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Abstract
Combined Sewer Overflows (CSOs) are a major source of pollution and urban flooding, 
spilling untreated wastewater directly into water bodies and the surrounding environment. 
If overflows can be predicted sufficiently in advance, then techniques are available for miti-
gation. This paper presents a novel bi-model committee evolutionary artificial neural net-
work (CEANN) designed to forecast water level in a CSO chamber from 15 min to 6 h 
ahead using inputs of past/current CSO level  data, radar rainfall data and forecast  fore-
casted rainfall data. The model is composed of two evolutionary artificial neural network 
(EANN) models. The two models are trained and optimised for wet and dry weather con-
ditions respectively and their results combined into a single response using a non-linear 
weighted averaging approach. An evolutionary strategy algorithm is employed to auto-
matically select the optimal artificial neural network (ANN) structure and parameter set, 
allowing the network to be tailored specifically for different CSO locations and forecast 
horizons without significant human input. The CEANN model was tested and evaluated on 
real level data from 4 CSOs located in Northern England and the results compared to three 
other ANN models. The results demonstrate that the CEANN model is superior in terms 
of accuracy for almost all forecast horizons considered. It is able to accurately forecast the 
dry weather and wet weather level, predicting the timing and magnitude of upcoming spill 
events, thus providing information that is of clear use to a wastewater utility.
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1 Introduction

Combined Sewer Overflows (CSOs) are designed to prevent properties and sewage 
treatment works flooding during heavy rainfall. They operate by diverting excess flow to 
a nearby water body, such as a river, stream or ocean. CSOs are a necessary part of sew-
age infrastructure. However, overflows contain untreated wastewater from residential, 
commercial, and industrial sources and can cause significant pollution in the surround-
ing environment, degrading water quality, threatening public health and causing regula-
tory failures. Predicted changes to rainfall patterns and intensity due to climate change 
and urbanisation present a risk of increasing numbers of overflows in the near future. 
The resilience of wastewater networks against flooding is therefore a growing concern 
(Salerno et al. 2018).

The Urban Wastewater Treatment (England and Wales) Regulations 1994 places a 
duty on the Environment Agency (EA) to ensure that pollution due to CSO overflows 
is limited. The EA operates a consent system that sets out the conditions under which 
spills are permitted. In recent years there has been growing regulatory pressure to pri-
oritise spill reduction and, in particular, to minimise the number of unconsented spills 
which occur. The Event Duration Monitoring (EDM) program implemented by the EA, 
has required utilities to monitor levels at the majority of CSOs in England and Wales 
since 2020 and report on their performance in terms of the number of discharges. Con-
sequently, there has been an increasing interest in developing methods to accurately 
forecast CSO performance in near real-time. By predicting overflows in advance preven-
tative measures can be implemented (e.g. maximizing storage, adjusting set points for 
movable gates and pumping stations) to mitigate negative effects (Joseph-Duran et  al. 
2014). Even if proactive management cannot be implemented the ability to forecast 
overflows is still valuable – for example by enabling utilities to post warnings for spills 
which will affect bathing waters.

Wastewater utilities have traditionally constructed physical models of the sewer 
system. However, these models require detailed information of the sewer system and 
incorporate many parameters, are often difficult to build and calibrate, and are computa-
tionally expensive. Data-driven models such as artificial neural networks (ANNs) have 
become an increasingly popular alternative. Driven by the introduction of the EDM 
project, and in conjunction with decreasing sewer sensor and data storage costs, and 
improved computer processing power water wastewater utilities routinely collect large 
volumes of accurate sewer level data in near real time. This detailed data provides the 
opportunity for real-time data-driven modelling and management of the wastewater sys-
tem. Data-driven models generally have low computational costs and fast computational 
times, which is advantageous when applied to real-time data.

Several ANN models have been successfully applied to CSO level forecasting in 
recent years. Fernando et al. (2007) designed one of the earliest models, a feed-forward, 
back-propagation ANN to forecast overflows 75 min ahead using flow rate and rainfall 
data. The ANN generally performed well, however, the results were heavily depend-
ent on the availability of real-time flow data, which is often not available. Kurth et al. 
(2008) developed a three hidden-layer feed-forward ANN to predict CSO levels 15 min 
ahead using level and rain gauge data. Sumer et al. (2007) designed an ANN to detect 
disruptions in sanitary sewer overflows in real time. Mounce et al. (2014) utilised radar 
rainfall data to predict CSO depth up to 75 min ahead. Zhang et  al. (2018) compared 
the results of four different types of ANNs (a multilayer perceptron, a wavelet neural 
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network, a long short-term memory network, and a gated recurrent unit), designed to 
forecast levels simultaneously in multiple CSOs up to 80 min ahead using a deep-learn-
ing approach.

More generally in wastewater drainage many ANN models have been applied to areas 
such as sewer flow modelling (She and You 2019; Zhang et  al. 2019), urban flooding 
(Berkhahn et al. 2019; Kim and Han 2020) and modelling of sediment transport and accu-
mulation (Al-Ani and Al-Obaidi 2019; Ebtehaj and Bonakdari 2014).

The key deficiencies identified in the above literature models are as follows: (a) Whilst 
the authors used different ANN based models, the majority are based on fixed ANN struc-
tures determined using a trial-and-error approach. As such, these models are rather sub-
jective in nature and time-consuming to build and cannot be easily transferred to differ-
ent CSO sites. It would therefore not be practical for a wastewater utility to develop ANN 
models for an entire wastewater network, containing possibly hundreds of CSO chambers; 
(b) The above modelling approaches do not distinguish between dry and wet weather peri-
ods, hence the trained ANNs tend to accurately predict CSO water levels for more fre-
quent/everyday rainfall events but do not perform so well for rarer extreme rainfall events; 
(c) Prediction accuracy of existing methods is reasonably good but could be still improved, 
as shown in the case study; (d) Existing models provide accurate CSO level forecasts with 
rather short leading times (up to 80 min, according to our best knowledge) which does not 
provide the utility with sufficient advance warning for upcoming overflows.

The methodology proposed here aims to make equivalent predictions up to 6 h ahead, 
thus providing water utilities with additional time to address the problem. The study con-
sists of a Committee Evolutionary Artificial Neural Network (CEANN) model designed 
to forecast the level in a CSO chamber from 15 min to 6 h ahead. The CEANN aims to 
improve on these previous models using two techniques. Firstly, an evolutionary artificial 
neural network (EANN) is utilised, whereby the architecture and parameterisation of an 
ANN is evolved using an Evolutionary Algorithm (EA). Compared to ANNs, EANNs 
significantly reduce the manual effort required to construct the model by a human expert, 
whilst also achieving, and often outperforming, the quality of the results attained. EANNs 
have been used successfully since the 1990s (Yao 1993, 1999) and in the last decade there 
has been significant interest in applying EANNs to hydraulic systems (e.g. Chen and Chang 
2009; Moradi and Dariane 2017). However, to our knowledge, EANNs have not yet been 
applied to CSO level forecasting (and is beneficial for the reason mentioned above).

Secondly, the CEANN model consists of two EANNs, optimised for dry and wet 
weather periods respectively and combined into a single output, with the aim that the com-
bined result is superior to the constituent models. This is employed as previous work by 
Rosin et al. (2018) demonstrated that ANN models often perform poorly when predicting 
CSO levels during heavy rainfall events, especially for long forecast horizons. This is due 
to data bias caused by imbalanced data - wet weather data is significantly underrepresented 
compared to dry weather data. As wastewater utilities desire to use CSO level forecasting 
largely to understand CSO behaviour during heavy rainfall and anticipate spill events in 
advance this is an important issue. The benefit of combining the responses of two EANNs 
is the reduced bias of forecasted CSO levels.

To analyse the performance of the CEANN model it is compared in this study to three 
other ANNs:

 (i) An ANN model with structure and parameter determined via trial-and-error (repre-
senting CSO modelling approaches currently adopted in the literature),

 (ii) A single EANN model applied to both wet and dry weather,
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 (iii) A model utilising wet and dry EANNs combined using a hard switch between the 
models rather than a weighted average.

The rest of the paper is structured as follows: after the introduction the methodologies 
developed for the CEANN and the comparison ANN models are presented. The models are 
applied to case study CSO sites and the results from the different models are compared and 
discussed. Finally, conclusions are presented.

2  Methodology

The CSO prediction methodology in this study is composed of a Committee Evolutionary 
Artificial Neural Network. Individual CEANN models are optimised and trained specifi-
cally for different forecast horizons, to ensure that the models are tailored (and thus pro-
duce the best results) for each lead time. In this study a total of 24 different models have 
been constructed with forecast horizons ranging from 15 min to 6 h ahead at 15-min inter-
vals. The CSO levels for the next 6-h period are thus obtained by running all 24 models in 
parallel.

Different forecast horizons were considered (i) to provide the water utility with as much 
information as possible and (ii) to analyse the change in model performance when predict-
ing at greater forecast lead times and to understand how far ahead the model is capable of 
predicting. Note that the model has a forecast range of 6 h as this is the range of the rainfall 
nowcasts utilised. However, short-range weather forecasts, from 1 to 3 days ahead, are also 
available, although at a lower temporal resolution. Therefore, a model forecasting further 
ahead could be investigated in the future.

The following section describe the methods used to construct the CEANN model, and 
the additional comparison ANN models.

2.1  Artificial Neural Network (ANN) Model

The basic ANN utilised in this study consists of a feed forward ANN with a single hidden-
layer trained using the back-propagation method, with a hyperbolic tangent transfer func-
tion for the neuron in the hidden layer and a linear transfer function for the neuron in the 
output layer. This setup was identified by Romano and Kapelan (2014), who developed an 
ANN model for water demand forecasting, as producing accurate results with fast training 
times.

The specific inputs and structure of the ANN model are selected individually for each 
site the model is applied to, in order to ensure good results. Different methods are used 
to perform this parameter selection process for the various comparison ANN models, 
described in detail in sections 2.1 to 2.4. The inputs to the model consist of antecedent 
CSO level data, antecedent rainfall data, and forecast rainfall data. Feed-forward ANNs 
have no internal memory to store past information and thus cannot process time series data 
satisfactorily. Therefore, a sliding time window approach is employed, whereby past data 
is input to the network using a window of lagged data. The size of these sliding windows 
(i.e. the number of past timesteps of data) are chosen during the selection of the network 
parameters. This is an important process as selecting insufficient data may mean the model 
cannot capture the necessary dynamics of the system, however an overlarge window may 
prolong the learning time and cause unnecessary information to appear as noise.
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When using 15-min data the range of window sizes was set as 1–72 timesteps for the 
level and antecedent rainfall data and 1–24 timesteps for the forecast rainfall data. The 
maximum window size for the level and antecedent rainfall data was determined based on 
the times of concentration found during an analysis of CSO sites from Northern England. 
The maximum size of the forecast data was set at 24 as 6-h forecasts were utilised (i.e. 24 
timesteps of 15-min data). However, future models could utilise longer rainfall forecasts if 
the data were available.

The day of the week and the time of day associated with the forecast horizon are also 
potentially used as inputs to the model (the inclusion/exclusion of these parameters is 
determined during the network parameters selection). The time of day and the day of the 
week are converted into a field representation (i.e. ones and zeros), also called a one-hot 
vector, to provide a format for categorical data that can be easily input to the ANN (this 
is not necessary for the other input variables). These two variables are included as flow in 
sewer pipes display significant hourly and weekday/weekend trends due to varying indus-
trial and residential wastewater production at different times of the day (Butler et al. 1995). 
These trends are most obvious during dry weather as during rainfall events the CSO level 
is affected primarily by precipitation in the surrounding catchment.

The data for each input to the model is normalised between −1 and 1 via Min-Max nor-
malisation, which has been demonstrated to improve the accuracy and efficiency of ANNs 
(Sola and Sevilla 1997).

The number of hidden neurons, the number of training cycles and the coefficient of 
weight decay regularisation of the ANN are also selected during the selection of model 
parameters. The range of values for these variables was set as 1–100, 50–500 and  10−5–  103 
respectively, these values were identified by Romano and Kapelan (2014) as likely to ena-
ble finding an optimal solution for the problem considered. The selection of the number 
of hidden neurons is important as a network with too few hidden neurons may have poor 
accuracy, however an excessive number may decrease the generalisation ability of the 
model due to overfitting. The number of training cycles and the coefficient of weight decay 
regulation are designed to prevent overfitting, by controlling the number of training cycles 
and applying a penalisation coefficient to the weights of the ANN model respectively.

2.2  Evolutionary Algorithm Optimisation

As explained above when developing ANNs the selection of the model architecture and 
inputs is of great importance and can have a significant impact on the model accuracy. 
Different CSOs often exhibit very different behaviours and responses to rainfall events. 
Indeed, even for the same CSO chamber different forecast horizons require different inputs 
and structures to produce optimal results. Consequently, using pre-defined parameters can 
result in poor predictions. However, when forecasting CSO levels on a large scale (e.g., a 
sewer network containing hundreds of CSOs) the selection of parameters and input struc-
ture using manual trial-and-error is not feasible.

Therefore, an EANN model has been employed here. EANNs are a class of ANN where 
evolutionary algorithms (EAs) are used in the model designing and/or training. EAs are a 
class of stochastic search and optimisation techniques inspired by the process of natural 
selection and are designed to perform searches over complex spaces without any substan-
tial human involvement required. The EANN used here employs an evolutionary strategy 
algorithm (Schwefel 1998) to automatically select the optimal (i.e. that yields the best fore-
casting performance) ANN input structure and parameter set for a specific set training data 
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and forecast horizon. The EA methodology is based on the design presented by Romano 
and Kapelan (2014).

During the EA process the network structure and input parameters, described in Sec-
tion 2.1, are initially randomly selected. For each cycle of the algorithm the model predic-
tion error (or ‘fitness’) is computed on the test dataset using the Nash-Sutcliffe efficiency 
coefficient (NSE). The fittest networks are allowed to survive while the weak networks 
are replaced, i.e. ‘survival of the fittest’, thus increasing the overall fitness of the popula-
tion. The surviving networks reproduce by generating copies of their genotypes with the 
addition of changes (or mutations) introduced. These new networks then compete with 
their parents for a place in the next generation. An isotropic Gaussian mutation operator 
is employed here to introduce the mutations. This is a well-known operator which per-
turbs each component independently using a random number from a Gaussian distribution 
with zero mean and constant standard deviation. This operator is advantageous as it is flex-
ible and supports both fine tuning of solutions and searching the domain. The process is 
repeated for a number of generations until a pre-defined termination criterion is satisfied, 
resulting in the selection of the parameter combination which produce the lowest error dur-
ing testing (Benbassat and Sipper 2013).

The parameters used in the EA are as follows: the number of parents per generation and 
the number of children per generation are set as 10 and 20 respectively. The termination 
criterion is defined as the number of fitness function evaluations run, i.e. the number of 
cycles of the EA, and is set as 210. The probability of a parameter being perturbed is set 
as 0.6. The standard deviation (σ) is set as 0.75, this parameter determines the strength of 
the introduced mutation - a large value increases the exploration of the search space whilst 
a small value promotes exploitation of the parent information. Lastly the selection opera-
tor is set as ‘+’, meaning both the parent and child networks are included in the selection 
pool evaluated to pick the fittest networks, rather than only including the newly generated 
child networks. The range of value for these parameters were identified as producing good 
results by Romano and Kapelan (2014).

2.3  Committee EANN Model

A committee approach is utilised here to overcome bias caused by imbalanced data. A 
committee neural network, also known as a committee machine, employs the principle of 
‘divide and conquer’; rather than using only one ANN the results from multiple networks 
are combined into a single output, with the aim that the overall result is superior and more 
robust than any single network acting alone (Tadeusiewicz 1995). Using this approach 
committee machines can produce significantly improved results with little extra computa-
tional effort.

Class imbalance, where the number of training samples of one class are significantly 
fewer than other classes, is a common but serious problem in machine learning. As ANNs, 
and most other machine-learning algorithms, aim to optimize overall classification accu-
racy, the learning algorithm tends to be biased towards the majority class and so the minor-
ity class is misclassified. In the case of CSO modelling dry weather dominates and rain-
fall events are relatively infrequent. A study of radar rainfall data from Northern England 
found that approximately 98% consisted of rainfall under 1 mm/h. EANN level forecasting 
models generally produce very accurate results during dry and light rainfall periods, but 
poor results during heavy rainfall events, especially at long forecast horizons.
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The committee machine used here is a bi-model CEANN, consisting of two EANN 
models constructed for dry and wet weather conditions respectively. The model input data 
is normalised between −1 and 1 separately for the dry weather and wet weather training 
sets. This ensures the data is appropriately normalised, despite the large dynamic range that 
occurs across wet and dry weather periods. Committee ANNs generally combine multiple 
different models. Here only two networks are used, as the main purpose of the committee 
is to effectively forecast both dry and wet data. However, in the future additional networks 
could be incorporated if this were demonstrated to improve the performance.

There are a number of other techniques available to overcome imbalanced data, such as 
over or under sampling, penalised models and synthetic data generation (He and Ma 2013). 
However, these approaches become more complex when working with time-series data as 
the time dependency among the observed values must be considered. The CEANN pro-
vides a straightforward, easy-to-use method.

There is no universal definition to categorise dry and wet weather. A binary threshold is 
used here to classify the data based on cumulative rainfall over a past number of timesteps. 
The threshold is defined as

where R is rainfall intensity, θ is the wet weather threshold and n is the number of past 
timesteps considered. θ and n are here set as 0.5 mm and 10 respectively. These values 
were determined by analysing historical CSO level and rainfall data and identifying for 
which values rainfall during dry weather had a negligible effect on CSO level.

There are several different methods available for combining the individual EANN model 
outputs. The most common approach is simple averaging which assigns equal weights to 
all the component models. Other methods include weighted averaging where the contribu-
tion of each model is weighted according to its estimated performance, and majority voting 
where the utilised result is the one chosen by the most ANNs. For this study, the aim of 
the model blending is to use the most appropriate model for the current rainfall condi-
tions. Therefore, a weighted averaging approach has been selected, dependant on the rain-
fall intensity of the current timestep. The models are combined using a non-linear weighted 
average based on the sigmoid function:

where xt is the cumulative rainfall over a past number of timesteps, Lt is the overall ensem-
ble output, Wt is the output from the wet-weather model and Dt is the output from the dry-
weather model, at time t.

A sigmoid function was selected due to its characteristic ‘S’-shaped curve which exists 
continuously between 0 and 1, providing a continuous, or ‘soft’, transition between the two 
EANNs. During dry weather (i.e. when S = 0) only the dry-weather model is utilised, dur-
ing heavy rainfall (i.e. when S = 1) only the wet-weather model is utilised, and for all other 
times a combination of the two models is used, weighted to the rainfall intensity.

(1)Zi =
∑n

t=0
Ri−t

(2)
{

Wet if Zi > 𝜃

Dry otherwise

(3)St =
ext

1+ext

(4)Lt = StWt +
(

1 − St
)

Dt
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2.4  Comparison of ANN Models

To assess the improvements obtained by using a Committee EANN model the results 
were compared against the following three ANN models:

1. Trial-and-error ANN

ANN models were constructed which used manual trial-and-error to select the 
model inputs and parameters, in contrast to the EANN models which applied an EA. 
This type of model is used as representative of existing literature models and hence is a 
reference point for comparison. Selection of the network structure and parameters was 
accomplished by constructing models with different configurations of parameters and 
input structures. The ANN with the best generalisation capacity was selected by iden-
tifying, for each parameter, which value produced the best performance across all 24 
forecast horizons (evaluated using the NSE). Overall, 15 different ANN configurations 
were trained and tested for each of the 24 forecast horizons, i.e. a total of 360 models 
(the results are not shown here due to space restrictions). This was a time-consuming, 
labour-intensive process, however, it ultimately considered only a small number of all 
possible parameter configurations. This process was performed separately for each CSO 
case study site considered, rather than constructing a single set of general parameters 
for all sites, to ensure good results.

2 All-weather EANN

Single EANN models were trained using the whole dataset, i.e. not optimised for wet 
and dry weather conditions by using separate wet and dry weather datasets. The models 
were constructed separately for each forecast horizon and case study site.

3 Combined Wet/Dry Weather EANN

As with the committee EANN, separate wet and dry EANN models were constructed. 
However, rather than combining the results using a weighted average (as utilised by the 
CEANN) a discontinuous switching method was used, whereby values for wet timesteps 
are obtained from the wet model only and dry timesteps from the dry model.

The threshold for designating timesteps as wet or dry is the same as that given above. 
Unlike the CEANN, where the sigmoid function provides a continuous transition between 
the two EANNs, this model uses a discontinuous transition, switching from one model to 
the other. It is possible, therefore, that a small change in output from the two input models 
could produce a large change in the overall output.

The performance of the different ANN models are evaluated using the following perfor-
mance metrics: the Nash-Sutcliffe Efficiency Index (NSE), the Mean Absolute Percentage 
Error (MAPE), the Mean Square Error (MSE) and the Structural Similarity Index (SSIM). 
The SSIM, also known as the Wang-Bovik index, is a metric originally developed to com-
pare the quality of digital images and videos to quantify image degradation caused by data 
processing (Wang et  al. 2004). The index measures how similar the processed image is 
from a reference (i.e. perfect) image with respect to the structure within a convolution win-
dow. Unlike traditional metrics, the SSIM is designed to capture the perceived structural 
variation rather than the simple elementwise error.
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For images X and Y (computed as matrices of pixels) the SSIM between two windows x 
and y of common size N × N is calculated as

where L is the dynamic range of the image and k1 and k2 are arbitrarily taken as 0.01 
and 0.03 respectively and are used to ensure that near-zero denominators do not cause 
instability.

The mean SSIM for the global image similarity is then given as

where the mean SSIM = 1 if the images are identical.
Although the SSIM was developed for image analysis, it can be applied to time-series 

data by considering the signal as an N × 1-pixel image and using a one-dimensional convo-
lution window over the timeseries. Using this approach SSIM has been used successfully 
in disciplines such as biological neurogram signals (Hines and Harte 2012), speech signals 
(Hines et al. 2012) and aeroacoustics (Breakey and Meskell 2013).

The metric has not, to our knowledge, been applied to hydraulic modelling. However, 
Mo et al. (2013) stated that the SSIM could have a novel application potential in hydrology. 
Evaluating the applicability of four non-traditional similarity metrics for hydrometeorology 
data, they concluded that the SSIM has an advantage as it considers the pattern correlation 
between two compared objects. In this study the SSIM is calculated by taking x and y as 
the observed and forecast level and L as the range of the CSO level.

3  Case Study

3.1  Description

To evaluate the performance of the methodology all four ANN models were applied to real 
data from four case study sites, located in Northern England. The sites were selected to 
represent the characteristics of different types of CSOs; the CSO chambers are of different 
sizes and situated in both rural and urban regions.

Time-series level data (mm) was obtained using ultrasonic depth monitors installed in 
the CSO chambers, measured at a uniform resolution of 2  min. Observed radar rainfall 
intensity data (mm/h, 5-min temporal resolution and 1 × 1 km spatial resolution) and fore-
cast rainfall intensity data (mm/h, 15-min temporal resolution and 2 × 2 km spatial resolu-
tion) were obtained from the UK Met Office, with forecast rainfall lead times from 15 min 
to 6 h. During data pre-processing all the datasets were interpolated to a uniform resolution 
of 15 min using linear interpolation. Linear interpolation was selected as it is fast and easy 
to use, and has been demonstrated to produce good results when imputing time-series data 
(Norazian et al. 2008).

Data was available from April 2016 to October 2018. 50% of data (April 2016 – January 
2017) was used for model training and 25% (January 2017 – June 2017) to test the trained 

(5)SSIM(x, y) =
(2μxμy+c1)(2�xy+c2)

(

μ2
x
+μ2

y
+c1

)(

�2
x
+�2

y
+c2

)

(6)c1 =
(

k1L
)2
c2 =

(

k2L
)2

(7)mean SSIM(X, Y) =
1

n

∑n

j=1
SSIM(xj, yj)
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models. The remaining 25% of data (June 2018 to October 2018) was then used to validate 
the models on unseen data in a simulated online fashion, i.e. as the models would operate 
in real-time. It was ensured that all the data sets contained a representative amount of wet 
and dry periods. All the results presented in the following section are given for the valida-
tion datasets only.

3.2  Results

Figure 1(a) presents the NSE, MSE, MAPE and mean SSIM performance index for CSO 
site 1. Each point on the graph represents a model with a different forecast horizon. The 
NSE for the other three sites are presented in Fig. 1(b). The full results are shown for one 
site only due to space limitations, however, each case study showed similar outcomes – fac-
tors such as catchment size and type did not appear to affect the models’ performances.

As can be seen, all the metrics demonstrate that the CEANN model produces the best 
results for almost all horizons for all sites. In addition, the Combined Wet/Dry EANN con-
sistently outperforms the other two models, and the all-weather EANN somewhat outper-
forms the trial-and-error model. The improvements gained by using the CEAAN model are 
most significant when predicting further ahead.

Figure 2 displays an example of the level forecasts for each model 15 min and 3 h ahead 
during the validation period for CSO site 1 during: (i) dry weather and (ii) a rainfall event 
which causes an overflow. All four models accurately forecast the level 15 min ahead dur-
ing both dry and wet weather. When forecasting 3 h ahead the improvements attained by 
optimising the separate wet and dry EANN models are clearly demonstrated. During dry 
weather the trial-and-error ANN and all-weather EANN are unable to predict the diurnal 
level pattern, forecasting an almost straight line. During the rainfall event the two mod-
els forecast the increase in level, however both significantly underpredict the extent of the 
increase and so do not predict the spill (i.e. the forecast level is under the spill level of 
the chamber). Analysing the entire validation dataset for all the case study sites this is a 
frequent occurrence. In contrast, the Combined Wet/Dry EANN model and the CEANN 
both accurately forecast the level 3 h ahead during dry and wet weather, predicting both 
the timing and magnitude of the spill - information that would be of use to a utility in real 
time. The 3 h ahead CEANN prediction is smooth during dry periods and noisier during 
wet periods – this is due to the noisy nature of the rainfall data (the effect is also present in 
forecasts with a higher lead time (i.e. 3.25 to 6 h horizons)).

It is evident therefore that the use of separate EANN models to overcome the issues 
caused by the imbalance between the minority wet and majority dry weather data is effec-
tive. Furthermore, combining the models using a weighted average (CEANN) is shown to 
be superior to using a discontinuous switch approach, although this method still produces 
good results. Although the accuracy of the CEANN model decreases when predicting fur-
ther ahead, the model still produces reasonably good results up to 6  h ahead, based on 
the case study results. Thus, if utilised by a utility in real time the model would have the 
capability to forecast CSO levels during intense precipitation and provide information on 
possible spills, provided the rainfall events are similar in nature to those used for the model 
training. This can be ensured by the training approach and the selection of suitable training 
and validation time periods.

Table  1 presents the parameters selected for CSO case study site 1 by the EA for the 
all-weather EANN model, and the dry and wet EANNs utilised by the Combined Wet/Dry 
EANN model and the CEANN. Selected forecast horizons are presented only due to space 
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limitations. The selected parameters demonstrate that the forecast horizon and model type 
considerably influence the selection process. The window of antecedent rainfall and forecast 
rainfall data generally increases for higher forecast horizons for all models. It is assumed that 
these horizons are more difficult to predict and so additional data is beneficial. The time of day 
is utilised only by the all-weather and dry-weather model for higher forecast horizons. Under 
normal dry weather conditions water levels in the sewer are strongly correlated to the time 
of day, whereas during wet weather the level is influenced primarily by rainfall. The day of 
the week, in contrast, is utilised only by the wet-weather model during high forecast horizons 
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Fig. 1  a Nash-Sutcliffe Index for Case Study Sites 2, 3 & 4, and b Comparison of model performance for 
different ANN models for CSO site 1
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– presumably again because this is a difficult timestep to predict and so requires additional 
information. No clear pattern was evident regarding the selection of the number of hidden 
neurons, the number of training cycles or the coefficient of weight decay regularisation and so 
are not presented.

A similar pattern was observed for all the case study sites. However, the actual values 
selected for each model varied considerably. Therefore, using a predetermined set of param-
eters based on these results, rather than using an EA to evolve the optimal parameters for a 
given location, will likely produce inferior results.

Fig. 2  Comparison of model forecasts for different ANN models during wet and dry weather for CSO site 
1 15 min and 3 h ahead
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4  Discussion

The CEANN model presented has been demonstrated to have the potential to be utilised by 
wastewater utilities to model CSO levels in near real time. Unlike physically based models 
commonly used by utilities (e.g., Infoworks), it does not require a physical understanding of 
the sewer system and is less expensive to build, calibrate and maintain. It is therefore antici-
pated that the system could be applied widely across an entire network, providing a real-time 
indication of sewer behaviour and enabling more informed and proactive decision-making. 
This aligns with the current trend in urban wastewater management of moving towards a more 
proactive ‘smart’ approach.

There are several uncertainties inherent in the model. Forecast rainfall data decreases in 
accuracy for higher forecast horizons – in turn negatively effecting the model performance. 
The methodology also relies on accurate and correctly calibrated CSO level data. However, 
issues such as sensor drift and logger malfunctions can cause data anomalies. Automated data 
pre-processing is performed to identify and remove any erroneous data; however, anomalies 
can be challenging to detect, particularly gradual changes due to sensor drift.

The model also relies on several assumptions. Firstly, it is assumed that the future response 
of the sewer is similar to the historic data used to train the model. However, the behaviour of 
the system may change over time for many reasons, including planned changes to the sewer, 
the construction of new buildings connected to the network, and unintended issues such as 
blockages. This is a problem known as concept drift (Widmer and Kubat 1996), whereby the 
statistical properties of the target variable change over time in unforeseen ways. It is therefore 
recommended that the model is retrained periodically to accommodate any changes. Addition-
ally, no work has yet been conducted to determine if seasonal variations need to be accounted 
for when training the model.

Future work will focus on validating the methodology on additional CSO sites and ana-
lysing the ability of the model to predict upcoming spills in a timely and reliable manner. 
The next step will then be the creation of a user-friendly online support tool, which can be 
integrated easily with the current working practices and technology utilised by wastewater 
utilities. Work should be conducted to quantify the costs and benefits of deploying the tool, to 
investigate the ability of the methodology to be applied on a large scale, and to understand the 
types of information and features wastewater utility personnel would find of use.

The model has been designed with a maximum forecast horizon of 6 h, as 6 h ahead rainfall 
nowcasts were utilised. However, future work could investigate if the model could predict fur-
ther ahead if nowcasts with a higher lead time were available. The methodology also has the 
potential to be developed further by including additional EANN models as part of the com-
mittee machine. For example, multiple EANN models optimised for different rainfall event 
severities. Different types of ANN model could also be explored, for example recurrent neural 
networks. Additionally, as sensor technology becomes cheaper utilities may begin to install 
flow level monitors in addition to level sensors, thus there is the potential to apply the CEANN 
model to flow forecasting, providing the wastewater utility with further valuable information.

5  Conclusions

A Committee EANN (i.e. CEANN) model has been proposed here to forecast water level 
in a CSO chamber. The committee machine is composed of two feed-forward single hidden 
layer EANN models optimised for wet and dry weather data respectively and combined 
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using a non-linear weighted average approach. An evolutionary strategy algorithm is used 
to automatically select the ANN structure and parameter set.

The CEANN methodology was tested on four real case study CSO sites and compared 
with an ANN model developed manually through trial and error (i.e. Trail & Error ANN, 
approach adopted in existing literature), a single EANN model designed for all-weather 
conditions (i.e. All Weather EANN), and a joint wet and dry EANN model combined using 
a discontinuous transition (i.e. Combined Wet/Dry EANN model). The results obtained 
lead to the following conclusions:

1. The CEANN model produces more accurate CSO level predictions than the other three 
models. This is true for all forecast horizons (up to 6 h) clearly demonstrating the supe-
riority of the CEANN methodology, especially over the Trail & Error ANN often used 
in the existing literature.

2. The CEANN and the Combined Wet/Dry EANN model accurately forecast the dry 
weather and wet weather level, predicting the timing and magnitude of, thus providing 
information that is of clear use to a wastewater utility in near real time. The same can-
not be said for the other two models (Trial & Error ANN and All Weather EANN) that 
continually underestimate the CSO level during periods of heavy rainfall and hence 
cannot predict overflows.

3. The CEANN methodology is generic and thus requires minimal human effort to design 
and can automatically be applied to different catchments and forecast horizons. It is envi-
sioned that the model could be used beneficially by utilities to model CSO levels in the 
wastewater network in near real-time and provide alerts for upcoming spills - enabling 
better decision making and proactive management of overflow events.
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