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Stelling 1

Raoof & Hobbs (1989) calculated the load-displacement relation of the Cattaneo-
problem, in a coordinate system with rotated axes. In that article an assumption
about the contact law is made, in which one coordinate axis points into the
direction of the force. It can be proved that their assumption is correct.
Furthermore their transformation law can easily be generalized for any rotation
of the axes and for finite slip.

Stelling 2

Szalwinsky (1985) calculated the flexibilities for the contact of elastic bodies,
with elliptical contact areas, on the base of Catlaneo’s solution, where
8=dF,/|dF,| and either F, of F, is held constant. Szalwinsky’s formulae are only
correct for uni-directional tangential forces with varying absolute values,
because Cattaneo assumes constant slip directions in the slip area. In the
general case, where an arbitraty traction distribution (0,,0,) is overlaid by a new
stress increment (Ac,,Ac0,), the slip direction varies in the elliptical, annular
slip area. Consequently, the displacements in the slip area must also be
considered. Numerical experience shows, that the slip directions in the contact
area are almost constant on elliptical rings. For a circular contact area, the
corresponding boundary value problem can be described by an integral equation
system. These integral equations are so difficult, that analytical solutions are
difficult to find.

Stelling 3

It can be shown that the contact problem of a rigid punch with known base form,
indenting a simply supported rectangular plate, is very similar t0 the normal
half-space problem. Using the Fourier solution for a constant pressure
distribution on a small rectangle (Timoshenko & Woinowsky-Krieger, 1959), the
discrete load-displacement relation can be deduced. This relation is very similar
to equ. (4.13) of my thesis, with the displacement w, as the product of the
influene matrix A, and the pressure p,. The contact area can be found with
Kalker’s module Norm and the proof of convergence is equal to Kalker (1990).

Stelling 4

Recently a Fourier-solution was developed (Axelrad, 1983), which uses Fourier-
matrices to multiplicate Fourier series. This method is very easy to program and
to verify. It can favourably be used to solve the problem of a flange at the end
of a tube, loaded by two singular forces, acting symmetrically on the flange. It is
assumed that the flange is a circular beam, supported by the tube, which is a
cylindrical shell. The simplifications of the half-momentless theory of shells,
where the stress is split into the main-solution and the boundary part, are
introduced. The moments M,, acting on an axial section, are much smaller than
M,, acting on a section perpendicular to the axis. The solution of the problem is
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obtained by matrix-invertion. We also wrote a small program for this problem.
Stelling §

The heat expansion of tubes in industrial plants can be compensated by
expansion bellows, which are flexible tubes with circumferential corrugations.
Their behaviour is described by the differential equations of shell theory, which
in former times where solved by analytical methods and FEM-techniques.
Similar to Stelling 4, the Fourier-Matrix-Method allows a real simplification. It
can also be used to solve nonlinear differential equations, which occur e. g. for
large deformations, where the pressure-loading acts on the deformed geometry.
We will demonstrate this method for a simple bellows under pressure and
dilatation. We also wrote a small program for this problem.

Stelling 6

The Fast Fourier Transformation Method (FFT) can be used to calculate the
normal displacement of a half-space, using a ‘generalized’ convolution theorem.
The number of multiplications is O(8N log (4N)), where N denotes the number
of points in the area where the displacment is measured. The Fourier-series for
p, and 1/r are calculated and the integral is obtained by the backward
transformation of the product of the coefficients. The period of the Fourier-series
in one dimension must be two times the period of the region, where the
displacements are determined, because the ‘generalized’ coavolution is taken
over the periodical supplement. Available FFT-programs solve this problem
very fast, but it turns out that a large number of points is necessary for a good
result, because the singular function 1/r is difficult to model with Fourier-series.
An analytical expansion of the function 1/r is possible, which allows analytical
expressions for the displacement. It should be noted that convergence is certain
for this problem, even for large series.

Stelling 7

Deresiewicz (1954) published the solution of the contact of elastic spheres under
an oscillating torsional couple on the base of Lubkin’s solution (Lubkin, 1951).
This solution is limited 10 small torsional couples acting on a constant contact
area and the superposition of only two Lubkin-functions. It can be generalized
for the elastic contact of spheres under a varying torsional couple and a varying
normal force. Different load-histories can generate the same pressure
distribution, but for every pressure distribution exists only one load-history with
the smallest number of Lubkin-functions. Load-histories with pure torsion are
also characterized by points of instantaneous adhesion and periods of decreasing
stick area, as described in chapter 6 for varying oblique forces.

Stelling 8

Although the computation velocity of Personal Computers increased considerably
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in the last years, software improvements for incremental load-histories can be
faster. A new Intel 80586/50 MHz processor is about 200 times faster than a
five year old 80286/12 MHz processor and modern PC’s may even be 200
times faster in five years. Lubrecht & loannidis (1991) developed a Multi-Level-
Method, which performs the matrix-vector product of the load-displacement
equations with N log N multiplications. The possible velocity increase of a
combination of the Gauss-Seidel and the Multi-Level-Method compared with the
standard Gauss-Elimination is of the order N?/(N log N), which amounts to a
value of 333 000 for N=1000 points in the coutat area. Other Multi-Grid
methods and the Fast-Fourier-Transformation method are also promising. If
special vector computers or parallel computers are used, much work must be
done to develop special software for these machines. It follows that the
development of fast software on standard computers is the most promising way
for incremental load-histories, and even if personal computers are really 200
times faster in five years, this factor can be multiplied with the factor due to
software improvements.
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Samenvatting =~V

Samenvatting

De Kklassieke botsingstheorieén beschouwen hetzij wrijvingsioze oppervlakken dan
wel volledig doorglijden in het gehele contactvlak. En realistischere theorie moet ook
de verdeling van het contactvlak in glijd- en hechtgebieden beschouwen. Drie
restitutiecoéfficiénten bepalen de rotaties en de snelheden van de twee lichamen na de
botsing,.

Dit werk is gebaseerd op de grondvergelijkingen van de drie-dimensionale
elasticiteitsleer. H. Hertz (1882) loste deze vergelijkingen op voor de normaal gerichte
botsing van twee lichamen. Hij gebruikte de halfruimteoplossingen voor puntlasten
van Boussinesq (1885) en Cerruti (1882) om het spanningsveld in de buurt van het
contactvlak te bepalen. Dit geldt voor compacte lichamen, waarin de afmetingen van
het contactvlak klein ziju vergeleken met de globale kromtestralen en afmetingen van
de lichamen. Wij generaliseren de Hertz oplossing op basis van deze vereenvoudiging.
Dit werk is outsluitend beperkt tot de halfruimtebenadering en tot elastische
materialen,

Hoofdstuk 3 is de inleiding tot dit werk. De contactprocessen gedurende de
botsing vereisen de analyse van enmige fundamentele belastingsgeschiedenissen.
Hoofdstuk 4 vat de fundamentele formules van halfruimteproblemen samen. Enkele
bekende belastingsgeschiedenissen voor lichamen van gelijke materialen worden in
hoofdstuk 5 besproken. Hoofdstuk 6 geeft de theorie van Mindlin en Deresiewicz voor
veranderlijke normale en scheve krachten weer van een nieuw gezichtspunt uit. We
voeren de zogenaamde. Cattaneo-Mindlin functies in, en we komen tot een formule
voor de krachten die alleen afhangen van de zg. punten van ogenblikkelijke hechting,
waarin het gehele contactvlak gedurende &n ogenblik hecht en van de momentane
verplaatsing, maar niet van de specificke vorm van de voorafgaande belastingsgeschie-
denis. In hoofdstuk 7 generaliseren we deze theorie voor elliptische contactvlakken
onder scheve belasting met variabele richting. Als gevolg van deze theorie zjn
verschillende belastingsgeschiedenissen mogelijk die leiden’ tot dezelfde spanningsver-
deling. Elliptische contactvlaken onderworpen an veranderlijke momenten kunnen
worden benaderd door een eenvoudige formule, die wij hebben vergelijken met enige
numerieke berekeningen in sectie 7.6.



VI  Samanvaiting

De grondvergelijkingen voor de botsing van twee lichamen worden uitgesproken
in hoofdstuk 8. De drie verschillende contacttoestanden van volledige hechting,
gedeeltelijke slip en volledig doorglijden worden ingevoerd en de bewegingsvergelijkin-
gen worden afgeleid. Enkele analytische oplossingen worden in hoofdstuk 9 bepaald.
Tenslotte bespreken wij torsiebotsing in hoofdstuk 10. Het resulterend moment is veel
kleiner dan de momenten voortgebracht door de tangenti€le krachten, doordat in het
kader van de Hertztheorie de afmeting van het contactvlak minder dan 10% van de
afmeting van het lichaam moet zijn. Dus is de arm van de torsiebelasting
vewaarloosbaar vergeleken met de arm van de tangeti€le spanning, en kunnen het
torsiemoment en de momenten binnen het contactvlak vewaarloosd worden in een
eerste-orde botsingstheorie.

Hoofdstuk 11 is gewijd aan de numerieke oplossingen van J. J. Kalker, aangezien
onze numerieke procedures gebaseerd zijn op zijn methodes. De toepassing van de
Gauss-Seidel procedure, uitgelegd in hoofdstuk 12, verbeterd de rekentijd en het
geheugenbeslag aanzienlijk. In hoofdstuk 13 bewijzen wij de convergentie van onze
gemodificeerde Gauss-Seidelmethode voor enige bijzondere belastingsgeschiedenissen.
De convergentie van de gelinéariseerde wrijvingswet is niet onderzocht, aangezien de
convergentie zeker is voor oneindig kleine aangroiingen van een belastingsgeschiedenis
met Hertz'se opperviakken, waarbij de richting van de spanningen nauwélijks
verandert. In dit geval verandert het hechigebied ook in slechts weinige punten, en de
hechtgebiedius convegeert zeer goed. Het probleem van een vlakke stempel die op
een elastische halfruimte drukt is moeilijker, omdat bij de aanvang van het contact het
hechtgebied sterk verandert. Voorts kan de richting van de spanning slechts worden
berekend, als de eerste schatting van het hechtgebied redelijk goed is. Wij hebben een
aantal stuurvariabelen ingevoerd, die de convergentie van het programma beheersen,
zoals het maximum van het aantal iteraties in elke lus, de nauwkeurigheid en de
aafmeting vaan de aangroeiingen. Empirische ervaring leert, dat een juiste instelling
van de paraméters convergentie van het programma oplevert, zelfs voor grote
contactvlakken van 1000 punten. De convergentiesnelheid is ook belangrijk voor grote
contactvlakken, omdat rekentijden van 1 of 2 dagen op een 80386/33MHz computer
normaal zijn voor 1000 punten. De rekentijd is ongeveer evenredig met n?, terwijl het
geheugenbeslag evenredig is met n, waarbij n het aantal punten in het potenti€el
contactvlak is. '



Samenvatting ~ VII

In hoofdstuk 14 vergelijken wij de vereenvoudigde oplossingen van hoofdstuk 7
met de numerieke resultaten. Het blijkt dat in afwijking van de theorie van hoofdstuk
7 de richting van de spanning in het glijdgebied nogal vari€ert. De overeenkomst
tussen de numerieke en de analytische theorie aangaande de afmeting van het
hechtgebied en de absolute waarde van de tangentiéle spanning is veel beter. Een
nieuw gefolg van de numerieke resultaten is dat voor elliptische conatctvlakken met
v,=v,=0 de spanningen o,, 0, constant zijn op ellipsen homothetisch met de
contactellips, althans zolang er geen torsie is. Zelfs wanneer de Poissongetallen van
nul verschillen, zijn de spanningen nog steeds vrijwel constant op zulke ellipsen,
zolang althans de materialen van de lichamen gelijk zjn. Kleine wrijvingscoéfficiénten
bij ongelijke materialen leveren de meest onvoorspelbare spanningsverdelingen op.
Een voorbeeld van de superpositie van torsie en tangenti€le verplatsing word ook
gegeven in sectie 14.4. In sectie 14.5 geven wij enige (niet-HertzZ'se) resultaten voor
vlakke stempels.

De tangentiéle restitutiecoéfficiént is de verhouding van de tangentiéle snelheid in
het contactpunt voor de botsing tot de tangentiéle snelheid na de botsing. Hoofdstuk
15 toont aan dat de overeenstemming tussen de Cattaneo-Mindlintheorie en het
numerieke resultaat zeer goed is. Verder worden de restitutiecoéfficiénten voor
lichamen van verschillende materialen en voor torsie van lichamen in de vorm van
ellipsoiden gegeven. _

Verdere informatie over de bovengenoemde onderwerpen wordt in de Inleiding
gegeven.



1 Summary 1

1 Summary

The classical impact theories consider either frictionless surfaces or gross slip of
the whole contact area. A more realistic theory must consider the partition of the
contact area into stick and slip areas, Three coefficients of restitution determine the
rotations and velocities of the two bodies after the impact. These coefficients will be
calculated for some examples.

This work is based on the fundamental equations of the three dimensional theory
of linear elasticity. H. Hertz (1882) solved these equations for the normal impact of
two bodies. He used the half-space solutions for single forces of Boussinesq (1885)
and Cerruti (1882) to determine the stress field in the vicinity of the contact area. This
holds for compact bodies, where the dimensions of the contact area are small
compared to the global curvatures and dimensions of the bodies. We generalize the
Hertz solution on the basis of this simplification. This work is exclusively confined to
the half-space approximation and elastic materials.

Chapter 3 is the introduction to this work. The contact processes during impact
require the analysis of some basic load-histories. Chapter 4 summarizes the basic
formulae for half-space problems. Some well-known load-histories for similar material
are discussed in chapter S. Chapter 6 presents the theory of Mindlin and Deresiewicz
for varying normal and oblique forces under a new point of view and generalizes their
result. We introduce the so-called Cattaneo-Mindlin functions and we will arrive at a
formula for the forces, which depends only on so-called points of instantaneous
adhesion, where the entire contact area is stuck for a moment, and on the current
displacements, but not on the specific form of the previous load history. In Chapter 7
we generalize this theory for elliptical contact areas under oblique forces with varying
directions. This theory is based on the simplifying assumption that the stress direction
in the entire slip area is constant between two points of instantaneous adhesion. In con-
sequence of this theory different load histories with the same stress distribution are
possible. Elliptical contact areas under varying torques can be approximated by a
simple formula, which we compare with some numerical calculations in chapter 7.6.

The basic equations for the impact of two bodies are stated in chapter 8. The
three different contact regimes of full adhesion, partial slip and complete sliding are
introduced and the equations of motion are deduced. Some analytical solutions are
presented in chapter 9. Finally we discuss the torsional impact in chapter 10. The
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2 1 Summary

resulting torque is much smaller than the moments produced by the tangential forces,
because the dimensions of the contact area should be less than 10% of the the
dimensions of the body, in the frame of the Hertz theory. Consequently the lever-arm
of the torsional stress is almost negligible compared with the lever-arm of the
tangential stress, and the torsional torque and the moments inside of the contact area
can be neglected in a first order impact theory.

Chapter 11 is dedicated to the numerical solutions by J.J. Kalker, because our nu-
merical procedures are based on his methods. The application of the Gauss-Seidel
procedure, explained in chapter 12, improves the calculation time and the storage
requirements considerably. In chapter 13 we prove convergence of our modified Gauss-
Seidel method for a few special load histories. The convergence of the linearized
frictional law is not investigated, because convergence is certain for infinitely small
increments of a load history with Hertzian surfaces, where the stress directions hardly
change. In this case the adhesive area also varies in a few points only, and the stick
area loop converges very well. The problem of a flat punch pressing on an elastic half
space is more difficult, because at the beginning of contact the stick area changes very
much. Furthermore the stress directions can only be calculated, if the first estimation -
of the stick area is not too wrong. We introduced a number of control parameters,
which control the convergence of the program, like the maximal number of iterations
for each loop, the precision and the size of the increments. Empirical experience
shows, that a correct parameter setting yields convergence of the program, even for
large contact areas of 1000 poins. The velocity of convergence is also very important
for large contact areas, because calculation times of one or two days on an
80386/33MHz computer are normal for 1000 points. The calculation time increases
with n? approximately, while the storage requirements increase with n, where n denotes
the number of points in the area of integration. ) _

In chapter 14 we compare the simplified solutions of chapter 7 with some
numerical results. It turns out that in contrast to our theory the stress directions in the
slip area vary considerably. The correspondence between numerics and theory for the
size of the stick atea and the absolute value of the tangential stress is much better. A
new conclusion of the numerical results is that for elliptical contact areas with
v,=v,=0 the stresses o,,, 0, are constant on ellipses, as long as torsion is absent.
Even if the Poisson numbers are different from zero, the stresses are still almost
constant on ellipses as long as the materials are similar. Small frictional coefficients
with different materials yield the most unpredictable stress distributions. An example
for the superposition of torsion and tangential shift is also presented in section 14.4. In
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1 Summary 3

section 14.5 we present some results for non-Hertzian contact areas in form of flat
punches.

The tangential coefficient of restitution is the ratio of the tangential velocity in
the contact point before impact to the velocity after impact. Chapter 15 shows that the
correspondence between the Cattaneo-Mindlin theory and the numerical result is very
good. Furthermore the coefficients of restitution for dissimilar materials, superposition
of torsion and ellipsoid bodies are presented. Additional information about the above
mentioned topics can be found in the introduction.

Elastic Impact with Friction, by J. Jaeger



4 2 Symbols and notation

2 Symbols and notation

All variables, except general constants like e.g. Young’s modulus E, are
defined in the section where they first appear. We list only the variables, which are
frequently used in more than one chapter. The reference denotes the equation
where the variable is mentioned first. Bold capital letters denote matrices and bold
small letters signify vectors.

X Y, Z Cartesian coordinates.

1, 2, ... 1.) numbers of body 1 or 2;
2.) part of a load history;
3.) functions of a similar type.

A index for the beginning of impact.

E index for the end of impact.

old index for the ‘frozen’ stress distribution in the area of adhesion.

[1 brackets enclose indices of an array, following the notation of the

programming language Pascal.

Symbol Definition Reference

A combined curvature in x-direction (A 2B) (3.4),(5.3)
A elliptical area (6.1a),(7.1a)
A load displacement matrix (12.10)

a semiaxis of the contact ellipse (a<b) (3.7),(5.9)
a' semiaxis of the elliptical area of adhesion (5.22)

B combined curvature in y-direction (A2B) (3.4),(5.3)
B(k) elliptical integral (5.33)

b semiaxis of the contact ellipse (a<b) (3.7),(5.9)
b’ semiaxis of the area of adhesion (3.10),(5.22)

Elastic Impact with Friction, by JJaeger
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2 Symbols and notation 5

Symbol Definition Reference
C contact area 3.7
C(k) elliptical integral (5.33)
Co Cp stiffness coefficients (5.25)
D(k) elliptical integral (5.13)
D matrix of the equation of motion (8.33)
E Young's modulus 3.2)
E(k) elliptical integral (5.13)
E, E, kinetic energy in x- and z-direction (9.58)
€,e,€, adapted displacement vector (7.2¢)
e, €, e, |base of the cartesian coordinate system xy,z (8.2)
€. €, € |base of the inertial coordinate system a,b,c (8.2)
F, F, F, [force in x-, y-, z-direction (5.11),(5.27)
F(a,b;c;S)  |hypergeometric function 9.9)
f frictional coefficient (f=fi;,=f ) (5.23)
A static frictional coefficient (12.4)
fiin kinetic coefficient of friction (12.4)
G combined modulus of rigidity 4.7)
H area of adhesion (5.22)
k, k, curvature (8.11)
K(k) elliptical integral (5.13)
M, torque around the common normal (5.35)
m index in y-direction (4.10)
m;, m, mass of body 1 resp. 2 (8.25)
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Symbol Definition Reference
n index in x-direction (4.10)
P direction parameter (5.26)
P, normal contact pressure (5.10)
P, i-th point of instantaneous adhesion chap. 6
q direction parameter (5.26)
R radius of the sphere (6.1)
Ry, R, curvature in x-direction of body 1 resp. 2 ¢.1)
R}, R} curvature in y-direction of body 1 resp. 2 5.1)
R;, Horak’s coefficient of restitution 3.3)
R, coefficient of restitution in x-direction (9.33)
R; vector from center of inertia to contact point (8.25)
r 1.) distance from the origin (3.6)
2,) distance between two points (4.4)
S =(§/Enuax)*? 94)
S slip area (6.1a),(7.1a)
So Sy slip (12.5)
t time (8.25)
N dimensionless time 9.4)
Array of displacements (4.12)
u displacement in x-direction “4.1)
w; displacement vectorof body i (8.27)
v 1.) displacement in y-direction “4.1)
-|2.) d€/dty 9.12)
Vabs absolute velocity 8.27)
Vrig rigid velocity 8.27)
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Symbol Definition Reference
w displacement in z-direction 4.1)
X Cartesian coordinate (3.4)
x Cartesian coordinate where the stress acts (4.4)
XM coordinates of the center of gravity of body i (8.25)
y Cartesian coordinate (3.4)
y Cartesian coordinate of the stress 4.4)
z 1.) distance of the two surfaces at xy (3.4)
2.) Cartesian coordinate (4.4)
4 Cartesian coordinate of the stress, Z =2 (4.4)
o Hertzian parameter (5.12)
8 1.) Hertzian parameter (5.12)
2.) torsional angle (5.31)
I'(x) Gamma function (9.18)
7 1.) hertzian parameter (5.12)
2.) dimensionless material parameter (13.5)
Ax mesh size in x-direction (4.16)
Ay mesh size in y-direction (4.16)
6 parameter of Cattaneo’s solution (5.25)
3 Difference parameter (5.20)
€, dimensionless difference parameter (13.40)
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Symbol Definition Reference
14 displacement in z-direction (5.4)
e normal penetration corresponding to a“ (5.26)
n displacement in y-direction 5.19)
0; tensor of inertia (8.25)
e polar coordinate 3.17)
@, material parameter of body i (5.14)
x 1.) material parameter (6.1¢)
2.) combined material parameter (15.1)
A impact parameter (15.1)
I material parameter (6.1¢)
v combined Poisson’s ratio 4.7)
3 displacement in x-direction (5.18)
£ shift vector (8.45)
1 transformation matrix 8.2)
p polar coordinate (3.17)
O Oy, O, |stress on the. surface (4.2),(4.3)
Oy maximal Hertzian normal stress 3.9
oy, 0, ellipsoid functions (3.12)
Ocm Cattaneo-Mindlin function (6.1),(7.1)
oy Hertzian pressure distribution (5.10)
o pressure distribution (4.13),(12.10)
o, tangential stress (7.2a)
W vector of rotation of body i 8.25)
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3 Introduction

3.1 Brief historical outline

E. Mach wrote in his book (1912, english translation: 1960): ‘The laws of
impact were the occasion of the enunciation of the most important principles of
mechanics, and furnished also the first examples of the application of such
principles’. Galileo (1638) performed several experiments to determine the concept
of impact. Newton (1686) developed his laws of motion and introduced a
coefficient of restitution, which is still widely in use. Further general theorems were
added by Marci (1639) and Huygens (1669). Euler (Szabo 1979) proved in an
article (1745), that the principles of mechanics together with a material law suﬁice
to determine all important values during the impact process. This theory was fur-
ther developed in two directions, which differ with the consideration of the elastic
waves (free vibrations).

Franz Neumann (1885) and Barré de St. Venant (1883) calculated the
longitudinal impact of thin cylinders of similar material with constant diameters,
which collide with their front faces. The solution of the one-dimensional wave
equation yields the plane longitudinal waves, which penetrate from the contact
surfaces into the bodies and are reflected at the free ends. Heinrich Hertz (1882),
on the other side, established a quasistatic theory for the normal impact by
neglection of the elastic waves, on the base of his solution for the static
compression of two bodies in normal contact.

Eason (1966) and Hunter (1957) proved the validity of this solution for half-
space problems. Eason calculated the displacements produced in an elastic half
space by a suddenly applied surface force, in the form of a spherical or constant
pressure distribution, acting on a circular area of diameter 2a. He found, that the
displacement of the surface in the center of the loaded region reaches its statical
equivalent value after the time t:

= 2a/f(ZN+2m)/p , A\, p = Lamé€’s constants, p = density. (3.1)

The time t corresponds to the time, which compressive waves in an elastic half
space need, to mn through the diameter of 2a of the circular area. It barely
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changes with the form of the stress distribution.

Hunter (1957) calculated the energy loss produced by elastic waves during the
impact of a sphere on an elastic half space. The fraction of the energy loss in the
half space and the initial kinetic energy of the sphere has the value:

1.04 (vo/VE/0)*/5, E : Young’s modulus. (3.2)

This energy loss is negligible, as long as the value of the impact velocity v, at the
beginning of the impact of the sphere amounts only to a few percent of the
velocity of compressive waves in thin elastic rods.

From these results follows that only bodies which are able to vibrate, like
rods, plates, etc., loose a negligible amount of energy by the propagation of elastic
waves. During the impact of massive bodies, whose dimensions are huge compared
to the dimensions of the loaded region, the elastic waves can be neglected as long
as the duration of impact is short compared with the time t, which elastic waves
need to run through the contact area. The reflected waves can also be neglected in
the frame of this theory, because the energy of spherical waves decreases with the
distance traveled through the body.

In the year 1938 appeared a work of Cattaneo with the solution of the
boundary value problem for the statical displacement of a half-space in tangential
direction. He introduced the notion of partial slip, ie. slip takes place on a part
of the contact area. Mindlin calculated in 1949 the fraction of a differential
displacement d§ and the necessary differential force dF, for the tangential and
torsional problem of bodies with Hertzian surfaces under complete adhesion, which
he called elastic compliance. Later, Mindlin & Deresiewicz (1953) investigated the
influence of varying oblique forces on the contact of rough spheres. This was the
first approach to load-histories, where the stress distribution depends on the
complete previous history of the contact process. We generalized the.
Mindlin/Deresiewicz theory for elliptical contact areas and two-directional load-
histories in x- and y-direction. Up to this day, many papers were published which
study special types of contact problems.

More complicated problems, such as load-histories for dissimilar materials, or
the calculation of the stresses inside of the two bodies (Kalker 1986b), can only be
solved by numerical methods. Frictional, numerical contact-elastostatics starts with a
work of Kalker (1967), where he developed a variational approach to the problem
of rolling. In that work a polynomial series was used for the solution of the

Elastic Impact with Friction, by J. Jaeger



3 Introduction 11

quasistatic contact problem, which worked well for rolling. In the following years
he developed several improvements to reduce the computation time (1986a, 1988).
One method was the simplified theory which approximates the real stress
distribution by simplified functions. Another method of the type of the Gauss-
Seidel Block [Iteration Method, called the Panagiotopoulos-Johnson process,
accelerates the matrix inversion considerably. Furthermore Kalker published several
papers to prove the convergence of contact algorithms (1985). The basic problems
of the numerical treatment are the computer storage requirements for the large
" load-displacement matrix, the computation time to determine the location and the
form of the stick area, and the slip direction in the slip area. We developed a new
method on the base of Kalker's work, which applies the Gauss-Seidel procedure to
the contact problem. This method is fast enough to solve impact processes and
involved load- histories, but improvements are still necessary for large contact areas
which consist of more than 1000 points.

The group N. Maw, J.R.Barber and J.N.Fawcett published in the year 1975 a
numerical solution for the oblique impact of elastic spheres on the base of
analytical series. They also performed experiments (1976) to test the theoretical
predictions. Later (1979), Barber published another paper with an analytical
solution in the form of hypergeometric series for a period of complete adhesion in
the compressive period of the impact of ‘two spheres. We generalized this solution
for the period of partial slip with infinitely small forces and for elliptical contact
areas.

Horak (1948) and his coworker Machalicky (1973) published some numerical
results for the tangential and torsional impact, but it appears that they did not
consider the dependence of the tangential force and the torsional moment on the
variation of the contact radius. Hordk (1931) established a general theory of impact
by the introduction of additional coefficients of restitution, defined by three
equations of the form: '

3
Vig = - kEI RiyVias (3.3)

where the indices 1,2,3 denote the x, y, z-directions; the indices E resp. A signify
the end resp. beginning of the impact. Our work shows, that the coefficients of
restitution depend on several parameters: Young's modulus E, Poisson’s number v,
the special form of the surface (Hertzian, non-Hertzian etc.), the inertial properties,
the initial velocities and rotations etc. If the equations of motion in x-, y- and z-
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direction are independent, the coefficients of restitution form a diagonal ten'sor,
whose entries we will calculate for some special cases.

3.2 Thesis outline

The subject of this work is the oblique impact of two elastic bodies of ar-
bitrary geometry under the influence of stick and slip stresses in the contact area.
We solve this problem on the base of the fundamental equations of the three-
dimensional theory of linear elasticity with appropriate simplifications. The contact
surfaces shall be non-conforming, so that the surfaces do not ‘it together without
deformation. At the time t,=0 the bodies shall be brought together and touch first
at one point, the conmtact point O. An orthogonal coordinate system is introduced
with its origin in the contact point O. The z-axis points normally into body 1 and
the x- and y-axis lie in the common tangent plane. Figure 3.1 shows a part of the
surfaces of the two bodies in the vicinity of the contact point. The coordinate
system shall be fixed in space, while the contact point moves with the bodies.

The distance of point P, on the surface of body 1 to P, on the surface of
body 2 is quadratic in x and y near the contact point. We have

zxy) =z, + , = A + Cxy + By (3.4)
By a suitable choice of the axis we can make C zero and A 2 B, hence:
zZ(xy) = Ax2 + By?, A 2 B. (3.5)

The constants A and B may be expressed in the local radii of curvature of the
bodies, and in the angle, which the planes of principal curvature take to one
another, in the manner of the Hertz theory (Love, 1927).

Under the influence of a normal force the two bodies will be compressed and
a contact area forms. The dimensions of this contact area shall be small compared
to the dimensions of the two bodies. The physical behaviour of the two bodies
near the contact point can be approximated by two half spaces. For that purpose,
we decompose the stress distribution into infinitely small forces acting on infinitely
small areas.
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Fig. 3.1 The surfaces of the two bodies near the contact point

The deformation field, produced by a singular force F, in normal direction,
acting on a half-space, is known as the Flammant sqlut,ioh' (Flammant '1892). The
deformations u, v, w of body 1 in X-, Yy~ a_hd z';direcfoin of the’ coordinate sySteni :
of figure 3.1 are: R : R

_ ‘_ M L= _(_1_.2_uly_]’,.w.= F, 12 +g(lr;g)] (3.56)

;u=-_11[x_z F, (Y2 z
SAnG i  (2+r) 4nG ' 1 (2+12) 4nG ' 13
=y,

with - the modulus of" rigidity G and the force F, .in z-direction, v is Pbis.son’s
nuinber and x, y, z are the coordinates where the displacement is measured. Figure
3.2 shows the displacements along the x-axis for y=0 and 2=0 with-F'z=0.()8_1tG.

The displacements of the surface are hyperbolas with a singularity at the
origin. This singularity disappears for a distribution. of infinitely small forces. The
deformation u in'x-dir,ection becomes zero for, v=0.5, In this -case the normél_ and
tangential solutions are independent. The displacements of an arbitrary stress -
distribution can now be calculated by decomposing the area into" smail intervals;
the action of the stress on an interval is equivalent to a small singular force in its’
center. We get the solution as a sum of singular forces acting on each - interval.
The limit of infinitely small intervals yields an integral. The corresponding integral
equations and the tangential solution will be explained in chapter 4.

According to the theory of H. Hertz (1882), the contact area C is an ellipse
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with the semi-axes a and b:

C={(y|&a?2+(/b)=1}. G.7)

The normal contact stress has the form of a semi-ellipsoid acting on the contact
area:

(3.8)

o, VI-(x/a)2-(y/oy , if (xy) € C,
p(xy) =

where p,(xy) is positive for compression. The factor o,, is determined by the
normal force F;:

0,0 = 3F,/(2nab). (3.9

o O a o o ©

, v=0.0
, v=0.25
, v=0.5

. v=0.25

Fig. 3.2: Deformations u, w for F,=0.08nG.

Application of an additional force in tangential direction and a balanced
moment defines the tangential problem. A kinematic boundary condition for the
additional boundary value problem is obtained from the consideration, that
contacting points in the contact area displace equally, except a constant, which is
determined by the relative displacement in tangential direction of far points of both
bodies. Coulomb’s law is taken as base with equal static and kinetic coefficients of
friction. The solution was found by Cattaneo (1938) and Mindlin (1949). Cattaneo
found, that the stick area H is also an ellipse, similar to the contact area with the
semi-axes a’, b":
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H={(@y]|@a)y+bPrs1}a/a=D>b/b (3.10)

Slip appears locally in the slip area outside of the stick area. We call this effect
partial slip or local slip. Other authors use the expression microslip, which we will
not use here, because it suggests microscopic movements, whereas the slip can be
large if the displacements are large. We distinguish between the three processes of
complete adhesion, partial slip and complete sliding. Similar to the Hertzian stress
distribution (3.8), the Cattaneo-Mindlin stress distribution consists of two concentric
semi-ellipsoids o, and o,. o; extends over the complete contact area and o, over
the stick area, pointing into the opposite direction:

fo o) T-(x/a)?-(y/b)?, for {xy € C},
o, = (3.11a)
0, for {xy& C},
foo(a' /A T-(x/a y>-(y/b' )2, for {xy € H},
o, = (3.11b)
0, for{xyé€ H},
with o, from equ. (3.9). The pressure distribution has the form:
0, =p(0,-62), 0, =q(0,-0;), inH, (3.12)

0, = P 0y, Oy = q0y, in the slip area S.

The stiffness coefficients ¢, ¢, ¢, define the stiffnesses of the force-displacement
relation in x-, y- and z-direction:

& __(1-v)/G S _ (1-v)/G 6 = D(k’
¢ 1/G-6v/G’ & (1-v)/G+ 6-v/G’ K(k)’
(3.13)
. __29D®

: = VBReR®K) (1-0)/G

Equations (3.13) hold for a<b. The constant B is the combined curvature of both
bodies in y-direction, while K(k) and E(k) are the complete elliptic integrals of the
first and second kind, defined by (5.13). The material properties G and v are
combined values:
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k = [1-22/b7, D(k) = (K(k)-E(k))/k2,
1/G = 1/G;+1/G;, v/G = v\/G,+/G,, G; = E;/(2+2uv).

(3.14)

ox/ f0zo Fus+F,
1.0 1 R IR 1.0

0.6 4~

273
0.0 T T T T & 1

-1.0 . . . . 0.0 0.2 0.4 0.5 0.8 1.C

Fig. 3.3: Stress distributions of Cattaneo and Mindlin for F,=0 and n=0.

The parameters p and q and the radius of the stick area a’ are defined as follows:

P = &V EP+(n)?, q = c/V ©EP+(cn), p*+q? = |,
/8 = @/ = 1 - Y (cEF+{cn) /(fel).

(3.15)

€, n and { are the displacements of the contact point in x-, y- and z-direction and
¢° is the normal penetration which produces a contact area of the radius a’. The
formulae for the forces F,, F,, F, are:

F.=pfF, (1-a%/a%), F, =qfF, (1-a%/#), F, =2c{{3/3. (3.16)

Figure 3.3.shows the stress distribution o, at y=0 for different values of the
tangential displacement €. The letter f denotes the coefficient of friction and F, the
tangential force. :

The solutions of Hertz and Cattaneo-Mindlin are one step solutions, because
the tangential deformation is applied in one step after the bodies are compressed
in normal direction. If the normal and tangential compressions are applied
simultaneously, the deformation must be decomposed into small increments, and
each increment can be approximated by a one step solution. The general oblique
impact for instance consists of a sequence of normal and tangential increments.
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Cattaneo’s solution is based on the two
simplifications that the direction of the
stress is constant in the entire slip area and
the direction of the force is constant during
the complete load-history. The value of the
tangential stress perpendicular to the shift
is smaller than 5% of the tangential stress,
for spheres (K. L. Johnson 1985). The
displacements u, v in x- and y-direction for
a semispherical pressure distribution o,
are:

o, = CV1-p¥/a% p = ey, (3.17)

nC
u = ——— [2(2-v)(2a2-p2)+vp?cos(26)],
Fig. 3.4: uy from (3.17) for v=0.5. 16Ga @-v)(2a-p) + vpPoos(26)
v nC vp?sin(28), for0 < p < a

= 16Ga

The polar coordinate 8 is measured from the positive x-axis and v is Poisson’s
module. The displacement v becomes maximal at an angle of 8=45° to the stress
direction (see Fig. 3.4). This effect is a result of the coupling between the
tangential deformations and dissappears for v=0.

The direction of the force changes during the load-history, in which the
displacement direction is constant, when the stiffness coefficients ¢, and ¢, are
unlike. In this case the pressure direction for complete adhesion is different from
the direction for rigid sliding. The term rigid sliding denotes the sliding of
perfectly rigid bodies. In the course of the load-history the direction of the force
varies between complete adhesion and rigid sliding. This effect appears clearly for
slender contact ellipses with Poisson’s number v=0.5. Several numerical calculations
showed, that the error remains below 5% as long as an area of adhesion exists.
The larger the area of adhesion, the smaller the error. The direction changes much,
when gross slip or complete sliding starts, where the complete contact area slides.
Equations (3.13) and (3.16) yield the following inequalities:

0.5 <€ ¢/¢ < 1.0, 0.5 < P,/P, < 1.0, ‘ fora>band € =n. (3.18)
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Figure 3.5 shows the numerical results for a load-history with equal displacements
in x- and y-direction: §=n, v=0.5 and a/b=20. Equations (3.13), (3.15) yield the
displacement, which is necessary to produce complete sliding: £=7n~¢. During the
sliding process the direction of the force adjusts to the slip direction of rigid
bodies. This result suggest to distinguish between four contact regimes: The term
full adhesion or complete adhesion is used when no relative motion in the whole
contact area takes place; partial slip signifies the occurence of slip on a part of the
contact area; full sliding or gross slip denote sliding of the whole contact area;
rigid sliding or rigid slip signify the sliding of perfectly rigid bodies. Kalker (1990)
uses the term rigid slip for the relative motion in tangential direction of two
corresponding points of the undeformed surfaces.

F‘-“/,‘FEZ.“:. e, 1.00

: : 0.80 -
(Fxs€Fz - .
: . 0.80 -

0.40 4

0.20

Fy

KA 006 ' R AL

T T T T T T 1
0.00 0.50 1.00 1.50 2.00 0.00 0.50 1.00 1.50 2.00

Fig. 3.5: The tangential force for a load-history with §=n , v=0.5.

In impact theories the transition from full sliding to rigid slip can be ignored,
because it happens in a very short time. Depending on the start velocities either
full adhesion or rigid slip dominates. Thus the stress direction can be approximated
by Cattaneo’s formulae.

Lubkin solved the problem of the torsion of elastic spheres with partial slip.
In section 5.4 we propose an approximation for the relation between the torque
and the twisting angle, which we generalized for elliptical contact areas under
varying torques in section 14.4. This approximation is based on the fact, that
Lubkin’s formulae can be generalized for the torsion of elastic spheres under
varying torques. The first approach to load-histories was published by Mindlin &
Deresiewicz (1953) in an article about varying normal and oblique forces. In
chapter 6 we will introduce the so-called Cattaneo-Mindlin functions, in order to
deduce a new formula for general load-histories under partial slip. This formula
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depends only on the points of instantaneous adhesion, in which the entire contact
area is stuck for a moment in the course of the load-history, but not on the
specific form of the load-history. In chapter 7 this formula is generalized for elastic
bodies with elliptical contact areas under oblique forces in varying directions. This
generalization is restricted to bodies of similar material without torsion and load-
histories under partial slip. Only numerical methods render better results for special
cases.

In the next chapters we investigate impact problems, on the base of the
contact laws mentioned above. We call the velocity of body 1 relative to body 2
the relative velocity. It can be decomposed into a component parallel to the z-
axis: The normal component v,, and two components lying in the tangential plane:
The tangential components v, and v,. At the time t,, when contact is first made, v,
is negative, because the bodies approach each other. This approach compresses the
two bodies and a contact area forms between them. Normal and tangential stresses
are transmitted in the contact area. The contact area will shift relative to the fixed
coordinate system, but the impact duration T shall be so short, that the rotation of
the bodies is very small, and the material contact point remains in the center of
the contact areas. This condition is satisfied, if the impact duration T is much
smaller than the reciprocal value of the angular velocity w: T < 1/w, ie. the
impact duration is very small compared to the time for one rotation of the bodies.

The global effect of the stresses on the two bodies can be described by the
statically equivalent forces and moments in tangential and normal direction.
Depending on the forces we distinguish between three types of impact: Normal,
tangential and torsional. The normal impact was calculated by H. Hertz (1882) and
consists of the two special types: Central impact of bodies of similar material and
frictionless impact, where only the normal force acts. Tangential impact denotes the
oblique impact with friction, where also a tangential force acts. Torsional impact
includes a rotation of both bodies around the common normal, i.e. the normal
force is accompanied by a torque. The torsional velocity around the common
normal is also called spin. An asymmetric normal stress distribution in the contact
area also produces torques around the x- and y- axis. We neglect these moments in
our theory, because the contact area is so smail, that the lever-arm of the torsional
stresses is much smaller than the lever-arm of the tangential forces.

In chapter 10 we discuss an approximation for the torsional impact, which
shows, that the angular velocity of two spheres changes proportional to
(a/R)?=(&yax/R), with the contact radius a, the radius R of the spheres and the
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Fig 3.6: Normal, tangential and torsional impact.

maximal compression {y.x. Hertz presupposes, that the contact radius should be
smaller than R/10 for his theory. It follows, that the change of the torsional
moment should be neglected, within the frame of the Hertz theory. More important
is the effect of the rotation on the location of the stick area. Furthermore the spin
changes the slip directions and this reduces the tangential forces. These effects are
very important for small normal velocities.

The normal impact consists of a period of compression and a period of
restitution. The impact of similar materials is completely reversible, because no
frictional forces are transmitted, provided both bodies consist of elastic material.
During the tangential impact the three contact regimes of full adhesion, partial slip
and rigid sliding must be distinguished. For small tangential relative velocities at
the beginning of impact the contact points stick and complete adhesion arrives as
the contact area increases. During the initial stage of the impact process the
increase of the tangential stresses is smaller than the increase of the normal stresses
and complete adhesion persists first. The frictional force accelerates the two bodies
opposite to the tangential relative velocity of the centers and generates an
increasing opposite stress distribution, until the increase of the tangential stresses is
no longer compensated by the normal stresses. At this point partial slip starts. For
high tangential velocities at the beginning of impact the stick condition of
Coulomb’s law is violated and both surfaces slide upon each other, until all points
stick together at the same time. At the end of impact the normal stresses become
zero while the tangential stresses produce complete sliding. The torsional impact
proceeds quite similarly to the tangential impact as just described.

We assume, that the bodies shall be massive, such that the elastic waves
propagate unhindered and without reflexion into and throughout the body. The
amplitude of these waves decreases with the depth of penetration into the body and
the surface deformation reaches the quasistatic value, as long as the normal velocity
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is small compared to the velocity v=}E/p of compressive waves in thin elastic
rods (B denotes Young’s modulus and p the denstity of the bodies). This result
was elaborated by Hunter (1957), who published another paper (1960), where the
experimental energy-loss of steel spheres etc. was explained by viscous (dissipative)
forces in the material.

We presuppose, that the bodies do not vibrate and that the contact area is
small compared to their dimensions and curvatures, so that they can be regarded as
rigid bodies with a small elastically deformed region. Now we apply the impuls
and momentum equations, with singular forces in the contact area, which are
statically equivalent to the stresses. The forces can be described by the contact law,
which we adopt from the solutions of the static boundary value problem mentioned
above.

In chapter 8 the transformation matrix between the coordinate system of the
principal curvatures in the contact point, which we call the confact base, and the
inertial base of the principal axes of inertia is deduced, which is necessary to
formulate the équations of motion. We show in section 8.2 that the equations of
motion consist of a system of ordinary differential equations. The contact law of
chapter 7 is inserted in the equations of motion. Some analytical solutions in form
of hypergeometric functions are presented in chapter 9. Complete solutions. are
possible for full adhesion and full sliding, while the equations for partial slip must
be solved numerically. The ratio of the tangential velocities after impact to the
values before impact is called the tangential coefficient of restitution. The impact
of spheres can perfectly be described by this coefficient.

If a torsional rotation is superposed or if the materials are dissimilar, the
numerical methods discussed in chapter 11 are necessary. Much work was done by
J. J. Kalker to develop algorithms for the normal and frictional contact, especially
for rolling problems. He solves the integral equations by discretization rather than
using polynomials or splines. Kalker showed, that the nonlinear frictional problem
can be solved by recursive algorithms. The form of the contact area and the slip
area can be determined by a successive correction. Furthermore he developed
several algorithms to accelerate the calculation. In an article (1971) he introduced
a variational principle for the frictional contact problem.

In chapter 12 we show, how these methods can be improved by the Gauss-
Seidel algorithm. In the area of adhesion the deformation is prescribed and a
matrix inversion is necessary to determine the stress. This matrix inversion was
performed with the Gauss-Seidel method. During the Gauss-Seidel iteration the slip
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direction is held constant and the new values of the frictional stress are
continnously inserted in the linear equation system for the stresses. Numerical
experience and a restricted proof of convergence in chapter 13 show, that this
modification of the Gauss-Seidel procedure converges also. The linearization of the
frictional law yields large matrices again and the Gauss-Seidel method can not be
applied here, but the linearized equation system can be solved blockwize i.e. by the
Gauss-Seidel Block Iteration Method. A proof of convergence for the linearization
was not elaborated, because convergence problems can be avoided, using small in-
crements. For infinitely small increments the slip directions change infinitely, i.e.
the correction of the slip direction becomes zero, and convergence is certain.
Numerical expirience shows, that the variation of the stress direction is maximal at
the border of the contact area. The Gauss-Seidel method reduces the execution
time and the memory requirements. Compared with the Gauss elimination,. the
required computer memory increases with n instead of n?, and the computation
time with n? instead of n3, where n denotes the number of elements. For 400
elements the memory and the execution time can be reduced by the factor 400. As
a typical example a contact problem with dissimilar materials, 400 points and a
load-history of 20 increments was calculated in 1 hour on an 80486/33 MHz pro-
cessor. It follows that contact problems with many points must be solved with this
method.

Chapter 14 presents some numerical results for incremental load-histories for
Hertzian surfaces and flat punches. The stress distribution for spheres of similar
material is discussed in section 14.1 and compared with the theory of chapter 7. In
contradiction to the theory the tangential stress direction is not constant in the slip
area, but the absolute value of the tangential stress, the size of the stick area and
the tangential forces are very correct. A large number of calculations for elliptical
contact areas proved, that the stresses o, and o, are constant on ellipses, which
are similar to the contact area, for bodies of similar material with v,=v,=0. A
load-history for elliptical contact areas with bodies of dissimilar material is
discussed in chapter 14.3. The numerical and theoretical stress distribution differ
considerably in this case. It turned out, that in the period of compression of dissi-
milar materials the stress direction is constant on radial lines. In section 14.4 the
approximation for elastic bodies under varying torque is cbmpared with the
numerical results. Furthermore the combination of shift and torsion is investigated
for two examples. Section 14.5 presents a contact problem for a flat punch with
1000 points in the area of integration.
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In chapter 15 some numerical results for the coefficient of restitution R, are
presented; R, is the ratio of the tangential velocities in the contact point before
and after impact. The influence of torsional rotation and dissimilar materials on
the impact of bodies with elliptical contact areas was emphasized in this chapter.
Fig. 3.7 shows an example for a tangential impact with different values of R, A
book is held over a table and a rubber ball is thrown under the book, such that
the ball will be reflected by the table and the book. People expect, that the ball
travels forward, but it comes back. The only classical approach to this phenomen is
the model of full sliding, which is not adequate here. In contrast to classical
impact theories the angle of incidence is not equal to the angle of reflexion and
the ball rotates after the first reflexion. Fig. 3.7 shows the behaviour of the ball for
a value of R,=0.6, which corresponds to the theoretical value of A=3 in fig. 15.1,
for similar materials with k=3/2, f~0.3, and an angle of incidence of 45°. The
value of R, varies between ~1.0 for an impact without friction, zero for a plastic
impact and +1.0 for a fully elastic reflexion. The determination, of the coefficient
of friction is the most difficult part of this experiment, because this value depends
on many parameters like the material, the normal force and the tangential velocity
etc.

iz

Fig. 3.7: Example for the influence of frictional forces on the oblique impact.

Another example for the oblique impact is the landing process of an airplane,
where the wheels strike the runway. In billard games the frictional forces cause the
rotation of the balls. Impact happens on every type writer, when the letters or pins
impact on the platen. The tangential impact is also important for the pneumatic
transport of solid particles in a pipeline, where the flow resistance increases by such
impacts between the particles and the wall. Many impact phenomena involve plastic
deformations, especially in military research. Such problems are not in the frame of
this thesis,
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4 Summary of the basic formulae for half-space

problems

4.1 The equations of Boussinesq and Cerruti

Boussinesq (1885) and Cerruti (1882) calculated the elastic displacement of an in-
finite half-space loaded by a singular force. The displacement produced by an arbitrary
stress distribution can be found by dividing the loaded area into a mesh of small rec-
tangles and replacing the stress distribution on each rectangle by a statically equivalent
force. We obtain the diéplaoement by superposition of the forces on each rectangle. It
is convenient in mathematics to reduce the size of these rectangles to an infinitely
small value and to describe the correct displacements in form of an integral. The force
on such a small rectangle is called point load, because the loaded area dwindles to a
point. The displacements produced by a point load are given by the solution of
Boussinesq and Cerruti. The derivation of this solution can be found in Love (1927).
Then if F,, F,, F, denote the forces on the surface, the diplacements u, v, w are given
by (Gladwell 1980):

4nGu _21- v)F 2Tx  (1-2v)Fx + 2 F | Tx(z+2r)  Fx
Z+r (z+r)2 1(z+r) T {z+r r(z+r)? r |’
4nGu _ 21-v)F, Y4 Ty (- ZU)F,y z(F +Ty(z+21;) ’
Z+r @+D? ~  1(z+r) T lzer 7 Hz4r) 12
_2(1-v)F, (1-2»)T z (zF, T 4.1)
4nGw = . + ) + { = + l

= x+y2+2% , T=(xF +yF, AN

where the z-coordinate points into the body. The stresses inside the half space
produced by a tangential force F, are defined by (Johnson, 1985):

= x3 1 3 2 Sr+z
2o = 3,5+ xR0-2) {55 - ozt @ gy |
(4.2a)
3r+z
2no,, = -3F, zy + yF(1-2v) { r(r+z)2 * X B I’
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1 + y2 3r+z }
1(r+z)2 Y B@+zp | (4.2b)

- xy? 1
2noy, = -3Fx—rs-— + xF(1-2v) l;a— ~

2no, = -3Fax?/15, 2no, = -3Faxy/t’, 2no, = -3Fxz?/rs.

The displacements u,w of the surface z=0 produced by the normal force F, are
shown in fig 3.2. The stresses inside of the half space produced by a normal force F,
are:

32 .
2no,, = F,—F--——(l -2v) l

r’-rz-z22  2r+z I
X
+z  (r+zp ’

_ _F 3z _ xy(2r+2)
2ﬂ0xy = ) { (1 -2v ) (I'+Z)2 (4.3)
_ 3zy? r2-rz-z¢2  2r+z  ,
2no,, = -F, =% (1 -2v) { N ]

2no,, = -3F,z%/r5, 2no, = -3F,z%/1% 2no, = -3F,z3/r5.

42 The displacements for an arbitrary load distribution

The displacements u,v,w of a point xy,z produced by a pressure distribution o,
0., 0, applied at the point X, y on the surface =0 can now be calculated by
replacing the letters xy in (4.1) with x-x, y-y. We introduce the normal contact
pressure p,, which is positive for compression, because the normal force F, from (4.1)
is mostly compressive in contact mechanics, and obtain (Love, 1927):

pz(x’)') = _o-zz(xayyo) s

= [ (-xX)P+(y-y)y+22, L = [o,lz Inz+r)-rldxdy,
(4.42)
M= [o,[z: In(z+1)-rldx'dy’, N = [p,lz:In(z+r)-rldxdy’,

= 3L/ax + daM/dy + dN/oz,
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2, 2 2
w2, 2 0L N

4nGu = dzox ¥ © 92z " azox
_ oy 321: 22M 92N
4nGv = 2v ay - azay + 2 W - az—ay N . (4.4b)
9 92 92N
4nGw = (1—2u)a—:‘—za—zf— 32

The formulae may be proved by performing the differentiations and comparing these
with (4.1). The displacements of the surface z=0 are easily evaluated from (4.4):

am = 2 [ %as - [, gzdS+]czyaade}—I—E;—Zl-ljpz%lnrds,(4.Sa)
2 2 1-2

o= G - F Jon g 05 + Jou g 8 | -G mugytmeas, ()

4nw=-Gg‘l alnrdS lzvl"zva lnrdS+%:2yJ%dS. (4.5¢)

For v=0.5 the normal and tangential displacement systems are uncoupled, i.e. a
normal traction o, produces no tangential displacements and vice versa. In this case
the solution of the integral equations for prescribed displacements can be simplified.
On the other hand for v=0 the tangential stress distributions are uncoupled, because a
traction o,, produces no displacement v in y-direction and vice versa.

4.3 The load-displacement equations in discrete form

In this chapter we will determine the load-displacement equations for two bodies
in contact. First the two bodies are compressed in normal direction and a contact area
forms. We assume, that in the comtact area corresponding points come into contact.
Different points of the two surfaces are said to correspond given their undeformed
location in x- and y-direction coincides. The displacements of the surfaces of the two
bodies can be calculated by equations (4.5). We have to take into consideration, that
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the normal coordinate of the upper body 2 points opposite to the normal coordinate
of body 1. Newton’s law states that the stresses at two points in contact are opposite.
We introduce the stress variables o,,, 0,, 0, and the difference of the displacements

u, v, w
O = Oud = "Opp s Oy = Oppy = Oz s Op = Opi = Oz (46)
U= -U,V=V, -V, W=W + W,
and the combined material parameters:
1 1 1 v vy VW
===+=, = + ==, 4.7
G G, G G G, G, @D

We obtain the displacements by inserting (4.6), (4.7) in (4.5) :

2 r . 2 22 1-2v, 1-2 3
4mu = 61 Tergg . 2 J"naxz "] ,yaxa’yds-( G:’I- G;”)]p,a—xlnrds,

2r ds - (1—2V1 1- 2Uz)j —lm‘dS

2
4’“'=—]—r"d5 Jzyayrz 'a]%m

G, ‘ay
4w = (1-02:;1 1- 2"’ )(Jo ua Inr dS + ]c,,aa—ylmds )+2—gl’]£r’£ ds .
= [ (x-xX)p+(y-y), dS = dxdy, (4.8)

Evaluation of the derivatives in (4.8) yields :

ar _ -X+x or x-x? 1 9 I _—x’+x

ox r e e Troa Mt T
o -1, : (4.9)
oy - T - -y)

We calculate the integrals in equations (4.8) by dividing the contact area into 2
uniform mesh of rectangles with a constant pressure distribution inside of each
rectangle. We direct the .rows of this mesh parallel to the x-axis and the columns
parallel to the y- axis. The centers of these rectangles have the coordinates x, and Yy,
with:

0<n<cols-1 O0<mcsrows-1, (4.10)
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where cols denotes the total number of columns and rows the total number of rows.
The pressure distribution o,, can be held in a two-dimensional array of variables:

0x(YmXs) = 0,[m,n] (4.11)

To simplify notation, we replace the displacements u,v,w and the surface pressure
0,00,-P, by two arrays U and o :

ULLjkl = u(ypx), UL2jk] = vy, ULBjK] = wyx),

(4.12)
o[1,m;n] = czx()’nuxn)’ o[2,m,n] = ozy(Yva‘n)! o[3m,;n] = pz(Ym’xn) .
The load-displacement equations (4.8) thus may be denoted:
rows-1 cols-1
. UlLi,jk] = Z Z Z Alijk;/,mun] oli,mn],
=1 m=0 =0
! (4.13)

il =123 0<jmsrows-1, 0skn s cols-1.

Figure 4.1 shows a contact area for 4 rows and 9 columns. The length of one element
is 2Ax in x-direction and 2Ay in y-direction.

TY
Xo X X, X, X; Xg
Yo " [ TP N .:....:....:....:....:....5‘.
P - SR PRSP (- [P I G IR P I
Y1 : : : : d : X
yzn 1 ¢ < 'y
y3~ . r . + -

Fig. 4.1: contact area.

We calculate the elements Ali,jk;/,m,n] by integration of equ. (4.8) over one
rectangle with the center y,,, x, and obtain:
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Alljk;1,mn] _I_(é é“d?s 1 (éll+ )J;’xf ds,

Y - L Ul vy 9%r
A[l,],k,2,m,n] - 2ﬂ ( G Gz) j axkay’ dS )
. 1 12v  1- 2u2
A[lrj,kysymyn] = an ( Gl ) ] a Inr dS

Al2,k;1,m;n} = Alljk;2,mn],

ik L (L Ly[dS_1 v vay[2
Al2jk;2,m,n] Zn(G G) T 2«(61*62) ay? s, (414

Al2,jk;3,mn] = -

4L" ( 1-(‘31‘/1 _ 1—GZZV2 )J a%jl'”ds’

AL3,klLmn] = -All,jk;3,mn],

AL3jk;2mnl = =Al2,jk;3,m,nl,

»

where we used the abbreviations:

= V%Y + %) , dS = dxdy . (4.15)
The integrals in equations (4.14) extend over one rectangle with the center ¥y, X, :
X +AX  yu+Ay
Alijiglmnl = Jfgxyx) ds = | | fy-y, xx) dy &X', (4.16)
X-Bx - yg-Ay ,
Substitution of :
Yo=Y -V, $ %=X "%, (4.17)

in equations (4.16) yields:
XX txgtAX  ymoYjtygtAy
Alijklmnl = | | f(8-yo, d-x)dO dg - (4.18)
XX tX=BX  yu-y+yo-Ay

The value of Ali,jk;l,m,n] in (4.16) represents the displacements uli,j,k] at the point
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Xy ¥; due to a constant pressure distribution o[/;m,n] over the rectagle with the center
in X, y,. The comparison between (4.16) and (4.18) shows that the integral in (4.18)
represents the displacement at the point x,, y, due to a constant pressure distribution
over a new rectangle with its center in X,., Yq- :

Yoo =Xy =X t X0 Ymr = Ym =¥+ Yo (4.19)

Fig. 4.1 shows the definition of our coordinates:
Xpe =Xg + 2Ax0% yu.=Yo-2Aym* 2Ax = x,-x,, 28y = y,-y,, (4.20)
Comparison of equations (4.19) and (4.20) yields:
Xpr» =Xpk s Y+ = Ym-j» forn-k >0 and m-j>0. (4.21)

Since the displacements Uli,jk] in (4.13) are defined for j 2 0 and k 2 0, (4.21)
holds for m-j 2 0 , n-k > 0 only. Inserting (4.20) and (4.21) in (4.18) and
comparison with (4.16) yields:

Alijk;l,mn] = A[i,0,0;/,m-jn-k], form > j andn > k. 4.22)

The definition of Alijk;/,mnl in (4.14) shows, that the integrals for i=/ do not
depend on the sign of X¥-x, and y’ -y; and we can take the absolute values of m-j and
n-k in this case. For the other integrals we have to consider the change of sign for
negative X' -x, or y'-y,, with the result:

Alljk;1,mn]) = A[1,0,0;1,|m-j},|n-k|]1,
Alljk;2,mn] = sign(m-j) sign(n-k) A[I,0,0;Z,lm-j|,|n—k|].,
All,jk;3,mn] = sign(n-k) A[1,0,0;3,|m~j|,|n-k|],
Al2,jk;1,mn]l = Afl,jk;2,mn],
Al2jk;2,mn] = A[2,0,0;2,|m-j|,|n-k|], (4.23)
AL2jk;3,m,n] = sign(m-j) A[2,0,0;3,/m-j,ln-k|] ,
Al3,jk;1,m,n] = -A[1,jk;3,m,n],
Al3jk;2mn] = -Al2,jk;3,m,n],
AL3jk;3,mn] = A[3,0,0;3,|m-j|,|n-K|]1,

The value of sign(0) for m=]j or n=k is arbitrary, because all expressions in (4.23)
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containing the factor sign(0) vanish beforehand. J.J. Kalker implemented the relation
|AGX,y) =]AG,0,5y-x)] in his program CONTACT (1990), where x, y are the
vectors to the rectangles where the stress and displacements are determined.
Furthermore he pointed out to me, that the symmetry relation Afijk;,mn] =
All,m,n;i,j,k], which we will use later, follows from equs. (4.23).

Equation (4.23) shows that we have to save the values of Alijk;l,mn] for
j=k=0 only. A contact area with 20 rows and 20 columns requires 3-20-3-20-8 =
28 kilobytes, while the whole set of elements occupies 400 times more space, which is
11.5 megabytes.

The integrals in (4.14) can be evaluated over a right angle triangle, and two such
triangles can be composed to a rectangle. We outline the procedure for All,jk;3,m,nl
in (4.14):

xa+tdx  y,+Ay ~
] — ln rds = J (X +xy)

oAk yady EX)T+ 6Y)? dy dx. (424)

We substitute;
=X%X Y=Y, (4.25)

and obtain for the integra.l (4.24) :

Xa~%HAX  yyu-y+ Ay
]— Inrds = | J

X x dy, (4.26)
% %%~ Bx yy-y-By :

x? +y2

Ya First we evaluate (4.26) over one rectangle with one
Vi corner in the origin, by dividing it into two triangles.
We use the cylindrical coordinates:

$ 1 x x =s-cos, y = s-sing, ¢ = tawily/x), (427)

—>

Fig. 4.2: Rectangle

and obtain for the integral (4.26) :

XN $1 x/cos¢p n/2 y;/sing
| 13 +y J jo= c°s"’s ds d¢ +¢l 10 E ‘;‘;s"’s ds d¢
x=0 y=0 $=0 s=0 1 8=

11 n/2 cos¢ Y1 Vi
= - - - 1 L2
0] x, d¢ +¢]I Yi 54 sing d¢ = - x; tan +yln Vaey
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Every rectangle in our mesh can be composed of four rectangles with one comer in
the origin. The calculation of the other integrals in (4.14) is straightforward, with the
result:

% )
J ooy dS = Val+b? - Va3 +b? - Val+bl + Val+bi ,

ox

. i .
J a_lz'ds = a In b1+b aj+b DtV ai+dy a,ln b1+v az+ Vet

ox b,+V a}+b;3 b,+V aZ+b:

dr a,+)al+b a1+Va7,+ ar+)/aj+bj
| 57295 = by In at Vel b, In vl

ds o a2r
| T = ) 559+ |59 (4.29)

(9 _ b, al+h +bz a2+b2
]axlnrdS—zlna%+b- s

b, b _ bl
-1 -1 2 _ tan!
+ a;(tan 2 tan-! ) + a; (tan! 32 » ),
_19. _1 al+b- -a-’z— az+b%
J lnrdS = 2 1+b ) ln'a—%—

M o) ad_ el
+b;(tan1-6;-tan1bl)+b2(tan1b2 tanlbz),
a =X -% +Axa =2 -28x b =y, -y +A4y, b=b -248y.

Replacing the terms a,, a, with b, b, and vice versa in the derivations of x, y yields
the corresponding derivations of y. The area of mtegrauon is defined by (4.16) and r

by (4.15).
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5 Some basic load-histories for bodies of similar

material

5.1 Hertz’s theory of contact

The Hertz theory of contact was already mentioned in section 3.2. In this chapter
we will introduce some more details, We suppbse that, in the unstressed state, the
surfaces of the two bodies near the contact
point O (Fig. 3.1) can be approximated by

two paraboloids :
Y | Ys
Z = i + L%AT ’
2R, = 2R;
X .
) ) (5.1)
- X8, JYB
2~ 9R, " 7R}’
& *B A
> The indices 1 resp. 2 denote body 1 resp. 2
with the radii of the principal curvatures
XA R;, R} resp. R, R} The axis z;, z, are

directed into the bodies and the axis x, Xg
form the angle w. We choose a common
y coordinate system x, y, z so, that the mixed
A terms in x and y vanish :
Fig. 5.1: The local coordinate systems. '
' z=1z2+1z, = Ax* + By (5.2)

The variables A, B and the angle o between the x,- and the x-axis are defined as
follows (fig. 5.1):

1 1 1 1
20AtB) = -+ o5t 5 t o
¢ ) R, RI R, R; (5.3a)

1 1

2 ——)( 2——,2)00520),

2
AP = (7 k) (R R

b
7| -

1
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_1/Ry-1/R; . -
(oos 2w R,1/R, ) tan 2« = - sin 2w , (5.3b)

When the bodies are pressed together they approach each other by the value &, and
the point x,, y; of the surface of body 1 and x,, y, of surface 2 will come into contact.
The deformations must satisfy the following equations :

X+ = XUy, YV = YoV, 24wy = —(Z,+ W)+ . (5.4)

The equations (5.1) can be formulated in the common coordinate system (5.2) with
the result :

2 =Ax? + By 2 + 2ZHpxyy, , 2, = A2 + By, + 2Hpxy, , Hy=-H,, (5.5)

where the constants A; , B; , H; are easily evaluated. Equation (5.5) inserted in (5.4)
yields :
witw, = § - Axg? - By2 - Ay(xi+X)(u;-uz) - By +Y:)(v1-v2) 56)
- 2H, {xy(v1-v2) +yy(uyu)} '

with A = A;+A, , B = B,+B, . Equation (5.6) is due to Love (1927). In the case of
incremental load histories this formula must be replaced by an incremental
formulation. When the bodies consist of similar material, corresponding points come
into contact, and we have: u;=u,, v,;=V,, X;=X,, y;=y,. Otherwise, the last three terms
in equation (5.6) are high order terms, which can be neglected, with the result :

=z, +w+w,+2z,inC. (5.7)

In the case of similar materials equation (4.8) and (5.2), (5.7) define the basic
integral equation:

Wy W, = 21";3 [Rds=¢-ac-By (5.8)

with the combined material parameters 1/G and i//_G, defined by (4.7). The solution
of this equation is known from potential theory. The contact area C is an ellipse with
the semiaxis a and b :

C={(xy | x/ap+{y/bP <1}. (5.9)
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Fig. 5.2: The deformed state of the bodies.

The normal pressure p, is a semi-ellipsoid:

0,0V T-(x/2)>-G/b) , if (xy) € C,
p(xy) = ou(a) = [ 0 if Gey) € C. (5.10)
The function oy(a) in (5.10) denotes the Hertzian pressure distribution, which we will
use in the next chapter. The semiaxes a, b in (5.10) are defined by the geometry of the
bodies. The coefficient ,, is determined by the total normal force F, :
0w = ik,
2nab
The problem is determined by three dimensionless constants «, B, 7 (Kalker, 1990) :

(5.11)

=2 V‘"Ei Ek), B = 1%% T = K(lg(lg(k), k= VT8, fora<b, (5.12)

where the expression E(k), K(k) and D(k) denote the complete elliptical integrals of
first and second kind (Abramowitz & Stegun, 1964):

n/2

E(k) = f Yy Tk sin?¢ d¢ , K(k) = f e RATTITS d¢ , D(k) = K(k)-E(k) E(k)

(5.13)

If either the surface geometry or the contact semiaxis and the Force F, or the approach
¢ are given, the unknown expressions may be determined by :
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_ _®A+B) _@1-v?)
«= F(@,+¢,) ’ 4= E °

B=‘&;@, (5.14)
A
7= AB

The equation for z of the contact area can be read from Fig. 5.2, with the result:
z =z.+w; = {-2z,-w, , (5.15)
Equation (5.8) yields :
w = %1’1 F(xy), w, = lﬂﬂz F(xy), (5.16)

with ¥; defined by (5.14). The deformation w,, w, can be eliminated from (5.15),
(5.16) :

W +9)z = ¥,z, - ¢z, + 9,8 . (5.17)

The functions z, and z, defined by (5.1) are quadratic functions. The bigger the
constant ;, i.e. the softer body 1, the more the contact area adapts to the surface of
body 2. The contact area approaches to the contour of the harder body and becomes a
plane for similar bodies.
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0 T T T T T ‘_T' T T T 1 T T T | T T o 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a’/b

Fig. 5.3: The dimensionless parameters o, B, 7, 6.
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5 Some basic load-histories for bodies of similar material 37

5.2 The solutions of Cattaneo and Mindlin for tangential shift

This theory is confined to bodies of similar materials with elliptical contact areas.
They are pressed together and shifted in tangential direction. The tangential shift may
have the components £, 0 in x- and y-direction. We suppose that the point x;, y; will
be displaced by the values uy, v, in x- and y-directions, before it comes into contact
with the point x,, y,, We use the two coordinate systems xy,z; and XY,z where the z-
coordinates point inside of the corresponding body. The kinematic relations are:

X+ uyxpy) =X+ w0y + §,
in H,
Y1+ Vi(Kuyn) = Y2 + vaxay) + 0, (5.18)

z, + wynyy) = -2 - Wo(xpy2) + €, inC,

with the contact area C and the area of

body 7 ) adhesion H. Wf' assume, that correspon-
ding points will come into contact and

£ obtain from (5.18):

u2 X =X, N1 = Y2
S X wm=uy +§ vy=v,+m inH, (5.19)

. w,=-w, +{- A2 -BpinC,
o §=&6-&4, n=m-m.

body 1 The deformed bodies are plotted in fig.
- 5.4. Equation (4.8) shows, that the normal
and tangential displacements are indepen-
Rz/ R1:2/ 3 dent, when the difference parameter &

becomes zero:

_{1-2vy, 1-21»
e = ( 26~ 3G, ) ) (520)

Fig. 5.4: A sectional view for y=0 of
the deformed bodies; §,=0.
Substitution of (5.20) in (4.8) yields:
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c“dS ard

2mu = G] G Jon 5,98~ G]a,,axayds e]p,alnrds

1o v 3%
2"V=a]7"d5'§]"=yayz GI"ﬂaxayds ‘Ipzal‘”ds

2 .
2mw = & Jo, 2 It dS + ¢ J o, 1nrdS+—]pdS (5.21)

= J&xX)+{-y)Z, dS = dxdy,

U= -Uy, VEV -V, W=W, +W,.

The parameter e from (5.20) becomes zero for similar or for incompressible mate-
rials. In this case the Hertz solution can be used for the normal pressure and the
tangential problem can be solved independently. Cattaneo (1938) found, that the stick
area H is also an ellipse, homothetic to the contact area with the semi-axes a°, b*:

= {(xy) | /@2 + @Fb)<1}a/a=b/bs L (522)

The stress distribution consists of two concentric ellipsoids o, and o,, similar to the =
Hertzian distribution oy. 0, extends over the complete contact area C and o, over the -
stick area H, pointing in opposite direction:

o, = fo,)/ 1-(x/a)2-(y/b)?, in C,
oo . (5.23)
o, = fo(a’/a)/ 1-(x/a")?-(y/b")?, in H,

with 0, from eq. (5.11) and the frictional coefficient f. The pressure distribution has
now the form:
6, =p(0;-0;), 6,=q(0,-0;), inH,
6, = P G}, O, = q 0y, in the slip area S, (5.24)
S={xye C\H}.
The slip area S has the form of an elliptical ring and contains all points of the contact
area which are outside of the stick area. The displacements §, n can be calculated by

insertion of (5.24) in (5.21). To simplify matters we introduce the stiffness coefficients
Cy Cp, C; in x-, y- and z-direction:

@, (w6 ¢ __ (1-v)G D(K)
¢ 1/G-6v/G’ ¢ (I-v)/G + 6'v/G’ 6= Kk’ (5.25a)

le.dﬂl’r’v;ﬁm,byl.Jupr.



5 Some basic load-histories for bodies of similar material 39

_ wyDR. 38"
% = VBK2E) 1-v)/G _ 2(,+9,)«/A+B ’

k= yI-a9/B. (5.25b)

Equations (5.25) hold for a<b. The constants ¢, ¢, ¢, are the stiffness coefficients of
the force-displacement relation. c, and ¢, are equal for v=0, for circular contact areas
with a/b=1 and for similar materials. K(k) and E(k) are the complete elliptic integrals
of the first and second kind defined by (5.13). The material properties G and v are
combined values (4.7). The parameter 6 is plotted in fig. 5.3. The parameters p and g
and the semiaxis of the stickarea a°, b* are defined as follows:

P = &NV SDTFEMZ, q = e/ (62 +m?, pi+q? =1,
/6 = @/a)? = (b°/b)2 = 1 - Y (c)2+{gn)? /(fc;f).

¢* is the normal penetration which produces a contact area with the semiaxis a°. The
formulas for the forces F,, F,, F, are:

(5.26)

F, = pfF,(1-a%/a%, F,=qfF,(1-a%/#), F,=2,)/0/3. (527)

Figure 3.3 of chapter 3 shows the stress distribution o, at y=0 for different values of
the tangential displacement ¢. Equations (5.26), (5.27) describe the forces as a
function of the displacement. The equations for the displacement as a function of the

forces are:
1 3fF, T f .
£=F ¢ aye ! -(- )] = P-—,..:z (Y
_ . 1 3fF, T fe .
n=F ¢ o7y ! SOl = e e, 629)

T = VF+F? ,

The force displacement relation (5.28) is nonlinear and a rotation of the coordinate
system follows the transformation laws of second order tensors (see also Raoof &
Hobbs 1989). Substitution of c,, ¢, ¢, with (5.25) and insertion of (5.14), (5.26) yields:

2/3

3F, T s
e (L G Ko -2 D(k) J[1-(1- ‘fF) I for a=b (5.29)
3fF,

2/3 and T<fF,
n=q 4"b[—K(k)+—D(k)][1—(1—T1I;.—z) ].

When the tangential force acts parallel to one of the semiaxis, we have p=1 resp. =1
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and formula (5.29) is identical to the result obtained by Deresiewicz (1957). We
obtain the displacement of body i by replacing 1/G and v/G with 1/G; and v, /G,
The limit T—0 for small forces in (5.29) yields:

lm -3 __1

T-0 Fx de W

im 2 -9 __1_ (530)
T-0 FY dFY W

Cattaneo presupposes that the stress-directions are constant in the whole contact area,
which is correct for similar materials with a Poisson number of zero. In chapter 14 we
present some numerical solutions for the tangential deformation of materials with diffe-
rent Poisson numbers. It follows that Cattaneo’s theory is correct for similar materials.

5.3 Torsion under complete adhesion

After a normal compression both bodies will be twisted by the angle 8 around the
common normal of the tangential plane. Similar to the chapter before, the materials
are equal. We calculate only the additional stresses and displacements which must be
added to the results of the normal problem. Adhesion in the contact area signifies,
that the displacements of both bodies are equal except from a constant rotation,
similar to equation (5.19).

u;-u, = By, v;-v, = -Bx, in the stick are H,
w, + w, = 0,0, =0, in the contact area C , (531)
0, = 0, = 0, = 0, outside the contact area C, ’

lim (uv,w) =0.
X,y,2— 00

Mindlin satisfies these boundary conditions using a solution of Neuber (1937) for the
stress concentration in a hyperbolic notch, with the result :

o, = Ty/f1-x%/aZ-y2[bT, = T"x/} 1-x2/a?-y¢[b?, o, = 0,in H,

O
Oy = 0, = 0, = 0, outside H.

(532)
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Equation (5.32) satifies all boundary conditions. The value of T", T” can be calculated
by insertion of (5.32) in (4.8), (5.31). We introduce the abbreviations :

B(k) = K(k) - D(k), C(k) = (2D(k) - K(k) ) / k?,
B(0) = n/4, C(0) = n/16, D(0) = n/4, E(0) = K(0) = n/2,  (533)
B(1) = 1, C(1) = o, D(1) = oo, E(1) = 1, K(1) = oo,

where the elliptical integrals K(k) and D(k)
are defined by (5.13), and get the result :

Tns.00 ] B(k)/G-2(1-k%)C(k/G

T o a BxD(k)/G-CK)EkW/G ’
S (5.34)
E 2.0 o = OB D(k)/G-2C(k)v/G

= Ta B(®DX)/G-CKEXW/G ’

Integration of the stresses yields the torque

1.00 T

T T l
1.0£-0002 1.0E-00D1 1.0E+000C

(a?/b?)

Fig. 5.5: The torsional compliance

M,:
8 _ 3-8[BHRD)/G - CREXV/GC]
for complete adhesion. M,

16Gb*n [ E(K)/G - 4C(k)(1-k2)v/G1’
(5.35)

5.4 Lubkin’s solution for the torsion of elastic spheres in contact.

Equations (5.32) show, that the stresses become infinite at the border of the stick
area. Thus slip must be expected, starting at the boundary and progressing inward of
the stick area. In the case of spheres the problem is axially symmetric and the
boundary conditions become :

ug = -Bp,up = 0 =0, for p<a inH,

0,0 = HFY TP/ (2nad),

in the slip area,
azp=ozz=0, for a* £ p < a,

(5.36)
Ozp = 0z = Oz = 0, forp > a,

lim (ugugu;) = 0, for [p?+2z2 — oo.
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Lubkin (1951) found the following formula for the stress :

020 =

VT—T'W[ + D(KF(K’,8,) - KEK,8,) |» (537

ﬂ2a2

with the inclomplete elliptic integrals F(k,$), E(k,¢) and the modular angle 6, :

sin 0, = & Z;_':z , k= yTa7a, k¥ = /1K,
Fk¢) = ? 9 B - j TRsgdg. 0
o VI-Wsin’$ 0
The relation between the angle of twist and the radius of the stick area a° is :
%B =%{K(k)'E(k)}’ (5.39)
fim (K()-E() = 7 i+l F(1-3),

where K(k) and E(k) are defined by (5.13). Lubkin found the following result for the
twisting moment M, :

M,
fF,a

= i |5+ e [6Kao+ (i-3)D)] - kK@i
L) /2 (5.40)
n-1(K’sinoc)

K
- 312 [ Kk sz ‘D(k)JVBrll(z'r':g:%d II

Formula (5.40) can be reduced, by direct integration of 0,9 in form of the complete
elliptic integral of the third kind in his work, with the result :

cos” (k%)
= XX [Do1+22) + 6B | + 2 Joosi@c/eosm)as.  (541)
0

fF,a

The values of (5.41) are plotted in fig. S.6. They agree completely with Lubkin’s
results. Equation (5.41) can be approximated by the function :
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M, -162 Ga’B
a ) l,

3n
Fa-16 - (5 (5-42)

with a maximal error of 3%. Formula (5.42) is plotted with a broken line in fig. (5.6).
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Fig. 5.6 : The twisting moment (5.41) and (5.42).
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6 Elastic contact of spheres under varying oblique

forces

Two elastic spheres of similar material and geometry are pressed together in
normal direction and subjected to tangential forces. We consider load-histories, for
oblique forces with varying normal component and varying, uni-directional, tangential
component with changing sign. The load-history starts at the time t, when the
undeformed surfaces of both bodies touch at one point, the contact point. Afterwards
the centres of gravity of both bodies are shifted in normal and tangential direction. We
distinguish between periods of compression and periods of restitution, in which the
centres of gravity approach resp. separate from each other in normal direction.
Another distinction is made regarding the slip direction in the slip area, which can be
positive or negative in the work of Mindlin & Deresiewicz (1953). Their paper shows,
that each reversion of the slip direction causes either a point of instantaneous adhesion
Py at the beginning, in which the entire contact area sticks, followed by a period of
decreasing stick area, in which the size of the stick area shrinks monotonously, or a
period of complete adhesion over a space of time. After the (N-1)-th point of
instantaneous adhesion Py ; follows the N-th period of decreasing stick area. This
period continues, until either the slip direction reverses again and the N-th point of in-
stantaneous adhesion Py takes place, or the old stick area is overlaid by the new one.
In the latter follows the period of (N-2)-th decrease of the stick area, because the
additional stress distribution of the (N-1)-th decrease of the stick area is completely
overlaid. ‘

We will show, that the tangential stress distribution depends only on the points Py
and the current positions of the centres of gravity, while the solution of Mindlin &
Deresiewicz depends on the entire previous load-history and the current variation of
the normal and tangential forces. We will deduce a criterion to decide, whether a
point of instantaneous adhesion or a period of decreasing stick area resp. a period of
complete adhesion takes place.

The solution of the tangential boundary value problem is unique, if the load-
history can be presented as a series of infinite, successive, incremental equilibrium
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6 Elastic contact of spheres under varying oblique forces 45

positions (Klarbring, 1990). In this case exists a unique solution for each increment
and the incremental method of Mindlin & Deresiewicz seems appropriate. We will
arrive at a non-incremental formula, however, because the slip direction of load-
histories with uni-directional tangential component is constant between Py and Py,,
and opposite to the slip direction between the two beforegoing points Py, and Py.
The two most important boundary conditions are: Coulomb’s law for sliding friction
must be satisfied in the slip area and the stick area must undergo a constant rigid body
displacement in tangential direction. We will show, that the stress distribution between
two points of instantaneous adhesion can always be presented as a Cattaneo-Mindlin
function, such that the load-history consists of a sum of Cattaneo-Mindlin functions, as
long as no period of complete adhesion takes place. In the case of a period of
complete adhesion the tangential displacement £(§) must be known as function of the
normal displacement ¢{. A similar method was used by Barber (1979) for the
tangential impact. The resulting, non-incremental formula for the force can be under-
stood as a sequence of incremental equilibrium positions, after differentiation. The
advantage of this method is, that a criterion for points of instantaneous adhesion can
be deduced from the formula for the displacement.

For several load-histories, Mindlin & Deresiewicz calculated the compliance,
which is the derivative of the displacement with respect to the force. We will calculate
the force as a function of the displacement, because the force can directly be inserted
in the equations of motion for two bodies, while the displacement appears in the
acceleration term, and must be derived two times with respect to the time. Mindlin &
Deresiewicz arrived at 7 basic load cases by differentiation between decreasing and
increasing normal and tangential forces on the loading or unloading curve. They also
found points of instantaneous adhesion and periods of decreasing stick area, but they
did not use these characteristics for the arrangement of the load cases.

The so-called Cattaeno-Mindlin functions are introduced in section 6.1 and some
basic mathematical relations are stated. Furthermore the boundary value problem of
the Cattaneo-Mindlin theory is discussed. The load-histories of sections 6.2, 6.3, 6.4,
correspond basically with the load-cases 4, 7, 8 of Mindlin-Deresiewicz (1953). In
sections 6.2-6.4 the non-incremental formulae for the forces and displacements are
deduced, using the law of superposition (6.9). Differentiation yields the tangential
stiffness dF,/d¢, which is the reciprocal of Mindlin & Deresiewicz’s compliance. In
section 6.5 the first point of instantaneous adhesion P, is discussed, and it is shown
that the load-cases for increasing and decreasing normal compression ¢, yield the same
formulae for the force F, and the displacement §. Section 6.5 corresponds with
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Mindlin & Deresiewicz's load cases for increasing or decreasing N and decreasing T,
at T=T", where T of Mindlin & Deresiewicz denotes the first point of instantaneous
adhesion. In section 6.6 the period of the second decrease of the stick area is analysed
and the conditions for periods of the 1-st decrease, the 2-nd decrease and complete
adhesion are deduced. The result corresponds with Mindlin & Deresiewicz’s sections
10 and 11. The first point of instantaneous adhesion P, occurs at the beginning of the
2-nd decrease, for infinitely small variations A§y=&yx—€n.;, A&N=Cn-Cn-1p and it is
shown that the formulae for sections 6.5 and 6.6 are identical. The stress distribution
for the 2-nd decrease has 2 breaks. Finally, in section 6.7, the formulae and the
conditions for further points of instantaneous adhesion Py, and N-th decrease of the
stick area are stated. The tangential traction distribution for the period of the N-th
decrease of the stick area has N breaks at aj<aj< .. <ay. Each break represents a
point of instantancous adhesion P, with 1<i<N-1, It should be noticed, that the
sections 12a), 13a) of Mindlin & Deresiewicz treat the problem of the 3-rd decrease
of the stick area, recognizable by three breaks of the resulting stress distribution,

The displacements § and ¢ in this chapter are the displacements of the centers of
gravity of one sphere alone. The indices 1, 2, ... denote either points of instantaneous
adhesion or the current values. The boundary condition of non-penetration in normal

" direction resp. adhesion of the contact point in tangential direction requires that the
relative elastic displacements of the contact point Woody,1 "Whody,2 T€SP- Upogy,1~Unody,2
must be equal to the motion of the centers of gravity Loady.2~Svody,1 TESP- Svody2~Sbody,1

2§ = $poay2 ~ Sbody1 = Ubody ~ Ubody2 »

} in the contact point. 6.1)
2€ = Sooay2 ~ Sboay1 = Woody,1 = Woody,2 »

6.1 The Cattaneo-Mindlin theory

In the next sections we will use the so-called spherical Cattaneo-Mindlin
functions, which are defined on the circles A;, A, (fig.6.1):
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A ={psa}, A, = {psal}, 8 > %,
6.2)
si = {peAi\Ak’» p= IIX +y4,
uVa?— 2, in§;,
oom(@nay) = | w(Val-p? - Jal-p?), in A,(6.3)
0, outside A;,
Fig. 6.1: The regions A, and S; u= “%fl% y K= 2%{‘:—"5 , 6.4)

where we introduced the variables u and . We determine the force by integration of
(6.3) over A, and the displacements from the load displacement equations (521):

3

2nu 3
3 @),

a; ’
F, = 2n { oem(@a)pde =

= flc((i—(k) » in Ak y

(6.5)

where ¢; denotes the normal penetration (6.1) of the contact point, produced by a
Hertzian traction on a circle of the radius a,; and € the tangential displacement of one
body in A,. The displacements outside A, can be calculated from the solution of K. L.
Johnson (1985), for a traction distribution of the form }a%-p? :

Oy = Vaz—pz,
u= %‘6 [ 2(2-v)(2a2-p2) + vp2c0s20 | , for Osps<a,

u——‘(—;[z(z -v)|2a2-p2)sin-1 () )+aV'Fa’l+VIPZSm'1( )+a(2a -1) V72 | os26],

for p>a,

v = 'IE vp2sin2@ , for 0<p<a,’ . (6.6)
= 8_16 | 02 sin‘l(?,—) + a(Z%;- - 1)_]/ pr—a% | sin20 , for p>a.

We derive three relations from (6.3), which simplify the calculations:

UCM(aiiak) = fUH(a() » in si ’ (6'7)
UCM(anO) = foH(a,) ’ for all 2 A (6'8)
ocm(@pdy) + Ocm(aza;) = oom(@pas) , 8 2 3 2 3y, (6.9)

with the Hertzian stress distribution oy from (5.10). Equation (6.7) satisfies Coulomb’s
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law in the slip area S; and (6.8) shows, that the Hertzian stress distribution is a special

case of the Cattaneo-Mindlin function. The law of superpostition (6.9) is the base of

our simplifications. For the case a;=0 in (6.9), the Cattaneo-Mindlin function
ocm(24,2,) is a combination of two Hertzian stress distributions.

We basically distinguish between three types of contact regimes: Complete
adhesion, partial slip and full sliding. In the case of partial slip the previous load-
history of the system only influences the current behaviour in so far as it determines
the locked-in tangential stresses in those regions of the contact area which are stuck. If
the stick area continues to decrease, it undergoes and additional rigid body
displacement, and the additional stress distribution must satisfy the following boundary
conditions:

1.) The load-displacement relation is given by the half-space theory;

2.) The stick area undergoes a rigid body displacement in tangential direction;

3.) We assume Coulomb’s law, which states that the tangential traction in the slip
area is equal to the product of a constant coefficient of friction and the normal
traction. The tangential traction in the slip area acting on one body has the
opposite sense of the velocity of that body relative to the other body, in the
corresponding points.

4.) The tangential stress in the stick area must be smaller than the product of the
coefficient of friction and the corresponding normal stress.

Gext/ $oeo Suppose, now, that one sphere is compres-
104 e s sed by he value ¢, and subsequently shifted
] Aissa | bythe value ¢ in tangential direction. The
) following Cattaneo-Mindlin function satis-

fies the boundary conditions:

o = oem(@2]), 3 <3, (6.10)

in which a, denotes the radius of the
contact area and aj the radius of the stick
area. The velocity s, of body 1 relative to
Fig, 6.2: The stress distribution (12). body 2 in the slip area can be calculated
from (6.6) :

s = 2552 (st (1- Zsint () - 2 aiyemar |, forai < o< m, 611

where we neglected the cos(20) and sin(20) terms. These terms are smaller than 5%
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of the displacement in the stick area ( K. L. Johnson, 1985). From (6.11) follows that
the sign of the slip s, is negative, while the stress 6,,, on body 1 is positive, such that,
with (6.7), the 3-rd boundary condition is satisfied. Fig. 6.2 shows, that the 4-th
boundary condition is also satisfied. Equation (6.5) yields the tangential force:

2rp .
|Fy| = 3 (a3-a,). (6.12)

Equations (6.10), (6.5) yield the tangential displacement £,, in the stick area,
which must be constant :
¢ = fe¢,-¢3), forp<aj,  (6.13)

Fxi/ #F 21 Equations (5.12), (5.14), (6.12) and (6.13)
10 § / can be reformulated to:
IS B &P gl W ‘
0.5 4 e a; =VKE;_= a, 1—{.—51%-1,
oad i : ' (6.14)
/o » = TENE AL
0.2 ] SO AP g Fg = fFﬂ[ 1 (1 fx Cl) ] :
W | R S .
T e e ve 1o . The stress distribution and the relauon‘
between force and displacement are shown
Fig. 6.3: The force (6.16). in Figs. 6.2, 6.3. From (6.14) follows, that

the radius aj of the stick area decreases

monotonously with increasing €, and fig.6.2
shows, that o,, has a break at aj. For |F|=fF, resp. |§,|=fc{, the radius of the
adhesive area a] bécomes zero and the displacement in fig. 6.3 is undefined. The
variation of F, for an infinitesimal variation of §; can be. obtained by partial
differentiation of equation (6.14) :

: §
dFy . 8Gaj _ 8GVR |/c _ I_f;ll ‘ 6.15)

dg, 2-v 2-v

The tangential stiffness dF,;/d¢, is the reciprocal value of the tangential
compliance defined by Mindlin and Deresiewicz.

Elastic Impact with Friction, by J. Jaeger



50 6 Elastic contact of spheres under varying oblique forces

6.2 Constant ¢ , decreasing ¢ .

Suppose, that the tangential displacement € is reduced, after it has reached the
value £, while the normal compression remains constant: {=¢,. In the following the
index is omitted for the current values of £, ¢ etc. The reduction of the tangential
displacement reduces the tangential stress in the entire contact area and causes a first
point of instantaneous adhesion P, at the beginning, Since for complete adhesion the
tangential stress becomes infinite at the border of the contact area (Mindlin, 1949), a
new slip area forms with opposite slip directions, i.e. the period of the 2-nd decrease
of the stick area follows. Similar to the section before, the stress o, in the slip area
a"<p<a is proportional to fo,, but it has the opposite sense. Thus the tangential stress

Ozx/ fOzo
[T T
0.8 4
0.6
0.4
0.2ded
0.0

RS

T T T al
0.0 0.3 Q.5 0.? 1.0

Fig. 6.4: The stress distribution (6.17).

Fx/fFz

-0.5

-1.0

Fig. 6.5: The force F.x from (6.18).
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changes by the amount -2fo,, in the slip
area and the stick area p<a' undergoes a
pure rigid body displacement. This bounda-
ry value problem is similar to section 1
with the following solution for the additio-
nal tangential stress Ao,,:

Ao, = -204(a2"). (6.16)

The resulting stress distribution o, is the
sum of the equations (6.10), (6.16) :

On = 6Chd(a!a;) - 2°CM(398') ’ (6'17)

with the current contact radius a=a,. The
stress o,, plotted in fig. 6.4, has two
breaks, with the inner break at the radius
a; of the old stick area, for P,. The outer
break occurs at the border of the new stick
area p=a’. Integration of the stress distribu-
tion (6.16) over the complete contact area
yields, similar to (6.12), the tangential
force AF;:
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[AF|=|Fy-F,| = —%‘ (@-a3), F, = 2'3& (2a3-a3-a?).  (6.18)
We obtain the new displacement § from (6.5) by superposition of (6.10), (6.16) :
' § = £,+A¢ = fic(¢-¢7) - 2c(¢-¢). (6.19)
Substitution of &} from (6.13) for {=¢, yields the radius a" of the stick area:

B

a"=)JRT[|/1 T (6.20)

This equation is finally inserted in (6.18) and partially differentiated, with the result:

dF, ~-8Ga’
- =T for {=const. (6.21)

The slope of the load-deformation curve (6.21), resp. the tangential stiffness, at the
beginning of the unloading process (§=¢,) is the same as the initial stiffness on
loading (£¢,=0 in eq. (6.15)). When the tangential force becomes zero, there is a
permanent set £ (fig. 6.5), the magnitude of which is obtained by setting F,=0 in eq.
(6.18). The accompanying self-equilibrating stress distribution is obtained by inserting
(6.20) in (6.17). When the force has been reduced to F,=-F,,, the unloading curve
has the same slope as the loading curve at the point §,. Hence the unloading curve is
tangent to the loading curve for negative displacements §, <0.

6.3 Increasing ¢, increasing &£.

Suppose, that after application of the normal displacement ¢; and the tangential
displacement £, the normal displacement &, is increased by the value A& to &, while
the tangential displacement §, remains constant :

¢ = ¢ +0¢, a=})RE+AT). (6.22)

In the following the current variables do not carry any index. With the normal
compression ¢ held constant, increase the tangential displacement by an increment
A£ <fcA¢. Partial slip starts at the radius p=a and progresses inward to a radius a’.
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The additional stress distribution Ao, in Fig. 6.6 is the Cattaneo-Mindlin functioh
ocm(@:a") and the radius of the stick area a’ is defined by (6.14):

i a" = VR yT-B¢/(x) . (6.23)

zx

Insertion in eq. (6.15) yields for A¢—0,
AL-0:

dF, _8Ga'_8Ga '
d€ = Tv = 7_—‘,, for d§ <fredt. (6.24)

This is the slope of the load-displacement
curve between the points 1 and 2 in. fig.
6.8. For an infinitesimal change of F, and
F, the radius of the stick area becomes
Fig. 6.6: Stress distribution equal to the radius of the old contact area

for A§ <ficAS. a*>a , and the change of the stress
distribution is obtained from (6.10), (6.12):

APy BF, ~ GF, © Znajaiet (6.25)

Multiplication of (6.24), (6.25) yields :

dop, 4G
i T nCv) yae (6.26)
o, The summation of n such displacements
o d€,, da, and substitution of an integral for
/\ the summation symbol yields the stress o,
\ at the point p for the time t(a), when the

o
Jaaa = contact radius has reached the value a:
by - ;
e 1l =" n@-v) | [at-p2 da 627)
B B S P for|d¢| <frdg.

If the function £(a) is known equation
Fig. 6.7: Stress distribution (6.27) can be evaluated.
for A¢>ficA. If the displacement is increased by the
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increment A€ =ficAg, the radius a* of the stick area, in fig. 6.6, reduces to the value aj,
.i.e. the radius of the stick area shrinks to its original value. The additional stress o}, in
fig. 6.7 is the Cattaneo-Mindlin function:

0 = Ocm(aay) (6.28)
Superposition of (6.28) and the initial stress distribution (6.10) yields with (6.9) :

O + O = Ocu(31,3]) + Tou(aa) = oou(ad)) , (6.29)

We obtain the same stress distribution if we first apply the normal compression
&,+A¢ in the origin 0 and subsequently increase the tangential displacement to the
value €,+fcA¢. A further increase of § follows the curve 2-3 in fig. 6.8. Then we
obtain the total stress increment Ao, by addition of o), and a second Cattaneo-
Mindlin function o, :

. o) = o),

X (6.30)
2 O = Oy + O + 0 = Ocn(a:2"),

where we used (6.9). Equations (6.5),
(6.30) yield the force and the displacement:

2np
F, = 4/ (a%-a"),
3 @) (6.31)
< ¢ra¢ £ = fi($-€°).
Insertion of (6.22), (6.23) in (6.31) with
Fig. 6.8: The force F,. A¢—-0, A§—0 and partial differentiation

yields with (6.24:

dF, _ 9F, d¢  oF, &

a - ot ag” a( @ (6.32)
dF %(_}_a_ , for dé <fid¢ ,
S (6.33)
d§ SG I fcals & 2 (1- f.c ) |, for d¢ 2ficdg.

d¢

When a number of n incremental displacements d§;, d¢; is superposed, equation
(6.31), yields:
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a
dF,\, _ 8G 8G ", d¢ dg, _ d¢
(G 2 Bom oy [agian, for ()~ (i3 )<

= _8G ... .- l/_IET_ . d¢ .
F"_S(l-u)R(a"3 a3, a°" =a)/ 1 &t for(dc) 2 fie, 1<i<n.

n

(6.34)

The stress distribution is obtained from (6.27) resp. (6.30) by substitution of a, for a
and a, for a’. In the case d§;<ficd¢; we have complete adhesion, because the increase
of the contact area compensates the increase of the slip area for each increment, such
that the new slip area always lies outside of the old contact area. Otherwise the stick
area decreases for the first time.

6.4 Decreasing ¢, increasing ¢

In contrast to section 6.3 it is desired to decrease the normal compression from ¢,
to & For that purpose it is necessary, to remove the tangential traction from the '
annular region between a and a, (fig. 6.9) using the stress distribution o,. Another
stress distribution o7, is necessary to compensate the reduction of o, due to o), and
the increase of §. The necessary stress distribution can be read from fig. (6.9)

o), = -0cyla,2 = oe(apa’) ,
T om(@s2) o(@1,2”) (6.35)
au=um+vu+on=om(a,a), .

where we used (6.9). The formula (6.35),
which is identical with (6.30), is indepen-
dent of the function §(a) and of the
variation d{ as long as partial slip
N e continues. This justifies the non-incremen-

tal formulation. Again we obtain the force
Fig. 6.9: The stress distribution (6.31). F, and the displacement £ from (6.7):

x 2"“ (a%-a"%), §=fe(¢-¢). (6.36)
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Differentiation of (6.36) yields the tangen-
X tial stiffness, similar to (6.33):

1 1 ‘:li;* %_%{flca‘;—é+a'(l—fxz—§)]. (637)

i : 2e _3 The first term in curved brackets in (6.37)
5 Y is the decrease of F, due to o}, (path-1-2
< fxAr —> in fig. 6.10). The second term is the
§ increase of F, due to o), and corresponds
to path 2-3. In contrast to (6.36) the
Fig. 6.10: The Force F, (6.30). tangential stiffness (6.37) depends on the
function d¢/d¢.

6.5 The first point of instantaneous adhesion

The first point of instantaneous adhesion for constant normal penetration was dis-
cussed in section 6.2. Section 6.3 and 6.4 studied the contact processes of the first
decrease of the stick area resp. complete adhesion for varying contact areas. In order
to arrive at a point of instantaneous adhesion P, the stress distribution must be
reduced. Mathematically a Cattaneo-Mindlin function with the opposite sense as the
old stress distribution o, must be added in the new slip area. If the contact area
varies, there is a first stress distribution o), necessary to compensate this variation,
which has the same sense as the old stress o,,, for A{>0 resp. the opposite sense for
A¢<0. Note that the increments A¢, A¢ must be infinitely small, in order to arrive at
a point of instantaneous adhesion. In the next step another stress distribution oy is
superposed in the new slip area a;<p<a,, pointing into the opposite direction of 0,,.
Both stress distributions are selected such that the law of superposition (6.9) of
Cattaneo-Mindlin functions is applicable. They are plotted in fig. 6.11a) for AS>0 and
6.11b) for A¢ <0, where the index 1 denotes the old values and 2 the new values. The
traction o), is different in the case a) and b), while the formula for o7, is identical:

ocyl(asra,) , for A > 0,
ol = { cwlaz ) (6.38a)

-ocv(aa,) , for AL < 0;
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oy = ‘2"@4(32»35) s (6.38b)
Oy = Oy + O + O = Oy(asa;) — 200y(a2a3) , for [A€] > fic|aC| , (6.38¢)

where we used the law of superposition (6.9). The last equation proves, that the
resulting stress distribution 0,,, depends only on the contact radius aj at the first point
of instantaneous adhesion P, and the current values a, aj, i.. the formula is
independent of the function §(a). The resulting stress distribution has two breaks
again, the inner one at p=aj for P;, and the outer one at p=a;, the border of the new,
decreasing stick area.

a) AL>0: b) AL<0:
Fig. 6.11: Stress distribution a) for A{,>0 and b) for A¢,<0.

Application of equation (6.5) on the additional stress distributions yields the force and
the displacement:

F, =F, + %‘f(a;—a{— 2a3+2a% ),

for |A fic|AC) , 6.39
&= & + i (&8, - 26,428 ), }°"€'> s (6.39)

The result (6.39) is independent of the sign of A{,. Reformulation of (6.39) and
partial differentiation yields the tangential stiffness dF,,/d¢,:
1 (§,-¢ dg; 1 (d¢ 1
3 = — {2231 _ 232 o[22, o
G =65 §2+§')’dg2 2(d§2+f1c)’

dF, 8G a, d¢, (6.40)
d_§2 = ZTul—fl:az-d—g + a,z(l+fx5€7 )l

We prefer equation (6.39) to (6.40), because the former depends only on the first
point of instantaneous adhesion P, and on the current values £,, n,. The value of a;
resp. the corresponding penetration ¢ is defined by the second equation in (6.39).
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6.6 Second decrease of the stick area

Suppose, that after a first point of instantaneous adhesion, as described in section
6.5, the displacement is continously decreased. The mathematical procedure is
identical to the previous section and we list only the results. The necessary stress
distributions o),, o7, are plotted in fig. 6.12 and have the form:

N
x

a) AS>0 b) AL<0:
Fig. 6.12: Stress distribution for a) A¢>0 and b) A$ <0,

- ,ay) , for AL > 0,
o, = ocmlasas) 19 6413)
oem(azas) , for AL < 0,
o = ~200m(3383) » (6.41b)
F, = Fp + %Tl‘i( _ag+a§ - 2a;3+2a;3 ),
> (6.41¢)
§y = &, + fic (~§,+8, - 265+2¢3)
dFg _ 8G ( oo db g d6 |
i, - 5o | ~feas ae + B (14 g ) (6.41d)

The equation (6.39) for the first point of instantaneous adhesion P,, where the stick
area begins to decrease for the second time, can be found by setting a;=a, and
substituting the index 2 for 3 and 1 for 2 in the formulae (6.41c). Since both
equations are identical, we will use the former one, because it is simpler. We
introduce the variables AF,, A§, :

A‘F2=l-:2_l::1 » A§2=§2‘§1 s (642)
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were the index 1 denotes P, and 2 the current values. The necessary condition for the
2-nd decrease, in the case of A{,>0, is that the radius a; of the new stick area, in fig.
6.11, is smaller than the radius a, of the old contact area; for A¢,<0 the radius ajmust
be smaller than the radius a, of the new contact area :

$; <&, for AG>0; &3 < &, for AL,<0 . (6.43)
Insertion of (6.40) into this condition yields:
A§, < -fic|A;| , necessary for P; and the 2-nd decrease, (6.44)

with P, for A¢,—0, A{,—0, resp. the period of the 2-nd decrease for finite values of
Ag,, AL,. Complete adhesion without partial slip, where the new stick area lies outside
of the old contact area (£3>¢,), occurs only for A¢,>0 and infinitely small values of
A%y, AL,

|d§,| < fied{; , necessary for complete adhesion. (6.45)

Formula (6.45) is identical with the condition (6.24) for complete adhesion. The last
condition for a period of the 2-nd decrease is, that the nmew stick area does not
eliminate the old stick area:

&>4&, (6.46)
Insertion of (6.40) yields:
§; > -§, - feA, , necessary for the 2-nd decrease. 6.47)
ficAC,
~-fcAl, -§, 0 £
a) AL,>0: — 133
J—— _)gz
1-st decrease compl. [ 1-st decrease
A 2-nd decrease P, adh.
+icA,
-§, —ficAg, 0 ]b—
- $ ¢
1-st decrease — —%, — 1-5t decrease
b) AL, <0: A 2-nd decrease P,

Fig. 6.13: The contact regimes for different £,.
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The conditions (6.44), (6.45), (6.47) for &, are plotted in fig. 6.13a) and b). A period
of complete adhesion from (6.45) exists only for A$,>0. If £, lies on the right side of
the period of complete adhesion in fig. 6.13a) resp. on the right side of P, in 12b) the
period of the first decrease continues. If €, lies on the left side of A the slip direction
is opposite to the old slip direction and another period of the 1-st decrease occurs.

6.7 Further of points instantaneous adhesion and decreasing stick
area

‘We introduce the sign sy of the slip direction after the N-th point of instantaneous
adhesion Py. The resulting formulae hold for N>2, with the points Py and Py_,. The
derivation of the equations for the pressure distribution is similar to (6.38) :

sy = -sign(Ady), sy = -sign(Béy) = -y, Béy = &n- énas (6.482)

o { -Sn.1 Ocm(@wan) »  for ALy>0, (6.48b)
= Sn.1 Ocm(@ndn) »  for Afn<0, .
o = - 2syoou(@anan) (6.489)
2nu X
Fan = Fay + 3 (=Sup 83 + Sy By = 258 + 253y ) s
- (6.48d)
=FXN_1+_SN(2a'N l)’
§n = €na + fiosn(28y - On - &) (6-48¢)
dFy  8G dn
@’ " 2l f‘CSNaw d§ + an(1+fosn g ) ©4%0

The resulting pressure distribution o,y has N breaks. The force F,y in (6.48d)
depends only on the force F ;, the contact radius ay, at the previous point of
instantaneous adhesion Py_;, and on the current values ay, ay. Equation (6.48f) for the
tangential compliance depends on déy/d¢y. Similar to formula (6.43) the necessary
condition for the N-th decrease of the stick area is:

€< 6y, for AG>0, and &y < &y, for Ay<0. (6.49)

The necessary condition that the new stick area does not overlay the old stick area is
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&> G (6.50)

Equation (6.48c) in (6.49), (6.50) yields the condition for the process of the N-th
decrease of the slip area, which follows the N-th point of instantaneous adhesion. This
condition together with the condition for complete adhesion (6.50) yields :

|ficALy| s |Agy| < [AdN.| + fic(Aln. +ALY), for N > 2, necessary for the
N-th decrease,

6.51
|Agy] < fcaly, with A§y—0, A{y—0, for complete adhesion. 631)

The conditions (6.51) are plotted in fig. 6.14 for A{y>0. We obtain the condition for
A§y<0 by mirroring fig. 6.14 at a vertical axis. It should be noticed, that for A€y on
the right hand side of the point A a period of the (N-2)-th decrease takes place,
because the N-th decrease overlays the (N-1)-th decrease and the slip direction has the
sense of the (N-2)-th decrease.

ficAg,
o ficAly, Py fic Acrg &A(N-l
g g
(N-1)-th decrease Ag'f'l————-)l Aéy —
compl. | (N-2)-th decrease
adhesion *N-1 N-th decrease A

Fig. 6.14a) : The contact regimes for A{y>0, ALy, >0, A€y>0.

ficAS., ficAly  ficAy
— —
Mgy, Tae Py,
188N |‘—
-1)-th decrease -2)-th decrease
(N-1)- — N-th decrease 1A -2y

P N-1

Fig. 6.14b) : The contact regimes for A§y<0, A{y_; <0, A§y>0.
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7 Load-histories with elliptical contact areas

Only bodies with similar stiffnesses ¢, ¢, from (5.25) and similar inertial
properties in x- and y-direction, like e. g. spheres, keep their initial displacement
direction throughout the entire impact. Otherwise the tangential displacement
£€=(¢n)T changes its direction. In the following bold letters, like e.g. §, denote
vectors, and the superscript T signifies transposition. In Fig. 7.1 the normal and
tangential displacements ¢ and ¢ are plotted for the impact of two spheres with initial
adhesion. This example will be analysed in
detail in chapter 9. In the period of
adhesion, which ends shortly after §
reached its maximum, equation (6.24) for
complete adhesion is valid. Subsequently
partial slip starts, similar to section 6.1,
under consideration of the old stress
distribution in the stick area. After § has
reached its minimum, the differential €
and the slip direction change again. This
change of direction reduces the tangential
.o stress, which can produce a point of instan-

0.100

-0.020 L
a.

Yl taneous adhesion, if the condition for
adhesion: |do,|<fdo,, is satisfied. Since
for complete adhesion the stress becomes
infinite at the border of the contact area, a
new slip area forms, which starts at the

border and progresses inward, superposing
the original stress distribution. In chapter6 this contact phenomenon was studied for
the case of spheres and we found that, in the case of partial slip, the system depends
only on the so-called points of instantaneous adhesion Py and the current
displacements. The boundary value problem for the tangential shift of elliptical contact
areas has a very similar solution. Similar to chapter 6 we define a point of
instantaneous adhesion Py, where the entire contact area sticks for an infinitely short
moment, followed by the N-th period of decreasing stick area, during which the size of
the stick area decreases monotonically. The stress distribution has to satisfy the

Fig. 7.1: €,n as function of the time
for the oblique impact.
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following boundary conditions:

1.) The load-displacement relation is given with (5.21).

2.) Constant displacement £, 0 in the stick area. .

3.) We assume partial slip with Coulomb’s law in the slip area, which states that the
tangential traction is equal to the product of a constant coefficient of friction and
the normal traction. The tangential traction in the slip area acting on one body
has the opposite sense of the velocity of that body relative to the other body, in
the corresponding points.

4.) The tangential stress in the stick area must be smaller than the product of the
coefficient of friction and the corresponding normal stress.

If the slip direction varies, the third boundary condition for the slip direction yields a
system of two nonlinear integral equations, which can not be solved by analytical
methods. Therefore we assume constant stress directions in the slip area and compare
this theory with nnmerical results in chapter 14. The values for the force and the size
of the slip area are in good accordance with the numerical solution as long as the slip
area is small enough. We also found that the slip direction is constant on elliptical
rings, but its value depends on the previous load-history. Thus this theory is usefull for
approximations, as long as the limits are kept in mind.

Our solution is non-incremental, because the slip direction is constant during a
period of decreasing stick area and changes only at points of instantaneous adhesion. If
follows that the displacement must have a constant direction between the actual value
£y and the value £y, at Py . Otherwise, if the tangential displacement changes its
direction continously while the stick area decreases, an incremental method must be
used to calculate the correct stress directions in the slip area, and our theory is only a
first approximation.

In section 7.1 we start with the boundary value problem of Cattaneo. He solved
the problem of the two-dimensional shift of two bodies in x- and y-direction with a tan-
gential pressure distribution of constant direction in the whole contact area. The dis-
placement direction is also constant and the stick area decreases continuously with
increasing displacement, until gross slip occurs.

In section 7.2 we discuss the case, where the tangential displacement is reduced,
after Cattaneo’s stress distribution  was applied. At the beginning of the reduction a
first point of instantaneous adhesion P; occurs, followed by a period of the 2-nd
decrease of the stick area, where a new slip area forms at the border of the contact
area, progressing inward with increasing €. This behaviour is similar to the theory of
Mindlin & Deresiewicz in chapter 6, but the tangential displacement must not be
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directed parallel to one of the semiaxis of the contact ellipse, as Deresiewicz (1957)
presupposed. If another displacement in a different direction is superposed, a point P,
may occur, which is the topic of section 7.3. Furthermore the size of the contact area
may change also, which is discussed in section 7.4 for P; and in 7.5 for Py. In section
7.6 pure torsion of elliptical contact areas is discussed. We compare the numerical and
theoretical solutions in chapter 7.7. '

In all sections of this chapter we will use the so-called Cattaneo-Mindlin
functions ocy(a,,a,), which are defined on similar ellipses A;, A, :

- x_¥ - (2P 3
Ai-[&'2 b?<1}’Ak_[aE b£<1l’
a > a, a/b = a/b, (1.1a)
S={xy€ A\A} J

ua_.l[l—‘:':z—%z ,' inSi,
Cenlayay) = . (7.10)
oM u[ai|/1—§-f,v—_z-ak 1-5"—%-5‘%],mAk,

0, outside A;

fo,, 3F, _ 3f(A+B)1-K -
a, _ Znab, Znu(P,+9;) (7.1¢)

u o=

where we used (5.14) for the variable p, which depends on the fraction a;/b; and on
the materials, but not on the penetration ¢. Integration of (7.1b) yields the force and
equation (5.21) the displacements. We introduce the normalized displacement vector
e, the force F, the stress direction ‘p, the displacement vector £ and the tangential
stress vector o,. We obtain the force F by integration of (7.1b) over the loaded area
A,, and the displacement e by integration of (5.21) :

o = (%) = Poen@a), (7:22)
p=(8), wi-1, - (7.2b)

¢ = flz (f:yf,) = p(-t), inA, (7.20)
F = pz:;&(cf/2 - 6% (7.2d)
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In (7.2) we replaced the semiaxis a, (a;) with the corresponding normal penetration &
(%) produced by a Hertzian pressure distribution (5.10) over the ellipse A, (A;). The
displacement vector e was obtained by integration of (5.21), neglecting the asymmetric
terms, similar to chapter 6. From (7.1) three relations, which simplify the calculations,
can be derived:

ocm(ay ) = foy(a), in §;, (7.32)
aCM(aiD 0) = de(a..) , for all XY, (7'3b)
Ocm(@n 2;) + ocm(d83) = ocm(a,a3), for a 2a,2a;. (7.3¢)

The first equation (7.3a) satisfies Coulomb’s law in the slip area S;. Equation (7.3b)
shows, that the Hertzian stress distribution oy is a special Cattaneo-Mindlin function.
(7.3c) shows, that two Cattaneo-Mindlin functions can be linearly superposed. The case
8,=0 in (7.3c) shows, that the Cattaneo-Mindlin function is a superposition of two
Hertzian stress distributions. Equation (7.2c) proves, that the Cattaneo-Mindlin
function satisfies the boundary condition of constant displacement in the stick area A,.

7.1 Tangential shift with decreasing stick area

Suppose, that two bodies of similar material are compressed by the value &, in
normal direction. The normal stress distribution is defined by the Hertzian theory of
section 5.1. Now we apply a tangential displacement with the components £,, n, and
increase its value in a constant direction. Introduction of the relative velocity s of body
1 relative to body 2 and the tangential stress o,, on body 1 yields the following
equation for the third boundary condition :

0, = - £ % G,, » in the slip area . (7.4)
The following Cattaneo-Mindlin function (7.2a) satisfies the boundary conditions:

%y = Pi0em(@131) 5 |Py| = I/ pitgi = 1, (7.5)

The area of adhesion H=Aj(aj,b;) and the contact area C=A(a,,b;), with A (a,,b,)
defined by (7.1a), are similar ellipses with the semiaxis aj, b} resp. a,, b,. The slip
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area S, occupies an annular region inside of the contact area, but outside of the area
of adhesion. The values of the stress are constant on similar ellipses. Equation (7.2¢),
(7.5) yield:

e =pi(€i-€1), &i=8 - e, (7.6)

The penetration ¢,, which produces a contact area with the semiaxis aj, decreases
proportional to the scalar value of |e,|. The force is defined by (7.2d) :

2f .
Fy = py 3= (§2-6), (&)
From (7.6), (7.7) follows, that the direction -of the force differs from the direction of
the displacement, if ¢, and ¢, .are unlike. The stress distribution (7.5) and the force F,
for F,=7,=0 are shown in fig. 3.3. The relation between ¢, and a, resp. ;" and a;”
can be deduced from (5.14) :

&, = BbIK(k)/D(k), bl/b, = ai/a, = YTITL; - (7.8)

If the displacements £,, n, are given, the parameters p,, q; can be calculated by (7.6).
Otherwise, if the force F, F, is given, equations (7.2b), (7.7) define the unknown
parameters.

Equé\tions (7.5)-(7.8) hold for a load-history, where the displacements §, and 7,
are applied in one step. Other load histories are possible, e.g. the displacement §; can
be applied first followed by the displacement 7. In this case the slip directions in the
slip area differ considerably from the slip directions defined by equation (7.2).
Numerical calculations proved that the force displacement relation (7.5) is a good
‘approximation, as long as the stick area is large enough to prevent gross slip, where
the whole contact area slides. In the case of gfoss slip, Coulomb’s law (7.3) holds in
the entire contact area, and the slip direction is defined by the relative velocity of the
two bodies. In chapter 14 some elementary load-histories are ‘investiga,ted, using the
numerical method.

The displacements in the contact area due to a traction distribution of the form :

0, = 6,/ 1-x2/at-yz[b? (7.9
were calculated by P. J. Vermeulen and K. L. Johnson in 1964, with the result :

0,0b/(2G) , a<b

0u8/2G) asp 1O

2
U=UO[F'¢_—W#],V=U()0’;—%, UO={
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b D), acb,

r ={ n(2-v)/4, a=b, (7.11)
% [K—vB] ) a>b,
a

b [B-v(D-C)] , a<b,
& = { n(4-3v)/16 , a=b, (7.12)
% [D-v-0)], a>b,

[ § ©vO),  a<h,
e i ¥ = { n(4-v)/16, a=b, (7.13)
0.0 o2 o4 LY (X ] 10 02 o4 s o8 Lo b bZ
: - b [B-v2 ], a>b,
a/b 1-b/a | 7 [Bv al I, a
[ 2
Fig. 7.2: The functions (7.11)-(7.14). v c, a<b,
o=1{ mys, a=b, (7.14)
w2 c, a>b,
a

The functions K, E and D are defined by (5.13). B and C are defined as:
B = K-D, C = 2D-K)/k2. (7.15)

They are tabulated by Jahnke and Emde (1945) in terms of the modulus k =}/ 1-a?/b?
for a<b and k=}1-b?/a? for a>b. Fig. 7.1 shows the functions (7.11)-(7.14) for
different Poisson’s ratios.

7.2 First point of instantaneous adhesion

First we apply the pressure distribution of section 7.1, defined by (7.4)-(7.8). In
the next step we superpose an additional displacement, such that the initial stress distri-
bution decrecases. At the beginning of the reduction a first point of instantaneous
adhesion P, takes place, followed by a period of the second decrease of the stick area.
The new slip direction has two components, one parallel and the other perpendicular
to the old slip direction. We will show that the parallel component must be opposite
to the old slip direction to cause instantaneous adhesion of the entire contact area.

We satisfy the 3-rd boundary condition only in so far, that the absolute value of
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the stress in the slip area follows Coulomb’s law :
62, + 02, = (fo,;,)? in the slip area, (7.16)

where the index 2 denotes the new stress distribution. The boundary conditions can be
satisfied by a superposition of Cattaneo-Mindlin functions:

o, = P1ocn(@3]) + P2ocm(32)) , IP1+P2l = 1, P = P (7.17)

where the term p,0(8,a;) is the old stress distribution and p,0,,(a,a;) the additional
stress. Insertion of (7.5) in (7.17) yields:
' P2(p2 +2py) = 0. (7.18)

/// T The additional displacements A¢,, An, are
2.0 [: S5
_///\ defined by (7.2¢) resp. (5.28) :
1.0 % : § \
= TN 0, 2 Aez = ez ‘el = pz((z'(;) ’
00— * > b (7.19)
z] _______________ o /] 1 T
CREE b "\ Ae, = E(ch§2, cAn, )T,
________ L | p
2.0 N, /| Insertion of (7.7), (7.18) in (7.19) yields
Lol s / /| the compression &;:
e | ] L . e,||Ae,|2
g gy P
The normal compression §," of the corres-
Fig. 7.3: Stress distribution. ponding semiaxis a,” must be smaller than
e — ¢,. It follows, that the numerator of (7.20)
I N =0 must be less than zero. This condition is
S - _ \\\ \\\ necessary but not sufficient for the exis-
// //' Ae, ’_’,,,%\ \ tence' .of a new slip area. 'I:fxe s'ufﬁcient
[ /ey 1 7€ v condition is, that the semiaxis a," of the
\ ' '!f ' = C' 5 ,l“J! new stick area must be larger than the
\\ Y ] R semiaxis of the old stick area a,". The
\\ N _' (j:(: o same holds for the corresponding compres-
AN Sed_ - ’ sions:
T & - ¢ > 0. (7.21)

Fig. 7.4: Condition (7.23).
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Insertion of (7.6) and (7.20) in (7.21) yields for constant ¢:
(Ae,) + 2(e,Ae,) < 0. (7.22)
Insertion of (7.19) in (7.22) yields: '

el <e?. (7.23)

If the vector e, lies inside of the circle with the radius |e,| in Fig. 7.4, a new slip area
‘forms and solution (7.17) is valid. Outside of the circle the stress distribution can be
approximated by equation (7.5), independent of the foregoing load-history. If the
current displacement exceeds the circle |e,|, the new slip area overlays the old slip
area completely. If the new slip directions are much different from the foregoing
directions, the angle of the slip directions varies considerably. Some load-histories of
this type are calculated in chapter 14 and compared with the simplified solution of this
chapter. Mindlin and Deresiewicz's theory is a special case, where €; and Ae, have
opposite directions and the contact area is circular. Equation (7.2d) yields for the
force:

£ . .
- 2701 [PA(E3/2-€372) + pa(832- )], (7.24)

Introduction of the slip-direction in the slip area :

8§ = P1, 8= -P1 - P2 (7.25)
insertion of (7.19) :
s;Ae; = —(py+pa)Ae; = -(Py+P2)Pa(62-%3) S (7.26)
and insertion of (7.18), (7.19), (7.25) yields:
spAe, = -s;Ae,, (7.27)
cn
S B, +a, = B-a, We introduce the angles oy, 8, :
)] ’ .
lf\ﬁ%/ AAAAAAAA Ae, = (cos o, sin oy )T,
AY ‘ e . s, = ( cos B,, sin B, )T, (7.28)
4 2
el Ael = el >
SZ
ﬁ U lc £  and obtain from (7.26) :
1

Bi-o,=m-8,+a,. (7.29)

Fig.. 7.5: Condition (7.30).
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Equation (7.29) states that the angle between the old slip direction s; and e, is equal
to the angle between the new slip direction s, and -Ae, (Fig. 7.5). It is a consequence
of our assumptions, that the angle B, of the new slip direction depends only on the
angle «, of the additional displacement and on the old slip direction 8;, but not on
the value of Ae,.

7.3 Further points of instantaneous adhesion

Suppose, now, that N-1 points of instantaneous adhesion P, occured, followed by
N periods of decreasing stick area. The additional stress distributions Aoy; of step i

have the form :
N
Ao, = piocu(ana]), oy = _leiGCM(aN’ai.)' (7.30)
i=

In the slip area Sy the two surfaces slide partially upon each other and Coulumb’s law
must be satisfied:
0.2+0,2 = (fo,)?, in Sy. (7.31)

Insertion of (7.31) in (7.32) and (7.3a) yields :
N 2
( 2 pi) =1. (1.32)
i=1
Equation (7.2¢) and (7.30) yield:

Aey = pn(Sn-¢R) - (7.33)

The slip direction s, is opposite to the stress direction (7.30) :

k
Sa=-2 Py Isl=1. (7.34)
i=1
Insertion of (7.34) in (7.32) :
Pn(PN-28n4) = O, : (7.35)

and the definition of sy (7.34) yields with (7.35) :
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Sy Aey = (sn.1-Pn)Aey = (Sn.1-PNPN(EN-ER) - (7.36)
The last two equations can be reformulated with (7.33) :
snAey = -~ sy Aey . (7.37)

We obtain the compression ¢y from (7.33), (7.35) :

. (Aen)?  _ (Aey)?
= b 2(Aensn-1) B 2(Aexsy) ’ (7.38)

Introduction of o, By from (7.28) in (7.37) yields an equation for the angle of the
new slip direction By, similar to (7.29):

By-ony=o0y=By; + 7. (7.39)
The angle between the new slip directionsy and Aey is equal to the angle between
-Aey and the old slip direction sy_,. Similar to section 7.2 {% must be greater than

¢ for a point of instantaneous adhesion. From equation (7.38) we obtain the
condition :

- COS
|Aen| < |Aen,] <os(rn). (7.40)

cn cos(ry.1)’
e NG h oduced the angl
TN where we introdu e e7;:
4/ Aé!}*l \\Sn-z
. Ve 7i = By - o, i=1.N. (7.41)
/ l, Ae) 5 1 )Q
i \ W | \ Condition (7.40) is satisfied, if |Aey| lies
. SN - ,' © £ inside of the large circle in fig. 7.6. It has
\ 2::\.\ [N p the diameter |Aey.,|/cos(yy.) and the
\ A =7 / center lies on the line BC which forms the
\\\ Sv 1 /1/2«\ angle 7y, with Aey_,. This circle can be
D B G constructed as follows:
1.) Draw Aey_, and sy_, defined by (7.34),
[ACN| _ |ACn-1| _
M-BE’W_BC’ through A. .
2.) Draw the line sy, at an angle 7y, to
Fig. 7.6: Condition (7.40) -Aey., through B.

3.) The center of the circle lies on the
intersection of sy_; and sy_, in Fig. 7.6.
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From the construction of this circle follows, that the centers of two succeeding
circles lie on the same line sy_;. The vector Aey , which defines a segment of the
succeeding circle, must lie completely inside of the foregoing circle. It follows that
each circle is completely inside of all preceeding circles.

7.4 The first point of instantaneous adhesion for varying contact
areas

Suppose, a stress distribution of section 7.2 is applied with the additional displace-
ments A€, from (7.19), such that the contact area sticks instantaneously at P,. In the
next step the normal displacement is increased by A¢,. The resulting stress o, is a sum
of Cattaneo-Mindlin functions, similar to sections 6.5, 6.6 :

0: = P1ocu(and]) + P10cm(322;) + P20cu(r83) - (7.42)

We obtain the same stress distribution for a decreasing A{,, similar to section 6.5. The
first term on the right hand side of (7.42) is the old stress distribution, the second
term compensates the variation of the stick area and the third term satisfies the
boundary conditions, Equation (7.3c) inserted in (7.42) yields:

2
o, = ) Pi ocm(Brd)) - (7.43)
i=1
The stress distribution (7.43) depends only on the points of instantaneous adhesion
and on the current values of ay, ay, such that it is unimportant how the stress
distribution was established and if the normal compression increases or decreases, as
long as partial slip continues. Equation (7.19) holds again : :

p:(P2t2py) = 0. . (7.44)

Again, we obtain the displacements from (7.2c), (7.45) :

e; = p1(52-61") + Pa(5:-62) (7.45)

The semiaxis a," resp. the corresponding compression §,* was produced by the initial
displacement €, when the contact area had the semiaxis a;. Equation (7.6) yields :
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Pif1 = P11 - €, 8 = -py. (7.46)
Insertion of equations (7.46) in (7.45) yields :

(Ae, +5,48;) = p(&,-§3). (747)
We obtain the compression {3 by insertion of (7.46), (7.47) in (7.44) :

Ae})?
6 =¢- gfé% Ac; = Ae, + 5,AC, . (7.48)

The condition (7.21) is necessary for the first point of instantaneous adhesion.
Insertion of (7.6), (7.46) :

$1 = -P1 = —ey/|ey] , (7.49)
and (7.6) in (7.21) yields :
€2 < (e,-5;8%,)% , for instantaneous adhesion. (7.50)
Equations (7.49), (7.50) can be reformulated :
|62| = lel+A02| < |e1| + ACZ . (7.51)

If the displacement e, is a function of the time t, we can divide (7.51) by the small

time intervall At and get for the limit At—0 : ‘

%€y + Py - fof, |/ @€+ Gm)? < 0, (1.52)

where the dot denotes the differentiation by the time. This condition is always
necessary for instantaneous adhesion. Suppose, now, that condition (7.52) is valid and
the contact area increases (¢ ,>0). After compressing the bodies, complete adhesion in
the entire contact area takes place. Only if the semiaxis a; of the stick area resp. the
corresponding compression ¢; is smaller than the semiaxis a, of the old contact area
resp. &, the new slip area lies inside of the old slip area. If the new slip area lies
outside of the old contact area, we have a first decrease of the stick area on the new
part of the contact area, and (7.6) yields :

AL = (§5-857) = |/ (B8 +(qhn)? /fe, < AL = §,-¢, . (7.53)

Division by the time increment At and the limit At—0 yields :

J©&&,FF +( ¥ < feg,, for complete adhesion, (7.54)
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as a necessary condition that the new slip area does not overlay the old slip area. In

the case of infinitely small increments occurs permanent, complete adhesion. Thus we

can identify three different contact regimes :

1.) Condition (7.51) or (7.52) is satisfied and instantaneous adhesion occurs.

2.) Condition (7.53) or (7.54) is satisfied and permanent, complete adhesion takes
place.

3.) Condition (7.51) or (7.52) is violated and the process of the first decrease of the
stick area continues.

In case 3.) the new stick area superposes and eliminates the old stick area completely

and the size of the stick area decreases. In Fig. 7.7 the conditions (7.51) and (7.53)

are plotted for increasing and decreasing contact areas.

IlIIIII

Illlll(ll

A0 | A&<0

Fig. 7.7 : Equations (7.52) and (7.54) for varying contact areas.

This suggest a general procedure for load-histories, where the displacements are
continuous functions of the time. At the beginning a small normal compression A{
and a tangential deformation A¢, An is applied. Equation (7.54) defines, whether
complete adhesion or partial slip takes place. If complete adhesion takes place, an
incremerital formulation defines the stresses and displacements, until partial slip
occurs. An example for complete adhesion during impact will be calculated in section
9.3, In the case of partial slip, the old stress distribution in the stick area must be
considered. As long as the direction of the displacement changes, all three contact
regimes area possible. If the contact area decreases, instantaneous' adhesion followed
by a period of decreasing stick area is possible, but permanent complete adhesion over
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a long period cannot take place, because equation (7.54) is always violated.

7.5 Further points of instantaneous adhesion for varying contact
areas

We start with a stress distribution of section 7.4 and apply the additional displace-
ments A€y, Any, Aly. The new stress distribution in the case of instantaneous adhesion
is similar to (7.42) :

N-1 N-1
o, = 121 PiOcu(an1,a)) + _lei ocu(@n.1,8N) + PnOcu(3nan) - (7.55)
< i=

Similar to section 7.4 the first term on the right hand side is the old stress distribution
and the second and third term compensate the variation of the contact area and satisfy

the boundary conditions. Equation (7.3c) inserted yields again:
N . N 2
o = ¥ PiScou(ana) , (z pi) =1. (1.56)
i=1 i=i

The stress distribution (7.56) depends only on the points of instantaneous adhesion
and on the current values ayay, and is independent of the functions £(a), n(a). The
total displacements ey is defined by (7.2¢) :

N
eN = Z Pi ((N'Cl.) , ©ny = ey + Aey. (7.57)

i=1

The old displacement Aey_, was applied at the semiaxis an.; resp. ¢y.;. The additional
displacement Aey becomes :

N-1

Aey = ex-eyn; = ; Pi ASn + Pu(En-En) = -snAly + P(ln-8R).  (7.58)
The slip direction sy (7.34) inserted in (7.56) yields:

Pu(Pn-28n4) = 0. (1.59)

We obtain the compression ¢y, by insertion of (7.58) in (7.59) :

=t (A pet = Aey+ Aty, for N>2 (7.60)
N = SNt T WBelsy) » Aon = Aen+syAly, for . .
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Equations (7.58), (7.59) yield similar to (7.27) :
syAey = —sy. Aey . (7.61)
Introduction of the angles o, By similar to (7.28) in (7.61) yields :
By - oy = oy - Byy + 1. (7.62)

The angle o, is the angle of the vector (Aey+A&yoy). Relation (7.62) is drawn in
figure 7.8. The condition for an increasing stick area is :

LSV SYR (7.63)
Equation (7.60) in (7.63) yields :

Aey| < (A&, + |Aen,|/c0s Tn1)C0s TN » '
|Aey'| < (28¢y; + [Aeny| /cos 7i1)cos 7y ]me>2_ (7.64)

Aey = Aey + Alysy, 7N = By - AN

|AeN| < ky oo

Complete adhesion

Fig. 7.8: The circle &y = &\, for e,’q in the case A{>0.
Equation (7.64) defines the circles, which are plottet in figure 7.8 for positive A{y.,,

A&y, The geometrical construction of these circles is similar to section 7.3 and can
easily be seen in figure 7.8. The vector Aey must lie inside of the circle drawn with a
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full line, in order to produce a further point of adhesion. The circle for complete
adhesion is also plotted. The limits for the displacement &, in fig. 6.12a of section 6.6
are a special case of fig. 7.8 for y3=180 .

7.6 Torsion

The stress distribution for pure torsion of spherical bodies was calculated by
Lubkin (chapter 5.4). Formula (5.42) approximates Lubkin’s formula for the torque. A
similar approximation can be found for elliptical areas:

Ve~ 1o 2

. 3
My =BI}_{‘1°°MZ =7 fsrar Fz b E(k) ,

dM, (7.65)

Mz, = Jim, () = § G ¥ E® 6,

16 n(E(k)é - 4CEY1-K) G )

" 9EM (BOIDE) & - CHE® & )

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
a’/b

Fig. 7.9: The variable 6 of formula (7.65).
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with the elliptical integrals B(k), C(k), D(k) and E(k) defined by (5.13), (5.33); Mzs,
is the torque for complete sliding and Mg, from (5.35) the slope for =0 (B
dimensionless). The stiffness &y is plotted in figure 7.9, similar to the compliance in
fig. 5.4, defined by formula (5.35). Fig. 7.10 shows the torque of the numerical
(marker) and the theoretical solution (full line), for a/b=1 and a/b=10. The
approximation (7.65) corresponds very well with the numerical solution, even in the
case of dissimilar materials. Furthermore it turns out, that the numerical results for an
area of integration with 50 points differ only slightly from the results with 400 points.

1.00 30
0.90—_ D° o
0.70 = %
- ©
£ 0.60 = ‘
~ 0.50 = /! o . . :
™~ : o
E 0.40__ . . . . . SRR
0.30 — 6 o o osb2l, b4'pts. ,v=1,=0.25", Mzs=6480 Nmm
0.20 — o 8 o o/b={0, 50 pts:,v=r,=0.25, Mzs=236074 Nmm
6.10 ] » % % asb=10, 50 pts.,»=0, v=0.5 -
3 o o o a/b=10, 400 pts.,»,=v,=0,25 '
0.00 ~Frrrr e P Y R e
0.00 0.50 1.00 1.50 2.00 2.50 3.00

ﬂMZ;& /MZS

Fig. 7.10: The torque M, as function of the twisting angle 8 (dimensionless).

Equation (7.65) can be generalized for load-histories with varying torque. The
basic idea is, that similar to Mindlin & Deresiewicz’s theory for varying forces (chap.
6) a opposite stress distribution overlays the old stick area, when the angle 8 is
reduced after having reached the
value B,. Since the stiffness at

ES

] RS v .. .
0] Ll . the beginning of the reduction
0] s » must be equal to the initial

£ 024 L .

T o 03' # o 8 stiffness, and the torque at

N -2 S R

e % o B=-B, must be
0.6 o . . i :
w6 S eeeTT 20 0 numeries opposite to the value for 8=8;,

E R *-%--X  theor
R L e e the formula for the torque
oo e e on e Eeo30 e can be deduced similarly to
8 My Myg

equation of section 6.2:
Fig. 7.11: Varying torque with
a/b=1/10, v,=v,=0.
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Mz,-M -Mz,
oMy = 1o S (B-8)]- (7.66)

This method is only an approximation, because the exact stress distribution and the
form of the stick area are unknown, but the results agree very well with the empirical
results. A correct analytical solution is very difficult, because the influence of different
materials and the elliptical contact area make this problem unsolvable.

7.7 Examples

0 N X S/ fa’ x
90— T
~ X I~ X

UV g.g0 N AT S
S 0.70 f.v\,\ : / DO
LE’ b:4 b4 X\ X "

0.60 — - ~ A
% 0.50— o e HITE A ~h
b 0.40 [—
£ 0.30—
- 0.20 —

0.10 [— :

0.00}—- i & & & & . . : §

S e A A A S T O

0 1 2 3 4 S 6 7 8 8 10 11
Step

Fig. 7.12: Theoretical (lines) and numerical (markers) forces and displacements
for example 1.

In the first step of example 1 (fig. 7.12) we compress two similar spheres by the
value ¢;. Subsequently we apply a tangential deformation ¢,, consisting of 5
increments, in x-direction. Poisson’s number was taken zero, the modulus of rigidity
was equal for both materials, the coefficient of friction was taken one and the area of
integration consisted of 100 points. The value of £, was half the value of the corres-
ponding normal compression, which is necessary to generate total slip (§,"=¢,/2). In
the next step we superpose the additional displacement A, at an angle of 135° to the
positive x-axis in 5 increments, such that the old stick area is overlaid by the new one
in the last step. The forces F, F, the displacements £, n and the stick area S are
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plottet in figure 7.13 It is obvius, that the simplified solution for the force does not
differ much from the numerical solution. The first point of instantaneous adhesion
occurs in step 7, where the size of the stick area S becomes maximal.

S

Fy.

€0, Fx,

Step
Fig. 7.13: Theoretical (lines) and numerical results for example 2.

The next example is similar to example 1, except that it consists of 21 steps and
€, was increased to the value, which is necessary to produce total slip (§,°=0). The
displacement §; was applied in 10 steps. In the following step we superpose the
additional displacement £,, in the same direction as in the example before, until
complete sliding takes place (§3=¢7=0), in 10 steps. Figure 7.14 shows the force and
displacements. The difference between the simplified and the numerical solution is
larger than in the example before, because the slip area is larger. In all three examples
the theory predicted the point of instantaneous adhesion correctly.

In the last example 3 the additional displacement £, is applied at an angle of
165° to the x-axis, after application of the same displacement £, as in the example
before. The load-history was applied in 21 steps again. The difference between the
numerical and the theoretical force is shown in fig. 7.15. The slip and stress-directions
of the numerical solution for the last step are plottet in fig. 7.15 (the stress points to
the left, crosses mark the centers of the elements). The slip angle varies between -15 °
at the border and -35° in the center of the contact area. The constant angle of the
theory amounts to -30°. It turns out that the simplified solution is a good
approximation for «,~180 °, even for large slip areas.
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1.10

0.30

0.70

S

0.50

Fy.

0.30

0.10
-0.10
-0.30

&, n, Fx,

-0.50

-0.70

-0.90 —
0 2 4 6 8 10 12 14 16 18 20 22

Step
Fig. 7.14: Theoretical (lines) and numerical (markers) results for example 3.

e AL TR TR T e e
e IR TR TR T e
T A T N N N NN

Step= 21, Slip ond stress directions

Fig 7.15: Slip and stress directions of the numerical solution for step 21 of example 3.
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8 The basic equations for the impact of two bodies

The basic equations for the impact of two bodies are the equations of motion and
the contact law for the forces and displacements in the contact point. We presuppose
that the surfaces of the two bodies are given analytically in the coordinate system of
the principal axes of inertia, which we will call the inertial base. This is the case for
geometrically simple bodies like cylinders, spheres, ellipsoids etc. The principle
curvatures in the initial contact point O, where the bodies touch first, must be known,
in order to describe the contact law in the manner of the Hertz and the Cattaneo-
Mindlin theory. We develop the surface equation as a Taylor-series at the contact
point, and obtain the principal curvatures and the orientation of the local coordinate
system of the curvatures in the initial contact point, which we will call the contact
base. Therefore the first order resp. second order derivatives of the surfaces are
necessary. If the surfaces are given in form of a set of discrete points, the
differentiations must be performed numerically and the temsor of imertia must be
calculated by numerical integration.

In section 8.1 we will derive the formulae for the orientation of the contact base
and the principal curvatures, for the case that the coordinate ¢ of the surface is given
as a function of ab: c(ab). The equations of motion are presented in section 8.2 in
form of a system of ordinary diffential equations. Finally, in section 8.3-8.5, the
contact law is deduced for the contact regimes of full adhesion, partial slip and rigid
body sliding.

8.1 The principal axes of inertia and the principal curvatures

Suppose that the surfaces of the two bodies are prescribed in the inertial base.
Any vector (xy,z)T given in the contact base can be transformed to the inertial base of
the corresponding body:

= (@abo)T =Mt, t=xy)T =M1 ¢7, M =17, 8.1)

where a,b,c denote the coordinates of ' in the inertial base and xy,z the components
of t in the contact base. The transformation matrix has the components :
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€., .6, e,€e, n, I, 0,
o= €p€y ebey e, = nbx nby nbz . (8'2)
e, ee, e, n, 1, I,

The coordinate system e,, €, €. is thought to be the result of three successive
rotations. Before the first rotation both coordinate systems coincide. The first rotation
is carried out about the e,-axis at an angle of y whereby e, turns into e,’ (Fig. 8.1).
The second rotation is carried out about the new axis €} at an angle B. The final
orientation is produced by a rotation about the new axis e, at an angle o. The
equations of the transformations for each rotation are :

ti - H7t s t" = nBt’ s trn = nutn , (8.3)

with :
cosy siny 0 cosf 0 -sinf 1 0 0
O, =]-siny cosy 0 |, lg= 01 0 y Do =]0 cosa sine |. (8.4)
0 0 1 sinf 0 cosf8 0 -sinox cos &
J\ ez:ez’

Fig. 8.1: The rotations of the
coordinate base.

The transformation matrix I follows from equations (8.3) and (8.4) :

I = O Mgl , (8.5a)
cos 8 cos y cos fsiny -sinf
I = |sinasinBcosy-cosasiny sinasinfsiny +cosecosy sinecosB|. (8.5b)

cosoasinBoosy -sineasiny cososinfsiny - sinacosy cosecosf
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This coordinate system can be transformed into a system with the Euler angles (¢,8,¢),
with ¢ as the first rotation and @ the second (Wittenburg, 1977), by replacing (¥,6,¢)
with (7+n/2,8+mn/2,6) and the resulting vector base (e,.epe.) With (e,.€n€,) in
equation (8.2).
Suppose that the surfaces of the bodies are given implicitly in the base of the prin-
cipal axes :
fab,c) = 0. (8.6)

Taylor's formula at the contact point (ae,bg,c,) yields :
£i(-ip) + 5 £;; (i-ip) G-jo) + = =0, i,j = abgc, injy = apbpce.  (8.7)
with the abbreviations:

of _ o

= =f,, == =f
oi i=i, K 0i9j i=iy, j=jo

bij r o

(8.8)

The third order terms (a-a,)3, (a-a,)2(b-by), etc. in (8.7) are neglected. In (8.7)-(8.10)
Einstein’s summation convention is used and the indices i,j are summarized over a,b,c.
We insert the transformation :

i-i, = Mk, k =xyz, , (8.9)

in equation (8.7). The origin of the contact base (xy,z) is the initial contact point
(ag,bsCo)- Reorganization of the formula with respect to k yields :

1 ‘s
kf, I, + > ki f,ij I, l'lj, =0, 1ij=abe kl=xyz (8.10)

Remembering that the distance z between the two surfaces is quadratic in x and y, we
neglect the third order terms zx, zy, z2. Hence all factors with z dissapear in the second
term of (8.10). The transformation angles (o,8,7) must be selected such that formula
(8.10) has the form:

z=4ke + k2. (8.11)

To eliminate the factors f, ; I, , of x and f, , I ; | of y in equation (8.10), we choose
o, B ,
with (8.5) such that f, is parallel to the third column of IT;, in (8.5) :

Mo _fo g Do _fo_-tanB

et i (8.12)
CZ c

a
S A cos
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With equation (8.12) and definition (8.2) the two factors of x and y in equation (8.10)
represent the scalar products (e,e,) and (e,e,), which disappear. To eliminate the
factor of xy in (8.10) also, we insert equation (8.5) in (8.10) and get a quadratic
equation for sin 7. To simplify the procedure we set c=c(a,b), i.e. the surface is given
explicitely :

f(ab,c) = -c + c(ab) = 0. (8.13)
Insertion of (8.13) in (8.12) yields :
ac
= -9 = dc _ da
tan « = - o, tan B = cos « 7y VT (8.14)
(38)

Equation (8.3) shows, that the base (eje;e;) lies in the tangential plane and has to be
rotated at the angle -7y to point into the direction of the principal curvatures.
Equation (8.10) yields after insertion of (8.13) :

g - %x’Z(c,,r[,gafq,,,n,,yzc,.,n,‘n,,,) + %y'Z(c,,n,;+c.,,,n,,§+2c,,,n,,n,,,) + ais
+ Xy [Caally T, + oy Ty Tl + oo (T, T, + 11, M) 6.13)
Equations (8.5) with 7=0 are inserted in (8.15) :
z= %X'ZCOS(XOOSB(CuOOSZB + CypSin?a cos2B + 2c,,sin o sin B cos B ) +
+ %y‘Zq,bcosMoosB + Xy o082 o« cos B ( cupsin o sin B + cy008 B ), ©19
and abbreviated to :
= Jkx? + 3 Ky? + Ky, | (8.17)
The first equation in (8.3) is inserted in (8.17), with the result :
z = %xz(k;co527+k;,sin27—21g’(ysin7oos7) + %yz(k;sin27+k;cos27+2k;ysinroosr)
+ xy[ (k-k})sin 7 cos 7 +k; (cos? y-sin27) 1 . (8.18)

Setting the last term in square brackets zero, we obtain ;

tan7'=k2”‘—l;§'-i|/ng;y +1 . (8.19)

Elimination of k;, from the other two brackets in (8.18) yields with (8.11) :
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_ kycos?y - kysin?y _ -kg sin?y + k cos?y
k, -l§in77 . . (8.20)

cos?y - sinZy cos?}y

We write :
= k;_ Y
D _kLZk;, , (8.21)
and simplify equations (8.20) with the formula :
tan?y = 1 + 2D? + 2Dy DZ+1 . (8.22)
We insert (8.14) and (8.16) in (8.17) and summarize all results :
Sin o = , €08 O = 1 ,
I+c, 1+cy
N B =S - _VTHe?
sin B [Trctrer cos B TTreret (8.23a)
, 1 CobCaZCy?
= —_— 2) 4 bCa "
kx (1+ca2+cb2)3/2 { caa(l+cb) + 1+cb2 2cabcacb } ’
K = oo Can(1+67)"ConCaly
(1+¢2) THe 247’ (1+e,2)(1+¢2+6?)
tan Y = —y—kx—ly( (;) E“ﬁ_, + 1
2k 2k ’ (8:23b)
7y = /2 + 7,, because 7, < 0,
kep = 3 G+k) (1) /a2 + k2 - Kk
We selected the sign of the root such that, for ki, = 0:

Tuy = 0 (7/2), Ky = K (K), forkyy = 0. (8:24)

8.2 The equations of motion

The local base, introduced in section 8.1, will be used for the dynamic equations,
because the nonlinear contact law is difficult to transform into another coordinate
system. It shall be fixed in space with its origin at the initial contact point O of the
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86 8 The basic equations for the impact of two bodies

two bodies. The contact area will shift relative to this coordinate system, but we
assume that the impact duration T is infinitesimally short, such that the rotation is
much smaller than the dimensions of the bodies and the material contact point
remains in the center of the contact areas.

For infinitesimally small impact durations the gravitational forces, springs,
dampers and similar elements in the hinges of a system do not play any role, since
they exert forces and torques of finite magnitude, whose integrals over the infinitesimal
short time interval T are zero. In classical mechanics it is assumed that T tends toward
zero: T—0, and the magnitude of the impulsive force F, tends toward infinity during T
(Wittenburg, 1977). It was proved by Hunter (1957), that the energy loss for bulky
bodies is negligible, as long as the impact velocity is smaller than the velocity of
compressive waves in thin elastic rods. Eason (1966) found, that the displacement
produced by a suddenly applied, constant pressure distribution on a circular area,
reaches its statically equivalent value after the time, which elastic waves need, to run
through the diameter of the loaded area. Hence, the bodies can be idealized as rigid
bodies in their global behaviour, while elastic deformations take place locally, in a
small volume surrounding the contact point. We obtain the equations of motion, which
are necessary to study the phenomena during impact, by differentiation of the linear
and angular impulse- and momentum laws (Wittenburg, 1977):

mx=F, t (0,0 = 0,6, + @;x(8,w;) = RxF,, i=12 (825)

where m; denotes the mass and @; the tensor of gyroscopic inertia of body i; R;
signifies the vector from the initial center of gravity to the initial contact point of the
two bodies, neglecting the small elastic deformations (see fig. 8.2); w; denotes the
vetor of rotation of body i; x;y is the coordinate of the center of gravity of body i in
the local base; t is the time.

In (8.25) we neglect the internal moments in the contact area, because for
Hertzian contact problems the contact radius is always very small compared to the di-
mension R; of the bodies, and thus the stress inside of the contact area has a very
small lever-arm compared to the forces F;. For the same reason we neglect the small
dislocation of the resulting forces F; in the case of different materials and assume, that
they act in the contact point. The influence of the spin around the z-axis on the tangen-
tial stress distribution and the location of the stick area will be analysed in chapter 14.
In the case of non-Hertzian contact areas the numerical theory of chapters 11 or 12
must be used for the contact law and the equations of motion must be integrated
numerically. In this case we also perform the coordinate transformations numerically.
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Fig. 8.2: The bodies at the beginning of contact (left) and during impact (right).

If the reciprocal value of the impact duration is large compared to the absolute
value of the rotational velocity @;, it can be shown that the term dw,;/dt is large coinpa-
red to the square of the angular velocity w? . In other words the impact duration is
assumed to be very small compared to the time 2n/|w;| for one rotation around the
axis of @;, ie. the rotational motion is infinitesimal. Then we can neglect the cross
product on the left side of the angular momentum equation, which is important for .
slow dynamical effects only. Thus we obtain from (8.25):

06, =RxF,, i=1,2 . (826)

Keller (1986) developed an impact theory for complete sliding with reversing slip
directions, based on a very similar mathematical formulation. Our theory, however,
predicts a period of adhesion with partial slip in the case of reversing slip directions.
Now we introduce the 'Rigid body velocities’ v, and the *Absolute velocities’ vy, of
the two bodies in the contact point:

Vrig,i = X + ¥R, , Vabs,i = Vrig,i * u, (8.27)

with the elastic displacement vectors uw,, We differentiate (8.27) and neglect the
coriolis and gyroscopic terms analogously to the neglection in equ. (8.26):
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‘.’ri‘,i = Xoq+ @ XRi, Vopsi = ‘;rig,i + “. . (8.28)

We insert equations (8.25), (8.26) in (8.28) and get after a second differentiation:
V' =Viigs - Vrig1 = “D- F,, (82%)

1

- 2 - -
DF, = igll D F, + 4 -F, l, (8.29b)

DF, = [eil(Rixf"l)]xRi s / (8.29¢)

where we introduced the symbols D;, which we will use later, and the relafive rigid
body velocity v=( x,y,z), i.c. the velocity of body 2 relative to body 1. The first
equation in (8.29) is the basic differential equation of our impact theory. In equations
(8.29) we used Newton’s principle of actio and reactio which states, that the contact
force F; on body 1 is equal and opposite to the force F, on body 2. The components
of the matrix D; can be determined by transformation into the diagonal system of 8;
and back transformation. We show this for the first term D, in (8.29¢). In the next
three equations (8.30), (8.31), (8.32) we will omit the index 1 to simplify notation. In
the diagonal system the tensor @ and the vector R have the form:

6, 0 0 a
oDs = 0 eb 0 s RDS = b ’ (8.30)
0 0 6, c .

where the indices DS denote the Diagonal Coordiate System of 8. Matrix D, has now
the form:

¢ b -ab -ac :
ab * ec 2 ec 2 b F'
" ) -ab ¢ a -bc ¥
Dps = [0"(RxF)|xR|_~= 5 6.te ) 18,1 @3
-ac -be b?  a’ B
8, o, 8, 86, ¢

We transform the matrix back into the coordinate system of chapter 3 using the
transformation matrix II, which transforms a vector into the diagonal system:

D = IF'Dygll, Fpg = IF. (8.32)

We perform the same procedure for the matrix D,, with a different transformation
matrix JI. Now we introduce the indices 1 and 2 again. The following formula for D
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can be proved by a componentwise evaluation :

Dy = I (R, xe; )Tlax l(Rlxet)] lex + I (Ryxe; )T[62 I(szex)l }DSZ +§; (% %1 ) s
e, T = (I, My, I, ), i=
(. Jos = ( b ) 5, = +1, for 1 k, (8.33)
ik =xYy,z 0, fori=k.
We reformulate the equations (8.25), (8.26) :
w; = ;1 (Rl:)(Fi) =671 [Ri X .X.inl m;, (8:39)
and 'integrate' (8.34): '
;- o =m0 Rx(X - Xiwn) | - (8.35)

where the index A denotes the values at the beginnihg of impact. Insertion of (8.35) in
(8.27), (8.29a) yields :

X + @XR, + ml[ 0;1[R1X(im—ilw\)] IXR1 =

X + @aXR, + m2{ 821[R,X(xzu-xnu)] IXR2 -v. (8.36)
We mtegrate the first equatlon of (8.25) :
my(X ygX1na) = ~M5(X 28X 2m4) » (8.37)
and get after insertion in (8.36) :
mD(X yn-X1na) = Xona — X1ma + @a%XR; ~ @04%R, - v, (8.38)

Equation (8.35) can be transformed to the diagonal system of body i :
(@~ @rados = 187 Ropes % [MCen - inen)] |- (839)
Retransformation to the coordinate system of principal curvatures yields with (8.32) :
o;-0;, = m; IT 6;58 [Risz [.ni(iiu"iiMA) ] } = Bi(XpaXna).  (8:40)
The components of E; are :
[EyIx = my (8-1€)T(Rxey) IDSof.bodyN~ (8.41)

If v is known, all the other unknown variables x,, x,, @;, @, can be evaluated. Sum-
marization of the formulae (8.29), (8.36), (8.37), (8.41) yields :
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v = -DF,,
m,D(X -X20) = Xama ~ Xama + @24%XR; - @R, - v, (8.42)
m,(X snX2ma) = ~1(X 10X 1a) 5
@ -@yp = mlEl(ilu'ilMA) y @2-Wp = m,E,(Xan-Xama) -
The matrices D and E are defined by :
D = G,D;psGy + GiDiosGs + ( + ;) 1
E; = FG;,

(8.43)

defined in the diagonal
system of body i,

i = 1, 2, no summation over i.

= [Rxe, Rxe, Rxe,] poyyi » ] all components are

= [8-le,, 07 ¢, O‘Ie,]w, ,

Each vector in square brackets in (8.43) is thought to be a column of the matrices F;,
G,. I is the identity matrix. The vector R; has the components (a,b,c); in the diagonal
system of body i and the vectors (e,); , (Rxe,); in the corresponding diagonal system
are:

bllcy -cllpk
,  (Rxey); = (cnak‘anck

) (8.44)
allpk-bllak / body i

Max
(en) = ( Mpk )
fck /vody i

T, are the components of the matrix II; defined by (8.2), (8.32)
Equation (8.29) is the basic differential equation, with the unknown rigid body
velocity v and the contact force F,. We have a contact law of the form:

F, = Fl(§,§) » € =u-uy, . (8.45)

with € from (5.19). For complete adhesion the absolute velocity v, ; ‘of eq. (8. 27) in
the contact point of body 1 and 2 will be equal. Thus we obtain :

v = £ , for complete adhesion. (8.46)

Equ. (8.46) is the kinematical law of adhesion. The equations (8.29), (8.45) and
(8.46) represent a differential equation system for the nine components of the
variables v, F, and £ in the case of complete adhesion. Equations (8.29) and (8.46)
hold for partial slip too, because the contact point will stick in this case and partial
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slip is assumed to take place on an elliptical ring outside of the stick area.
In the case of complete sliding, equation (8.46) holds in normal direction only,
because the two bodies do not move relative to each other in normal direction.

= ( , N0 penetration in normal direction. (8.47)

The missing equations are defined by Coulomb’s law for full sliding :

F, = pfF; » Fy = qfi,,F, , for full sliding, (8.48a)
p_=.5(—é. , PPH@=1, vI=(xy,12) (8.48b)
q y - n b ’ ' a

sign(p) = sign(i-£) , (8.48¢)

where the factors p and q depend on the absolute tangential veloctities of the bodies.
Equation in (8.48c) assures, that the force F,; on body 1 has the same sense. as the
velocity of body 2 relative to body 1. Thus for full sliding the equations (8. 29), (8.45),
(8.47) and (8.48) determine the problem completely.

8.3 The force-displacement relation for full adhesion

The dynamic equation (8.29a) is the basic equation for impact problems, For nu-
merical purposes the derivative v can be expressed by finite differences and stepwise
integrated. The rigid body velocity v, and the rotations @, of step n determine the in-
cremental shift and the spin of the stick area. The elastic deformations and stresses in
the contact area can now be calculated using a contact law. We distinguish between
two types of contact laws: the Cattaneo-Mindlin theory of chapter 6 and 7 and the nu-
merical method of chapter 11 and 12. In this chapter we will use the Cattaneo-
Mindlin theory, which is much faster than the numencal method, and we will present
some analytical solutions for special cases.

Three different contact regimes must be distinguished: Complete adhesion,
complete sliding and partial slip. During impact these regimes alternate with each
other. The values for the rigid body shift x, its first two derivatives v, v and the elastic
displacement must be adapted to the values of the foregoing phase. In the next
sections we will summarize the entire set of equations.
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In the case of complete adhesion the stress increment is so small, that the two
bodies stick together in the whole contact area and equation (8.46) holds, We must
use the contact law (5.30), where the normal compression &, is held constant in step n.
With equation (8.29) we get :

é =v, (8.493)
Ee-olT, T -off R=Fatn, (8.49b)
v - -DF, (8.499)

with the force F=F,. We use a common numerical procedure of integration and
express all derivatives as finite differences. The initial values are either the rigid body
velocities at the beginning of impact or the corresponding values of the foregoing
phase. Equation (8.49a) yields the displacement increments A§,, An,, A{, and (8.49b)
the foroes. Numerical integration of (8.49c) determines the rigid body shift x4, Yps1,
Z,.; Of the mext step n+1. Now we return to equation (8.49a) and repeat this
procedure until partial slip starts. Partial slip starts for all practical impact problems in
the compressive phase, when :

VAFZ +AFZ 2 fAF,. (8.50)

8.4 Partial slip

Partial slip starts after a phase of adhesion or when complete sliding terminates in
the period of restitution. The old stress distribution acting in the stick area is partially
overlaid by a slip area. Thus the stress distribution can be split into the old stress
distribution and an additional function, which produces rigid shift in the stick area
following the Cattaneo-Mindlin law. Equations (5.26), (5.27), (5.28) must be reformu-
lated, under consideration of the old stress distribution in the stick area. Equations
(8.29) and (8.46) yield :

£ =v, (8.51a)
F, = %c, §2, (8.51b)
F, = Fod®) + 3pfc (832 - ¢, 8519
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F, =F nm(c) + 5 q fe, (832 -¢%302), (8.51d)
= -D-F, (8.51¢)

f(¢-8") = Y TEZadCIP + G naaCN, (8.510)
Soimeey peenl, (@51g)
sign(p) = sign(§-£e(¢")), (8.51h)

where (8.51h) assures, that the additional force has the same sense as the additinonal
displacement. The numerical procedure of integration is straightforward. Once the
values £, 7, &, are known, the new value &J,, of the next step n+1 must be
determined from (8.51f) by a Newton procedure : ’

fe(8u-Sae1) = VEEat8aeCas)P + G +100(8041))* - (8.52)
At the moment, when partial slip starts, we have:
v | | |a&,| = fo |AL,|. ' (8.53)

This equation holds, appro:dmately,' in the next step also, so that the additional part of
the contact area Aa,,, is overlaxd by the new slip area. The old slip area, in the period
of oomplete adhesmn, had the size .A{, resp. Aa,,, so that the new slip area moves
} mwa.rd by the amount :

MG, = -, 8.54)

The old values Fom(C ) and £,,4(¢") are the values of the previous load history, where
the contact radxus had the value:

g = ¢ (8.55)

It follows that the discrete values Fi and §; of the previous load history must be stored
for thé solution of equations (8.51). They can be linearly interpolated to improve the
calculation.
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8.5 Rigid body sliding

Rigid body sliding occurs, when the rigid shift increment is so large that the
elastic deformation can be neglected and the two bodies slide relative to each other in
the whole contact area. The basic equation is again equation (8.29a), which we will
integrate here. Furthermore we need equation (8.47) and (8.48) and Cattaneo’s contact
law in the form of equation (5.26) and (5.27) with a*=¢"=0. The values p and q
determine the slip direction, which is identical to the absolute relative velocity v,p, of
the two bodies in the contact point. In this case the contact law has no incremental
form, because we have complete sliding for each increment. Thus the -elastic
displacement and the tangential force are known, once the contact radius and the slip
direction are determined. We will summarize the entire set of equations to elucidate
the problem: '

¢ =1, (8.568)

o§=pfct, ¢gn=qfc¢, (8.56b)
F,=%c 0, F,=fpF,, F,=fqF, (8.560)
v=-DF, (8.56d)

£=;:_§»’ p+g=1, (8.56¢)
sign(p) = sign(x-§) , ' (8.56g)

where the sign of the force is opposite to the relative velocity. Equation (8.29a) was
integrated, because the tangential force is a function of F,, p and q as a consequence
of Coulomb’s law for full sliding. Equation (8.56g) defines the sense of the tangential
force F, on body 1 in the direction of the velocity of body 2 relative to body 1.

These are 11 scalar equations for the unkown &, v, F, p, q. At the beginning of
the impact the force F does not change its direction, because the contact force is so
small that the derivative v in (8.56e) is zero, and the rigid slip velocity v remains
constant. Constant rigid slip increments produce constant elastic displacement
increments. From (8.56b) follows a constant value for p and q. If we set :

p=cos¢,, q=sing,, (8.57)

equations (8.56b) and (8.56e) determine the angle ¢, of the slip direction at the
beginning of impact :
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Y0C0S b - Xosin ¢y + Cosin gy oos¢of(%—%:—)=(). (8.58)

Since the absolute value of the term in brackets is always smaller than one, it is not
difficult to find some recursive formulas which solve this equation approximately. A nu-
merical solution is not difficult either. For equal stiffness coefficients ¢, and ¢, the slip.
direction is equal to the rigid body velocity v.

The system of differential equations (8.56) can again be integrated successively by
replacing the derivatives with finite differences and using common numerical methods.
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9 Analytical solutions for the tangential impact

Analytical solutions are possible when the matrix D of equation (8.29) has
diagonal form. This is the case, when the diagonal systems of @; and the coordinate
system of the principal curvateres defined in chapter 8.1 coincide, and the components
a and b of R are zero. Now the tangential and the normal solutions are independent.
We have a completely elastic reflection in normal direction, while frictional forces
produce different coefficients of restitution in tangential direction.

The three different contact models were already presented in chapter 8.2. Impact
starts either with complete adhesion or complete sliding. For complete adhesion the
system (8.49) has the form:

€= DLayTE,
. for complete adhesion ,

n = -Dye¥Tm, ©.1)
.é.= ‘DuCerf

The letters D,,, D,,, D,, denote the diagonal entries of the diagonal matrix D.
Equation (9.1) shows, that the physical behaviour is analogous to a nonlinear spring-
mass system in normal and tangential direction. For all practical cases complete
adhesion terminates in the period of compression, because the normal velocity
becomes zero while the tangential velocities are nonzero and the increase of the
contact radius can not prevent partial slip.

The tangential force need not be infinitesimal small, as the limit in equation
(5.30) suggests. This equation holds for large tangential forces also, as long as the con-
dition for partial slip (8.50) is violated.

9.1 Normal solution

The third equation of (9.1) holds for all three contact models presented in section 8.3.
It can be integrated to:

) - . 8
¢ = _3—Ducz < I < g}\ -1% D,.c, §572. 9.2)
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9 Analytical solutions for the tangential impact 97

From equation (9.2) follows the maximal penetration {y.x for ¢=0:

§5/2 15 cxzk
Max = 8D, °

9.3)

with the normal velocity ¢ A at the beginning of impact. Introduction of the variable

ty

te = ta/bmaxs S = (€/bunl? (9:4)
and insertion in (9.2) yields:
( ds

2
& ) -5 25 g6/5 (1-5) . ©.5)

With a few mathematical operations equation (9.5) can be transformed into the hyper-
geometrical differential equation:

dth

dt
57t (6115) =0 (9.6)

S(1-8) =2

The solution of this equation can be found in Abramowitz/Stegun (1972). We use the
hypergeometric series in the neighbourhood of the singularities S=0 and S=1. The
starting value:

tn(0) = 0. 9.7)

and equation (9.5) determine the solution for ty < T/2:

ty = T/2 - 0.8 TS ¥( 1/2, 3/5, 3/2; 1-8 ), for $>0.5,
tn = S5 F(1/2,2/5,7/5;S), for $<0.5, 9.8)

T/2 = (1) = 2_5%%).

The hypergeometric function is defined by:

F(a,b;c;S) =,Fi(a,b;c;S) = i (—a)(“c—(;;)"“ % ) 9.9)

n=0
(a), = a(a+1)(a+2)...(a+n-1),(a) = 1

In the case ty>T/2 we have :

=T - tS), (9.10)
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98 9 Analytical solutions for the tangential impact

where (S) is defined by (9.8). Hunter (1957) found a very good approximation for
)
¢ = Cyax SIN(t/T) = Epeax Sin(1.067380t o /Cpnsd) - (9.11)

------ Equ. (8.(8)
Equ. 19.8)

Fig. 9.1: Equations (9.8) and (9.10).

9.2 Tangential solution for complete adhesion

The displacements § and n are independent and the solution for n can be found
by substitution of x for y in the solution for §£. We introduce the new variable v:

v = dé¢/diy, ©.12)
and rewrite the first of equations (‘:).1) using (9.3), (9.4):

d%v _ 15 D&
8y D U quys
i 8D, S5 v, (9.13)
Equation (9.5) inserted in (9.13) yields:

v _ 25 s [ div v 1
A b~ CORY STICIDN (9.14)

The last two equations define the following differential equation:
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s(1-s) &L 10(6 us)ds 4 3Dy (9.15)

ds2 10D,c, "~ ~

Equation (9.15) is a hypergeometric differential equation, which is identical to (9.6) in
the case of ¢,=0. Again we use the two linearly independent. solutions in the
neighbourhood of the singular points (Abramowitz/Stegun 1972):

v = b,F( o8 119 3 ;) + 2b,,32/5F( 58 9197

'9-
UJ
~—

~gF( 52 D8 L 1s) + 2n yTSF

0 T s),
$= + x 2C:

Barber (1975) found this result already for the special case of spheres. In equation
(9.16) we used the transformation law (Abramowitz/Stegun 1972):
b, F(a, b; ¢; S) + 2b, S1< F( ac+1, b-c+1; 2-¢; S) ©.17)
= b} F( a, b; a+b+1-¢; 1-S) + 2b) (1-Sy-a> F( ¢-a, ¢-b, c-a-b+1; 1S ).

The constants bj and b} are functions of b, and b, :

I'(c)[(c-a-b)

I'(c-a)[(¢c-b)
I'(c)l'(a+b-c)

F()r(v)

I'(2-c)I'(c-a-b),
r(1-a)r(i-b) ’ 9.18)

I'(2-¢)F(a+b-c)
* 25 Fa+i-OTb+1-0’

by = b, + 2b,
2b, = b,
and b,, b, can be expressed as a function of b, and bj :

, (c-a-b)['(2-c)'(a+b-¢c) (c-a-b)I'(c-a-b)[(2-c)

b2 = Y (T @+ 1-oT b+ 1) 2% (1or(a) (-0) *  (9.19)
ab, = p, CEDIEOI@tb0) . (cab(cab)()
4T 72 (1-c)F(@)(b) 4 (1-9T(c-a)['(c-b) ’

where the symbol I'(x) denotes the Gamma function. The formulae:

n+l
fS"'F( ab;c;S)dS = (S+_1) sF(2 b, n+1; ¢ n+2; S), for n=+0,

\ (9.20)
JF(ab,cdeS) = Z (a)(.,g))(.g)cn)n rsll ' |

a=0
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100 9 Analytical solutions for the tangential impact

can easily be proved. Insertion of (9.20) in (9.5), (9.12), (9.16) yields:

_ 2 11-¢ 11+4¢ 7 3
g-bo"'szz/san( _—251» 20 :5 S,S) +

(9.21)

4 194 19+¢,
4/5 =, L
* b S 3F2( "720 ' 20 5 5’ S)

We need the solution £ to detemine £.4 in the period of partial slip. Since formula
(9.20) converges badly for S=1, it is necessary to develop another power series for the
singularity S=1. For this purpose we insert equation (9.5) in the differential equation
(9.15) with the result:

SH1-8)¢""+ 38( 3 - 158)€7+ 2 DD“: S+%(-115)] & =0, (9:22)

where  denotes the derivative d/dS. The solution for S=1 has the form:

‘ ® o0 n-1/2

€= L a9+ 1 6., 19 - (023)
with the start values:

Coo=6(1) €10 = = T by, €z = ~4BY/S. (924)

The constants b} and b, are defined by equation (9.16). The recursion formula for the
coefficients ¢, , has the form:

(nx) {(n+x-1) (-nx- ) -3, ;g;c;z

(n+x+2)(n+x+1)(@+x+3/2)

oo B)e T8 O

(n+x+2)n+x+3/2)

cn+2,x = cn,x

+ cn+1,x

The start values (9.24) can alternatively be calculated by adapting the series (9.25) to
the series (9.21) for $=0.5, once the values b,, b,, b, are known. The series converges
relatively fast. 25 elements are the maximal number for a precision of 10-7. We need
the derivative of v for the determination of b;:
2 - -1-¢ -1+¢ 2
e e (I s Sis) e (5t 5t 5 3s)
(9.26)
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We get for complete adhesion at the beginning of impact : '
by = £(0) = 0, b, = d§/dt(0), 2b, = d24/dt}(0) = 0. 9:27)

For the special case D¢, = D,c, equation (9.16) yields ¢ = 11 and the solution
(9.21) becomes :

¢ = b, S5 = £ §/¢, , for Dge, = Dy, . (9.28)

9.3 Rigid body sliding

A special solution of (8.58) for the slip direction at the start of impact holds for a
rigid body velocity in x-direction :
¢o=q=0, for y,=0. (9.29)

From (8.56d) follows Fy(t)=0 and there will be no accelaration in y-direction
throughout the entire impact for diagonal matrices D. We differentiate (8.56a) and
rewrite (8.56d) :

X =D.F,, Z =D,F, = -¢, (9.30)
Coulomb’s law has the form:
F, = -sign(x) f F, . (9.31)
We insert equation (9.31) in (9.30) and get after integration:
X = %+ signGa) = £E-4). ©32)
22

The normal velocity ¢ , at the end of impact is equal and opposite to Q.'(', for an elastic
reflection in normal direction. The tangential coefficient of restitution is defined as the
ratio of the tangential velocities in the contact point before impact to the value after
impact : ‘ ‘

-X f&ODxx : W
R o= —L =1 +2202%  for |k, > 2f¢(Dy/Dy, - 9.33
X X |xo|Du |0| CO xx/ 2z ( )

Equation (9.33) is valid for complete sliding in x-direction at the beginning of impact
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and a diagonal matrix D. The inequality in (9.33) assures, that R, is less than zero,
because otherwise the slip direction would reverse during impact and partial slip
would occur.

9.4 Partial slip

An analytical solution is possible for small frictional forces T. In this case we
have complete adhesion in the period of compression and the solution of chapter 9.2
can be applied. Before the period of restitution starts, partial slip occurs, because the
increment of the normal force AF, becomes negative and equation (8.50) will be
satisfied. In this chapter we will discuss the case of infinitely small tangential forces.
Now the radius of the stick area becomes as large as the contact area:

_}1_1_1)10 a =a. (9.34)

We proceed similarly to chapter 8.4 in consideration, that only the difference between
the actual and the old stress distribution produces partial slip on an infinitely small
elliptical ring on the border of the contact area. Again we use equations (5.29) :

F,-F a4 =¢ VE(E-%a),
Fy'Fy,old=cyVT(n'nold)'

In contrast to the differential contact law (8.49b) for full adhesion, the contact law for
partial slip depends on the actual displacements and not on the entire previous load
history. We will calculate the solution for § only, because it is identical to the solution
for n. The old and the actual solution satisfy the equation of motion (8.42) :

¢ = -DoF,, %is= -DoFraa> (9.36)

(9.35)

which we integrated here. Introduction of the variables :
F; = Fx - Fx,old » §‘ =§- 'gold ’ - (9'37)
and substitution in (9.36) yields :

€= - DueJ/TE (9.38)
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The differential equation (9.38) is identical to the first equation of (9.1) for ¢ and has
the solution (9.16) of chapter 9.2 :

2 11-¢ 1i+¢ 7 3, g (L8 1+ 1
§—b252/53F2( 20 20 'S 5,S)+d2F( 200 20 2 1_5)-
, 11-¢ 11+¢ 3
-2, /TS F (gt it 3 1S ). (9.392)
| 9.39b)
d_ Lp(lplrd 1, o\ o replicg 1i4g 3., (
a %P (50 500 7 1°8) M F(Z0 20 '3 'S)
-3 o2 918, 3. 5 -l-¢ -1+¢ 1
5 Cata & VIS F(—55 557 53 158 ) + 240 2 F (55 —305 30 s)

We used equation (9.5) for the derivative of € in (9.39), with a negative sign of
dS/dty. The constants d, dj are determined by £, for S=1:

§(1) = £aa(1), (9.40)
yields :
d; = 0. (9.41)

The derivative d§/dt\(1) must be identical to v(1) in equation (9.16) :

dé/dty(1) = v(1) = b} . (9.42)
Insertion in (9.39) yields‘:
2, = %b’z. ' (9.43)

The constant b}, is defined by (9.18) and (9.27). The transformation law (9.17) for
equation (9.39) yields the velocity d¢/dty for the end of impact with $=0 :

d¢/dt(S=0) = -b, - 2d, . , (9.44)

The relation between d, and d; follows from equation (9.18) and (9.19). Equation
(9.44) and (9.27) define the coefficient of restitution (9.33):

R, = (b,+2d,)/b, (9:43)

Insertion of (9.18) and (9.19) in (9.45) yields:

1(0.6)
r(5et)r(+5)

R, =1-2n = V1+120D¢/(D,c,) - (9.46)

Elastic Impact with Friction, by J. Jaeger



104 9 Analytical solutions for the tangential impact

OO0 00O«

Rx

-0.
-0.
-0.
-1.0 T T T T ' T ' T y ]
0.0 10.0 20.0 30.0 40.0 50.0

Fig 9.2: R, for complete adhesion defined by equ. (9.46).
The circles mark the region of R, for spheres.

Equation (9.46) holds for infinitely small tangential forces T only. Fig. 9.2 shows R,
defined by equation (9.46), with the region for spheres marked by circles. The ellipses
mark the region for ellipsoids.

9.5 Impact of spheres

Suppose, that the principal axes of inertia and the coordinate system of the
principal curvatures of the two bodies have the same direction. Furthermore the
vectors R;, R, may point in e,-direction. The matrices E,, E,, F,, F;, G;, G,
defined by (8.43) become :

[ l H
R,=]0 |, (9.472)
R,

;% 0
» By= 6, 0
z
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0 R/8x0 0 -R,/0x 0
D,=|-R/6y 0 0|, Dy=|Ry/0,y 0 0f. (9.47b)
0 0 0 0

0 0

For spheres every coordinate system is a system of principal axes of inertia, while in
the case of rotational symmetric bodies the axis of symmetry is a principal axis. We
calculated matrix D, defined by (8.33), (8.43), and the spring constants ¢, ¢, ¢,
defined by (5.25), for the special cases of two spheres and two perpendicular crossed
cylinders which contact in the middle :

Perpendicularly crossed cylindefs :

D,=D,=D,=0.
b R R 1.1
* Bk Oy m m
R R} 1 1
z Dy = Oy * O,y m1+ m,’
Y D, -L+1, (9.48)
m, m
e = YR,
=G 2-v, 2-u,°’
G
G 2 for R;=R,,
__2/7R,
G 1-v, + 1-v,’
G G
D, =D, =D, =0
7 (1 1
D""=DYY—_2_(D11 mz)’
p,=-L.+1 (9.49)
m; m,
o 8
“T&7 VoL (B2, 2a)
R, R,\ G, G,
4
¢ = T
I 1 (1 1V
VRJR,( G, ' G, )
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The maximal compression {y,x of both bodies and the duration of impact from (9.3),
(9.8) are :

c - ( 15 )2/5 > 4/5
MAX T \8D,e,/ A (9.50)
¢ 15 /5 1
T =2943 M - 2943 (——) —,
Ca (8Dncz) ¢
The maximal compression for spheres becomes

¢ 25 (1§ 2-8 ] 4s5

a2 yrman] 1R, ©.51)

with the modulus of rigidity G and the specific density p. /G/p is the velocity of
torsional waves in the elastic space and has the value for steel :

Y GJp = 3200 m/s . 9.52)

A steel sphere, which strikes a fixed sphere, falling from 1 m height, produces a
maximal compression of :

tuax/R = 6.8 1073, (9.53)

and a maximal contact radius of :

avax/R = Vamax 72K = 0.06 . (9.54)

The duration of impact T is about three times the amount, which a sphere needs, to
run through the distance &y.x with the velocity { . of the beginning of impact. The
impact duration becomes for our example :

T = 4.6 10-3 %ee‘:’] sec. (9.55)

Equations (8.42) yield for the impact of two spheres in x-direction :

7 my. .. .- . . .
7(“5;)("1"‘2) = X,- X+ QR+ QR +§,
5 . .
Wy, -y = - 55 x,-X,),
ly 1y 2R1( 1 1) (9.56)

5 .
y = Z_RZ (x,-X3),

P
]

mz(’.‘z'xz) = ‘ml(i‘l‘xx) .
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Capital letters in (9.56) denote the velocities before impact. The deformations in y-
direction are zero. Equation (9.56) can be transformed to :

X1 - Ry, = X, - Ry + £ . 9.57)

Since the equation for £ and ¢ are decoupled, the energy-loss AE,, AE, in x- and z-
direction can be calculated indepently. The result in x-direction is :

Ly e 1 e e 1 1 (9.58)
AE, = —Z—ml(xf - X%+ 7m2(x§ -X%H+ 3 m, R? (wfy—Q D+ 5 m,R} (0} -93).
Again capitals denote the velocities before impact. With the coefficient of restitution
from (9.33) and (9.56) we get :

= _ 11l _ &2
AE, = 7(“‘1‘:‘ 5 (+R)(1-R) £3. (9.59)
A similar calculation yields in z-direction :
_ ___ mm, _ Za
AE, = ————2( +my) (1+R)(1-R,) €3 . (9.60)

The normal coefficient of restitution R, is 1 for an elastic reflection, because the
equations are decoupled and the frictional force acts in x-direction. For R,=%1 no
energy is lost. The energy-loss is maximal for R,=0.
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10 The torsional impact on a rigid plane

Suppose that a body with a rotational velocity B A Strikes a rigid plane. The
absolute value of the rotational velocity after impact can not be greater than before
impact, because the friction reduces the kinetic energy of the body. It follows that the
change of the torsional angle AB has the magnitude :

. Y ‘ ,
88| < 2ABAT] = 589 |8l 2, (10.1)
0
with the impact duration T from equation (9.8). Equation (10.1) yields for the
tangential displacement at the border of the contact :
ABa < 5.89 R?l‘ % Crnx - (10.2)

A

For large rotations RB A » &4 the solution for complete sliding of chapter 10.4 can
be applied. If the rotation R , has the same magnitude as the normal velocity ¢ 4,
the tangential displacements are by the factor a/R smaller than the normal
compression, In this chapter we will show, that the change of the torsional velocity has
the order of &ya.x/R, which is allways very small for Hertzian contact problems. It
follows, that the change of the rotational velocity should be neglected in the frame of
the Hertzian theory.

10.1 The period of compression with adhesion

We obtain the torque for complete sliding from equations (5.12), (5.14), (5.40) :

3n nGf
MZR = Esza = m_—v) R&2 , (10.3)

In the case of complete adhesion equation (5.33) yields the torque :

Mz = 1%9 a8, (10.4)

Elastic Impact with Friction, by J. Jaeger



10 The torsional impact on a rigid plane 109

where B denotes the torsional angle. For infinitely small variations of the normal com-
pression A{ and the rotation AB, equations (10.3) and (10.4) yield :

AMyg = (’I'-(—}—f)RCAC AMyy = %9 A8 . (10.5)

The increase of the contact radius by the infinitely small value Aa does not change the
torque. Only the additional rotation Af alters the torque. Suppose, now, that the
normal compression ¢ and the torsional angle B are continuously changed. An
increasing normal compression increases the contact area by a small annular region.
Complete sliding occurs in this additional ring of the contact area, if the variation of
the torque AMy is larger than the necessary value for complete sliding AMzg:

AMgy > AMgg . (10.6)

Insertion of (5.14), (10.3), (10.4) in (10.6) and division by the infinitely small value At
yields:

dB 3nfR &
> T6(-v) YRC at’

If (10.7) is violated, complete adhesion takes place. From (10.7) follows that at the
beginning of impact always complete adhesion takes place, because ¢ is very small.
Since the mormal velocity becomes zero at the end of the period of compression,
partial slip starts always in the period. of compressmn Insertion of (10.9) in the
equation of motion yields:

R for partial slip. (10.7)

& _ 16 . ,dB
e (10.8)

0,7 is the moment of inertia around the z-axis. We will use the dot for the derivation
d/dty, with ty defined by (9.4) :

_d 4 _&s d |
ol ekl v o (10.9)
Insertion of (10.9) in (10.8) yields:
B o=, k= 24—5(1-1;)"'—";{—*"‘ (10.10)

Reformulation of (10.10) with S={5/2 yields :
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d a8, 3 11

2
9 515 + B2

3S) - EEawsh =0, (1011

The last term in equation (10.11) is nonlinear and can not be solved by a power series
with the variable S. Therefore we develop a power series in & with the unknown
functions v,(S) :

B =vy+ev, +edv,.... (10.12)
and insert it in (10.10). The initial values for ty=0 are :

B(0) = B, 6,B(0) = M,(0) = 0. (10.13)

Comparison of the factors of &l yields a set of differential equations which can be
solved. The first order term & yields :

Vo=0, vo=B4+ BO)ty = Ba. (10.14)

The initial conditions (10.13) are satisfied by v, alone. For the other functions v; we
have:
vi{0) = v,(0) = 0. (10.15)

The factor of the second term ¢! yields the differential equation :
V,=-8%y,. (10.16)

We insert (9.5) in (10.16) and obtain :
. 2 3 4
Vi= -5V [ -s)y72ds = - TV 1-y1-%). (10.17)
0
A second integration and insertion of (9.8) yields the solution for v, :
4 217
vi= SV = T sz/s [1-F(%53538)]| v (10.18)
The factor of &2 yields the equation :
.. 4 21 7
Vo= - v = - v s [1-FEpes)] (10.19)

After insertion of (9.5) equation (10.19) can be integrated with respect to S :
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. _ 4 % 28dS 4 3+ 28 217
Vy = VO fSS3/SV—§ 5 Vo fSW_F(?T? )dS, (10.20)
We reformulate (10.20) using the transformation law (9.17) :
iy = - B [ s F(alias)as + Sy [ 55 F(1,2Ls) d
2= " 5% ) (a53a:8) 2“5”0{ ( ’F)’?’S) S, (1021)

with the arbitrary constant a. Application of (9.20) yields the solution for v,and v, :

. 8 1712 8 9 12
= - = 7/5 Ff-mm 222 7/5
v, 35% S F(Z,S,S,S) + 3Sv(,5/1=(1,w, < ;S). (1022)
16 9731214 919 12 14
= - — 9/5 R A i _—
V2 535 Yo 5 [3F2(5’5’2’5’5’S) Fo 57! ’5’5’5)l

We use the power series (9.20) to develop (10.22) in the neighbourhood of S=0:

16 9. 9-14-15 319 . 3-29
V2= - gas S {1 + Sty S 1- 3 S 58T
: : (10.23)
We neglect v,(1) because it is much smaller than v,(1) :
48 _ _ 480) _yy Sheax ’
Gy SRtEnT g { 1 - 5(1-v) 2% (ty-4w) | (10.24)

At the beginning of impact the condition for partial slip (10.7) is always satisfied, such
that the impact starts with partial slip.

10.2 Partial slip

Equations (5.39), (5.41) describe the contact law for partial slip. They are still
valid when the contact area decreases, as long as the rotation does not change its sign.
During the previous load history a stress distribution was generated in the contact area.
This stress distribution is conserved in the stick area and overlaid by a Cattaneo-
Mindlin function (6.1), which satisfies the boundary conditions. Only the difference
Mew-Mzop between the actual torque and the torque of the old stess distribution
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in the stick area can produce partial slip, in the sense of the Cattaneo-Mindlin theory.
Accordingly the displacement gy consists of the old displacement £orp(a’) and a
displacement £°, which produces partial slip :

Mz" = Magw - Mzop(@') » € = éxew - $own(a’) - (10.25)
With the equations of motion:

d’g dg
02z 3 = ~ Mawew» 8zz g - = -~ Mzow (10.26)

and (5.3), (5.41) we get the result :

2] cos 1k ( K

B & (Braw-fouw@) = 5= DML+ 2)+6E00] - ] eor (g o

. 10.27
B - Borol®) = s & (KO -EQ), a=VRE, )

The differential equation (10.27) must be integrated numerically and the modul k of
each increment is determined by the second equation of (10.27) :

a* n(1-v)R
k= |/1-% = RKG-E®), KRO-ER) = 08 (Bay-Boro) = FI0).
& (10.28)
The function k =F(K(k)-E(k)) can be interpolated to simplify the procedure. Of course
the second equation in (10.27) can be differentiated and inserted in the first equation,
with the result :

H(Fon- £ e (k00-Bw) o 3 T k + EE®) Gk
ke (B0 k) -  (029)
cos™ 1K’
- f:a "(;f")(CMAX) {-[Daot+ 219+ 6EG0] 5 - -3;‘ Ooos‘l(c:—s—y) dr .
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10.3 Complete adhesion in the period of restitution

In the period of restitution a small annular slip area forms at-the border of the
contact area. For small rotations this slip area becomes very small and the limit k’—1
and k-0 in (5.41) yields :

8, d ' fak?
c fFﬂ, dtz(BNEw BOLD) = —k2 BNEW Bow = 'Z(I_—V)R . (10.30)

Substitution of t by ty with (9.4) yields :

d2 :
(Rﬁ(ﬁm—ﬂow) = --eC,i/Z(BNEw-BOm) ) &= 2T'CLRM‘(I—V) . (10.31)

wn

We solve this nonlinear differential equation analogous to (10.10) :
Brew - Bow =vo 4+ eV +EW, +... (10.32)
- "The 1mt1a1 values for t=T/2 are :

B _ o dBew _ dB(T/2) _
BNEW Bop = 0, &, - dn =B,. (10.33)

In the case of complete adhesion Bgp is

1 e S : ¢ the mirror-image of B. The power series
Ceed e S B . (1032) is inserted in (10.31) and integra-
RE AN D ' . ted similar to chapter (10.1). The solution
g i N for €° becomes ¢
S R VAN f Lo . T
vadif B N B\ Yo=Y =2B,(tx-3 ) - (10.34)
, o2l ) S ; SN . The solution for &! is straightforward :
' dmpress ion Riestltullc‘m\
: : : : N .- - T
0'00.0 0.2 0.4 0.5 0.8 o Y1 T (%(2 2ﬂ1(tN_-2- ) (10.35)
v 217

= -28[SF(55753S) - %33/5 |,
Fig. 10.1: The rotation 8.
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= -28, [—S’/’F( ,1%,152,8)— %—F(l,l%;lgz;l) + %Tm], (10.36)
Integration of (10.36) yields

BT RTEET NS T}

- —?,-F(l,%;lsz;l)(tN- }) N % -1 | | (1037)

Equations (10.24), (10.25) yield the angular velocity Brgw (10.33) :

B = 2645 - ¢] > sv/SF(l,l%,%z $) - 2 F(1,3; 2:0) + 2 ryrs)).
(10.38)
With :
F(L5:2:1) =%4 , (10.39)

equation (10.38) can be reformulated to :

dB(r;:zw(T)_ a8O) 5 KMAx(l_ )T-2) || 1- 5§W(1 -u)T-2) | . (10.40)

For a change of the sign of 8, the following condition is necessary :

Smax

1 a
s ) (10.41)

0| -

H.Hertz (1882) calculated in his work the example of steel spheres, which are pressed
on a rigid plane by their dead weight. The equation for the contact radius becomes :

1

1
3 = Réy(1-v2) — = —— R¥/ i 10.42
# = R(1-) g = oo R, (& Rinmm), (1042)
where 7 denotes the specific gravity.
sphere radius R 1 mm im 1 km 1000 km
contact radius a | 103 mm | 10 mm 100 m 1000 km
a/R 1/1000 1/100 1/10 i/1
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A sphere with a radius of 1 km has already a contact radius of 100 m, i.e. a/R=1/10.
H. Hertz wrote in his work, that this deformation is to large for his theory, It follows
that a reflection with a change of sign transcends the frame of the Hertzian theory. A
small contact area can not produce a large torque around the normal axis. When the
spheres slide partially upon each other, the torsional moment is smaller than for fuil
adhesion and a change of sign of the torque is impossible also. In contrast to the
torsional impact the force of the tangential impact has the large lever-arm R and a
change of sign is possible.

10.4 Complete sliding

For complete sliding the limit k—0 in equation (5.39) yields :

Ga?

G2 e _ 3K hiy o oo (10.43)
fF, ¥ = an ' '

The torsional angle B should theoretically become infinite when the radius of the stick
area becomes zero. We can take a small value of the radius of the stick area, e.g.
k=0.99, for the beginning of complete sliding. The equation of motion :

d2g

age =~ Mz, (10.44)
becomes with equation (10.3) :
&g 5  _iGn_,,
e = 4
dz mRE 2(1v) o (10.45)
or after normalization with (9.4) :
@28 105 . (Emax Vieuss
e mnf(—R—) . (10.46)
Equation (10.46) can be reformulated using (9.5) :
¢ 3/zs
dB 21 MAX 1
— = - — -2, .4
i (T) S]F(a, a8) ds (10.47)
G
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where the index G indicates the time, when the spheres begin to slide completely. The
variable a is an arbitrary constant. Integration of (10.47) yields in the period of
compression :

8 _dBSe) 35 (& (eLu Lu
T " a2 m) (s RS ias) - ERGERs) |
B = B + Boltyto) - oo (C“{;x){s“/’ F(loisgas) - (1048)

8171113 6111
SS/S ( ' 5 ’1 0’ 5 3 7S ) Sé/sF(?y'i;?;sG) (tN_tG) }

If complete sliding starts in the period of restitution, we obtain :

9 _ 3 susyTT, (10.49a)
-2

a8 _dp 35 [ buax V'] 6111 6111
Ay d(tiG) 1™ (R | PG 7ss) - SFgissS) E

'

- 35t (S V] qus g (y 8 171113,
B = By + Boltyto) + 8.64( v ){-s F(legishssl)+ (10490

6 1
+ sg/’3F2(1,% e is0) - SeF(5070 1sl’s‘"’)(t“'t“)}'

For very large 8 A complete sliding starts at the beginning of impact, i.e.: S—0. In
this case equation (10.48) becomes :

dB(T/2) _ dB, _35m (cm )’ F(S

T dy 128 R

11 '
=—1). 0.
diy diy 128 1) (1050

If complete sliding continues in the period of relaxation, equation (10.49) yields :

dB(T) _ dB(T/2) 35m [ &uax V%6 1 11
dty dty 128( _) F(s’z, 1). (10.51)

Insertion of (9.3), (9.4) in (10.50), (10.51) yields :
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(1) _ dB(0) _ LQ\]/ Tuax 210321(1.2)
a " adt R /"R 32107 ° (10.52)

The necessary condition (10.7) for sliding shortly after the beginning of impact is :

3, > Ba /R _3n
Ba> R Veux T6(0)° (1033)

where we substituted ¢ with {y.x. Equations (10.52), (10.53) yield and inequality for
the change A8 of the angular velocity:

\8d| - ‘ dB(T) dB(0) Emax  TnI(1.2)(1-v) (10.54)

d & | PR Tzrag

10.5 The torsional impact for elliptical contact area

For complete adhesion the totsional impact can be calculated analogously to
section 10.1 and 10.2. In the case of complete sliding Coulomb’s law has the form:

3fF, 2 2
09 = forz = 5% |/ 1- % - —l‘)g, (10.55)

The stress distribution must be integrated to determine the torque :

2r 1(0)
= 3fF . r2 .
Z = Jmab ] Vl - @Sl - i cos?d - r’drdd (10.56)
0 r=0
The result is :
Mz = %sza E(k), (10.57)

with E(k) as elliptical integral of the second kind (5.13) and the modul k :

k = J1-b%/a?. (10.58)
There are two limits :
1.) Circle : M, = léng,a . (10.59)
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2)) Ellipse with b—0 : M, = % fFa. (10.60)

Equations (10.56), (10.57) can be inserted in (10.44) and integrated analogously to
section 10.4. ‘

10.6 The numerical procedure

The program consists of the following parts :

1.) At the beginning of the period of compression the spheres stick always and
equation (10.10) can be applied.

2.) Partial slip starts when the condition for partial slip (10.7) is satisfied, such that
equations (10.28) are valid.

3,) Complete sliding can be assumed, when e.g. k’=0.1 in equation (5.37). Then the
method of chapter (10.4) can be applied.

4.) At the end of impact the torsional coefficient of restitution can be calculated :

r = - BM/BO) . (1061)
The coefficient of restitution depends on several parameters, like :
B(0), Suax/R, f, v, a/b. (10.62)

Equation (10.40) yields the asympote for small angular velocities B(0):

_é_(_l')__ - 5 CMAx NI
B(0) [1- (1-uXT-2) || 1-5 2% (1-)T- 2| (1063

The asymptote for complete adhesion defined by (10.52) has an inclination of 45 and
intersects the x-axis at the distance d : :

B(T) = B(O) - d,

4= fa|/fuax 21m2T(12) (10.64)
T R R 32T(L7)

The asymptotes (10.63), (10.64) are plottet in fig. 10.2, for the impact of a steel
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sphere and a rubber sphere. In the case of the steel sphere, the asymptote (10.64) is
valid for very large angular velocities of several thousand rotations per second. The
higher value of the asymptotes (10.63), (10.64) can be used as approximation for the
coefficient of restitution, which is slightly smaller than the real value. Horak (1961)
observed a change of sign of the torsional velocities before and after impact in his
experiments, but he used very soft and possibly hollow rubber balls. Furthermore it
seems, that the contact radius in his experiments was much larger than the allowable
10% of the ball radius in the frame of the Hertzian theory.

50- . . P PRI . ’
fo Gu/Re0.0068, steel
80— /R0 UL rubber
. ’// /
: ' e
— : ﬁ e
=oed .//4;
LN » s L
E I A B
20 2 T
i s S
10_//
0 d:j | T dr/ T T 1
0 10 20 30 40 50 60
gL0)

Fig. 10.2: Equations (10.63), (10.64).
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11 Numerical solution of the contact problem

by J. J. Kalker

The basic concept of the numerical solution of contact problems was worked out
by J. J. Kalker. He published the first algorithm for frictional contact problems,
especially rolling contact (1967). In that work the contact pressure and deformation
was prescribed by polynomials. These polynomials are not useful for large contact
areas with more than 50 points, because they become unstable for high orders. The
first algorithm for a wide class of normal contact problems was published by Fridman
and Chernina (1967). They used a variatonal formulation of the contact problem to
reduce it to a so called quadratic programming problem. This formulation is necessary
to prove existence and uniqueness of normal contact, which was done by Fichera
(1964). Independent of Fridman and Chernina, Conry and Seirig (1971) and Kalker
and Van Randen (1972) came up with optimization solutions for the normal contact
problem, Kalker & Van Randen calculated influence coefficients for the normal
deflexion of the surface due to a linear pressure distribution on a triangle. The contact
area consists of a mesh of triangles.

In a paper dating from (1971) Kalker introduced a variational principle for the
problem of friction. This principle appeared to be quite powerful in two- dimensional
frictional contact in which there are only the normal and one tangential direction.
Interesting results on steady-state and non-steady-state 2D rolling where obtained. The
principle could be adapted to a 3D situation, but it was too slow to be of much
practical use. An improved variational principle, due to Duvaut and Lions (1972) led
to a much faster steady-state program called Duvorol (Kalker, 1979).

Although most of Kalkers work was dedicated to rolling problems, his algorithms
can be applied to all types of contact problems on the base of the half-space approxi-
mation. This approximation was published by H.Hertz (1882), who used the half-space
solutions of Boussinesq (1885) and Cerruti (1882) for the normal contact of ellipsoid
bodies. Numerical algorithms on the base of this theory are much faster than FEM-
methods. Kalker proved in his work, that the nonlinear frictional problem can be
solved with successive algorithms. He used an equidistant rectangular mesh with a
constant pressure distribution over each element, The form of the contact area and the
slip area could be determined by a successive correction. The slip and stress directions
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were calculated with a Newton-Raphson method. Furthermore he developed several
algorithms which accelerated the calculation. These are already the essential parts of
the numerical solution of the impact problem.

11.1 The load-displacement equations for a discrete pressure

distribution

The use of a rectangular mesh with a constant pressure distribution over each
element allows an easy programming of this problem. Indeed, polynomials or linear
pressure distributions yield more difficult programs, which are difficult to correct even
if the algorithm converges. This is the reason, why we used Kalker’s method for our
problem. We present his formulation here, because it differs slightly from our notation.
His load displacement equations have the form :

] [ Kig 1-v)1, ] [Pill ‘
+ —Z -+, vl KI, o |, LD
(a-v+vl, Kl

vl Pis

i = point of application , j = point of observation .

The material constants G, K and v are :

1 1,1 1 v 1 vy v K 1 ,1-2v 1-2v:
s-2G%G) 52G) =276, TG ) @2

Index 1 denotes the wheel and index 2 the rail, resp. the upper and the lower body.
The orientation of the mesh is shown in figure 11.1.

dx’d
I = ]M] _._Ix_xfl, I = “ (x- r;)(i ly) axdy |
_ (x-x)2 - (x-x)
k= ]M] [x-x’] dedy’, L JMJ [x-x| dxdy (11.3)

L =Ij(x,xp,Ax), j=1...4,
M is the rectangle with the vertices (x,£Ax/2 , yp+4y/2),
Ax, Ay : length of the sides of the discretization rectangles. J
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y Using the following abbreviated notations :
111213} 1415 ot Ax/2
Lo de=[. 1782
6 9|10 x-xp-Ax/2
213145 we have that :
%
N 5 dXdy’= [ [f(x)y)lx Jy, (11.5
x | | ozay ®dy= L@y Yy, (19
Fig. 11.1: Discretization of the
contact area. and it may be verified, that with :

sh-1 z = In(z+yZZ+1), (11.6)

the derivatives of the integrals I; are :

—?2—{y’sh‘1(£)+x’sh‘l(x)}=————
oxoy Iyl i) 1Ty

2? % x?
axay [y sn l(m) = Z+yiypr
. " 11.7)
)

X3y [-y®myT) - WEryiypn

2? 1 , 4y X
ooy | 2V In (7)o (5) | =

By means of (11.6) and (11.7) we can readily integrate the integrals in (11.3). Com-
parison with the formulation of chapter 4.3 shows, that both formulations are identical.

11.2 Contact algorithms for normal contact

In this section we discuss a very simple and effective algorithm, which was
conceived by Johnson in the late sixties, early seventies; it was rediscovered by
Ahmadi, Keer and Mura (published 1983), while Kalker removed a restriction and
gave a new proof of it (1982). Fig. 11.2 shows the module NORM with the logical
variable ContactChanged and the deformed distance d; (Kalker, 1990).

The characteristics of this algorithm are .
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1.) The loops are nested and not sequential. It follows that the contact area first de-
creases until it remains constant. The following step belongs to the outer loop and
the contact area may increase again. The inner loop is again repeated until no fur-
ther decrease of the contact area occurs. The outer loop is repeated if necessary.

2.) The contact area K is initialized at the beginning. It may be zero or all elements
of the area of integration may belong to K. Another possibility would be an appro-
ximation with Hertz's solution (see chapter 5.1).

3.) The most time consuming part of the program is the matrix inversion which is ne-
cessary to solve the linear equation system.,

0;=0, forl <i<n+l; ContactChanged = True;

For i=1 to n+1 do

——— . < ?
yes —  4=0? 0

i € Contact i € Contact

While ContactChanged do

While ContactChanged do

ContactChanged = False;

For i=1to n+1 do

yes __—;“-——___i_e_ Coi__ta‘:i_?_————“__—_ﬁo
d; = 0; o; = 0;

Solve the linear equation system;

For i=1 to n+1 do

i 2
yes i € Contact ? ////n;)’
S .<0? U : :
N 507 o

| i ¢ Contact; ContactChanged = True;
For i=1 to n+1 do

ys & Comtact? g

" . 207
yes SN\, d‘_____._—-——-— no

[i € Contact; ContactChanged = True;

Fig. 11.2: The module Norm.
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A proof of the validity of this algorithm is given in Kalker (1983). There are
other algorithms, which presuppose special forms of the normal pressure, like the Line
Contact Theory (1971). It presupposes that the contact area is slender and the tips are
not blunt. The last restriction was removed by Reusner (1977), who assumed that the
pressure distribution in the narrow direction is semi-elliptical.

In fig. 11.2 the Nassi-Shneiderman diagram of the module Norm is drawn, where
the variable o; denotes the normal stress, d; the normal distance of the surfaces, i is
the index of the element and ‘ContactChanged’ denotes a boolean variable.

11.3 Algorithms for frictional contact

This algorithm solves the frictional contact problem when the normal pressure,
the creepage, and the previous traction distibution are given. From the Nassi-
Shneiderman diagram of the module TANG (Kalker 1986) in fig. 11.3, we see that
this algorithm is very similar to the algorithm for the normal problem. The
arrangement of the loops is sequentiel again and instead of the contact area K the
stick area A is determined. The initialized values are arbitrary. Some questions must
be answered before this algorithm can be programmed: There are several ways of linea-
rization and my opinion is that a third inner loop would be necessary to solve the non-
linear equation system, until the error of the linearized solution is small enough.
There are three algorithms proposed by J.J Kalker (1986) for frictional contact:

1.) The Johnson process.

Calculate the normal problem N, and then the tangential problem T. In this

manner the influence of N on T is taken into account, but not vice versa. In the

case of bodies of similar material this solution is exact. Otherwise the Johnson
process offers an approximation.
2.) The Panagiotopoulos process.

This is a chain of Johnson processes, viz. NT NT NT . . .. until convergence

occurs, or the iteration bound is reached.
3.) The Kombi process.

This is an alternative of the Panagiotopoulos process. In it, N and T are

combined. Kombi reduces to the Johnson process when the materials are similar,

but then it costs roughly three times as much computer time as the Johnson
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process. On the other hand for dissimilar materials Kombi takes the interrelation
of N and T into account at every step of the algorithm. Neither the
'Panagiotopoulos nor the Kombi process converge in all possible cases.
The convergence of this algorithm depends also on the linearized equations, because
the Newton-Raphson formula converges only for small corrections Ar. Furthermore
the approximation for the slip area must be good enough, because otherwise slip is
assumed in the potential area of adhesion, with too high values for the stress.

7; =0, for 1 <1< n+1; SlipAreaChanged = True; Initialize Sliparea;
While SlipAreaChanged do
While SlipAreaChanged do
SlipAreaChanged = False;
For i=1 to n+1 do

- - ————==
yes ——— 1€ SlipArea? . — 0

—

oy = floilsi/lsil: | 5 = 0;
Solve the nonlinear equation system;

For i=1 to n+1 do
yes i ¢ SlipArea? )
yes. %l > lfoy 245
i € SlipArea; SlipAreaChanged =True; |
For i=1 to n+1 do
yes i € SlipArea? )
Yo JSos 5i) < 0? —— 1o

| i ¢ StipArea; SlipAreaChanged = True;

Fig. 11.3: The module Tang with the slip s; and the tangential stress 0.;.
The Nassi-Shneiderman diagram of module Tang is drawn in fig. 11.3, with the

tangential stress oy, the normal stress o, the slip s; of element i and the boolean
variable ‘SlipAreaChanged’.
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12 The Gauss-Seidel solution for frictional contact
problems

The Gauss-Seidel Method makes it possible to solve contact problems with more
than 1000 points in the contact area, on IBM-compatible personal computers under
the operating system MS-DOS, without memory swapping on the hard disk and
without protected mode. The two basic advantages, compared with the ordinary Gauss
elimination, are the savings of computer memory and execution time. Earlier
programs, like Kalker's program Contact, installed on a standard IBM-AT/286, were
able to calculate about n=>50 points in the contact area, with an execution time of n3.
The execution time of our program increases proportional to nZ, and a typical load-
history in 10 steps, for a flat punch with 1000 points, was running two days on an
IBM386/33MHz. We store only 3n coefficients of the periodic load-displacement
matrix, instead of the complete set of coefficients, which amounts to 29 kilobytes
memory compared with 11 megabytes for 400 points. Kalker used a similar formula-
tion in his program ‘Contact’ (Kalker 1990), but he still stores the inverse matrix,
which is not necessary for the Gauss-Seidel method.

Contact calculations with modern Finite Element programs require a three-dimen-
sional mesh with approximately nZz nodes, and load displacemént matrices of the
magnitude of n%, which yields long execution times and makes large hard disks
necessary. Besides, the nonlinear iteration process with varying slip directions, stick
areas and contact areas, is very difficult to progam with Finite Element Methods.

Our program consists of four basic modules: The first module solves the linear
equation system, the second tests the contact area, the third determines the slip area
and the last one calculates the approximated slip directions. Two modules for the
Hertz problem were copied from the program ‘Contact’ by J.J. Kalker. Other modules
of our program perform graphical operations. All modules were written in Turbo-
Pascal with the typical Structured Programming Techniges. The four basic modules can
be concatenated sequentially or nested coherently, but not every arrangement will
converge.

Some computational difficulties arise through the fact, that the contact area, the
slip area and the slip directions must be known, in order to establish the linear
equation system for the stresses and deformations. On the other hand, the stresses and
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deformations must be known in order to test the contact conditions. Therefore we use
a first estimation and solve the linear equation system recursively, until the solution is
found. The test of the contact conditions and the correction of the slip directions has
to be arranged consistently for each solution, to avoid divergence of the process.

The contact conditions and sign conventions are formulated in chapter 12.1, and
in chap. 12.2 we describe some contact algorithms and the modules. In chapter 12.3
we reformulate the linear equation system, in order to reveal the internal symmetries
in the matrices. These symmetries are due to the homogeneity of the half-space,
because a constant pressure distribution on any rectangle produces always the same
deformation field relative to the loaded rectangle, i. e.: The solution is a combination
of point loads, which produce the same deformation on different positions. This idea
can even be used to solve problems with arbitrary bodies, when the solution for a
point load is known, possibly by Finite Element Methods. In chapter 12.4 we describe
the Gauss-Seidel algorithm, which solves the linear equation system for the stresses
with given displacements in the stick area on the condition, that the contact area, the
stick area and the stress directions are fixed.

A considerable theoretical and numerical work, done by J.J. Kalker (1988, 1990),
proved that the contact and the slip area can be determined by recursive routines,
which correct the shape and size of these areas successively, on the points where the
contact conditions are violated. However, a first guess has to be made and the slip
directions must be constant. A similar, recursive procedure can be created for the
stress directions, such that the stress direction is oriented opposite to the current slip di-
rections in the first step, and the linear equation system is solved in the next step,
repeatedly, but this algorithm diverges after a few cycles. In chapter 12.5 we develop
an algorithm of the ‘Regula Falsi' Type, which solves the nonlinear equation system
approximately by linearization and repeats the Gauss-Seidel procedure for the new slip
directions. This algorithm requires litile computer storage and converges rapidly, but
the condition for the linearization is a relatively exact solution. If the initial values of
the stress o are to incorrect, the linearization does not comverge. Nevertheless, our
program solves this problem anyway by trial and error, because we interrupt the slip
direction loop after some cycles and the points with wrong slip directions are added to
the stick area in the last loop. In the case of complete adhesion, we have relatively
correct stress directions, which are the first estimation for the slip directions when slip
starts in some points in the next loop. The convergence depends also on the numbers
for the maximal iterations of each cycle. Small numbers make the program faster, but
the solution of each loop becomes more inaccurate, such that divergence can take
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place.

The Gauss-Seidel algorithm is a version of the ‘Successive Over Relaxation’
method (SOR) with an ‘Over Relaxation Factor’ of the amount of one. In the case of
complete adhesion without slip in the contact area, the load-displacement matrix is
symmetric and positive definite and so the SOR method converges always (Engeln-
Muellges 1987). The proof of convergence for partial slip is more complicated. In
chapter 13 we will prove convergence for complete slip in x-direction and a contact
area in the form af a small strip, parallel to the x-axis, which is the extreme form for
maximal interaction between normal and tangential stresses. We continue with the
derivation of a formula for the limit of convergence, which is never violated in real
contact problems. Since the influence of the slip stresses on the process of convergence
is much smaller for other forms of contact areas and for smaller slip areas, the SOR
method converges always in cases, where the limit of convergence is not reached.

An estimation for the optimal ‘Over Relaxation Factor’ is possible, but we have
to calculate the eigenvalues of different matrices, which depend on the contact area,
the stick area, the coefficitents of friction and on the material. We do not investigate
this eigenvalue problem any further, because the solution is more complicated than the
solution of our contact problem and the ‘Over Relaxation Factor’ changes through the
iteration process.

12.1 Contact conditions and sign conventions

The surface of the two bodies can be given in discrete form for a set of points x,,
y, or as a mathematical function. To simplify matters, we assume Herizian surfaces
(Hertz 1882), which can be approximated by elliptical paraboloids. The undeformed
distance is given by equation (5.2) :

z = Ax2 + By?. (12.1)

The formulae for A and B can be found in chapter 5.1 of this work. Now we move
the upper body 2 relative to the lower body 1 in xy,z-direction over the distances
£n,¢ and twist body 2 by the amount Q. The combined displacements of the two
surfaces are :
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Ullmnl =y, -u, =u = § +y9Q,

Ul2mn]l =v;-v, =v=n-x0,

Uf3,mn] = w; + w, = w = { - Ax2 - By?, in the contact area ,
§=§2_§17 n=N0-m, §=§2'§1-

} in the stick area ,
(12.2)

with €,n,¢ from (5.19). We illustrate the sign convention for the displacements in fig.
5.4, where the coordinate system is fixed on the lower body 1 and body 2 is shifted in
x-direction by the amount §. In the following sections we regard the contact area,
looking from a point above body 1 in z-direction. It is important to remember this
sign convention, because Kalker (1990) defines body 1 as the upper body and shifts
body 1 relative to body 2, which produces negative deformations om body 1.
Compared to our sign conventions, left and right and top and bottom of Kalkers stick
area are reverse, looking on body 1.

The normal contact stress p, (4.4a) must be positive inside of the contact area
and zero outside. The contact stress is positive for compression, because contact
stresses are mostly compressive : ‘

o[3,m,n] > 0, in the contact area ,

oli,mn] = 0, i=1,2,3, outside of the contact area . (12.3)
We assume Coulomb friction :
o, < f,. 0,, in the stick area ,
0 < b . Corn
o, = -fmm o, , in the slip area ,
o, = ( o[L,ma], o[2ma] )T, o, = o[3ma], (12.4)

s = (sfmn}, s[m,] ),

where the variables f,,,, f,,,, denote the kinetical and statical coefficient of friction. The
direction of the frictional stress o,, which body 2 excerts on body 1, is opposite to the
direction of the velocity s of body 1 relative to body 2. We call this relative velocity
slip. Coulomb’s law measures the force on one body, and attaches the laboratory
system for the relative velocity on the other body (fig. 12.1).

The slip directions change in the course of the load history and must be calculated for
each increment. We introduce the ‘rigid shift increments’ A¢, An in x, y- direction, the
increment of the ’rigid rotation’ AR, and the slip s,, sy to formulate Coulomb’s law in
the slip area :
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s,lm,n] = -A¢{ + AU[1,m,n] + ylm,nJAQ,
s,[m,n] = -An + AU[2,m,n] - xim,nlAQ,
A€ = A¢, - A§,, An = An, - An;, AL = A, - AL, AQ =AQ, - AQ,
AU[l,m,;n] = AU;[l,mn] - AU,[/,m,n],

(12.5)

where the low indices denote body 1 or body 2.

=k

2 o
T, vt

ezl [

\\"{\\_"\\\3.\1\\ A = Y

S12
Fig. 12.1: The slip s,, of body i relative to body k and
the stress o,;, which body k excerts on body i.
The next condition avoids penetration outside of the contact area :
Ul3,m,n] > ¢ - Ax® - By?, outside of the contact area , (12.6)

where ¢ designates the approach of distant reference points of the two bodies. The

stresses of correspoinding points on the surface of the two bodies must be opposite in
the contact area :

oll,m,n] |pody 1 = -oli,m,n] |pogy » » in the contact area , 1123, (12.7)

where the normal stress o[3,m,n] on body 2 is measured in the common coordinate

system, with z, pointing into body 1. The summation of all stresses yield the forces
FlLil:

rows-1 cols-1

Flil= 5  olimnlAxdy, i=123. (12.8)

m=0 n=0
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12.2 Vector formulation of the load-displacement equations

The arrangement of the stress and displacement components in two dimensional
arrays in equations (4.13), (4.23) is very useful for programming, but it obstructs the
recognition of the symmetry of the matrix A of the load displacement coefficients.
Thus we rearrange the displacement array U line by line in the one column vector u,
starting with the displacement components in x-direction :

ul = (u,T, u,T, usT ), (12.9)
u] = ( UIi;0,0], Uli;0,1], UL3;0,2), ... , Uli;rows-1,cols-2], Uli;rows-1,cols-11),

where the letter T indicates transposition. The vector u is decomposed in the partitions
u,, u,, uj of the displacement components in x-, y- and z-direction. We rearrange the
stress array o and the array A :

u,
u,
Uy

Above and in the following bold capitals denote matrices. The submatrices Aj;
are two dimensional square arrays forming the partitioned matrix A, which is a square
matrix containing 3n-3n elements, n=cols-rows. From (4.23) follows, that the
diagonal submatrices A;; and A, A,, are symmetric while the other matrices are
skewsymmetric. To understand the structure of the matrices Aj; we have to analyse the
interaction between the rows of the contact area. Therefore we decompose matrix A,
into the submatrices Bj, which describe the deformation of first row due to a pressure
distribution acting on the elements of row j :

A A Az | oy
= AZI Azz Az3 02 . (12.10)
Azg Az Ay O3

ByB,B,B;....B. ..,
BlBoBle----an-z

An = |B2B,ByB,....B .| (12.11)
Brows g -cvovnvnn- B,

The submatrices B; are quadratic with cols - cols Elements. Equation (4.23) yields :
B|m.j|[knl = A[1,0,0;1,/m~j|,|n-k|], 0<kn<cols-1, 0% jms rows-1. (12.12)

A, is called a symmetric Block Toeplitz Matrix (Horn/Johnson 1985), because the
submatrices B; are arranged in a cyclic form. Every submatrix B; is a symmetric
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Toeplitz Matrix again :

bj() bjl bjz e bj,cols-l
bjl bj() bjl N bj,cols-z
Bj = |bjs bj; bjo - - . bjcois-3 | - (12.13)

Now we set j=0 and the component by describes the deformation u,[i] in x-
direction of element [0,i] of the first line of the contact area in fig 4.1, due to a
constant stress distribution in x-direction, of the amount of one, acting on the first
rectangle [0,0] of the contact area. The components by; form the first line of matrix
B,. The second line describes the deformations of the same elements due to a constant
pressure distribution, of the amount of one, on the second rectangle [0,1]1 of the
contact area (fig. 12.2). Since the pressure distribution of element [0,1] is identical to
the former distribution on element [0,0], the deformation of the second element {0,1]
must now be identical to the former deformation of the first element. Application of
the same pressure distribution on the third element yields a deformation of this
element which is identical to the former deformation of the second element etc. Thus
we get the symmetric Toeplitz stucture of B,, where the matrix components are
constant on diagonals. From the symmetry of A in (4.23) follows the symmetry of B,.

A similar interpretation shows, that matrix B, contains the deformations u,(i] of
the first line of rectangles of the contact area, resulting from a constant pressure distri-
bution in one of the rectangles in line two. Since a unit pressure distribution on a rec-
tangle on line 3 produces the same deformations in line 2 and a unit pressure distribu-
tion in any line deforms the foregoing line equally, all the blockmatrices in the neigh-
bouring line parallel to the diagonal in A;; must be identical to the blockmatrix B,.

All matrices A;; have the same structure. The arrangement of the blockmatrices
of C; in matrix A,, is skewsymmetric, while all blockmatrices are skewsymmetric. It
follows that A, is symmetric in its elements A;,[ijl. We show this in the following
equations, where we use the letter C; for the blockmatrices :

Co Cl C2 sen Crm-l
—Cl 0 Cl - rows-2

Ap= |-C, -C; Co -+ --Cromsl- (12.14a)
Coooug - ooeennnn Co
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Co €1 C2 - - - Ccols-1

“G1 Co G- - - Ccols-2
G = |-¢2 -1 €o - - - Cicols-3 |- (12.14b)
_cj,cols-l ........ CJO

Matrix A,; contains blockmatrices D; which are symmeric, but the arrangement
of blockmatrices is skewsymmetric, while matrix A,; contains skewsymmetric
blockmatrices E;, with a symmetric arrangement of the blockmatrices. If follows that
the matrices. A5 and A,; are skewsymmetric in its elements. Using (4.23) and the
results above, we can rewrite (12.10) to :

o, Au Au A13 o,
o= Afz Ay Ay, o,|, (12.15)
us %,

Als Afs Ay
where we used the fact that the transposed of a skewsymmetric matrix is identical to its
negative. From (12.15) we see, that the complete matrix A is symmetric.

T

0[1;0,0]

-5Ax -4Ax “3Ax T2Ax -Ax | 0 ' Ax' 2ax 3ax' 4Ax' SAx

‘[boo b b b
L g g e

-5Ax “4Ax “3Ax 2Ax -Ax | 0 | Ax' 2Ax' 3Ax' 4Ax'  SAx

T

i
-5Ax -4Ax -3Ax -2Ax -Ax | 0

b,
Tbm [ ” TbOI b, bos b
1 \ T T 7150 R

“Sax Janx UT3ax Toax -Ax | 0 ' Ax" 2Ax 3Ax ' 4Ax' SAx

o[1;0,11

" Ax' 2Ax 3Ax ' 4Ax' SAx

Fig. 12.2: The stress distribution on element 1 and 2 and the resulting deformations
for the first row,
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12.3 The Gauss-Seidel procedure

To simplify matters, we use the formulation of (12.15) in this chapter, by sorting
the displacements in one column of the vector u, which has the form (12.9) and repeat
this rearrangement for the stresses ¢ and the load displacement matrix A. Now we get
for (12.15) :

Ao = u, ulll = Uli;ikl, ol = olijjk],
= (i-1)N + j-cols + k, N = cols-rows, (12.16)
1<i<3, 0sj<rows, 0=k <cols, 0<] <3N,

where the displacéments u are given and the stresses o are the unknown components.
The arrangement of ¢ and u in (12.16) is identical to the arrangement in (12.9). The
elements [0 . . N-1] denote the x-components, [N . . 2N-1] signify the y-components
and [2N .. 3N-1] indicate the z-components of the stresses and displacements.

We modified the Gauss-Seidel procedure (Engeln-Muellges 1987), because the
tangential displacements are prescribed in the stick area only and Coulomb’s law holds
in the slip area, while the normal displacements are prescribed in the whole contact
area :

3N-1
. 1
omnlil = ZE5y { ugl -kzﬁ 1A[J,kl o, Ik} - Z AliK] 0K |,

for 2N < j < 3N, or j in the stlck area , (12.17)
Omeili]l = cos &g 0,0, [2N+j], 0 < j <N, '
. . . } for j in the slip area,

Omsiljl = sin o 0 IN+j1, N < j < 2N,
where o, indicates the solution of step m and «; denotes the angle between the x-axis
and the fixed stress direction. The first equation determines the tangential stress in the
stick area and the normal stress in the contact area. The second equation determines
the tangential stress in the slip area, following Coulomb’s law. The second equation
can be performed at the end of each iteration or directly after the determination of a
normal stress component. We prove the convergence of this method for some
examples in chapter 13.

The Gauss-Seidel algorithm converges for positive definite and symmetnc
matrices (Engeln/Muellges). A is positive definite, because :
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)3 Z Alijl olilofjl = ) uljle[j1=E >0, (12.18)

1

i

where E is the work performed by the surface stresses o[j1, which must be positive.
The programming of (12.17) can be simplified by moving the rows and columns
of (12.17) symmetrically, which does not affect the symmetry and the positive
definiteness in the case of complete adhesion. In our program we used the formulation
(4.13), (4.23) for the matrix A and perform a double sum, to save computer memory.
The change of sign in (4.23) can be formulated without multiplication to accelerate

the program.

12.4 Linearization of the frictional law

We mentioned earlier, that a direct successive iteration method for the slip direc-
tions is unstable. Because equations (12.4), (12.5) are nonlinear, we choose the Regula
Falsi procedure (Engeln-Muellges/Reuter 1987) and linearize these equations. The re-
sulting linear equation system can be solved by matrix inversion.

The purpose of the Gauss-Seidel procedure, however, was to avoid the ‘matrix
inversion. The complete matrix of the linearized frictional law for the slip direction is
still too large and the matrix inversion too slow for a useful program. We establish a
compact linear equation system and solve it by a Gaussian Block Iteration Method. '
These corrections will be inserted in the Ganss-Seidel procedure to determine the
correct solution o, o,, for the new slip directions. Now we calculate a new correction
Do, Do, for the slip stress and repeat this procedure until the error between the slip
direction and the direction of the stress becomes small enough.

We use the formulation (12.10),  where the arrays U and o of (4.13) are
rearranged as vectors and the matrix A is a two dimensional array. The indices 1, 2, 3
denote the cartesian coordinates xy,z. We repeat Coulomb’s law (12.4), (12.5) for
sliding friction in the slip area :

slil / s,li] = o,[i1 / o2l ,
V o2li] + 02201 = fia0osli], for 0 s i< N,

where N=rows cols denotes the number of elements in the area of integration.
In the next step we linearize these equations in the slip area and fix the stresses in

(12.19)
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the stick area and the normal stresses, because they change the slip directions indirect-
ly only. We emphasize that a correct solution is not necessary in this part of the
algorithm. We supply the correction with the letter D in (12.15), (12.19) and get the
following equation system :

[ow]-[ou] L2 2] o]

Du, - Ds, Ay Al IDe )’
0,li] Do, [il + 0li] Doylil = 0,

0[i1Ds,[i] - 0,o[i1Ds,[i] = s,4[i]1 Do, [i] - 5,0[i1Do,li1 + s,[i] 00[i] - 8,0[i1 03[i],

(12.20)

where the index 0 denotes the solution of the step before. In (12.20) we assume, that
o,[i] is constant, because the influence of the slip stress on the normal stress is
relatively small, and the equations are much simpler. The correction for o4[i]=
o[3;m,n] will be determined automatically in the Gauss-Seidel procedure, where the
correct solution for the new slip direction is generated. We rearrange the system
(12.20) to a linear equation system for the vector Do, :

(-AuE, + Ay + BAALE, - EJAp; - EE; - By ) Do, = -5 + B8y,
(12.21)
where E; are diagonal matrices with the elements :

Eylijil = 050[i1/03li] , Eyliil = s,0li1/oyolil . Eglii] = slil/oyolil . (12.22)

Now we determine the correction of the slip stress Do, from (12.21), (12.22) and
calculate Do, using (12.20). The matrix in parenthesis in (12.21) has the maximal di-
mension of N, where N denotes the number of elements in the slip area. We can use
the Gauss-Seidel Block Iteration Method to invert the matrix in (12.22), because we
need only an approximation. Since this algorithm is still in development, we can not
give estimations of the minimal size of the Block Matrices, but we know, that this
procedure diverges for a one-dimensional Block Matrix.

The stress 0,,[il is the denominator of the fractions in (12.22) and must not be
zero. In the case of zero o,4[il, we have to determine the correction of Do, [i] instead
of Do,[i], which is zero here. The equation for Do,[i] is easily evaluated from
(12.21), (12.22) by substitution of x for y and y for x and reversing the indices of A;;,
to:

( -AF, + Ay + FLALF, -FiA, -FF, -F; ) Doy = -s,0 + Fisg,  (1223)

Fy{ii1 = 0,lil/ 050li] . Fyliil =s,li1/ 001 . F3liil = s0li1/aplil . (12.24)
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In our program we add a small value, e.g. 1.0E-10, to the stress o,y[i], such that this
value practically never becomes zero, and (12.21) can be used for all cases.

12.5 Contact algorithms

The equations (4.13) and (12.1)-(12.8) describe a nomlinear mixed boundary
value problem with boundary and auxiliary conditions. On the condition that the
contact area, the stick area and the slip directions area known, a linear equation
system can be formulated, which can be solved by a modified Gauss-Seidel algorithm.
Since we do not know these quantities at the beginning, we have to estimate them to
get a first solution, which can be tested on the contact conditions. These tests
determine the new contact area and the slip area, which we use to calculate a new
solution. Repetition yields a recursive iteration method, which ends when the contact
area and the slip area remain constant, B

A direct, successive type of iteration does not work for the slip directions, because
the slip at the border of the stick area is very small, while the stresses are big. Thus a
small variation of the displacements at the border of the stick area has almost no
effect on the stress distribution, but the slip directions can change very much. If the
stresses are adapted to the mew slip directions, the displacements can become very
large in the next step and a successive algorithm of this type diverges. We bypass this
problem by assuming ‘Rigid slip’ at the beginning and linearize (12.4), (12.5) around
the current solution in ome step of the slip algorithm. Now we solve the resulting
linear equation system for the slip stresses approximately, which leads to an algorithm
with good convergence and small memory requirements.

Our program consists of several inner and outer loops, in which the form of the
contact area, the slip area and the slip directions are corrected. These loops can be
executed in an arbitratry order, but not every arrangement will converge. It may be
necessary to find out the best arrangement for special problems such as large contact
areas or fast programs. In our program, we check the contact conditions in the deepest
inner loop and proceed to the outer loop for the slip directions when the contact area
is found. The next outer loop determines the new stick area. Since every step of one
outer loop repeats all inner loops, this algorithm is not as fast as a sequential
arrangement, but it converges safely.
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We used structured programming techniques in the programming language Turbo
Pascal for our modules. Several contact algorithms can be realized, by only moving a
few lines in the main part of the program. The unit ‘UNISLIP.pas’ contains all the
variable definitions, the input and output procedures, the procedures ‘Hertz’ and
‘Hertzin’ by J. J. Kalker, the procedure ‘Coeff’ to determine the load displacement
coefficients and the procedure ‘Displacements’ to calculate the displacements. The file
‘SLIP.pas’ contains the rest of the procedures and the main part of the program. Some
procedures are not used in the main part of the program.

The Nassi-Shneiderman diagram of the main part is shown in figure 12.3. The
most important module is the function ‘SeidTang’, which performs the Gauss-Seidel
procedure, described in Engeln-Muellges/Reuter (1987). The input of this function is
the coefficient matrix, the constants which define the displacements of the stick area
and some subordinate variables. The output are the siresses in the contact area. The
basic formula is explained in chapter (12.5). ‘Seidel’ determines the stresses in the
stick area by an iterative matrix inversion, and calculates the stresses in the slip area
by Coulomb’s law during each cycle of the Gauss-Seidel iteration.

The function ‘SeidTang’ is nested in the deepest loop of our program. The
module ‘Displacements’ follows. It calculates the displacements (12.10), which are the
input of the next module *TestContact’, where the contact conditions (12.3), (12.6) are
tested. If one of these conditions is violated, the contact area will be corrected and the
contact loop will be repeated, until the contact area remains constant,

The next loop for the slip directions contains the basic module ‘SlipAlgorithm’,
which corrects the slip directions. ‘SlipAlgorithm’ calls the procedure ‘DefineSlip-
Matrix, which calculates the matrix of section 12.4 and ‘SimEqu’ to soive the
linearized equation system for the stress directions. This equation system contains only
a few rows of the contact area. The variable SMColMax, which has the amount of 80
here, denotes the maximal number of columns for the slip matrix, while a random
procedure determines the number of rows in the contact area for the first cycle of this
procedure. The procedure ‘SlipAlgorithm’ ends when all lines of the contact area have
been calculated.

The module ‘DefineStickArea’ in the next loop testes Coulomb’s law (12.4) in the
stick area and corrects the stick area if necessary. The module ‘Testsign’ tests whether
all stress directions are opposite or if some are equal to the slip directions. It happens
sometimes, that the stresses are in the same direction and not opposite. ‘Testsign’ adds
points with eqﬁal stress directions to the stick area and the contact loop will be
repeated, until all stress directions are correct.
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Initialize; InputWindow;

———— Setlmpact = True ? e
Yes —— —— No

—— p—

DefinelmpactParameters

DetermineCoefficients;

For LoadCase : = FirstCase to LastCase do Begin

For Increment: =FirstIncrement to LastInc[LoadCase] do Begin

Initincrement; TestContact; DefineConstants;

Repeat | IterStick := 0;

Repeat | IterStick := IterStick + 1; IterStressDir := 0;

Repeat | IterStressDir : = IterStressDir + 1;
IterContact := 0;

Repeat | IterContact := IterContact + 1,

DefineConstants; SeidTang;

Displacements;, TestContact;

Until not(ContactChanged) or
(IterContact > MaxContact) ;
SlipAlgorithm; Displacements;
DefineStressDir;
Until (StressDirFound) or (IterStressDir 2MaxStressDir)
DefineStick Area;
Until not(StickAreaChanged) or (IterStick > =MaxStick);
. TestSign;
Until not( ContactChanged or StickAreaChanged ) and StressDirFound and
SeidelFound;
CalculateForces;

Fig. 12.3: The structural diagram.

‘DefineSlipStress’ calculates the slip stresses in . the new slip area and
"DefineConstants’ defines the displacements in the new stick area. If the stick area
changes, the contact loop will be repeated before the loop for the stick area continues.

The last part of this program tests the contact and the slip area again and repeats
all loops if necessary. Now the end of the program is reached and a new increment of

the load history may be calculated.
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13 Contribution to the mathematical proof of

convergence

Much work was dome to proof the existence and uniqueness of the contact
mechanical field, using the principle of virtual work (Kalker 1990). In this chapter we
will analyse the convergence of our algorithm of chapter 12 and the Gaussian Block
Iteration resp. Panagiotopoulos process of chapter 11. We will regard this problem
from a phenomenological point of view, rather than establishing a strong mathematical
proof. It should enable the user of our program to enter the correct input values to
achieve convergence.

Our program consists of four nested loops: The Gauss-Seidel loop, the contact
loop, the slip direction loop and the stick area loop. Accordingly four levels of
convergence must be considered. Instead of proving convergence for all types of load-
histories, we will describe what to do to avoid divergence.

In the first part of the load-history the bodies are brought together and a contact
area forms. Subsequently global displacements and forces are applied. We approximate
the contact area by a rectangular mesh, while the load-history is replaced by a number
of discrete displacement increments. Now we take step number i of this load-history,
where a contact area C; exists. In the next step we superpose a small displacement
increment. The first solution in the contact loop is calculated on the old stick area and
the contact conditions are tested. If the contact conditions are violated, the contact
area changes and a new solution is calculated on the new area. If the increments are
small enough, the contact area changes in a few points only, lets say one point, and the
contact area is already found. If the contact area changes in a few points, a few
combinations of this points must be checked, to determine the new contact area. As
long as the variation of the contact area is small enough, the number of combinations
is very small and the solution shouid be found after a few steps. We conclude that the
contact loop converges always, as long as the increments are small enough. The same
consideration holds for the calculation of the stick area in the stick area loop, but it
does not hold for the first step of a flat punch problem were contact is initiated,
because the contact area and the stick area change very much. In chapter 14.5 we
discuss a flat punch with 1000 points and show that this example converges.

The slip directions in the slip direction loop are calculated using the linearized
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equations (12.21), (12.23). We used the slip directions as the variables of the lineariza-
tion, because we can always find a relatively correct estimation for the slip directions,
assumming complete adhesion at the beginning of the stick area loop. The stress
values in the slip area vary much more than the slip directions. Similar to the contact
area, the slip directions change very little, if the increments are small enough. It
follows, that the slip direction loop converges, and that convergence is save for all
loops, except the Gauss Seidel loop, if the increments are small enough. The necessary
size of the increments for convergence of a load-history can be determined
mathematically, but numerical expirience shows, that the algorithm converges for all
sizes of the increments.

The rest of this chapter is dedicated to the investigation of the convergence of the
Gauss-Seidel procedure for some special examples. This method is characterized by
the iteration formula:

01 =To, + ¢, (13.1)

with the iteration matrix T, the vector ¢ and the solution o, of step n. Decomposition
of the vector o, into a linear combination of the eigenvectors of T proves, that this
procedure converges, if the spectral radius of T is smaller than one. In the following
sections we will analyse some simple examples, where convergence can be proved
without determination of the eigenvalues.

We mentioned earlier, that the Gauss-Seidel method and the ‘Successive Over
Relaxation’ method converge for positive definite and symmetric matrices. In the case
of complete adhesion our matrix is always positive definite and symmetric and so the
procedure converges. In the mixed case, however, where a slip area forms, we have to
determine the tangential stresses in the slip area by Coulomb’s law (12.4), (12.5) and
the matrix of the linear equation system is indefinite and not symmetric. In this case,
we know the tangential deformations in the stick area, the tangential stress in the slip
area and the normal deformations in the whole contact area. Now we perform the
Gauss-Seidel procedure for the area of adhesion and replace the slip stresses by
Coulomb’s law at the end of each iteration.

A small slip area should not disturb the process of convergence in the remaining
area of adhesion, where the matrix is still symmetric and positive definite. We expect
the worst case of convergence for full sliding in the whole contact area. To simplify the
problem, we investigate ‘Rigid Slip’ only, where the slip direction is constant in the
whole slip area. The difference between the correct solution for the slip directions and
the ‘Rigid Slip’ solution is usually small and the proof of convergence for ‘Rigid Slip’

Elastic Impact with friction, by J. Jaeger



142 13 Contribution to the proof of convergence

should be enough for many problems.

13.1 Convergence of the Gauss-Seidel procedure for Rigid
Shift’

In the case of ‘Rigid Slip’ with uni-directional local slip, we can orient one axis of
the contact area opposite to the slip direction. The normal displacement u, is given
and we use the normal component of (12.15) to determine o :

3 = finAs103 + Agz 03, (13.2)

with 0,=0 and o,=f,; 65, according to Coulomb’s law (12.4). After the calculation of
the stress o4, we use (12.15) for the deformations u, and u,.

Equation (13.2) shows, that the Gauss-Seidel procedure converges if Az, or fi;
vanish, because Aj; is symmetric. For large r we can replace the integral in (4.8),
(4.14) by the integrand and get with (4.9) and (4.23) :

. - oy 112 1-2u, ) )
Aylikl = -Aplik] ~4"( G. G, ) o= fori=k,

0 <1,k < cols- rows-1 .

(13.3)

We have to keep in mind that the definition of i, k in (13.3) differs from (4.14).
The rectangles of the contact area in (13.3) are arranged in a vector of the form (12.9)
and all rectangles are numbered continously from left to right and up and down. Thus
the element numbers i and k range between 0 and cols- rows-1 and the number k in
(13.3) defines the rectangle, where the stress o,[k] acts, while the number i defines
the place, where the deformation u,[i] is measured.

The elements of Ay, vanish for similar materials or x[k}=x[i], which is the case
for a contact area in form of a small stripe parallel to the y-axis. To study the worst
case with maximal values for A, [ik], we take a contact area in form of a stripe

parallel to the x-axis. Again we replace the integral (4.14) with the integrand :

_Ul 1- U2

A33[lk] “'IT——YW)’—;'T)(‘ %) 2+ 2"( 2

) , fori=k. (13.4)
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The equations (13.3), (13.4) yield :

A [ik]} = |7] Aslik], for a stripe in x-direction and i+k ,

1-2vy  1-2v;
2G; -~ 2G, , (13.5)
‘r = ————————
d-u + )
G, G,

where we used the relation y[i]=y[k] for a stripe parallel to the x-axis. In the general
problem we have several lines parallel to the x-axis and the matrix A3, has a stucture
similar to A, in (12.11), with a skewsymmetric arrangement of the blockmatrices. For-
mula (13.5) holds for a contact area in the form of a line parallel to the x-axis and for
the partition B, of the general case. Comparison between (13.4) and (13.5) shows, that
the blockmatrices B; for j>0 contain elements with smaller values than the elements
of By :

IB;li,k]| < |Bylik]|, for all matrices Ay, ,

. ) (13.6)
0<j<rows-1, 0 < ik < cols-1

Equation (13.6) holds for B; , C; of (12.14) etc. For complete slip in x-direction the -
asymmetric components in (13.2) become maximal, which is the worst case for conver-
gence. The assumption of infinitely small rectanéles in (13.4) and (13.5) yields an
error, which can be determined using the correct values for the integrals from (4.14) :

Ay lik] = 4—1"( lgl"’ I 2.,2 )] ax111 ras, 37
Aulik] = o (121 Gt _"2) = |

The integrals in (13.7) can be determined with (4.29), using a mesh consisting of
squares: :

= (2k+1)Ax, a, = (2k-1)Ax, b, = Ax, b, = -Ax, for j=m=0, (13.8)

with the result :

‘1§ - (2k+1)Ax1nM (2k+1)Axln %g +
+ 2AxIn 2kt 1)+ T (13.9a)

Ck-1)+/Ok-1)2+1 °
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) (2k+1)2+1 1 (13.95)
— = - = 7/ __ _ -1 - )l ——

| 5;Inrds = -Axin @Dy - kD) Axtant g (8-2) Axtart

In the table below some values for the integrals in (13.9) are listed :

k| 0 1 2 3 4 5 6 7 8

e |7.051 20761 1.0102 0.6697 0.5013 0:4007 03372 0.2860 0.2502
f 0 -1.9692 -0.9990 -0.6653 -0.5000 -0.4000 -0.3333 -0.2857 -0.2500
g oo 2 1 0.6667 0.5000 0.4000 0.3333 0.2857 0.2500

Table 13.1 : The integrals (13.7), (13.9) .

The values e,f,g are defined as :

e=]d—rs, f= Ia%lnrds, g =

=, (13.10)
The error for k=1 in (13.5) is smaller than 6% for this contact area. Since this error
decreases for larger values of k, we can use (13.5) as an approximation in the
following calculation.

We derive the proof of convergence according to a paper of W. Niethammer
(1970). The application of the iteration procedure (12.17) to complete slip in (13.2)
and the introduction of some abbreviations yields :

Doy = Lojayy + 03 - fi,A303, + Rog,, (13.11a)
Ay =D-R-L, R=LT (13.11b)

where we decomposed the matrix A,; into the diagonal matrix D, the right triangle
matrix R and the left triangle matrix L. The upper index T denotes transposition.
Usually (13.11a) is multiplied by the inverse diagonal matrix D-1, to reduce rounding
errors in the computation. Equation (13.11a) can be evaluated line by line by inserting
the new left hand side into the product with the left hand matrix L. The procedure
converges, if the matrix T :

T = (D-L)"'(R-f;,A4) , (13.12)
has eigenvalues X less than 1. The eigenvalue equation has the form :
Tz = Az, z€Tz = 1, |A\ < 1 for convergence , (13.13)

where z is an eigenvector associated with the eigenvalue of T (Horn/Johnson 1985).
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We use the upper index C for componentwise, complex conjugation. (13.12) and
(13.13) yield:

(R-f,A3)z = A(D-L)z . - (13.14)
Insertion of (13.11b) in (13.14) proves the identity :
ZCT(D-A 3 +R-2f,As;-L)Z = AzCT(D+A,;+R-L)z. (13.15)
We reformulate (13.15) to :

d-a+s-2b
= — = CT ‘ = CTYf .
A drats ' &% Aj3z, b = zCTf; A,,2, (13.16)

s = zCT(R-L)z, d = z¢™Dz.

The variables a,b,d,s denote complex scalars. The quadratic forms a,d of the symmetric
and positive definite matrices A;; and D are positive, while (R-L) and Aj, are
skewsymmetric and so the variables b and s are imaginary. Now we neglect the small
error in (13.5), which is correct for infinitely small squares, and write :

Aj = y(LT-L), 7 > 0, ‘ 13.17)

where we used the definition (13.11b) for A;;. We imsert (13.17) in (13.16) and get
the result :
s = i, b = ify; 7o, o real. (13.18)

Equation (13.18) and (13.16) yield :

o d-a+i(l-2hr)ac . (13.19)

A d+a+io

The absolute value of X\ must be less than 1 for convergeﬁce of the SOR method. We
calculate the square of the absolute value of (13.19) :
(d-a)?2 + (1-2f;,7)%e2 < (d+a)? + a2, (13.20)
which can be reformulated :
da > fi,7(fr-1)ed. . (13.21)
and get the condition for convergence :

0< flu7 <1, sufficient for convergence . (13.22)
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Experience shows, that the frictional coefficient f,;, is always less than one. The
maximal value of 7 is 0.5, but for most material pairings its value is much smaller.
Aluminum/steel for instance has a value of y = 0.1. Thus the condition (13.22) is
always satisfied, if 7 is greater than zero. For negative frictional stresses equation
(13.21) is satisfied, if the absolute value |f,,,7| is small enough. Equation (13.22) is
exact for infinite small rectangles only, but there is still a large margin in (13.22) and
(13.19) before the limit of convergence is exceeded. In the case of several lines of
rectangles in the contact area, the values of A;; become smaller than in (13.17) and
we expect smaller values of b in (13.16). Consequently the eigenvalues of the matrix T
in (13.13) decrease and the process should converge better. From (13.22) we draw the
conclusion, that the convergence deteriorates for increasing values of f,;, or 7, which is
confirmed by empirical results, even if the contact area consists of a large number of
stripes. The empirical limit of convergence for |f ;7| in our program was between 5
and 10 for circular contact areas.

In the mixed case we can formulate a recursion formula similar to (13.11) with a
decomposed matrix for the stick and slip area. The sum of the two matrices should
have eigenvalues less than 1. A rough estimation of the eigenvalues of these matrices
and empirical results show convergence. The formulation of the conditions of
convergence for the Block Iteration Method in the next chapter clarify this problem.

In this chapter we considered equally directed local slip only. Usually the ‘Rigid
Slip* solution is a good approximation, but difficulties may arise for involved load-
histories. The conditions of convergence for the torsional impact are still under
investigation. Empirical tests show convergence for all types of load- histories.

In the case of negative slip stresses in (13.2) f,;, changes its sign. It follows, that
we have to perform the Gauss-Seidel iteration backwards, resp. reverse the direction of
the x-axis, to obtain the same condition of convergence (13.22) again. Numerical expe-
rience shows, that the number of iterations for negative and positive slip stresses is al-
most identical. That suggests the conjecture, that « is very small compared to d and a.

13.2 The Block Iteration Method for shift with complete

adhesion

The Block Iteration Method corrects the vectors 04, o,, 05, while the Gauss-
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Seidel procedure corrects every element ofil. The algorithm of the Block Iteration
method is similar to the Gauss-Seidel method, formulated in block matrices. We write
(12.15) in the form :

u=Aco. , (13.23)

Now we apply the SOR method (13.11) to (13.23) and get the iteration formula :

Do,,, =u+Lo, +Ro,, of = ( c"f’. , c'zr,. ,01,), n=l.eo,

A,0 0 0o 0 0 0-A, -A,,] (1324
D=[0A,0[ L=|-AL 0 0f R=]0 0 -A,].

0 0A, -A% AT, 0 00 0

where o,,, denotes the solution of (13.24) in step n+1. The vector-components of
this solution 6,41 » G241 » 03,041 Can be inserted successively into the right hand
side of (13.24). It is important to realize, that this iteration is performed for the
vectors @,, @,, 05 of o instead of the elements o[i] in formula (13.11) of the Gauss-
Seidel procedure. The procedure (13.24) converges, if the matrix T :

T = (D-L)"R (13.25)

has eigenvalues A, with an absolute value less than one. Again we get the eigenvalue
equation Tz=X\z with the eigenvector z, which can be transformed to :

AD-L)z = Rz . (13.26)
Insertion of (13.24) proves the next equation :
zCT(D—A+R-L)z =X z¢T(D+A+R-L)z, (13.27)
where A, can be evalnated :

_d-a+s
d+a+s’

" d = z€™Dz, a = zCTAz, s = zCT(R-L)z (13.28)

The matrices D and A are symmetric and positive definite and so the scalars d
and a are positive, while (R-L) is skewsymmetric and s=i«, with real «, is imaginary.
It follows from (13.28) that the absolute value of A, is smaller than one and the
procedure converges :

M <L (13.29)
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To elucidate (13.23), (13.24) with an example, we set 0, 5, =0 and get the result :

A1101 041 = U - Ag30,,,

(13.30)
Aj30;3,,1 = U3 - Afs Tiat1 >
we eliminate o, ., in (13.30) :
T3n+1 =~ Az (AT A ) + ASATA (A0, . (13.31)

From (13.29) we know, that the absolute values of the eigenvalues, i.e. the spectral
radius, of the matrix M, :

M, = AL AT, AL A, . (13.32)

must be less than one. We will use this result in the next chapter.

13.3 The Block Iteration Method for shift with ‘Rigid Slip’

The Panagiotopoulos process (Kalker 1990) is similar to the Block Iteration
Method. We use the term ‘Rigid Slip’ for the slip directions of rigid bodies. Again we
orient one axis parallel to the slip directions and start with formula (13.2). Now we
apply the Block Iteration Method :

T3n¢r Ay, - £, AJAT, O30 " (13.33)

This algorithm converges on the condition, that the absolute values of the eigenvalues
of the matrix :

M, = f AJLA], (13.34)
are less than one. We have the eigenvalue-equation :
det(ZI-M;) =0, (13.35)

where det denotes the symbol for the determinant and A, the eigenvalue. I is the unit
matrix. A transformation yields :

det Ajl/2det (N, 1 - £, AJL2AT, Ajl/2) det AY2 = 0. (1336)
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All eigenvalues A, of (13.36) must be imaginary, because A,; is skewsymmetric and
the congruence transformation with the symmetric matrix Aj; yields a new skew
symmetric matrix (Horn/Johnson 1985). We rewrite formula (13.35) :

det (A Ass - fiy AT, ) = 0. ' (13.37)
For a small stripe of rectangles parallel to the x-axis (4.9) yields :
o%rfox2 = (. (13.38)

We use (4.14) and obtain :

. 1 1 1 ds
Aylik] = o ( G.* 62) | —. (13.39)
Comparison of (13.39) with A,;[i,k] of (4.14) yields :
. . 1/G, + 1/G,
A,lik] = g, Ajlikl, g = (13.40)

(1-v))/Gy+(1-v,)/G,

Insertion of (13.40) in M, from (13.32) and the skewsymmetry yields the matrix :

i

M, =~ -(Aj} A, e, (13.41)

which has eigenvalues |[A\;| < 1 from (13.29). Now we compare (13.41) with (13.34)
and obtain :

M, = -f, Ve, M, . (13.42)
From (13.42) follows :
N = B Ve N (13.43)

The definition (13.40) of ¢, shows that £,<2, while f,;, and |A;| are less than one. It
follows, that the eigenvalues |\,| are less than one for f <1//2. This condition
assures convergence in most contact problems. The Block Iteration Method should
converge for greater values of fi;, also, because we calculated the worst case in this
chapter.
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14 Numerical results for incremental load-histories

We performed several numerical calculations to analyse the restrictions of the ana-
lytical solutions of Mindlin, Cattaneo and the approximation of chapter 7. The largest
difference between the analytical and the theoretical solution occurs for the theory of
chapter 7. The correct solution depends on a large number of parameters, like the
material constants, the frictional law and the size of the increments. If a high accuracy
is necessary, the numerical theory must be used. The numerical calculation is very time
consuming, because the contact area, the slip area and the slip directions must be
calculated with a recursive procedure. Therefore the analytical solutions are important
as approximation for the stress values and the size of the stick area.

Mindlin’s theory is correct for similar materials with Poisson’s number v=0. For
nonzero values of v the stress direction differs about 5° from the theoretical value. In
the case of varying forces, analysed by Mindlin & Deresiewicz (1953), the stress
direction rotates about 180° for points which belong to the slip area and not to the x-
or y-axis. The stress angle is a step function for v=0 and becomes a S-function for
v+0, The same restrictions hold for Cattaneo’s theory. In the case of slender elliptical
contact areas, the stress direction varies for Poisson numbers different from zero,
because the stiffnesses in x- and y-direction are different. This effect is only important
for large slip areas and very slender ellipses. The comparison of the theory of chapter
7 and the numerical solution shows that the slip direction is not constant in the slip
area. The value of the tangential stress and the size of the stick area are fairly correct,
however. If follows that the analytical theory is very good for small slip areas or if the
slip direction reverses. The numerical calculations show, that for v=0 and in the
absence of torsion the absolute value of the tangential stress is constant on elliptical
rings which are similar and concentric to the form of the contact area. The effect of
dissimilar materials or torsion on the tangential stress can only be calculated with the
numerical theory. This is the reason, why we do not present any further analytical
results with restricted validity in this thesis.

This chapter consists of five sections: 14.1 analyses the stress for spherical bodies
of similar material; 14.2 is dedicated to elliptical bodies; 14.3 contains a load-history
for dissimilar materials; 14.4 discusses torsion and the combination of torsion and shift
and 14.5 presents some results for a flat punch.
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14.1 Spheres

In fig 14.1 the forces and the displacements of the centers of the spheres are plotted
for a load-history with v, =v,=0. The displacement was applied in 36 steps and the
contact area consists of 25 elements. In fig. 14.2 the theoretical and numerical load-
displacement curve is plotted. The difference between both solutions is very small,
even for 25 elements, such that 25 elements are enough for the determination of the
force. The stress distribution of fig. 14.3 agrees very well with the analytical solution.

1.00 58 . U1=u2=0_0’
0.80 .
T ok G,=G,=82 000 N/mm?,
() N E
€ = =
Y 0407 R foar=fin=1,
O .20 e ,..;‘v:.,fr.;n. ‘a=b=1,
a A
g 00 F,_ = tiooo n columns=10,
T -0.20 4 £ b 100 rows="7
. s
o ~0.40 - H
¢ 0.0 - ¢=0.1 mm (penetration),
L 050 - - n=0 (lateral shift),
m1.00 — . $=0 (no torsion).

‘;7
0 5 10 15 20 25 30 35 40 45 50 55
Step

Fig. 14.1: Forces and displacements for a load-history.
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-1.00 r r T T —r . \
~1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0 40 D0.60 © 80 1.00

AL

Fig. 14.2: The load-displacement curve for the load-history above.

On figures 14.4, 14.5 the same load-history with v=0.5 was investigated. Fig. 14.5
shows, that the value of the stress angle is no more constant on circles. The stress
angle rotates about 180° for a point besides the x- and y-axis, which belongs to the
slip area. )
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Figs. 14.3: The angle tan-1(c,,/0,,) and the tangential stress |o,|/0,, for the steps 6,8 -
... 16 of the load-hiscory above.
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Fig. 14.5: The angle tan"1(0,,/0,) and stress |0,,]/0,
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The next pictures show the tangential stress | ,2+0,2%/0, and the angle
tan"}(o,,/0,,) for some 2-directional load-histories with v;=v,=0. In fig. 14.6 the dis-
placement-vectors are plotted for a set of load-histories. The first step 0-1 in fig. 14.6,
which consists of a normal compression of the amount ficA{ =0.1 and a tangential dis-
placement A§=0.1, is applied in all load-histories. At the end of the first step the slip
area covers the entire contact area. Subsequently a set of 5 displacement increments in
another direction is superposed, until complete sliding occurs. The difference between
the numerical and the analytical theory of chapter 7.2 becomes maximal for complete
sliding, such that we study the worst case in these examples. For the load cases 1-6 and
1-7 complete sliding takes place, and the analytical approximation for this case is the
Cattaneo-theory of chapter 7.1, with the current value of the displacement.
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Fig. 14.7: Load-history 1-2 of fig. 14.6.
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Fig. 14.8: Load-history 1-3 of fig. 14.6.
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Figs. 14.9: Load-history 1-4 of fig. 14.6.
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Fig. 14.10: Load history 1-5 of fig. 14.6.
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Fig. 14.11: Load-history 1-6 of fig. 14.6.
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Fig. 14.12: Load-history 1-7 of fig. 14.6.

Figs. 14.7-14.12 show, that the tangential stress of the numerical solution, which is
drawn with markers, corresponds very well with the analytical solution, drawn with full
lines. The angle tan'(o,,/0,,) differs up to 50° between the two theories at the border
of the contact area. This difference becomes small in the stick area for small slip
areas.

Poisson’s number was zero for the examples above, such that the stress directions
are constant on circles. The next figure 14.13 shows load-history 1-2 of fig 14.6 with
v, =1,=0.5, in which the values are no more constant on circles, because the markers
can not be connected by a smooth line.
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Fig. 14.13: Load-history 1-2 of fig. 14.6 with v,=v,=0.5.
14.2 Elliptical contact areas
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Fig. 14.14: Tang. stress for steps 6, 8 .. 16 of the load-history from fig. 14.1,
with: v,=v,=0.5, ¢,/c,=1.585, ¢,/c,=1.415, G,=G,=82 000 N/mm?, f, =f;,=1,
a=2, b=1, columns=20, rows=10, {,=0.1 mm, A§=0.0317, ¢=0.

The stress distribution for elliptical contact areas is very similar to the distribution
for circular contact areas, as long as the ellipses are not very slender. In the case
v,=v,=0 the stress components ¢,, and o, are constant on elliptical rings and the stiff-
nesses ¢,, G, ¢, are identical. Figures 14.14 show the absolute value and the angle of
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14 Numerical results for incremental load-histories 157

the tangential stress for a load-history similar to fig. 14.1, with v,=v,=0.5. After appli-
cation of the normal compression {=0.1, the tangential displacement was increased by
5 increments of A£=0.0317 until full slip takes place. Afterwards ¢ was decreased by
the same increment until full slip occurs in the opposite direction. For a lateral dis-
placement 7 the stress distribution is almost identical to the figure 14.14, while the
stress angle moves about 90°.

14.3 Dissimilar mate:ials

In the case of different materials the normal compression produces tangential
stress. A load-history in normal direction with periods of loading and unloading was
analysed in the next figures. The period of loading is similar to a paper of Spence
(1975). During unloading annular elliptical areas of slip and adhesion form, similar to
the result of Turner (1979). The coefficient of friction was so small that full slip takes
place (fiiae=fiin=0.1, a/b=4). We found empirically that the stress angle has the form:

o/0x=k"y/x, k=2 for a/b=4. (14.1)

with an empirical factor k.
Wom e . a/b=4,

et e V1=0, v2=0.5,
G;=G,=82000 N/mm?,

fa=fn=0.1,

)

columns =40,

rows =10,

€,=0.1, A{=0.01 mm,
" §=¢=0.

ton™lo, /o, )
o
L

-120 =

1504 - -

-180 LAMAM aasaesstas aasannanns

R Fig. 14.15: Stress angle numerically.
Vix/a)*(y/b)?)

In fig. 14.15 the numerical values (cross symbols) and the theoretical values (full line,

y positive) are plotted. The ellipses represent constant values of y. The absolute value

of the tangential stress is shown in fig. 14.16. The normal stress differs slightly from

the Hertz solution.
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Fig. 14.17: Load-history Euromech90: v;=0.1, v,=0.3, G;=G,=82 000 N/mm2,

a/b=4, rows=10, columns=40, . =f,;,=1.0 $=0.

In the next example a load-history with 40 steps, v;=0.1, v,=0.3, £, =f;,=0.1
(fig.14.17) was calculated. In the steps 1..10 the normal displacement was continuously
increased, followed by a tangential loading in x-direction in step 11..15. Afterwards, in
step 16..20 the bodies are shifted in y-direction while § remains constant. Between step
21 and 25 the displacement was reduced in x-direction, which produced a point of
instantaneous adhesion in step 21, as described in chapter 7.2. In step 26 the
tangential shift was reduced in y-direction, and a 2-nd point of instantaneous adhesion
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14 Numerical results for incremental load-historics 159

occurs, as described chapter 7.3. The 2-nd point of instantaneous adhesion was not
recognized in the report at EUROMECH (Jaeger, 1990), where the steps 21..30
where approximated by the theory of chapter 7.2. The size of the stick area is plotted
in fig. 14.18, in which the points of instantaneous adhesion come out very clear.

15.00

simplified
&—&-anumericol

12 .00
9.00 —

6.00 —

Stick area

3.00 —-

10 12 14 16 18 20 22 24 2B 28 30
Steps 10...30

Fig. 14.18: The size of the stick area.

The stress angle for steps 2,3 and 10, plotted in fig. 14.19, is similar to fig. 14.15.
During the tangential loading of steps 11.15 the tangential displacement ¢ in x-
direction is increased while n is constant; now the ellipses become smaller and change
their form (fig. 14.20). The angle of step 25 is plotted fig. 14.21. Due to the normal
load-history with dissimilar materials, the stress angle varies very much and is no
longer constant on elliptical rings. The ellipses of fig. 14.19 become very slender and
curved. The distribution of the normal stress is slightly different from the Hertz
solution (not shown).
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Fig. 14.19: Step 2 (cross), step 3 (square), step 10 (circle) and eq. (14.1) (full line).
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Fig. 14.21: Step 25 of fig. 14.17. The peaks in the theoretical solution (full line)
mark the border of the old and new stick area.

144 Torsiqn with shift

In section 7.6 an approximation for pure torsion of elliptical bodies was discussed.
Fig. 14.21 shows the torque of the numerical (marker) and the theoretical solution
(7.65), which is drawn with a full line, for a/b=1 and a/b=10. The approximation
(7.65) corresponds very well with the numerical solution, even in the case of dissimilar
materials. Furthermore it turns out, that the numerical results for an area of integra-
tion with 50 points differ only slightly from the results with 400 points. Fig. 14.23
shows the contour of the stick area for the steps 2,3 .. 8 of the numerical solution with
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14 Numerical resuits for incremental load-histories 161

400 points in fig. 14.22. In Fig. 14.24 the numerical solution for varying torques,
drawn with markers, is compared with formula (7.66), drawn with a broken line.
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Fig. 14.22: The torque M, as function of the twisting angle 8 (dimensionless).

1

Fig. 14.23: The contour of the stick area AB=0, 0.2°, 0.4°.., 40*20pts., a/b=10.
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Fig. 14.24; Varying torque with a/b=1/10, v,=v,=0.

The next example comnsists of a normal compression of {=0.1 in the first step,
superposed by 10 increments of A§=0.02 and AB=0.2°. The other values are:
v,=v,=0, G;=G,=82 000 N/mm?, a=10, b=1. Fig. 14.25 shows the angle and the
absolute value of the stress (numerics: markers) for step 2. The stress angle for a rigid
body movement (full lines in fig. 14.25) differ only by 10°..20° from the numerical
solution of this step. Fig. 14.26 shows the similar result for the last step of this load-
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history, in which the stress directions are identical with the rigid-slip directions.
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Fig. 14.25; Step 2, ¢=0.1, £€=0.02, =0.2°.
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Fig. 14.26: Step 11, £=0.1, £=0.2, 8=2.0°.

22
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Fig. 14.27: Contour of the stick area for the load-history above, 40*20 pts.

The stick area in fig. 14.27 is dislocated in y-direction and has a non-elliptical form.
For increasing values of B the stick area becomes rounder. The absolute value of the
stress for each row of the contact area appear as lines of markers in fig. 14.25. The
tangential stress on a section y=constant has a peak at the border of the stick area,
which becomes maximal for y=0. The stress angles for each row of the contact area
form also lines of markers in fig. 14.25. Instead of the simultaneous application of
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14 Numerical results for incremental load-histories 163

shift and torsion in this example, the shift could be applied first and the torsion in the
next steps. The stress direction of rigid slip-solution could be a first approximation of
the stress direction in this case.
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Fig. 14.28: Step 2 (cross) and step 11 (square), {=0.1, An=0.02, AB=0.2°.
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Flg 14.29: Contour of the stick area for the load-hlstory above

Superposition of an incremental shift in y-direction An=0.02 and torsion AB=0.2
dislocates the stick area in x-direction (fig. 14.29). The stress angle of each row for a
rigid body movement is plotted as a full line in fig. 14.28. The difference between
rigid-slip and the numerical solution becomes larger as in fig. 14.25. For increasing
values of B the stick area becomes more circular.

Following Kalker (1967), we can regard the slip as a pure rigid body rotation
about the spin pole (x’,y"), in the case of large creepage and spin :

= -n/B,y=§/B, (14.2)

with dimensionless 8. The formulae for the force and the moment are:

x fstath ’ y fS!ItF ’ SthFl E (14 3 )
3a
_ 3sign(B) f I (-y) dx dy
£ 2nab x-X )2 +(y- !
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_ 3sign(B) XXy (x-x) dx dy
b= S V% ey

Ny
m = ootph [ V15 B VORVFGT ddy + - v

(14.3b)

Kalker (1967) also found some analyical formulae, when the spin pole lies inside of
the contact area. He introduced the variables:

o« = tan'(X'fy), vgx = VxX2+yZ /}ab. (14.4)

T T T T L | (L B y v '
0.0 0.1 0.2 0.3 0.40.50.60.70.80.91.0 ¢ 10 20 30 40 S0 60 70 80 30

£, . a = tant=x"/y"’)
Fig. 14.30: The force and the moment for large creepage
(full line: a/b=1/10, broken line: circle).
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Fig. 14.31 : The normalized torque for torsion with shift.
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We integrated (14.3), using a double Romberg integral (Engeln-Muellges 1987),
and obtained the results for fig. 14.30 in a few minutes. The values of the elliptical
contact area (full lines) differs very much from the result for a circle (broken line).

Fig. 14.31 shows the numerical result for the torque of the two load-histories
above with torsion and shift. The torque for complete sliding Mz from (14.3) is
smaller than the corresponding value without shift. Furthermore the torque is larger
for shift along the long axis. The initial slope is identical with or without shift, because
in the case of complete adhesion the superposition of shift does not change the torque.
Fig. 14.32 shows the result for the forces.
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Fig. 14.32: The forces for shift in x- resp. y-direction with torsion.

In this chapter we considered some rather simple load cases, to get an idea
of the complexity of some contact problems. A detailed analysis of some special load
cases is not difficult with our numerical program.

14.5 Flat punch

Equations (4.14) show, that for v,=v,=0 the tangentiél and normal stress of a
flat punch differ only by a constant factor. The load displacement coefficients A;; in
(12.10) of the normal and tangential equations are identical:

Ay = Ay = Ay, forv, =v, =0, (14.5)
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It follows, that in this case complete sliding starts at the point £=¢. In the case
v,=v,=0.5 the normal and tangential solutions differ slightly, such that a slip area
forms at a value of €=1.5- ¢, which is the value for complete sliding of two similar
spheres. This period of partial slip is always very short for flat punches and preceeds
the period of complete sliding.
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Fig. 14.33: rectangle (£=0.145) and triangle (£=0.14), {=0.1, v;=v,=0.5,
squares = slip area, stars = stick area.
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Fig. 14.34: cross = no contact, squares = slip area, stars = stick area,
¢ =015, ¢=01,v, = v, = 05.

The stick area for a rectangular resp. a triangular punch, shifted in x-direction is
plotted in fig. 14.33. In fig. 14.34 the relatively complex slip area for a flat punch in
form of four letters is plotted. This problem could be interesting for printing. Large
normal pressure at the border of the stick area could improve the contrast, small
pressures reduce the wear. Similarly to flat punches non-Hertzian punches of arbitary
shapes can be created and calculated.
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Fig. 14.37: Tangential slip of step 5.

Figs. 14.35 show a normal load history with 1000 points in 10 steps, with

AL=0.02 for steps 1.5, and A{=-0.02 for steps 6..10. In the period of compression,
between steps 1 and 5, the slip area of fig. 14.35a) remains unchanged. At the
beginning of the unloading process a stick area forms at the border of the contact area,
because the stresses at the borders decrease more than in the centers, at the beginning.
Later, in step 8 (fig. 14.35d), the stick area moves inward, similar to the unloading
process of dissimilar Hertzian bodies (Turner 1979). This problem was solved on an
80386/33MHz computer in 2 days. The control parameters influence the convergence
very much in this case. We selected following control parameters: MaxSeidel =30,
MaxStick=1. The number of Gauss-Seidel iterations should be: MaxSeidel =~
J/ cols*rows for a good convergence. It is interesting, that a small number of stick area
loops improves the convergence in this case, because the stick area could increase after
each iteration of the stick area loop. With a large value for MaxStick the stick area
decreases until complete sliding takes place and the linearized slip directions are so
wrong, that a chaotic stick area is selected in the next step.
Fig. 14.36a) shows the normal displacement and 14.36b) the normal stress as in form
of 3-dimensional functions. Some values for w and o,, are given, with oy as the
Hertzian mean stress for an elliptical contact area with the dimensions of the area of
integration. The values for the displacements are always better than the stresses,
because the stresses are the derivatives of the displacements. Fig. 14.36¢) shows the
tangential stress o, of step 5 in form of arrows and fig. 14.37 the tangential slip, which
must be opposite.
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15 Numerical results for the coefficient of restitution

The coefficient of restitution R, is defined by equation (9.31) as the ratio of the
tangential velocities in the contact point before impact to after impact. The torsional
coefficient of restitution is similarly defined as the ratio of the torsional velocity before
to after impact. In the case of the tangential impact of two spheres of similar material
the coefficient of restitution depends on two parameters & and A only (Maw, Barber,
Fawcett, 1981). x is the combined material parameter and A\ the fraction of the
tangential velocity £ divided by the normal velocity { and the coefficient of friction f:

(2w 2 v | 1-v &
n—(zc;, 2(;2)/( Gz),k—f&,lsnsLs, (15.1)

For different materials the coefficient of restitution depends also on the difference
parameter of the materials 7, which some authors call Dundurs constant and on the co-
efficient of friction.

Pe (b2 /() s sos 052

The torsional coefficient of restititionn depends on x, y and the angular velocity.
If a tangential velocity is superposed, the tangential and torsional coefficients depend
on all the parameters mentioned above. For ellipsoid bodies the situation becomes
more complex, because the coefficient of restitution depends on the inertial properties
of the bodies and the form of the contact ellipse. The solution for complete adhesion
was discussed in section 9.4. In the case of partial slip the impact must be calculated
numerically. o
Equations (15.1), (15.2) and the limits for Poisson’s number yield the following limits
for 7, which are plotted in fig. 15.1:

v, <05 r>r-15,
v, > 0 7(1+468) < x(1+38) - 1.5 - 256, 6 = G,/G;, (15.3)
v, <05 ry<15-«x,

v, > 0 y(1+68) > 2.5 + 1.56 - k(3+8),
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Fig. 15.1: The limits of 7 (15.3) for 6=1 (hatched) and §=10 (cross-hatched),
6=G,/G,.
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15.1 Verification of the Cattaneo-Mindlin theory

We found a very good correspondence between the numerical solution for similar
materials and the Cattaneo-Mindlin theory. This is not trivial because the Cattaneo-
Mindlin theory is an approximation. In Fig. 15.2 the coefficient of restitution is plotted
as a function of x and X defined by equation (15.1). For A27 complete slip occurs and
the coefficient of restitution is defined by equation (9.31) with:

D,/D,, = 7/2, for spheres. (15.3)
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A

Fig. 15.2 | R, as function of x and X for v,=v,= 0.0, 0.1, ..0.5, resp. k=1, 19/18...
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Fig. 15.2 shows the coefficient of restitution for different values of Poisson’s number
v,=1,=0, 0.1 .. 0.5 resp. the corresponding values of x from (15.1). Fig 15.3 shows
the stress distribution for x=3/2 and A=1 for an impact with 50 steps and 600 points.
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Fig. 15.3 Stress distribution, step 10, 25, 35, 40, 45.
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Fig. 15.4: Forces and displacements.

A large number of calculations with the numerical method of chapter 12 showed,
that the coefficient of restitution for dissimilar materials depends on 7, defined by
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equation (15.2) and f. The most important parameter seems to be the fraction f/7,
similar to the work of Spence (1975). Only values of f/y<1 produce a significant
change of the coefficient of restitution, as fig. 15.6 shows. The difference increases
when the coefficient of friction decreases. Fig. 15.4 shows the forces and displacements
for a tangential impact of two spheres. ‘

Step 35 Step 40
Fig. 15.5: The smoothed stick area (stars) and the slip area (squares) for fig. 15.4.

Similar to a publication of Turner (1979) asymmetric rings of slip and adhesion
appear during impact in the period of restitution. An example is plotfed in fig. 15.5,
where the slip area is small during the period of compression (step 20). In step 28 the
period of restitution starts, in which a slip area forms inside of the stick area and at
the border of the contact area. The slip area inside of the stick area decreases while
the slip area at the border increases in the following steps. The contours in fig. 15.5
are smoothed by a standard procedure, so that the undulations, which are produced by
the mesh size, are still visible and the form becomes evident. In the case of similar:
materials, there is a period of complete adhesion for A<1 in the state of compression,
which raises the tangential stiffness, because the stiffness becomes larger for large stick
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areas. This period of complete adhesion dissappears for dissimilar materials and thus
the coefficient of restitution increases considerably for small coefficients of friction
(A<4). A large number of calculations showed, that negative ard positive values of 7
produce the same coefficient of restitution. Some results for k=1 and different values
of 6 defined by equation (15.3) are plotted in figure 15.6. It turns out, that a number
of SO points in the contact area is already accurate enough for most problems. A
80386/33MHz personal computer needs about 6 minutes to calculate an impact with
50 points and 50 increments.
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Fig. 15.6: The coefficient of restitution for different materials, x=1.

15.3 Torsion

Torsion reduces the stick area, which raises the coefficient of restitution for small
A, similar to the effect of dissimilar materials. We introduce a dimensionless rotation
Wy

2
wy = f“‘é"" @, f=fum = fum (15.4)
0
which is the most important parameter for torsion. The coefficient of restitution
depends on A, k and y again. Empirieal experience indicates, that the other
parameters, like ¢, and f, do not alter the coefficient of restitution very much. The
rotation must be very high and the normal velocity small to affect the coefficient of

restitution.
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Fig. 15.7: The coefficient of restitution with spin

Figure 5 shows the coefficient of restitution for the impact of two steel spheres with
w=10Hz=600/min and w=500Hz=30000/min. The impact velocity in normal
direction was 7.16m/s=23.5feet/s. It is obvious that for 600 rotations per minute the

rotational effect can almost be neglected.

15.4 Ellipsoid bodies

The impact of an ellipsoid body with the axis d, ¢ in x-
resp. z-direction on a rigid plane is a good example
for the impact. The components a and b of R defined
in (6.6) may be zero and the moment of inertia
around the y- axis becomes:

: m
6, = 6, = 5 (+d7). (15.5)

The components D,, D,,, defined by equations
(8.29), (8.31) become:
7 Sc2 1 1

Dxx = m(c—2+dz)+m_m’ D,_z =—. (156)

Fig. 15.8: Ellipsoid.
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The fraction D_/D,, in equation (9.44) for complete adhesion has a minimum for ¢ <
d and a maximum for ¢ » d:

1<D,/D,, < 6. (15.7)

The fraction ¢,/c, (5.25) reaches its minimum of 0.5 for infinitely small ellipses shifted
along the long axis with v=0.5 and its maximum of 1 for v=0:

0.5 < ¢ /¢, £ 1.0. (15.8)
Insertion of (15.7), (15.8) in (9.44) yields:

7.81 < ¢ < 26.85, for ellipsoids. (15.9)

In figure 9.1 these values are marked by ellipses.
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16 Conclusion

In the first section 16.1 of this chapter we summarize the achievements of this
thesis and in chapter 16.2 further research is discussed.

16.1 Results of this thesis

In this thesis we investigate quasistatic, transient load-histories without rolling, of
elastic bodies, which can be approximated by half-spaces. We created a new analytical
theory for the contact of two bodies, and we found some analytical results for the
tangential and the torsional impact. We also developed a program,. which can solve
frictional contact problems with contact areas of one thousand points, on small
personal computers. The user of this program has the possibility to control the
convergence, by changing several parameters, like the size of the increments and the
maximal number of iterations of each loop. We also made some contributions to the
proof of convergence of our algorithm. We calculated several load-histories and
presented the results graphically, such that the reader gets a deaper insight in contact
mechanics. Finally we plotted the tangential coefficient of restitution for the impact of
two spheres of dissimilar materials, which defines the velocities after the impact.

In this section we will discuss the new results in detail. The base of our work are
the load-displacement equations, which are stated in chapter 4, and some well known
load-histories in contact mechanics, which are discussed in chapter 5. A generalization
of Mindlin&Deresiewicz’s theory, under a new point of view, is presented in chapter 6.
Introducing so-called Cattaneo-Mindlin functions, we found that the system depends
only on the moments of instantaneous adhesion, which occured during the previous
load-history. This consideration simplifies their theory considerably and allows a
generalization for elliptical contact areas and arbitrary load-histories. The generaliza-
tion holds also for load-histories under varying tangential directions, as we showed in
chapter 7. In chapter 7.6 an approximation for the torsion of elliptical contact areas
under varying torque is presented and compared with numerical results. This
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approximation appears to be very good.

The equations of motion and the contact law for impact problems without torsion
is stated in chapter 8. In Chapter 9 we calculate some analytical solutions for the
impact of two spheres. A tangential coefficient of restitution is introduced and an
analytical solution for complete adhesion is presented. This tangential coefficient of
restitution is very powerfull in impact theories, because it allows an easy calculation of
the global impact parameters and it can be tabulated for many problems. In chapter
10 we analyse the purely torsional impact, similar to the tangential impact, and discuss
some analytical results.

The numerical theory of J. J. Kalker is discussed in chapter 11. He published
several papers about the numerics of contact problems. Our algorithm is based on his
experience. In chapter 12 we apply the Gauss-Seidel theory to the contact problem,
state the contact conditions and linearize the frictional law. A contact algorithm is also
presented, where several parameters can be chosen, to accelerate the program and to
avoid divergence. In chapter 13 a contribution to the mathematical proof of
convergence is made, on the base of sufficiently small increments, where the variation
of the stick area and the stress direction is very small. In the case of a flat punch,
however, the stick area changes very much at the beginning of contact, independent of
the size of the increments, and the convergence is bad, but we could always achieve
convergence in our calculations. The parameters allow the control of convergence on
different levels: the contact area loop, the stress direction loop, the stick area loop and
the most outer loop. If divergence occurs, any loop can be interrupted after an
adequate number of iterations, such that the calculation is correct enough on one
hand, and a swinging between two solutions is avoided on the other hand. We proof
only the convergence of the Gauss-Seidel algorithm for some simple examples.

In chapter 14 we compare our theory with some numerical results. It turns out,
that our approximation of chapter 7, for load-histories without torsion, can not
describe the stress directions exactly, but the absolute value of the stress, the size of the
stick area and the global forces and displacements are accurate enough. Especially the
points of instantaneous adhesion appear very clearly in our numerical results.
Concerning the stress directions, it must be kept in mind that no analytical theory can
predict them exactly. We also found, that for v,=v,=0 and no torsion the stress is
atways constant on eltipses, which are similar to the contact arca. We also studied &
load-history with dissimilar materials and presented the results graphically. In section
14.4 the combination of shift and torsion is analysed and the torque and the force are
plotted for an example. The asymptotes for complete adhesion and for full sliding
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were already calculated by Mindlin (1949) and Kalker (1967), while a general
approximation turns out to be very difficult. A flat punch with 1000 points and
different materials is presented in section 14.5. '

Finally, in chapter 15, some numerical results for the impact are presented. We
calculated the coefficient of restitution for the impact of spheres of similar materials,
and found that the coefficient of restitution of the Cattaneo-Mindlin theory and the
numerical solution correspond very well. For different materials the coefficient of
restitution increases considerably in the range A<4. For a special example, the forces,
displacements and the stick area are plotted. The stick area was smoothed with a
Bezier function, which gives a realistic view of the form of this area, but the contour is
still undulating. Here we benefit from the Gauss-Seidel procedure, which allows large
areas of integration, containing many points. The influence of torsion is also calculated
with the result, that the coefficient of restitution increases for A<3, if the torsional
velocity is high enough or the normal velocity is very small. Finally, a special example
of the impact of ellipsoid bodies is analysed.

At the beginning of the programming typical programming errors, like wrong
boundary conditions etc., led to divergence of the algorithm. Later we limited the
number of contact iterations by the variable MaxContact, to accelerate the program,
which also produced divergence in some examples. Other limits for the Gauss-Seidel
iteration (MaxSeidel etc.) influence convergence too. The reliability of convergence in-
creases, when these parameters increase, but the calculation time increases too. It was
therefore necessary to allow the user to change these variables. Furthermore it was -
necessary to use assembler code for the Gauss-Seidel part, where the largest amount of
time is consumed, and to install a numerical coprozessor.

We tested several possibilities of the graphical representation of the stresses, the
slip directions, the deformations of the bodies and the contour of the areas. The stress
was plotted with arrows, which shows the spin pole very well, but the variation in the
course of the load-history is not easy to see. A representation in form of a three-
dimensional surface is very paper consuming and the variation in the time is not
visible either. Therefore we plotted the stress angle and the absolute value of the
tangential stress on a two-dimensional diagram. Furthermore the displacements and
the forces had to be plotted. It was also necessary to smooth the contour of the stick
area and the contact area. All the graphics mentioned above where included in a
graphical program.
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16.2 Further research

Further research in contact mechanics depends on the problems which arise in
practice and theory. One practical aspect is e.g., the design of the surfaces of contacting
bodies, in order to reduce the stress. The study of non-Hertzian surfaces is very
important here. An example for the theoretical research is the tabulation of
parameters, like the tangential coefficient of restitution for the frictional impact. Large
contact areas are necessary to study the local stress distribution in the contact area of
different materials. With a memory of 640 kBytes the maximal size of the area of
integration was 1000 points in our program, but it is possible to calculate larger
contact areas, using the non-protected mode of MS-DOS or UNIX and faster
computers. '

It could be of interest to tabulate characteristical parameters for other load-
histories, which arise in mechanical supports and foundations. A more theoretical
question .is the convergence of the Gauss-Seidel method for special contact areas and
load-histories. This can be done by the explicite calculation of the eigenvalues of the
matrix T in equation (13.1), for some special problems. A further acceleration of the
algorithm can be achieved, using the Multi-Grid method for the matrix vector product,
but great importance must be set on a clear programming and the control of the
accuracy of the Multi Grid Method.

Our program allows also the study of different coefficients of friction fi;,+fy, and
non-Hertzian contact surfaces. An investigation of such problems should consider,
which coefficients and which surfaces are most important, before parameter tables can
be listed. The theory of impact could be extended by the calculation of coefficients of
restitution for non-spherical bodies and non-hertzian surfaces. It would also be of
interest to apply the Gauss-Seidel method to transient rolling. It is not clear, however,
if variational methods allow the use of the Gauss-Seidel method. A complete theory
for varying torques can be created, on the base of Lubkin’s formulae, similar to the
theory of chapter 7. An analytical approximation for load-histories with shift and spin
may also be possible, although numerical methods can replace analytical methods. In
this work we analysed load-histories with prescribed displacements only. If the forces
are prescribed, another equation must be added to the load-displacement equations
and the convergence of the Gauss-Seidel method becomes uncertain. Since the global
values of the forces and displacements can be calculated with small contact areas, it is
possible to solve the linear equation system by direct inversion of the load-
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displacement equations and the additional equations for the sum of the stresses, which
must be equal to the forces (Kalker's method). ,

If the surfaces and the displacements are symmetric, the equations can be
evaluated on only half or a quarter of the surface, which accelerates the program by
the factor 4 resp. 16. Our program could be generalized for arbitrary surfacés, such
that a user-friendly input of the undeformed distance is possible, in form of a formula
or discrete values. The stresses under the surface are of interest also. They can be
calulated on the assumption of discrete forces on each element or with Kalker's
integrals (1986b).

Very interesting is a generalization of the point-load solution of the half-space,
using FEM-solutions for a point load on a hollow sphere or cylinder etc. The load-
displacement coeflicients A, of equation (4.13), could be determined for a special
mesh size, and used in our program. This works only for homogeneous bodies, where
the deformation field is independent of the position of the point-load. Contact
problems for a flat punch of soft material can not be calculated with this method,
because a point-load on the center produces another deformation field as a poinf load
on the edge.

Finally the use of parallel computers would accelerate the calculation very much.
To that end a mixture of the single-step and the multi-step Gauss-Seidel method could
be used, such that a set of parallel processors calculates the new solution
simultaneously for a set of points. In fact there are several ways to parallelize the code,
and the best way must be found empirically.
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