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Abstract

A numerical scheme is presented for steady-state, mono-energetic charged
particle transport in the Fokker-Planck limit. The spatial domain is meshed
into elements, each of which has its own angular mesh. The basis is formed by
a discontinuous Galerkin method both in space and in angle. The resulting
discretisation is fully arbitrarily refinable in space and angle. No assumptions
are made with regards to the shape of the domain. This could form the basis
for a deterministic charged particle transport code.

A novel approach to spherical diffusion is presented in chapters 2 and
3. It is based on a spherical adaptation of the symmetric interior penalty
method. It is developed both for regular discontinuous Galerkin methods
and for cell-centred Galerkin finite element methods.

Chapter 4 introduces spatial streaming. The weak form is derived. For
spatial basis functions of order p, the numerical solution converges with order
p+ 1 as the spatial mesh is refined. It converges to the exact value. That is,
there is no approximation other than the Fokker-Planck limit.

Other original work includes an analysis of several basis functions on the
unit sphere (appendix A) and an overview of numerical integration methods
on the unit sphere (appendix B).
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Preface

Particle transport has long been a field of interest in the Nuclear Energy and
Radiation Applications (NERA) section of the Radiation Science and Tech-
nology (RST) Department. This was traditionally concentrated on neutron
transport for nuclear reactors. In recent years, the research focus has shifted
in part to charged particle transport. This is in large part due to the Hol-
land Particle Therapy Centre, the proton therapy centre that is being built
in Delft, next to the RST department.

This thesis develops a new deterministic numerical method for charged
particle transport in the Fokker-Planck limit. Chapter 1 introduces the math-
ematical problem. It briefly explains why this is a difficult problem to solve
numerically. Chapter 2 describes the theoretical foundation for a Discon-
tinuous Galerkin method for the angular part of the transport problem. It
is supported by appendix A, which deals with the properties of the basis
functions on the sphere. Appendix B is concerned with spherical integrals.
The appendices can be read on their own, and may be of interest to other
fields, such as geomathematics. Chapter 3 expands on the previous chapter
and provides numerical examples. Chapter 4 introduces spatial streaming.
It also deals with linear solvers, and some numerical examples are given.

Though an attempt was made to keep this thesis mostly self-contained, it
touches upon many aspects of finite element methods and particle transport,
and it doesn’t elaborate on the more well-known aspects. Special effort has
been made to provide references to publicly available material that is rela-
tively accessible to a non-expert. Nevertheless, this is probably a tough read
for someone who’s never implemented a finite element code.
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List of symbols

Symbol: Meaning [ref. page] :

fi i’th angular basis function on a patch [20, 40]
In×n identity matrix in Rn×n

j current density [17]
LFP Fokker-Planck operator [13]
Lstr streaming operator [39]
r spatial position (in R3) [16]
S volumetric angular source [8]
Vi i’th vertex of a patch [22,58,70]
Ylm m’th real spherical harmonic of order l [30]
α macroscopic transport cross section (Fokker-Planck

diffusion constant) [9]
δij Kronecker delta function
Σa macroscopic absorption cross section [8]
ϕ angular particle flux [8]
Ω unit direction vector (solid angle; in S2) [8, 14]
Sd−1 {q ∈ Rd : ||q||2 = 1} (d-dimensional sphere) [17]
∇s spherical gradient [14]
∆s spherical Laplacian (Laplace-Beltrami) [9,16]

||w||p (
∑

i (|wi|p))
1/p (p-norm) [14]

J·KF jump operator across the face F [16]
{·}F average operator across the face F [16]
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Chapter 1

Introduction

1.1 The transport equation

In a mono-energetic, time-independent model, the angular particle flux ϕ =
ϕ (r,Ω) depends on the spatial position r and the (unit) direction vector
Ω ∈ S2. The angular flux is determined by an appropriate set of boundary
conditions in combination with the linear Boltzmann equation, the most
general form of which is given by

Ω · ∂
∂r
ϕ+ Σaϕ−Q ϕ = S , (1.1)

where Ω · ∂ϕ/∂r is the (spatial) streaming term, Σa = Σa (r) is the macro-
scopic absorption cross section and S = S (r,Ω) is the angular source. The
effects of scattering in an isotopic medium are grouped together in

Q ϕ (r,Ω) = ΣS

(∫
S2

1

2π
p (Ω′ ·Ω)ϕ (r,Ω′) dΩ′ − ϕ (r,Ω)

)
, (1.2)

where ΣS (r) is the macroscopic scattering cross section and p : [−1, 1] 7→ R+

is a probability density function. In the case of charged particle transport,
the most important form of scattering is due to the Coulomb interactions
between the charged particle and the nuclei. As a result, the direction vector
undergoes a series of small deviations as the particle travels through the
medium.

The linearity of equation 1.1 with 1.2 corresponds physically to the fact
that there is no interaction between the particles. This is assumption is
valid for free charged particles in any solid or liquid, because the number of
interactions with the nuclei in the medium always far outweighs the number
of encounters with other free charged particles.
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Equation 1.2 can be greatly simplified by the Fokker-Planck approxima-
tion. This model results from taking the limit of infinitely many collisions,
whilst keeping constant the average total angular deviation per distance trav-
elled. The average deviation per collision should therefore be infinitesimal,
so that p(µ0) = 0 for µ0 6= 1, and the integral drops out of equation 1.2. The
standard derivation of the Fokker-Planck term begins with an expansion of
ϕ and p into spherical harmonics and Legendre polynomials respectively.
Subsequently, a Taylor expansion of the moments of p(µ0) about µ0 = 1 is
truncated. (Morel, 1981) (Uilkema, 2012) This yields

Q ϕ→ α

2
∆sϕ ≡ LFP ϕ , (1.3)

where ∆s is the spherical Laplacian. It acts on Ω and is usually expressed
in spherical coordinates as

∆s =
1

sin2 ψ

∂2

∂2θ
+

1

sinψ

∂

∂ψ

(
sinψ

∂

∂ψ

)
, (1.4)

where θ and ψ are the polar and the azimuthal angles respectively. For a
rigorous examination of the validity and accuracy of equation 1.3, see Borgers
and Larsen (1996a). Note that it basically describes a diffusive process for
Ω on the unit sphere S2 that is driven by many random independent small
deviations. This is analogous to the more familiar diffusive process due to
Brownian motion. The diffusion constant α is also called the (macroscopic)
transport cross section. It can either be measured experimentally, or it can
be expressed in terms of p(µ0), which in turn can be determined from the first
principles of electrodynamics and Lagrangian mechanics. These theoretical
models can also be used to find a better fit of the measurement data.

1.2 Numerical difficulties in particle therapy

In particle therapy, a patient is irradiated by particles. Currently they are
usually protons. Due to the electric charge, the particles engage in inelastic
scatter events, thus slowing down as they travel through the patient. In
combination with the energy dependence of the cross sections, this causes
most particles to stop at a similar depth, which can be regulated by adjusting
the energy of the incoming particles. The average energy that is deposited by
a proton is highly localised in a fairly small area, called the Bragg peak. This
is why proton therapy is thought to have great potential for the treatment
of tumours. They can be irradiated while sparing the surrounding healthy
tissues as much as possible. This also increases the demands on the accuracy
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of the dose computation by the so-called dose engines; small computational
errors can result in a significantly displaced radiation dose, thereby putting
the patient at risk.

Unfortunately, efficient and generally applicable numerical methods for
determining the radiation dose have not yet been devised. There are cur-
rently two main approaches that dose engines can take. The first is a Monte
Carlo method. This is both accurate and flexible, but costly. Another disad-
vantage is that it does not facilitate a perturbation analysis, which is useful
for the study of the effects of errors. Monte Carlo methods may still play an
important role in the verification of other codes, or as a check of the final
treatment plan. With the growth in computer power, Monte Carlo simula-
tions are expected to become routine tools, especially in combination with
some simplifying approximations. (Paganetti et al., 2008) (Jia et al., 2012)

Modern clinical treatment planning systems rely on the so-called (Fermi)
pencil beam approximation. A simple heuristic derivation can be found in
the original paper by Rossi and Greisen (1941), that attributes the reasoning
to Fermi. For a more thorough analysis, see Borgers and Larsen (1996b).
Consider the half-infinite homogeneous space r2 > 0. There is a perpendic-
ular infinitely narrow incident beam at r = 0. In the absence of absorption,
the angular flux is given by

φ (r,Ω) =
3

π2α2r4
2

exp

(
−2

α

(
Ω2

1 + Ω2
3

r2

− 3
r1Ω1 + r3Ω3

r2
2

+ 3
r2

1 + r2
3

r3
2

))
(1.5)

in the limit Ω2 >> |Ω1| and Ω2 >> |Ω3|. Both Smith (2007) and Borgers
and Larsen (1996a) claim that the error introduced by the Fokker-Planck ap-
proximation 1.3 is much greater than the error due to the Fermi pencil beam
approximation. Nevertheless, the above equation is not easily adapted to in-
homogeneous media or more general geometries, which, for obvious reasons,
are of great importance in proton therapy planning. Figure 1.1 compares the
pencil beam approximation to a Monte Carlo calculation for a typical brain
tumour patient. There are clear differences in the predicted dose near the
end of the beam. This is mostly due to the bone tissue, which has different
material properties from the rest of the body. The pencil beams signifi-
cantly predict a much lower radiation dose in the brain stem. In general, the
pencil beams perform poorly in geometrically complex or highly inhomoge-
neous regions, but reasonably well otherwise. This motivates the search for
an efficient numerical approximation of the Fokker-Planck model in general
geometries.

Since Boltzmann equations in the form of 1.1 and 1.2 have many other
applications, one may be tempted to use the numerical schemes that were
developed there. The spatial part of the problem is meshed into voxels. Two
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Figure 1.1: Axial view of the expected radiation dose in the brain of a proton
therapy patient. On the left are results from a commercially available dose
engine (XiO [Computerized Medical Systems]). On the right is the prediction
made by a Monte Carlo code that is not commercially available. The red
arrow indicates where the discrepancy is largest. It is near the brain stem.
(image reproduced from Paganetti (2012b))
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types of deterministic numerical methods are frequently used to deal with the
angular part of the problem: the spherical harmonics expansion and the SN
method. The former is wholly unsuitable for charged particle transport, as
the angular particle flux is much too sharply forwardly peaked to be approx-
imated by a truncated series of spherical harmonics. In the SN method, S2 is
sampled at N points, called discrete ordinates. Different sets of ordinates and
weights have been devised, some of which can deal with anisotropy. (Jarrell,
2010) Unfortunately, there’s no simple way to couple adjacent voxels if their
SN -sets are different. From figure 1.1 it should be obvious that certain areas
require a different angular discretisation than others.

The next chapters in this thesis describe a fully adaptable deterministic
numerical approach. The idea is to use a discontinuous Galerkin method for
both the spatial and the angular part of the problem. The resulting numerical
scheme can be refined anisotropically (i.e.: in Ω-space) or heterogeneously
(i.e.: in r-space). It is based on an upwinding principle for the streaming
between adjacent voxels. This could form the basis for a dose engine that is
both fast and accurate, thereby aiding the treatment planning.
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Chapter 2

A DG method for spherical
diffusion

In this chapter a numerical scheme for the angular diffusion is derived.
For simplicity, consider the time-independent, mono-energetic version of the
Fokker-Planck equation in an infinite homogeneous space. That is,

Σaϕ (Ω)− LFP ϕ (Ω) = S (Ω) , (2.1)

where Ω lies on the unit sphere and the Fokker-Planck operator is given by

LFP =
α

2
∆s ,

where ∆s is the Laplace-Beltrami operator, given by equation 1.4. The
boundary of a sphere is empty, and so the removal term in equation 2.1
is necessary to ensure that there is a solution for all sources S.

Like any finite element method (FEM), the discontinuous Galerkin (DG)
and cell-centered Galerkin (ccG) methods for spherical diffusion are set up
in two steps. First, the discrete solution vector is mapped to a continuous
solution space. This involves a meshing of the physical domain (that is, all
solid angles), which is discussed in section 2.2. Section 2.3 explains how one
can construct a set of basis functions, each of which has support on a single
element in the mesh. These form the basis of the DG method, where each
function corresponds to a unique entry in the solution vector, and the solution
is a weighted sum of all functions. Section 2.4 details the construction of a
ccG solution space. The second step in obtaining a FEM is to find a weak
formulation for all functions in the solution space, and to derive a linear
system from which the solution vector can be obtained. This will be the
subject of section 2.1.
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Closely following Pietro (2011), the following notation is used. The di-
mension of the domain of interest is d. The faces of T are collected in FT .
TF are the elements that boarder a face F . The set of nodes in the mesh is
Nh. For every node P ∈ Nh, FP is the set of all faces that contain P , and
TP is the set of all elements that contain P . The solution space is Vh. The
vector space of degrees of freedom is Vh.

It shall also be useful to introduce the Ln-norm of a vector with Cartesian
components wi, which is defined as ||w||n ≡ (

∑
i |wi|n)1/n. The L2-norm is

denoted by the corresponding non-bold letter, so w ≡ ||w||2. Denote by | · |d
the Lebesgue norm on Rd (that is, the length, area and volume for d = 1,
d = 2 and d = 3 respectively).

2.1 Spherical SIPG

By far the most common coordinate systems for a solid angle are spherical,
angular or geographical. They reflect the fact that there are only two degrees
of freedom in Ω. For the analyses in this thesis, however, it is considerably
easier to view a solid angle as a Cartesian coordinate

Ω = [Ω1, Ω2, Ω3]T ∈ R3

subject to the constraint ||Ω||2 = 1. The derivative is defined as

∂

∂Ω
≡

3∑
i=1

ei
∂

∂Ωi

,

where {ei}3
i=1 are the orthonormalised unit vectors.

Given a solution space V , the weak formulation corresponding to equation
2.1 is

Find u ∈ V , such that b(u, v) =

∫
S2
Sv for all v ∈ V , (2.2)

where b : (V ×V )→ R is a bilinear operator that doesn’t contain the Laplace-
Beltrami operator. It involves only the surface gradient on the sphere, which
is defined as a regular Euclidean gradient in R3, minus the component that’s
normal to the spherical surface. It has the simple Cartesian expression

∇s =
(
I3×3 −ΩΩT

) ∂

∂Ω
(2.3)

and satisfies ∆s = ∇s · ∇s.
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The crucial step in the derivation of a weak form for any elliptic equation
is based on integration by parts. The spherical equivalent of this is exactly
what one would expect. Let T ∈ S2 be an arbitrary spherical surface with
outward normal nT , tangential to the sphere. For any two scalar functions
v(Ω) and w(Ω),∫

T

v ∆sw =

∫
∂T

v nT · ∇sw −
∫
T

∇sv · ∇sw . (2.4)

The simplicity is somewhat deceiving, as this is not a direct consequence
of integration by parts in a Euclidean space. A similar formula for more
general curved surfaces is proved rigorously in Dziuk and Elliott (2013), but
it is somewhat technical.

In the particular case of a spherical domain, the symmetry allows for a
simpler heuristic derivation. Let h : T 7→ R3 be an arbitrary vector function.
Extend its domain to all q ∈ R3 \0 by letting the function be constant along
rays that originate from 0. Consider a region

Uε = {q ∈ R3 : q/q ∈ T and 1− ε < q < 1 + ε}

for some ε > 0. Uε is bounded by two surfaces B±ε on spheres with radii 1±ε
and normal vectors ±q/q, and a surface B∗ with a normal vector nT that
is tangential to S2. Integrate (1/ε)(∂/∂q) · h over Uε, apply the divergence
theorem, let ε→ 0 and note that the contributions of B±ε cancel each other
out to find

lim
ε↓0

1

ε

∫
Uε

∂

∂q
· h = lim

ε↓0

1

ε

∫
B∗

nT · h .

Since Uε has a vanishingly small width 2ε in the radial direction, h(q) can
be replaced by h(q/q) and thus

1

ε
2ε

∫
T

∂

∂q
· h =

1

ε
2ε

∫
∂T

nT · h .

Noting that (∂/∂q) · h|T = ∇s · h,∫
T

∇s · h =

∫
∂T

h · nT . (2.5)

Some straightforward arithmetic yields

(∇sv) · (∇sw) =
(
I3×3 −ΩΩT

)
:

(
∂v

∂Ω

(
∂w

∂Ω

)T
)
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and

∇s · (v∇sw) =
(
I3×3 −ΩΩT

)
:

((
∂v

∂Ω
+ v

∂

∂Ω

)(
∂w

∂Ω

)T
)
− 2v Ω · ∂w

∂Ω
.

(2.6)

The Cartesian expression for ∆s can be found by using the definitions of the
spherical coordinates to rewrite equation 1.4, but it’s simpler to start with
equation 2.3. The result is

∆s =
(
I3×3 −ΩΩT

)
:

(
∂

∂Ω

(
∂

∂Ω

)T
)
− 2 Ω · ∂

∂Ω
. (2.7)

The last three equations demonstrate explicitly that the product rule holds
for the spherical Laplacian:

v ∆sw = ∇s · (v ∇sw)−∇s v · ∇sw .

Combine this with equation 2.5 to arrive at equation 2.4.
The combination of a discontinuous solution space and a spherical Laplace

operator suggests a spherical adaptation of an interior penalty method. Due
to the similarity between equation 2.4 and its Euclidean counterpart, it is
completely analogous to what can be found in standard literature, the only
difference being that ∇ is replaced by ∇s. Derivations of the standard Eu-
clidean case can be found in many places, including Hartmann (2008) and
Pietro and Ern (2012), the latter taking a variational approach.

Here only the symmetric interior penalty (SIP) Galerkin method is con-
sidered. Let Th denote a tessellation of S2 with typical length scale h. Possible
definitions for h include the diameter of the largest element or face in the
mesh. Denote the set of faces in Th by Fh. For every F ∈ Fh, define a typical
length hF , such as hF = diam(F ), and choose an arbitrary but fixed ordering
of the neighbouring elements T1 and T2. Define a normal vector nF of F that
points in the direction of T2. Define the jump operator and the averaging
operator respectively as

J·KF ≡ ·|T1 − ·|T2 and {·}F ≡
1

2

(
·|T1 + ·|T2

)
.

On vectors they act component-wise. The SIP bilinear operator is

bSIP(u, v) =

∫
S2

α

2
∇su · ∇sv −

∑
F∈Fh

∫
F

(
JvK
{α

2
∇su

}
· nF + JuK

{α
2
∇sv

}
· nF

)
+
∑
F∈Fh

∫
F

α

2

η

hF
JuKJvK +

∫
S2

Σauv , (2.8)
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where η > 0 is the penalty parameter. The numerical solution ϕh is the
unique function that satisfies the discrete weak form

Find u ∈ Vh, such that b(u, v) =

∫
S2
Sv for all v ∈ Vh , (2.9)

on an angular mesh Th.
Two functionals of the angular flux are of special interest: the scalar flux

φ ≡ 〈1, ϕ〉 and the current density

j ≡ 〈Ω, ϕ〉 , (2.10)

where the inner product is defined as

〈v, w〉 ≡
∫
S2
vw (2.11)

and acts component-wise. A direct consequence of equation 2.4 is that
〈1,∆sϕ〉 = 0, so, from equation 2.1, φ = (1/Σa) 〈1, S〉. This implies that the
Fokker-Planck operator preserves the number of particles. A highly desirable
property of any discretisation of the Fokker-Planck operator is that this con-
servative property also holds discretely. This is the case if the DG solution
space contains a constant function. Expand ϕ in equation 2.1 into its eigen-
functions (i.e.: the spherical harmonics), note that Ω is one of those eigen-
functions, and take the inner product with Ω to find j = 〈Ω, S〉 / (Σa + α).
The current is conserved if the DG solution space contains all components
of Ω.

2.2 The angular mesh

The unit Ln-sphere is the set of all points that satisfy ||w||n = 1. The
L2-sphere that is embedded in Rd is denoted by Sd−1. If w ∈ R3, then

• the L1-sphere is a regular octahedron with vertices at (±1, 0, 0), (0,±1, 0)
and (0, 0,±1);

• the L2-sphere is S2, which is what is usually meant by a sphere;

• the L∞-sphere is a cube with vertices at (±1,±1,±1).

Only the L2-sphere is independent of the orientation of the Cartesian axes. It
can therefore be used to define the steradian, which is the area of the surface
of S2 that is subtended by a solid angle.
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Figure 2.1: Construction of the angular mesh in an arbitrary octant.
Left : the part of the octahedron (i.e.: the L1-sphere) that lies in the octant.
The edges are bisected successively to obtain elements of increasing levels.
Right : the edges and nodes of the L1-sphere are projected onto the L2-sphere
along a line though the origin, to become the boundaries and vertices of the
spherical triangles in the angular mesh.

Discretisation of the angular space is equivalent to a tessellation of S2

into spherical elements, also called ‘patches’. This is complicated by its
non-Euclidean nature. A popular and easy approach is based on the notion
that both the L1-sphere and the L∞-sphere consist of flat surfaces in R3, so
that conventional meshing techniques can be applied there. The meshes are
subsequently mapped onto S2 along straight lines through the origin. This
bijective projection is particularly simple due to the fact that∣∣∣∣∣∣∣∣ 1

||w||n
w

∣∣∣∣∣∣∣∣
n

= 1

for all vectors w and all n > 0. An important advantage of this class of
tessellations is that the meshes are easy to refine locally to any desirable
level.

All calculations in this thesis are performed with triangular meshes on the
L1-sphere that have been mapped onto S2. The resulting patches are spherical
triangles. The coarsest mesh consists of the eight octants. Refinement of an
element is performed by bisecting the sides of the triangle on the octahedron.
This process is illustrated in figure 2.1. The level of an element is the number
of times it has been refined. Uniform refinement refers to the case where all
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elements are of the same level. This angular discretisation also featured
in Jarrell (2010), where it was demonstrated that, for uniform meshes of
increasing level, the ratio between the areas of the largest element and the
smallest element grows beyond bound.

It may well be that the choice that is made here is suboptimal. For
example, one could also refine the elements by bisecting the spherical arcs
that form the edge of the spherical triangle. It was shown in Boal et al.
(2008) that this yields a quasi-uniform triangulation at all levels. That is,
the triangles in a uniform mesh have roughly the same shape and size. An
alternative approach would be to map squares or triangles on the L∞-sphere
onto S2. A great number of other spherical tessellations have been devised,
mostly in the field of geophysics. The choice of angular elements also affects
the coupling between the elements, and therefore the sparse structure of the
global matrix that results from the numerical method. No attempt was made
to find the best mesh for charged particle transport.

Though an investigation into this matter would not be without merit,
improvements in the accuracy of the calculation are likely to be small for
several reasons. FEM in general, and DG methods in particular, tend to
work well even on highly irregular meshes. The slight differences between
adjacent elements should therefore be of little consequence. Also, the DG
method for spherical diffusion was designed with anisotropic refinement in
mind. The selection of elements to refine has a much greater impact on the
approximating properties of the mesh than the type of tessellation.

If the spatial part of the transport problem is two-dimensional, then the
angular flux is symmetric in Ω. Specifically, if ∂/∂r3 = 0, then ϕ|Ω3 =
ϕ|−Ω3 . One can halve the number of degrees of freedom in the problem
by working with a half-sphere {Ω ∈ S2 : Ω3 > 0} with the homogeneous
Neumann boundary condition ∂ϕ/∂Ω3|Ω3=0 = 0. This sort of semi-infinite
spatial domains feature much more often in artificial examples, such as those
in section 4.4, then in real-life applications, such as dose engines. Two-
dimensional models can sometimes preserve qualitatively realistic effects, but
the numerical schemes in this thesis were designed specifically for irregular
or inhomogeneous spatial meshes, which cannot be reduced to quantitatively
accurate problems with two spatial dimensions. An analysis of the use of
half-spheres is therefore of limited value, and should not be a driving force
in the choice of the spherical mesh and the numerical method.
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2.3 The DG solution space: angular basis func-

tions

The solution space of a DG method is the span of the basis functions on all
elements. In this thesis, all spherical elements have the same type of basis
functions. Their construction should therefore be generic with respect to the
size and shape of their element. The basis functions on a spherical element
T shall be denoted by {fi}pi=1. It is convenient to represent the basis in the
vector form

f = C b , (2.12)

where f has entries fi and C ∈ Rp×p is a coefficient matrix. The span of the
basis is determined by the choice of the functions bi.

It is easy to conceive of many types of functions on a sphere. In Euclidean
geometries the basis functions are typically chosen to be polynomials up to
a certain order. Unfortunately, there is no such possibility here, since there
are no non-constant linear functions on S2. This is a consequence of the fact
that there are no parallel lines in a spherical domain. Two obvious choices
for the bi are studied in this work:

Ω-functions The basis functions are linear in the components of Ω :

b ≡
[

1
Ω

]
∈ R4 . (2.13)

The spherical gradient is

∇s fT =
(
I3×3 −ΩΩT

) ∂b

∂Ω
CT . (2.14)

octahedron-functions An alternative way to construct the basis functions
is to use one of the parameterisations in appendix A.2 that map from
a local element Kref (equation A.6) to an arbitrary T . The basis can
be linear locally. That is, given a k ∈ Kref ∈ R2,

b ≡
[

1
k

]
∈ R3 . (2.15)

In view of its complexity and the non-negligible rounding errors, the
angular parameterisation from section A.2.2 is not taken into consid-
eration. That leaves the parameterisations from section A.2.1, where
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k is mapped onto Ω ∈ T via an arbitrary intermediate flat triangle Z
with vertices that satisfy equation A.13. The spherical gradient is

∇s fT =
(
I3×3 −ΩΩT

) ∂f

∂Ω
(2.16)

=
(
I3×3 −ΩΩT

) ∂z

∂Ω

∂k

∂z

∂b

∂k
CT

=
∂z

∂Ω

∂k

∂z

∂b

∂k
CT ,

where the last equality sign follows from equation A.12, and ∂z/∂Ω
and ∂k/∂z are given by equations A.11 and A.9 respectively. In the
rest of this thesis, all Z lie on the L1-sphere. This is the only choice for
which the basis on T can be expressed as a linear combination of the
bases on the daughters of T . This is a desirable property when spatial
streaming is introduced in chapter 4.

Both types of basis functions have obvious extensions to higher orders.
For example, second order functions could be constructed by replacing equa-
tion 2.13 or 2.15 by

b ≡



1
Ω

Ω1Ω1

Ω1Ω2

Ω1Ω3

Ω2Ω2

Ω2Ω3

Ω3Ω3


∈ R10 or b ≡


1
k
k1k1

k1k2

k2k2

 ∈ R6

respectively. Both equation 2.14 and 2.16 would remain valid. This option
is not further explored here.

2.3.1 Conditioning of the mass matrix and orthonormalisation

In principle, the precise choice of the C in equation 2.12 should not matter,
though it should obviously be non-singular in order for the basis functions
to be linearly independent. Different matrices will simply lead to different
coefficients in the discrete solution vector.

In practice, the linear system resulting from the DG method is not equally
easy to solve for all C. Roughly speaking, a better conditioning is generally
achieved if no fi is well approximated by any linear combination of the other
basis functions. A more quantitative viewpoint is provided by the mass
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matrix M ∈ Rp×p, defined though its entries Mij ≡ 〈fi, fj〉. Linear solution
methods benefit from mass matrices with low condition numbers, as they
have to be inverted repeatedly in a linear solver.

Functions that are linear in Ω are discussed in Kópházi and Lathouwers
(2015), where it is demonstrated that C = I4×4 leads to problematic rounding
errors in the case of moderately high refinement. This is to be expected, as
there are small patches on which all components of Ω are roughly constant.
The proposed solution was to set C such that

fi(Vj) = δij for i = 1, 2, 3 ,

f4(Vj) = 0 and

f4

(
V1 + V2 + V3

||V1 + V2 + V3||2

)
= 1 ,

where {Vj}3
j=1 are the vertices of T . This is a considerable improvement,

and yields a workable set of basis functions.
Unfortunately, there is a more fundamental problem that manifests itself

in small patches. As the spherical triangles get smaller, they become flat.
All four bi become linear on the triangle, but there can only be three in-
dependent linear functions. To ensure a reasonable condition number of M
as the elements get smaller, the required coefficients in C can become quite
large. Ultimately, this issue is innate in the type of basis functions, and it
cannot be resolved by a clever choice of the coefficients. Nevertheless, this
notion was found not to be catastrophic for the use the Ω-functions in the
numerical tests. (Ref. section 3.4)

There are many reasonable coefficient matrices for functions that are lin-
ear on the octahedron. A natural choice would be to let fi(Vj) = δij for
i = 1, 2, 3.

Taking things one step further, the basis functions can be orthonormalised
by adjusting C, so that M is the unit matrix. This can be done with a simple
stabilized Gram-Schmidt process that is summarized in table 2.1. Orthog-
onalisation eliminates the cost of inversion for the mass matrices. If the
functions are also normalised, the mass matrices don’t have to be stored.
Some tests were performed to get an indication of the numerical error that
is introduced by the orthonormalisation process. The errors are tabulated in
2.2. They are to be compared with the machine epsilon, which is approxi-
mately 10−16. The results are encouraging for the basis functions that are
linear on the octahedron. For the other functions, orthonormalisation is not
recommended. The entries in the coefficient matrix reach values in the order
of 108 for the smaller elements. The large errors in the mass matrix are a
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Table 2.1: A stabilized Gram-Schmidt orthonormalisation process for the set
of basis functions {fi}pi=1

1. C ← Ip×p # initialise
2. for i = 1 . . . p

3. l←
√
〈fi, fi〉 # length of fi

4. for k = 1 . . . p # normalise fi
5. Cik ← Cik/l
6. end

7. for j = (i+ 1) . . . p
8. δ ← 〈fj, fi〉
9. for k = 1 . . . p # subtract the fi-component from fj
10. Cjk ← Cjk − δ Cik
11. end

12. end

13. end

clear sign of the potentially dubious nature of the basis on highly refined
meshes.

2.4 The ccG solution space

It is not clear what the best type of basis functions are for a DG method
on S2. Unfortunately, a piecewise constant basis is not an option, as the
SIP method from section 2.1 would break down. The non-constant functions
are needed to evaluate the derivatives. A finite difference scheme would
only provide an approximation at certain points, whilst handling the spatial
streaming requires a value for the flux at all Ω ∈ S2. Finite volume methods
require an estimation of the gradient on the boundary of the elements. There
is no obvious way to do this on the highly non-homogeneous spherical meshes
that are necessary for forwardly peaked charged particle transport.

For these reasons, this section explores the possibility of an alternative
lowest-order method in the form of a cell centred Galerkin (ccG) method. The
unknowns are the values of the flux at the centres of the cells, which are used
to estimate both ϕ and ∇sϕ. The numerical solution can be discontinuous at
the cell boundaries. It is still based on the SIP bilinear form for discontinuous
basis functions, differing only from the DG method in the construction of the
solution space from the unknowns.

Since the ccG method is fairly new and not widely used, this section will
first give a brief overview how the solution space is constructed in a Euclidean
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Table 2.2: Maximum absolute deviation of the mass matrix from the unit
matrix on any of the elements after Gram-Schmidt orthonormalisation

refinement level max
T

max
i,j
|Mij − δij|

linear in Ω linear on L1-sphere

0 2 · 10−15 1 · 10−16

1 4 · 10−15 2 · 10−17

2 2 · 10−14 2 · 10−16

3 1 · 10−13 3 · 10−16

4 6 · 10−13 5 · 10−16

5 3 · 10−12 1 · 10−15

6 5 · 10−11 3 · 10−15

7 2 · 10−10 4 · 10−15

space of dimension d. The presentation here draws heavily on Pietro (2011),
which treats a more general case with anisotropic diffusion and the inclusion
of boundary conditions. More details can also be found in Pietro (2010) and
Pietro and Ern (2012).

Let vh = vh(x) ∈ Vh be the numerical approximation of v on a Euclidean
mesh Th. For the exact constraints on the mesh, see Pietro (2011). The
angular mesh described in section 2.2 meets these requirements. The un-
knowns in the ccG method are the values of vh in the cell centres xT of all
the elements T ∈ Th. The numerical solution is piecewise linear in x. On an
element T ,

vh(x ∈ T ) = vT + GT · (x− xT ) , (2.17)

where xT is the centre of an element T and vT ≡ v(xT ).
The gradient GT is constructed in two steps. First, an approximation

of v on every face of the mesh is obtained from the vT . This is done with
the so-called L-construction, originally introduced in the context of finite
volume methods as a robust multi-point flux approximation in Aavatsmark
et al. (2008). A set g ⊂ Fh is called an L-group if

• it contains d faces;

• all faces border a common element;

• all faces share a node that borders this element.
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More concisely, the set of all L-groups in the mesh is given by

G ≡ {g ⊂ FT ∩ FP , T ∈ TP , P ∈ Nh : card(g) = d} .

An example on a two-dimensional triangular mesh is given in figure 2.2. For
every possible L-group g ∈ G,

• select a primary element Tg, such that g ⊂ FTg (that is, all faces in g
border Tg);

• let Tg be the set of all elements that border a face in g:

Tg ≡ {T ∈ Th : T ∈ TF , F ∈ g} .

There are always d+ 1 such elements;

• define the matrix

Ag ≡

[[
1

dist(xT , F )

(
xT − xTg

)]T
g3F⊂Tg∩T

]
∈ Rd×d , (2.18)

where

dist(a, F ) = min
b∈F
||a− b||2

is the distance between F and a;

• let GF be the set of all L-groups that contain the face F .

For all faces F ∈ Fh, select a unique L-group gF ∈ GF . It is shown in Agélas
et al. (2010) and Pietro (2010) that the best approximating properties are
achieved by choosing

gF = argmin
g∈GF
||A−1

g ||2 . (2.19)

For an L-group g, denote by ξg(x) the unique function that is linear ev-
erywhere on Th and that satisfies ξg(xT ) = vT for all T ∈ Tg. It is an
interpolating function that can be used to estimate an average value of v on
F . Specifically, let

vF ≡
1

|F |d−1

∫
F

ξgF ≈ 1

|F |d−1

∫
F

v . (2.20)
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(a) (b)

Figure 2.2: Left: The two bold, blue faces form an L-group g in a two-
dimensional triangular mesh. Tg is the set of elements whose centre of mass
is indicated with a cross. All faces in g border the primary element Tg and a
common node P . Right: The red face that’s indicated with a single dash (†)
can form an L-group with any one of the blue faces that are indicated with
a double dash (‡).

The ccG method depends critically on the convergence of the vF . That is,

lim
h→0

vF =
1

|F |d−1

∫
F

v .

Note how vF is linear in the unknowns (i.e.: the vT ). The second step in
obtaining GT is to use the vF in a gradient reconstruction operator that is
reminiscent of Green’s formula:

GT =
1

|T |d

∑
F∈FT

|F |d−1 (vF − vT ) nT,F . (2.21)

It should be noted that the ccG method does not display the conserva-
tive properties of DG methods, even though constant functions are part of
the solution space. This is because the {vF}F∈Fh are interpolated values.
An equivalent phenomenon can occur in finite volume methods on irregular
grids, where the gradient on the surface of an element cannot be determined
exactly from the unknowns. If the {vF}F∈Fh were treated as unknowns, to
be determined by solving the global linear system, then the scalar flux would
be conserved, as demonstrated in Pietro (2013)
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2.4.1 Adjustments to the spherical space

An adaptation of a ccG method on a spherical mesh requires some modifica-
tions. Equation 2.17 has an obvious spherical equivalent in

φh(Ω ∈ T ) = φT + GT · (Ω−ΩT ) , (2.22)

where the centre of an element is defined as

ΩT ≡
1

||
∫
T

Ω||2

∫
T

Ω , (2.23)

As the angular mesh is refined, the spherical elements become flat. As h→
0, a linearisation of φh in the components of Ω should be equivalent to
the Euclidean ccG method. This could also be achieved by letting ΩT ≡∫
T

Ω/|T |d, though this would mean that ΩT /∈ T . Both choices are valid,
but equation 2.23 is preferred, because it consistently yielded slightly better
approximation properties in the numerical test cases, which featured meshes
that were refined uniformly, randomly or in a targeted manner.

A similar multitude of options crops up in the choice of the best L-group
that is associated with a face. A naive application of equation 2.19 with Ag
from equation 2.18 would result in a 2 × 3 matrix that cannot be inverted.
Instead, the L-groups are chosen by projecting all Ω ∈ S2 perpendicularly
onto a flat plane K ∈ R3, and ||A−1

g ||2 is computed in the Euclidean manner
on this plane. K is placed such that it intersects all centres of the elements
in Tg. This provided slightly better approximating behaviour than the other
choices that were tested, which included

• placing K such that it intersects the vertices of F and that it is per-
pendicular to the plane that contains F ;

• projecting Ω ∈ S2 onto K along a straight line through the origin;

• choosing gF ∈ GF such that maxT∈Tg ‖|Ω − ΩT ||2 is minimised. That
is, the elements that boarder the L-group are as close to F as possible.
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Chapter 3

Numerical results of spherical
SIP

This chapter backs up and clarifies the theory from the previous chapter with
several numerical examples. The numerical solutions satisfy the discrete weak
form 2.9 with the SIP bilinear operator given by 2.8 with hF = diam(F ) and
η = 3, unless stated otherwise. The computations were performed on several
(anisotropic) angular meshes with both types of basis functions from section
2.3 and the ccG solution space from section 2.4. The accuracy could be
determined by studying artificial analytical solutions to equation 2.1. The
weak form 2.2 is consistent. Sections 3.2 to 3.5 deal with basic properties of
the symmetric interior penalty method from chapter 2.

3.1 Implementation

DG methods have been implemented before on non-trivial meshes for many
different applications. The same techniques can be used here. The standard
approach is to map all basis functions to a degree of freedom (DOF), which
is an index in the solution vector ϕh ∈ RN . Let fTi denote the i’th basis
function on element T , and define a bijection D : (T, i) ↔ {1, . . . , N} that
maps every degree of freedom to a unique positive integer. D is called the
DOF handler. The approximate flux ϕh is expressed in terms of ϕh as

ϕh (Ω) =
∑
T∈Th

∑
i

fTi (Ω) [ϕh]D(T,i) . (3.1)

Forcing

bSIP(f
Tq
i , f

Tw
j ) =

∫
S2
S fTwj (3.2)
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to hold for all j and all Tw ∈ Th yields row number D (Tq, i) in the global
linear system

Ah ϕh = Sh, (3.3)

where Ah is the global matrix and Sh is a forcing term that depends on the
source.

The simple stencil in a DG method allows a straightforward construction
of the global matrix. A basis function fTi is coupled to all functions that have
support on either T or its direct neighbours. The linear system can thus be
constructed by splitting the weak form into a volumetric and a surface part,
looping over all elements and faces, and inserting the local linear system 3.2
into the global system 3.3 at the indices indicated by the degree of freedom
handler. This can also be done in a matrix-free manner. That is, the elements
of Ah are evaluated at run-time, so that the matrix does not have to be stored
explicitly. See Baggag et al. (1999) for details and a comparison of parallel
implementations.

The implementation of the ccG method requires a different approach.
Classical FEM implementations are based on local element matrices that
can be computed without looking up the global degrees of freedom. This
concept needs to be abandoned, because the stencil can be non-local and
varies from element to element. (See figure 3.1.) The alternative imple-
mentation described here is inspired by Pietro and Gratien (2011). A vector
quantity a ∈ Rm that depends linearly on Na unknowns is expressed in terms
of a so-called ‘linear combination’ {τa,A}, where τa ∈ Rm×Na and A ∈ NNa ,
such that

a = τa ϕh(A) .

A can be considered a list of global degrees of freedom. The matrix τa
indicates how a depends on the degrees of freedom in A. A scalar quantity
corresponds simply to the case m = 1. If {τb,B} represents b ∈ Rm, then
the scalar product c = a ·b is represented by {τc, (A,B)} where τc = (τa)Tτb,
so that

c = τc :
(
ϕh(A) ϕT

h (B)
)

.

These linear combinations provide a way to express a quantity in terms of
ϕh when ϕh is not yet known.

In the construction of the global matrix, the first step is to associate an
L-group to every face F in the mesh, and express the vF in equation 2.20
in terms of a linear combination. Subsequently, the linear combinations of
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the gradients GT on all elements T in the mesh are computed according
to equation 2.21. Both ϕh and ∇sϕh can now be expressed in terms of a
linear combination for any arbitrary Ω. The bilinear terms in 2.8 can then
be inserted into the global matrix by looping over all elements and all faces.
For example, the penalty term on a particular face could have the linear
combination {Aloc, (I, J)}, which can then be inserted into the global matrix
at the appropriate indices by

A(I, J)← A(I, J) + Aloc .

The source vector Sh is constructed in a similar manner by looping over all
elements.

3.2 Order of convergence to analytical solu-

tion for DG

To study the rate of convergence of the spherical SIPG method, consider a
single example. Results were similar for other tests. The simplest non-trivial
smooth solutions are the eigenfunctions

ϕ(Ω) = Ylm(Ω) (s−1cm−2)

S(Ω) =
(

Σa +
α

2
l(l + 1)

)
ϕ(Ω) (s−1cm−3),

where Ylm are the real spherical harmonics, explicit expressions of which can
be found in many places. The normalisation is such that they have unit
energy, so that < Ylm, Yl′m′ > = δll′δmm′ . Ylm is a polynomial of order l in
the components of Ω. Specifically, the source was chosen in such a way that
the analytical solution is

ϕ = Y00 − Y21 + Y30 (s−1cm−2) (3.4)

=
1√
4π

(
1− 15Ω1Ω2 +

1

2

√
7
(
Ω1

(
2Ω2

1 − 3Ω2 − 3Ω2
3

)))
(s−1cm−2)

with Σa = 0.10 cm−1 and α = 0.25 cm−1. The exact Cartesian expression
of the spherical harmonics can vary with different authors. The mesh was
uniformly refined at various levels. The global error is defined as

e ≡

√
〈ϕh − ϕ, ϕh − ϕ〉

〈ϕ, ϕ〉
. (3.5)
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Figure 3.1: The stencil in the ccG method on an unstructured mesh depends
on the choice of the L-groups. Consider an arbitrary element T , indicated
with ‘+’. The gradient GT on T (equation 2.22) depends on the {vF}F∈FT
in equation 2.20, which in turn depends on the choice of which L-group to
associate with the faces of T . The neighbours of T (red; indicated with ×) are
always part of the stencil of T . The red bold faces (indicated with ‡) could
form an L-group with one of the faces of T . The blue elements (indicated
with ◦) border those faces, and could therefore be part of the stencil of T ,
but are not necessarily so.
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Table 3.1: Results of the spherical SIPG method on uniformly refined meshes
Th with the exact solution 3.4. The error e is given by 3.5. The order of
convergence on Th is estimated with equation 3.6 and a comparison with the
result on T2h.
The last column lists the order of convergence of a component of the current.

basis functions
linear in Ω

basis functions linear on
octahedron

card(Th)
e

order
of e

e
order
of e

order of
|〈Ω3, ϕh〉−j3|

8 · 40 2.331 · 10−1 - 2.901 · 10−1 - -
8 · 41 8.238 · 10−2 1.50 1.271 · 10−1 1.19 5.60
8 · 42 2.268 · 10−2 1.86 3.890 · 10−2 1.71 1.30
8 · 43 5.944 · 10−3 1.93 1.131 · 10−2 1.78 1.65
8 · 44 1.503 · 10−3 1.98 2.998 · 10−3 1.92 2.06
8 · 45 3.768 · 10−4 2.00 7.638 · 10−4 1.97 2.06

The results can be found in table 3.1.
Any global quantity E = E(Th) on a mesh Th is said to converge with

order n if E/hn converges to a nonzero constant as h→ 0+. In a mesh with
d degrees of freedom, h is proportional to card(Th)−1/d. If E is known on
two tessellations Th1 and Th2 , then the order of convergence can be estimated
with

n = d
log (E(Th1) / E(Th2))

log (card(Th2) / card(Th1))
, (3.6)

where d = 2 on a spherical surface. The global error defined by 3.5 be-
haves as e ∝ h2 on highly refined meshes. This was to be expected, as the
spherical elements become flat, and the basis functions become linear. In
the conventional Euclidean SIPG method, e converges with order p+ 1 if the
basis functions are polynomials up to degree p. Due to its physical mean-
ing, the error in the estimate of the angular current density (equation 2.10)
deserves special attention. The quantity is conserved for Ω-functions. The
error appears to converge roughly with order 2 for the octahedron-functions.

The convergence is slower on coarser meshes for two reasons. First, the
solution is insufficiently smooth within the elements. This effect is present
in all numerical schemes that require a tessellation of a physical domain.
Second, the basis functions are approximately linear only on small elements.
The octahedron-functions in particular have a highly irregular shape on large
elements, ref. section A.2.3 and figure A.4.
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3.3 Anisotropic refinement

One of the strong points of DG methods in general is its performance on
irregular meshes. The spherical SIPG method from the previous chapter is
well-suited for anisotropic refinement. This is essential for charged particle
transport, where the angular flux is strongly forwardly peaked. For illustra-
tion, let the source be such that the flux be

ϕ =
14∑
j=0

cj (Ω1)j (s−1cm−2) (3.7)

c0 = 1 (s−1cm−2)

c1 = −1 (s−1cm−2)

cj =
(j − 2)!

j!
(s−1cm−2) ∀j ≥ 2 ,

which is a Taylor expansion of

ϕ ≈ 1 + (1− Ω1) log (1− Ω1) , (s−1cm−2)

thus ensuring that

∂2

∂Ω2
1

ϕ ≈ 1

1− Ω1

. (s−1cm−2)

which means that the flux has the greatest non-linearity in Ω near Ω1 = 1,
whilst it is roughly linear near Ω1 = −1. The flux is plotted in figure 3.2.
Figure 3.3a displays the error of a numerical simulation with Ω-functions
on a mesh where all elements are of the same level. The error is high near
Ω1 = 1, but comparably negligible on the half-sphere Ω1 < 0. The uniform
refinement has obviously resulted in a suboptimal use of the computational
memory and work. Figure 3.3b is an improvement. The spherical triangles
near the pole Ω1 = −1 are merged into larger elements. The mesh is more
refined near the opposite pole. The error is more uniformly distributed.

3.4 Conditioning of the global matrix

The computational cost depends strongly on the condition number of Ah,
which is defined as the ratio between its largest and the smallest eigenvalue.
It was evaluated with MatLab’s internal routine. Table 3.2 collects the results
for various uniformly refined angular meshes for both types of basis functions.
The condition number behaves as O(h−2), which is similar to what one would
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Figure 3.2: Plots of ϕ from equation 3.7. The image on the right is a ‘heat
map’ representation on S2.
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(a) Twofold uniformly refined mesh
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(b) Anisotropically refined mesh

Figure 3.3: Root mean square of the deviation from the exact solution on
the elements of the angular mesh. The source is given by equations 2.1 and
3.7. The basis is constructed with the Ω-functions.
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Table 3.2: cond(Ah) in the 2-norm on various uniformly refined meshes for
α/Σa = 5/2. The basis functions are constructed as described in sections 2.3
and 2.3.1. They are not orthonormalised. The number of degrees of freedom
is N = 4 · card(Th) for Ω-functions and N = 3 · card(Th) for octahedron-
functions.
The order of convergence is based on a comparison with the result on a
mesh that’s one level less refined. It is calculated with equation 3.6, where
E is replaced by the condition number. The negative numbers indicate a
divergence as h→ 0+.

basis functions linear in Ω basis functions linear on octahedron
card(Th) cond(Ah) order cond(Ah) order

8 · 40 4.6 · 101 - 2.2 · 101 -
8 · 41 2.0 · 102 -2.09 8.9 · 101 -1.98
8 · 42 7.7 · 102 -1.97 3.5 · 102 -1.97
8 · 43 3.1 · 103 -1.99 1.4 · 103 -1.99
8 · 44 1.2 · 104 -2.00 5.5 · 103 -2.00
8 · 45 4.9 · 104 -2.00 2.4 · 104 -2.00

expect for a diffusive problem in a Euclidean space. These results can also be
seen as a confirmation of the validity of the construction of the Ω-functions,
as described in section 2.3.1.

With other factors constant, the condition number varies with the ma-
terial properties as a function of α/Σa. This follows from equation 2.8, as
can be verified either by a dimensionless analysis or by noting that, for any
λ ∈ R \ 0, cond(λAh) = cond(Ah). Figure 3.4 displays numerical results on
two uniform meshes of different refinement levels. If α = 0, then there is
no coupling between the fluxes in adjacent elements, and the matrix is block
diagonal. The resulting global matrix is well-conditioned. If Σa = 0, then
the continuous problem 2.1 is ill-defined for all sources except those for which∫
S2 S = 0. The corresponding discrete Fokker-Planck operator Ah is singular.

3.5 Numerical results of ccG SIPG

The spherical ccG method was tested on several meshes with different sources.
Since the necessary amount of work and memory is roughly proportional to
the number of degrees of freedom, a comparison with DG methods is possi-
ble. The ccG consistently outperforms the DG methods. That is, the error
(equation 3.5) per degree of freedom is higher in DG methods. This is prob-
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uniformly refined angular meshes of various levels and for both types of basis
functions
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Figure 3.5: Comparison of the errors in ccG and DG methods on various
meshes, compared to the number of degrees of freedom that is required to
do the calculation. The flux is given by equation 3.8.

ably due to the fact that every unknown in a ccG method is used to estimate
both the flux at a point, and the gradient of the flux at the adjacent faces. By
contrast, the DG method needs at least three basis functions on an element
to estimate the average value and the gradient in two directions.

All this is best illustrated with a single example. Consider the flux

ϕ =
1

4π(1− s)
(1 + tanh (a (Ω1 − s))) (s−1cm−2) . (3.8)

If a � 1, then the flux has a sharp gradient at Ω1 = s and the scalar flux
is φ ≈ 1 s−1cm−2. The computations were performed with a = 7, s = 1/2,
α = 2 cm−1 and σa = 3 cm−1. The results are depicted in figure 3.5. The
same figure also illustrates how local refinement is more effective than uniform
refinement.

The selection of the elements to refine locally was based on prior knowl-
edge of the solution. After each calculation, the elements that contributed
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most to the global error were refined, and the computation was performed
again. This is a form of cheating, of course, and in future work it should be
done automatically during runtime without knowledge of the exact errors.
Nevertheless, the results demonstrate that both the DG and the ccG method
perform well on anisotropic meshes. This is an especially important point for
the ccG method, because solution space is fairly ‘stiff’. That is, if an entry in
the solution vector is perturbed, the resulting perturbation in the numerical
solution is not very local. This is due to its non-local stencil.
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Chapter 4

A finite element method for
Fokker-Planck particle
transport

This chapter introduces spatial streaming. The particle flux ϕ = ϕ(r,Ω)
is governed by the time-independent mono-energetic Boltzmann equation in
the Fokker-Planck limit in an inhomogeneous space:

Lstrϕ+ Σaϕ−
α

2
∆sϕ = S for r ∈ H ; (4.1)

ϕ = ϕD for r ∈ ∂H, Ω · nH < 0 , (4.2)

where nH is the outward normal of the spatial domain H, and Ω ∈ S2 is the
unit direction vector. Most materials of interest, such as biological tissue,
are isotropic, which implies that the material properties Σa = Σa(r) and
α = α(r) do not depend on the direction vector. Both the source and the
Dirichlet boundary condition can be anisotropic. That is, S = S(r,Ω) and
ϕD = ϕD(r,Ω). The streaming operator is given by

Lstr ≡ Ω · ∂
∂r

.

Section 4.1 lays the theoretical foundation of the Riemann upwinding
method by deriving the weak form. Section 4.2 explains how the resulting
linear system can be solved. Section 4.3 studies the convergence of the nu-
merical solution for different discretisations. A final example of a diffusing
pencil beam is given in section 4.4.
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4.1 The discrete setting: Riemann upwind-

ing

The discretisations in space and angle are both based on a DG method. Let
R be a mesh of H. All spatial elements R ∈ R are assumed to be flat, so
that normal vector of a spatial face is independent of the position. Each
is assigned its own angular mesh P[R]. Let the components of g[R] be basis
functions on R. To avoid confusion, angular elements are hereinafter referred
to as ‘patches’, and denoted with the letter P . The basis functions on P are
the components of f[P ]. The solution space is a product of the spatial and
the angular parts. That is,

ϕ (r,Ω) ≈
∑
R∈R

ρ[R] · g[R] (r)
∑

P∈P[R]

π[P ] · f[P ] (Ω) , (4.3)

where the ρ[R] and π[P ] are solution coefficients. This is simply a convenient
notation; in a practical calculation all solution coefficients would be collected
in a single solution vector.

To avoid excessive use of indices, the following notation is used. For any
quantity � that’s defined on an element, �[R] and �[R̃] are abbreviated by

� and �̃ respectively. Similarly, ♦ ≡ ♦[P ] and ♦̃ ≡ ♦[P̃ ] for any quantity ♦
that depends on the patch. For example, Ph and P̃h are the angular meshes
of R and R̃ respectively, π̃ are the solution coefficients on patch P , and g
are the spatial basis functions on element R.

The test functions are g and f. They have support on the element R and
the patch P ∈ Ph respectively. Substitute equation 4.3 into equation 4.1 and
multiply by the matrix g fT. Integrate over the whole phase-space to find∑

R̃∈Rq

∫
R̃

g

(
∂g̃

∂r
ρ̃

)T ∑
P̃∈P̃h

∫
P̃

Ω π̃T f̃ fT

+

∫
R

Σa g gTρ

∫
P

πT f fT (4.4)

−
∫
R

g gTρ
∑
P̃∈Ph

∫
P̃

π̃T
(α

2
∆sf̃
)

fT

=

∫
R

∫
P

S g fT .

Here R̃ and P̃ are just dummy variables. Some summations in equation 4.3
dropped out because all basis functions have support on only one element or
patch. The remaining sums require special attention.
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The Fokker-Planck operator is dealt with in the manner that is described
in chapter 2. That is, the discontinuities in the angular basis functions
necessitate a consistency term, and symmetry and penalty terms can be
added without destroying the consistency of the weak form. For any two sets
of angular basis functions {ui} and {vi}, the SIP bilinear operator is defined
component-wise by[
b[P ](u,v)

]
ij

=

∫
P

α

2
∇sui · ∇svi +

∑
S∈FP

∫
S

α

2

η

hF
JuiKJviK +

∫
P

Σauivi (4.5)

−
∑
S∈FP

∫
S

(
JviK

{α
2
∇sui

}
· nP,S + JuiK

{α
2
∇svi

}
· nP,S

)
,

where nP,S is the outward normal vector of patch P at face S, parallel to the
surface of the unit sphere. b(̃f, f) is non-zero only if the intersection between
P and P̃ is non-empty. Note that it also contains the absorption term.

The spatial streaming term in equation 4.4 is separated into a volumetric
part and a facial part. In the following, R̃ is the neighbour of R at face F , so
that nR,F = −nR̃,F . Denote by {P̃i}Zi=1 the set of all patches on the angular

mesh of R̃ that overlap with a patch P on the angular mesh of R. Introduce
the matrix

N[R] ≡
∫
R

g[R] gT
[R]

and the following third order tensors, defined through their components in a
Cartesian coordinate system.[

V[R]

]
ijk
≡
∫
R

[
g[R]

]
i

∂

∂rj

[
g[R]

]
k[

W[P ]

]
ijk
≡
∫
P

[
f[P ]

]
i

Ωj

[
f[P ]

]
k

A naive approach might start with an integration by parts:∫
R

g

(
∂g̃

∂r
ρ̃

)T

=
∑
F∈FR

∫
F

g g̃Tρ̃
(
nF,R̃

)T −
∫
R

(ρ̃ · g̃)

(
∂g

∂r

)T

, (4.6)

where FR is the set of faces of R. A substitution of equations 4.6 and 4.5
into equation 4.4 would result in∑
F∈FR

ΥF − (ρ · V ) (π ·W )− (N ρ)
∑
p̃∈P

πT
[p̃] b[p̃]

(
f[p̃], f[P ]

)
=

∫
R

∫
P

S g fT ,

(4.7)

41



where · indicates a tensor contraction and

ΥF =

∫
F

g

(
gT ρ

∫
P

nT
F,R Ω πT f fT

+ g̃T ρ̃
Z∑
i=1

[∫
p̃

nT
F,R̃

Ω πT
[p̃] f[p̃] fT

]T

p̃=P̃i

)
is the surface streaming term. The problem with this is that it does not
properly separate the incoming and outgoing fluxes at the faces of the spa-
tial elements. It was derived without full consideration for the relation be-
tween the spaces H and S2. Whether a particle in R effects a particle in a
neighbouring element depends on its direction.

Equation 4.7 does hold for a corrected version of the surface streaming
term, based on an Riemann upwinding scheme that was developed recently
by Kópházi and Lathouwers (2015). The weak form of the transport equation
is given by equation 4.7 with

ΥF =

∫
F

g
Z∑
i=1

[
gTρ Λi π + gT

[p̃] ρ[p̃] Λ̃i π[p̃]

]T

p̃=P̃i
. (4.8)

Here Λi and Λ̃i are matrices that filter out the outgoing or incoming surface
streams from R and R̃ respectively. Before providing explicit expressions,
define

M[p1,p2] ≡
∫
p1

f[p1] fT
[p2] (4.9)

for any two patches p1 and p2, which aren’t necessarily in the same angular
mesh. Let

A[P ] ≡
∫
P

f[P ] (nR,F ·Ω) fT
[P ] and A[P̃i] ≡

∫
P̃i

f[P̃i]
(
nR̃,F ·Ω

)
fT

[P̃i] .

Notice the different spatial normal vector at the face F . Determine the
unique matrix Q[p] for which

A[p] = M[p,p] Q[p]G[p]Q
−1
[p] , (4.10)

where G[p] is a diagonal matrix. This is a diagonalisation based on the
generalised eigenvalue problem where M[p,p] is the metric. Split G[p] into G+

[p]

and G−[p], which contain the positive and negative eigenvalues respectively, so

that G[p] = G+
[p] + G−[p]. Write A±[p] = M[p,p] Q[p]G

±
[p]Q

−1
[p] . Now there are three

separate cases to consider.
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• Z = 1 and the patch P̃1 on R̃ is of the same level of refinement
as the patch P on R. This means that P and P̃1 are basically
equivalent.

Λ1 = A+
[P ] and Λ̃1 = A−

[P̃1]
= A−[P ] (4.11)

• Z = 1 and the patch P̃1 on R̃ is coarser than the patch P on
R. That is, P̃1 is a larger patch, at a lower level of refinement. The
incoming stream from P̃ is expressed in terms of different angular basis
functions from those on P . Transformations from one basis to another
are performed by the matrices in equation 4.9.

Λ1 = A+
[P ] and Λ̃1 = A−[P ] M

−1
[P,P ] M[P,P̃1] (4.12)

• Z > 1 and the patches {P̃i}Zi=1 on R̃ are of a higher level of
refinement than the patch P on R.

Λi = M[P,P̃i]M
−1

[P̃i,P̃i]
A+

[P̃i]
M−1

[P̃i,P̃i]
M[P̃i,P ] (4.13)

Λ̃i = M[P,P̃i]M
−1

[P̃i,P̃i]
A−

[P̃i]

The operator Λi first projects the flux in P onto the angular basis of P̃i,
then the outgoing component is selected there, and finally the result is
transformed back to P .

Dirichlet boundary conditions of the form 4.2 are implemented by using
a ‘shadow element’. If an element R borders ∂H at the face F = R ∩ ∂H,
then a shadow element R̃ is placed on the other side of F . The solution
coefficients ρ̃ and π̃ on R̃ are set by a Galerkin projection of ϕD(r,Ω) onto
the solution space on R̃.

4.2 Solution methods

Fortunately, the Riemann upwinding procedure is much less expensive than
it first appears, because it is not always necessary to perform the decom-
position in equation 4.10. Suppose that Ω · nR,F > 0 for all Ω ∈ P for a
normal vector nR,F at face F of spatial element R. This means that there
are no incoming particles that stream across F with a direction in P . Thus
A−[P ] = 0 and A+

[P ] = A[P ]. Similarly, if Ω · nR,F < 0 everywhere on P , then

A+
[P ] = 0 and A−[P ] = A[P ]. As the angular mesh becomes more refined, there
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Table 4.1: Pseudocode indicating the solution order in a the block Gauss-
Seidel method

1. for i = 1 . . . 8 # loop over octants of S2

2. for all R ∈ R(i) # loop over ordered set

3. for all P ∈ P(i)
[R] # loop over unordered set

4. Solve for π[P ] and ρ[R]

from equation 4.7 with
4.8, holding all other
coefficients constant.

5. end

6. end

7. end

are continuously fewer patches upon which Ω · nR,F changes value, and the
Riemann decomposition only has to be performed in a small percentage of
cases.

Enforcing equation 4.7 with 4.8 to hold for all g fT on all patches leads
to a linear system in the unknown coefficients π and ρ, which are solved for
by iterative means. An obvious and simple method is the block Gauss-Seidel
method, where the blocks consist of all unknowns on a patch. The order in
which the patches are visited is of great importance. Let υi be the centre of
the i’th octant of the unit sphere. Denote by P(i)

[R] all patches in the angular

mesh of R that are in the i’th octant. {υi}8
i=1 are the directions in an S2

discrete ordinate method. Let R(i) be a list (that is, an ordered set) of the
spatial elements elements, arranged in the order in which one would sweep
them for the direction υi in an SN method. The block Gauss-Seidel solver is
summarised by the pseudocode in table 4.1. This particular solution order
could very probably be improved upon, but it served well enough for the
purposes for this thesis.

The convergence can be sped up considerably with a GMRES (generalized
minimal residual) or BiCGSTAB (biconjugate gradient stabilized) iterative
method that uses the Gauss-Seidel sweep as a preconditioner. An alternative
is Richardson iteration. All these methods are detailed in Golub and Loan
(1996).

4.2.1 Convergence of the linear solvers

In order to test the efficacy of the linear solvers described in the previous
section, several numerical tests were done. In general, both the GMRES and
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the BiCGSTAB solvers clearly outperform the Richardson solver in every
case. If the number of solver steps is constant, then BiCGSTAB provides a
better result than GMRES. This is compensated by the fact that the required
computation time per time step is larger. It is not clear from the tests which
solver is best.

This is illustrated with a few examples on the domain H = (0, 1) ×
(0, 1)× (0, 1) cm3. The spatial mesh was highly irregular and consisted of 63
tetrahedrons of various sizes. The basis consisted of piecewise linear spatial
functions and Ω-functions in angle. The material properties were Σa =
0.10 cm−1 and α = 0.25 cm−1. The source is a constant S = 1/(4π) cm−3s−1

and there are no boundary sources: φD = 0.
The speed of convergence depends heavily on the tessellation of the unit

sphere. Figure 4.1 displays the convergence for the case where the angular
mesh was uniformly refined to level 3. The residuals are normalised by the
residual after the first iteration. Figure 4.2 is similar, but here each spatial
element was assigned a distinct angular mesh. In each angular mesh, a
single element was randomly selected and refined. This process was repeated
until all angular meshes had 500 elements in total.1 Note how the required
computing time per time step is lower on uniformly refined meshes. This
is because the sum in equation 4.8 always contains only one term. Also,
equation 4.11 is easier to compute than equations 4.13 or 4.13. The speed
of convergence per solver step is also greater on the uniformly refined mesh.
If the spatial elements all have different angular meshes, then it’s difficult to
see in what order the elements should be visited by the Gauss-Seidel sweeper.

The speed of convergence hardly changes with a changing spatial mesh,
though it obviously matters how many spatial elements there are in total.

4.3 Convergence with mesh refinement

When considering the convergence of the numerical solution to the exact
particle flux, there are two discretisation to take into account. Let ` and h
be the typical length scale of the spatial and the angular mesh respectively.

1This type of highly irregular discretisations can also be used to verify that the method
is implemented correctly. If S is chosen such that the exact solution to equation 4.1 is part
of the DG solution space, then the numerical solution should equal the exact solution. It
is not easy to see how a badly implemented code could yield the right result in several of
these consistency tests on randomly refined meshes.
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Figure 4.1: Convergence of the solution vector with different numerical
solvers. The angular meshes are uniformly refined at level 3.
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Figure 4.2: Convergence of the solution vector with different numerical
solvers. The angular meshes are randomly refined with 500 elements each.

Define a global error

e ≡

√
〈ϕ`h − ϕ, ϕ`h − ϕ〉

〈ϕ, ϕ〉
. (4.14)

The inner product is defined as

〈v, w〉 ≡
∫
H

∫
S2
vw .

Loosely speaking, if ` is in a region such that the error is dominated by
the spatial discretisation, and e/`n approaches a constant as ` decreases, then
n is the order of convergence. In particular, if the angular dependence of the

46



Table 4.2: The errors are given by equation 4.14. The order of convergence
on R` is estimated with equation 3.6 and a comparison with the result on
R2`.

p = 0 p = 1 p = 2

card(R`)
e order e order e order

80 3.71 · 100 - 7.92 · 10−1 - 6.93 · 10−1 -
81 1.35 · 100 1.46 7.18 · 10−1 1.46 2.54 · 10−1 1.45
82 8.37 · 10−1 0.69 2.00 · 10−1 2.76 3.36 · 10−2 2.92
83 4.99 · 10−1 0.75 4.70 · 10−2 2.09 4.13 · 10−3 3.03
84 2.80 · 10−1 0.84 1.10 · 10−2 2.10 5.09 · 10−4 3.02

p = 3 p = 4

card(R`)
e order e order

80 6.19 · 10−1 - 1.64 · 10−1 -
81 7.19 · 10−2 3.11 1.67 · 10−2 3.30
82 4.82 · 10−3 3.90 5.75 · 10−4 4.85
83 2.98 · 10−4 4.01 1.81 · 10−5 5.00
84 1.85 · 10−5 4.00 5.66 · 10−7 5.00

exact solution can be expressed exactly in the angular basis functions, then
e/`n approaches a constant as `→ 0.

As an example, consider again the domain H = (0, 1)×(0, 1)×(0, 1) cm3.
The source and boundary condition are chosen such that

ϕ(r,Ω) =

(
3∏
i=1

sin (πri)

)
(Ω1 + 3Ω2 + 7Ω3)

is the exact solution. The angular basis functions are linear in Ω, so the
error in the numerical solution is solely due to the spatial discretisation. The
spatial elements are identical cubes. The spatial basis functions are piecewise
constant polynomials of order ≤ p. Table 4.2 lists the errors and orders of
convergence for different values of p and on meshes of varying refinement.
The numerical solution appears to converge with order p+1. The asymptotic
speed of convergence sets in more quickly for higher order functions.
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In similar tests, it was verified numerically that the angular error is of
order h2, as was already demonstrated in section 3.2.

4.4 A diffusing proton beam

A more interesting numerical example is given in figure 4.3. It simulates an
infinitely narrow incoming proton beam in both a homogeneous and a hetero-
geneous medium. Note how the spatial mesh is refined locally. The angular
meshes are also refined locally, depending on the spatial element. This is illus-
trated in figure 4.4. The spatial basis is piecewise constant. The angular basis
is spanned by Ω-functions. H is bounded by −∞ < r3 <∞, r1 = ±0.25 cm,
r2 = 0.0 cm and r2 = 1.0 cm. It is essentially a two-dimensional problem.
The volumetric source is S = 0 cm−3s−1. The boundary condition is given
by ϕD(r,Ω) = ϕ0 δ(r1)δ(r2)δ(Ω − e2) and ϕ0 = 1000 cm−2s−1. In the com-
putation of the Galerkin projection of ϕD onto the shadow elements, this
boundary source was split evenly over two elements and a total of 8 patches,
all of which bordered Ω = e2.

The model correctly predicts a non-symmetrical scalar flux. This is in
contrast to the Fermi pencil beam approximation, that predicts the same
result in both the homogeneous and the heterogeneous case.

The conservative properties of the discretisation were verified numerically.
That is, in a domain without absorption, the leakage out of the system equals
the sum of the contributions of the volumetric and boundary sources. In other
words, the numerical scheme preserves particles.

48



0.19 X

Y

0.0872 Z0.04 0.19 X

Y

0.0872 Z0.04

Figure 4.3: Scalar flux φ in units of cm−2s−1 on the spatial domain H. The
colour scale is logarithmic. Values that are too high or too low were left
out. On the left, the macroscopic cross sections are the same everywhere at
α = 0.25 cm and Σa = 0.0 cm. On the right, there is a block, located at
0.0 cm < r1 < 0.095 cm and 0.45 cm < r2 < 0.6 cm, for which α = 0.25 cm
and Σa = 10.0 cm.
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Figure 4.4: Angular meshes corresponding to figure 4.3
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Chapter 5

Conclusion

The spherical adaptation of the SIP methods in chapters 2 and 3 is a fairly
straightforward extension of the regular Euclidean SIP method. The L2-
norm of the error (equation 3.5) behaves as h2. They perform reliably on the
spherical domain, even on irregular tessellations or highly localised angular
sources. It is not completely clear what the best basis functions are in a
‘regular’ SIPG method on the sphere. It seems the Ω-functions are to be
preferred, but only slightly. They have a slightly lower error per degree of
freedom. More importantly, they preserve the angular current density.

The ccG method is still not as fully developed as the SIPG methods. For
example, it is not fully clear how to chose the penalty parameter. Never-
theless, it already performs a bit better than SIPG in the absence of spatial
streaming. It will require a significant coding effort to implement it into the
code for spatial streaming, since the implementation is very different from
the more common DG methods.

The Riemann upwinding procedure is easily combined with spherical SIP.
The L2-norm of the error behaves as `p+1 for spatial basis functions of order
p on a spatial mesh with typical length scale `, provided that the error due
to the angular discretisation is negligible.
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Chapter 6

Future work

The spherical SIPG method described in chapters 2 and 3 is not likely to be
improved upon significantly. A possible exception is the use of higher order
basis functions that were mentioned in section 2.3, especially in cases where
the flux is fairly smooth in Ω. This is more likely to be the case in neutral
particle transport.

There are several possible extensions of the theory in chapters 2 and 3 to
other disciplines. For example, the methods could easily be extended to the
unit hypersphere SN that’s embedded in RN+1. The only adjustment in the
derivations is that the ‘2’ in equations 2.6 and 2.7 are replaced by N . The
analyses in the appendices carry over in a straightforward manner.

A more physical alternative application can be found in geomathemat-
ics. In the simulation of very large weather events and tsunamis, one has
to take into account the curvature of the earth. Tsunamis are shock waves,
and thus typically upwinded. When they come into contact with the shore,
the computational domain can be highly irregular. These properties mean
that tsunami predictions could well be fertile research ground for spherical
discontinuous Galerkin methods.

Immediate future work should focus on an implementation of an auto-
matic adaptation method. That is, the mesh should be refined automatically
during run-time, based on some error measure. This is the only way fully to
exploit the flexibility of the numerical scheme, which is its greatest asset.

A significant gain in efficiency is to be expected from a better linear solver
for the spatial transport. The Gauss-Seidel sweep could be improved, so that
it becomes a better preconditioner. The order in which the spatial elements
are visited is now based on the S2 discrete ordinates sweeper. This is not
ideal for spherical elements that are far from the centre of an octant. In
principle, every angular element has its own ideal order in which GS sweep
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should visit the spatial elements. In practice, some spherical elements could
be preconditioned with a multigrid solver, and the sweep order could be
based on the elements at a lower refinement level.

Another possible way to speed up the linear solver would be to make use
of approximate analytical solutions when available. For example, one could
take a Galerkin projection of the simple Fermi pencil beam onto the solution
space, and then use the resulting solution vector as a starting point for the
iteration.

The weak form as it is derived in section 4.1 could be adapted to more
general scattering terms than the bilinear form corresponding to the Fokker-
Planck operator. The error in the Fokker-Planck approximation is usually
considerably larger then the error in the pencil beam approximation. Though
a general scattering term may be significantly different quantitatively, it
should be qualitatively similar. The efficacy of the solution methods in chap-
ter 4 should therefore not be greatly impacted.

An easy way to make the calculations more realistic would be to incor-
porate the energy dependence. The energy could be discretised with a DG
method, and upwinded from high to low energy. This has already been im-
plemented into the code that was used for this thesis, but not extensively
tested with the numerical methods described here.
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Appendix A

Parameterisations of spherical
elements

A.1 Parameterisations of orthodrome segments

The boundaries of the elements in the spherical mesh are orthodrome seg-
ments. An orthodrome (or ‘great circle’) is the intersection of S2 and a
plane that passes through the origin. An orthodrome segment C is a closed,
connected subset thereof. It is defined uniquely by its endpoints (‘vertices’)
{Vi}2

i=1. It is the shortest curve on S2 that connects V1 to V2

Parameterisations of orthodrome segments form the basis of both ana-
lytical integration and numerical integration techniques. They are bijections
between all points Ω ∈ C and all k ∈ [−1, 1]. The rest of this section is
devoted to several examples.

A.1.1 Parameterisations via a line segment in R3

One way to parameterise C is to map k onto a line segment L ∈ R3, and
then to project all points l ∈ L onto points Ω ∈ C ⊂ S2 along a straight line
through the origin. Specifically, if {ri}2

i=1 are the endpoints of L, then

l(k) =
1

2
(1− k)r1 +

1

2
(1 + k)r2, − 1 ≤ k ≤ 1 (A.1)

and Ω = l/l. Obviously, V1 = r1/r1 and V2 = r2/r2.
The Jacobian associated with equation A.1.1 can be found by direct dif-

ferentiation, similarly to what is done in section A.1.2. Alternatively, the
norm of the Jacobian can be found more more directly by considering the
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(a) Projection of Ω and Ω + δΩ on L

(b) q and l are on a
circle centred at the
origin.

Figure A.1: A schematic overview of the parameterisation of a great circle
segment on the unit sphere as treated in section A.1.1. It is not necessary
that r1, r2 < 1; the analysis holds more generally.

pair of displacements

l −→ l + δl = l + δl
r2 − l

||r2 − l||2
Ω −→ Ω + δΩ =

1

||l + δl||2
(l + δl) ,

as indicated in figure A.1a. Define the point

q ≡ l

||l + δl||2
(l + δl)

and the angles

α ≡ ∠ 0 l r2 = arccos

(
−l · (r2 − l)

l ||r2 − l||2

)
and

δθ ≡ ∠ l 0 q = arccos

(
l · q
lq

)
,
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as indicated in figure A.1b. The sine law for the triangle spanned by (q− l)
and δl yields

δl

sin
(

1
2

(π − δθ)
) =

||q− l||2
sin (α + δθ)

.

Noting that 0 < α < π implies sin(arccos(α)) =
√

1− α2, and that ||q−l||2 =
lδθ+O(δθ3) and ||δΩ||2 = δθ+O(δθ3), the last equation can be rearranged
to

lim
δθ→0

||δΩ||2
δl

=

∣∣∣∣∣∣∣∣dΩ

dl

∣∣∣∣∣∣∣∣
2

=

√
l2(r2 − l)2 − [l · (r2 − l)]2

l2||r2 − l||2
. (A.2)

A.1.2 Parameterisation in angle

It is also possible to map linearly from [−1, 1] to the angle between Ω and
V1, which is the subject of this subsection. Due to its applicability later on,
the analysis will be slightly more general than it has to be for the parame-
terisation of a great circle segment. Let W1 and W2 be two distinct points
on an arbitrary circle in R3 with centre c, such that W1 − c 6= c−W2 (ref.
figure A.2). A normal vector of the plane of the circle is given by

d =
(W1 − c)× (W2 − c)

||(W1 − c)× (W2 − c)||2
.

Since d × (W1 − c) and W1 − c are both parallel to the plane of the circle
and are perpendicular, any point w on the circle can be decomposed as

w − c = x1 (W1 − c) + x2 (d× (W1 − c)) ,

where x1 ≡ (w − c) · (W1 − c) and x2 ≡ (w − c) · (d× (W1 − c)). The
vector d × (W1 − c) has length |W1 − c|, so, by Pythagoras’s theorem, w
lies on the circle if and only if x2

1 + x2
2 = 1. From this fact, it can be seen

that

w(t) = c + (W1 − c) cos ((t− t0)χ) + d× (W1 − c) sin ((t− t0)χ) , t0 ≤ t ≤ t1
(A.3)

is a segment of the circle for all χ > 0. The velocity can be found either
algebraically or geometrically and is given by

dw

dt
= χd× (w(t)− c) . (A.4)
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Figure A.2: A schematic overview of the parameterisation of an arbitrary
circle segment in R3 as treated in section A.1.2. Here d is perpendicular to
the plane of the circle and points into the paper.
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This parametrisation is natural : the speed ||dw/dt||2 = χ ||W1 − c||2 is
constant. As t increases from t0 to t1, w(t) starts at W1 and traverses an
angle χ (t1 − t0) in the direction of W2. A parametrisation of the shortest
circle segment that connects W1 to W2 is given by equation A.3, with the
extra condition

χ (t1 − t0) = arccos

(
(W1 − c) · (W2 − c)

(W1 − c)2

)
.

In the special case of the great circle segment C, c is at the origin and
W1 = V1 and W2 = V2 are on the unit sphere. Thus, a bijection between
k ∈ [−1, 1] and Ω ∈ C is

Ω(k) = V1 cos(
k + 1

2
γ) +

(V1 ×V2)×V1

||V1 ×V2||2
sin(

k + 1

2
γ), − 1 ≤ k ≤ 1,

(A.5)

where

γ ≡ arccos (V1 ·V2) .

A.2 Parameterisations of spherical triangles

This section details several parameterisations of spherical triangles. A spher-
ical triangle T is defined uniquely by its vertices {Vp}3

p=1 as the closed set of
all Ω ∈ S2 that satisfy

sign (Vm · (Vn ×Vk)) = sign (Ω · (Vn ×Vk))

for all permutations of {m,n, k}. It is the smallest part of S2 whose boundary
consists of the three orthodrome segments that intersect V1 and V2, V2 and
V3, and V3 and V1 respectively. The parameterisation is a bijection between
T and the reference triangle

Kref ≡ {k ∈ R2 : k1 ≥ 0, k2 ≥ 0, k1 + k2 ≤ 1} . (A.6)

As is common in finite element methods, the independent variables are re-
ferred to as ‘local’ variables, and Kref is called the local element. It is the
same for all spherical triangles.
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A.2.1 Parameterisations via a flat triangle in R3

A family of parameterisations map Kref onto T via an intermediate flat tri-
angle in R3. Specifically, let Z ∈ R3 be the flat triangle with vertices Z1, Z2

and Z3. A linear mapping between k = [k1, k2]T ∈ Kref and z ∈ Z is given
by

z = Z1 + k1 (Z2 − Z1) + k2 (Z3 − Z1) (A.7)

= Z1 +D k ,

where

D ≡
(
(Z2 − Z1) , (Z3 − Z1)

)
∈ R3×2 .

Before specifying the Zi, some general consequences of equation A.7 are
derived. The derivative with respect to k is given by

∂z

∂k
= DT.

Note that there are three equations in A.7, though Kref has only two degrees
of freedom. There are therefore several non-equivalent ways to solve for k,
the most convenient of which is to left-multiply by a left hand side inverse
E ∈ R2×3 of D. (That is, ED = I2×2.) Such a matrix can always be readily
constructed by noting that Z is non-singular, so that DTD is invertible1, and
setting E = (DTD)−1DT. This yields

k = (DTD)−1DT (z− Z1) . (A.8)

The advantage of this particular representation is that the derivative with
respect to z becomes straightforward:

∂k

∂z
= D(DTD)−1. (A.9)

Interestingly, this is not a unique solution because E isn’t unique. Given
an infinitesimal displacement dz, there are infinitely many ∂k/∂z with which
the resulting displacement dk = (∂k/∂z)Tdz can be computed correctly. Al-
gebraically, this is because D doesn’t have full row rank, which in turn results

1If, for some vector w, DTDw = 0, then 0 = wTDTDw = ||Dw||2, which implies
Dw = 0. Due to the non-singularity of Z, (Z2 − Z1) and (Z3 − Z1) are non-parallel, and
D has full column rank. Therefore, 0 is not an eigenvalue of D, and so w = 0, proving
that 0 is not an eigenvalue of DTD.
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from the fact that equation A.7 is overdetermined if k is the unknown. From
a geometrical point of view it is a consequence of the constraint dz ∈ Z.

A mapping from the points z ∈ Z to the points Ω ∈ T should project
the straight lines in ∂Z to the orthodrome segments in ∂T . The only simple
bijection that does this is a projection along a line through the origin:

Ω =
1

z
z , (A.10)

for which

∂Ω

∂z
=

1

z

∂z

∂z
+
∂z

∂z

∂(1/z)

∂z
zT

= z−1
(
I3×3 −ΩΩT

)
.

Since det(∂Ω/∂z) = z−1(1−ΩTΩ), this matrix is singular, and ∂z/∂Ω cannot
be obtained by the usual method of inversion of the Jacobian. That is,

∂z

∂Ω

∂Ω

∂z
6= I3×3 6= ∂Ω

∂z

∂z

∂Ω
,

which is a consequence of the fact that Ω and z are constrained. Equation
A.10 is inverted instead to obtain

z =
Zi · n
Ω · n

Ω ,

where n is a normal vector of Z and i ∈ {1, 2, 3} is arbitrary. It follows that

∂z

∂Ω
=

Zi · n
Ω · n

(
I3×3 − 1

Ω · n
n ΩT

)
. (A.11)

Note that

ΩT ∂z

∂Ω
= 0T , (A.12)

as one would expect geometrically. The derivatives are related by

∂Ω

∂k
=
∂z

∂k

∂Ω

∂z
and

∂k

∂Ω
=

∂z

∂Ω

∂k

∂z
.

If the vertices of T are {Vp}3
p=1, then the vertices of Z should obviously

satisfy

Vi = Zi/Zi . (A.13)

Two specific choices for the Zi are mentioned here.
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• For the definition angular basis functions in section 2.3,

Zi =
1

||Vi||1
Vi , (A.14)

in which case equation A.11 simplifies to

∂z

∂Ω
= z

(
I3×3 − sign(z) zT

)
,

where the sign function acts component-wise. If the vertices are all in
the same octant (that is, sign(Vi) is independent of i), then Z lies on
the L1-sphere (i.e.: the octahedron).

• A more natural choice is

Zi = Vi . (A.15)

The resulting parameterisation forms the basis for several widely ap-
plied numerical integration techniques.

A.2.2 A parameterisation in angles

It is also possible to parameterise a spherical triangle via two angles. Con-
cretely, the idea is to divide T into circle segments, all of which are an
intersection between T and a plane that is parallel to the great circle that
intersects V1 and V3. That is, all circle segments lie in planes with a com-
mon normal vector. The line from k = [0, 0]T to k = [0, 1]T is mapped to the
great circle segment that runs from V1 to V3, and k = [1, 0]T is mapped to
V2. Lines of constant k1 are mapped to circle segments on T that run from
P1(k1) to P2(k1).

Before working out the details, it is convenient to introduce some defi-
nitions. Without loss of generality, it is assumed that V1, V2 and V3 are
positively orientated: 2

(V1 ×V2) ·V3 > 0. (A.16)

Denote the normals of the planes of the great circles by

n = V3 ×V1/ ||V3 ×V1||2
m = V3 ×V2/ ||V3 ×V2||2
q = V1 ×V2/ ||V1 ×V2||2

2For the results in this thesis, the labels V1, V2 and V3 were assigned to the vertices
such that equation A.16 holds and that V1 and V3 are as far apart as possible. This
generally leads to the ‘smoothest’ parameterisation, because the norm of the Jacobian
doesn’t vary on curves of constant k1, ref. section A.2.3. This is not essential though.
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Figure A.3: An overview of the parameterisation of a spherical triangle.
Left : The vector n is normal to both the plane that intersects {V1,V3,0}
and the plane that intersects {P1,P2,p}. The circle segment P is centred at
p and subtends an angle γ. By letting P1 run from V1 to V2, P traces the
spherical triangle. Right : projection of P-curves on Kref for different values
of P1

and the angles of the great circle segments as

α = arccos (V3 ·V2)

β = arccos (V1 ·V2) .

In order to find an explicit expression for the parametrisation Ω(k1, k2)
of T , first let P1 run over the arc from V1 to V2:

P1(k1) = V1 cos (k1β) + q×V1 sin (k1β) 0 ≤ k1 ≤ 1. (A.17)

If k2 is varied with k1 constant, the circle segment

P(c) = {Ω(k1, k2) ∈ T : k1 = c and 0 ≤ k2 ≤ 1− c}

is in a plane with normal vector n. It runs from P1(k1) to its endpoint

P2(k1) = Ω(k1, k2 = 1− k1) (A.18)
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on the great circle between V3 and V2. This is illustrated in figure A.3. Let
p be the centre of P . It is the component of P1(k1) in the n-direction:

p(k1) = p(k1) n = (P1(k1) · n) n. (A.19)

From equation A.3, Ω is found to be

Ω(k) = p(k1) + cos

(
k2

1− k1

γ(k1)

)
(P1(k1)− p(k1))

+ sin

(
k2

1− k1

γ(k1)

)
P1(k1)× n, (A.20)

where

γ(k1) = arccos

(
(P1(k1)− p(k1)) · (P2(k1)− p(k1))

(P1(k1)− p(k1))2

)
(A.21)

is the angle between (P1 − p) and (P2 − p). Since P2 lies on the boundary
of T between V3 and V2, γ(k1) could in principle be found by isolating it
from

m ·Ω|k2=1−k1 = 0,

but the process is somewhat messy. A simpler way forward is to consider the
parametrisation of the great circle segment between V3 and V2:

s(y) = V3 cos (yα) + m×V3 sin (yα) 0 ≤ y ≤ 1. (A.22)

Define y∗ implicitly by

s(y∗) = P2 (k1) . (A.23)

Combine equations A.18 and A.23, take the inner product with n and use
equation A.19 to find

p = n · (m×V3) sin (y∗α) , (A.24)

which is solved by

y∗ =
1

α
arcsin

(
p

n · (m×V3)

)
. (A.25)

Note that n · (m×V3) is strictly positive due to the positive orientation of
V3, V1 and V2. Equations A.17, A.20, A.21, A.22, A.23 and A.25 now form
a bijection between (k1, k2) and the spherical element.
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The derivative with respect to k2 is fairly straightforward. Recall that
Ω|k1 lies on a circle segment with centre p(k1), so that, from equation A.4,

∂Ω

∂k2

=
γ(k1)

1− k2

(Ω(k1, k2)− p(k1))× n =
γ(k1)

1− k2

Ω(k1, k2)× n .

Several intermediate steps are required to obtain an explicit expression for
∂Ω/∂k1. From equation A.4,

dP1

dk1

= βq×P1(k1), (A.26)

with which the derivative of equation A.19 can be evaluated as

dp

dk1

= β cos (k1β) ((q×V1) · n) n. (A.27)

The derivative of equation A.24 is

α
dy∗

dk1

cos (y∗α) =
dp/dk1

n ·
(
m× V̂3

) .

This can be used to simplify the derivative of equation A.23, yielding

dP2

dk1

=
dF/dk1

n ·
(
m× V̂3

) (m× V̂3 − tan (αy∗) V3

)
. (A.28)

For any two vectors v(z) and w(z) of equal length v = w, it can be shown
by direct computation that

d

dz

(v ·w
v2

)
= v−2

(
w · dv

dz
+ v · dw

dz

)
− 2v−4

(
v · dv

dz

)
(v ·w) .

Taking the cosine of equation A.21, differentiating implicitly with respect to
k1, using the vector identity above and rearranging results in

sin (γ)
dγ

dk1

= 2 |P1 − p|−4

(
(P1 − p) ·

(
dP1

dk1

− dp

dk1

))
(P1 − p) · (P2 − p)

− |P1 − p|−2

(
(P1 + P2 − 2p) · dp

dk1

+ (P2 − p) · dP1

dk1

+ (P1 − p) · dP2

dk1

)
.

(A.29)

Finally, differentiate equation A.20 to obtain

∂Ω

∂k1

=
∂p

∂k1

+
k2

1− k1

(
γ

1− k1

+
dγ

dk1

)
Ω× n

+

(
dP1

dk1

− dp

dk1

)
cos

(
k2

1− k1

γ

)
+

dP1

dk1

× n sin

(
k2

1− k1

γ

)
.
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A.2.3 A comparison of the Jacobians

It is a well-known fact that there are no bijections Kref ↔ T that preserve
the area. (Robbin and Salamon, 2013). An infinitesimal area dk1dk2 on Kref

is mapped onto a surface with area |J|dk1dk2 on T . The Jacobian is defined
as

J(k) ≡ ∂Ω

∂k1

× ∂Ω

∂k2

. (A.30)

In other words, the norm of the Jacobian cannot be constant.
This doesn’t mean that all parameterisations deform Kref equally. The

norm of the Jacobian is a simple measure for the ‘skewness’. It is plotted in
figure A.4 for the three parameterisations mentioned in this section. For large
spherical elements, the angular parameterisation is considerably smoother
than the parameterisations of section A.2.1. The mapping via a flat plane
with vertices Vi is always smoother than the mapping via a flat plane on the
octahedron. As the spherical triangles get smaller, they become flat, and the
Jacobians become constant. For the angular parameterisation, the norm of
the Jacobian doesn’t depend on k2.
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Figure A.4: Values of |J(k)| on the reference triangle Kref at various levels
of the angular mesh described in section 2.2. k1 and k2 are on the horizontal
and vertical axes respectively.

• First column: angular parameterisations (section A.2.2)

• Second column: parameterisations via flat triangle (section A.2.2); ver-
tices of Z are Vi (equation A.15)

• Third column: parameterisations via flat triangle (section A.2.2); ver-
tices of Z are Vi/||Vi||1 (equation A.14)

Note that at level 0, the spherical triangle is an octant of S2, so equations
A.14 and A.15 are equivalent. The results for level 1 and 2 are not unique.
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Appendix B

Integrals over spherical
elements

In order to implement a DG method in the solid angle, functions need to
be integrated over angular elements (‘patches’) and their boundaries. It is
conceptually easiest to view the set of all possible solid angles as a spherical
surface S2 in R3. The boundary of an element consists of three segments of
great circles on the unit sphere. Due to the complicated shape, there appears
to be no analytical expression for the integrals, except in some simple cases.
This chapter details how the integrals can be computed numerically.

The usual approach in finite element methods is to transform the domain
of integration into a standard ‘local’ reference element. This necessitates a
suitable parametrisation of the region of interest. The integration is per-
formed with a quadrature set on the local element. To obtain an integration
rule, one can map the local abscissa to a ‘global’ point in the physical space
and multiply the weights with the norm of the Jacobian of the bijection.
The numerical schemes differ from each other due to different choices of the
parameterisation and the local quadrature set.

If the global elements are Euclidean, there exists an affine mapping to
the local element. That is, the Jacobian is constant and the transformation
doesn’t affect the shape of the function. Polynomials on a global element are
also polynomials on the local element. There are optimised local quadrature
sets that integrate specific functions analytically, resulting in simple and
efficient schemes. Concrete lists of abscissa and weights can be found in
many places. A good general reference is Solin et al. (2003).

Parameterisations of spherical triangles cannot be linear. Numerical in-
tegration is therefore considerably less straightforward, and typically more
expensive.

67



B.1 Integrals over orthodrome segments

This section deals with integrals over curves in Ω-space. If Vi ∈ S2 and
V1 6= ±V2, then the integrals of interest are of the form∫

C
f(Ω) dΩ, (B.1)

where f : C 7→ R is an arbitrary function and C ∈ S2 is the shortest ortho-
drome segment that connects V1 to V2.

B.1.1 Analytical results

Some progress can be made in the evaluation of the integral B.1 without
resorting to approximating methods. From equation A.5,

I ≡
∫
C
f(Ω) dΩ =

∫ γ

t=0

f(Ω(t)) dt ,

where γ = arccos(V1 ·V2) and

Ω(t) = V1 cos(t) + p sin(t) ,

where p is known. Letting x = cos(t), this can be rewritten to

I =

∫ 1

V1·V2

f(Ω(x))√
1− x2

dx (B.2)

and

Ω(x) = x V1 +
√

1− x2 p .

If f is a polynomial in the components of Ω, then I can be evaluated
analytically. It suffices to consider an arbitrary non-constant monomial
f(Ω) = (Ω1)m(Ω2)n(Ω3)q. Expanding all terms in equation B.2 leads to
an expression of the form

I =
∑
j

cj

∫ 1

V1·V2

xrj(1− x2)sj/2 dx .

The coefficients cj depend on m, n, q, and on the components of V1 and p.
The corresponding rj and sj are non-negative integers that are bounded by
rj + sj ≤ m + n + q − 1. If sj is even, the j’th integral is a polynomial in
x of order rj + sj, and it can be evaluated analytically with an appropriate
Gaussian quadrature set. If sj is odd, the integral can always be expressed
in terms of x,

√
1− x2 and arcsin(x).

Other functions pose greater difficulties analytically, but may still yield
nicely to a more generic numerical method, which is the subject of the re-
mainder of this section.
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B.1.2 Numerical integration rules

Given a local quadrature set in [−1, 1], consisting of the abscissas {ti}Ni=1 and
the corresponding weights {wi}Ni=1, the parameterisations of section A.1 can
be used for numerical integration over spherical arcs:∫
C
f (Ω) dΩ =

∫ 1

−1

f (Ω(k))

∣∣∣∣∣∣∣∣dΩ

dk

∣∣∣∣∣∣∣∣
2

dk ≈
N∑
i=1

wi

[
f (Ω (k))

∣∣∣∣∣∣∣∣dΩ

dk

∣∣∣∣∣∣∣∣
2

]
k=ti

.

The local quadrature set considered here is always Gaussian. More ac-
curate estimates can be obtained by increasing N . At some point, the error
in the approximation is dominated by the machine epsilon, and it becomes
pointless to use higher quadrature orders.

Some tests were performed to determine the accuracy of the numerical
scheme. The analytical results from the previous section provided useful
reference values, because they can easily be evaluated to arbitrary precision.
As one would expect, the different parameterisations vary somewhat in their
accuracy. Risking a statement of the obvious, it must be emphasised that
both the location of the vertices and the type of function affect the accuracy
greatly. Nevertheless, some general observations can be made.

• The quadrature set tends to perform better when the norm of the Ja-
cobian of the transformation doesn’t vary much over the interval. With
parameterisations via a straight line (section A.1.1), this is achieved by
letting the straight line segment run from V1 to V2. Only the angular
parameterisation (section A.1.2), has a constant weight factor. This
yields the best results.

• The numerical error due to the limited machine precision is roughly
the same for all methods.

• Small spherical arcs require fewer quadrature points than larger ones.

If f is a polynomial of third order in the components of Ω, and the length
of C is at most π/2, then at most 8 quadrature points with an angular
parameterisation on a double precision machine are needed to ensure that
the error is mostly due to rounding errors.

B.2 Integrals over spherical triangles

This section deals with the numerical evaluation of integrals of the form∫
T

f (Ω) dΩ , (B.3)
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where f : T 7→ R is an arbitrary function and T ∈ S2 is a spherical triangle
with vertices V1, V2 and V3.

Sometimes integrals need to be carried out over the whole Ω-space, for
example when calculating the scalar flux, or when determining the energy of
the difference of two functions. Due to the wide variety of applications, the
more general problem of efficient integration over an n-dimensional sphere
has recently attracted considerable attention from mathematicians. (Folland,
2001; Hesse and Womersley, 2012; Othmani, 2011) Their methods might be
applicable to the current problem as well. A more obvious approach in a
practical particle transport code is to sum over the integrals over the spherical
elements. Alternatively, Lebedev quadrature sets are designed to integrate
polynomials in Ω over S2 analytically, and they are also suitable for numerical
integration of other functions.

Integrals over a part of the unit sphere are far less well studied. Efficient
numerical integration rules have been found for spherical caps {Ω ∈ S2 :
Ω · v ≥ cos(µ)} (Hesse and Womersley, 2012), but it is not obvious how
they would translate to T , the problem being the complicated shape of the
boundary. Integrals of multivariate trigonometric polynomials over triangu-
lar elements on the unit hypersphere Sn are studied in Beckmann et al. (2012).
This comes closest to making some analytical progress in the evaluation of
integrals over spherical triangles, but the set of functions under consideration
there is quite limited. Arbitrary functions on spherical triangles in S2 have
have received very little attention, though an important exception from the
field of chemical physics can be found in Bardhan et al. (2007), which also
deals with generalised spherical triangles.

It is worth mentioning that constant functions can be integrated analyt-
ically over T , since the area can be found from a special case of Girard’s
formula:

sum of interior angles of T = π + area .

Unfortunately, the computation of the angles necessarily involves divisions
by ||Vi ×Vj||2 for i 6= j, which results in appreciable numerical errors if the
area is small. This practical issue appears not to be mentioned in most places
that cite Girard’s formula. It is of no great concern however, since smaller
spherical triangles can be dealt with quite well by the numerical methods
described in the remainder of this section.

For arbitrary functions, the best numerical method for evaluating B.3
might be an adaptive one. Contrary to most other methods, this has the
benefit of providing some control over the error, and a means to ascertain
that it dropped below a certain threshold. The efficiency of this approach
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depends on how well one can direct the refinement effort automatically. Boal
and Sayas (2004) use Richardson extrapolation to accelerate the convergence
and aid the error estimate. For the implementation of a spherical finite
element method, however, multiple functions need to be integrated over the
same spherical element. It is probably cheaper to use a single quadrature set
for all functions, rather than to integrate them adaptively one by one.

By sampling random points uniformly on the smallest spherical cap that
contains T , a Monte Carlo rejection method can be used to estimate the
integrals. This is highly expensive, and so the practicality is limited to the
validation of the implementation of any of the other methods.

B.2.1 Numerical integration rules

Given a local quadrature set on Kref (equation A.6) with abscissa {ti}Ni=1

and weights {wi}Ni=1, the parameterisations of section A.2 can be used for a
numerical evaluation of B.3.∫
T

f (Ω) dΩ =

∫
Kref

f (Ω(k)) ||J(k)||2 dk ≈
N∑
i=1

wi

[
f (Ω(k)) ||J(k)||2

]
k=ti

,

(B.4)

where the Jacobian J is given by equation A.30. A great variety of quadra-
ture sets on Kref can be found in finite element literature, e.g. Solin et al.
(2003) and Sunder and Cookson (1985). In combination with the three pa-
rameterisations considered here, the number of distinct integration rules is
quite large.

Previous work

Seemingly independently, various authors have come up with their own com-
bination of a parameterisation and a local quadrature set. Most employ the
parameterisation via a flat triangle with vertices Vi. Freeden (2010) recom-
mends a three- or four-point quadrature set, but this lacks the necessary ac-
curacy for a finite element implementation. Kópházi and Lathouwers (2015)
subdivide T into smaller spherical triangles, and uses a 34-point quadrature
set on each of them, resulting in relative errors of roughly 10−12.

In Jarrell (2010) the vertices of the intermediate flat triangle are located
on the unit L1-sphere, and the equivalent representations of the derivatives
are derived in a more complicated geometrical fashion. The local quadrature
set is constructed by taking a tensor product of two (presumably Gaussian)
one-dimensional quadrature sets. The number of quadrature points can thus
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be increased easily, so that high accuracy can always be achieved, irrespective
of f .

An entirely different parameterisation is introduced in Bardhan et al.
(2007). It was designed to be applicable to generalised spherical triangles,
where the boundaries are segments of small circles. No mention is made of
its accuracy.

Some general observations

As with the integration over orthodrome segments, several general observa-
tions can be made, despite the fact that the accuracy and the cost obviously
depend heavily on both T and f .

• With increasing N , the estimation will converge more quickly if the
Jacobian doesn’t vary much on Kref .

• In the case of parameterisations via an intermediate flat triangle (sec-
tion A.2.1), small spherical triangles require fewer quadrature points to
achieve a certain accuracy. This is a direct consequence of the previous
point.

• The parameterisation via a triangle on the L1-sphere should not be
used for integration. It is inferior in two ways to the case where the
intermediate triangle has vertices Vi. First, the Jacobian is consider-
ably less smooth (ref. figure A.4). Second, the numerical error due to
the finite machine precision was observed to be greater, especially for
smaller spherical elements.

The method was used in Jarrell and Adams (2011), where high precision
was required. The error could probably have been lowered by placing
the vertices of the intermediate triangle at the Vi.

• As T becomes smaller, the limited precision starts to play a major
factor in the angular parameterisation of section A.2.2. (This is caused
by the divisions by (1−k1).) For large triangles, however, the rounding
error is comparable to that of the parameterisations of section A.2.1,
and the smooth Jacobian effects a fast convergence.

• For a given N , the type of local quadrature set has a great impact on
the accuracy. It has not become clear which choice is best.

For convenience, all computations in this work were performed with a
product quadrature, derived from one-dimensional Gaussian quadrature sets.
This makes it easy to ensure that the final error is dominated by the machine
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precision. Large spherical triangles were parameterised with the angular
mapping of section A.2.2, while the smaller ones were done with the method
of section A.2.1, where the intermediate plane had vertices {Vi}3

i=1.
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