2 a random branch with “call” instruction is performed. This will
allow us to store PC+1 into the link register. During this procedure, all of the fetched
instructions are ignored by the translator until the normal program flow is resumed.
As a result even though the PC increments normally and instructions are fetched, no
new instructions are executed. In the next step a ‘1’ is subtracted by PC+1 in order
to acquire the PC. Furthermore, the instruction that requires PC is executed since the
value of the PC is now available in a general purpose register.

In the next step an unconditional jump is performed to PC and finally the link
address is copied back to the link register. Note that this final step is needed because
the program counter keeps on incrementing during the above steps. If for example a
pause signal is available for the PC this final step can be omitted. This solution is a
simple micro-code bundle that can be stored and get called for every instruction that
requires access to PC. The problem with this implementation is the overhead in cycles
as well as instructions. All of these instructions are dependent, as a result, they cannot
be parallelized in a single VLIW. This means that for every instruction that requires
access to PC there will be an overhead of 7 cycles and instructions.

The other solution is to slightly modify the p-VEX core datapath and drive the cur-
rent PC value directly to the translator. In the provided implementation this approach
was chosen. Both solutions have advantages and disadvantages: On one hand, the first
solution introduces an overhead of 7 instructions but has no core modifications, and
on the other hand, the second one requires modifications on the core but it does not
introduce any overhead.

3.3.5 Pipeline hazards

The p-VEX core utilizes a pipeline in its architecture. The RISC-V compiler however is
not aware of this, as a result the code generated is not optimized in any way to avoid
pipeline hazards that can occur. The translator should handle the potential hazards

20 CHAPTER 3. RISC-V TO p-VEX BINARY TRANSLATION

Table 3.4: Program counter access microcode instructions. Red PC values are invalid
and the fetched instructions are not dispatched. Instead, the translator dispatches the
PC access instructions.

‘ Step # ‘ Current PC ‘ p-VEX Instruction ‘ Link Register ‘ RS50 ‘
0 PC auipc Original link address X
1 PC or Original link address X
2 PC+1 call Original link address Original link address
3 PC+2 sub PC+1 Original link address
4 PC+3 Execute RISC-V instruction PC Original link address
5 PC+4 igoto PC Original link address
6 PC or PC Original link address
7 PC+1 Resume normal execution Original link address X

Table 3.5: Example of a Read After Write (RAW) hazard that can occur. Red instruction
at stage 1 will receive a wrong value in Ra.

’ stage ‘ T1 ‘ T2 ‘ T3 ‘
1 add Ra, Ra, Rb(PC) X(PC+1) add Ra, Ra, Rb(PC+2)
2 X add Ra, Ra, Rb X
3 X X add Ra, Ra, Rb
4 X X X
) X X X
6 X X X

by issuing NOPs coupled with backward jumps to the PC with the instruction that
generated the hazard. Table shows the potential hazard and Table [3.6] shows the
correct program flow that results from NOP insertion.

3.4 Instruction Set Translation

As mentioned above the base integer instruction set for RISC-V consists of 38 instructions
(excluding the FENCE instructions and assuming the handling of all system calls by
a single instruction). Some of those instructions, have a direct equivalent in the p-
VEX architecture and some do not. The ones that do not have an exact translation,
either require extra hardware or need more than one p-VEX instructions in order to be
implemented. The extra instructions required in the translation process is referred to as
instruction overhead. In other words, a RISC-V instruction that is directly translated to

Table 3.6: Inserting NOPs coupled with a backwards jump to avoid hazards.

[stage | T1 [T2 [T3 [T4 [T5 [T6 [T7 |
1 add Ra, Ra, Rb(PC) X(PC+1) m‘:gl. S]:(f{“NIg)r“:fh T(ﬂd NOP(PC+3) X(PC+1) goto -2 add Ra, Ra, Rb(PC+2)
2 X add Ra, Ra, Rb X NOP NOP X goto -2
3 X X add Ra, Ra, Rb X NOP NOP X
4 X X X add Ra, Ra, Rb X NOP NOP
5 X X X X add Ra, Ra, Rb X NOP
6 X X X X X add Ra, Ra, Rb X

3.4. INSTRUCTION SET TRANSLATION 21

a p-VEX one, has zero overhead while one that requires 2 instructions has an overhead
of 1. Out of the 38 RISC-V instructions, 29 can be directly translated, 6 can be either
directly translated or with an overhead of 6 or 1 (depending on the implementation). One
can be either directly translated or with an overhead of 5; and two are translated into
two instructions which however are not dependent, thus allowing them to be executed
simultaneously into two slots in the VLIW. Table[3.7]shows the translation table between
RISC-V and p-VEX. The table shows all the RISC-V instructions of the integer base
set, that are implemented, as well as their translation to p-VEX. Furthermore the third
column shows a brief description of the instruction and the fourth shows the overhead
that results from the translation.

The decoding process starts with the RISC-V instruction fetch from the memory.
After the instruction passes through the endianess unit, it is ready for decoding. The
first part that is extracted for all operations is the opcode. The opcode field always
resides in bits 6-0 and it determines the generic type of the operation which can be one
of the following:

e OP: Register operations

OP-IMM: Immediate operations

BRANCH: Branch operations

LOAD: Memory load operations
e STORE: Memory store operations

e MISC operations

A clear description of all the instructions can be found in Appendix [A]

3.4.1 Register Operations

These instructions use the R-type instruction format as seen in Figure [3.1] The fields of
the encoding are six. “rs1”, “rs2” and “rd” are the two source and destination registers
respectively. “opcode” determines the generic type of the operation which in this case is
operations between registers. Furthermore, there are two more fields, funct3 (bits 14-12)
and funct7 (bits 31-25) which determine the specific instruction within the generic oper-
ation group according to Table 3.8 For example, assuming the opcode is the following:
“0000000 00011 00100 000 00101 0110011”. The first field examined is the opcode (bits
6-0) = 0110011, this means that the instruction contains a register-register operation.
Next we examine funct7(31-25) and funct3 (14-12) which are “0000000” and “000” re-
spectively. This means that the operation is add with rd = rs1 + rs2 (rd = 00101, rsl
= 00100, rs2 = 00011).

3.4.2 Immediate operations

These instructions perform operations between a source register, rsl, and an immediate
value and store the result in rd. These instructions use the I-type format as seen in Figure

22

CHAPTER 3. RISC-V TO p-VEX BINARY TRANSLATION

Table 3.7: RISC-V to p-VEX translation table.

RISC-V p-VEX Description Instruction Overhead
add add RS1 + RS2 0
sub sub RS1 - RS2 0
sll shl RS1 << RS2 logical shift 0
if(signed(RS1) < signed(RS2))
slt cmplt {RD =1} 0
else
{RD=0}
if(unsigned(RS1) < (unsigned(RS2))
sltu cmpltu {RD = 1} 0
else
{RD=0}
Xor Xor RS1 xor RS2 0
srl shru RS1 >> RS2 logical shift 0
sra shr RS1 >> RS2 arithmetic shift 0
or or RS1 or RS2 0
and and RS1 and RS2 0
addi add RS1 + sign_ext(IMM) 0
slli shl RS1 << IMM 0
if(signed(RS1) < sign_ext(IMM))
slti cmplt {RD = 1} 0
else
{RD=0}
if(signed(RS1) < IMM)
sltiu cmpltu {RD =1} 0
else
{RD=0}
xori xor RS1 xor sign_ext(IMM) 0
srli shru RS1 >> IMM logical shift 0
srai shr RS1 >> IMM arithmetic shift 0
ori or RS1 or sign_ext(IMM) 0
andi and RS1 and sign_ext(IMM) 0
beq cmpeq, br l{fb(gﬁclh}__ RS2) 0/1/7
- -
bne cmpne, br l{fb(rl:I?jll}_ RS2) 0/1/7
blt cmplt, br 1{fb(rjlglr:§;1(RSI) < signed(RS2)) 0/1/7
bge cmpet, br 1{fb(rs;;zrc1flx}i(RSI) < signed(RS2)) 0/1/7
bltu cmpltu, br 1{fb(r1;111;1};1g}1’10d(R81) < unsigned(RS2)) 0/1/7
bgeu cmpgtu, br 1{fb(1};111121§}1’16d(R81 > unsigned(RS2)) 0/1/7
.) 0 or (PC + 4),
jal or, goto jump (PC + sign_ext(IMM)) 0
. 0’ or (PC + 4),
Jalr or, goto jump (sign_ext(IMM) + RS1) 0
lui or RD <== IMM 0
auipc or RD <== PC + IMM 0/5
1b 1db Load sign_ext(byte) 0
lh 1dh Load sign_ext(halfword) 0
Iw ldw Load word 0
Ibu Idbu Load byte 0
lhu Idhu Load halfword 0
sb stb Store byte 0
sh sth Store halfword 0
sSW stw Store word 0
ecall trap trap 0

3.4. INSTRUCTION SET TRANSLATION 23

Table 3.8: Register operations and function fields decoding.

’ operation ‘ funct7 31-25 | funct3 14-12

add 0000000 000
sub 0100000 000
sl 0000000 001
slt 0000000 010
sltu 0000000 011
xor 0000000 100
srl 0000000 101
sra 0100000 101
or 0000000 110
and 0000000 111

Table 3.9: Integer operations and function fields decoding.

operation | funct3 14-12 |

add 000
sub 000
sll 001
slt 010
sltu 011
XOr 100
srl 101
sra 101
or 110
and 111

All the integer operations have the opcode field = “0010011” and the function fields
can be seen on Table 3.9

3.4.3 Branch operations

These instructions perform a comparison between rsl and rs2 and depending on the
result a branch is executed. They are of the SB-Type format as seen in Figure The
opcode field is equal to “1100011”. The branch target is derived by adding the signed
immediate value to the current PC and can generate jumps in the range of +4KB. The
offset value is formulated by concatenating the values located in the following segments:
Target = Instr(31) & Instr(7) & Instr(30 downto 25) & Instr(11 downto 8).
Since the target is always a multiple of two the last bit is always zero and it is not stored,
however the above value needs to be shifted left by 1. This produces the final 12-bit
signed jump value which when added to the current PC produces the branch target. The
branch instruction encoding can be seen in Table [3.10]

These instructions do not have a direct equivalent to p-VEX. The branch instructions
in p-VEX perform the operation in two stages, first by storing the comparison result to

24 CHAPTER 3. RISC-V TO p-VEX BINARY TRANSLATION

Table 3.10: Branch operations, function fields decoding.

’ operation ‘ funct3d 14-12

beq 000
bne 001
blt 100
bge 101
bltu 110
bgeu 111

branch registers, and then with another instruction, based on the value of the branch
register, a branch is performed or not. This means that RISC-V branch instructions
combine two p-VEX instructions in one. As a result three solutions are proposed for this
problem one of which was used in this thesis. The three solutions can be seen below:

e The first solution is to utilize only the existing p-VEX instructions to translate the
RISC-V instructions. Assuming that the PC cannot be stalled the core needs to
execute two instruction separately and in different cycles, first the comparison and
then the branch. While these two instructions are executed the PC increments
which means that one fetched instruction will be invalid and will not be executed.
As a result after the comparison and before the branch a jump is performed back
to the initial PC value. This procedure is explained in Section [3.3.4] Essentially
after the compare instruction is issued, a jump back to PC is performed and then
the branch is executed normally.

e The second solution is to simply incorporate a comparison circuit inside the trans-
lator. The advantages of this approach is the zero instruction overhead and the fact
that no modifications are required to the core. However, the major disadvantage of
this approach is the area overhead and gate delay overhead which can potentially
result in a longer critical path.

e The third solution, which is the one chosen for implementation in the simulator, is
to perform the branch in two separate cpu cycles while at the same time stalling
the PC. In the first cycle the comparison is performed and the result is stored in the
branch register, while in the second cycle the branch is performed. This requires
for the PC to be paused for one cycle so that normal program flow is maintained
in case the branch is not taken. This approach is somewhat in between the two
previous approaches as it has an instruction overhead of only 1, little to no area
overhead and requires a simple pause signal for the PC. Below follows the branch
instructions with the assumption that the third option is implemented.

3.4.4 Memory Load Operations

These instructions perform memory loads. The opcode field is equal to “0000011” and
the function fields can be seen at Table .12l When data is communicated with the
memory the endianess must change as mentioned in Section [3.3.2]

3.4. INSTRUCTION SET TRANSLATION 25

Table 3.11: Emulation code to execute two instructions and jump back to normal pro-
gram flow. Assuming a a RISC branch instruction has been fetched, this needs to be
translated into two VEX instructions: compare and branch.

’ Step # ‘ Current PC ‘ p-VEX Instruction

1 PC cmplt

2 PC+1 NOP

3 PC+2 NOP

4 PC+3 goto

5 PC br

6 X resume normal execution

Table 3.12: Memory load operations, function fields decoding.

operation | funct3 14-12

b 000
lh 001
lw 010
lbu 100
lhu 101

3.4.5 Memory Store Operations

These instructions perform memory stores. The opcode field is “0100011” and the func-
tion fields can be seen in Table B.14l When the stored data is smaller than a full word
(halfword/ byte) then the data are extracted from the lower bits of the registers. Fur-
thermore, when data is communicated with the memory the endianess must change as
mentioned in Subsection [3.3.2]

3.4.6 Miscellaneous Instructions

Besides the groups of instructions presented above, there are also some instructions that
are distinct in their functionality. They are distinguished by the “opcode” field and they
can be seen in Table They are control transfer instructions and system calls. “jal”
uses the J-type encoding, “jalr” uses the I-type encoding, “lui” and “auipc” uses the
U-type and “ecall” which is distinguished by the “opcode” field value only.

Table 3.13: Memory load operations, function fields decoding.

operation | funct3 14-12

b 000
lh 001
lw 010
lbu 100

lhu 101

26 CHAPTER 3. RISC-V TO p-VEX BINARY TRANSLATION

Table 3.14: Memory store operations, function fields decoding.

operation | funct3 14-12

sb 000
sh 001
SW 010

Table 3.15: Miscellaneous operations.

operation | opcode
jal 110111
jalr 1100111
lui 0110111
auipc 101
exall 110

3.5 Simulator Implementation and Benchmark Statistics

As mentioned earlier this work is meant to provide the basis for further development
and implementation in hardware. Everything mentioned above was implemented in
the simulator which emulates the p-VEX operation with one context in scope. Proper
functionality was verified with the “Powerstone” testbench programs that provide a
proper verification output. Nevertheless, this does not mean that the provided version
is 100% bug free. Below the following are presented: an overview of the simulator
modifications, execution metric results, development methodology and code metrics.

3.5.1 Simulator Modifications

In the simulator only three areas are modified:
e Memory interface.
e Instruction decoding loop.
e Instruction field remapping.

The above simulator fields can be mapped to areas in the hardware implementation
which are the data memory interface and the instruction buffer. However, it is hard to
say with accuracy what and how should be altered precisely since this would require
further work upon the actual VHDL hardware implementation. Figure provides an
overview of the three entities that were altered in the simulator and how they are logically
connected.

Regarding the three simulator modifications, the simpler one is the memory interface
where the only thing that was changed is the addition of an endianess function to the data
store and load instructions. Most of the modifications were performed on the decoding
loop where all the logic of the new instruction routing is performed. Finally, the mapping
of the instruction fields is also completely changed.

3.5. SIMULATOR IMPLEMENTATION AND BENCHMARK STATISTICS 27

Figure 3.5: Logical interconnection of the modified segments of the simulator code.

Instruction

Field Mapping

rs1 | rs2 rd

Decoding Loop

l |

Mem
interface

28

CHAPTER 3. RISC-V TO p-VEX BINARY TRANSLATION

ARM to p-VEX binary
translator

This chapter presents the methodology of developing the ARM to p-VEX binary trans-
lator. The ultimate goal is to create a p-VEX core that can seamlessly operate and
execute different architectures at the same time, as a result a second ISA is chosen for
binary translation also. Ideally different contexts with potentially different architectures
will be executed in the p-VEX core.

The second ISA chosen is the ARM architecture. ARM was chosen mainly for its
popularity; currently, it is one of the most popular processor architectures in the market.
Compared to the previous implementation presented in Chapter [3, ARM is much more
complex and even less compatible with p-VEX. This renders any conventional translator
(e.g., a simple software translator) inefficient as the instruction overhead that is generated
by using only p-VEX instructions is quite substantial as will be presented in the following
sections. On the other hand, the VLIW nature of p-VEX, allows for more efficient
designs since parallelization can be issued by the translator directly in hardware. All of
the aforementioned topics will be presented in the following sections in detail along with
other development procedures; More specifically this chapter is formed in the following
manner:

e Section .1} brief overview of the ARM architecture.

Section translator high level architecture.

Section architectural differences between ARM and p-VEX.

Sections [4.5 low level translation techniques

Section combining all the emulation techniques.

29

30 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

4.1 ARM architecture

The ARM architecture is a family of RISC CPU architectures developed by British ARM
(Advanced RISC Machine). ARM develops CPU architectures which are then licensed
to other companies that design their own products based on those architectures. ARM
architecture currently, is the most broadly used architecture with more than 100 billion
devices using CPUs with ARM architecture. ARM was initially developed by Acorn
Computers in the 80s with the intent to incorporate it in its personal computers. In the
early 90s ARM Holdings was formed in order to focus primarily on the CPU and IP core
development. Many companies have developed cores that include the ARM architecture
including Apple, NXP Semiconductors, Qualcomm, Samsung, Nvidia, and many more.

There are numerous ARM architectures created by either ARM itself or other third
party companies. When it comes to naming convention about the ARM architecture
there are three distinct ways to do it: the architecture family, the architecture version,
and the processor that implements the architecture. A clear listing of all the above can
be found here [26]. As a convention the architecture family will be referred to as ARM#
e.g., ARMb5 and the architecture with ARMv# e.g., ARMv3.

4.1.1 Architectural Highlights

ARM is a RISC architecture inherently, this means that simplicity is a key part of the
architecture. A few attributes of the architecture that conform with its RISC nature
are:

e It is a load/store architecture with support for 32-bit and 64-bit words.

e Uniform register file.

Simple addressing modes.

Fixed uniform instruction lengths.
e No microwords

There is not support for unaligned memory accesses in the old versions (prior to
ARMv6), however later versions support unaligned access for halfwords and single words.
The most important attributes that result from the architecture choices are the following:

e Reduced implementation size.
e Performance.

e Low power consumption

e High code density.

Another key attribute is the wide variety of architecture choices. ARM architecture
evolves through each version. With every new version, new capabilities and instructions
are added. However this does not make older versions obsolete (after ARMv3) since
older versions are simpler and the processors that implement them are consequently also

4.1. ARM ARCHITECTURE 31

simpler. This makes the ARM architecture almost modular with each version fitting
different needs. As a result there are three main ARM architectural groups and each
group can have various extensions. These groups are the following:

e A (Architecture): High performance computing such as mobile devices.
e R (Real-time): For embedded systems such as automotive.

e M (Micro-controller): For the micro-controller industry.
The extensions that add functionality to certain architectures are the following:

e Security extensions.
e SIMD instructions.
e Virtual machine extensions.

e Cryptographic extensions.

Furthermore, “THUMB” is a subset of the main architectures that was introduced in
the ARM7TDMI architecture. It sacrifices functionality but it can have a more compact
instruction size, i.e., a 16 bit instruction length instead of 32.

The ARM architecture also incorporates some features that allow for better perfor-
mance and control. Perhaps the three most important attributes that allow the above,
are the conditional execution, the fact that shifts are incorporated into the datapath and
the CPU operation modes. These features are explained roughly below.

4.1.1.1 ARM Predication System

Almost all ARM instructions are conditionally executed, this feature is called predication.
In other words even though all instructions are fetched into the core, not all of them are
executed. Each instruction has a a 4 bit field that indicates whether the instruction will
be executed or not. Those bits are indications for flags, namely:

e N, for negative.
e 7, for zero.
e C, for carry.

e V, for overflow.

Those condition bits are contained in the 4 MSBs of the instruction in the above ordering,
i.e. N in bit 31, Z in bit 30, C in bit 29 and V in bit 28. The processor also contains
four 1 bit registers with the aforementioned flag values which are updated by specified
instructions. When an instruction is decoded the flag bits are compared to the flag values
in the processor registers and if the values are equal then the instruction is executed, if
not then the instruction is not executed. If for example an instruction caused an overflow

32 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

the V flag will be ‘1’. Next instruction that comes and has a flag value of ‘0’, it will
not be executed. Whether an instruction’s result will update the processor flag values
is determined by a field in the instruction. As a result not all instructions update the
flag values. Table shows an execution example. Initially the processor flag values are
NZCV=1010 e.g. negative flag is ‘1’, zero flag is ‘0’, carry flag is ‘1’ and overflow flag
is ‘0’. The first instruction that comes(add) has flag values of “1010” which is the same
as the ones stored in the processor registers. As a result the instruction is executed.
Furthermore the instruction does not update the flag values. The next instruction that
arrives(sub) also has flag values of “1010” which are equal to the processor flag values.
As a result it is also executed normally, however this instruction will also update the
flag values of the processor. If the subtraction causes an underflow the V flag value will
change from ‘0’ to ‘1’. This is actually the case in the example which results in the next
instruction(cmp) not being executed.

Table 4.1: ARM predicate example. First column shows the time, second column shows
the instruction, third column shows the instruction flags, fourth column shows whether
the instruction will update the flag values or not and the final column are the processor
flag values.

’ Time ‘ Instruction ‘ NZCV ‘ Update? ‘ N ‘ Z ‘ C ‘ A% ‘
To add 1010 NO 1 0 1 0
T sub 1010 YES 1 0 1 0
Ty cmp 1010 YES 1 0 1 1
T3 X X X 1 0 1 1

More specifically the flag bits represent the following conditions:

e N: If the result is regarded as a signed two’s complement, then if the result is
negative, N = 1 and if the result is positive, N = 0.

e 7: If the result is zero then Z = 1 and Z = 0 otherwise.
e C: Depending on the operation C indicates one of the following:
— If the instruction was an addition, then C = 1 if a carry was produced and C

= 0 otherwise.

— If the instruction was a subtraction, then C = 0 if a borrow was produced
and C = 1 otherwise.

— If a shift instruction was incorporated in the previous instruction, then C is
set to the last bit shifted out of the register.

— For all other cases C is left unchanged with the exception of a few special
cases.

e V: If there was an two’s complement addition or subtraction, V = 1 when an over-
flow occurs and V = 0 otherwise. If the instruction was not addition or subtraction,
then V usually remains unchanged.

4.1. ARM ARCHITECTURE 33

4.1.1.2 ARM Shift Mechanism

ARM architecture does not contain individual shift instructions. All shift instructions
are incorporated into the processor datapath. The way the second operand is encoded in
the instruction fields determines whether and how it will be shifted or not. As a result
the shifting is performed on only the second operand before the execution stage. An
example schematic is depicted in Figure

Figure 4.1: ARM architecture shifter. No individual shift instructions exist, instead the
second operand can be shifted before the instruction execution.

Register File

RS1 RS2

Shifter
—

ALU

The second operand can be shifted or not. In all cases, the second operand is cal-
culated within one cycle. This achieves a higher code density (since shift instructions
are completely omitted) and higher throughput since the shift instructions are combined
with other more basic ones.

4.1.1.3 ARM architecture CPU modes

The ARM architecture supports several modes of CPU execution. The CPU can be in
only one state at a given time. The modes allow for graduated system resource control
and prevent illegal access to data and resources. These modes are presented in Table

The main program execution mode is the User mode; all usual programs are executed
in this non-privileged state. Furthermore, there are two modes to handle interrupts, one
for normal interrupt requests and one that require immediate handling. Abort mode pro-
tects the virtual or physical memory integrity, if for example a memory fetch is aborted
prematurely. Undefined is the state when the CPU does not recognize the instruction,
in this mode the core waits for a response by co-processors if the instruction is actually
executed by them. The system mode is entered when an explicit instructions modifies

34 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

Table 4.2: ARM processor states.

’ Mode ‘ Privileged? Description ‘ Versions
User no Normal program execution All
FIQ yes Fast interrupt handling All
1IRQ yes Normal interrupt handling All
Supervisor yes (ON) All
Abort yes Memory protection ARMv3+
Undefined yes Co-processor ARMv3+
System yes Modifies the CPU state register ARMv4+
Monitor yes Monitoring mode TrustZone extension
Hyp yes Hypervisor mode Virtualization extension
Thread yes/no User tasks for RTOSs ARMv(6-7-8)M
Handler yes Dedicated for exception handling ARMv(6-7-8)M

the execution mode register. Monitor mode is used by the security extension TrustZone.
The Hyp mode is used in order to support the Popek and Goldberg virtualization re-
quirements [27]. This mode is used for RTOS environments and bare-metal applications.
Finally, the Handler mode is a mode specifically dedicated for exception handling.

4.1.2 ARM registers

The ARM processor contains 37 registers in total, 32-bit wide. Of those, 31 are general
purpose registers; however, not all are mapped to separate physical registers. In addi-
tion, 6 of them are status registers which also are not all mapped to physical registers
depending on the ARM architecture. What this means, is that a specific register address
might refer to multiple physical registers, which depends on the processor execution
state. Out of the 31 general purpose registers R15 is the program counter. RO to R7 are
8 completely general purpose registers and refer to the same physical register in all pro-
cessor modes. R8 to R14 refer to different physical registers depending on the processor
mode. R8 to R12 have can refer to two physical registers and R13 to R14 to six for a
total of 22 physical registers. Combined with the PC and the general purpose registers
mentioned above, they make for a total of 31 physical registers (plus 6 execution status
registers).

However, the implementation from ARM to p-VEX presented in this thesis, does not
support any kind of different processor execution mods except the default User mode.
This means that only 16 physical registers are utilized in the translator implementation,
15 general purpose registers and 1 for the program counter. Besides the R15 that is used
as the program counter, R13 is used as the stack pointer(SP), and R14 is used as the
link register(LR). Attention needs to be given to register RO; ARM does not have a zero
hardwired register, as a result when RO is referenced it should be mapped to another
register address since RO in p-VEX is hardwired to zero. In the provided simulator
implementation, all register addresses are incremented by 1 to avoid references to RO.

4.2. HIGH-LEVEL DESCRIPTION OF THE TRANSLATOR 35

4.2 High-Level Description of the Translator

The high level RTL of the translator is depicted in figure The translator resides in
the second pipeline stage. By default the output of the translator should operate in a
combinational way, i.e., the output should be dependent on the current fetched instruc-
tion from the instruction memory. However, when special cases are detected, after the
initial instruction dispatch, the subroutine ROM serves as the instruction memory, dis-
patching further instructions. These special case are described in detail in the following
subsections.

The colored modules and inputs are parts of different optional implementations which
will be explained in the following subsections. The gray colored modules are the min-
imum required hardware for translating the instructions and exist in all versions
regardless.

Figure 4.2: High level schematic of the ARM binary translator. The translator is within
the second pipeline stage. Colored modules within the translator RTL are the optional
additions and the light gray ones exist in all versions.

s1 s2 s3 s4 s5 s6
IMEM |, T [ALU DMEM
; |REGISTER |] MUL | | REGISTER
:
. Duplicate register
file system
Translator flag
Rd——— I
Translator PC
DC R . access
eg—]
g:'lriltfler I:I Default/Emulation
NOP
Decode —{ Translate —I—. — 32bit p-VEX
instruction
o Subroutine
IMEM — » ’ROM

4.2.1 Decode unit

The decode unit is responsible for splitting the incoming ARM instruction into the
respective fields. This is a combinational circuit and it simply splits, reorders and copies

36 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

incoming values. The decoding process is presented later on in details along with the
explanation of the individual instructions.

4.2.2 Translate unit

This unit is responsible for generating a p-VEX instruction based on the inputs from
the Decode unit. This module operates in a combinational way and is not aware of the
execution state of the processor or the translator. The control module is responsible to
utilize, or not, the output of this unit. Essentially this unit can be implemented with
two LUT tables, one that generates the p-VEX instructions and one that generates the
controls needed to multiplex the decoded values from the Decode unit.

4.2.3 Subroutine ROM

This unit contains the subroutines required to emulate certain instructions. These in-
structions are generated sequentially one on every cycle. Once a subroutine has been
activated the unit generates the required instructions starting from the next cycle. This
unit is controlled by the Control unit.

4.3 Architectural Differences Between ARMv4 and p-
VEX.

The ARM architecture version that was chosen was ARMv4. The choice was made
because this version is amongst the most compatible. Furthermore, it is still compatible
with the toolchain provided by ARM since ARM versions from ARMv3 and backwards
are now obsolete. This version does not include any instruction expansion sets such us
SIMD and DSP instructions since this would introduce even greater incompatibility and
complexity.

Nevertheless, there are numerous incompatibilities that introduce either a significant
instruction overhead, or increased hardware complexity. Namely these incompatibilities
can be grouped in the following categories:

Pipeline hazards.

Shifting mechanism.

Direct access to PC.

Conditional execution.

Overflow detection.

Memory addressing modes.

V)

4.3. ARCHITECTURAL DIFFERENCES BETWEEN ARMV4 AND p-VEX. 37

4.3.1 Pipeline hazards

The pipeline hazard problems and solutions are exactly like the ones in the RISC-V
implementation (see Section [3.6)) the solution is also the same and it is to simply insert
NOPs coupled with backwards jumps whenever a hazard is detectedlﬂ

4.3.2 Shifting mechanism

One of the most important characteristics of the ARM architecture is the incorporation
of the shifting mechanism inside instructions. As a result there are no individual shift
instructions. The shifting mechanism is embedded in the second operand datapath and
all data shifting is done within one cycle before the data is processed. This is in con-
trast to how the p-VEX architecture operates where the shifts are treated as individual
instructions which are executed separately. As an example consider the following C line
of code:

a=a+ (b<< 2);

In p-VEX this would be translated into two instructions:

shl $r0.b = $r0.b, 2

add $r0.a = $r0.a, $r0.Db

First ‘b’ is shifted left by 2 and then the result is added to ‘a’. However in ARM
architecture this C line of code would be translated to one instruction like this:

ADD Ra, Ra, Rb, LSL #2

As a result it is clear that if an instruction has an incorporated shift, p-VEX cannot
execute it directly. For the above problem two solutions are proposed one of which was
implemented in the simulator: First solution, is to emulate all the shifts with p-VEX
instructions and the second, is to perform the shifting part of the instruction, within
the translator. The second option will reduce the instruction overhead and execute the
shifts seamlessly inside the translator, however, it requires core modifications and extra
hardware.

As can be seen on Table shifts are incorporated in a big proportion of the in-
structions. This is logical because the compiler tries to utilize the shifter as much as
possible while at the same time reducing code size. On first sight, a strange output can
be seen for the programs crc.c and des.c where they seem to be more than the actual
instruction dispatched. This can actually be the case because of two special load/store
instructions where multiple consecutive locations of memory are accessed. However all of
these accesses are initialized by one instruction. As a result even though one instruction
is dispatched, this can be translated to several load/store instructions.

The choice between the two suggested implementations, should be based on appro-
priate profiling of the main application usage case of the to-be-designed system. If many
shifts are called (especially rotations as will be described below), then the second op-
tion should be chosen; if not, then the first option should be chosen. More details on
the instruction overhead difference between the two options will be presented in their
according sections below.

!The pipeline hazards and the according solutions were not tested since the simulator does not include
pipeline configuration

38 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

Table 4.3: Shift instructions in powerstone benchmark

program Total Cycles Total Shifts(Rotations)

bent.c 7171 5648 78% (5038 89% of shifts)

blit.c 56451 34621 61% (26375 76% of shifts)
compress.c 198448 295863 74% (116994 79% of shifts)
cre.c 53697 67155 125% (38915 57%116994 of shifts)
convolution.c 1330596 1018202 76% (701781 69% of shifts)
engine.c 1120660 949296 84% (372956 39% of shifts)
des.c 131401 149325 113% (86119 57% of shifts)
g3fax.c 2552428 1390576 54% (1339656 96% of shifts)
jpeg.c 8929392 6508136 72% (2279936 35% of shifts)
ucbgsort.c 466403 187050 40% (186045 99% of shifts)
v42.c 4597173 3613391 78% (1962181 54% of shifts)
pocsag.c 90407 64767 71% (57594 88% of shifts)

4.3.2.1 Solution 1. Instruction emulation.

The simplest solution and easiest in terms of implementation is to simply emulate all the
shifting sub-instructions with p-VEX instructions. The emulation procedure consists of
three steps. The first step is to check whether or not a shifting is actually required. In
some cases the second operand is not shifted at all, therefore, the rest of the steps are
not required. If shifting is not required, then the instruction is dispatched directly.

If shifting is required, then the shifted second operand will be calculated before the
actual instruction is executed, and it will be stored in a temporary register. The ARM
architecture supports five shift mechanisms:

e ASR Arithmetic shift right

e LSL Logical shift left

e LSR Logical shift right

e ROR Rotate right

e RRX Rotate right with extend.

All of the above are directly translated to p-VEX instructions except the two rotate
instructions. The two rotate instructions can be emulated by the p-VEX “ADDCG”
instruction. It needs to be noted that “ADDCG” is not intended specifically for rotations
(it is used for addition between numbers larger than 32 bits). As a result this instruction
is highly inefficient in performing rotations as it performs only one bit left rotation per
cycle. For example, for a rotate left by 20, “ADDCG” needs to be called 20 times. A
simple modification that is suggested for consideration is to modify the barrel shifter so
that it can perform rotations.

The third step is to resume correct program flow and execute the instruction that
requires the shifted result. Since there is no mechanism to pause the p-VEX PC, the
shifting instructions must be followed by a direct backwards jump instruction (“goto”),

4.3. ARCHITECTURAL DIFFERENCES BETWEEN ARMV4 AND p-VEX. 39

that jumps to the original PC-shift_cycles.Finally, the instruction is dispatched with the
second operand now being shifted and available in a general purpose register. Since the
translator that issues the instructions and the write back stage of the processor, are 3
stages apart, the translator needs to wait for 4 cycles before dispatching the instruction
that utilizes the shift result. During this time the translator should dispatch “NOPs”.
Furthermore, it must ignore the next 4 fetched instructions. As a result on normal shifts
the shift_cycles = 4 and for rotations it is at least 4 unless the rotate is larger than 4, on
which case shift_cycles = rotations.

As can be understood from the above, the overhead for a shift is at least 4 instructions
depending whether it is a rotation or not. An example “ADD” with a shifted second
operand program flow can be seen on table [4.4] Initially the translator receives an ARM
“ADD” instruction with a shifted second operand (shifted left by 2). The translator
begins the shifting subroutine and dispatches a “shl” instruction to calculate the second
operand. The result is stored in a random unutilised register, in this case r40. While
the second operand is calculated the translator dispatches NOPs. After three cycles the
result is in r40 and the translator issues a jump back to the initial PC and this time
the add instruction is dispatched. However instead of using register Rb as the second
operand it uses r40 which now contains the shifted result.

Table 4.4: Second operand calculation program flow. The “ADD” instruction has a
shifted second operand. First the shifted operand is calculated and then the main in-
struction is executed.

PC Value | Fetched instr(ARM) | Dispatched instr(VEX) NZCV=1000

PC ADD Ra. Ra, Rb LSL#2 shl $r0.r40, $r0.b, 2
PC+1 X NOP
PC+2 X NOP
PC+3 X NOP
PC+4 X goto -4
PC ADD Ra. Ra, Rb LSL#2 add $r0.Ra, $r0.Ra, $r0.R40

4.3.2.2 Solution 2. Register file live copy.

Another solution to the problem of shifting the second operand is to maintain a live copy
of the register file within the translator. This will allow the translator to calculate the
shifted operand internally. After the shifted value is calculated it can be driven as an
immediate value to the second operand datapath. These modifications can be seen in
red in figure Since in the current implementation only the User Mode registers are
used, the register file copy size needs to be only 16 registers wide. As seen above in the
emulation implementation, the overhead that results in most cases is quite significant.
Due to this, the live register copy technique was chosen in the provided implementation.

The only modification that is required on the p-VEX is a direct connection of the
target register value Rd. i.e. before the register file is written in stage 5 of the pipeline,
the value should also be driven to the translator. However, for instructions that contain
a shift, the translator can no longer dispatch instructions within one cycle, since it needs

40 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

to read the internal register file before calculating the shifted operand. This means
that whenever an instruction with shift is fetched, the translator initially dispatches a
backwards jump to the same instruction i.e. a “goto 0”7 while it calculates the shifted
operand and on the next cycle it dispatches the instruction.

Besides the above problem the translator control should also handle further problems
that can occur due to pipelining; and more specifically the RAW(Read After Write)
hazard. This can occur if the translator register file copy is out of date and the translator
tries to read the old values. As mentioned above the translator and the register write back
are 3 stages apart see figure [4.2] as a result if an instruction containing a shift, tries to
read a register whose value is out of date, the translator should dispatch “NOPs” along
with a jump backward instruction to provide time to the register file to be updated.
Essentially, the duplicate register file gets updated at the same time as the normal
register file. As a result the RAW hazards occur for both of the register files, at the
same time and for the same instructions. As a result, the same logic and procedure that
is used for normal pipeline hazards can be used for this problem. The duplicate register
file still introduces an overhead mainly due to pipeline hazards.

Overall, both solutions have their advantages and disadvantages. The instruction
emulation on one hand, has the advantage of implementation simplicity, since no core
modifications are required. Also the only extra required hardware for the emulation im-
plementation, is the control logic within the translator that keeps track of the subroutine
execution. Nevertheless, the first solution introduces a significant instruction overhead.
The second solution is the same as the first with the exception of a modification to the
p-VEX shifter which will allow rotations. This will result again in a significant overhead,
though slightly reduced compared to the first solution.

The third and final solution on the other hand, introduces a much smaller over-
head compared to the other two solutions, but requires some core modifications, and a
larger and more complex translator(16x32 register file, multiplexers, shifter) which can
potentially result in performance reduction.

4.3.3 Direct access to PC

In ARM architecture the PC is located in R15 which is a register that can be accessed
like any other register. In p-VEX the PC is not accessible by normal instructions. This
problem can be split into two categories: One, when an instruction tries to write the PC
and another when an instruction tries to read the PC.

4.3.3.1 Reading the Program Counter

When an instruction reads the PC, the value that should be provided is the PC plus 2 (8
bytes). The 2 LSB are always 0 since the PC values are always word aligned. A special
case to the above rule is the “stm” and “str” which can read either PC+2 or PC+3.
The choice between the two is implementation defined; for our case PC+2 is chosen for
simplification reasons. As a result, whenever PC is read the value that is provided should
always be PC+2.

Similar to previous cases, two options are provided: one is to simply drive the current
PC value to the translator as seen in figure [£.2] with the green color, and the other is

4.3. ARCHITECTURAL DIFFERENCES BETWEEN ARMV4 AND p-VEX. 41

to emulate the instructions that require the PC. The procedure is the same as the one
shown in table in chapter [3| with the exception of the subtraction step. Instead of
subtracting a ‘1’ it is added in order to acquire PC+2.

4.3.3.2 Writing the Program Counter

Any instruction that targets the PC register must be treated as a jump. As a result for
every instruction that is fetched, a check must be performed to determine whether or
not the target is PC (R15 in the ARM architecture). If the target is indeed PC then
two steps are required. The first step is to execute the instruction and save the result to
a temporary register. The second step is to jump to the address of that register. The
execution of the first step is straight forward, however the second step requires emula-
tion since no p-VEX instruction can perform register relative jumps. These emulation
instructions can be seen below:

1 ARM and R15, R14, R13; //Fetched instruction

2 VEX and R40, R14, R13; //Dispatched instruction, store in r40 instead of PC

3 and R62, R63, OxFFFFFFFF; // copy link register to a temporary register

| sub R40, R40, OxFFFFFFFF; // subtract 1 from RA40

5 igoto;//jump to R40

6 and R63, R62, OxFFFFFFFF; // copy R62 back to LR

7 Resume proper flow

When an instruction that targets rl5 arrives, the instruction is dispatched in the
same cycle, but instead of storing the result to r15, it is stored in a random temporary
unused register such as r40. After that the contents of the Link Register are also copied
to a random temporary location such us r62. Next a 1 is subtracted from the jump
target inside the temporary register R40. This is done because the jump, which is
performed in the next step, is performed 1 cycle before normal execution is resumed.
Finally the original Link Register value is copied back to the LR from the temporary
location. Essentially each instruction that targets the PC introduces an overhead of 4.

4.3.4 Conditional Execution

One of the most important characteristics of the ARM architecture is the conditional
execution. This means that instruction execution is conditional, i.e. even though all
instruction are fetched and parsed, not all are executed. Each instruction has 4 bits out
of 32 that indicate whether the instruction will be executed or not. Even though this
reduces the available bits for encoding in the instructions, it compensates for the lack of a
branch prediction unit in the ARM architecture. The flag bits can be updated depending
on the result of the execution of previous instructions. Any fetched instruction has the
bits in the instruction field compared to the flag bits, if they are equal the instruction is
executed, if not the instruction is not executed. This system is called predication.
p-VEX on the other hand, does not have a predication system, instead it utilizes
branch registers. This means that a system is needed to support the predication of
ARM architecture. In addition, not all instructions update the flag values. whether or
not an instruction updates the flags is set by the ‘S’ bit which is bit 20 of the 32bit
instruction. This is the same for all instructions capable of updating the flags.

V)

42 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

There are two parts in the predication system. First, is the flag updating system
and another one is to make the comparison between instruction and processor flags
before execution in order to determine whether or not the instruction will be executed.
Generally for both parts there are two options, one is emulation and the other is to
execute them locally on the translator.

4.3.4.1 Predication system emulation

The first option is to implement both flag updating and comparison, with p-VEX in-
structions emulation. The flags should be stored in the 4 LSBs or MSBs1 of a dedicated
unutilized register. An instruction should be executed only if the flags of the instruction
are equal to the flags of this register. This can be implemented with a simple ‘cmpeq’
instruction that dispatches the instruction flag values as an immediate value and com-
pares them to the register that contains the processor flags. The result should be stored
in a branch register. Next, a branch instruction checks the result of the comparison and
either jumps back to PC, hence executing the instruction, or proceeds to PC+1, thus
bypassing it. This procedure can be seen below:

PC and r2, r3, r4\\triggers flag comparison
PC cmpeq bl, fr, imm\\compare the flag reg. to the instruction flags

3 PC+1 NOP

V]

PC+2 NOP

5 PC+3 NOP

PC+4 goto —5\\jump to PC
PC br —1\\branch to PC

This procedure introduces an instruction overhead of 5 for every instruction that is
predicated. Next, the flag update procedure is examined. An instruction that is set
to update the flags, does not always update all the flags, here an example is presented
where one flag is updated. The following instructions show how the flag update can be
emulated:

Step 1 PC: Flag_-updating_instruction\\dispatch instruction

Step 2 PC+1: NOP\\wait for the instruction to execute

Step 3 PC+2: NOP\\wait for the instruction to execute

Step 4 PC+3: NOP\\wait for the instruction to execute

Step 5 PC+4: flag value calculation Rd=al\\Store the N flag in al
Step 6 P4n+5: NOP\\wait for flag calculation

Step 7 PCHn+6: NOP\\wait for flag calculation

Step 8 PCin+7: NOP\\wait for flag calculation

Step 9 PCHn+8: shl al, al, 3\\place the N flag in a4(3)
Step 10 PC4n+9: NOP\\wait for flag calculation
Step 11 PCH+n+10: NOP\\wait for flag calculation
Step 12 PCin+11: NOP\\wait for flag calculation

; Step 13 PC+n+12:0R Fr, al, Fr\\replace the old flag values with the new

ones
Step 14 PCin+13:goto —14\\jump back to normal program flow

Listing 4.1: Flag update emulation instructions.
Initially at step 1 an instruction that updates the N flag is dispatched. The instruction

is executed normally (supposing that the predication is 1) and then three NOPs are
dispatched to allow for the result to become available in the register file. After that at

4.3. ARCHITECTURAL DIFFERENCES BETWEEN ARMV4 AND p-VEX. 43

step 5 the flag is calculated. Note that the flag calculation duration is not constant and
varies based on the instruction and the data itself. It can vary anywhere between 4 cycles
up to 10. After the calculation is finished the flag is placed in register al. The next
step is to replace the old flag in the flag register Fr. After the bits are shifted in their
appropriate positions, all values are “ORed” and placed in the flag register. Figure 4.3
shows how all the flags are updated in the flag register from the individual flag values.

Figure 4.3: Flag register update emulation. Requires three cycles and eight instructions.

N calculation Z calculation C calculation V calculation
XXXX...NOOO XXXX...0Z00 XXXX...00C0 XXXX...000V
XXXX...NZ0O0 XXXX...00CV
XXX X...0000 XXXX..NZCV
OR
FLAGS

From the above procedure the precise way of flag calculation was omitted. This
is intentional because the exact procedure of calculating the flag value depends on the
individual instructions. These can be seen in the Appendix [B] or the second operand
calculation chapter

4.3.4.2 Translator predication system

The other choice for implementation regarding the predication system is to embed the
required functionality inside the translator. This should be implemented in combination
with the register duplicate solution presented here because the flag calculation
depends on at least one of the three operands of an instruction. Contrary to the emulation
solution presented above, the flags are stored locally within the translator. As a result
the required logic for generating and updating the flag values reside within the translator.

44 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

What follows is with the assumption that the register file duplicate system [4.3.2.2]is used.

Initially we examine the flag comparison procedure. Since everything is maintained
and calculated within the translator, the flags are now stored locally within four 1-bit
registers. The translator needs to compare the flags stored locally with the ones in
the instruction fields. If they are equal then the instruction is dispatched normally, if
they are not, then a NOP is dispatched. Comparing the flags locally in the translator
introduces zero overhead.

Next we examine the flag updating system. When an instruction is set to update the
flags, the translator dispatches the instruction normally and afterwards sends NOPs while
waiting for the result to be available to the register file duplicate. Once it is forwarded
to the duplicate register file, the translator dispatches a backwards jump instruction
while at the same time it calculates the new flags. Finally the next instruction is fetched
and executed. While this subroutine executes, any fetched instructions are ignored. A
sample program flow of this procedure can be seen below:

1 PC and $r0.a = $r0.b, $r0.c//issues a flag update
2 PC+1 NOP//wait for $r0.a result to be available
3 PC+2 NOP//wait for $r0.a result to be available

1 PC+3 NOP//wait for $r0.a result to be available

PC+4 goto —4//jump backwards while calculating new flags
6 PC+1 next instruction

4.4 Overflow/Borrow detection

The ARM architecture utilizes overflow /underflow and borrow detection for the subtrac-
tion calculations. More specifically the ‘V’ flag is based on overflow detection and the 'C’
flag is sometimes based on the borrowed bit in subtractions. p-VEX does not support
any form of overflow or borrow detection. Similarly to the previous cases the overflow
detection mechanism needs to be either emulated or embedded within the translator.

4.4.1 Overflow detection

First we examine the overflow detection. Overflow can only be generated from the adder
when an addition or a subtraction is performed. When the bits required to represent a
number are not enough then an overflow occurs. As an example consider the following
two numbers a = 0110, b = 0101 which in twos complement are equal to 6 and 5
respectively. When they are added we receive the number a + b = 1011 which in twos
complement is equal to -5 which is obviously wrong. However, if we had one extra bit
in our disposal this number would be represented as 01011 which in twos complement
is 11. The other case from overflow comes from the subtraction. Consider the following
example where ¢ = 0111 = 7 and b = 1010 = —6 and we need to calculate a - b. The
result should obviously be a —b = 13 however the twos complement subtraction provides
the following result 0111 — 1010 = 0111 + 0110 = 1101 = —3 (The negative of a twos
complement number is —a = @ + 1) which is not correct. The general rule to detect
overflow from addition and subtraction is the following:

e Addition

4.5. SECOND OPERAND CALCULATION 45

In the case that the overflow is implemented within the translator then the flag unit
as seen in figure can implement the above logic and update the flags seamlessly. In
the case of emulation, then the ‘C’ flag value calculation step [4.1]is replaced by a set of
instructions that calculate the above logic depending if it is addition or subtraction.

4.4.2 Borrow detection

The borrow detection occurs only in subtractions and can sometimes update the ‘C’
flag. Borrow occurs when the true subtraction result is less than 0 when the operands
are treated as unsigned integers, so the subtraction a - b will produce a borrow in the
following case:

1 if (unsigned(a) < unsigned (b))

2 {

3 return 1;
1}

5 else

s {

7 return O0;
s }

Similarly to the above case this can either be implemented within the translator or by
emulation.

4.4.3 Carry detection

This can occur only in addition and returns a 1 when there was a carry out generation
from the 32 bit addition. Essentially occurs when the result is bigger than 2(32) —1in
unsigned arithmetic. Again this can be implemented in the translator or emulated. In
the case of emulation, the “addcg” instruction can be used to detect the carry out of the
addition.

4.5 Second operand calculation

This section describes the way the second operand is decoded and calculated. In section
a disription was given as to how to implement the shifting mechanism that is
required to calculate the second operand. Regardless of the chosen implementation, the
same decoding procedure should be followed and the same results should be yielded. As
mentioned earlier, ARM architecture does not have separate shift instructions, instead
all the shifting functionality is embedded in the instruction fields which determine how

46 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

and if the second operand will be shifted. We will examine how to decode the fields that
specify the second operand. Generally there are 11 formats that determine how and if
the second operand will be shifted and those formats are the following:

e Immediate.

e Register.

e Logical left shift by immediate.

e Logical left shift by register.

e Logical right shift by immediate.

e Logical right shift by register.

e Arithmetic right shift by immediate.
e Arithmetic right shift by register.

e Rotate right by immediate.

e Rotate right by register.

e Rotate right with extend.

Arm architecture specifies that besides the shifted operand, the shifter should also
produce a carry out which sometimes updates the C flag. This however in the p-VEX
cannot be the case since the shifter cannot produce these values. The carry out cal-
culation will either be emulated or generated within the translator depending on the
implementation that is chosen (see section . In this section, besides presenting
the shifted value calculation, the carry out generation from the shifter is also described.
This value is used sometimes to update the ‘C’ flag values as mentioned in the previous

section 4.3.4.11

4.5.1 Immediate generation

31 28 27 26 25 24 21 20 19 16 15 12 11 8§ 7 0

cond 001 opcode S Rn Rd rotate_imm immed_8§

This subsection describes the decoding procedure of the second operand for imme-
diate values. Essentially it describes how immediate values are produced as a second
operand. The immediate value is acquired by rotating an 8-bit immediate to an even
position in a 32-bit word. If the rotation immediate is zero, then the carry-out from the
shifter is the C flag, otherwise it is the 31st bit of the shifter operand. The pseudo code
for these operations can be seen below:

N

4.5. SECOND OPERAND CALCULATION 47

shifter_operand = immed_-8 Rotate_Right (rotate_.imm x* 2)
if rotate.imm == 0 then

shifter_carry_out = C flag
else /x rotate_.imm != 0 x/

shifter_carry_out = shifter_operand [31]

The shifter_carry_out logic should be either embedded in the translator logic or emulated
depending on the implementation chosen here If both the predication system
and shifting mechanism are implemented inside the translator, then the shifter_carry_out
calculation is trivial and the above procedure should be followed. If the shifting mecha-
nism is not implemented inside the translator then the procedure explained here should
be followed Essentially the translator should dispatch NOPs to wait until the
second_operand result becomes available. At this point the 31st bit should be extracted
within the translator in order to update the C flag. If neither the predication, nor the
shifting mechanism is implemented within the translator, i.e. everything is emulated,
then the procedure shown here should be followed. The flag value calculation can
be provided by a ‘tbit’ instruction that extracts the 31st bit of the result or the C flag
from the flag register. The field encoding annotation can be seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

opcode: Main instruction opcode.

S: Determines whether the instruction will update the flags.

Rn: Determines the first source operand register.

Rd: determines the destination register.
e rotate_imm: determines the rotation amount.

e immed_8: determines the initial immediate value to be rotated.
4.5.2 Unmodified register

31 28 27 26 25 24 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 0 0 O] opcode |S Rn Rd 00 0O0O0(OO0O Rm

This format dictates that the value of the register Rm is provided completely un-
modified. Furthermore the carry_out flag is equal to the C flag, which in the case of
emulation it can be provided by a “tbit” instruction which copies the C flag from the
flag register to a destination register. Having said that there is nothing else non-trivial
about this decoding procedure. The field encoding annotation can be seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

e opcode: Main instruction opcode.

48 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

S: Determines whether the instruction will update the flags.

Rn: Determines the first source operand register.

Rd: determines the destination register.

e Rm: Second operand register.
4.5.3 Logical left shift by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 000 opcode S Rn Rd shift_imm 000 Rm

This format dictates that the second operand will be provided by a register value
logically shifted to the left by an immediate. The data inside the register Rm is shifted
left and zeros are pushed in from the right. The shift amount is provided by an immediate
value. The carry out of this operation is the last bit that was popped out of the left.
The pseudo-code for the above functionality can be seen below:
if shift_.imm = 0 then /x Register Operand x/

shifter_operand = Rm
shifter_carry_out = C Flag
else /% shift_imm > 0 x*/

shifter_operand = Rm Logical_Shift_Left shift_imm
shifter_carry_out = Rm[32 — shift_imm]

The shfiter_carry_out should be calculated with the procedure described above [4.5.1]
The field encoding annotation can be seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

opcode: Main instruction opcode.

S: Determines whether the instruction will update the flags.

Rn: Determines the first source operand register.

Rd: determines the destination register.

shift_imm: Denotes the shift amount.

e Rm: Second operand register.

4.5.4 Logical left shift by register

This format dictates that the second operand will be provided by a register value logically
shifted to the left by a register value. The data inside the register Rm is shifted left and
zeros are pushed in from the right. The shift amount is provided by the 8 LSBs of

1

2

V)

4.5. SECOND OPERAND CALCULATION 49

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 O] opcode |S Rn Rd Rs 0001 Rm

register Rs. The carry out of this operation is the last bit that was popped out of the
left. If the shift amount is larger than 32 then the carry out is zero. The pseudo-code
for the above functionality can be seen below:
if Rs[7:0] = 0 then
shifter _operand = Rm
shifter_carry_out = C Flag
else if Rs[7:0] < 32 then
shifter _operand = Rm Logical _Shift_Left Rs[7:0]
shifter_carry_out = Rm[32 — Rs[7:0]]
else if Rs[7:0] = 32 then
shifter _operand = 0
shifter_carry_out = Rm[0]
else /+x Rs[7:0] > 32 x/
shifter _operand = 0
shifter_carry_out = 0

The shfiter_carry_out should be calculated with the procedure described above [4.5.1]
The above can be emulated by the translator in 4 stages. Since there are four conditions
the translator needs to determine which one is true without having a picture of the
values or the result. This can be done by monitoring the incoming instruction after
a compare and branch. i.e. for every condition above a compare and branch should
be performed sequentially and conditionally. The branch should point to the original
instruction if the comparison is true and to the next one if the comparison is false. This
way the translator can monitor the program flow and dispatch another set of compare
and branch instructions or proceed to the next instruction. As an example suppose that
Rs[7:0] | 32 which corresponds to the second condition. Initially the translator dispatches
the instruction required to execute the first condition as follows:

PC and RX, Rs, imm(0x000000FF)

PC+1 NOP

PC+2 NOP

PC+3 NOP

PC+4 cmpeq BX, RX, imm(0)//compare RX with zero

PC+5 goto —5//jump back to PC
PC br BX, —1//branch to PC if the above comparison is true

At this point the next instruction that will arrive is going to be either the same that
is currently being executed or the one located in PC—i—lﬂ Since Rs[7:0] j 32 the latter
is the case and the instruction that arrives is the one contained in PC+1. As a result

2There is an extreme case where the two arriving instructions are exactly the same which can result in
a deadlock. This has not been tested since the simulator implementation does not include the emulation
procedures. However a possible failsafe solution is to calculate all result cases and all “if else” conditions
and store them in registers. As a result, the condition registers will contain either a 1 or a 0 but only
a single register will be 1. These registers need to be left shifted by 31 and then signed right shifted by
31 again in order to copy the LSB to all 32 positions. This way when the condition registers are ANDed

V]

50 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

the translator knows that the comparison was not true and ignores the next instruction.
Next it dispatches the instructions required for the second condition:

PC+1 cmplt BX, RX, imm(32)
PC+2 NOP

3 PC4+3 NOP

N S

PC+4 NOP

PC+5 cmpeq BX, RX, imm(0)//compare RX with zero and store in branch
register

PC+6 goto —6//jump back to PC

PC br BX, —1//branch to PC if the above comparison is true

Now that the same instruction will arrive the translator knows that the comparison was
true and continues with the corresponding flag calculation procedure:

PC+1 sub RX, imm(32), RX

PC+2 NOP

PC+3 NOP

PC+4 NOP
PC+5 tbit RX, Rm, RX

Similarly when the comparison proceeds to the other conditions the emulations would be
the same with different comparison instructions. The above emulation procedure should
be used whenever the shifter_carry_out is requested for updating the C flag. The field
encoding annotation can be seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

opcode: Main instruction opcode.

S: Determines whether the instruction will update the flags.

Rn: Determines the first source operand register.

Rd: determines the destination register.

shift_imm: Denotes the shift amount.

Rm: Second operand register.
4.5.5 Logical right shift by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 000 opcode S Rn Rd shift imm 010 Rm

This format dictates that the second operand value is provided by a register value
logically shifted to the right by an immediate value. The data inside register Rm is

with the result registers only on will remain with its contents unchanged, the rest will be reduced to 0.
Then is a simple matter of ORing all the result registers to acquire the final value.

1
2
3
1
5

6

1

2
3

1
5
6

8

9

4.5. SECOND OPERAND CALCULATION 51

shifted to the right by an immediate value with zeroes pushed in from the left. The
carry out of this operation is the last bit that was popped out from the right. The
pseudo-code for the above functionality can be seen below:
if shift.imm == 0 then

shifter_operand = 0

shifter_carry_out = Rm[31]
else /# shift_imm > 0 x/

shifter _operand = Rm Logical_Shift_Right shift_.imm

shifter_carry_out = Rm[shift_imm — 1]

The shfiter_carry_out should be calculated with the procedure described above [4.5.1]
The field encoding annotation can be seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

opcode: Main instruction opcode.

S: Determines whether the instruction will update the flags.

Rn: Determines the first source operand register.

Rd: determines the destination register.
e shift_imm: Denotes the shift amount.

e Rm: Second operand register.
4.5.6 Logical shift right by register

31 28 27 26 25 24 21 20 19 16 15 12 11 8§ 7 6 5 4 3 0

cond 0 O O opcode [S Rn Rd Rs 0011 Rm

This format dictates that the second operand will be provided by a register value
logically shifted to the right by a another register value. The data inside register Rm is
shifted to the right by the value located in the 8 LSBs of Rs, with zeroes pushed in from
the left. The carry out of this operation is the last bit that was popped out from the
right. If the shift amount is larger than 32, then the carry out is zero. The pseudo-code
for the above functionality can be seen below:
if Rs[7:0] = 0 then

shifter _operand = Rm
shifter_carry_out = C Flag
else if Rs[7:0] < 32 then

shifter _operand = Rm Logical_Shift_Right Rs[7:0]
shifter_carry_out = Rm[Rs[7:0] — 1]

7 else if Rs[7:0] = 32 then

shifter_operand = 0
shifter_carry_out = Rm[31]

10
11

12

52 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

else /+x Rs[7:0] > 32 %/D
shifter_operand = 0
shifter_carry_out = 0

The shfiter_carry_out should be calculated with the procedure described above [4.5.1]
The emulation procedure is similar as in [£.5.4] The field encoding annotation can be
seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

opcode: Main instruction opcode.

S: Determines whether the instruction will update the flags.

Rn: Determines the first source operand register.

Rd: Determines the destination register.

Rs: Determines the shift amount.

e Rm: Second operand register.
4.5.7 Arithmetic shift right by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 000 opcode S Rn Rd shift_imm 1 00 Rm

This format dictates that the second operand will be provided by a register value
arithmetically shifted to the right by an immediate value. The data inside register Rm
are shifted to the right by an immediate value in the range of 1-32 with the sign bit
pushed in from the left. The carry out of this operation is the last bit that was popped
out from the right. If the shift amount is larger than 32, then the carry out is zero. The
pseudo-code for the above functionality can be seen below:
if shift_.imm == 0 then

if Rm[31] = 0 then
shifter_operand = 0
shifter_carry_out = Rm[31]
else /x Rm[31] = 1 x/
shifter _operand = OxFFFFFFFF
shifter_carry_out = Rm[31]
else /# shift_.imm > 0 */
shifter _operand = Rm Arithmetic_Shift_Right <shift_imm>
shifter_carry_out = Rm[shift_imm — 1]

The shfiter_carry_out should be calculated with the procedure described above [4.5.1]
The emulation procedure is similar as in The field encoding annotation can be
seen below:

4.5. SECOND OPERAND CALCULATION 53

cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

opcode: Main instruction opcode.

S: Determines whether the instruction will update the flags.

Rn: Determines the first source operand register.

Rd: Determines the destination register.

shift_imm: Determines the shift amount.

e Rm: Second operand register.
4.5.8 Arithmetic shift right by register

31 28 27 26 25 24 21 20 19 16 15 12 11 8 76 5 4 3 0

cond 0 0 O opcode |S Rn Rd Rs 0101 Rm

This format dictates that the second operand will be provided by a register value
arithmetically shifted to the right by a register value. The data inside register Rm are
shifted to the right by the value inside the 8 LSBs of register Rs, with the sign bit
pushed in from the left. The carry out of this operation is the last bit that was popped
out from the right. If the shift amount is larger than 32, then the carry out is zero. The
pseudo-code for the above functionality can be seen below:
if Rs[7:0] = 0 then

shifter _operand = Rm
shifter_carry_out = C Flag

else if Rs[7:0] < 32 then
shifter _operand = Rm Arithmetic_Shift _Right Rs[7:0]

shifter_carry_out = Rm[Rs[7:0] — 1]
else /x Rs[7:0] >= 32 %/
if Rm[31] = 0 then

shifter_operand = 0
shifter_carry_out = Rm[31]
else /+x Rm[31] = 1 x/
shifter_operand = OxFFFFFFFF
shifter_carry_out = Rm[31]

The shfiter_carry_out should be calculated with the procedure described above [4.5.1]
The emulation procedure is similar as in The field encoding annotation can be
seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.
e opcode: Main instruction opcode.

e S: Determines whether the instruction will update the flags.

N

54 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

Rn: Determines the first source operand register.

Rd: Determines the destination register.

Rs: Determines the shift amount.

e Rm: Second operand register.
4.5.9 Rotate right by immediate

31 28 27 26 25 24 21 20 19 16 15 12 11 7 6 5 4 3 0

cond 0 0 0| opcode S Rn Rd shift_imm 1 10 Rm

This format dictates that the second operand value will be provided by the value of

a register rotated right by an immediate. The data inside register Rm are rotated to
the right by an immediate value. Bits popped out of the right are inserted back into the
value from the left. The carry out of this operation is the last bit that was popped out
from the right. The pseudo-code for the above functionality can be seen below:
if shift.imm == 0 then

See \ref{}
else /x shift_.imm > 0 */

shifter _operand = Rm Rotate_Right shift_imm

shifter_carry_out = Rm[shift_.imm — 1]
The shfiter_carry_out should be calculated with the procedure described above
The field encoding annotation can be seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

opcode: Main instruction opcode.
e S: Determines whether the instruction will update the flags.

e Rn: Determines the first source operand register.

Rd: Determines the destination register.

shift_imm: Determines the shift amount.

e Rm: Second operand register.

4.5.10 Rotate right by register

This format dictates that the second operand value will be provided by the value of a
register rotated right by a register value. The data inside register Rm are rotated to the
right by value contained in the 5 LSB of register Rs. Bits popped out of the right are
inserted back into the value from the left. The carry out of this operation is the last bit
that was popped out from the right. The pseudo-code for the above functionality can
be seen below:

4.5. SECOND OPERAND CALCULATION 95

31 28 27 26 25 24 21 20 19 16 15 12 11 8 7 6 5 4 3 0

cond 0 0 0| opcode |S Rn Rd Rs 0111 Rm

1 if Rs[7:0] = 0 then

2 shifter _operand = Rm

3 shifter_carry_out = C Flag

i else if Rs[4:0] = 0 then

5 shifter _operand = Rm

6 shifter_carry_out = Rm[31]

7 else /x Rs[4:0] > 0 x/

8 shifter _operand = Rm Rotate_Right Rs[4:0]
9 shifter_carry_out = Rm[Rs[4:0] — 1]

The shfiter_carry_out should be calculated with the procedure described above [4.5.1]
The emulation procedure is similar as in The field encoding annotation can be
seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

opcode: Main instruction opcode.

S: Determines whether the instruction will update the flags.

e Rn: Determines the first source operand register.

Rd: Determines the destination register.

Rs: Determines the shift amount.

e Rm: Second operand register.

4.5.11 Rotate right by with extend

31 28 27 26 25 24 21 20 19 16 15 121110 9 8 7 6 5 4 3 0

cond 00 O opcode |S Rn Rd 000O0OO0OT1T10 Rm

This format dictates a right rotation on a 33-bit value using the C flag as the 33rd
bit. Essentially, the value is obtained by right shifting Rm by one and replacing the
vacated MSB with the carry flag. The bit that was popped out of the right is the carry
out.

1 shifter_operand = (C Flag Logical_Shift_Left 31) OR (Rm Logical_Shift_Right
1)

2 shifter_carry_out = Rm[0]

56 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

The field encoding annotation can be seen below:

e cond: The instruction flag values NZCV in bits 31,30,29 and 28 respectively.

opcode: Main instruction opcode.

S: Determines whether the instruction will update the flags.

Rn: Determines the first source operand register.

Rd: Determines the destination register.

e Rm: Second operand register.

4.6 Memory Addressing Modes

When it comes to memory access, p-VEX has one addressing mode, which is the follow-
ing:
address = Rx + imm

Basically a signed immediate value is added to a signed register value to acquire the
address. This however is not the case in ARM architecture since it has fifteen addressing
modes. Furthermore, some addressing modes utilize post and pre-indexing. This means
that sometimes the contents of the base address register are replaced with a new value
before or after the memory access. The address calculation can be handled inside the
translator in a relatively simple way, or emulated.The index replacement however, needs
to be emulated regardless of the implementation chosen. All fifteen addressing modes
are presented below.

4.6.1 Immediate offset

This mode calculates the address by adding or subtracting an immediate offset to the
base register. This is the only case that the addressing mode has similarities to the
p-VEX. The offset is an unsigned number which can be either added or subtracted to
the base register. On the other hand, p-VEX architecture always adds a signed offset to
the base register. For this reason, the translator should perform a sign extension on the
offset before dispatching it. The operation logic can be seen below:

1 //Depending on the instruction

2 //the offset can be either offset_8
3 //or offset_12(See below)

5 if U=— 1 then

6 address = Rn + offset
7 else /x U= 0 x/

8 address = Rn — offset

e Rn: Base address register

e offset_12: Encoded in bits 11 down to 0.

N

w

V)

6

4.6. MEMORY ADDRESSING MODES o7

immedH: Encoded in bits 11 down to 8 in the instruction.

immedL: Encoded in bits 3 down to 0 in the instruction.

offset_8: immedH && immedL

U: Encoded in bit 23 in the instruction.

If the translator handles the offset, then the register live copy should also be imple-
mented (see . If the emulation approach is chosen then the following instructions
will result in the complete address located in a register, which can then be used as is,
i.e. offset of zero. The emulation procedure can be seen below:

if U= 1 then translator dispatches the following:
add Rx1, Rn, offset
goto —2

if U= 0 then translator dispatches the following:
sub Rx1, offset, Rn
goto —2

4.6.2 Register offset

This mode calculates the address by adding or subtracting a register value offset to the
base register. The operation logic can be seen below:

if U=— 1 then
address = Rn + Rm

else /x U= 0 x/
address = Rn — Rm

e Rn: Base address register
e Rm: Offset register

e U: Encoded in bit 23 in the instruction.

If the translator handles the offset, then the register live copy should also be imple-
mented (see . If the emulation approach is chosen then the following instructions
will result in the final memory address located in a register, which can then be used as
is, i.e. offset of zero. The emulation procedure can be seen below:

if U= 1 then translator dispatches the following:
add Rx1, Rn, Rm
goto —2
else if U= 0 then translator dispatches the following:

sub Rx1, Rm, Rn
goto —2

58 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

4.6.3 Scaled register offset

This mode generates the address by adding a shifted register value to the base address.
The operation logic can be seen below:

case shift of
0b00 /+ LSL =/
index = Rm Logical_Shift_Left shift_.imm
0b01 /x LSR x/
if shift_.imm == 0 then /% LSR #32 x/
index = 0
else
index = Rm Logical_Shift_Right shift.imm
0b10 /% ASR x/
if shift_.imm == 0 then /% ASR #32 x/

if Rm[31] = 1 then
index = OxFFFFFFFF
else
index = 0
else

index = Rm Arithmetic_Shift _Right shift_imm

7 0bll /% ROR or RRX %/

if shift_.imm = 0 then /x RRX x/
index = (C Flag Logical_Shift_Left 31) OR
(Rm Logical_Shift_Right 1)
else /x ROR x/
index = Rm Rotate_Right shift_imm
endcase

5 if U= 1 then

address = Rn + index
else /[« U= 0 %/
address = Rn — index

e Rn: Base address register

e Rm: Offset register

e LSL: Logical shift left

e LSR: Logical shift right

e ASR: Arithmetic shift right

e ROR: Rotate right

e RRX: Rotate right with extend

e shift_imm: Shift amount contained in bits 11 down to 7
e U: Encoded in bit 23 in the instruction.

Only one of the above cases will be executed, i.e. only one of the shifts will be dis-
patched since all the values in the conditions are available immediately to the translator.
As a result the logic can be implemented inside the translator. The way the shift is
implemented is dependent on the implementation choice(See .

4.6. MEMORY ADDRESSING MODES 99

index = shifted _Rm
if U= 1 then translator dispatches the following:
add Rx1, Rn, index

goto —2

else if U= 0 then translator dispatches the following:
sub Rx1, Rm, index
goto —2

4.6.4 Immediate pre-indexed

This case is almost the same as the one above with the exception that the new ad-
dress can replace the old base address register. The replacement occurs if the predication
is true. The operation logic can be seen below:

//Depending on the instruction
//the offset can be either offset_8
//or offset_12(See below)
if U= 1 then

address = Rn + offset
else /x if U= 0 x/

address = Rn — offset

if predication = true then
Rn = address

e Rn: Base address register

e offset_12: Encoded in bits 11 down to 0.

e immedH: Encoded in bits 11 down to 8 in the instruction.
e immedL: Encoded in bits 3 down to 0 in the instruction.
e offset 8: immedH && immedL

U: Encoded in bit 23 in the instruction.

The predication check and potential address replacement should occur after the mem-
ory request has been dispatched. For the predication implementation See [£.3.4.1] The
emulation procedure can be seen below:

if U= 1 then translator dispatches the following:
add Rx1, Rn, offset
goto —2
else if U= 0 then translator dispatches the following:
sub Rx1, Rm, offset
goto —2
if predication = true then

add Rn, Rx1, RO

N

60 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

4.6.5 Register pre-indexed

This case is almost the same as the one above with the exception that the new ad-
dress can replace the old base address register. The replacement occurs if the predication
is true. The operation logic can be seen below:

if U= 1 then
address = Rn + Rm

else /x if U= 0 %/
address = Rn — Rm

if predication = true then
Rn = address

e Rn: Base address register
e Rm: Offset register

e U: Encoded in bit 23 in the instruction.

The predication check and potential address replacement should occur after the mem-
ory request has been dispatched. For the predication implementation See [4.3.4.1l The
emulation procedure can be seen below:

if U= 1 then translator dispatches the following:
add Rx1, Rn, Rm
goto —2

else U= 0 then translator dispatches the following:
sub Rx1, Rm, Rn
goto —2

if predication = true then
add Rn, Rx1, RO

4.6.6 Scaled register pre-indexed

This mode generates the address by adding a shifted register value to the base address.
Furthermore, if the predication is true the old base address is replaced by the new one.
The operation logic can be seen below:

case shift of
0b00 /% LSL x/
index = Rm Logical_Shift_Left shift_.imm
0b01 /+ LSR x/
if shift_imm == 0 then /* LSR #32 x/
index = 0
else
index = Rm Logical_Shift_Right shift_imm
0b10 /x ASR x/
if shift_.imm == 0 then /% ASR #32 x/
if Rm[31] = 1 then
index = OxFFFFFFFF
else

(] []
)

N
o

O NN
©

N}
0

1

2

4.6. MEMORY ADDRESSING MODES 61

index = 0
else
index = Rm Arithmetic_Shift_Right shift_imm
0b1l /+ ROR or RRX x/
if shift_imm = 0 then /x RRX x/
index = (C Flag Logical_Shift_Left 31) OR
(Rm Logical_Shift_Right 1)
else /x ROR x/
index = Rm Rotate_Right shift_.imm

; endcase

if U=— 1 then
address = Rn + index
else /x U= 0 =/
address = Rn — index
if predication = true then
Rn = address

e Rn: Base address register

e Rm: Offset register

e LSL: Logical shift left

e LSR: Logical shift right

e ASR: Arithmetic shift right

e ROR: Rotate right

e RRX: Rotate right with extend

e shift_imm: Shift amount contained in bits 11 down to 7

e U: Encoded in bit 23 of the instruction

Only one of the above cases will be executed, i.e. only one of the shifts will be dis-
patched since all the values in the conditions are available immediately to the translator.
As a result the logic can be implemented inside the translator. The way the shift is
implemented is dependent on the implementation choice(See . For the predication
implementation See The emulation procedure can be seen below:

index = shifted_Rm

if U= 1 then translator dispatches the following:
add Rx1, Rn, index
goto —2

else U= 0 then translator dispatches the following:
sub Rx1, Rm, index
goto —2

if predication = true then
add Rn, Rx1, RO

62 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

4.6.7 Immediate post-indexed

This case uses only the base address to access the memory. Next the base address can be
updated or not with the new calculated address. This mode differs from the pre-indexed
modes in two ways: one only the base address is used without taking into account the
offset, and two the potential replacement of the old base register value takes place after
the memory address is dispatched.

1 //Depending on the instruction

2 //the offset can be either offset_8
//or offset_12(See below)

5 address = Rn

¢ if predication = true then
7 if U= 1 then

8 Rn = Rn + offset

9 else /x U= 0 %/

10 Rn = Rn — offset

e Rn: Base address register

offset_12: Encoded in bits 11 down to 0.

immedH: Encoded in bits 11 down to & in the instruction.

immedL: Encoded in bits 3 down to 0 in the instruction.

offset_8: immedH & & immedL

U: Encoded in bit 23 in the instruction.

The predication check and potential address replacement should occur after the mem-
ory request has been dispatched. For the predication implementation See [4.3.4.1l The
emulation procedure can be seen below:

2 if U= 1 then translator dispatches the following:
add Rx1, Rn, offset

1 goto —2

5 else if U= 0 then translator dispatches the following:
6 sub Rx1, Rm, offset

7 goto —2

s if predication = true then

9 add Rn, Rx1, RO

4.6.8 Register post-indexed

This is the same as the previous case, except instead of immediate offset a register value
is used.
1 address = Rn

2> if predication = true then
3 if U= 1 then

4.6. MEMORY ADDRESSING MODES 63

Rn = Rn + Rm
else /x U= 0 x/
Rn = Rn — Rm

e Rn: Base address register

e Rm: Offset register

e U: Encoded in bit 23 in the instruction.

The predication check and potential address replacement should occur after the mem-
ory request has been dispatched. For the predication implementation See 4.3.4.1l The
emulation procedure can be seen below:

if U= 1 then translator dispatches the following:
add Rx1, Rn, Rm

goto —2

else if U= 0 then translator dispatches the following:
sub Rx1, Rm, Rn
goto —2

if predication == true then

add Rn, Rx1, RO

4.6.9 Scaled register post-indexed

This mode uses the base register address as memory address. Next depending on the
predication the old base register might be replaced with the new value which is the
shifted register value added or subtracted to the old base address.

address = Rn
case shift of
0b00 /% LSL x/
index = Rm Logical_Shift_Left shift.imm
0b01 /+ LSR x/
if shift_.imm == 0 then /x LSR #32 x/
index = 0
else
index = Rm Logical_Shift_Right shift_imm
0b10 /+ ASR x/
if shift_.imm == 0 then /*x ASR #32 x/

if Rm[31] = 1 then
index = OxFFFFFFFF
else
index = 0
else

index = Rm Arithmetic_-Shift_Right shift_imm
0b1l /+ ROR or RRX x/
if shift_imm = 0 then /% RRX x/
index = (C Flag Logical_Shift_Left 31) OR
(Rm Logical_Shift_Right 1)
else /*x ROR x/
index = Rm Rotate_Right shift_.imm

NN
s

N}

O NN
[0

N

o W

64 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

endcase

if predication = true then
if U= 1 then
Rn = Rn + index

else /+ U= 0 %/
Rn = Rn — index

e Rn: Base address register

e Rm: Offset register

e LSL: Logical shift left

e LSR: Logical shift right

e ASR: Arithmetic shift right

e ROR: Rotate right

e RRX: Rotate right with extend

e shift_imm: Shift amount contained in bits 11 down to 7

e U: Encoded in bit 23 in the instruction

Only one of the above cases will be executed, i.e. only one of the shifts will be dis-
patched since all the values in the conditions are available immediately to the translator.
As a result the logic can be implemented inside the translator. The way the shift is
implemented is dependent on the implementation choice(See . For the predication
implementation See The emulation procedure can be seen below:

index = shifted_Rm
if U= 1 then translator dispatches the following:
add Rn, Rn, index

goto —2

else U= 0 then translator dispatches the following:
sub Rn, index, Rn
goto —2

4.6.10 Multiple Load/Stores increment before/after

This addressing mode sets the start_address for the multiple load/store instructions.
Load/store instructions access the memory numerous times to get sequential data as is
more thoroughly explained in the instruction translation Appendix [B] The start_address
is calculated and stored in the base register. Subsequent addresses are acquired by
incrementing the previous value by 4, starting with the start_address. Furthermore
an end_address is also calculated to determine the number of memory accesses. Both
the start_address and end_address are calculated initially before the memory access is
performed. Depending on the value of bit 24 one of the two procedures is followed:

1

)
3
1

¥

4.6. MEMORY ADDRESSING MODES 65

if (bit24 = 0) then//this check can be performed in the translator
start_address = Rn
end_address = Rn + (Number_Of_Set_Bits_In(register_list) % 4) — 4
if predication = true and bit21 = 1 then
Rn = Rn + (Number_Of_Set_Bits_In(register_list) * 4)
else
start_address = Rn + 4
end_address = Rn + (Number_Of_Set_Bits_In(register_list) * 4)
if predication = true and bit21 =— 1 then
Rn = Rn + (Number_Of_Set_Bits_In(register_list) * 4)

start_address: Determines the address from which memory accesses initialize

Rn: Contains the value of the base address

register_list: bits 15 down to 0 of the instruction

e (Number_Of_Set_Bits_In: The number of ‘1’s in the value

The number_of _set_bits_in(register_list) parameter can be always calculated inside
the translator since the register_list is available in the instruction field. Aside from that
there is also the value of the end_address that needs to be calculated as well as the
new Rn value. If the register copy is implemented(See then these values can
be calculated within the translator, in the case of emulation the following instructions
needs to be dispatched in order to calculate the end_address and the new Rn value:
add Rx1l, Rn imm(number_of_set_bitsx4)
sub Rx1, 4, Rx1//Rxl now contains the end_address
if bit21 1//check within the translator

if predication = true
add, Rn, Rn, imm(number_of_set_bitsx4)

Furthermore, in the second case where bit24 == 1, the start_address also needs to
be calculated since it is equal to Rn+4 this can be done with a simple “add” instruction.

4.6.11 Multiple Load/Stores decrement before/after

This addressing mode sets the start_address for the multiple load/store instructions.
Load/store instructions access the memory numerous times to get sequential data as
is more thoroughly explained in the instruction translation Appendix [B] later on. The
start_address is calculated and stored in the base register. Subsequent addresses are
acquired by decrementing the previous value by 4, starting with the start_address. Fur-
thermore an end_address is also calculated to determine the number of memory accesses.
Both the start_address and end_address are calculated initially before the memory access
is performed. The difference with the previous case(increment before/after) is that the
start address now is the value of the base address minus all the words that we want to
access. Essentially in the first case the base register serves as the start_address and in
the second case as the end_address. Figure shows this visually. The blue case on the
left is the decrement before/after and the red case is the increment before after. In the
first case start_address is -20 and end address is the base address, while in the second
case the start address is the base address and the end address is +20.

N

66 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

Figure 4.4: Multiple load store, increment vs decrement.

Decrement) Increment

Start_address /
end_address

Depending on the value of bit 24 one of the two procedures is followed:

if (bit24 = 0) then//this check can be performed in the translator
start_address = Rn — (Number_Of_Set_Bits_.In(register_list) x 4) + 4
end_address = Rn
if predication == true and bit21 = 1 then
Rn = Rn — (Number_Of_Set_Bits_In(register_list) * 4)
else
start_address = Rn — (Number_Of_Set_Bits_.In(register_list) * 4)
end_address = Rn — 4
if predication = true and bit21 = 1 then
Rn = Rn — (Number_Of_Set_Bits_In(register_list) * 4)

e start_address: Determines the address from which memory accesses initialize
e Rn: Contains the value of the base address
e register_list: bits 15 down to 0 of the instruction

o (Number_Of_Set_Bits_In: The number of ‘1’s in the value

The number_of_set_bits_in(register_list) parameter can be always calculated inside
the translator since the register_list is available in the instruction field. Aside from that
there is also the value of the end_address that needs to be calculated as well as the
new Rn value. If the register copy is implemented(See then these values can
be calculated within the translator, in the case of emulation the following instructions
needs to be dispatched in order to calculate the start_address and the new Rn value:
add Rx1, Rn, imm(4)
sub Rx1l, imm(number_of_set_bitsx4), Rxl
if (bit21 = 1) then

if predication = true then
sub Rn, imm(number_of_set_bits*4), Rn

Furthermore, in the second case where bit24 == 1, the end_address also needs to be
calculated since it is equal to Rn-4 this can be done with a simple “sub” instruction.

4.7 Combining all the emulation techniques

So far only seperate procedures of emulation have been presented. To clarify the pro-
cedures explained in the previous sections consider an example where the following in-
struction needs to be completely emulated:

V]

4.7. COMBINING ALL THE EMULATION TECHNIQUES 67

ADD R9, R5, R5, LSL #3 ; R9 = R5 + R5 x 8//R5 = 2

Furthermore the instruction is set to update the flags. The flags are updated according
to the following:

N Flag = Rd[31]
7Z Flag = if Rd = 0 then 1 else 0
3 C Flag = CarryFrom(Rn + shifter_operand)
V Flag = OverflowFrom (Rn + shifter_operand)

As can be derived, the calculation is 2 + 2 x 23 = 18. As a result the N flag will be 0,
the Z flag will be 0, the C flag will be 0 and the overflow will also be 0. The emulation
stage consists of the following four stages listed in temporal order:

e Predication

e Second operand calculation
e Execution

e Flag update

In order to translate a single instruction that performs all actions(predication and flag
updating included), the translator should dispatch instructions that emulate all the above
stages in that order. Table shows all the p-VEX emulation instructions required to
execute the above ARM instruction. The table is split into 4 colors: Red indicates
the predication emulation (recall [1.3.4.2), blue indicates the second operand calculation
(recall , green is the instruction execution and the yellow shades are the N, Z, C, V
flags calculation (recall . The rest uncolored instructions are used to combine the
flag results and update the old flag register as well as resume proper program flow.

As can be seen an overhead of 35 instructions is required to emulate a single ARM
instruction. The extra cycles however can be less since many steps can be combined in a
single bundle. This however was not examined properly due to time restrictions, however
it is something that should definitely be considered during hardware implementation,
since dynamic bundle length and instruction allocation is the main advantage that the
hardware translator has over a software one. As can be seen on table [4.6] the total
resulting overhead for all stages of execution being emulated is roughly 2800% for all the
testbench programs.

68 CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

Table 4.5: Complete instruction emulation example. The instruction to be executed is a
simple Add with a shift incorporated and flag update. Red segment is the predication,
blue segment is the second operand calculation, green part is the instruction execution
and yellow shades show the calculation of the N, Z, C, V flags. The rest of the instructions
update the flag register and resume normal program flow.

T PC value Instruction Comments

tbit Ra4, R9, imm(31) copy R9(31) to Ra4

NOP wait for result
T24 PC+2 NOP wait for result
T25 PC+3 NOP wait for result
T26 PC+4 shl a2, a2, 1 Place the C flag in position 1
T27 PC+5 shl a3, a3, 2 Place the Z flag in position 2
T28 PC+6 shl a4, a4, 3 Place the N flag in position 3
T29 PC+7 NOP wait for result
T30 PC+8 NOP wait for result
T31 PC+9 NOP wait for result
T32 PC+10 or bl, al, a2 OR the two flag registers in positions 0,1
T33 PC+11 or b2, a3, a4 OR the two flag registers in positions 2,3
T34 PC+12 or b3, bl, b2 OR the two registers that contain the flags NZ and CV
T35 PC+13 OR Fr, b3, RO Replace the old flag values in Fr with the new ones

T36 PC+14 goto -14 Jump back to normal program flow

4.7. COMBINING ALL THE EMULATION TECHNIQUES

69

Table 4.6: Total overhead resulting from emulating all the steps of executing the in-
structions. These include the predication calculation, the second operand calculation,

the instruction calculation, the flag updating and the program flow resumption.

Program ‘ ARM total instructions ‘ Overhead ‘
bent 7171 208697 +2910%
blit 56451 1584400 +2806%
compress 198448 5755041 4+2900%
convolution 1330596 38351665 +2882%
cre 53697 1576556 +2936%
des 131401 3854285 +2933%
engine 1120660 32051430 +2860%
g3fax 2552428 72117457 4+-2825%
jpeg 8929392 258426134 +2894%
pocsag 90407 2568755 +2841%
ucbqsort 466403 13495884 +2893%
v42 4597173 131529395 +2861%

70

CHAPTER 4. ARM TO p-VEX BINARY TRANSLATOR

Simulation results

This chapter provides the results of the simulations run on the “Powerstone” set of
benchmark programs for both RISC-V implementation, as well as ARM. These programs
were executed on the un-modified p-VEX simulator along with the modified version with
the binary translator. This was done in order to compare the results and also verify the
program execution flow.

5.1 RISC-V execution metrics

As mentioned earlier, the Powerstone testbench programs were used to develop, debug
and verify the proper functionality of the simulator. These programs perform various
operations and in the end compare the execution result to the already known expected
result. For monitoring and debugging purposes two functionalities have been added
to the simulator, one that prints the executed instructions and one that prints metrics
about the execution (number of each instruction executed, total cycles, total instructions,
overhead).

In order to be able to extract performance and metrics for design choices, all instruc-
tions are counted individually. This allows for a very early and rough design exploration
which can potentially hint for a more beneficiary approach when proceeding into a hard-
ware implementation. More specifically two scenarios are presented for comparison with
the original RISC-V execution pattern. One implementation with minimization of extra
hardware and p-VEX alteration, and one that tries to approach the optimum solution
between extra hardware and instruction overhead. There are solutions that provide a
trade off between extra hardware and instruction overhead and more specifically the
various options mentioned in Section Furthermore the original instruction count
is also monitored.

After executing all the testbench programs with the three different aforementioned
designs, the following results were gathered: Table[5.I]shows the instruction count results
for the Powerstone programs. Two scenarios are shown along with the original instruction
count. The second column is the original instruction count generated by the RISC-V
compiler, the third column is the implementation with minimum hardware overhead in
mind, and the fourth one shows the overhead generated by the provided implementation.

As can be seen in the Table the resulting instruction overhead can be quite
significant, up to 177% with an average of 72% if we consider the minimum hardware
approach. On the other side of the spectrum, if we would require no instruction overhead,
core modifications and extra hardware would be required and more specifically: driving
the current PC to the translator, an extra full adder and an extra comparison unit,
both embedded in the translator. The provided implementation is a midway solution.
Most of the overhead comes from PC access request (overhead of 7 from roughly 15%

71

72 CHAPTER 5. SIMULATION RESULTS

Table 5.1: Execution metrics. First column shows the name of the testbench, second
shows the original RISC-V instruction count, third column shows the p-VEX implemen-
tation instruction count and overhead with hardware minimization in mind. Fourth and
final column shows the overhead of the provided implementation.

operation Original ‘ Minimum Hardware ‘ Provided Implementation ‘
bent.c 6832 10118 +48% 7509 +10%
blit.c 55631 70864 +27% 58305 +4%
compress.c 189325 295863 +56% 210689 +11%
cre.c 53198 85608 +60% 60229 +13%
convolution.c 3121461 6951324 +122% 3871525 +24%
engine.c 2002237 5546841 +177% 2641202 +31%
des.c 177961 193039 +8% 181425 +1%
g3fax.c 2296503 3344012 +45% 2500954 +2%
jpeg.c 25438372 63040439 +147% 32097961 +2%
ucbgsort.c 418380 712274 +70% 496245 +7%
v42.c 4364875 6740390 +54% 4895597 +4%
pocsag.c 82379 125474 +52% 91386 +3%

of all instructions), while at the same time the workaround is a simple routing of the
current PC to the translator or a PC pause signal. As a result, this design choice was
implemented in the simulator which results in an average of 9% overhead.

5.2 ARM execution metrics

The ARM-p-VEX translator is provided with two implementation choices in mind: 1)
All instructions are entirely emulated, 2) Some translation procedures are incorporated
within the translator. Both of these techniques have advantages and disadvantages. On
one hand, the first solution is the simplest and does not require any modifications to the
p-VEX, however, it generates a significant overhead as will be shown here. On the other
hand, the second solution generates a relatively small overhead but is more complex to
develop and requires modifications on p-VEX.

The main metric that is used to calculate the performance of each technique is the
generated instruction overhead. Overhead is the extra instructions required to translate
one p-VEX instruction to ARM. For each of the solutions to the ARM-p-VEX incompat-
ibilities presented in Chapter 4] a measurement of the overhead is calculated for all the
testbench programs. Similarly to the RISC-V case the “Powerstone” set of testbench
programs is utilized.

5.2.1 Shifting mechanism overhead

The first cases that are examined are the two proposed solutions in Chapters and
for the shifting mechanism. The first case is the instruction emulation, and the
overhead that results for each of the powerstone programs can be seen on table The
first column of the table has the name of the powerstone program; the second column

5.2. ARM EXECUTION METRICS

73

is the base program instruction count; the third column is the overhead resulting from
emulating every instruction; the fourth column is the resulting overhead with a modified
shifter that allows rotations. The values shown, is the extra instruction count that is
generated by the translation procedure. For example, the program “bcnt.o” as seen on
Table has a base instruction count of 7171. When we chose to pass this program
through the translator the generated program has 30746 more instructions than the base
one. By adding them up, we can acquire the transalted program instruction count.

Table 5.2: Shifting subroutine overhead

‘ program ‘ Original total cycles ‘ Shift overhead(emulated rotations) ‘ Shift overhead(hardware rotations) ‘
bent.c 7171 30746 +428% 28240 +393%
blit.c 56451 175707 +311% 173105 4+306%
compress.c 198448 796322 +401% 737700 +371%
cre.c 53697 379327 +706% 335775 +625%
convolution.c 1330596 5093472 +382% 5091010 +382%
engine.c 1120660 5386158 +480% 4746480 +423%
des.c 131401 1132963 +862% 746625 +568%
g3fax.c 2552428 7895246 +309% 6952880 +272%
jpeg.c 8929392 36165434 +405% 32540680 +364%
ucbgsort.c 466403 1143988 +245% 935250 +200%
vd2.c 4597173 20901133 +454% 18066955 +393%
pocsag.c 90407 328177 +362% 323835 +358%

The second case is the register live copy solution described in Chapter This
solution produces significantly smaller overhead compared to the emulation technique
shown above, however, it requires a significant amount of functionality to be embedded
within the translator. The overhead can be seen in Table (5.3l

Table 5.3: Register duplicate instruction overhead.

Program

\ Original total cycles \ Instruction overhead ‘

bent

blit
compress
convolution
cre

des
engine
g3fax
jpeg
pocsag
ucbgsort
v42

7171
96451
198448
1330596
53697
131401
1120660
2552428
8929392
90407
466403
4597173

5236 +73%
42788 +75%
140844 +70%
1407868 +105%
133712 4249%
70744 +53%
1186320 +105%
3269316 +128%
15078528 +168%
114488 +126%
300104 +64%
6388436 +138%

Overall, the two solutions provide two design choices that allow for a tailor-made
development. If simplicity is required, then the first solution should be followed since the
translation procedure does not require any -VEX core alterations nor complex translator
development techniques. If on the other hand, performance is required, then the second

74 CHAPTER 5. SIMULATION RESULTS

solution offers significantly reduced overhead, with the price payed being development
complexity and -VEX alterations. Figure[5.I]shows a summary of the proposed solutions.

Figure 5.1: Comparison of the proposed shifting mechanics implementations.

. Shiftar salution 1: Al
instruclion are emulated.

e Mo pNEE mosiboaicn.

:mll
4 Easy n implaman
— Largn insiruction deafaad
=
E . Shifbar solution 2:
@O Transkator ambeddad
= » AT T EN fursctianaity
E d= Fnduced oeertead
G - Fand i mpamen|

10534 337 - Fngpine p-VEK

macifcalicns,

Fuases. Shifler
matngden rohgion 1 shlin 3
il

5.2.2 PC write overhead

Next, we examine the overhead that results when an instruction tries to write the PC as
described in[4.3.3.2] A table with all the overheads of the Powerstone testbench programs
that result from the PC access translation procedure, is shown in Table [5.4] As can be
seen on the table the overheads are negligible compared to the ones introduced by other
emulation procedures such as the shifting emulation.

5.2.3 Predication system overhead

In order to incorporate the predication system of ARM in p-VEX, extra steps in the
translation procedure are required. The predication system consists of two parts [£.3.4]
the flag comparison and the flag update. Similarly to other cases, two solutions are
provided for both the flag comparison and the flag update procedures: 1) Instruction
emulation, 2) translation implementation.

5.2.3.1 Flag comparison, emulation overhead.

First, the instruction emulation overhead is calculated. Table shows the resulting
overhead for the powerstone testbench, that results from the emulation procedure.

As can be seen the emulation procedure for the flag comparison, is not efficient with
overhead being over 500%. This is because for every instruction translated, 4 flag bits
need to be compared while at the same time maintaining the correct program flow.

5.2. ARM EXECUTION METRICS 75

Table 5.4: PC target instruction overhead. This table shows the overhead that results
from instructions that target PC as destination register.

] Program ‘ Original total cycles ‘ Instruction overhead
bent 7171 488 +6%
blit 56451 496 +1%
compress 198448 4228 +2%
convolution 1330596 45128 +3%
cre 53697 1520 +2%
des 131401 1052 +1%
engine 1120660 49268 +4%
g3fax 2552428 58108 +2%
jpeg 8929392 125400 +1%
pocsag 90407 2672 +3%
ucbqsort 466403 93716 +20%
v42 4597173 174224 +3%

Table 5.5: Flag comparison overhead. This table shows the overhead by emulating the
flag comparison.

Program ‘ ARM total instructions | Flag comparison overhead
bent 7171 35525 +495%
blit 56451 281920 +499%
compress 198448 1171716 +492%
convolution 1330596 7614774 +476%
cre 53697 314118 +487%
des 131401 785466 +498%
engine 1120660 5959332 +443%
g3fax 2552428 15197064 +496%
jpeg 8929392 53435178 +498%
pocsag 90407 531648 +490%
ucbgsort 466403 2737596 +489%
v42 4597173 26736498 +484%

As was shown in Chapter this can be particularly complicated. However, if
this functionality is embedded within the translator, the overhead is essentially zero.
However, the translator needs to have access to the register file via the solution. A
summary of the design choices can be seen here

5.2.4 Flag comparison, translator overhead

As mentioned above, the overhead that results from implementing the flag comparison
system within the translator is zero. This is because the comparison operates on-the-fly
and produces a valid/not valid instruction signal immediately.

76 CHAPTER 5. SIMULATION RESULTS

Figure 5.2: Comparison of the proposed flag comparison techniques.

Soluan 1! Flag
. COMPansoen s emulated.

- 124,235,032 e Mo NER missiblcing.

4 Easy n implaman
— Largn insiruction deafaad
. Salution 2: Flag

camparisen within
ranslabar

d= Mo ossrrasd

Overhead %

& Fpgpaines onty ane 4-560
G Al o

= Facpeires acoaes o s

TS5, 22T 18,534 237 e raber il

Flasg
instruction (AT 0N CompaTEGn
ool Eizhalicn 1 Al ulion 2

5.2.5 Flag update, emulation overhead.

Next, the flag update system is examined. When an instruction is executed and at the
same time it is set to update the flags, then the system must update the old values with
the new ones and at the same time make sure to maintain correct program flow. First,
we examine the emulation technique.

For every instruction that updates the flags there is an average of 22 instructions
overhead. This is because the flag calculation is not straight forward and most of the
required functionality does not exist or is not supported by p-VEX (see Chapter .
Table shows the resulting overhead for the Powerstone testbench. As can be seen
the overhead is an average of 2400%, which is significant. As a matter of fact it is
the major overhead source of all the translation procedure, assuming that everything is
emulated. For this reason this was not chosen in the provided implementation and also
is not advised for hardware implementation. Instead, the flag predication system should
be incorporated inside the translator.

5.2.6 Flag update, translator implementation overhead

Having the translator store locally the flag values reduces the overhead significantly.
However, it still is not equal to zero. This is because the translator needs to wait for
the results of the flags. This procedure introduces an overhead of four (see Section
whenever an instruction is set to update the flags. The resulting overhead can
be seen in Table As can be seen the overhead compared to the emulation technique
is significantly smaller especially when it is combined with the zero overhead from the
flag comparison step. The required modifications in the translator can be seen in figure
with blue color.

5.2. ARM EXECUTION METRICS 77

Table 5.6: Flag updating overhead. This table shows the overhead by the emulation of
updating the instruction flags.

Program ARM total instructions | Flag updating overhead ‘

bent 7171 173172 +2414%
blit 56451 1302480 +2307%
compress 198448 4778611 +2407%
convolution 1330596 32006020 +2405%
cre 53697 1314791 +2448%
des 131401 3199730 +2435%
engine 1120660 27085320 +2416%
g3fax 2552428 59453237 +2329%
jpeg 8929392 213896819 +2395%
pocsag 90407 2125715 4+2351%
ucbgsort 466403 11214554 4-2404%
v42 4597173 109248980 +2376%

Table 5.7: Flag calculation overhead. This table shows the overhead resulting by calcu-
lating the flags locally in the translator.

’ Program ‘ ARM total instructions | Flag calculation overhead
bent 7171 14472 +201%
blit 56451 120012 +212%
compress 198448 559492 +281%
convolution 1330596 1844064 +138%
cre 53697 102576 +191%
des 131401 196660 +149%
engine 1120660 3139240 +280%
g3fax 2552428 6028672 +236%
jpeg 8929392 13710184 +153%
pocsag 90407 238292 +263%
ucbgsort 466403 1054048 +225%
v42 4597173 10956276 +238%

A summary of the two flag update techniques are depicted in Figure [5.3

5.2.7 Combination of all the translation techniques

In order to provide a high-level picture of the translation techniques all of the translation
procedure overheads are combined. This is done with the two extreme approaches:
minimum hardware and minimum overhead. Overall, the minimum hardware approach
results in an overhead of 1026% and the minimum overhead approach results in an
overhead of 12%

78

CHAPTER 5. SIMULATION RESULTS

TR { - m e

Overhead %

194

Figure 5.3: Comparison of the proposed flag update techniques.

SoluBon 1. Flag wodale is
B ersien

46,730 429 o Mo pWER madifoilion.
4 Easy n implaman

— Ay | st
T

. Saolution 2: Flag updale
wilkin transkalos.

+ Srmal aeertead (companed
o solghon 11

+ Flapainas by 4 1-bi

re ey
= Fhpari pccass o e
vy aler fill
_____________ (XN
B
Insinsotion

Future work and conclusions

The translation procedure of two ISAs has been presented, RISC-V to p-VEX and
ARMv4 to p-VEX. The translation technique implemented was basic and straightfor-
ward, since whenever it was possible, a simple direct one-to-one instruction per cycle
translation was performed. Both of the ISAs that were translated have compilers that
generate code for serial execution and are not meant for a VLIW processor such as p-
VEX. As a result the translator generates in most cases one syllable per word per cycle.
As can be understood, this is highly inefficient since, assuming that no other contexts
operate on the core, most of the resources are not utilized. This was a conscious deci-
sion during development since trying to implement a more efficient system would be off
the time limits of this thesis. However, a series of potential improvements are proposed
and briefly explained, which can be implemented in order to improve the efficiency and
execution of the translated code.

6.1 Conclusions

Overall, many binary translation techniques exist and depending on the application,
available development time and platform, different types can be used. Software binary
translators are easy to implement and easy to port in different machines running on the
same OS. However, they do not offer the optimum performance compared to hardware.
Another way to distinguish translators, is the type: dynamic or static. Static trans-
lators operate offline by processing a compiled binary code. However, due to mainly
low visibility of the execution state of the program, they are hard to develop and often
require human input. On the other hand, dynamic translators operate during execution
time. As a result, they have a complete picture of the execution flow. The problem with
dynamic translators is the fact that there are time limitations since they need to keep up
to the program execution time, otherwise performance will become a major issue. In this
thesis, the translator is designed as a hardware dynamic one in order to take advantage
of the hardware performance, and the development ease of the dynamic translators.
Chapter [3], presents the design of a hardware binary translator from RISC-V ISA to
p-VEX ISA has been presented in the third chapter. The implementation is provided in a
software simulator that mirrors the actual hardware p-VEX core. A brief overview of the
RISC-V architecture was presented as well as the major incompatibilities between the
two architectures. Furthermore, it is shown that all instructions can be either directly
translated, emulated or partially executed by extra hardware; each of the aforementioned
approaches results in different advantages and disadvantages. More solutions to these
incompatibilities are proposed with different optimizations in mind. Proper functional-
ity was verified with the Powerstone testbench and execution metrics were also provided
to assist with future development. Further work can be put in improving the transla-

79

80 CHAPTER 6. FUTURE WORK AND CONCLUSIONS

tion procedure and especially the extent to which the full capabilities of p-VEX can be
utilized.

The development process for the RISC-V-p-VEX translator lasted for approximately
2 months and is composed of roughly 1000 lines of C code. “Spike” [28] simulator was
used to run RISC-V binaries for comparison and debugging purposes.

The fourth chapter [presented the implementation of a binary translator from
ARMv4 architecture to p-VEX. The work was implemented in the software simulator
that emulates the p-VEX functionality. Since almost no ARM instruction can be directly
translated to p-VEX ones, mainly due to predication, the required functionality can be
implemented with either extra hardware and core modifications, or purely by instruction
emulation. The instruction emulation, even though it does not require any core modifica-
tions, it introduces a very large instruction overhead (up to 35 instructions overhead for
a single ARM instruction). Furthermore the control logic required for the emulation ap-
proach is significantly more complex, since it requires logic to maintain program flow for
every instruction. On the other hand, the second proposed, implementation incorporates
extra hardware inside the translator to execute the required additional functionalities,
e.g. shifter and predication system. The main disadvantage of the second implementation
technique is that in many cases it requires extra hardware and some core modifications,
mainly signals and values that need to be driven to the translator. Furthermore, some of
the signals fed into the translator can reside inside the critical path which might impact
the core performance.

As mentioned before, the main implementation technique used in the simulator was to
incorporate any possible functionality to the translator in order to avoid large overheads.
Furthermore, it allowed for a much simpler implementation. Regardless, the development
of the simulator for the ARM translation was particularly complex, due to debugging
difficulties since there is no accurate way to monitor the executed code program flow.
The development process for the ARM-p-VEX translator lasted 4 months and it consists
of roughly 4500 lines of C code.

Chapter [5] presents the simulation results for both of the translators. Generally for
both implementations, two approaches were presented. The two general approaches,
emulation and translator implementation, can vary significantly; both of the solutions
have advantages and disadvantages. On one hand, the emulation technique provides a
simple to implement methodology and does not require and modifications to the existing
p-VEX core which might result in performance degradation. On the other hand however,
it also introduces a significant overhead which can result in orders of magnitude more
instructions. Contrary to that, by implementing a part of the translation functionality
within the translator, the resulting overhead is significantly smaller and in some cases
zero. However, this procedure requires modifications of p-VEX core. This can prove to be
hard in terms of implementation and also increases the risk of reducing the performance
of the core. The design choice should be made after taking into account all of the factors
presented in this thesis.

6.2. MAIN CONTRIBUTION 81

6.2 Main contribution

The intent of this thesis is to establish the necessary base for a future hardware devel-
opment. Two hardware binary translators, RISC-V and ARMv4 to p-VEX, have been
presented. The implementation was performed on the p-VEX simulator. As a general
approach two implementations choices are shown for each of the RISC-V and ARM trans-
lators, one that tries to hide any translation differences by implementing them within
the translator, and one that utilizes only existing p-VEX instructions in order to emulate
the functionality of the instructions that cannot be directly translated. Both have ad-
vantages and disadvantages; on one hand the approach that tries to hide the differences,
requires more hardware and in a few cases requires modifications to the core, however it
introduces little to no instruction overhead. On the other hand, the emulation approach
does not require any core modifications, however the instruction overhead introduced is
large often up to 2000%.

Recalling the research question:
“How can we construct a dynamic binary translator that allows p-VEX to execute other
ISAs on the fly?”
The solution provided are two dynamic binary translators, one for RISC-V and one for
ARM both translating into p-VEX ISA. Both are provided with two design choices in
mind allowing for for execution on-the-fly, with, either performance in mind, or hardware
minimization. The main contributions of this thesis are listed below:

e RISC-V to p-VEX ISA dynamic binary translator design.

ARM to p-VEX dynamic binary translator design.

Design choices aimed at maximizing performance or minimizing hardware.

p-VEX simulator able to execute ARM/RISC-V binaries and simulate the trans-
lation procedure.

Testbench programs execution metrics for many design choices.

Brief overview of binary translation techniques.

6.3 Future work

Below follows some proposals for future work based on this thesis. These projects will
enhance the performance of the translator as well as the p-VEX core itself.

6.3.1 Word Filling

The first relatively simple improvement, is to fill the word with syllables coming from the
translation of a single instruction. For example a fully emulated ARM instruction can
generate up to 35 p-VEX instructions. In the provided ARM translator implementation
there is no system that handles the spreading of these instructions in different p-VEX
syllables. Note that this system is not required in the RISC-V because in the few cases

82 CHAPTER 6. FUTURE WORK AND CONCLUSIONS

that there is translation to more than one instructions, these instructions are dependent
to each other.

The first requirement for such a system is to be able to recognize the current available
p-VEX pipelanes of the translator. This information should be driven by p-VEX itself
to the translator. As an example consider that the current configuration and context
spreading provide to the translator two pipelanes. As a result the maximum paralleliza-
tion of the generated instructions would be two per cycle.

In many cases though the translator generates NOPs while waiting for results to
become available in the pipeline. This is highly inefficient since as can be seen in Table
the NOPs can be up to 35% of the total translation instructions.

6.3.2 Instruction buffer

A solution to the above problem is to replace the NOP instructions with other indepen-
dent instructions. The tricky part in this is to maintain an appropriately sized monitoring
buffer, i.e., providing a window of instructions to the translator to pick for translation
and dispatching, while at the same time making sure that the buffer does not affect per-
formance. Figure[6.1]a rather naive example is shown. Consider a 15 instruction window
buffer from which the translator can pick instructions for translation. As can be seen
only one instruction (green) is not dependent on registers rl, r2 and r3. Assuming that
the first instruction is translated (orange) when NOPs are encountered the translator can
chose another independent instruction from the window buffer to start translating and
replace the NOPs with these instructions. Any instruction that is completely translated
should be replaced with the next instruction outside the window.

Figure 6.1: Mixing instructions to fill NOPs generated by the translator.

ADD 1, 12, r3

SUB 1, 12, 3 \

MUL 1,12, r3 XXX XXX XXX XXX XXX .
EOR T, 12,13

ADCr1,r2,r3
ADDr1,r2,r3
ADD S
STHr1,r2,r3
ADD 1,12, r3
ADDr1,r2,r3
SUBr1,r2,r3
SUBr1,r2,r3
SBCr1,r2,r3
SBCr1,r2,13
AND 1,12, 13

6.3. FUTURE WORK 83

However, if the new instruction that replaces the old one is a branch instruction,
then the updating should halt until all instructions in the window buffer are executed.
Another issue that will arise with this technique is the synchronization of the internal
translator PC with the actual program PC. In the provided emulation procedure, the
PC synchronizes every time after every translation step (predication, second operand
calculation etc). This allows for a simple translator logic implementation. However, the
translator now needs to keep track of the parallel PC values of different instructions
that are executed at the same time. A simple solution to this is to attach labels to
the instructions along with their original PCs. This way the translation has a complete
overview of the translation state.

6.3.3 Out-of-order execution

Another possible improvement is to implement an out-of-order-execution system in order
to extract as much ILP as possible from the generated code. Essentially the basic ideas
that can be implemented can be seen in Tomasulo algorithm [29]. When it comes to
utilizing a translator, p-VEX is an ideal platform to apply out-of-order-execution mainly
for two reasons: One, p-VEX contains 63 general-purpose registers, most of which remain
unutilized for a translation like ARM where only 16 registers are required. As a result
these registers can be used for temporary placeholders when register renaming is required.
Also, the VLIW nature of p-VEX and the multiple available execution resources, can be
used in this case as a superscalar architecture where the instruction scheduling task falls
upon the translator.

6.3.4 Resource scheduler

A good improvement which can be regarded as an addition to p-VEX, more than to the
translator, is to create a system that monitors the utilization of the provided pipelanes to
each context. For example if 4 pipelanes are provided to the translator context and the
translator dispatches on average 2 syllables per cycle, half of the available pipelanes are
not used. A solution to this problem could be a real time feedback from the translator,
of how many syllables are utilized on average. This information should be handled by a
higher level scheduler that keeps track of all contexts and the distribution of pipelanes
among them. For example there could be segments of code where parallelization can
be much higher than other segments. In this case the scheduler should assign more
pipelanes to the translator context. If on the other hand there are segments that cannot
be parallelized the distribution should again change according to the requirements of
each context. Essentially the provided feedback should be the average parallelization
extraction on a given window of time, which can of course be adjustable.

84

CHAPTER 6. FUTURE WORK AND CONCLUSIONS

Bibliography

[1]
2]

[10]

[11]

[12]

G. David, “Chip makers turn to multicore processors.”

L. van Bremen, “p-VEX on chip the design of an ASIC for a dynamically reconfig-
urable vliw processor with 24-port register file.”

“p-VEX publications.” [Online]. Available: http://rvex.ewi.tudelft.nl/?page_id=104

A. Erik, K. David, and S. Yaron, “Welcome to the opportunities of binary transla-
tion.”

C. Cristina and M. Vishv, “Binary translation: Static, dynamic, retargetable?*.”
S. Richard, C. Anton, K. Matthew, M. Maurice, and R. Scott, “Binary translation.”

E. Altman, M. Gschwind, S. Sathaye, S. Kosonocky, A. Bright, J. Fritts, P. Ledak,
D. Appenzeller, C. Agricola, and Z. Filan, “BOA: The architecture of a binary
translation processor.”

E. Kemal, F. Jason, K. Stephen, G. Michael, A. Erik, K. Krishnan, and B. Terry,
“An eight-issue tree-VLIW processor for dynamic binary translation.”

A. Erik, E. Kemal, G. Michael, and S. Sumedh, “Advances and future challenges in
binary translation and optimization.”

C. Jiunn-Yeu, S. Bor-Yeh, O. Quan-Huei, Y. Wuu, and H. Wei-Chung, “Effective
code discovery for ARM/thumb mixed ISA binaries in a static binary translator.”

P. Mark, “Dynamic binary translation.”

H. Urs, “Adaptive optimization for self: Reconciling high performance with ex-
ploratory programming.”

B. Fabrice, “QEMU, a fast and portable dynamic translator.”

G. Michael, A. Erik R., S. Sumedh, L. Paul, and D. Appenzeller, “Dynamic and
transparent binary translation.”

H. Weiwu, L. Qi, W. Jian, C. Songsong, S. Menghao, and L. Xiaoyu, “Efficient
binary translation system with low hardware cost.”

A. Klaiber, “The technology behind CRUSOE processors.”

V. Bala, E. Duesterwald, and S. Banerjia, “Transparent dynamic optimization: The
design and implementation of DYNAMO.”

A. Chernoff, M. Herdeg, R. Hookway, C. Reeve, N. Rubin, T. Tye, S. B. Yadavalli,
and J. Yates, “FX!32A profile-directed binary translator.”

85

http://rvex.ewi.tudelft.nl/?page_id=104

86

BIBLIOGRAPHY

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

E. Kemal, A. Erik, G. Michael, and S. Sumedh, “Dynamic binary translation and
optimization.”

R. Simon, R. Erven, and D. Steven, “Hardware-accelerated dynamic binary trans-
lation.”

“QEMU emulator ISAs.” [Online]. Available: https://qemu.weilnetz.de/doc/
gemu-doc.html

D. Patterson and J. Hennessy, “Computer organization and design MIPS edition:
The hardware/software interface.”

J. Fisher, P. Faraboschi, and C. Young, “Embedded computing: a VLIW approach
to architecture, compilers and tools.”

“RISC-V members.” [Online]. Available: https://riscv.org/members-at-a-glance/

“RISC-V instruction manual.” [Online]. Available: https://content.riscv.org/
wp-content /uploads/2017/05 /riscv-spec-v2.2.pdf

“ARM microarchitectures list.” [Online|. Available: https://en.wikipedia.org/wiki/
List_of _ARM_microarchitectures

P. Gerald J and G. Robert P, “Formal requirements for virtualizable third generation
architectures.”

“RISC-V simulator.” [Online]. Available: https://riscv.org/software-tools/
risc-v-isa-simulator /

R. Tomasulo, “An efficient algorithm for exploiting multiple arithmetic units,” IBM
Journal of Research and Development.

https://qemu.weilnetz.de/doc/qemu-doc.html
https://qemu.weilnetz.de/doc/qemu-doc.html
https://riscv.org/members-at-a-glance/
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://content.riscv.org/wp-content/uploads/2017/05/riscv-spec-v2.2.pdf
https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures
https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures
https://riscv.org/software-tools/risc-v-isa-simulator/
https://riscv.org/software-tools/risc-v-isa-simulator/

Appendix: RISC-V Instruction
Translation

A.1 add

This instruction adds the contents of two registers and stores the result in the target
register and overflow is ignored. This instruction is directly translated to the p-VEX
instruction “add”.

1 rd = rsl + rs2
opcode = “0110011”, funct7 = “0000000”, funct3 = “000”

A.2 sub

This instruction performs subtraction between the contents of two registers and stores
the result in the target register. This instruction can be translated directly to the p-
VEX “sub” instruction. Attention must be taken in the order of subtraction, RISC-V
subtraction is rsl-rs2 and not rs2-rsl as in p-VEX.

1 rd = rsl — rs2

opcode = “0110011”, funct?7 = “0100000”, funct3 = “000”

A.3 sl

This instruction performs logical left shift, i.e. performs logical left shift on the value
in register rsl by the shift amount held in the lower 5 bits of register rs2. Zeros are
pushed in and the result is stored in rd. This instruction can be directly translated to
the p-VEX “shl” instruction.

1 rd = rsl << rs2(4 downto 0)

opcode = “0110011”, funct7?7 = “0000000”, funct3 = “001”

A.4 slt

This instruction performs signed comparison between rsl and rs2, if rsl < rs2 then
rd < —'1’. This instruction can be directly translated to the p-VEX instruction “cmplt”.
1 if (signed(rsl) < signed(rs2))

2 {
s}
5 else

o {

rd =1

87

88 APPENDIX A. APPENDIX: RISC-V INSTRUCTION TRANSLATION

7 rd =0
¢
opcode = “0110011”, funct7 = “0000000” funct3 = “010”
A.5 sltu

This instruction performs unsigned comparison between rsl and rs2, if rsl < rs2 then
rd < —'1’. This instruction can be directly translated to the p-VEX instruction “cmplt”.

1 if (unsigned(rsl) < unsigned(rs2))

: rd = 1

L}

5 else

 {

7 rd =0

)

opcode = “0110011”, funct7 = “0000000” funct3 = “011”
A.6 xor

This instruction performs logical xor between rsl and rs2 and stores the result in rd.
This instruction can be directly translated to the p-VEX instruction “xor”.

1 rd = rsl xor rs2

opcode = “0110011”, funct7 = “0000000” funct3 = “100”

A.7T srl

This instruction performs logical right shift, i.e. performs logical right shift on the value
in register rsl by the shift amount held in the lower 5 bits of register rs2. Zeros are
pushed in and the result is stored in rd. This instruction can be directly translated to
the p-VEX “shru” instruction.

i rd = rsl >> rs2(4 downto 0)

opcode = “0110011”, funct?7 = “0000000”, funct3 = “101”

A.8 sra

This instruction performs arithmetic right shift, i.e. performs arithmetic right shift on
the value in register rs1 by the shift amount held in the lower 5 bits of register rs2. The
sign bit is pushed in and the result is stored in rd. This instruction can be directly
translated to the p-VEX “shr” instruction.

1 rd = rsl >> rs2(4 downto 0)

opcode = “0110011”, funct7 = “0100000”, funct3 = “101”

A.9. OR 89

A9 or

This instruction performs logical or between rsl and rs2 and stores the result in rd. This
instruction can be directly translated to the p-VEX instruction “or”.

1 rd = rsl or rs2

opcode = “0110011”, funct7 = “0000000” funct3 = “110”

A.10 and

This instruction performs logical and between rsl and rs2 and stores the result in rd.
This instruction can be directly translated to the p-VEX instruction “and”.

1 rd = rsl and rs2

opcode = “0110011”, funct7 = “0000000” funct3 = “111”

A.11 addi

This instruction adds the contents of register rsl to a sign extended immediate value and
stores the result to rd. This instruction is directly translated to the p-VEX instruction
“add”.

1 rd = rsl + sign_ext (imm)

opcode = “0010011”, funct3 = “000”

A.12 sl

This instruction performs logical left shift, i.e. performs logical left shift on the value
in register rs1 by Imm value. Zeros are pushed in and the result is stored in rd. This
instruction can be directly translated to the p-VEX “shl” instruction.

1 rd = rsl << imm

opcode = “0010011”, funct3 = “001”

A.13 slti

This instruction performs signed comparison between rsl and sign extended imm, if
rsl < imm then rd < —‘1’. This instruction can be directly translated to the p-VEX
instruction “cmplt”.

if (signed(rsl) < signed(sign)_-ext (imm)))

1
2 {

3 rd = 1
1}

5 else

o {

7 rd = 0

<}

90 APPENDIX A. APPENDIX: RISC-V INSTRUCTION TRANSLATION

opcode = “0010011”, funct3 = “010”

A.14 sltiu

This instruction performs unsigned comparison between rsl and imm, if rs1 < imm then
rd < —'1’. This instruction can be directly translated to the p-VEX instruction “cmplt”.

1 if (unsigned(rsl) < unsigned (imm))

A

3 rd =1

s}

5 else

5 {

7 rd = 0

+)

opcode = “0010011”, funct3 = “011”
A.15 xori

This instruction performs logical xor between rsl and sign extended imm and stores the
result in rd. This instruction can be directly translated to the p-VEX instruction “xor”.

1 rd = rsl xor sign_ext (imm)

opcode = “0010011”, funct3 = “100”

A.16 srli

This instruction performs logical right shift, i.e. performs logical right shift on the value
in register rs1 by imm amount. Zeros are pushed in and the result is stored in rd. This
instruction can be directly translated to the p-VEX “shru” instruction.

1 rd = rsl >> imm

opcode = “0010011”, funct3 = “101”, funct7 = “0000000”

A.17 srai

This instruction performs arithmetic right shift, i.e. performs arithmetic right shift on
the value in register rsl by the imm amount. The sign bit is pushed in and the result is
stored in rd. This instruction can be directly translated to the p-VEX “shr” instruction.

1 rd = rsl >> imm

opcode = “0010011”, funct3 = “101”, funct7 = “0100000”

V)

A.18. ORI 91

A.18 ori

This instruction performs logical or between rsl and imm and stores the result in rd.
This instruction can be directly translated to the p-VEX instruction “or”.

rd = rsl or rs2

opcode = “0010011”, funct3 = “110”

A.19 andi

This instruction performs logical and between rsl and imm and stores the result in rd.
This instruction can be directly translated to the p-VEX instruction “and”.

rd = rsl and rs2

opcode = “0010011”, funct3 = “111”

A.20 beq

This instruction performs comparison between registers rsl and rs2. If they are equal
then a branch is performed. This instruction is translated into two p-VEX instructions
that are executed separately into two cycles, and two different bundles with one instruc-
tion each. On the first cycle a “cmpeq” is performed with the result stored in a random
branch register (br3 in this implementation). On the second cycle and in a separate
bundle a “br” is performed. PC is paused for one cycle.

If (rsl = rs2)

branch ;

}
opcode = “1100011”, funct3 = “000”.

A.21 bne

This instruction performs comparison between registers rs1 and rs2. If they are not equal
then a branch is performed. This instruction is translated into two p-VEX instructions
that are executed separately into two cycles, and two different bundles with one instruc-
tion each. On the first cycle a “cmpne” is performed with the result stored in a random
branch register (br3 in this implementation). On the second cycle and in a separate
bundle a “br” is performed. PC is paused for one cycle.

If (rsl != rs2)
{

branch ;
}

opcode = “1100011”, funct3 = “001”.

N S

w N

V)

92 APPENDIX A. APPENDIX: RISC-V INSTRUCTION TRANSLATION

A.22 blt

This instruction performs comparison between registers rsl and rs2. If rsl is less than
rs2 in signed arithmetic then a branch is performed. This instruction is translated into
two p-VEX instructions that are executed separately into two cycles, and two different
bundles with one instruction each. On the first cycle a “cmplt” is performed with the
result stored in a random branch register (br3 in this implementation). On the second
cycle and in a separate bundle a “br” is performed. PC is paused for one cycle.

If (signed(rsl) < signed(rs2))
{

branch ;

}
opcode = “1100011”, funct3 = “100”.

A.23 bge

This instruction performs comparison between registers rsl and rs2. If rsl is greater than
rs2 in signed arithmetic then a branch is performed. This instruction is translated into
two p-VEX instructions that are executed separately into two cycles, and two different
bundles with one instruction each. On the first cycle a “cmpgtu” is performed with the
result stored in a random branch register (br3 in this implementation). On the second
cycle and in a separate bundle a “br” is performed. PC is paused for one cycle.

If (signed(rsl) > signed(rs2))

{

branch ;

}
opcode = “1100011”, funct3 = “101”.

A.24 Dbltu

This instruction performs comparison between registers rsl and rs2. If rsl is less than
rs2 in unsigned arithmetic then a branch is performed. This instruction is translated into
two p-VEX instructions that are executed separately into two cycles, and two different
bundles with one instruction each. On the first cycle a “cmpltu” is performed with the
result stored in a random branch register (br3 in this implementation). On the second
cycle and in a separate bundle a “br” is performed. PC is paused for one cycle.

If (rsl < rs2)

{

branch ;

}
opcode = “1100011”, funct3 = “110”.

A.25. BGEU 93

A.25 bgeu

This instruction performs comparison between registers rsl and rs2. If rsl is greater than
rs2 in unsigned arithmetic then a branch is performed. This instruction is translated into
two p-VEX instructions that are executed separately into two cycles, and two different
bundles with one instruction each. On the first cycle a “cmpgtu” is performed with the
result stored in a random branch register (br3 in this implementation). On the second
cycle and in a separate bundle a “br” is performed. PC is paused for one cycle.

If (rsl > rs2)

{

branch ;

}
opcode = “1100011”, funct3 = “111”.

A.26 1b

This instruction loads a byte from the memory at the address of rsl +
signed(sign_ext(imm)), sign extends it, and stores it to rd. This instruction is directly
translated to the “ldb” p-VEX instruction.

rd = sign_ext (mem(rsl + signed (sign_ext (imm))))

opcode = “0000011”, funct3 = “000”

A.27 1h

This instruction loads a halfword from the memory at the address of rsl -+
signed(sign_ext(imm)), sign extends it, and stores it to rd. This instruction is directly
translated to the “Idh” p-VEX instruction.

rd = sign_ext (mem(rsl + signed (sign_ext (imm))))

opcode = “0000011”, funct3 = “001”

A.28 1w

This instruction loads a word from the memory at the address of rsl -+
signed(sign_ext(imm)), and stores it to rd. This instruction is directly translated to
the “ldw” p-VEX instruction.

rd = mem(rsl + signed(sign_ext (imm)))

opcode = “0000011”, funct3 = “010”

A.29 lbu

This instruction loads a byte from the memory at the address of rsl -+
signed(sign_ext(imm)), zero extends it, and stores it to rd. This instruction is directly
translated to the “ldbu” p-VEX instruction.

94 APPENDIX A. APPENDIX: RISC-V INSTRUCTION TRANSLATION

I rd = mem(rsl + signed (sign_ext (imm)))

opcode = “0000011”, funct3 = “100”

A.30 lhu

This instruction loads a halfword from the memory at the address of rsl +
signed(sign_ext(imm)), zero extends it, and stores it to rd. This instruction is directly
translated to the “ldhu” p-VEX instruction.

1 rd = mem(rsl + signed(sign-ext (imm)))

opcode = “0000011”, funct3 = “101”

A.31 sb

This instruction stores a byte from the 8 lower bits of rsl to the memory address of
rs2 + signed(sign_ext(imm)). This instruction is directly translated to the “stb” p-VEX
instruction.

| mem(rs2 + signed(sign_ext(imm))) = rsl(7 downto 0)

opcode = “0100011”, funct3 = “000”

A.32 sh

This instruction stores a halfowrd from the 16 lower bits of rs1 to the memory address of
rs2 + signed(sign_ext(imm)). This instruction is directly translated to the “sth” p-VEX
instruction.

1 mem(rs2 + signed(sign_ext (imm))) = rsl1(15 downto 0)

opcode = “0100011”, funct3 = “001”

A.33 sw

This instruction stores the contents of rsl to the memory address of rs2 -+
signed(sign_ext(imm)). This instruction is directly translated to the “stw” p-VEX in-
struction.

1 mem(rs2 + signed(sign_ext (imm))) = rsl

opcode = “0100011”, funct3 = “010”

A.34 jal

This instruction performs a direct jump and link where the signed immediate value is
added to the current PC to obtain the jump address, while at the same time the next PC
value PC+1 is stored in the link register. This instruction utilizes the J-type format [3.3]

A.35. JALR 95

The software calling convention assigns register “x1” as the link register and “x5” as the
alternate link register, see table The immediate value is obtained by concatenating
the following instruction fields: imm = instr(30) & instr(19 downto 12) & instr(20) &
instr(30 downto 21) & ’0’

A zero is also concatenated at the end, since the offset value is a multiple of 2 and the
actual final ‘0’ of the offset, is not stored. This instruction can be directly translated to
a p-VEX instruction with a small modification however. Even though there is a similar
p-VEX instruction the actual jump target in p-VEX architecture is calculated as PC +
1 + offset instead of PC + offset. As a result this needs to be dealt with by subtracting
a ‘1’ locally from the offset.

1 PC=PC + 1 + sign_ext (signed (imm) — 1)
2 rs63 = PC + 1

opcode = “1101111”

A.35 jalr

This instruction performs an indirect jump and link, where the signed immediate value
is added to the value of rs1, while the next PC value PC+1 is stored to the link register.
This instruction utilizes the I-type format The immediate value is obtained by the
following instruction field: instr(31 downto 20). The approach for this instruction is
the same as “jal” mentioned above, however instead of subtracting a ‘1’ from the offset
locally this needs to be done with emulation in the following manner:

sub rsl, 1, rsl

nop

nop

nop
jalr

opcode = “1100111”

S I N

A.36 lui

This instruction is used to create 32bit constants. It utilizes the U-type format3.3] and
places the 20bit immediate value in the top bits of register rd, filling the remaining bits
with zeros. This instruction is not translated directly to any p-VEX however it can be
simply implemented by inserting the value as an immediate and using an instruction like
“or” with register r0 (hardwired to zero) to put the value in rd.

1 rd = r0 or imm << 12

opcode = “0110111”

A.37 auipc

This instruction is used to create PC relative addresses. It utilizes the U-type format3.3|
and creates an immediate value by putting the 20bit immediate value in the higher order

96 APPENDIX A. APPENDIX: RISC-V INSTRUCTION TRANSLATION

bits of a 32 bit value filling in the rest with zeros. This value is then added to the current
PC and then stored to rd. The procedure mentioned here can be used to acquire
the PC value.

1 rd = (signed (imm) << 12) 4+ PC
opcode = “0010111”

Appendix: ARM Instruction
Translation

This appendix describes the translation procedure for all the individual ARM instruc-
tions to p-VEX ones. As mentioned earlier 4 the ARMv4 subset is used due to its
simplicity, compared to other ARM architectures, and highest compatibility with the
p-VEX architecture. From the translation procedure, a few instructions are omitted
and more specifically the ones that are related to execution privileges, system calls and
co-processor instructions. Execution privileges are not implemented since p-VEX is re-
sponsible for handling access privileges. Most system calls were also omitted except the
termination call to signal the code execution end. Co-processor instructions were also
omitted since they are not applicable.

B.1 ALU instructions

All the ALU instructions are listed in this section. The first operand is always a register
source and the second can be either an immediate or a register value.

97

98 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

B.1.1 AND

[31-28 [27-21 [20 | 19-16 [15-12 | 11-0
cond 0000000 S Rn Rd second_operand

if predication = true then
Rd = Rn AND
if S =1 then
N Flag = Rd[31]
7Z Flag = if Rd = 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

The “AND” instruction performs a bitwise AND operation on two values. First value
comes from a register and the second comes from a register or an immediate. The second
register source can be shifted, rotated or neither. This instruction cannot target the PC.

e cond: The instruction CZNV condition flags.
e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.

e Rn: First operand.

Rd: Target register.

second_operand: The second operand value.

This instruction is directly translated to the p-VEX instruction “and”.

B.1.2 EOR

[31-28 [27-21 [20 | 19-16 [15-12 | 11-0
cond 0000001 S Rn Rd second_operand

if predication = true then
Rd = Rn XOR second-operand
if S =1 then
N Flag = Rd[31]
Z Flag = if Rd = 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

The “EOR” instruction performs a bitwise XOR operation on two values. First value
comes from a register and the second comes from a register or an immediate. The second
register source can be shifted, rotated or neither. This instruction cannot target the PC.

e cond: The instruction CZNV condition flags.

e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.

B.1. ALU INSTRUCTIONS 99

e Rn: First operand.
e Rd: Target register.
e second_operand the second operand. See section

This instruction is directly translated to the p-VEX instruction “xor”.

B.1.3 SUB
[31-28 [27-21 [20 | 19-16 | 15-12 | 11-0
cond 0000010 S Rn Rd second_operand
if predication == true then

1
2 Rd = Rn — second_operand
3 if S= 1 then

| N Flag = Rd[31]

Z Flag = if Rd = 0 then 1 else 0
6 C Flag = NOT BorrowFrom (Rn — second_operand)
7 V Flag = OverflowFrom (Rn — second_operand)

The “SUB” instruction performs a subtraction between two values. First value comes
from a register and the second comes from a register or an immediate. The second register
source can be shifted, rotated or neither. This instruction cannot target the PC.

e cond: The instruction CZNV condition flags.

e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.
e Rn: First operand.

e Rd: Target register.

e second_operand the second operand. See section 4.5

This instruction is directly translated to the p-VEX instruction “sub”, with the only
difference being the order of subtraction being reverse. i.e. p-VEX performs b - a instead
of a - b, as a result Rn and the second_operand should be swapped.

B.1.4 RSB
[31-28 | 27-21 |20 | 19-16 | 15-12 | 11-0
cond 0000011 S Rn Rd second_operand
1 if predication = true then

2 Rd = Rn XOR second_operand
if S =1 then

N Flag = Rd[31]
5 Z Flag = if Rd = 0 then 1 else 0
6 C Flag = shifter_carry_out

7 V Flag unaffected

100 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

The “RSB” (Reverse Subtract) instruction performs a subtraction between two values.
First value comes from a register and the second comes from a register and can be either
shifted or not. Same as the normal “SUB” instruction but the order is reversed. i.e.
second _operand - Rn instead of Rn - second_operand. This instruction cannot target the
PC.

e cond: The instruction CZNV condition flags.
e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.

e Rn: First operand.

Rd: Target register.

second_operand: the second operand.

This instruction is directly translated to the p-VEX instruction “sub”.

B.1.5 ADD

[31-28 | 27-21 |20 | 19-16 | 15-12 | 11-0
cond 0000100 S Rn Rd second_operand

1 if predication = true then

2 Rd = Rn + second_operand

3 if S= 1 then

1 N Flag = Rd[31]

5 Z Flag = if Rd = 0 then 1 else 0

6 C Flag = CarryFrom(Rn + second-operand)

7 V Flag = OverflowFrom (Rn + second_operand)

The “ADD?” instruction performs an addition between two values. First value comes
from a register and the second comes from a register or an immediate. The second
register source can be shifted, rotated or neither. This instruction cannot target the PC.

e cond: The instruction CZNV condition flags.

S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.

e Rn: First operand.

Rd: Target register.

second_operand: the second operand.

This instruction is directly translated to the p-VEX instruction “add”.

V]

B.1. ALU INSTRUCTIONS 101

[31-28 | 27-21 |20 | 19-16 | 15-12 | 11-0
cond 0000101 S Rn Rd second_operand

B.1.6 ADC

if predication == true then
Rd = Rn + second-operand + C Flag
if S =1 then
N Flag = Rd[31]
Z Flag = if Rd = 0 then 1 else 0
C Flag = CarryFrom(Rn + second_operand + C flag)
V Flag = OverflowFrom (Rn + second_operand + C flag)

The “ADC” (Add with carry) instruction performs an addition between two values
and a carry in. First value comes from a register and the second comes from a register or
an immediate. The second register source can be shifted, rotated or neither. The carry
in is the value of the C flag. This instruction cannot target the PC.

e cond: The instruction CZNV condition flags.

S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.

e Rn: First operand.

Rd: Target register.
e second_operand: the second operand.

This instruction cannot be directly translated. Even though the p-VEX instruction
“addcg” can perform this operation it cannot be invoked independently since the carry
in needs to be located in a branch register. As a result a “tbit” instruction needs to be
called initially to copy the C flag to the branch register. In order to translate the “ADC”
instruction 3 p-VEX instructions are needed and these are the following:

tbit ba, rf, 1\\copy the C flag from the flag register to a branch register
addcg

3 goto —2\\jump back to normal execution

2

B.1.7 SBC

[31-28 | 27-21 [20[19-16 | 15-12 | 11-0
cond 0000110 S Rn Rd second_operand

if predication = true then
Rd = Rn — second_operand — NOT(C Flag)
if S =1 then
N Flag = Rd[31]
Z Flag if Rd = 0 then 1 else 0
C Flag = NOT BorrowFrom (Rn — second_operand — NOT(C Flag))
V Flag = OverflowFrom (Rn — second_operand — NOT(C Flag))

102 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

The “SBC” (Subtract with carry) instruction subtracts a value and a carry from
another value. First value comes from a register and the second comes from a register or
an immediate. The second register source can be shifted, rotated or neither. The carry
in is the value of the C flag. This instruction cannot target the PC.

e cond: The instruction CZNV condition flags.

e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.

Rn: First operand.

Rd: Target register.
e second_operand: the second operand.

This instruction cannot be directly translated. As a result this instruction is per-
formed in 4 stages. First the C flag is copied to a general purpose register. Next two
subtractions are performed, Rn - second_operand - C flag. Note that the subtraction in
p-VEX is reversed compared to ARM(b - a instead of a - B) so the values need to be
swapped.
tbit ra, rf, 1\\copy the C flag from the flag register to a general

register
sub

sub
goto —3\\jump back to normal execution

B.1.8 RSC
[31-28 [27-21 [20 | 19-16 [15-12 | 11-0
cond 0000111 S Rn Rd second_operand
if predication = true then

Rd = second-operand — Rn — NOT(C Flag)
if S =1 then

N Flag = Rd[31]

7Z Flag = if Rd = 0 then 1 else 0

C Flag = NOT BorrowFrom (second_operand — Rn — NOT(C Flag))
V Flag = OverflowFrom (second_operand — Rn — NOT(C Flag))

The “RSC” (Reverse Subtract with carry) instruction subtracts a value and a carry
from another value. First value comes from a register and the second comes from a
register or an immediate. The second register source can be shifted, rotated or neither.
The carry in is the value of the C flag. This instruction cannot target the PC.

e cond: The instruction CZNV condition flags.
e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.

e Rn: First operand.

B.1. ALU INSTRUCTIONS 103

e Rd: Target register.
e second_operand: the second operand.

This instruction cannot be directly translated. As a result this instruction is per-
formed in 4 stages. First the C flag is copied to a general purpose register. Next two
subtractions are performed, second_operand - Rn - C flag.

1 tbit ra, rf, 1\\copy the C flag from the flag register to a general
register
2 sub
3 sub
i goto —3\\jump back to normal execution

B.1.9 TST
| 31-28 [27-21 [20 | 19-16 | 15-12 | 11-0
cond 0001000 S Rn 0000 second_operand
1 if predication = true then

2 alu_out = Rn AND second-operand

3 N Flag = alu_out [31]

4 Z Flag = if alu_out = 0 then 1 else 0
5 C Flag = shifter_carry-out

6 V Flag = unaffected

The “TST” instruction compares two values by ANDing them. No register is updated
but the flags are updated based on the result of the calculation. Depending on the
implementation this instruction can either dispatch a NOP if the flags are calculated
inside the translator, or an AND instruction. In the latter case the result should be
stored in a scrap register which will be used to calculate the flags. The "N’ flag can be
calculated with a “tbit” instruction in order to extract the 31st bit of the result and the
7 flag with a simple “cmpeq” instruction.

e cond: The instruction CZNV condition flags.
e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.
e Rn: First operand.

e second_operand: the second operand.

B.1.10 TEQ

[31-28 | 27-21 |20 | 19-16 | 15-12 | 11-0
cond 0001001 S Rn 0000 second_operand

T W N

w N

104 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

if predication == true then
alu_out = Rn XOR second_operand
N Flag = alu_out [31]
Z Flag = if alu_out = 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

The “TEQ” instruction compares two values by XORing them. No register is updated
but the flags are updated based on the result of the calculation. Depending on the
implementation this instruction can either dispatch a NOP if the flags are calculated
inside the translator, or an XOR instruction. In the latter case the result should be
stored in a scrap register which will be used to calculate the flags. The 'N’ flag can be
calculated with a “tbit” instruction in order to extract the 31st bit of the result and the
7 flag with a simple “cmpeq” instruction.

e cond: The instruction CZNV condition flags.
e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.
e Rn: First operand.

e second_operand: the second operand.

B.1.11 CMP

[31-28 | 27-21 |20 | 19-16 | 15-12 | 11-0
cond 0001010 S Rn 0000 second_operand

if predication = true then
alu_out = Rn — second_operand
N Flag = alu_out [31]
Z Flag = if alu_out = 0 then 1 else 0
C Flag = NOT BorrowFrom (Rn — second_operand)
V Flag = OverflowFrom (Rn — second_operand)

The “CMP” instruction compares two values by subtracting them. No register is
updated but the flags are updated based on the result of the calculation. Depending on
the implementation this instruction can either dispatch a NOP if the flags are calculated
inside the translator, or an XOR instruction. In the latter case the result should be
stored in a scrap register which will be used to calculate the flags. The 'N’ flag can be
calculated with a “tbit” instruction in order to extract the 31st bit of the result and the
Z flag with a simple “cmpeq” instruction, and the C and V flags with the procedures
described here A complete example can be seen here (See table .

e cond: The instruction CZNV condition flags.
e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.
e Rn: First operand.

e second_operand: the second operand.

B.1. ALU INSTRUCTIONS 105

B.1.12 CMN

[31-28 | 27-20 [19-16 [15-12 | 11-0
cond 00010111 Rn 1111 second_operand

1 if predication = 1 then

2 alu_out = Rn + second)\ _operand

3 N Flag = alu_out [31]

1 Z Flag = if alu_out = 0 then 1 else 0
5 C Flag = CarryFrom(Rn + second_operand)

6 V Flag OverflowFrom (Rn + second_operand)

The “CMN”(Compare Negative) instruction compares on value with the two’s com-
plement of another one. First value comes from a register and the second comes from a
register or an immediate. The second register source can be shifted, rotated or neither.
This instruction always updates the flags.

e cond: The instruction CZNV condition flags.
e RD: Target register.
e Rn: Source register.

second_operand: the second operand.

This instruction can be directly translated to the “ADD” p-VEX instruction.

B.1.13 ORR

[31-28 | 27-21 |20 | 19-16 | 15-12 | 11-0
cond 0001100 S Rn Rd second_operand

1 if predication = true then
2 Rd = Rn OR second_operand
if S =1 then
N Flag = Rd[31]

5 Z Flag = if Rd = 0 then 1 else 0
6 C Flag = shifter_carry_out
7 V Flag = unaffected

The “ORR” instruction performs bitwise OR to two values. First value comes from
a register and the second comes from a register or an immediate. The second register
source can be shifted, rotated or neither. This instruction cannot target the PC.

e cond: The instruction CZNV condition flags.
e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.

e Rn: First operand.

106 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

e Rd: Target register.
e second_operand: the second operand.

This instruction can be directly translated to the “or” p-VEX instruction.

B.1.14 MOV

| 31-28 [27-21 [20 | 19-16 [15-12 | 11-0
cond 0001101 S 0000 Rd second_operand

1 if predication = true then
2 Rd = second_operand

3 if S =1 then

| N Flag = Rd[31]

5 Z Flag = if Rd = 0 then 1 else 0
6 C Flag = shifter_carry_out

7 V Flag = unaffected

The “MOV” instruction places a value in a register. The value comes from a register
or an immediate, and it can be shifted, rotated or neither. This instruction cannot target
the PC.

e cond: The instruction CZNV condition flags.

e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.
e Rd: Target register.

e second_operand: the second operand.

This instruction can be implemented with many ways one of which is ORing the value
with zero. As a result the p-VEX “OR” instruction can be used for direct translation.

B.1.15 BIC

[31-28 | 27-21 |20 | 19-16 | 15-12 | 11-0
cond 0001110 S Rn Rd second_operand

1 if predication = true then
2 Rd = Rn AND NOT second_operand
if S =1 then
N Flag = Rd[31]

5 Z Flag = if Rd = 0 then 1 else 0
6 C Flag = shifter_carry_out
7 V Flag = unaffected

The “BIC” instruction performs a bitwise AND operation between a value and the
complement of another value. First value comes from a register and the second comes
from a register or an immediate. The second register source can be shifted, rotated or
neither. This instruction cannot target the PC.

B.2. LOAD/STORE INSTRUCTION 107

cond: The instruction CZNV condition flags.

S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.

Rd: Target register.
e Rn: Source register.
e second_operand: The second operand.

This instruction can be directly translated to the “andc” p-VEX instruction. Note
that the order of the values should be reversed since the p-VEX “andc” performs (NOT
a) AND b while ARM requires a AND (NOT b).

B.1.16 MVN

[31-28 | 27-21 |20 | 19-16 | 15-12 | 11-0
cond 0001111 S 0000 Rd second_operand

if predication = true then
Rd = NOT second_operand
if S =1 then
N Flag = Rd[31]
Z Flag = if Rd = 0 then 1 else 0
C Flag = shifter_carry_out
V Flag = unaffected

The “MVN” instruction places the complement of a value in a register. The value
comes from a register or an immediate, and it can be shifted, rotated or neither. This
instruction cannot target the PC.

e cond: The instruction CZNV condition flags.

e S: If S = 1 then the instruction updates the CZNV flags, other wise it does not.
e Rd: Target register.

e second_operand: the second operand.

This instruction can be implemented with the “orc” p-VEX instruction. Note that
the order of the values should be reversed since the p-VEX “orc” performs (NOT a) OR
b while ARM requires a OR (NOT b).

B.2 Load/Store instruction

These instructions are the memory access instructions. Most of these instructions are
translated into multiple p-VEX instructions mostly in order to calculate the address. For
each of the following instructions, the address should be calculated according to the cases
presented in the addressing mode section For this reason some of the instruction en-
coding bits are indifferent(marked with ‘X’) regarding the type of store/load instruction,

108 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

however these bits are used to determine the addressing mode. Furthermore, regarding
the “load” instructions, if the target is register R15(Program counter), then writing the
PC with the new value should be treated as a jump to that location(see 4.3.3.2)).

B.2.1 STRB

[31-28 [27-26 | 25-23 | 22 [21 | 20 | 19-16 | 15-12 | 11-0
cond 01 XXX 1 X 0 Rn Rd XXXXXXXXXXXX

1 if predication = true then
Memory [address ,1] = Rd[7:0]

N

Stores the least significant byte of a register to the memory.
e Rn: Base address register.
e Rd: Data Source register.

The equivalent p-VEX instruction is “stb”. Furthermore, this instruction is executed
in two stages, first the address is calculated according to [4.6] and then the equivalent
p-VEX store byte instruction is executed. In case of the emulation it will be emulated
by the following:

calculate address\\calculate address according to addressing mode
stb rx, 0\\the final address is located in rx

3 goto —n\\jump backwards. n is the amount of instructions the address
calculation requires plus 2.

N

B.2.2 STRH

3128 [27-25 | 24-21 [20[19-16 [15-12 | 11-8 [74 | 3-0
cond 000 XXXX 0 Rn Rd XXXX 1011 XXXX

1 if predication = true then
Memory [address ,2] = Rd[15:0]

N

Stores a halfword of a register to the memory.
e Rn: Base address register.
e Rd: Data Source register.

The equivalent p-VEX instruction is “sth”. Furthermore, this instruction is executed
in two stages, first the address is calculated according to [4.6] and then the equivalent
p-VEX store byte instruction is executed. In case of the emulation it will be emulated
by the following:

1 calculate address\\calculate address according to addressing mode
2 sth rx, O\\the final address is located in rx

3 goto —n\\jump backwards. n is the amount of instructions the address
calculation requires plus 2.

B.2. LOAD/STORE INSTRUCTION 109

B.2.3 STR

| 31-28 | 27-26 | 25-23 [22 | 21 | 20 [19-16 | 15-12 | 11-0
cond 01 XXX 1 X 0 Rn Rd XXXXXXXXXXXX

1 if predication = true then
2 Memory [address ,4] = Rd

Stores a word from a register to the memory.

e Rn: Base address register.

e Rd: Data Source register.

The equivalent p-VEX instruction is “stw”. Furthermore, this instruction is executed
in two stages, first the address is calculated according to [4.6, and then the equivalent
p-VEX store byte instruction is executed. In case of the emulation it will be emulated
by the following;:

1 calculate address\\calculate address according to addressing mode
stw rx, O\\the final address is located in rx

3 goto —n\\jump backwards. n is the amount of instructions the address
calculation requires plus 2.

N

B.2.4 LDRB

| 31-28 | 27-26 | 25-23 [22 | 21 | 20 [19-16 | 15-12 | 11-0
cond 01 XXX 1 X 1 Rn Rd XXXXXXXXXXXX

if predication = true then
2 Rd = Memory [address ,1]

Loads a byte from memory and zero extends it.

e Rn: Base address register.

e Rd: Data Source register.

This instruction cannot target the PC. The equivalent p-VEX instruction is “ldbu”.
Furthermore, this instruction is executed in two stages, first the address is calculated
according to and then the equivalent p-VEX store byte instruction is executed. In
case of the emulation it will be emulated by the following:

calculate address\\calculate address according to addressing mode
ldbu rd, rx O\\the final address is located in rx

3 goto —n\\jump backwards. n is the amount of instructions the address
calculation requires plus 2.

N

110 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

[31-28 [27-25 | 24-21 [20[19-16 | 15-12 [11-8 [74 | 3-0 |
cond 000 XXXX I Rn Rd XXXX 1101 XXXX

B.2.5 LDRSB

1 if predication == true then
2 data = sign_ext (Memory[address ,1])

Loads a byte from memory and sign extends it.
e Rn: Base address register.

e Rd: Data Source register.

This instruction cannot target the PC. The equivalent p-VEX instruction is “ldb”.
Furthermore, this instruction is executed in two stages, first the address is calculated
according to [4.6] and then the equivalent p-VEX store byte instruction is executed. In
case of the emulation it will be emulated by the following:

calculate address\\calculate address according to addressing mode
ldb rx, O\\the final address is located in rx

3 goto —n\\jump backwards. n is the amount of instructions the address
calculation requires plus 2.

N

B.2.6 LDRH

[31-28 | 27-25 | 24-21 [20 | 19-16 [15-12 | 11-8 [74 | 30
cond 000 XXXX 1 Rn Rd XXXX 1011 XXXX

if predication = true then
data = Memory [address ,2]

N

Loads a halfword from memory and zero extends it. This instruction cannot target
the PC.

e Rn: Base address register.
e Rd: Data Source register.

The equivalent p-VEX instruction is “ldhu”. Furthermore, this instruction is ex-
ecuted in two stages, first the address is calculated according to and then the
equivalent p-VEX store byte instruction is executed. In case of the emulation it will
be emulated by the following:

1 calculate address\\calculate address according to addressing mode

ldhu rx, O\\the final address is located in rx

3 goto —n\\jump backwards. n is the amount of instructions the address
calculation requires plus 2.

N

1

2

N

N

[

B.2. LOAD/STORE INSTRUCTION 111

3128 [27-25 | 24-21 [20[19-16 [15-12 | 118 [74 | 3-0
cond 000 XXXX I Rn Rd XXXX 1111 XXXX

B.2.7 LDRSH

if predication = true then
data = Memory[address ,2]

Loads a halfword from memory and sign extends it. This instruction cannot target
the PC.
e Rn: Base address register.

e Rd: Data Source register.

The equivalent p-VEX instruction is “ldh”. Furthermore, this instruction is executed
in two stages, first the address is calculated according to [4.6] and then the equivalent
p-VEX store byte instruction is executed. In case of the emulation it will be emulated
by the following:
calculate address\\calculate address according to addressing mode
ldh rx, O\\the final address is located in rx

goto —n\\jump backwards. n is the amount of instructions the address
calculation requires plus 2.

B.2.8 LDR

| 31-28 | 27-26 | 25-23 [22 | 21 | 20 [19-16 | 15-12 | 11-0
cond 01 XXX 0 X 1 Rn Rd XXXXXXXXXXXX

if predication = true then
data = Memory[address ,4]

Loads a word from the memory to a register

e Rn: Base address register.

e Rd: Data Source register.

The equivalent p-VEX instruction is “ldw”. Furthermore, this instruction is executed
in two stages, first the address is calculated according to [4.6] and then the equivalent
p-VEX store byte instruction is executed. In case of the emulation it will be emulated
by the following:
calculate address\\calculate address according to addressing mode
ldw rx, O\\the final address is located in rx

goto —n\\jump backwards. n is the amount of instructions the address
calculation requires plus 2.

Furthermore if the target address of Rd is R15(PC) then a jump should occur to that
address according to this 4.3.3.2

112 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

3128 [27-25 [2423 [22 [21[20 [19-16 | 150 |
cond 100 XX 0 X 1 Rn register_list

B.2.9 LDM

1 if predication = true then
2 address = start_address
for i = 0 to 14

3
o

5 if register_list[i] = 1 then
6 Ri = Memory [address ,4]

7 address = address + 4

8 }

9 assert end-address = address — 4

10 if register_list[15] = 1 then \\PC has been loaded with a new value
11 PERFORM JUMP

LDM(Load multiple) instructions loads multiple sequential memory locations. Since
p-VEX does not support this kind of memory accesses the memory needs to be accessed
repeatedly until all the required data is transfered. This instruction executes in two
basic stages: first the start and end addresses are calculated according to and
Once these two addresses are calculated then the translator starts to dispatch
memory load instructions one per cycle. Within the instruction there is the register_list
field. This is a 16 bit field that determines which registers will be updated, 1 bit for
each general purpose register register_list(14 downto 0) and 1 bit register_list(15) for the
PC. For each of these bits the translator checks if it is 1 or 0 and dispatches a load
instruction if it is 1. If the value was 1 the address is also incremented by 4. Initially
the 14 LSBs of the register_list are checked starting from the LSB and moving onward.
When all 14 bits have been checked then the 15th is also checked. If this bit is set
this means that the new value that updates the PC should be treated as a jump and
the procedure shown here [£:3.3.2 should be followed. Lastly an optional step is followed
where the assertions is performed to verify that the final address generated is equal to the
base address. The register_list is available directly to the translator, as a result the bit
checking can be performed inside the translator. If the bit is zero nothing is dispatched
and the translator proceeds to check the next bit. If the bit is one then in the case of
emulation the following instructions should be dispatched:

1 ldw rd, address, 0//load mem(address) to rd
add rx1l, rxl, 4//increment the address register by 4

V)

When all bits have been checked then if there is no jump to be performed from PC
loading, then a simple “goto” instruction is dispatched that jumps backwards to the
original PC+1. The backwards jump amount is equal to the number_of_registers_loaded
* 2 + 1. This is with the assumption that the translation procedure followed in the
start_address and end_address calculation shown here also resumes proper
program flow i.e. the loading sequence starts with the base instruction PC value.

B.2.10 STM

1 if predication = true then

N

w N

V)

B.3. MULTIPLICATION INSTRUCTIONS 113

[31-28 [27-25 | 24-23 [22-19 [19-16 | 150
cond 100 XX 100 Rn register_list

address = start_address
for i = 0 to 15
{
if register_list[i] = 1 then

Memory [address ,4] = Ri
address = address + 4

}

assert end_address =— address — 4

The STM(Multiple store) is handled the exact same way as the previous instruction
“LDM” The only two differences is that instead of “ldw” instructions the “stw”
is used for the translation and also there is not check performed for PC jumps.

B.3 Multiplication instructions

This section presents the multiplication instructions as well as the multiply & accumulate
instructions. Since p-VEX does not contain a full 32x32 multiplier all of these instructions
needs to be emulated(see 3.7.10 of the p-VEX manual).

B.3.1 MUL

[31-28 | 27-21 [20[19-16 [15-12 | 11-8 [7-4 | 3-0 |
cond 0000000 S Rd 0000 Rs 1001 Rm

if predication = true then
Rd = (Rm * Rs)[31:0]
if S= 1 then

N Flag = Rd[31]

Z Flag = if Rd = 0 then 1 else 0
C Flag = unaffected

V Flag = unaffected

e Rd: Destination register.

e Rm: First operand.

e Rs: Second operand.

e S: Determines whether the flags will be updated or not.

The instruction MUL multiplies two 32-bit registers and stores the 32 LSBs of the result
to Rd. p-VEX does not contain a 32x32 multiplier however it contains a 16x32 multiplier,
as a result the lower 32 bits of the result can be calculated by the following instructions:

mpylu rx1, Rs, Rm
mpyhs rx2, Rs, rm//signed

3 cmpne brl, r0, r0

addcg Rd, brl, rxl, rx2, brl
goto —4

114 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

This instruction cannot target R15(PC)

B.3.2 UMUL

[31-28 | 27-21 |20 [19-16 [15-12 [11-8 | 7-4 [3-0 |
cond 0000100 S RdHi RdLo Rs 1001 Rm

1 if ConditionPassed (cond) then
2 RdHi = (Rm * Rs)[63:32] /* Unsigned multiplication x/
RdLo = (Rm * Rs)[31:0]
| if S =1 then

5 N Flag = RdHi[31]

6 Z Flag = if (RdHi = 0) and (RdLo = 0) then 1 else 0
7 C Flag = unaffected

8 V Flag = unaffected

RdHi:Destination register for the upper 32-bit result

RdLo:Destination register for the lower 32-bit result

Rs: First operand.
e Rm: Second operand.

e S: Determines whether the flags will be updated or not.

This instruction multiples two unsigned 32 bit values and stores the result in two 32
bit registers, “RdHi” for the upper 32 bits of the result and “RdLo” for the lower 32 bits
of the result. This instruction can be emulated with the following instructions:

1 mpylu rx1, Rm, Rs

mpylu rx2, Rm, Rs//unsigned

3 mpylhus rx3, Rm, Rs

i mpyhhs rx4, Rm, Rs

cmpne brl, r0, r0

addcg RdLo, brl, rxl, rx2, brl
7 addcg RdHi, brx, rx3, rx4, brl

V)

& goto —7
B.3.3 SMUL
[31-28 | 27-21 [20]19-16 [15-12 [11-8 | 7-4 [3-0 |
cond 0000110 S RdHi RdLo Rs 1001 Rm
1 if predication = true then
2 RdHi = (Rm * Rs)[63:32] /% signed multiplication x/

RdLo = (Rm * Rs)[31:0]
A if S =1 then
5 N Flag = RdHi[31]

B.3. MULTIPLICATION INSTRUCTIONS 115

6 Z Flag = if (RdHi = 0) and (RdLo = 0) then 1 else 0
7 C Flag = unaffected
8 V Flag = unaffected

RdHi:Destination register for the upper 32-bit result

RdLo:Destination register for the lower 32-bit result

Rs: First operand.
e Rm: Second operand.

e S: Determines whether the flags will be updated or not.

This instruction multiples two signed 32 bit values and stores the result in two 32 bit
registers, “RdHi” for the upper 32 bits of the result and “RdLo” for the lower 32 bits of
the result. This instruction can be emulated with the following instructions:

i mpylu rx1, Rm, Rs

mpyhs rx2, Rm, Rs//signed

3 mpylhus rx3, Rm, Rs

mpyhhs rx4, Rm, Rs

cmpne brl, r0, r0

addcg RdLo, brl, rxl1, rx2, brl
7 addcg RdHi, brx, rx3, rx4, brl

V]

SN

s goto —T
B.3.4 MLA
[31-28 | 27-21 [20]19-16 [15-12 | 11-8 [7-4 | 3-0 |
cond 0000001 S Rd Rn Rs 1001 Rm
. if predication = true then

2 RdHi = (Rm % Rs)[63:32] /* signed multiplication x/
RdLo = (Rm % Rs)[31:0]
if S =1 then

N Flag = RdHi[31]

6 Z Flag = if (RdHi = 0) and (RdLo = 0) then 1 else 0
7 C Flag = unaffected
8 V Flag = unaffected

e Rd:Destination register

e Rm: First operand.

Rs: Second operand.

e Rn: Added value.

S: Determines whether the flags will be updated or not.

V)

116 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

This instruction multiples two signed 32 bit values and adds a third value. The 32
LSBs are written to the destination register.

mpylu rxl, Rs, Rm
mpyhs rx2, Rs, rm//signed

3 cmpne brl, rO, r0

addcg Rd, brl, rxl, rx2, brl
add Rd, Rd, Rn
goto —5

B.3.5 UMLAL

[31-28 | 27-21 |20 [19-16 [15-12 [11-8 | 7-4 [3-0 |
cond 0000101 S RdHi RdLo Rs 1001 Rm

if predication = true then
RdLo = (Rm * Rs)[31:0] + RdLo /+ Unsigned multiplication x*/
RdHi = (Rm * Rs)[63:32] 4+ RdHi + CarryFrom ((Rm * Rs)[31:0] + RdLo)
if S =1 then
N Flag = RdHi[31]

Z Flag = if (RdHi = 0) and (RdLo = 0) then 1 else 0
C Flag = unaffected
V Flag = unaffected

RdHi:Destination register for the upper 32-bit result

RdLo:Destination register for the lower 32-bit result

e Rs: First operand.

e Rm: Second operand.

e S: Determines whether the flags will be updated or not.

This instruction multiplies two unsigned 32 bit values to produce a 64 bit result, the
32 MSBs of the result are added to the old value of “RdHi” and the result is written
back to “RdHi”. Similarly for the 32 LSBs and the “RdLo”. The way this is emulated
is by first calculating the 64-bit result and storing it in scrap registers(rx6 && rx5).
Next two “addcg” instructions are used to sum this result with the previous “RdHi” and
“RdLow”.

mpylu rx1, Rm, Rs

mpylu rx2, Rm, Rs//unsigned
mpylhus rx3, Rm, Rs

mpyhhs rx4, Rm, Rs

cmpne brl, r0, r0

cmpne br2, r0, r0

cmpne br4, r0, r0

addcg rx5 br3, rxl, rx2, brl
addcg rx6 br2, rx3, rx4, br3

) addcg RdLo, br4, rx5, RdLo, br4

addcg RdHi, brx, rx6, RdHi, br4
goto —11

B.4. BRANCH INSTRUCTIONS 117

B.3.6 SMLAL

[31-28 | 27-21 [20[19-16 [15-12 [11-8 | 7-4 [3-0 |
cond 0000101 S RdHi RdLo Rs 1001 Rm

if predication = true then
RdLo = (Rm * Rs)[31:0] + RdLo /+# Unsigned multiplication =/
RdHi = (Rm * Rs)[63:32] 4+ RdHi + CarryFrom ((Rm * Rs)[31:0] + RdLo)
if S =1 then
N Flag = RdHi[31]

Z Flag = if (RdHi = 0) and (RdLo = 0) then 1 else 0
C Flag = unaffected
V Flag = unaffected

RdHi:Destination register for the upper 32-bit result

RdLo:Destination register for the lower 32-bit result

Rs: First operand.

Rm: Second operand.

e S: Determines whether the flags will be updated or not.

This instruction multiplies two signed 32 bit values to produce a 64 bit result, the
32 MSBs of the result are added to the old value of “RdHi” and the result is written
back to “RdHi”. Similarly for the 32 LSBs and the “RdLo”. The way this is emulated
is by first calculating the 64-bit result and storing it in scrap registers(rx6 && rx5).
Next two “addcg” instructions are used to sum this result with the previous “RdHi” and
“RdLow”.

mpylu rx1, Rm, Rs
mpylu rx2, Rm, Rs//unsigned

3 mpylhus rx3, Rm, Rs

mpyhhs rx4, Rm, Rs

cmpne brl, r0, r0

cmpne br2, r0, r0

cmpne br4, r0, r0

addcg rx5 br3, rxl, rx2, brl
addcg rx6 br2, rx3, rx4, br3
addcg RdLo, br4, rx5, RdLo, br4
addcg RdHi, brx, rx6, RdHi, br4
goto —11

B.4 Branch Instructions

ARM architecture has two branch instructions, one that branches and one that branches
and links.

118 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

3128 [27-25 [24 [230 |
cond 101 0 jump_value

B.41 B

if predication = true then
2 PC = PC + (SignExt_30(jump_value) << 2)

This instruction branches to PC plus the jump value. The jump value is always
aligned to 4 bytes as a result the 2 LSBs of the jump value are not stored. As a result
the value needs to be shifted to the left by two and then sign extended to 32 bits. The
jump offset can be calculated within the translator, as a result this instruction can be
translated to a simple “goto” p-VEX instruction with the offset pre-calculated within
the translator.

B.4.2 BL
[31-28 [27-25 [24 [230
cond 101 1 jump_value
1 if predication = true then
2 PC = PC + (SignExt_30(jump_value) << 2)
3 LR = PC+1

This instruction branches to PC plus the jump value while storing the next PC in
the link register. The jump value is always aligned to 4 bytes as a result the 2 LSBs
of the jump value are not stored. As a result the value needs to be shifted to the left
by two and then sign extended to 32 bits. The jump offset can be calculated within
the translator, as a result this instruction can be translated to a simple “goto” p-VEX
instruction with the offset pre-calculated within the translator. This instruction can be
directly translated to the p-VEX “call”. Extra attention needs to be paid to set the link
register in p-VEX as R63 and also map any instruction that targets or reads the link
register as R63.

B.5 Miscellaneous Instructions

B.5.1 SWP

[31-28 | 27-20 [19-16 | 15-12 [11-8 | 7-4 | 3-0 |
cond 00010000 Rn ~ Rd 0000 1001 Rm

1 if predication = true then
2 temp = Memory[address ,4]
: Memory [address ,4] = Rm
4 Rd = temp

e Rn: Contains the address of the memory

w N =

V)

N

B.5. MISCELLANEOUS INSTRUCTIONS 119

e Rd: Destination register

e Rm: Data to be written to memory

This instruction loads a value from the memory location pointed by Rn and stores it
in a temporary register. Next another value in register Rm is stored to the same memory
location pointed by Rn. Then the temporary register is copied to Rd. If Rd is the same
as Rm the instruction essentially swaps a value from memory and register Rn. Since
there is no swap instruction in p-VEX this instruction needs to be emulated with three
instructions. One instruction to load the data to the temporary register, one instruction
to store the data from Rm to memory and one instruction to copy the data from the
temporary location to Rd. This can be done with the following instructions:
ldw Rxl, Rn, 0//load to Rxl
stw Rm, Rn, 0//store Rm to mem

or Rd, Rxl, 0//copy Rxl to Rd
goto —3//jump back to normal program flow

B.5.2 SWPB

[31-28 | 27-20 [19-16 | 15-12 [11-8 | 7-4 | 3-0 |
cond 00010100 Rn ~ Rd 0000 1001 Rm

if predication == true then
temp = Memory[address , 1]
Memory [address ,1] = Rm[7:0]
Rd = temp

e Rn: Contains the address of the memory
e Rd: Destination register

e Rm: Data to be written to memory

This instruction loads a byte from the memory location pointed by Rn and stores it
in the LSbyte of a temporary register. Next the LSByte in register Rm is stored to the
same memory location pointed by Rn, after it is zero extended. Then the temporary
register is copied to Rd. If Rd is the same as Rm the instruction essentially swaps a
value from memory and register Rn. Since there is no swap instruction in p-VEX this
instruction needs to be emulated with three instructions. One instruction to load the
data to the temporary register, one instruction to store the data from Rm to memory
and one instruction to copy the data from the temporary location to Rd. This can be
done with the following instructions:
ldbu Rx1, Rn, 0//load to Rxl
stb Rm, Rn, 0//store Rm to mem

or Rd, Rxl, 0//copy Rxl to Rd
goto —3//jump back to normal program flow

¥

120 APPENDIX B. APPENDIX: ARM INSTRUCTION TRANSLATION

(3128 [2724 260 |
cond 1111 immediate

B.5.3 SWI

if predication = true then
execute software interrupt

This instruction is the system call of ARM. The only system call implemented is the
termination call. The ARM system call convention is implemented with two ways, one
the immediate field in the instruction indicates the system call, or two, register RO(in
our case R1 see indicates the system call. The termination call has register R1
== 24, as a result when a system call is read a check should be performed on R1 ==
24 and then a branch to the original instruction. If the branch is taken this means that
the system call was indeed a termination call, if not then the system call is ignored and
execution proceeds. The following instructions show this procedure.
cmpeq brl, R1, 24
goto —2

3 br —1

