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Abstract. This paper is concerned with heterogeneous domain decomposition for semi-
implicit Low Mach number schemes. The actual scheme is the Multiple Pressure Variables
(MPV) scheme, which can be applied for a large range of Low Mach Number flows, ranging
from natural convection flows with large temperature and density changes to aero-acoustics
with recoupling of the acoustic to the flow. For aero-acoustic calculations, the numerical
costs often are high due to the large computational domains. To reduce the computational
effort, the domain is divided into non-overlapping sub-domains with non-matching cells.
The future aim is to couple the semi-implicit code to domains with explicit time march-
ing schemes. Therefore methods are considered, that do not require information from the
neighbouring domains during one time step. This leads to a block-structured implementa-
tion spanning the solution space for the CG–solver over every single block instead of the
hole computational domain. Information is exchanged at the beginning or end of the time
step, not during the iteration steps.

1 INTRODUCTION

Low Mach number flows are typical multi-scale applications where phenomena on dif-
ferent length scales interact with each other. In the recent years, different approaches for
the calculation of Low Mach Number fluid flow have been developed. Among them is the
Multiple Pressure Variables (MPV) scheme, which accounts for the different roles played
by “the pressure” by using different variables and different numerical determinations of
the thermodynamic, acoustic and hydrodynamic pressure parts. Based on an asymptotic

1



Sabine P. Roller, Harald Klimach, Claus-Dieter Munz

multi-scale analysis, the equations and the interactions of these pressure parts are deter-
mined. Thereby, the different scales can be accounted for in a very efficient way. The
influence of the small scale to the large one is included as well as vice versa. The scheme
can be applied for a large range of Low Mach Number flows, ranging from natural convec-
tion flows with large temperature and density changes to aero-acoustics with recoupling
of the acoustic to the flow [1, 2, 3].

Nevertheless, especially aero-acoustic calculations are still expensive. On the one hand,
the discretization has to be fine enough to resolve the small vortical structures. These are
responsible for the generation of sound waves. The waves themselves have a much longer
wave length, but travel over long distances within the same time interval. Therefore, the
computational domain is usually very large. On the other hand, interaction of fluid flow
and sound waves is essential only in a rather small domain around the sound sources.
Away from this sound origin, resolution of small vortices is not necessary, therefore it
is desired to use a much coarser grid. This allows for larger time steps also. Moreover,
non-linear and viscous effects can be neglected in the so-called far field.

Utzmann et. al [4] therefore developed a heterogeneous domain decomposition scheme,
where the equations, methods, grids and time steps are adapted to meet the local require-
ments. Heterogeneity in this context means that in every domain only the necessary effort
is payed. Near the origin of the sound waves, a fine, maybe unstructured grid is applied
on which the non-linear Euler- or Navier–Stokes equations are solved. This domain is
the most expensive and therefore kept as small as possible. Attached to this domain is a
coarser and structured grid where viscosity is neglected, but non-linear effects still play
a role. In the (near) far field then, linearized equations might be used on a usually even
coarser grid.

The current implementation of the coupling scheme uses explicit time marching schemes
in all domains. The future aim is to couple the MPV-code to these domains. The nu-
merical scheme implemented in the MPV-scheme is a semi-implicit SIMPLE-type scheme
which requires the solution of a non-linear pressure Poisson equation. Different precondi-
tioned Krylov subspace methods are implemented [5, 6], which are embedded in an outer
iteration due to the necessary linearization of the pressure Poisson equation.

Parallelization of Krylov subspace methods is usually done by domain decomposition,
where the Krylov spaces are spanned over the whole domain, but solved line by line on
several processors. This requires communication in each iteration step. Moreover, all
domains have to provide the same information, i.e. have to solve the same equations with
the same numerical scheme.

For the coupling with explicit schemes, these information are not available, and the
Krylov spaces cannot be spanned over the whole domain. Therefore, we investigate in
this paper construction methods, which do not require information from the neighboring
domains during the Krylov-subspace iteration. This leads to a block-structured imple-
mentation spanning the solution space for the CG-solver over every single block instead
of the whole computational domain. Information is exchanged at the beginning or end of
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the outer (the linearization) iteration, not during the iteration steps.
In this paper, we shortly review three different types of domain decomposition tech-

niques for the desired scheme. Numerical results as well as convergence analysis will be
presented. Special emphasize will be put on the coarsening factor between two neighbor-
ing grids, and peculiarities at the corners explained. The introduction of these techniques
into the non-linear iteration process of the MPV-scheme will be outlined.

2 DOMAIN DECOMPOSITION FOR THE POISSON EQUATION

Our aim is a block-structured implementation of the MPV scheme where in each domain
the Poisson equation is solved individually. Information from the neighboring domains is
included as boundary condition only. The naive way of doing is to prescribe the neighbor-
ing values as Dirichlet boundary conditions. In that case, the domains have to overlap,
otherwise the scheme does not converge [7]. Convergence is better, the larger the overlap
is. Prescribing the values on the boundary or in one row of ghost cells can be interpreted
as overlapping domains where the overlap is exactly this row of ghost cells. Thus, the
overlap is very small and hence the convergence rate poor.

For our coupling purpose, we apply a non-overlapping domain decomposition. In this
case, a second condition has to be fulfilled on the borders of the domains, that is the
equality of the normal derivatives. Formulating the two conditions as functions of the
pressure p (since this is the variable, the Poisson equation is solved for), the requirement
on the artificial boundary Γ = Ωi ∩ Ωj is

Φ(pi) = Φ(pj) on Γ (1)

Ψ(pi) = −Ψ(pj) on Γ. (2)

where Φ(p) = p, Ψ(p) = ∂p
∂n

, and n being the outward unit normal, i.e. ni = −nj.
Thus, the original Poisson problem

∆p = f in Ω
p = pDirichlet on ∂ΩDirichlet

∂p
∂n

=
(

∂p
∂n

)
Neumann

on ∂ΩNeumann

(3)

is decomposed into multiple subproblems

∆pi = fi in Ωi

pi = pDirichlet on ∂Ωi ∩ ∂ΩDirichlet
∂pi

∂n
=

(
∂p
∂n

)
Neumann

on ∂Ωi ∩ ∂ΩNeumann

(4)

with the additional interface conditions (1), (2).
The solution of the interface problem is done iteratively. The solution methods can be

summarized into three classes.
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2.1 Dirichlet–Neumann scheme

The domains are red-black colored and separated into domains fulfilling the Dirichlet-
condition (1) on the artificial boundary, and domains fulfilling the Neumann-condition
(2) on the interface.

A B A

B

B

BA

A A

Figure 1: checkerboard coloring of the domains

First, the Dirichlet-domains have to be solved, afterwards the Neumann-domains can
be solved. This is iterated up to convergence. With a negligible loss in the convergence
rate, it is possible to perform both steps in parallel by starting the Neumann-domains from
values of the Dirichlet-domain of the previous iteration level, and to correct afterwards.

A more serious problem is that if domains A are the Neumann-domains, the domain in
the middle in figure 1 has Neumann-boundaries only. In this domain, the solution of the
Poisson equation is not unique and iterative solvers for the linear equation system will
not converge. For more than 9 domains, this situation is unavoidable.

2.2 Neumann–Neumann scheme

Here, no coloring is necessary and all domains are treated in parallel. In every domain,
the Poisson equation is solved twice to fulfill both requirements: in a first step, Dirichlet
conditions are used, requiring equality with the values of the neighboring domain in the
previous iteration step. Afterwards, the Poisson problem is solved a second time with
Neumann requirement of equal normal derivatives. Again, it is iterated up to convergence.
The scheme is therefore twice as expensive as the Dirichlet–Neumann scheme.

The problem of purely Neumann boundary conditions and thus the non-uniqueness
of the solution is present here for all domains with only inner boundaries, making this
method unsuited for our purposes, too.

2.3 Agoshkov–Lebedev schemes

The third possibility is the method of Agoshkov–Lebedev which prescribes mixed
boundary conditions. The domains are again colorized in a checker-board manner and
solved alternatingly. The boundary conditions on the interface are defined as a linear com-
bination of Dirichlet- and Neumann conditions. Additionally, a relaxation of the solutions
can be used to accelerate convergence.
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The iteration procedure for the Agoshkov–Lebedev scheme thus looks like:

1. Solving domains of type A (ΩA):

∆p
k+1/2
A = fA in ΩA

p
k+1/2
A = pDirichlet on ∂ΩA ∩ ∂ΩDirichlet

∂p
k+1/2
A

∂n
=

(
∂p
∂n

)
Neumann

on ∂ΩA ∩ ∂ΩNeumann

a · pk+1/2
A +

∂p
k+1/2
A

∂nA
= a · pk

B −
∂pk

B

∂nB
on Γ

(5)

2. Relaxation in ΩA:

pk+1
A = pk

A + α ·
(
p

k+1/2
A − pk

A

)
(6)

3. Solving domains of type B (ΩB):

∆p
k+1/2
B = fB in ΩB

p
k+1/2
B = pDirichlet on ∂ΩB ∩ ∂ΩDirichlet

∂p
k+1/2
B

∂n
=

(
∂p
∂n

)
Neumann

on ∂ΩB ∩ ∂ΩNeumann

p
k+1/2
B + b · ∂p

k+1/2
B

∂nB
= pk+1

A − b · ∂pk+1
A

∂nA
on Γ

(7)

4. Relaxation in ΩB:

pk+1
B = pk

B + β ·
(
p

k+1/2
B − pk

B

)
(8)

Equations (1), (2) are replace by (5d), (7d). The parameters a ≥ 0 and b ≥ 0 as
well as the relaxation parameters α and β can be chosen individually in every iteration.
We consider here only constant parameters for all iterations. The different sign in the
Neumann-contributions to the boundary conditions is due to the opposite orientation of
the normal vectors nA and nB. By setting a, b to zero, the Dirichlet–Neumann scheme
is regained. Thus, the Dirichlet–Neumann scheme forms a subclass of the Agoshkov–
Lebedev schemes.

In every iteration, all sub-domains have to be solved once. Since the domains ΩB need
the solutions from ΩA, the sub-domains ΩB have to be solved afterwards. By using pk

A

instead of pk+1
A in the boundary conditions for domains of type B, this constraint can be

omitted for the benefit of parallelization and at the (negligible) cost of convergence.

2.4 Prescribing boundary conditions using ghost cells

The interface conditions are prescribed on the (artificial) boundary of the subdomains.
These boundary values are not used directly in the numerical scheme. The current imple-
mentation uses ghost cells which are determined in such a way that the interface conditions
hold. That’s the way it is done for the outer boundaries of the complete domain.
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For the artificial boundaries, there are two possibilities of prescribing the values: The
first one is to interpolate the values from the inner cells of domain ΩA to the interface
Γ = ΩA ∩ ΩB and then to interpolate them to the ghost cells of domain ΩB. It is also
possible to interpolate the values in the center of the ghost cells of Domain ΩB directly in
the neighboring domain ΩA, without explicitly defining the values on the interface itself.
If the two domains use the same discretization, i.e. the cells in both domains have equal
size, then the ghost cells of domain ΩB are identical to the first or last inner cells of
domain ΩA. Therefore, the second possibility is to prescribe directly the inner values of
domain ΩA to the ghost cells of domain ΩB and vice versa. This is still possible if the
cells are not of the same size. In that case some interpolation is necessary to get the value
at the center of the ghost cell from the inner cells in the neighbor domain. The effect of
these two possibilities will be investigated in the numerical examples.

3 NUMERICAL INVESTIGATIONS AND RESULTS

The testcase for the following analysis is the two-dimensional boundary value problem
on the unit domain [0, 1]× [0, 1]:

∆p(x, y) = 32 · ((y − 1)y + (x− 1)x) (9)

p(0, y) = p(1, y) = p(x, 0) = p(x, 1) = 0

The exact solution is
p(x, y) = (1− x)x · (1− y)y. (10)

For this testcase, convergence of the Dirichlet–Neumann, Neumann–Neumann, and
Agoshkov–Lebedev scheme is investigated. Since the goal of the implementation is the
coupling of the MPV code within a heterogeneous domain decomposition, the dependence
of the convergence rate on the mesh ratio between two neighboring domains is especially
considered. The results are summerized in a rather condensed manner only.

3.1 Convergence of the Dirichlet–Neumann scheme

The convergence of the Dirichlet–Neumann (D–N) scheme depends on several criteria:
the way, the boundary conditions are set (interpolation to the boundary or injection to
the ghost cells directly), on the location of the domain intersection (at the symmetry
plane of the solution or asymmetrically), and on the mesh ratio.

Figure 2 shows the convergence of the D–N scheme for a cutting at the symmetry plane
x = 0.5 (left), and asymmetrically at x = 0.25 (right). For the symmetric cutting, the
D–N scheme converges exactly in two steps. After the second step, the discretization
accuracy is reached. This 2-step convergence is lost for the asymmetric cut. At least, the
convergence rate is independent of the grid size.
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Figure 2: Convergence of the D–N scheme for a cutting at the symmetry plane x = 0.5 (left) and for an
asymmetric cutting at x = 0.25

If the domains are discretized with unlike coarseness of the grid, the solution de-
pends on whether the coarser domain is the Dirichlet- or the Neumann-domain. If the
Dirichlet-domain is discretized finer than the domain with Neumann boundary condition,
the discretization error of the coarser domain is carried fully into the domain with the
higher resolution. The reason therefore is that the order of accuracy of the boundary
condition doesn’t match the discretization order. For a second order scheme, the reach-
able accuracy on the finer domain is reduced for any mesh ratio higher than 2. When
the Dirichlet-domain is discretized finer than the Neumann-domain, the error is not only
larger. The maximum of the error also lies in the higher resolved domain instead of the
coarser one.

If the boundary values are set by direct injection on the ghost cells instead of inter-
polation to the interface, the scheme uses overlapping domains. Even for this very small
overlap of only one row, the characteristics of the scheme change. On the one hand,
the algorithm is accelerated, on the other an influence of the cell width is observed now.
Still, the Neumann-domain should be the one with the higher resolution, but this effect is
weakened. In summary, it can be stated that the definition of the boundary values in the
ghost cells instead of the interface makes the scheme less depending on the special choice
of the subdomains.

3.2 Convergence of the Neumann–Neumann scheme

The behavior of the Neumann–Neumann scheme is very similar to that of the Dirichlet–
Neumann scheme. The only positive effect which can be gained from choosing the
Neumann–Neumann scheme instead of the Dirichlet–Neumann scheme is a greater stabil-
ity at crosspoints, as all Domains exchange Dirichlet boundary values.

As in the Dirichlet–Neumann scheme the Neumann–Neumann scheme fails, if there
is a to big difference in the cell size of the interfacing grids. Since with this scheme all
domains are treated equally it doesn’t matter which of the domains is coarse.
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The Neumann–Neumann boundary values can not be defined properly in ghost cells,
as there has to be a shared value on the interface, which is used by both domains. So to
use this scheme boundary values on the interface have to be used.

The Neumann–Neumann scheme converges in many cases at the same rate, as the
Dirichlet-Neumann scheme. However in each step there have to be two boundary value
problems to be solved. So this scheme needs twice the calculation time and is quite
expensive without any real gain for our purpose.

3.3 Convergence of the Agoshkov–Lebedev scheme

The Agoshkov–Lebedev schemes form a generalization of the Dirichlet–Neumann
scheme. The use of mixed boundary conditions on the interfaces overcomes the limits
of the Dirichlet–Neumann as well as the Neumann–Neumann schemes, since no domains
with purely Neumann boundary conditions can appear.

The scheme uses four parameters, thus representing a wide range of domain decom-
position methods. The parameters a and b are weighting factors for the Neumann- and
Dirichlet contribution to the boundary conditions respectively. The α and β are relax-
ation parameters. Numerical experiments have shown the best convergence for methods
without relaxation, i.e. α = β = 1. We therefore concentrate here on the analysis of the
two linear factors defining the boundary conditions.

Choice of the weighting factors for Dirichlet- and Neumann-contribution.
Particular points in the parameter space are those fulfilling the relation b = 1

a
. For such a

combination, the ratio of Dirichlet- and Neumann-contribution to the boundary condition
is the same in all domains. Especially for a = b = 1, all domains are treated equally. In 3
and 4, the convergance rate is plotted in dependence on a and b for a decomposition in two
(left) and four (right) equal domains. For two domains, the map shows a clear maximum
for the choice a = 2, and b = 0.5. I.e., in both domains the Dirichlet-contribution to
the boundary condition is weighted twice as much as the Neumann-contribution. Here,
a convergence in two steps is obtained, independent from the grid resolution. For four
domains, the maximum convergence rate is at about a = 3.8, b = 0.25. The optimal
parameters here do not coincide with the equal weight of the Dirichlet- to the Neumann-
contribution on the boundary conditions. Nevertheless, the point a = 4, b = 0.25 is close
to the maximum.
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Figure 3: Convergence rate of the Agoshkov–
Lebedev scheme in dependence on the parame-
ters a and b for a symmetrically cutted bound-
ary value problem

Figure 4: Convergence rate of the Agoshkov–
Lebedev scheme in dependence on the param-
eters a and b for the decomposition into four
subdomains of a 1D boundary value problem

Influence of the cutting position. Similar to the Dirichlet–Neumann scheme, the
maximum convergence rate is shifted if the domain is decomposed asymmetrically. Other
than for the D–N scheme, the scheme remains convergent. Detailed investigations have
shown, that for parameter pair a = 4, b = 0.25, the convergence rate shows the lowest
dependency on the positions of the decomposition.

Effects of the ghost cell value definition. The choice of the boundary values on
the interface shows the same effects as described for the Dirichlet–Neumann scheme. For
coarse grid resolution, the convergence is accelerated when the ghost values are prescribed
directly by injection of the inner cells of the neighbouring domain. With higher resolution
of the grid, the convergence rate decreases and tends asymptotically to the convergence
rate obtained when using the interpolated values on the interface.

Unlike discretized domains The Dirichlet–Neumann scheme has shown an influence
of the ratio of mesh resolution in the subdomains on the solution and the solvability of
the problem. A survey over the behavior of the algorithm at different discretizations of
the domain is given in table 1.

max. Error in domain
Cells in fine domain fine coarse (15× 30)

150× 300 6.18 · 10−4 1.06 · 10−3

75× 150 5.69 · 10−4 1.06 · 10−3

60× 120 5.46 · 10−4 1.06 · 10−3

45× 90 4.48 · 10−4 1.06 · 10−3

30× 60 3.70 · 10−4 1.06 · 10−3

Table 1: Reached accuracy of the Agoshkov–Lebedev scheme at unlike discretization of two domains

The maximum error in the finer discretized domain is increasing for higher resolutions
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due to the smaller cells and therefore smaller distance from the incorrect values of the
coarse domain. The limit is the discretization error of the coarser domain on the interface.
Contrairy to the Dirichlet–Neumann or Neumann–Neumann scheme, the maximum error
remains always in the coarser domain, even for high mesh ratios. The error distribution
for a discretization ratio of 10 is depicted in fig. 5.

Figure 5: Error distribution for a discretization ratio of 10

By defining the Dirichlet-conditions on the cell interfaces, the influence of the discretiza-
tion error in the coarse domain on the finer discretized domain is reduced. Since for the
parameter family b = 1

a
, the same weighting of Dirichlet- and Neumann-contributions is

chosen in all subdomains, it is unimportant whether domains of type A or of type B are
discretized finer or coarser.

This advantagous behavior is due to the mixed type of boundary conditions. In none
of the sub-problems, pure Dirichlet boundary conditions are used. The Neumann-part
of the boundary condition thus leads to a reduction of the error induced by the unequal
discretization.

Behavior at crosspoints The decomposition of a two-dimensional domain in a way
that a crosspoint of intersections occurs, led for the Dirichlet–Neumann scheme to insta-
bilities at the crosspoint for unequally discretized domains. This problem is not observed
here, since all domains are connected to each other by a Dirichlet-contribution. However,
for the parameter pair a = 4, b = 0.25, the maximum error occurs in the finer domain.
The error distribution for a decomposition into 4 domains is depicted in fig. 6.
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Figure 6: Error distribution on four domains (two with 150×150, two with 15×15) for parameters a = 4,
b = 0.25

The algorithm remains stable, but the maximum error in the finer domain is not desir-
able. For this decomposition, the parameter pair a = b = 1, treating all domains equally
as well as weighting Dirichlet- and Neumann-part in the boundary conditions equally,
is advantageous. Fig. 7 shows the corresponding error distribution. This parameter
choice leads to the required error distribution with higher accurary on the finer resolved
subdomains.

Figure 7: Error distribution on four domains
(two with 150× 150, tow with 15× 15) for pa-
rameters a = b = 1

Figure 8: Error distribution on 16 domains
(eight with 150× 150 and the other eight with
15× 15) for parameters a = b = 1

Negative for this parameter choice a = b = 1 is the observed slower convergence. A
possible overcome could be to calculate the first steps with the faster parameter pair
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a = 4, b = 0.25, and then to switch to the a = b = 1 pair to obtain the desired error
distribution.

Is a subdomain completely surrounded by other subdomains, the error on the crossing
points can no longer be avoided by the parameter pair a = b = 1. The error observed
here in the corners of the finer domains due to the unequal discretization is shown in fig.
8. The obtained solution, however, remains stable.

4 CONCLUSIONS

With the aim of coupling domains with different meshes and different numerical schemes,
mainly non-overlapping domain decomposition methods as the Agoshkov and Lebedev al-
gorithm were used and analysed.

The coupling accross domain corners is only weak, which can lead to instability of the
decomposition algorithm in the Dirichlet–Neumann scheme. Another problem is the need
of pure Neumann boundary conditions in both the Neumann-Neumann and the Dirichlet–
Neumann algorithm. That prohibits us from using domains, completely surrounded by
others.

To be able to use different solvers and discretizations in the neighboring domains, we
want to decouple the solution in the different domains as far as possible. A main objective
to achieve this goal was to achieve a decomposition algorithm independent from the grids
in the coupled domains. The analysis of the decomposition methods with different grids in
neighbouring domains showed, that the Neumann–Neumann algorithm and the Dirichlet–
Neumann algorithm both get instable if the cell size in the neighbouring domains differ
to much.

This leaves us with an algorithm in the scheme of the Agoshkov and Lebedev decom-
position method with mixed boundary conditions. As we avoid pure Neumann boundary
conditions in this case, it is no longer a problem, if a domain is completely surrounded
by other domains, i.e. has no physical boundary. Further the problems because of weak
couplings at the domain corners still exist in this algorithm but they don’t lead to insta-
bility anymore. This holds true even for big differences of the cellsizes in neighbouring
domains.

As the Agoshkov and Lebedev algorithm has 4 parameters to adjust the ratio of the
boundary conditions and relaxations, there are a lot variations on this scheme. Analysis of
the parameter space shows that it is desirable to weight the Dirichlet part of the boundary
condition in relation to the Neumann part equally across all domains. Which means it
should be the same in both types of domains, created by the checker-board coloring.
Relaxation should not be used.

There are two possibilities to define the boundary conditions at the domain borders.
They can be set in the ghost cells or on the cellboundaries themselves. These variants
of boundary definition has only a minor influence on the decomposition. Mostly it is
preferable to set the boundary values in the ghostcells, as in this case there has not to
be taken special care of the boundary elements in the solver itself. The ghostcells are of
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the same size as the inner cells and their values are computed by direct injection or (if
necessary) interpolation in the neighbouring domain.

The analysis of the decompositon methods so long applies to the pure Poisson equation.
Within the MPV scheme the decompositon is integrated into the iterations over the time
and over the linearization of the equation. Ideally, the iteration over the domain decompo-
sition is applied within each linearization step on to the linearized equation system. This
would be quite expensive and it has to be determinied how the decomposition iterations
can be intermixed with the linearization steps to save computing time. Additionally the
influence of the other variables on the the domain decomposition of the pressure term is
to be analyzed. There are interactions of the different iteration levels expected, which
will propably stabilize the domain decomposition algorithm.

Further effort will be put on the weakest point of the Agoshkov and Lebedev decom-
position, which is the weak coupling of domains interfacing only at a corner. A possible
solution might be to determine the pressure in the ghostcell on the corner by interpolating
it in the diagonal neighbour instead of planar extrapolation.
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