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Abstract: We report a plasmon steering method that enables us to
dynamically control the direction of surface plasmons generated by a
two-mode slit in a thin metal film. By varying the phase between different
coherent beams that are incident on the slit, individual waveguide modes
are excited. Different linear combinations of the two modes lead to different
diffracted fields at the exit of the slit. As a result, the direction in which
surface plasmons are launched can be controlled. Experiments confirm
that it is possible to distribute an approximately constant surface plasmon
intensity in any desired proportion over the two launching directions. We
also find that the anti-symmetric mode generates surface plasmons more
efficiently than the fundamental symmetric mode.
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1. Introduction

An electromagnetic field directed at the interface between a metal and a dielectric can cause the
free electrons in the metal to oscillate at the same frequency as the field. Under the right condi-
tions such a collective excitation of electrons, known as a surface plasmon (SP), will propagate
along the interface, and can be converted back into a freely propagating field when it is scat-
tered by a surface imperfection such as a ridge or a groove [1]. The wavelength of an SP is much
smaller than the wavelength of the electromagnetic field by which it is generated. This suggests
the possibility of ultra-compact “plasmonic” devices in which information-carrying electro-
magnetic fields generate SPs that are then processed before being turned back again into a free
field [2]. Following the observation of plasmon-enhanced transmission through subwavelength-
size hole arrays [3] and single subwavelength apertures [4] in metal plates, numerous research
efforts to develop nanoscale plasmonic devices were triggered. Plasmonic couplers [5], waveg-
uides [6], interferometers [7], lasers [8] and dichroic splitters [9] have already been realized.
However, for the field of plasmonics to achieve its full potential, it is necessary to control the
direction in which SPs are launched. Compact schemes for directional launching of SPs based
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on geometries such as a nanoslit with a Bragg resonator [10], an asymmetrically illuminated
single nanoslit [11] and pairs of nanoslits [12], and an optimized multi-groove coupler [13] have
been proposed and implemented, with extinction ratios as high as 50. These schemes all rely on
some static, built-in asymmetry that favors a particular direction of SP launching. To address
the important aspect of flexible directional launching of SPs, an essential feature for any kind of
integrated plasmonic circuitry, we present a generic approach to dynamically switch plasmons
between two channels with a constant total intensity and with a nanoscale footprint.

2. Theory

(b)

A −−A

(a)
β (r)

B

β (l)

x
z

s
a

Glass

Gold

0 

1.0 

symmetric

anti-symmetric

sym + anti-sym

|H|2

(a.u.)

Fig. 1. Principle of the proposed surface plasmon steering method. (a) A subwavelength
slit of width w in a gold film supports only two TM modes for λ/2 � w � λ : a symmetric
mode (s, green curve) and an anti-symmetric mode (a, blue curve). Three coherent beams,
A, -A (with opposite angle of incidence compared to A and π-phase shifted), and B are
incident on the slit from the glass substrate. At the dark side of the film, SPs are launched
to the left and to the right with amplitude β (l) and β (r), respectively. A series of grooves at
8 μm from either side of the slit converts the SPs back to freely propagating fields that are
detected in the far field. (b) Illustrating how a coherent superposition of the a and s modes
can lead to unidirectional SP launching at a gold-air interface. The first two panels show the
intensity of the magnetic field when the slit is illuminated with either the s or the a mode.
Superposed dotted blue curves show the total magnetic field scattered on the interface. The
length of the white bar in the first panel indicates the illumination wavelength in vacuum
(λ = 600 nm), and the slit width w is λ/2.
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In its simplest form, our approach is depicted in Fig. 1(a), where a narrow slit in a thin gold
film is illuminated from the glass substrate by three coherent beams with Transverse Magnetic
(TM) polarization. The slit width is such that for an illumination wavelength λ only two TM
modes–one symmetric (TM0), the other anti-symmetric (TM1)–are non-evanescent. Beam B
is normally incident and therefore only excites the fundamental TM0 mode. In the path of this
beam a piezo element is mounted, allowing its phase to be varied. Beams A and −A, which
have opposite but equal amplitudes, make an angle of +θ and −θ with B, respectively. They
have the same intensity, but are π−phase shifted with respect to each other. It follows from
symmetry that the combination of these two oblique beams excites only the TM1 mode [14].
At the slit exit, both left and right travelling surface plasmons are generated. Their amplitudes
are denoted by β (l) and β (r), respectively. A series of grooves on either side of the slit is used
to evidence the steering effect by converting the launched plasmons back to freely propagating
fields whose intensity is measured in the far field.

To illustrate how plasmon beam steering may be achieved with a two-mode nanoslit, Fig. 1(b)
shows the interference pattern generated by an appropriate linear combination of the TM0 and
TM1 modes in the slit. These modes scatter at the slit exit and a complete extinction of SPs
in one launching direction is predicted. The fields are calculated with a frequency-domain,
aperiodic Fourier modal method, incorporating perfectly-matched layers (method MM3 in the
benchmark article Ref. [15]). The distributions of the magnetic field intensity |H|2 in the near
field of the metal-air interface are first shown for the cases where the same slit is illuminated
with either the symmetric TM0 or the anti-symmetric TM1 mode. To illustrate the phase rela-
tionship between the excited SP fields, the total magnetic field Re(H) on the gold-air interface
is superimposed as a dotted red curve. On each side, the oscillating wave is composed of an
SP mode, and a quasi-cylindrical wave that rapidly decays within a few-wavelengths from the
slit [16]. For illumination with either the TM0 or the TM1 mode, the fields on opposite sides
of the slit are in phase or π−phase shifted, respectively. Let us adjust the (complex) ampli-
tude of the TM0 mode such that it excites SPs on the right side of the slit with the same
phase and intensity as the TM1 mode. It is apparent that the linear combination of the two
modes (Fig. 1(b), right panel) then gives rise to complete destructive interference on the left
side of the slit whereas constructive interference takes place on the right side. In the specific
example of Fig. 1(b) it is taken that λ = 600 nm, w = λ/2, and the refractive index of gold
nAu = 0.23+ i2.98 (see Ref. [17]). The right-most panel of Fig. 1(b) clearly shows that the total
field at the gold-air interface is almost null to the left of the slit, indicating that not only the SP
excitation is zero, but also that the excitation of the accompanying quasi-cylindrical waves is
very weak.

As explained, beams A and -A together excite only the TM1 mode whereas beam B excites
only the TM0 mode. At the slit exit, each mode can be scattered into radiation that propagates
to the far field, or can be dissipated as absorption loss on the gold surface, or be reflected
as a backward propagating mode in the slit. Part of the absorption loss is carried by the SPs
launched on both sides of the slit. Let the SP scattering coefficients at the left- and right-hand
side of the slit for the two-beam system {A,−A} be Aa and −Aa, respectively. For beam B
we denote the SP scattering coefficient on each side by Bs. To calculate these coefficients,
we use the mode orthogonality of translational-invariant lossy waveguides [16], which yields

Aa =
∫ ∞
−∞ [E(a)

z (x,z)HSP(x,z) − H(a)(x,z)ESP
z (x,z)]dz , and Bs =

∫ ∞
−∞ [E(s)

z (x,z)HSP(x,z) −
H(s)(x,z)ESP

z (x,z)]dz , where the field components [HSP(x,z), ESP
z (x,z)], corresponding to an

SP propagating in the negative x-direction with a unit power-flow at x = 0, are calculated an-

alytically [1]. Also, [H(a)(x,z),E(a)
z (x,z)] and [H(s)(x,z),E(s)

z (x,z)] are the scattered field com-
ponents of the combined incident field of beams A and −A, and of the incident beam B alone,
respectively. Note that the integral over z is independent of x, provided that x corresponds to an
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abscissa on the right side of the slit (see details in Ref. [16]).
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Fig. 2. The calculated SP cross sections σa and σs as defined in Eqs. (1) and (2) for a unit
Poynting vector of each of the incident beams. (a) Variation of σa and σs with slit width
w. The angles of incidence of the plane waves A, -A are taken to be θ = ±30◦. The two
insets indicate the setup for calculating σa and σs, respectively. (b) Variation of σa with
angle of incidence θ for slit widths w = 300,320,350, and 450 nm. The refractive index of
gold nAu = 0.18+ i2.99 for λ = 632.8 nm, is taken from Ref. [17], and the thickness of the
gold film is 200 nm.

We define

σs = 2|Bs|2, (1)

which has a dimension of length for our two-dimensional case and can be seen as a SP cross-
section [18,19], by analogy with the scattering or extinction cross-sections defined for nanopar-
ticles [20]. The factor 2 takes into account the SPs launched on both sides of the slit. The
anti-symmetric case corresponds to a spatially non-uniform illumination of the slit. Usually
scattering cross sections are defined for incident fields that do not vary at the scale of the scat-
terer. However, this Ansatz is not necessary, and in a consistent manner we may define an
anti-symmetric SP cross section

σa = 2|Aa|2, (2)
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where the integral Aa is normalized such that the Poynting-vector modulus of each individual
plane wave, A and -A, is one half. On spatial averaging over the fringe pattern formed by the
interference of the two incident plane waves, the total energy transported by the two-beam
combination is precisely equal to the energy transported by the single plane wave B in the
symmetric case. Finally, note that an SP scattering cross-section greater than the geometrical
cross section of the slit (w) implies that more energy is converted to SPs than is geometrically
incident upon it.

Figure 2 summarizes the main results obtained for the cross-sections at λ = 632.8 nm and
for a gold-film thickness of 200 nm. In Fig. 2(a) the influence of the slit width is shown. The
calculation of σa is performed by assuming that the angle of incidence of the plane waves with
amplitude A and -A is θ = 30◦. Starting from w = 0, the SP cross section of the symmetric case
(circles) increases gradually to a maximum value ∼ 60 nm at w ≈ 300 nm, and then decreases
as the slit width is further increased. The overall behavior is consistent with earlier works on
the ability of isolated slits or grooves to launch SPs [16]. More interesting is the anti-symmetric
case (crosses) for which the slit is placed at an anti-node of the interference pattern formed by
the two incident plane waves. For very small slit widths, the incident field on the slit is virtually
null and the TM1 mode is weakly excited. In addition, since the TM1 mode is below cutoff,
the energy transfer towards the upper slit aperture is inefficient, and it is only when this mode
becomes propagating (for w ≈ 300 nm) that a rising behavior is observed. Then σa rapidly
becomes significantly larger than σs. This remarkable result (note that the incident field is null
at the slit center for the anti-symmetric case) attests to the great potential of the TM1 mode to
deliver large and steady SP flows, a property that is rarely used in plasmonic devices [21] whose
operation mostly rely on the fundamental TM0 mode and on tiny slits or grooves. [1–5, 9–13]

Figure 2(b) shows the influence of the angle θ on the SP cross section σa. Starting from
θ = 0 (a degenerate asymptotic case for which the incident field is null), the general trend is an
increase of σa to a peak value for an intermediate angle of incidence, followed by a monotonic
decrease to null for θ = 90◦. This behavior depends only weakly on the slit width, although
we note that as w increases, the angle for maximum SP excitation is gradually shifted to a less
oblique angle of incidence, ranging from 46◦ > θ > 36◦ for the range of slit widths considered
from 300 nm to 450 nm. For θ ≈ 20◦ and w = 450 nm as used in the experiment hereafter,
σa = 100 nm, implying that 22% of the energy directly incident onto the slit is converted into
SPs launched on the upper interface.

Turning our attention back to the plasmon switch (Fig. 1), it is clear that the SP amplitudes
β (l) and β (r) of the left and right traveling surface plasmons may be represented as a linear
combination of the SPs excited by the TM0 and the TM1 mode. It follows that β (l) and β (r) are
given by the expressions

β (l)(δ ) = Bs eiδ +Aa, (3a)

β (r)(δ ) = Bs eiδ −Aa, (3b)

where δ is a variable phase controlled by the voltage across the piezo element in the normally
incident beam B. As will be seen shortly, the independent excitation of the two modes, together
with the adjustable phase δ , allows us to control the direction in which the SPs are launched.
By using variable grey filters or by varying the angle of incidence, it is possible to carefully
tune the intensity of the beams to compensate for the difference between SP cross-sections σa

and σs, and hence set |Bs| = |Aa|. In that case we have for the two SP intensities I(l)(δ ) and
I(r)(δ ) the formulas

I(l)(δ ) = |β (l)(δ )|2 = 2|Bs|2(1+ cosδ ), (4a)

I(r)(δ ) = |β (r)(δ )|2 = 2|Bs|2(1− cosδ ). (4b)
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We note that a) the total plasmon intensity I(l)(δ )+ I(r)(δ ) = 4|Bs|2 is independent of the phase
δ , and b) the ratio I(l)(δ )/I(r)(δ ) ranges from zero to infinity when δ is varied. In other words,
under precise coherent illumination, a single slit supporting two propagating modes allows one
to dynamically distribute a fixed surface plasmon flow between left-going SPs and right-going
SPs.

We note that for wider slits, that allow more than two TM modes, one could use the same
scheme to obtain plasmon steering. In such a multi-mode slit the combination of beams A and
-A only excites odd modes, whereas beam B excites only even modes. Cancellation of the
combined odd modes by the combined even modes at one side of the slit can be achieved by
balancing the amplitudes of the beams. The SPs are then launched from the other side of the
slit. However, in a wider slit the conversion of incident light into SPs will be less efficient as
more light is directly transmitted.

3. Experiment

Figure 3 shows the experimental setup with which the proposed steering of the SP intensities
was realized. The linearly-polarized output of a 16 mW He-Ne laser operating at λ = 632.8 nm
is first divided into three beams. Each beam is passed through a combination of quarter-wave
plates and a linear polarizer such that the field at the sample is TM polarized. To ensure coherent
mode excitation, the path difference between the arms was minimized by use of delay lines in
arms B and A. Arm B is normally incident, whereas arms A and -A are obliquely incident in
air at +30◦ and −30◦, respectively. By mounting the last mirror in arm -A on a micrometer
linear translator the two oblique arms are made to have a π phase difference with respect to
each other. The last mirror in Arm B is mounted on top of a piezo element which is connected
to a DC voltage source with a range of 0−300 V. The voltage across the piezo determines the
phase δ of beam B. In a separate interference experiment with the same laser, the piezo voltage
scale was calibrated in terms of phase, yielding that a 120 V ramp corresponds to a π−phase
shift in δ .

Fig. 3. Sketch of the experimental setup. The sample is illuminated from the glass-substrate
side.

Scanning electron microscopy (SEM) images of the fabricated sample are shown in the insets
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Fig. 4. Typical line trace of the CCD camera screen, perpendicular to the slits. The first low
peak on the left (near pixel 70) is the signal from the indicator slit. The second and fourth
peak are the intensities I(l)(δ ) and I(r)(δ ) from surface plasmons scattered by the left-hand
grooves and right-hand grooves, respectively. The highest peak is the intensity transmitted
by the central slit. The insets show sample details of the the central slit and the plasmon
grooves made by a scanning electron microscope.

of Fig. 4. Subwavelength slits with widths varying between 250 and 650 nm were etched by
electron-beam lithography followed by ion-beam etching in a 200 nm thick gold layer evapo-
rated onto a 0.5 mm thick fused-silica substrate. On either side of this “central slit”, at a distance
of 8 μm, there is a set of 6 grooves with a 600 nm center-to-center spacing. Due to their tiny
widths, only the central slits are etched all throughout the gold film, whereas the grooves are
only partially engraved. To ease the alignment procedure, there is a reference slit located at a
distance of around 25 μm to the left of each central slit. A 450 nm wide slit, which supports
both the TM0 and TM1 modes, was used for the experimental results reported hereafter, but
similar results have been obtained with other widths. The 8 μm slit-grooves separation helps
suppress the amplitude of the quasi-cylindrical waves so that the grooves serve only to scatter
the SPs. This ensures that the line trace pattern of the CCD camera in the far-field is effectively
proportional to the intensity of the SPs and is not contaminated with additional direct-wave
contributions [22].

Experimental results for the 450 nm wide slit are shown in Fig. 5, where the intensities of the
left- and right-travelling surface plasmons, I(l)(δ ) and I(r)(δ ) are plotted as a function of the
voltage across the piezo element that regulates the phase δ of the normally incident beam. The
agreement with Eq. (4) is very good. It is seen that more than 94% of the surface plasmons are
launched to the left when the piezo voltage is 80 V, whereas for a voltage of 200 V about 92%
is launched to the right. For intermediate voltage settings, arbitrary ratios of I(l)(δ )/I(r)(δ )
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Fig. 5. Experimental results of the proposed plasmon switching method. The SP intensities
I(l)(δ ) (red curve) and I(r)(δ ) (blue curve) are shown as a function of the phase δ of arm
B or, equivalently, as a function of the voltage across the piezo element. The total inten-
sity I(l)(δ )+ I(r)(δ ) is shown as a dotted grey curve. The error bars indicate the standard
deviation of ten independent measurements.

can be obtained, which makes the device act as a variable beam splitter. The average total
intensity I(l)(δ )+ I(r)(δ ) = 36.6 (dotted grey line). The attained visibility of 0.82 is limited by
several factors, viz. a) the three beams not being spatially fully coherent due to the relatively
low coherence length of the He-Ne laser, b) the amplitudes of arms A and -A being different by
about 2−4%, and c) the amplitude |Bs| differing from |Aa| by about 2−5%. Notice however,
that the sum of the two SP intensities is rather constant, with a mean value of 36.6 and a relative
standard deviation less than 7% over the entire voltage sweep. Also the peak to minimum
distance of 120 V is in excellent agreement with the independently observed π change in the
phase δ of arm B. Additionally, by performing far-field measurements of the intensity radiated
by the slit, we have observed a “lighthouse effect”, i.e. the maximum in the far-field intensity
distribution can be continuously shifted from the left to the right and vice versa, as one varies
the voltage across the piezo element. This suggests that one may also achieve beam steering in
the far-field of a two-mode nanoslit by controlling the linear combination of the two modes.

4. Conclusion

In conclusion, we have demonstrated that the selective coherent excitation of the two fundamen-
tal TM modes in a sub-wavelength slit allows us to launch an approximately constant intensity
of surface plasmons either to the left or to the right of the slit; or to distribute them in any
desired ratio over these two directions. This gives, for the first time, dynamic control over the
directionality of surface plasmons. Our theoretical analysis shows that, although its excitation
requires a null illumination at the slit center, the TM1 mode above cutoff offers the potential of
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higher SP conversion efficiencies compared to narrow sub-wavelength apertures that support
only the TM0 mode. Note that the radially polarized TM01 mode of subwavelength circular
holes [23] presents an axial field singularity and is likely, just as the TM1 mode of slits, to
efficiently generate SPs.

The present work illustrates how the combination of a static symmetric structure with a
versatile illumination scheme may lead to the controlled launching of surface or guided waves
at the nanoscale, and as such it may be considered as a generic demonstration. Indeed, further
work is needed to realize a competitive device. With additional calculations, we have checked
for λ = 0.6 μm that as high as 40% and 55% of the TM0 and TM1 modes are scattered into
SPs at the slit exit aperture. Therefore, the throughput of our experimental system is presently
limited by the coupling between the incident beams and the slit modes. This coupling can
be further improved by increasing either the refractive index of the substrate, or the cross-
section of the slit aperture. Different approaches that preserve the symmetry are possible, for
example surrounding the slit with an array of optimized phased grooves [13,24,25], or placing
a nano-antenna at the near-field of the slit entrance [26]. This would keep the transverse size
of the switching device below the diffraction limit. A drastic miniaturization of our table-top
illumination setup can be achieved with micro-optical components and gratings, and thanks to
the very fast development of active plasmonics technologies [27], it would be interesting to
investigate architectures for full on-chip integration. Such an ultra-compact plasmonic switch
would have potential application in telecommunications and optical sensing.
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