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Abstract—This paper looks into a new direction in video content
analysis — the representation and modeling of affective video con-
tent. The affective content of a given video clip can be defined as
the intensity and type of feeling or emotion (both are referred to
as affect) that are expected to arise in the user while watching that
clip. The availability of methodologies for automatically extracting
this type of video content will extend the current scope of possibil-
ities for video indexing and retrieval. For instance, we will be able
to search for the funniest or the most thrilling parts of a movie,
or the most exciting events of a sport program. Furthermore, as
the user may want to select a movie not only based on its genre,
cast, director and story content, but also on its prevailing mood, the
affective content analysis is also likely to contribute to enhancing
the quality of personalizing the video delivery to the user. We pro-
pose in this paper a computational framework for affective video
content representation and modeling. This framework is based on
the dimensional approach to affect that is known from the field of
psychophysiology. According to this approach, the affective video
content can be represented as a set of points in the two-dimen-
sional (2-D) emotion space that is characterized by the dimensions
of arousal (intensity of affect) and valence (type of affect). We map
the affective video content onto the 2-D emotion space by using the
models that link the arousal and valence dimensions to low-level
features extracted from video data. This results in the arousal and
valence time curves that, either considered separately or combined
into the so-called affect curve, are introduced as reliable represen-
tations of expected transitions from one feeling to another along a
video, as perceived by a viewer.

Index Terms—Affective video content analysis, video abstrac-
tion, video content modeling, video content representation, video
highlights extraction.

1. INTRODUCTION

IGITAL VIDEO collections are growing rapidly in both

the professional and consumer environment, and are char-
acterized by a steadily increasing capacity and content variety.
Since searching manually through these collections is tedious
and time-consuming, transferring the search and retrieval tasks
to automated systems becomes crucial for being able to effi-
ciently handle stored video volumes. The development of such
systems is based on the algorithms for video content analysis.
These algorithms are built around the models bridging the gap
between the syntax of the digital video data stream (captured
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Fig. 1. Overview of two different levels of video content perception, analysis,
and retrieval.

in the so-called low-level features) and the semantic meaning
of that stream. Using the information that is extracted from a
video by these algorithms, digital video data can be indexed,
classified, filtered or organized automatically based on semantic
criteria.

The semantic meaning of a given video clip is not unique,
as the content of this clip can be perceived in many different
ways. Clearly, each way of perceiving video content requires a
particular type of information in order to index, classify, filter
or organize the video collection correspondingly. As depicted
in Fig. 1, we differentiate between two basic levels of video
content perception, hence two different levels of analyzing and
retrieving video content.

* Cognitive level.
* Affective level.

An algorithm analyzing a video at cognitive level aims at ex-
tracting information that describes the “facts,” e.g., the struc-
ture of the story, the composition of a scene, and the objects and
people captured by the camera. For example, these facts can in-
clude the labels such as “a panorama of San Francisco,” an “out-
door” or “indoor” scene, a broadcast news report on “Topic X,”
a “dialog between person A and person B,” or the “fast breaks,”
“steals,” and “scores” of a basketball match. Most of the world-
wide research efforts in the field of video content analysis have
been invested so far in raising the efficiency and reliability of
analyzing the video content at cognitive level. Good overviews
of, and references to the results of these efforts can be found in
[71, [13], and [21].

Little research effort has been invested so far in extracting the
information that describes the affective content of a video. This
content can be defined as the amount and type of affect (feeling
or emotion) that are contained in video and expected to arise in
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users while watching that video. This expected feeling or emo-
tion can be seen as the one that is either intended to be commu-
nicated toward the audience (from video program directors), or
that is likely to be elicited from majority of the audience who
are watching the particular video clip. To illustrate the former,
we use the quote of I. Maitland [25], the Emmy-Award-winning
director and editor: “It is the filmmaker’s job to create moods in
such a realistic manner that the audience will experience those
same emotions enacted on the screen, and thus feel part of the
experience.” The expected affective response of a broad audi-
ence can best be illustrated by the example of a sport broadcast:
A score (goal) in a soccer match can generally be considered a
highly exciting event, just like the finish of a swimming compe-
tition or the sprint over the last 50 m in a running contest.

At this stage it is worthwhile emphasizing that the affective
content of a video does not necessarily correspond to the affec-
tive response of a particular user to this content. In other words,
the expected feeling or emotion as described above should not
be mixed up with the actual feeling or emotion that is evoked in
a user while watching video. The expected affective response
can be considered objective, as it results from the actions of
the movie director, or reflects the more-or-less unanimous re-
sponse of a general audience to a given stimulus. Opposed to
this, the perceived feeling or emotion is highly subjective and
context-dependent. Therefore, it may be very different from the
expected one and may also vary from one individual to another.
For instance, the same soccer television broadcast may make
the winning team’s fans happy, the losing fans sad, and elicit no
emotions at all from an audience that is not interested in soccer.
The relation between the expected and the subjective affective
responses (e.g., marking a horror movie with the label “funny”
for those people who always laugh while watching such movies)
and the information about the context (e.g., winning or losing
soccer fan) can be taken into account, for instance, by gener-
ating the profile of a particular user. This profile can then be
used to map the expected affective response to a given stimulus
onto the user-specific affective response to that stimulus.

We propose in this paper a computational framework for af-
fective video content representation and modeling. The repre-
sentation part of the framework consists of a set of curves that
reliably depict the expected transitions from one feeling to an-
other along a video, as elicited from a general user. The mod-
eling part addresses the problem of computing the values of the
content representation curves on the basis of low-level features
extracted from video.

This paper is organized as follows. In Section II, we discuss
the importance of extending the research in the field of video
content analysis from the cognitive to the affective level, which
allows for a number of new or enhanced video indexing and
retrieval applications. In Section III we elaborate on the dimen-
sional approach to affect that is known from psychophysiology
and that provides the fundamentals of the proposed framework.
The detailed framework is then presented in Section IV (repre-
sentation part) and Section V (modeling part), together with the
validation using real video program data. Conclusions and rec-
ommendations for future research are given in Section VI.
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II. WHY AFFECTIVE VIDEO CONTENT ANALYSIS?
A. Personalized Video Delivery

In view of the rapidly growing technological awareness of
the average user, the availability of automated systems that can
optimally prepare data for an easy access by the user becomes
crucial for the commercial success of consumer-oriented mul-
timedia databases. The minimum expected capabilities of such
systems will definitely evolve beyond the pure automation of
retrieval processes: an average user will require more and more
from his electronic infrastructure at home. In the particular case
of video storage systems, this “more” can directly be interpreted
as personalized video delivery. Since video storage system at
home will soon become a necessary buffer for the hundreds of
television channels reaching one’s home, the system module
handling the stored video data will increasingly be expected to
take into account the preferences of the user and to filter and
organize the stored content accordingly. The systems currently
available for personalized video delivery usually filter the pro-
grams on the basis of information like, in the case of a movie,
the genre, cast, director and story (script) content. As the user
preferences in this case are also largely determined by the pre-
vailing mood of a movie, then any information regarding this
mood (obtainable by analyzing the types and intensities of feel-
ings or emotions along a video) is likely to improve the quality
of personalized video delivery.

B. Video Indexing Using Affective Labels

The availability of methods for automatically extracting the
affective video content will extend the current scope of possi-
bilities for video indexing and retrieval. The evidence reported
by Picard [25] is that finding photographs having a particular
mood was the most frequent request of advertising customers in
a study of image retrieval made with Kodak Picture Exchange
[27]. One can easily extend this result to video collections as
well: an average user will often search for the “funniest,” “most
sentimental,” or “most thrilling” fragments of a movie, as well

as for the “most exciting” segments of a sport event.

C. Video Highlighting

Although the highlights generally stand for the most inter-
esting parts of a video, the definition of what is “interesting”
may vary widely across video genres and for different applica-
tions. For instance, while a highlight of a news program may
be determined by the novelty and impact of the news (e.g.,
“breaking news,” “headline news”), the criteria for highlight ex-
traction from a home video are rather content-dependent, like
“where my baby walked for the first time.” The ability to an-
alyze video at affective level will broaden the possibilities for
highlights extraction in a number of application contexts, such
as automated movie trailer generation and sport broadcast sum-
marization.

A movie trailer is a concatenation of movie excerpts that last
only for several tens of seconds but are capable of commanding
the attention of a large number of potential cinema goers and
video on-demand users. Analyzing a movie at affective level
can provide valuable clues about which parts of the movie are
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most suitable for being an element of the trailer. This is because
emotion plays a primary role when processing mediated stimuli
[9]. The emotion (affective content) influences the attention of a
user and his or her evaluation and memory for the facts (cogni-
tive content). Consequently, the perception of the affective con-
tent interferes with the perception of the cognitive content and
influences a user’s reactions to the cognitive content, such as
liking or not-liking, enjoyment and memory. Since memory is
the most important factor when creating a trailer, it is worthy
to notice that memory for highly emotional and, in particular,
highly arousing video fragments has been proven to last longer
than the memory for less-emotional video clips [16], [17]. If the
information on the affective video content is available, creation
of movie trailers can be performed fully automatically. Also,
the trailers can be generated remotely at a user’s home, for each
movie downloaded by the home digital video storage system.

Previous approaches to automated highlights extraction
in sport video were usually based on the development of
domain-specific models for predefined events (e.g., goals in
soccer, home runs in baseball, fast breaks and steals in basket-
ball, etc.) that are supposed to be interpreted by the users as
highlights [3], [15], [22]. The need for event modeling not only
makes the highlight extraction technically and semantically a
complex task in many broadcasts, but it also requires the devel-
opment of a separate highlights-detecting algorithm for each
particular sport program genre. Since it is realistic to assume
that each highlight event (e.g., goal, touchdown, home run,
the finals of a swimming competition, and the last 50 meters
in a running contest) induces a steady increase in a user’s ex-
citement, an alternative to the domain-specific approach could
be to search for highlights in those video segments that excite
the users most. In this way, generic methods for highlights
extraction could be developed that are independent of the type
of events appearing in a particular sports program genre and
the differences in event realization and coverage.

III. DIMENSIONAL APPROACH TO AFFECT

As studied by Bradley [5], Lang et al. [19], Osgood et al. [24],
Russel and Mehrabian [28], affect has three basic underlying
dimensions.

e Valence (V).
e Arousal (A).
* Control (Dominance) (C).

Valence is typically characterized as a continuous range of affec-
tive responses or states extending from pleasant or “positive” to
unpleasant or “negative” [8], while arousal is characterized by
affective states ranging on a continuous scale from energized,
excited and alert to calm, drowsy or peaceful. We can also say
that arousal stands for the “intensity” of emotion, while valence
can be related to the “type” of emotion. The third dimension
— control (dominance) — is particularly useful in distinguishing
among emotional states having similar arousal and valence (e.g.,
differentiating between “grief” and “rage”) and typically ranges
from “no control” to “full control”. Consequently, the entire
scope of human emotions can be represented as a set of points
in the three-dimensional (3-D) VAC coordinate space.

Arousal

0

Fig. 2. Illustration of the 3-D emotion space (from Dietz and Lang [9]).

While we could tend to assume that the points corresponding
to different affective states are equally likely to be found any-
where in the three-dimensional VAC coordinate space, psycho-
physiological experiments show that only certain areas of this
space are actually relevant. These experiments typically include
measurements of affective responses of a large group of subjects
to calibrated audio-visual stimuli collected in the International
Affective Picture System (IAPS, Lang et al. [20]) and the Inter-
national Affective Digitized Sounds system (IADS, Bradley and
Lang [6]). Subjects’ affective responses to these stimuli can be
quantified either by evaluating their own reports, e.g., by using
the Self-Assessment Manikin ([18]) or by measuring physio-
logical functions that are considered related to particular affect
dimensions. For example, heart rate reliably indexes valence,
while skin conductance is associated with arousal. It was found
that the heart rate accelerates as a reaction to pleasant stimuli,
while unpleasant stimuli cause the heart rate to slow down [8],
[10], [12]. Also, an increase in arousal causes the sweat glands
to become active and the skin conductance responses larger and
more frequent [8], [14]. While IAPS and IADS are specially
created to evoke a wide range of emotions with their audio-vi-
sual content, the three-dimensional surface circumventing the
affective responses after their mapping onto the corresponding
points in the 3-D VAC coordinate system is roughly parabolic.
An idea about the shape of the surface can be obtained from
the illustration in Fig. 2. The parabolic shape becomes logical
if we realize that there are relatively few or even no stimuli that
would cause an emotional state characterized by, for instance,
high arousal and neutral valence, or high valence accompanied
by low arousal [9].

The dimensional approach to representing emotion as de-
scribed above can play an important role in the development
of “affective” agents that serve as mediators between the com-
puter and user, and involve the user in an interaction with the
computer in the same way as he/she interacts with other hu-
mans. Since human-to-human interaction is strongly determined
by emotions, an affective agent is able to sense, synthesize, and
express emotions. For example, Dietz and Lang [9] use the par-
abolic surface from Fig. 2 as the basis for assigning a tempera-
ment, mood and emotion to an affective agent, thus defining the
“personality” of that agent. The temperament is a fixed point in
the space that defines the “at rest” state of the agent (its rudimen-
tary personality). While the temperament is static, the points
corresponding to the mood and emotion of the agent can move
freely within the space. The position of the emotion point gives

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 9, 2009 at 05:48 from IEEE Xplore. Restrictions apply.



146

Arolised

-

c

] e
© [
2 73
Q QO
5 2

qum

Fig. 3. Illustration of the 2-D emotion space (from Dietz and Lang [9]).
rise to the expressions of the agent and determines its current
affective state. Further, the emotion point gravitates toward the
position of the mood that, again, moves through the space rel-
atively slowly, is mainly pulled by emotional events and gravi-
tates toward the position of the temperament. The dynamics of
the system is therefore influenced by both the agent’s current
affective state and its temperament.

IV. AFFECTIVE VIDEO CONTENT REPRESENTATION
A. Two-Dimensional (2-D) Emotion Space

As can be seen from Fig. 2, the effect of the control dimen-
sion becomes visible only at points with distinctly high abso-
lute valence values. This effect is also quite small, mainly due
to a rather narrow range of values belonging to this dimension.
Consequently, it can be said that the control dimension plays
only a limited role in characterizing various emotional states.
As a matter of fact, Greenwald et al. [12] have shown that va-
lence and arousal account for most of the independent variance
in emotional responses. This is especially true for the problem
to be addressed in this paper — the extraction of the affective
content from a video. Numerous studies of human emotional
responses to media have shown that “emotion elicited by pic-
tures, television, radio, computers, and sounds can be mapped
onto an emotion space created by the arousal and valence axes”
[9]. For this reason, we neglect the control dimension and con-
sider the arousal and valence dimensions only. Instead of the
three-dimensional surface introduced in the previous section,
the relevant emotion space for the purpose of affective video
content analysis is reduced to the projection of this surface onto
the arousal-valence plane. Fig. 3 shows an illustration of the re-
sulting 2-D emotion space. The parabolic contour is generated to
circumvent the scatter plot of affective responses with respect to
arousal and valence only, which were collected using the IAPS
and TADS stimuli. It is expected that the affective states ex-
tracted from a video can be represented as the points within this
contour.

B. Arousal, Valence, and Affect Curve

By computing the arousal and valence values along a video
the arousal and valence time curves can be obtained. We intro-
duce these curves, either considered separately or combined into
the so-called affect curve, as suitable representations of the af-
fective content of a video in view of the applications described
in Section II.
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The arousal time curve indicates how the intensity of the
emotional load changes along a video, and depicts the expected
changes in user’s excitement while watching that video. In this
sense, the arousal curve is particularly suitable for locating the
“exciting” video segments. On the basis of the arousal time
curve we can generate a video abstract containing the highlights
in a desired length. Namely, given the maximum abstract length
N in frames, a horizontal line can be drawn cutting off the peaks
of the curve in such a way that the number of frames covered by
the peaks is not larger than V. This is illustrated in Fig. 4(a).

The valence time curve depicts the state changes in the type
of feelings or emotions contained in a video over the time. As
such, this curve mimics the expected changes of “moods” of the
user while watching a video. Using the valence time curve we
can also determine the “positive” and “negative” video segments
with respect to the expected type of feeling that is evoked in the
user during these segments. This information can serve to match
the video to personal preferences of the user, but also to auto-
matically perform “censorship” tasks, that is, to remove all seg-
ments from a video that are “too negative” for certain groups of
the audience. As illustrated in Fig. 4(b), such segments may be
searched among those for which the valence curve reaches local
minima. The arousal and valence time curves can be combined
into the affect curve. This curve is composed of the value pairs
of the arousal and valence time curves that are taken per time
stamp of the video and mapped onto the corresponding points
of the 2-D emotion space [Fig. 4(c)].

The affect curve can be seen as the most complete repre-
sentation of the affective content of a video, which can be ob-
tained automatically. This curve can be interpreted in various
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Fig. 5. TIllustration of the possibility for video content indexing and retrieval
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ways and used for numerous applications related to video con-
tent representation and retrieval at the affective level. For in-
stance, assuming that the affect curve has already been com-
puted for a given video, an arbitrary temporal segment of that
video can automatically be indexed with respect to the affective
states through which the corresponding part of the affect curve
passes. Indexes can be provided in the form of labels that are
assigned a priori to different regions of the 2-D emotion space,
as illustrated in Fig. 5. Also, the area of the 2-D emotion space
in which the curve traverses most of the time corresponds to the
dominant affective state (‘“prevailing mood”) of a video. This
can be highly useful for automatically classifying a video into
different affective genres. Further, the affect curve may directly
serve as a criterion for filtering the incoming videos according
to a user’s preferences. Namely, an affect curve representing
a user’s preferences can be obtained by simply combining the
affect curves of all programs that the user has selected in the
past (in the learning phase of the system). Filtering an incoming
video according to this user’s preferences is then nothing more
than matching the affect curve of the incoming video with the
affect curve describing the user’s preferences.

V. AFFECTIVE VIDEO CONTENT MODELING

In order to obtain the affective content representation as de-
scribed in the previous section, models need to be developed
for the arousal and valence time curve. These models fulfill the
tasks of deriving arousal and valence values from the values
of low-level features computed in a video. In Section V-A, we
introduce the basic criteria that need to be taken into account
during the model development. Then, in Section V-B, we elab-
orate on the possibilities for establishing relations between the
affect dimensions and low-level features. Finally, we propose
models for the arousal and valence time curve and experiment
with these models on a number of video excerpts from movies
and soccer television broadcasts.

A. Criteria for Developing Affect Models

As arousal and valence are psychological categories, their
models need to be psychologically justifiable. To achieve this,
we introduce the following three criteria that a model for the
arousal, valence or affect curve should satisfy.

¢ Comparability.

» Compatibility.

* Smoothness.
The first criterion (Comparability) ensures that the values of
the arousal, valence and the resulting affect curve obtained in
different videos for similar types of events are comparable.
This criterion obviously imposes normalization and scaling
requirements when computing the time curves. The second
criterion (Compatibility) ensures that the affect curve covers
an area in the valence-arousal coordinate system, the shape of
which roughly corresponds to the parabolic-like contour of the
2-D emotion space. The third criterion (Smoothness) accounts
for the degree of memory retention of preceding frames and
shots [1]. It ensures that the perception of the content, and
consequently the mediated affective state, does not change
abruptly from one video frame to another but is a function of a
number of consecutive frames (shots).

B. Feature Selection

Little is known regarding the relations between the low-level
features and affect. While the problem of bridging the semantic
gap remains very hard in the case of cognitive video content
analysis, the magnitude of this problem in the affective case
is even bigger. The reason for this is that in the cognitive case
the low-level features describe aspects of a real entity, e.g., the
choice of the color red as one of the features to characterize
a red car. In the affective case, however, we need to relate the
low-level features to something rather abstract, such as feeling
or emotion. In the context of this paper, we are particularly inter-
ested in the relations between low-level features and the affect
dimensions of arousal and valence.

One of the most extensively investigated visual features in the
context of affective video content analysis is motion. Research
results show that motion in a television picture has a signifi-
cant impact on individual affective responses. This has been re-
alized also by film theorists who contend that motion is highly
expressive and is able “to evoke strong emotional responses in
viewers” ([2], [11]). In particular, Detenber ef al. [8] and Sim-
mons et al. [29] investigated the influence of camera and object
motion on emotional responses of humans and concluded that
an increase of motion intensity on the screen causes an increase
in arousal. The type of emotion (represented by the sign of va-
lence) was found independent of motion: if the mood of a test
person was “positive” or “negative” while watching a still pic-
ture, the “sign” of the mood will not change if a motion is intro-
duced within that picture.

Based on the results obtained by Murray and Arnott [23], as
well as those reported by Picard in [25] and [26], various vocal
effects present in the sound track of a video may bear broad
relations to the affective content of that video. In terms of affect
dimensions, the loudness (signal energy) and speech rate (e.g.,
faster for fear or joy and slower for disgust or romance) are
often being related to the arousal, while the inflection, rhythm,
duration of the last syllable of a sentence, voice quality (e.g.,
breathy or resonant), as well as the pitch-related features (pitch
average, pitch range and pitch changes), are commonly related
to valence [23], [25].
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Finally, we found the varying shot length to be a good ex-
ample of an editing effect that can be put in relation to the affec-
tive content of video. Namely, the patterning of shot lengths [1]
is a popular tool for the director to create the desired pace of ac-
tion (e.g., in a movie). The director typically chooses for shorter
shot lengths in movie segments that are to be perceived by the
viewers as those with a high tempo of action development, or to
create stressed, accented moments. As opposed to this, longer
shots are typically used to de-accentuate an action [4]. In this
sense, the varying shot lengths can be linked to the intended
changes in the magnitude of arousal that is evoked in the audi-
ence along a movie. Note that regarding the pace at which the
video content is offered to a viewer, an increase in shot-change
rate is likely to have a similar impact on a viewer’s arousal as
an increase in the overall motion activity.

Wide variations in shots lengths can also be a good indica-
tion of how the director of a live broadcast responds to inter-
esting events. We can explain this on the example of a soccer
match that is broadcasted most of the time using one camera that
covers the entire field. The director switches from one to another
camera (e.g., by zooming onto a particular event, the bench or
the spectators) only occasionally, which results in rather long
shots. However, whenever there is a goal, or an important break
(e.g., due to foul play, free kick, etc.), the director immediately
increases the rate of shot changes trying to show everything that
is happening on the field and among the spectators at that mo-
ment. In this way, any increase in shot-change rate during a live
broadcast is likely to be related to the director’s response to an
increase in the general arousal evoked in the sport arena.

C. Model for Arousal

We start our approach to arousal modeling by considering the
function G;(k) that models the changes in the arousal over the
frames k as revealed by the feature <. This function can be in-
terpreted as one of the components of the arousal time curve.
Namely, it has been realistically expected that no single feature
can reveal the complete variations of arousal along a video. For
instance, an increase in arousal during a soccer television broad-
cast is detectable at some places through the cheering crowd
(changes in sound energy) and at some other places through an
increase in shot-change rate (e.g., a break due to a foul play).
Therefore, we model the arousal time curve A(k) in general as
a function of N components G; (k)

A(k) = F(Gi(k),i=1,...,N). (1)

Here, the function F’ serves to integrate the contributions of all
the components G;(k) in the overall course of arousal along
a video. In order for the function F' to satisfy the criteria of
comparability and smoothness, these criteria need to be satisfied
first by each component time function G, (k). This requirement
can also be justified by the fact that each function G;(k) is an
(elementary) arousal function by itself.

We now search for the appropriate form of the function
(1) and investigate its ability to reliably represent the arousal
changes along a video. For this purpose, we use three sample
low-level features that were selected on the basis of the discus-
sion in Section V-B.
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a) The motion component, obtained on the basis of the
overall motion activity measured between consecutive
video frames.

b) The rhythm component, obtained by investigating the
changes in shot lengths along the video.

¢) The sound energy component, obtained in synchronization
with video frame interval by computing the total energy
in the sound track of a video.

The above features were selected to represent the arousal stimuli
contained in different modalities of video (visual and audio) and
those revealing the influence of video authoring (editing). In
this sense, we expect the contributions to the course of arousal
originating from different features to be largely independent of
each other. In the following, we first model the component time
curves G; (k) for the selected features. Then, we propose a func-
tion F’ integrating these three components, and evaluate it on a
number of representative test sequences.

1) Motion Component: We start the computation of the mo-
tion component of the arousal function (1) by computing the
motion activity m(k) at each video frame k. Motion vectors
are computed using the standard block-based motion estimation
[13] between adjacent two frames k and k + 1. The motion ac-
tivity value is then found as the average magnitude of all (B in
total) motion vectors v ;(k), normalized by the maximum pos-
sible length of a motion vector | 0" pax|

B

> [kl ) %. @)

=1

m(k) = 1_‘00

B|Umax|
Note that the motion activity values (2) are scaled to the range
between 0% and 100%, a range that will be imposed also for
other model components so they can be combined with each
other on the same basis, but also for the resulting arousal levels
to be expressed in percentages. In this way, we create a solid
basis for the fulfillment of the Comparability criterion.

In view of the Smoothness criterion, the obtained motion ac-
tivity time curve is not directly suitable for being a component
of the arousal model. First, the value (2) may quickly fluctuate
within the same shot. Second, motion-activity values may fluc-
tuate in different ranges for two consecutive shots (e.g., total
motion activity within a close-up shot is much larger than that
in a shot taken from a large distance) which results in “jumps”
of these values from one range to another at shot boundaries.
Third, measuring motion activity for the consecutive frames will
encounter unavoidably the high peaks or other noises at shot
boundaries and locations of other editing effects as well. In order
to fulfill the Smoothness criterion the m(k) is convolved with a
sufficiently long smoothing window. We use the Kaiser window
K(ly, 1) of the length I; and the shape parameter /3; for this
purpose. This window is illustrated in Fig. 6.

We demonstrate the effect of the smoothing operation in
Fig. 7, where a video segment consisting of three consecutive
shots of a typical soccer match is considered. The two shot
boundaries can be easily recognized as the sharp peaks around
frames 200 and 300 of the motion activity function m(k) in
Fig. 7(a). The first and second shot are characterized by a high
motion activity, corresponding to close-up shots of players
running on the field. The third shot was taken by a camera
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Fig. 7. (a) Example of the motion activity curve m (k). (b) Motion activity
curve resulting from a convolution with a Kaiser window.

mounted on a high ground with a wide view of the field, hence
the overall motion activity obtained is rather low initially. The
changes toward the end of the third shot take place when the
camera is maneuvered to view the previously covered part of
the field in the course of the game. The first two shots belong
to an exciting segment of a soccer broadcast (goal chance).
Starting from the second shot change, the game becomes stable
and the level of excitement decreases. However, the increase
and decrease of a user’s excitement cannot change abruptly.
While a user’s excitement will reach its peak somewhere during
the series of close-up shots, it will start to descend gradually,
as the game becomes stable. Gradual reduction in the level of
excitement will continue after the second shot change since
the user needs time to recover from previous exciting events
(inertia). At last, when the course of the game becomes more
dynamical around frame 850, the excitement of the user will
start to rise, though with a certain delay — again due to the
inertia of human affective states. As can be seen from Fig. 7(b),
the smoothed motion activity curve is much more likely to
mimic the variations in a user’s excitement, as described above.

We adopt the smoothed motion activity curve as the motion
component G (k) of the arousal time curve (1). We represent
this component analytically as

max(m(k))

Gi(k) = ———im(k)%. 3

1(F) m}fmx(m(k‘))m( % )
Here, m(k) is the result of the convolution of the curve m(k)
with a smoothing window, that is m(k) = m(k) * K(l1,(1).
Scaling the curve m(k), as indicated in (3), serves to put the
values G (k) back inside the original value range (0%—100%).

2) Rhythm Component: Similar to the analysis of the mo-
tion activity in the following we aim at obtaining a curve that
is a function of the frame index k and that reveals a connection
between a viewer’s arousal and the time-varying shot lengths.
We start modeling the influence of the shot-change rate on a
viewer’s arousal by defining the function c(k)

(k) = 100e((t=(n(k)=p(k)))/8) o7 4)

Here, p(k) and n(k) are the positions (frame indexes) of the
two closest shot boundaries to the left and right of the frame
k, respectively, and the parameter 4 is the constant determining
the way the ¢(k) values are distributed on the scale between 0%
and 100%. As illustrated on the example in Fig. 8(a), the curve
c(k) is typically a step curve, with each step corresponding to
video segment between two shot boundaries and with the height
of each step being inversely related to the interval between the
boundaries: the shorter the interval, the higher the value c(k).
Again, due to incompatibility of vertical edges in ¢(k) with the
Smoothness criterion, we convolve the ¢(k) curve with the same
smoothing window as in the case of motion activity. Scaling the
convolution result back to the original value range results in the
function that we adopt as the rthythm component G (k) of our
arousal model (1), which is illustrated in Fig. 8(b)

m]?x(c(k'))

Go(k)=——+—
max (c(k))

c(k)%, where ¢(k)=K(lq, 1) * c(k).
&)

3) Sound Energy Component: As the third component of
the proposed arousal model, the sound energy contained in the
audio track of a program is considered. One energy value is
computed for the time length of each video frame. Thus the
number s of audio samples used to compute this value is de-
termined as the ratio between the audio sampling frequency
(typically 44.1 kHz for CD quality) and the video frame rate.
The power spectrum is computed for each consecutive segment
of the audio signal containing s samples. An equivalent of the
sound energy value e(k) is then computed by adding up all spec-
tral values.

We again apply the same Kaiser window as in previous
sections to smooth out the originally “rough” time curve e(k).
However, unlike the other two arousal components, sound
energy is dependent on the volume level at which the audio
track is recorded. Since neglecting this fact would result in
sound energy time curves that are not comparable over different
videos, we proceed as follows. First, we scale the energy time
curve obtained after convolution to the range between O and
1. Then, we weight the obtained curve according to its mean
value. If the curve is characterized by only a few highly distin-
guishable peaks, then its mean value is lower than in the case
where the curve homogeneously covers the entire value range.
Since, in the first case, it is likely that video contains several
highly exciting events, these peaks should play a significant
role in shaping the final arousal time curve. In the second case,
however, the presence of exciting events is uncertain. Then, due
to ambiguity related to the recording volume level, the influence
of the energy component on shaping the arousal time curve is
kept limited. With this in mind, with (k) = K (l1, 31) * e(k)
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and with W being the length of the analyzed video in frames, we
define the sound energy component G3(k) of our arousal model
as follows:

G (k) = 100en (k)(1 — 2,)%

where e, (k) =
4) Arousal Model: Fig. 9 shows all three arousal compo-
nents computed for an excerpt from a soccer match. When com-
pared with the content description of characteristic segments of
this excerpt (see labels), one can see that at the times of ex-
citing events (goals, chances), local maxima exist in all three
curves, as opposed to less exciting segments. One can also no-
tice that these local maxima are not necessarily aligned. For
instance, in the case of a score, the following scenario is pos-
sible: the spectators first cheer the action (sound energy peak),
then there are cameras zooming to running players (motion ac-
tivity peak) and, finally, there are cameras zooming to the teams’
benches and to spectators (cut density peak). This fact motivates
the definition of the function F' as a weighted average of the
three components, which is then convolved with a sufficiently
long smoothing window in order to merge neighboring local
maxima of the components. The result is finally re-scaled to the

0%-100% range. The process is shown in (7), as follows:

mgx(a(k'))
)= max (a(k))“(’“)%
witha(k)=> w;G;(k) and a(k)=K(ly, 3) * a(k). (7)
2

Here, w; are the coefficients weighting the component functions
G;(k) with )", w; = 1. For the purpose of smoothing, we again
apply the Kaiser window. However, as indicated by the values
l5 and (35, this window may have a different length and shape
parameter compared to the window used previously for the three
components.

5) Evaluation: Having described in detail the methods how
to model the three arousal components, and to integrate the com-
ponents as in (7) to form a complete arousal model, we now pro-
ceed to validate these using real media data. The choice of test
video sequences was based on two considerations. First, in order
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(a) Example of the curve ¢(k). (b) Corresponding curve G2 (k).

to obtain meaningful results, the sequences selected should be
those in which the changes in arousal are most likely induced by
the stimuli depicted by the low-level features adopted. Second,
the sequences selected should be characterized by the content
flow on which an average user is expected to react in a “stan-
dard manner” in terms of arousal. For instance, the arousal is
expected to rise when the development of a soccer game goes
from the stationary ball exchange in the middle of the field and
finishes with the score via a surprisingly forward push toward
the goal. In the same fashion, the arousal is supposed to decrease
with the stabilization of a situation in an action movie, following
a rapid action event.

Our test set includes excerpts from two different soccer
matches (from two different broadcasters, separately) as well as
excerpts from the movies “Saving Private Ryan” and “Jurassic
Park 3.” We observed the behavior of the arousal time curves
in the global sense, and checked whether it complies with the
content development along various sequence segments. At
the same time, we checked the similarity of the arousal levels
obtained for similar events in different sequences. For each
test sequence, the same set of parameter values has been used:
pixel block size for motion estimation was selected as 16, the
coefficients w; were selected as 1/3, and 6 was set to 300. The
length and shape parameter of the Kaiser window used for
arousal components were 700 and 5, and those for the complete
arousal model were 1500 and 5, respectively.

Figs. 9 and 10 show the arousal time curves obtained for the
test sequences. In each curve the characteristic segments are la-
beled to reveal the actual content of the corresponding sequence
such that the model performance can be judged. By examining
these results we can conclude that the arousal levels of similar
events in different sequences (e.g., goals in soccer games) are
comparable, and that the obtained distributions of arousal levels
along each sequence correspond to expectations.

D. Model for Valence

The Compatibility criterion described in Section V-A re-
quires that the affect curve generated through combining the
arousal and valence time curves should cover an area in the
valence-arousal coordinate system that has a parabolic-like
shape resembling the 2-D emotion space (Fig. 3). Clearly, this
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Fig. 9. Computation of the arousal time curve by superimposing the
component time curves.

criterion confines that the values of arousal and the absolute
values of valence are related to each other, which means that
in general the range of arousal values determines the range of
absolute valence values. We, therefore, start the development of
the valence model by defining the function r(k) that captures
this value range dependence

r(k) = a(k) - sign {H(D 8)

where, as usual, k is the frame index, and a (k) as defined in (7) is
the arousal function before smoothing. Similar to the discussion
on the arousal model (1), each component D;(k) in (8) models
the changes in valence as revealed by the feature 7, while the
function H serves to integrate the contributions of all the com-
ponents in the final valence time curve. Clearly, the values (k)
are determined solely by the values of the arousal, while the
function H only determines the sign of (k).

The values of H are used in the next step to compute the vari-
ations of the valence in the value range specified by the arousal.
In order for the valence values to remain in the proper range, the
amplitude of these variations needs to be much smaller than the
value of the arousal determining that range. With this in mind,
we define the variance function g(k) as follows:

H(D;(k),j =1,.
e [H(D; (k). = 1.

, M)
)
)
The number n determines the magnitude of allowable variations
of valence values in the range specified by the arousal. As shown
in (9), this magnitude is not allowed to exceed n percent of the
maximum arousal value.
We now model the valence time curve as

g(k) =

— -max A(k) -
100 &

Vi max|v(k)| W% with
(k) = max|v( )| (k)% wit
v(k) =r(k)+g(k) and v(k) = K(l,32) * v(k). (10)
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Fig. 10. Arousal time curves obtained for three test sequences. The labels
describe the actual content of various sequence segments.

The smoothing window used here is the same as the one used for
smoothing the final arousal time curve in (7). The main purpose
of smoothing the curve v(k) is to eliminate jumps appeared in
the r(k) curve due to the sign change in (8).

As is clear from discussions above, the role of function H
is actually analogous to that of function F' in (1). Therefore,
the search for the proper form of function H can be done in
the similar way as for function F'. In the following, we first
describe how to model a component function D, (k) using one
of the valence-related features — the pitch average — such that it
satisfies the criteria of comparability and smoothness. We then
demonstrate the concept of modeling the valence time curve
as explained above based on the example of the simple curve
derived from the pitch-average component.

1) Pitch-Average Component: We compute the pitch signal
using the off-the-shelf software and average the pitch values
temporally over each video segment of length L. This results in
the pitch-average time curve P(k). As studied by Murray and
Arnott [23], the average pitch can be useful in distinguishing be-
tween some positive and negative affective states, such as “hap-
piness” (high-pitch average) and “sadness” (low-pitch average).

In order to associate the average pitch value with a corre-
sponding valence value that may also be negative, we define the
following function:

Y
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Fig. 11. (a) Arousal curve obtained for an excerpt from the movie “Saving

Private Ryan.” (b) Valence curve obtained for the same excerpt on the basis of
the pitch-average component (12).

Here, N is what we call the “neutral feeling” frequency, and
serves to map the low (high) values of the pitch average to the
corresponding negative (positive) valence values.

In view of the smoothness criterion, the function (11) is not
directly suitable to serve as a valence component time curve
due to its step-wise nature. We therefore smooth the values (11)
using the same Kaiser window as in the case of the arousal com-
ponents. The result is the pitch-average component Dy (k) of the
valence time curve

max |p(k)]

DA% i B =K b5 )
(12)

2) Evaluation: The measurement of the emotion type (va-
lence) is much more ambiguous than the measurement of the
emotion intensity (arousal). We therefore choose to evaluate the
valence model (10) in its simplest form, where the function H
is based on one component function only, thatis, H(D;(k),j =
1,...,M) = Dq(k), and in a controlled situation. The purpose

of evaluation in this section is to prove the concept of

* modeling the valence components as shown by the ex-
ample (12);
» modeling the valence time curve along the steps (8—10);
 generating the affect curve on the basis of the corre-
sponding arousal and valence curves, as explained in
Section I'V-B.
Since we choose D;(k) as the pitch-average component, we
select a test video sequence such that its emotional load can
largely be determined on the basis of the pitch average only.
For this purpose, we selected an excerpt from the movie “Saving
Private Ryan” where the soundtrack consists of male voices that
are only sporadically interrupted by noise or music.

Fig. 11 shows the arousal and valence time curve obtained for
the selected test sequence. Besides the parameters already spec-
ified in Section V-CS5, additional parameters here are the “neu-
tral feeling” frequency N that is set to 150 Hz [26], the value
of n that is set to 10%, and the pitch-average segment length L
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that is set to 909 frames. The rather odd value that we used for
L resulted from our attempt to partition the test sequence into
the segments of equal length, which are, at the same time, syn-
chronized with the segments used to compute the pitch. In order
to evaluate the correlation between the obtained arousal and va-
lence values and the actual content of the sequence, we have la-
beled different parts of the sequence to describe their contents in
as much detail as possible. These labels can be found in Table 1.

Fig. 11(a) shows that the changes in arousal are not that
strong. This was expected as the entire sequence is rather
stationary and mainly contains conversations. A slight increase
of the average arousal value in the segment 2, 4, and 7 as
compared to the previous segment, is, however, quite correlated
to the actual content development of the sequence along these
segments.

The range of the valence values in Fig. 11(b) indicates that the
valence time curve is basically a scaled (and mirrored, where
negative) version of the arousal curve, on which the allowed
variations modeled using the pitch-average component are su-
perimposed. The first interesting spot in Fig. 11 is the switch of
the valence curve from the negative to positive values around the
frame 20 000. This switch reveals the change in the prevailing
mood from mostly somber in the first part of the sequence to a
“casual” every-day mood and even some happiness. This is then
followed by, again, expected switch of the curve to the range of
negative valence in the segment 8. The course of the obtained
valence time curve largely corresponds to expectations. How-
ever, the simplicity of the function H has also lead to slight
imperfections in the obtained curve. Namely, segments 5 and
6 also contain parts that are characterized by the similar “ca-
sual” every-day mood as in the segment 7. These parts are not
properly revealed by the valence time curve in Fig. 11(b).

We now combine the arousal and valence curve from Fig. 11
in the affect curve that provides the complete representation of
the affective content of the video clip under study. The para-
bolic shape of this curve shown in Fig. 12 clearly indicates the
compatibility of the obtained curve with the 2-D emotion space.
As we can read from the curve, the prevailing mood of the test
sequence is rather somber (low-to-medium arousal and negative
valence) with the exception of one segment that is characterized
by a mid-level arousal and a positive valence.

VI. DISCUSSION

In this paper, we first described the problem of extracting the
affective content of an arbitrary video and revealed the basic
scope of opportunities that would become realistic if a solu-
tion to this problem were found. The opportunities elaborated
in Section II are within the context of video indexing and per-
sonalized video delivery. Then, we outlined the technique devel-
oped to extract and represent the affective content from a video,
which has been motivated by studies in psychophysiology. After
adopting a “dimensional approach to affect,” that is, the possi-
bility of representing the affective content using points in the
2-D emotion space, we have defined the links between dimen-
sions of the emotion space and low-level features that can be
extracted from video data using standard video and audio pro-
cessing tools. As a result, we managed to obtain time curves
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TABLE 1
LABELS DESCRIBING THE CONTENT OF THE TEST SEQUENCE IN FIG. 12
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Segment Content description
1 US Army HQ, typists make letters for soldiers’ families, male voices reading the letters
2 Colonel’s office, finding out about private Ryan
3 Bad news brought to Ryan’s home
4 General’s office, decision is being made to search for Ryan
5 Omaha Beach, US Army HQ, an officer gets the order to search for Ryan
6 Omaha Beach, US Army HQ, preparation for the search action
7 Beginning of the action, walking through the fields
8 It starts to rain and gets dark, the suspense grows, the actual beginning of the action
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